cpufreq: create cpu/cpufreq at boot time
[linux-block.git] / drivers / cpufreq / cpufreq.c
... / ...
CommitLineData
1/*
2 * linux/drivers/cpufreq/cpufreq.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7 *
8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9 * Added handling for CPU hotplug
10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11 * Fix handling for CPU hotplug -- affected CPUs
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20#include <linux/cpu.h>
21#include <linux/cpufreq.h>
22#include <linux/delay.h>
23#include <linux/device.h>
24#include <linux/init.h>
25#include <linux/kernel_stat.h>
26#include <linux/module.h>
27#include <linux/mutex.h>
28#include <linux/slab.h>
29#include <linux/suspend.h>
30#include <linux/syscore_ops.h>
31#include <linux/tick.h>
32#include <trace/events/power.h>
33
34static LIST_HEAD(cpufreq_policy_list);
35
36static inline bool policy_is_inactive(struct cpufreq_policy *policy)
37{
38 return cpumask_empty(policy->cpus);
39}
40
41static bool suitable_policy(struct cpufreq_policy *policy, bool active)
42{
43 return active == !policy_is_inactive(policy);
44}
45
46/* Finds Next Acive/Inactive policy */
47static struct cpufreq_policy *next_policy(struct cpufreq_policy *policy,
48 bool active)
49{
50 do {
51 policy = list_next_entry(policy, policy_list);
52
53 /* No more policies in the list */
54 if (&policy->policy_list == &cpufreq_policy_list)
55 return NULL;
56 } while (!suitable_policy(policy, active));
57
58 return policy;
59}
60
61static struct cpufreq_policy *first_policy(bool active)
62{
63 struct cpufreq_policy *policy;
64
65 /* No policies in the list */
66 if (list_empty(&cpufreq_policy_list))
67 return NULL;
68
69 policy = list_first_entry(&cpufreq_policy_list, typeof(*policy),
70 policy_list);
71
72 if (!suitable_policy(policy, active))
73 policy = next_policy(policy, active);
74
75 return policy;
76}
77
78/* Macros to iterate over CPU policies */
79#define for_each_suitable_policy(__policy, __active) \
80 for (__policy = first_policy(__active); \
81 __policy; \
82 __policy = next_policy(__policy, __active))
83
84#define for_each_active_policy(__policy) \
85 for_each_suitable_policy(__policy, true)
86#define for_each_inactive_policy(__policy) \
87 for_each_suitable_policy(__policy, false)
88
89#define for_each_policy(__policy) \
90 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
91
92/* Iterate over governors */
93static LIST_HEAD(cpufreq_governor_list);
94#define for_each_governor(__governor) \
95 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
96
97/**
98 * The "cpufreq driver" - the arch- or hardware-dependent low
99 * level driver of CPUFreq support, and its spinlock. This lock
100 * also protects the cpufreq_cpu_data array.
101 */
102static struct cpufreq_driver *cpufreq_driver;
103static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
104static DEFINE_RWLOCK(cpufreq_driver_lock);
105DEFINE_MUTEX(cpufreq_governor_lock);
106
107/* Flag to suspend/resume CPUFreq governors */
108static bool cpufreq_suspended;
109
110static inline bool has_target(void)
111{
112 return cpufreq_driver->target_index || cpufreq_driver->target;
113}
114
115/* internal prototypes */
116static int __cpufreq_governor(struct cpufreq_policy *policy,
117 unsigned int event);
118static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
119static void handle_update(struct work_struct *work);
120
121/**
122 * Two notifier lists: the "policy" list is involved in the
123 * validation process for a new CPU frequency policy; the
124 * "transition" list for kernel code that needs to handle
125 * changes to devices when the CPU clock speed changes.
126 * The mutex locks both lists.
127 */
128static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
129static struct srcu_notifier_head cpufreq_transition_notifier_list;
130
131static bool init_cpufreq_transition_notifier_list_called;
132static int __init init_cpufreq_transition_notifier_list(void)
133{
134 srcu_init_notifier_head(&cpufreq_transition_notifier_list);
135 init_cpufreq_transition_notifier_list_called = true;
136 return 0;
137}
138pure_initcall(init_cpufreq_transition_notifier_list);
139
140static int off __read_mostly;
141static int cpufreq_disabled(void)
142{
143 return off;
144}
145void disable_cpufreq(void)
146{
147 off = 1;
148}
149static DEFINE_MUTEX(cpufreq_governor_mutex);
150
151bool have_governor_per_policy(void)
152{
153 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
154}
155EXPORT_SYMBOL_GPL(have_governor_per_policy);
156
157struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
158{
159 if (have_governor_per_policy())
160 return &policy->kobj;
161 else
162 return cpufreq_global_kobject;
163}
164EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
165
166struct cpufreq_frequency_table *cpufreq_frequency_get_table(unsigned int cpu)
167{
168 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
169
170 return policy && !policy_is_inactive(policy) ?
171 policy->freq_table : NULL;
172}
173EXPORT_SYMBOL_GPL(cpufreq_frequency_get_table);
174
175static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
176{
177 u64 idle_time;
178 u64 cur_wall_time;
179 u64 busy_time;
180
181 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
182
183 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
184 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
185 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
186 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
187 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
188 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
189
190 idle_time = cur_wall_time - busy_time;
191 if (wall)
192 *wall = cputime_to_usecs(cur_wall_time);
193
194 return cputime_to_usecs(idle_time);
195}
196
197u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
198{
199 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
200
201 if (idle_time == -1ULL)
202 return get_cpu_idle_time_jiffy(cpu, wall);
203 else if (!io_busy)
204 idle_time += get_cpu_iowait_time_us(cpu, wall);
205
206 return idle_time;
207}
208EXPORT_SYMBOL_GPL(get_cpu_idle_time);
209
210/*
211 * This is a generic cpufreq init() routine which can be used by cpufreq
212 * drivers of SMP systems. It will do following:
213 * - validate & show freq table passed
214 * - set policies transition latency
215 * - policy->cpus with all possible CPUs
216 */
217int cpufreq_generic_init(struct cpufreq_policy *policy,
218 struct cpufreq_frequency_table *table,
219 unsigned int transition_latency)
220{
221 int ret;
222
223 ret = cpufreq_table_validate_and_show(policy, table);
224 if (ret) {
225 pr_err("%s: invalid frequency table: %d\n", __func__, ret);
226 return ret;
227 }
228
229 policy->cpuinfo.transition_latency = transition_latency;
230
231 /*
232 * The driver only supports the SMP configuration where all processors
233 * share the clock and voltage and clock.
234 */
235 cpumask_setall(policy->cpus);
236
237 return 0;
238}
239EXPORT_SYMBOL_GPL(cpufreq_generic_init);
240
241struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
242{
243 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
244
245 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
246}
247EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
248
249unsigned int cpufreq_generic_get(unsigned int cpu)
250{
251 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
252
253 if (!policy || IS_ERR(policy->clk)) {
254 pr_err("%s: No %s associated to cpu: %d\n",
255 __func__, policy ? "clk" : "policy", cpu);
256 return 0;
257 }
258
259 return clk_get_rate(policy->clk) / 1000;
260}
261EXPORT_SYMBOL_GPL(cpufreq_generic_get);
262
263/**
264 * cpufreq_cpu_get: returns policy for a cpu and marks it busy.
265 *
266 * @cpu: cpu to find policy for.
267 *
268 * This returns policy for 'cpu', returns NULL if it doesn't exist.
269 * It also increments the kobject reference count to mark it busy and so would
270 * require a corresponding call to cpufreq_cpu_put() to decrement it back.
271 * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be
272 * freed as that depends on the kobj count.
273 *
274 * Return: A valid policy on success, otherwise NULL on failure.
275 */
276struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
277{
278 struct cpufreq_policy *policy = NULL;
279 unsigned long flags;
280
281 if (WARN_ON(cpu >= nr_cpu_ids))
282 return NULL;
283
284 /* get the cpufreq driver */
285 read_lock_irqsave(&cpufreq_driver_lock, flags);
286
287 if (cpufreq_driver) {
288 /* get the CPU */
289 policy = cpufreq_cpu_get_raw(cpu);
290 if (policy)
291 kobject_get(&policy->kobj);
292 }
293
294 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
295
296 return policy;
297}
298EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
299
300/**
301 * cpufreq_cpu_put: Decrements the usage count of a policy
302 *
303 * @policy: policy earlier returned by cpufreq_cpu_get().
304 *
305 * This decrements the kobject reference count incremented earlier by calling
306 * cpufreq_cpu_get().
307 */
308void cpufreq_cpu_put(struct cpufreq_policy *policy)
309{
310 kobject_put(&policy->kobj);
311}
312EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
313
314/*********************************************************************
315 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
316 *********************************************************************/
317
318/**
319 * adjust_jiffies - adjust the system "loops_per_jiffy"
320 *
321 * This function alters the system "loops_per_jiffy" for the clock
322 * speed change. Note that loops_per_jiffy cannot be updated on SMP
323 * systems as each CPU might be scaled differently. So, use the arch
324 * per-CPU loops_per_jiffy value wherever possible.
325 */
326static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
327{
328#ifndef CONFIG_SMP
329 static unsigned long l_p_j_ref;
330 static unsigned int l_p_j_ref_freq;
331
332 if (ci->flags & CPUFREQ_CONST_LOOPS)
333 return;
334
335 if (!l_p_j_ref_freq) {
336 l_p_j_ref = loops_per_jiffy;
337 l_p_j_ref_freq = ci->old;
338 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
339 l_p_j_ref, l_p_j_ref_freq);
340 }
341 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
342 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
343 ci->new);
344 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
345 loops_per_jiffy, ci->new);
346 }
347#endif
348}
349
350static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
351 struct cpufreq_freqs *freqs, unsigned int state)
352{
353 BUG_ON(irqs_disabled());
354
355 if (cpufreq_disabled())
356 return;
357
358 freqs->flags = cpufreq_driver->flags;
359 pr_debug("notification %u of frequency transition to %u kHz\n",
360 state, freqs->new);
361
362 switch (state) {
363
364 case CPUFREQ_PRECHANGE:
365 /* detect if the driver reported a value as "old frequency"
366 * which is not equal to what the cpufreq core thinks is
367 * "old frequency".
368 */
369 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
370 if ((policy) && (policy->cpu == freqs->cpu) &&
371 (policy->cur) && (policy->cur != freqs->old)) {
372 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
373 freqs->old, policy->cur);
374 freqs->old = policy->cur;
375 }
376 }
377 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
378 CPUFREQ_PRECHANGE, freqs);
379 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
380 break;
381
382 case CPUFREQ_POSTCHANGE:
383 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
384 pr_debug("FREQ: %lu - CPU: %lu\n",
385 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
386 trace_cpu_frequency(freqs->new, freqs->cpu);
387 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
388 CPUFREQ_POSTCHANGE, freqs);
389 if (likely(policy) && likely(policy->cpu == freqs->cpu))
390 policy->cur = freqs->new;
391 break;
392 }
393}
394
395/**
396 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
397 * on frequency transition.
398 *
399 * This function calls the transition notifiers and the "adjust_jiffies"
400 * function. It is called twice on all CPU frequency changes that have
401 * external effects.
402 */
403static void cpufreq_notify_transition(struct cpufreq_policy *policy,
404 struct cpufreq_freqs *freqs, unsigned int state)
405{
406 for_each_cpu(freqs->cpu, policy->cpus)
407 __cpufreq_notify_transition(policy, freqs, state);
408}
409
410/* Do post notifications when there are chances that transition has failed */
411static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
412 struct cpufreq_freqs *freqs, int transition_failed)
413{
414 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
415 if (!transition_failed)
416 return;
417
418 swap(freqs->old, freqs->new);
419 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
420 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
421}
422
423void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
424 struct cpufreq_freqs *freqs)
425{
426
427 /*
428 * Catch double invocations of _begin() which lead to self-deadlock.
429 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
430 * doesn't invoke _begin() on their behalf, and hence the chances of
431 * double invocations are very low. Moreover, there are scenarios
432 * where these checks can emit false-positive warnings in these
433 * drivers; so we avoid that by skipping them altogether.
434 */
435 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
436 && current == policy->transition_task);
437
438wait:
439 wait_event(policy->transition_wait, !policy->transition_ongoing);
440
441 spin_lock(&policy->transition_lock);
442
443 if (unlikely(policy->transition_ongoing)) {
444 spin_unlock(&policy->transition_lock);
445 goto wait;
446 }
447
448 policy->transition_ongoing = true;
449 policy->transition_task = current;
450
451 spin_unlock(&policy->transition_lock);
452
453 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
454}
455EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
456
457void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
458 struct cpufreq_freqs *freqs, int transition_failed)
459{
460 if (unlikely(WARN_ON(!policy->transition_ongoing)))
461 return;
462
463 cpufreq_notify_post_transition(policy, freqs, transition_failed);
464
465 policy->transition_ongoing = false;
466 policy->transition_task = NULL;
467
468 wake_up(&policy->transition_wait);
469}
470EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
471
472
473/*********************************************************************
474 * SYSFS INTERFACE *
475 *********************************************************************/
476static ssize_t show_boost(struct kobject *kobj,
477 struct attribute *attr, char *buf)
478{
479 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
480}
481
482static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
483 const char *buf, size_t count)
484{
485 int ret, enable;
486
487 ret = sscanf(buf, "%d", &enable);
488 if (ret != 1 || enable < 0 || enable > 1)
489 return -EINVAL;
490
491 if (cpufreq_boost_trigger_state(enable)) {
492 pr_err("%s: Cannot %s BOOST!\n",
493 __func__, enable ? "enable" : "disable");
494 return -EINVAL;
495 }
496
497 pr_debug("%s: cpufreq BOOST %s\n",
498 __func__, enable ? "enabled" : "disabled");
499
500 return count;
501}
502define_one_global_rw(boost);
503
504static struct cpufreq_governor *find_governor(const char *str_governor)
505{
506 struct cpufreq_governor *t;
507
508 for_each_governor(t)
509 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
510 return t;
511
512 return NULL;
513}
514
515/**
516 * cpufreq_parse_governor - parse a governor string
517 */
518static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
519 struct cpufreq_governor **governor)
520{
521 int err = -EINVAL;
522
523 if (cpufreq_driver->setpolicy) {
524 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
525 *policy = CPUFREQ_POLICY_PERFORMANCE;
526 err = 0;
527 } else if (!strncasecmp(str_governor, "powersave",
528 CPUFREQ_NAME_LEN)) {
529 *policy = CPUFREQ_POLICY_POWERSAVE;
530 err = 0;
531 }
532 } else {
533 struct cpufreq_governor *t;
534
535 mutex_lock(&cpufreq_governor_mutex);
536
537 t = find_governor(str_governor);
538
539 if (t == NULL) {
540 int ret;
541
542 mutex_unlock(&cpufreq_governor_mutex);
543 ret = request_module("cpufreq_%s", str_governor);
544 mutex_lock(&cpufreq_governor_mutex);
545
546 if (ret == 0)
547 t = find_governor(str_governor);
548 }
549
550 if (t != NULL) {
551 *governor = t;
552 err = 0;
553 }
554
555 mutex_unlock(&cpufreq_governor_mutex);
556 }
557 return err;
558}
559
560/**
561 * cpufreq_per_cpu_attr_read() / show_##file_name() -
562 * print out cpufreq information
563 *
564 * Write out information from cpufreq_driver->policy[cpu]; object must be
565 * "unsigned int".
566 */
567
568#define show_one(file_name, object) \
569static ssize_t show_##file_name \
570(struct cpufreq_policy *policy, char *buf) \
571{ \
572 return sprintf(buf, "%u\n", policy->object); \
573}
574
575show_one(cpuinfo_min_freq, cpuinfo.min_freq);
576show_one(cpuinfo_max_freq, cpuinfo.max_freq);
577show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
578show_one(scaling_min_freq, min);
579show_one(scaling_max_freq, max);
580
581static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
582{
583 ssize_t ret;
584
585 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
586 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
587 else
588 ret = sprintf(buf, "%u\n", policy->cur);
589 return ret;
590}
591
592static int cpufreq_set_policy(struct cpufreq_policy *policy,
593 struct cpufreq_policy *new_policy);
594
595/**
596 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
597 */
598#define store_one(file_name, object) \
599static ssize_t store_##file_name \
600(struct cpufreq_policy *policy, const char *buf, size_t count) \
601{ \
602 int ret, temp; \
603 struct cpufreq_policy new_policy; \
604 \
605 memcpy(&new_policy, policy, sizeof(*policy)); \
606 \
607 ret = sscanf(buf, "%u", &new_policy.object); \
608 if (ret != 1) \
609 return -EINVAL; \
610 \
611 temp = new_policy.object; \
612 ret = cpufreq_set_policy(policy, &new_policy); \
613 if (!ret) \
614 policy->user_policy.object = temp; \
615 \
616 return ret ? ret : count; \
617}
618
619store_one(scaling_min_freq, min);
620store_one(scaling_max_freq, max);
621
622/**
623 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
624 */
625static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
626 char *buf)
627{
628 unsigned int cur_freq = __cpufreq_get(policy);
629 if (!cur_freq)
630 return sprintf(buf, "<unknown>");
631 return sprintf(buf, "%u\n", cur_freq);
632}
633
634/**
635 * show_scaling_governor - show the current policy for the specified CPU
636 */
637static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
638{
639 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
640 return sprintf(buf, "powersave\n");
641 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
642 return sprintf(buf, "performance\n");
643 else if (policy->governor)
644 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
645 policy->governor->name);
646 return -EINVAL;
647}
648
649/**
650 * store_scaling_governor - store policy for the specified CPU
651 */
652static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
653 const char *buf, size_t count)
654{
655 int ret;
656 char str_governor[16];
657 struct cpufreq_policy new_policy;
658
659 memcpy(&new_policy, policy, sizeof(*policy));
660
661 ret = sscanf(buf, "%15s", str_governor);
662 if (ret != 1)
663 return -EINVAL;
664
665 if (cpufreq_parse_governor(str_governor, &new_policy.policy,
666 &new_policy.governor))
667 return -EINVAL;
668
669 ret = cpufreq_set_policy(policy, &new_policy);
670 return ret ? ret : count;
671}
672
673/**
674 * show_scaling_driver - show the cpufreq driver currently loaded
675 */
676static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
677{
678 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
679}
680
681/**
682 * show_scaling_available_governors - show the available CPUfreq governors
683 */
684static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
685 char *buf)
686{
687 ssize_t i = 0;
688 struct cpufreq_governor *t;
689
690 if (!has_target()) {
691 i += sprintf(buf, "performance powersave");
692 goto out;
693 }
694
695 for_each_governor(t) {
696 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
697 - (CPUFREQ_NAME_LEN + 2)))
698 goto out;
699 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
700 }
701out:
702 i += sprintf(&buf[i], "\n");
703 return i;
704}
705
706ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
707{
708 ssize_t i = 0;
709 unsigned int cpu;
710
711 for_each_cpu(cpu, mask) {
712 if (i)
713 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
714 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
715 if (i >= (PAGE_SIZE - 5))
716 break;
717 }
718 i += sprintf(&buf[i], "\n");
719 return i;
720}
721EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
722
723/**
724 * show_related_cpus - show the CPUs affected by each transition even if
725 * hw coordination is in use
726 */
727static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
728{
729 return cpufreq_show_cpus(policy->related_cpus, buf);
730}
731
732/**
733 * show_affected_cpus - show the CPUs affected by each transition
734 */
735static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
736{
737 return cpufreq_show_cpus(policy->cpus, buf);
738}
739
740static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
741 const char *buf, size_t count)
742{
743 unsigned int freq = 0;
744 unsigned int ret;
745
746 if (!policy->governor || !policy->governor->store_setspeed)
747 return -EINVAL;
748
749 ret = sscanf(buf, "%u", &freq);
750 if (ret != 1)
751 return -EINVAL;
752
753 policy->governor->store_setspeed(policy, freq);
754
755 return count;
756}
757
758static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
759{
760 if (!policy->governor || !policy->governor->show_setspeed)
761 return sprintf(buf, "<unsupported>\n");
762
763 return policy->governor->show_setspeed(policy, buf);
764}
765
766/**
767 * show_bios_limit - show the current cpufreq HW/BIOS limitation
768 */
769static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
770{
771 unsigned int limit;
772 int ret;
773 if (cpufreq_driver->bios_limit) {
774 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
775 if (!ret)
776 return sprintf(buf, "%u\n", limit);
777 }
778 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
779}
780
781cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
782cpufreq_freq_attr_ro(cpuinfo_min_freq);
783cpufreq_freq_attr_ro(cpuinfo_max_freq);
784cpufreq_freq_attr_ro(cpuinfo_transition_latency);
785cpufreq_freq_attr_ro(scaling_available_governors);
786cpufreq_freq_attr_ro(scaling_driver);
787cpufreq_freq_attr_ro(scaling_cur_freq);
788cpufreq_freq_attr_ro(bios_limit);
789cpufreq_freq_attr_ro(related_cpus);
790cpufreq_freq_attr_ro(affected_cpus);
791cpufreq_freq_attr_rw(scaling_min_freq);
792cpufreq_freq_attr_rw(scaling_max_freq);
793cpufreq_freq_attr_rw(scaling_governor);
794cpufreq_freq_attr_rw(scaling_setspeed);
795
796static struct attribute *default_attrs[] = {
797 &cpuinfo_min_freq.attr,
798 &cpuinfo_max_freq.attr,
799 &cpuinfo_transition_latency.attr,
800 &scaling_min_freq.attr,
801 &scaling_max_freq.attr,
802 &affected_cpus.attr,
803 &related_cpus.attr,
804 &scaling_governor.attr,
805 &scaling_driver.attr,
806 &scaling_available_governors.attr,
807 &scaling_setspeed.attr,
808 NULL
809};
810
811#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
812#define to_attr(a) container_of(a, struct freq_attr, attr)
813
814static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
815{
816 struct cpufreq_policy *policy = to_policy(kobj);
817 struct freq_attr *fattr = to_attr(attr);
818 ssize_t ret;
819
820 down_read(&policy->rwsem);
821
822 if (fattr->show)
823 ret = fattr->show(policy, buf);
824 else
825 ret = -EIO;
826
827 up_read(&policy->rwsem);
828
829 return ret;
830}
831
832static ssize_t store(struct kobject *kobj, struct attribute *attr,
833 const char *buf, size_t count)
834{
835 struct cpufreq_policy *policy = to_policy(kobj);
836 struct freq_attr *fattr = to_attr(attr);
837 ssize_t ret = -EINVAL;
838
839 get_online_cpus();
840
841 if (!cpu_online(policy->cpu))
842 goto unlock;
843
844 down_write(&policy->rwsem);
845
846 if (fattr->store)
847 ret = fattr->store(policy, buf, count);
848 else
849 ret = -EIO;
850
851 up_write(&policy->rwsem);
852unlock:
853 put_online_cpus();
854
855 return ret;
856}
857
858static void cpufreq_sysfs_release(struct kobject *kobj)
859{
860 struct cpufreq_policy *policy = to_policy(kobj);
861 pr_debug("last reference is dropped\n");
862 complete(&policy->kobj_unregister);
863}
864
865static const struct sysfs_ops sysfs_ops = {
866 .show = show,
867 .store = store,
868};
869
870static struct kobj_type ktype_cpufreq = {
871 .sysfs_ops = &sysfs_ops,
872 .default_attrs = default_attrs,
873 .release = cpufreq_sysfs_release,
874};
875
876struct kobject *cpufreq_global_kobject;
877EXPORT_SYMBOL(cpufreq_global_kobject);
878
879int cpufreq_sysfs_create_file(const struct attribute *attr)
880{
881 return sysfs_create_file(cpufreq_global_kobject, attr);
882}
883EXPORT_SYMBOL(cpufreq_sysfs_create_file);
884
885void cpufreq_sysfs_remove_file(const struct attribute *attr)
886{
887 sysfs_remove_file(cpufreq_global_kobject, attr);
888}
889EXPORT_SYMBOL(cpufreq_sysfs_remove_file);
890
891static int add_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu)
892{
893 struct device *cpu_dev;
894
895 pr_debug("%s: Adding symlink for CPU: %u\n", __func__, cpu);
896
897 if (!policy)
898 return 0;
899
900 cpu_dev = get_cpu_device(cpu);
901 if (WARN_ON(!cpu_dev))
902 return 0;
903
904 return sysfs_create_link(&cpu_dev->kobj, &policy->kobj, "cpufreq");
905}
906
907static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu)
908{
909 struct device *cpu_dev;
910
911 pr_debug("%s: Removing symlink for CPU: %u\n", __func__, cpu);
912
913 cpu_dev = get_cpu_device(cpu);
914 if (WARN_ON(!cpu_dev))
915 return;
916
917 sysfs_remove_link(&cpu_dev->kobj, "cpufreq");
918}
919
920/* Add/remove symlinks for all related CPUs */
921static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy)
922{
923 unsigned int j;
924 int ret = 0;
925
926 /* Some related CPUs might not be present (physically hotplugged) */
927 for_each_cpu(j, policy->real_cpus) {
928 if (j == policy->kobj_cpu)
929 continue;
930
931 ret = add_cpu_dev_symlink(policy, j);
932 if (ret)
933 break;
934 }
935
936 return ret;
937}
938
939static void cpufreq_remove_dev_symlink(struct cpufreq_policy *policy)
940{
941 unsigned int j;
942
943 /* Some related CPUs might not be present (physically hotplugged) */
944 for_each_cpu(j, policy->real_cpus) {
945 if (j == policy->kobj_cpu)
946 continue;
947
948 remove_cpu_dev_symlink(policy, j);
949 }
950}
951
952static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
953{
954 struct freq_attr **drv_attr;
955 int ret = 0;
956
957 /* set up files for this cpu device */
958 drv_attr = cpufreq_driver->attr;
959 while (drv_attr && *drv_attr) {
960 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
961 if (ret)
962 return ret;
963 drv_attr++;
964 }
965 if (cpufreq_driver->get) {
966 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
967 if (ret)
968 return ret;
969 }
970
971 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
972 if (ret)
973 return ret;
974
975 if (cpufreq_driver->bios_limit) {
976 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
977 if (ret)
978 return ret;
979 }
980
981 return cpufreq_add_dev_symlink(policy);
982}
983
984static int cpufreq_init_policy(struct cpufreq_policy *policy)
985{
986 struct cpufreq_governor *gov = NULL;
987 struct cpufreq_policy new_policy;
988
989 memcpy(&new_policy, policy, sizeof(*policy));
990
991 /* Update governor of new_policy to the governor used before hotplug */
992 gov = find_governor(policy->last_governor);
993 if (gov)
994 pr_debug("Restoring governor %s for cpu %d\n",
995 policy->governor->name, policy->cpu);
996 else
997 gov = CPUFREQ_DEFAULT_GOVERNOR;
998
999 new_policy.governor = gov;
1000
1001 /* Use the default policy if its valid. */
1002 if (cpufreq_driver->setpolicy)
1003 cpufreq_parse_governor(gov->name, &new_policy.policy, NULL);
1004
1005 /* set default policy */
1006 return cpufreq_set_policy(policy, &new_policy);
1007}
1008
1009static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1010{
1011 int ret = 0;
1012
1013 /* Has this CPU been taken care of already? */
1014 if (cpumask_test_cpu(cpu, policy->cpus))
1015 return 0;
1016
1017 if (has_target()) {
1018 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1019 if (ret) {
1020 pr_err("%s: Failed to stop governor\n", __func__);
1021 return ret;
1022 }
1023 }
1024
1025 down_write(&policy->rwsem);
1026 cpumask_set_cpu(cpu, policy->cpus);
1027 up_write(&policy->rwsem);
1028
1029 if (has_target()) {
1030 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
1031 if (!ret)
1032 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
1033
1034 if (ret) {
1035 pr_err("%s: Failed to start governor\n", __func__);
1036 return ret;
1037 }
1038 }
1039
1040 return 0;
1041}
1042
1043static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1044{
1045 struct device *dev = get_cpu_device(cpu);
1046 struct cpufreq_policy *policy;
1047 int ret;
1048
1049 if (WARN_ON(!dev))
1050 return NULL;
1051
1052 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1053 if (!policy)
1054 return NULL;
1055
1056 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1057 goto err_free_policy;
1058
1059 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1060 goto err_free_cpumask;
1061
1062 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1063 goto err_free_rcpumask;
1064
1065 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, &dev->kobj,
1066 "cpufreq");
1067 if (ret) {
1068 pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret);
1069 goto err_free_real_cpus;
1070 }
1071
1072 INIT_LIST_HEAD(&policy->policy_list);
1073 init_rwsem(&policy->rwsem);
1074 spin_lock_init(&policy->transition_lock);
1075 init_waitqueue_head(&policy->transition_wait);
1076 init_completion(&policy->kobj_unregister);
1077 INIT_WORK(&policy->update, handle_update);
1078
1079 policy->cpu = cpu;
1080
1081 /* Set this once on allocation */
1082 policy->kobj_cpu = cpu;
1083
1084 return policy;
1085
1086err_free_real_cpus:
1087 free_cpumask_var(policy->real_cpus);
1088err_free_rcpumask:
1089 free_cpumask_var(policy->related_cpus);
1090err_free_cpumask:
1091 free_cpumask_var(policy->cpus);
1092err_free_policy:
1093 kfree(policy);
1094
1095 return NULL;
1096}
1097
1098static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy, bool notify)
1099{
1100 struct kobject *kobj;
1101 struct completion *cmp;
1102
1103 if (notify)
1104 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1105 CPUFREQ_REMOVE_POLICY, policy);
1106
1107 down_write(&policy->rwsem);
1108 cpufreq_remove_dev_symlink(policy);
1109 kobj = &policy->kobj;
1110 cmp = &policy->kobj_unregister;
1111 up_write(&policy->rwsem);
1112 kobject_put(kobj);
1113
1114 /*
1115 * We need to make sure that the underlying kobj is
1116 * actually not referenced anymore by anybody before we
1117 * proceed with unloading.
1118 */
1119 pr_debug("waiting for dropping of refcount\n");
1120 wait_for_completion(cmp);
1121 pr_debug("wait complete\n");
1122}
1123
1124static void cpufreq_policy_free(struct cpufreq_policy *policy, bool notify)
1125{
1126 unsigned long flags;
1127 int cpu;
1128
1129 /* Remove policy from list */
1130 write_lock_irqsave(&cpufreq_driver_lock, flags);
1131 list_del(&policy->policy_list);
1132
1133 for_each_cpu(cpu, policy->related_cpus)
1134 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1135 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1136
1137 cpufreq_policy_put_kobj(policy, notify);
1138 free_cpumask_var(policy->real_cpus);
1139 free_cpumask_var(policy->related_cpus);
1140 free_cpumask_var(policy->cpus);
1141 kfree(policy);
1142}
1143
1144static int cpufreq_online(unsigned int cpu)
1145{
1146 struct cpufreq_policy *policy;
1147 bool new_policy;
1148 unsigned long flags;
1149 unsigned int j;
1150 int ret;
1151
1152 pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1153
1154 /* Check if this CPU already has a policy to manage it */
1155 policy = per_cpu(cpufreq_cpu_data, cpu);
1156 if (policy) {
1157 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1158 if (!policy_is_inactive(policy))
1159 return cpufreq_add_policy_cpu(policy, cpu);
1160
1161 /* This is the only online CPU for the policy. Start over. */
1162 new_policy = false;
1163 down_write(&policy->rwsem);
1164 policy->cpu = cpu;
1165 policy->governor = NULL;
1166 up_write(&policy->rwsem);
1167 } else {
1168 new_policy = true;
1169 policy = cpufreq_policy_alloc(cpu);
1170 if (!policy)
1171 return -ENOMEM;
1172 }
1173
1174 cpumask_copy(policy->cpus, cpumask_of(cpu));
1175
1176 /* call driver. From then on the cpufreq must be able
1177 * to accept all calls to ->verify and ->setpolicy for this CPU
1178 */
1179 ret = cpufreq_driver->init(policy);
1180 if (ret) {
1181 pr_debug("initialization failed\n");
1182 goto out_free_policy;
1183 }
1184
1185 down_write(&policy->rwsem);
1186
1187 if (new_policy) {
1188 /* related_cpus should at least include policy->cpus. */
1189 cpumask_copy(policy->related_cpus, policy->cpus);
1190 /* Remember CPUs present at the policy creation time. */
1191 cpumask_and(policy->real_cpus, policy->cpus, cpu_present_mask);
1192 }
1193
1194 /*
1195 * affected cpus must always be the one, which are online. We aren't
1196 * managing offline cpus here.
1197 */
1198 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1199
1200 if (new_policy) {
1201 policy->user_policy.min = policy->min;
1202 policy->user_policy.max = policy->max;
1203
1204 write_lock_irqsave(&cpufreq_driver_lock, flags);
1205 for_each_cpu(j, policy->related_cpus)
1206 per_cpu(cpufreq_cpu_data, j) = policy;
1207 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1208 }
1209
1210 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1211 policy->cur = cpufreq_driver->get(policy->cpu);
1212 if (!policy->cur) {
1213 pr_err("%s: ->get() failed\n", __func__);
1214 goto out_exit_policy;
1215 }
1216 }
1217
1218 /*
1219 * Sometimes boot loaders set CPU frequency to a value outside of
1220 * frequency table present with cpufreq core. In such cases CPU might be
1221 * unstable if it has to run on that frequency for long duration of time
1222 * and so its better to set it to a frequency which is specified in
1223 * freq-table. This also makes cpufreq stats inconsistent as
1224 * cpufreq-stats would fail to register because current frequency of CPU
1225 * isn't found in freq-table.
1226 *
1227 * Because we don't want this change to effect boot process badly, we go
1228 * for the next freq which is >= policy->cur ('cur' must be set by now,
1229 * otherwise we will end up setting freq to lowest of the table as 'cur'
1230 * is initialized to zero).
1231 *
1232 * We are passing target-freq as "policy->cur - 1" otherwise
1233 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1234 * equal to target-freq.
1235 */
1236 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1237 && has_target()) {
1238 /* Are we running at unknown frequency ? */
1239 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1240 if (ret == -EINVAL) {
1241 /* Warn user and fix it */
1242 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1243 __func__, policy->cpu, policy->cur);
1244 ret = __cpufreq_driver_target(policy, policy->cur - 1,
1245 CPUFREQ_RELATION_L);
1246
1247 /*
1248 * Reaching here after boot in a few seconds may not
1249 * mean that system will remain stable at "unknown"
1250 * frequency for longer duration. Hence, a BUG_ON().
1251 */
1252 BUG_ON(ret);
1253 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1254 __func__, policy->cpu, policy->cur);
1255 }
1256 }
1257
1258 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1259 CPUFREQ_START, policy);
1260
1261 if (new_policy) {
1262 ret = cpufreq_add_dev_interface(policy);
1263 if (ret)
1264 goto out_exit_policy;
1265 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1266 CPUFREQ_CREATE_POLICY, policy);
1267
1268 write_lock_irqsave(&cpufreq_driver_lock, flags);
1269 list_add(&policy->policy_list, &cpufreq_policy_list);
1270 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1271 }
1272
1273 ret = cpufreq_init_policy(policy);
1274 if (ret) {
1275 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1276 __func__, cpu, ret);
1277 /* cpufreq_policy_free() will notify based on this */
1278 new_policy = false;
1279 goto out_exit_policy;
1280 }
1281
1282 up_write(&policy->rwsem);
1283
1284 kobject_uevent(&policy->kobj, KOBJ_ADD);
1285
1286 /* Callback for handling stuff after policy is ready */
1287 if (cpufreq_driver->ready)
1288 cpufreq_driver->ready(policy);
1289
1290 pr_debug("initialization complete\n");
1291
1292 return 0;
1293
1294out_exit_policy:
1295 up_write(&policy->rwsem);
1296
1297 if (cpufreq_driver->exit)
1298 cpufreq_driver->exit(policy);
1299out_free_policy:
1300 cpufreq_policy_free(policy, !new_policy);
1301 return ret;
1302}
1303
1304/**
1305 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1306 * @dev: CPU device.
1307 * @sif: Subsystem interface structure pointer (not used)
1308 */
1309static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1310{
1311 unsigned cpu = dev->id;
1312 int ret;
1313
1314 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1315
1316 if (cpu_online(cpu)) {
1317 ret = cpufreq_online(cpu);
1318 } else {
1319 /*
1320 * A hotplug notifier will follow and we will handle it as CPU
1321 * online then. For now, just create the sysfs link, unless
1322 * there is no policy or the link is already present.
1323 */
1324 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1325
1326 ret = policy && !cpumask_test_and_set_cpu(cpu, policy->real_cpus)
1327 ? add_cpu_dev_symlink(policy, cpu) : 0;
1328 }
1329
1330 return ret;
1331}
1332
1333static void cpufreq_offline_prepare(unsigned int cpu)
1334{
1335 struct cpufreq_policy *policy;
1336
1337 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1338
1339 policy = cpufreq_cpu_get_raw(cpu);
1340 if (!policy) {
1341 pr_debug("%s: No cpu_data found\n", __func__);
1342 return;
1343 }
1344
1345 if (has_target()) {
1346 int ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1347 if (ret)
1348 pr_err("%s: Failed to stop governor\n", __func__);
1349 }
1350
1351 down_write(&policy->rwsem);
1352 cpumask_clear_cpu(cpu, policy->cpus);
1353
1354 if (policy_is_inactive(policy)) {
1355 if (has_target())
1356 strncpy(policy->last_governor, policy->governor->name,
1357 CPUFREQ_NAME_LEN);
1358 } else if (cpu == policy->cpu) {
1359 /* Nominate new CPU */
1360 policy->cpu = cpumask_any(policy->cpus);
1361 }
1362 up_write(&policy->rwsem);
1363
1364 /* Start governor again for active policy */
1365 if (!policy_is_inactive(policy)) {
1366 if (has_target()) {
1367 int ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
1368 if (!ret)
1369 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
1370
1371 if (ret)
1372 pr_err("%s: Failed to start governor\n", __func__);
1373 }
1374 } else if (cpufreq_driver->stop_cpu) {
1375 cpufreq_driver->stop_cpu(policy);
1376 }
1377}
1378
1379static void cpufreq_offline_finish(unsigned int cpu)
1380{
1381 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1382
1383 if (!policy) {
1384 pr_debug("%s: No cpu_data found\n", __func__);
1385 return;
1386 }
1387
1388 /* Only proceed for inactive policies */
1389 if (!policy_is_inactive(policy))
1390 return;
1391
1392 /* If cpu is last user of policy, free policy */
1393 if (has_target()) {
1394 int ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
1395 if (ret)
1396 pr_err("%s: Failed to exit governor\n", __func__);
1397 }
1398
1399 /*
1400 * Perform the ->exit() even during light-weight tear-down,
1401 * since this is a core component, and is essential for the
1402 * subsequent light-weight ->init() to succeed.
1403 */
1404 if (cpufreq_driver->exit) {
1405 cpufreq_driver->exit(policy);
1406 policy->freq_table = NULL;
1407 }
1408}
1409
1410/**
1411 * cpufreq_remove_dev - remove a CPU device
1412 *
1413 * Removes the cpufreq interface for a CPU device.
1414 */
1415static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1416{
1417 unsigned int cpu = dev->id;
1418 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1419
1420 if (!policy)
1421 return;
1422
1423 if (cpu_online(cpu)) {
1424 cpufreq_offline_prepare(cpu);
1425 cpufreq_offline_finish(cpu);
1426 }
1427
1428 cpumask_clear_cpu(cpu, policy->real_cpus);
1429
1430 if (cpumask_empty(policy->real_cpus)) {
1431 cpufreq_policy_free(policy, true);
1432 return;
1433 }
1434
1435 if (cpu != policy->kobj_cpu) {
1436 remove_cpu_dev_symlink(policy, cpu);
1437 } else {
1438 /*
1439 * The CPU owning the policy object is going away. Move it to
1440 * another suitable CPU.
1441 */
1442 unsigned int new_cpu = cpumask_first(policy->real_cpus);
1443 struct device *new_dev = get_cpu_device(new_cpu);
1444
1445 dev_dbg(dev, "%s: Moving policy object to CPU%u\n", __func__, new_cpu);
1446
1447 sysfs_remove_link(&new_dev->kobj, "cpufreq");
1448 policy->kobj_cpu = new_cpu;
1449 WARN_ON(kobject_move(&policy->kobj, &new_dev->kobj));
1450 }
1451}
1452
1453static void handle_update(struct work_struct *work)
1454{
1455 struct cpufreq_policy *policy =
1456 container_of(work, struct cpufreq_policy, update);
1457 unsigned int cpu = policy->cpu;
1458 pr_debug("handle_update for cpu %u called\n", cpu);
1459 cpufreq_update_policy(cpu);
1460}
1461
1462/**
1463 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1464 * in deep trouble.
1465 * @policy: policy managing CPUs
1466 * @new_freq: CPU frequency the CPU actually runs at
1467 *
1468 * We adjust to current frequency first, and need to clean up later.
1469 * So either call to cpufreq_update_policy() or schedule handle_update()).
1470 */
1471static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1472 unsigned int new_freq)
1473{
1474 struct cpufreq_freqs freqs;
1475
1476 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1477 policy->cur, new_freq);
1478
1479 freqs.old = policy->cur;
1480 freqs.new = new_freq;
1481
1482 cpufreq_freq_transition_begin(policy, &freqs);
1483 cpufreq_freq_transition_end(policy, &freqs, 0);
1484}
1485
1486/**
1487 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1488 * @cpu: CPU number
1489 *
1490 * This is the last known freq, without actually getting it from the driver.
1491 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1492 */
1493unsigned int cpufreq_quick_get(unsigned int cpu)
1494{
1495 struct cpufreq_policy *policy;
1496 unsigned int ret_freq = 0;
1497
1498 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
1499 return cpufreq_driver->get(cpu);
1500
1501 policy = cpufreq_cpu_get(cpu);
1502 if (policy) {
1503 ret_freq = policy->cur;
1504 cpufreq_cpu_put(policy);
1505 }
1506
1507 return ret_freq;
1508}
1509EXPORT_SYMBOL(cpufreq_quick_get);
1510
1511/**
1512 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1513 * @cpu: CPU number
1514 *
1515 * Just return the max possible frequency for a given CPU.
1516 */
1517unsigned int cpufreq_quick_get_max(unsigned int cpu)
1518{
1519 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1520 unsigned int ret_freq = 0;
1521
1522 if (policy) {
1523 ret_freq = policy->max;
1524 cpufreq_cpu_put(policy);
1525 }
1526
1527 return ret_freq;
1528}
1529EXPORT_SYMBOL(cpufreq_quick_get_max);
1530
1531static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1532{
1533 unsigned int ret_freq = 0;
1534
1535 if (!cpufreq_driver->get)
1536 return ret_freq;
1537
1538 ret_freq = cpufreq_driver->get(policy->cpu);
1539
1540 /* Updating inactive policies is invalid, so avoid doing that. */
1541 if (unlikely(policy_is_inactive(policy)))
1542 return ret_freq;
1543
1544 if (ret_freq && policy->cur &&
1545 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1546 /* verify no discrepancy between actual and
1547 saved value exists */
1548 if (unlikely(ret_freq != policy->cur)) {
1549 cpufreq_out_of_sync(policy, ret_freq);
1550 schedule_work(&policy->update);
1551 }
1552 }
1553
1554 return ret_freq;
1555}
1556
1557/**
1558 * cpufreq_get - get the current CPU frequency (in kHz)
1559 * @cpu: CPU number
1560 *
1561 * Get the CPU current (static) CPU frequency
1562 */
1563unsigned int cpufreq_get(unsigned int cpu)
1564{
1565 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1566 unsigned int ret_freq = 0;
1567
1568 if (policy) {
1569 down_read(&policy->rwsem);
1570 ret_freq = __cpufreq_get(policy);
1571 up_read(&policy->rwsem);
1572
1573 cpufreq_cpu_put(policy);
1574 }
1575
1576 return ret_freq;
1577}
1578EXPORT_SYMBOL(cpufreq_get);
1579
1580static struct subsys_interface cpufreq_interface = {
1581 .name = "cpufreq",
1582 .subsys = &cpu_subsys,
1583 .add_dev = cpufreq_add_dev,
1584 .remove_dev = cpufreq_remove_dev,
1585};
1586
1587/*
1588 * In case platform wants some specific frequency to be configured
1589 * during suspend..
1590 */
1591int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1592{
1593 int ret;
1594
1595 if (!policy->suspend_freq) {
1596 pr_debug("%s: suspend_freq not defined\n", __func__);
1597 return 0;
1598 }
1599
1600 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1601 policy->suspend_freq);
1602
1603 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1604 CPUFREQ_RELATION_H);
1605 if (ret)
1606 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1607 __func__, policy->suspend_freq, ret);
1608
1609 return ret;
1610}
1611EXPORT_SYMBOL(cpufreq_generic_suspend);
1612
1613/**
1614 * cpufreq_suspend() - Suspend CPUFreq governors
1615 *
1616 * Called during system wide Suspend/Hibernate cycles for suspending governors
1617 * as some platforms can't change frequency after this point in suspend cycle.
1618 * Because some of the devices (like: i2c, regulators, etc) they use for
1619 * changing frequency are suspended quickly after this point.
1620 */
1621void cpufreq_suspend(void)
1622{
1623 struct cpufreq_policy *policy;
1624
1625 if (!cpufreq_driver)
1626 return;
1627
1628 if (!has_target())
1629 goto suspend;
1630
1631 pr_debug("%s: Suspending Governors\n", __func__);
1632
1633 for_each_active_policy(policy) {
1634 if (__cpufreq_governor(policy, CPUFREQ_GOV_STOP))
1635 pr_err("%s: Failed to stop governor for policy: %p\n",
1636 __func__, policy);
1637 else if (cpufreq_driver->suspend
1638 && cpufreq_driver->suspend(policy))
1639 pr_err("%s: Failed to suspend driver: %p\n", __func__,
1640 policy);
1641 }
1642
1643suspend:
1644 cpufreq_suspended = true;
1645}
1646
1647/**
1648 * cpufreq_resume() - Resume CPUFreq governors
1649 *
1650 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1651 * are suspended with cpufreq_suspend().
1652 */
1653void cpufreq_resume(void)
1654{
1655 struct cpufreq_policy *policy;
1656
1657 if (!cpufreq_driver)
1658 return;
1659
1660 cpufreq_suspended = false;
1661
1662 if (!has_target())
1663 return;
1664
1665 pr_debug("%s: Resuming Governors\n", __func__);
1666
1667 for_each_active_policy(policy) {
1668 if (cpufreq_driver->resume && cpufreq_driver->resume(policy))
1669 pr_err("%s: Failed to resume driver: %p\n", __func__,
1670 policy);
1671 else if (__cpufreq_governor(policy, CPUFREQ_GOV_START)
1672 || __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))
1673 pr_err("%s: Failed to start governor for policy: %p\n",
1674 __func__, policy);
1675 }
1676
1677 /*
1678 * schedule call cpufreq_update_policy() for first-online CPU, as that
1679 * wouldn't be hotplugged-out on suspend. It will verify that the
1680 * current freq is in sync with what we believe it to be.
1681 */
1682 policy = cpufreq_cpu_get_raw(cpumask_first(cpu_online_mask));
1683 if (WARN_ON(!policy))
1684 return;
1685
1686 schedule_work(&policy->update);
1687}
1688
1689/**
1690 * cpufreq_get_current_driver - return current driver's name
1691 *
1692 * Return the name string of the currently loaded cpufreq driver
1693 * or NULL, if none.
1694 */
1695const char *cpufreq_get_current_driver(void)
1696{
1697 if (cpufreq_driver)
1698 return cpufreq_driver->name;
1699
1700 return NULL;
1701}
1702EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1703
1704/**
1705 * cpufreq_get_driver_data - return current driver data
1706 *
1707 * Return the private data of the currently loaded cpufreq
1708 * driver, or NULL if no cpufreq driver is loaded.
1709 */
1710void *cpufreq_get_driver_data(void)
1711{
1712 if (cpufreq_driver)
1713 return cpufreq_driver->driver_data;
1714
1715 return NULL;
1716}
1717EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1718
1719/*********************************************************************
1720 * NOTIFIER LISTS INTERFACE *
1721 *********************************************************************/
1722
1723/**
1724 * cpufreq_register_notifier - register a driver with cpufreq
1725 * @nb: notifier function to register
1726 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1727 *
1728 * Add a driver to one of two lists: either a list of drivers that
1729 * are notified about clock rate changes (once before and once after
1730 * the transition), or a list of drivers that are notified about
1731 * changes in cpufreq policy.
1732 *
1733 * This function may sleep, and has the same return conditions as
1734 * blocking_notifier_chain_register.
1735 */
1736int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1737{
1738 int ret;
1739
1740 if (cpufreq_disabled())
1741 return -EINVAL;
1742
1743 WARN_ON(!init_cpufreq_transition_notifier_list_called);
1744
1745 switch (list) {
1746 case CPUFREQ_TRANSITION_NOTIFIER:
1747 ret = srcu_notifier_chain_register(
1748 &cpufreq_transition_notifier_list, nb);
1749 break;
1750 case CPUFREQ_POLICY_NOTIFIER:
1751 ret = blocking_notifier_chain_register(
1752 &cpufreq_policy_notifier_list, nb);
1753 break;
1754 default:
1755 ret = -EINVAL;
1756 }
1757
1758 return ret;
1759}
1760EXPORT_SYMBOL(cpufreq_register_notifier);
1761
1762/**
1763 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1764 * @nb: notifier block to be unregistered
1765 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1766 *
1767 * Remove a driver from the CPU frequency notifier list.
1768 *
1769 * This function may sleep, and has the same return conditions as
1770 * blocking_notifier_chain_unregister.
1771 */
1772int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1773{
1774 int ret;
1775
1776 if (cpufreq_disabled())
1777 return -EINVAL;
1778
1779 switch (list) {
1780 case CPUFREQ_TRANSITION_NOTIFIER:
1781 ret = srcu_notifier_chain_unregister(
1782 &cpufreq_transition_notifier_list, nb);
1783 break;
1784 case CPUFREQ_POLICY_NOTIFIER:
1785 ret = blocking_notifier_chain_unregister(
1786 &cpufreq_policy_notifier_list, nb);
1787 break;
1788 default:
1789 ret = -EINVAL;
1790 }
1791
1792 return ret;
1793}
1794EXPORT_SYMBOL(cpufreq_unregister_notifier);
1795
1796
1797/*********************************************************************
1798 * GOVERNORS *
1799 *********************************************************************/
1800
1801/* Must set freqs->new to intermediate frequency */
1802static int __target_intermediate(struct cpufreq_policy *policy,
1803 struct cpufreq_freqs *freqs, int index)
1804{
1805 int ret;
1806
1807 freqs->new = cpufreq_driver->get_intermediate(policy, index);
1808
1809 /* We don't need to switch to intermediate freq */
1810 if (!freqs->new)
1811 return 0;
1812
1813 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1814 __func__, policy->cpu, freqs->old, freqs->new);
1815
1816 cpufreq_freq_transition_begin(policy, freqs);
1817 ret = cpufreq_driver->target_intermediate(policy, index);
1818 cpufreq_freq_transition_end(policy, freqs, ret);
1819
1820 if (ret)
1821 pr_err("%s: Failed to change to intermediate frequency: %d\n",
1822 __func__, ret);
1823
1824 return ret;
1825}
1826
1827static int __target_index(struct cpufreq_policy *policy,
1828 struct cpufreq_frequency_table *freq_table, int index)
1829{
1830 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1831 unsigned int intermediate_freq = 0;
1832 int retval = -EINVAL;
1833 bool notify;
1834
1835 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1836 if (notify) {
1837 /* Handle switching to intermediate frequency */
1838 if (cpufreq_driver->get_intermediate) {
1839 retval = __target_intermediate(policy, &freqs, index);
1840 if (retval)
1841 return retval;
1842
1843 intermediate_freq = freqs.new;
1844 /* Set old freq to intermediate */
1845 if (intermediate_freq)
1846 freqs.old = freqs.new;
1847 }
1848
1849 freqs.new = freq_table[index].frequency;
1850 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1851 __func__, policy->cpu, freqs.old, freqs.new);
1852
1853 cpufreq_freq_transition_begin(policy, &freqs);
1854 }
1855
1856 retval = cpufreq_driver->target_index(policy, index);
1857 if (retval)
1858 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1859 retval);
1860
1861 if (notify) {
1862 cpufreq_freq_transition_end(policy, &freqs, retval);
1863
1864 /*
1865 * Failed after setting to intermediate freq? Driver should have
1866 * reverted back to initial frequency and so should we. Check
1867 * here for intermediate_freq instead of get_intermediate, in
1868 * case we haven't switched to intermediate freq at all.
1869 */
1870 if (unlikely(retval && intermediate_freq)) {
1871 freqs.old = intermediate_freq;
1872 freqs.new = policy->restore_freq;
1873 cpufreq_freq_transition_begin(policy, &freqs);
1874 cpufreq_freq_transition_end(policy, &freqs, 0);
1875 }
1876 }
1877
1878 return retval;
1879}
1880
1881int __cpufreq_driver_target(struct cpufreq_policy *policy,
1882 unsigned int target_freq,
1883 unsigned int relation)
1884{
1885 unsigned int old_target_freq = target_freq;
1886 int retval = -EINVAL;
1887
1888 if (cpufreq_disabled())
1889 return -ENODEV;
1890
1891 /* Make sure that target_freq is within supported range */
1892 if (target_freq > policy->max)
1893 target_freq = policy->max;
1894 if (target_freq < policy->min)
1895 target_freq = policy->min;
1896
1897 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1898 policy->cpu, target_freq, relation, old_target_freq);
1899
1900 /*
1901 * This might look like a redundant call as we are checking it again
1902 * after finding index. But it is left intentionally for cases where
1903 * exactly same freq is called again and so we can save on few function
1904 * calls.
1905 */
1906 if (target_freq == policy->cur)
1907 return 0;
1908
1909 /* Save last value to restore later on errors */
1910 policy->restore_freq = policy->cur;
1911
1912 if (cpufreq_driver->target)
1913 retval = cpufreq_driver->target(policy, target_freq, relation);
1914 else if (cpufreq_driver->target_index) {
1915 struct cpufreq_frequency_table *freq_table;
1916 int index;
1917
1918 freq_table = cpufreq_frequency_get_table(policy->cpu);
1919 if (unlikely(!freq_table)) {
1920 pr_err("%s: Unable to find freq_table\n", __func__);
1921 goto out;
1922 }
1923
1924 retval = cpufreq_frequency_table_target(policy, freq_table,
1925 target_freq, relation, &index);
1926 if (unlikely(retval)) {
1927 pr_err("%s: Unable to find matching freq\n", __func__);
1928 goto out;
1929 }
1930
1931 if (freq_table[index].frequency == policy->cur) {
1932 retval = 0;
1933 goto out;
1934 }
1935
1936 retval = __target_index(policy, freq_table, index);
1937 }
1938
1939out:
1940 return retval;
1941}
1942EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1943
1944int cpufreq_driver_target(struct cpufreq_policy *policy,
1945 unsigned int target_freq,
1946 unsigned int relation)
1947{
1948 int ret = -EINVAL;
1949
1950 down_write(&policy->rwsem);
1951
1952 ret = __cpufreq_driver_target(policy, target_freq, relation);
1953
1954 up_write(&policy->rwsem);
1955
1956 return ret;
1957}
1958EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1959
1960static int __cpufreq_governor(struct cpufreq_policy *policy,
1961 unsigned int event)
1962{
1963 int ret;
1964
1965 /* Only must be defined when default governor is known to have latency
1966 restrictions, like e.g. conservative or ondemand.
1967 That this is the case is already ensured in Kconfig
1968 */
1969#ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1970 struct cpufreq_governor *gov = &cpufreq_gov_performance;
1971#else
1972 struct cpufreq_governor *gov = NULL;
1973#endif
1974
1975 /* Don't start any governor operations if we are entering suspend */
1976 if (cpufreq_suspended)
1977 return 0;
1978 /*
1979 * Governor might not be initiated here if ACPI _PPC changed
1980 * notification happened, so check it.
1981 */
1982 if (!policy->governor)
1983 return -EINVAL;
1984
1985 if (policy->governor->max_transition_latency &&
1986 policy->cpuinfo.transition_latency >
1987 policy->governor->max_transition_latency) {
1988 if (!gov)
1989 return -EINVAL;
1990 else {
1991 pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n",
1992 policy->governor->name, gov->name);
1993 policy->governor = gov;
1994 }
1995 }
1996
1997 if (event == CPUFREQ_GOV_POLICY_INIT)
1998 if (!try_module_get(policy->governor->owner))
1999 return -EINVAL;
2000
2001 pr_debug("%s: for CPU %u, event %u\n", __func__, policy->cpu, event);
2002
2003 mutex_lock(&cpufreq_governor_lock);
2004 if ((policy->governor_enabled && event == CPUFREQ_GOV_START)
2005 || (!policy->governor_enabled
2006 && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) {
2007 mutex_unlock(&cpufreq_governor_lock);
2008 return -EBUSY;
2009 }
2010
2011 if (event == CPUFREQ_GOV_STOP)
2012 policy->governor_enabled = false;
2013 else if (event == CPUFREQ_GOV_START)
2014 policy->governor_enabled = true;
2015
2016 mutex_unlock(&cpufreq_governor_lock);
2017
2018 ret = policy->governor->governor(policy, event);
2019
2020 if (!ret) {
2021 if (event == CPUFREQ_GOV_POLICY_INIT)
2022 policy->governor->initialized++;
2023 else if (event == CPUFREQ_GOV_POLICY_EXIT)
2024 policy->governor->initialized--;
2025 } else {
2026 /* Restore original values */
2027 mutex_lock(&cpufreq_governor_lock);
2028 if (event == CPUFREQ_GOV_STOP)
2029 policy->governor_enabled = true;
2030 else if (event == CPUFREQ_GOV_START)
2031 policy->governor_enabled = false;
2032 mutex_unlock(&cpufreq_governor_lock);
2033 }
2034
2035 if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) ||
2036 ((event == CPUFREQ_GOV_POLICY_EXIT) && !ret))
2037 module_put(policy->governor->owner);
2038
2039 return ret;
2040}
2041
2042int cpufreq_register_governor(struct cpufreq_governor *governor)
2043{
2044 int err;
2045
2046 if (!governor)
2047 return -EINVAL;
2048
2049 if (cpufreq_disabled())
2050 return -ENODEV;
2051
2052 mutex_lock(&cpufreq_governor_mutex);
2053
2054 governor->initialized = 0;
2055 err = -EBUSY;
2056 if (!find_governor(governor->name)) {
2057 err = 0;
2058 list_add(&governor->governor_list, &cpufreq_governor_list);
2059 }
2060
2061 mutex_unlock(&cpufreq_governor_mutex);
2062 return err;
2063}
2064EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2065
2066void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2067{
2068 struct cpufreq_policy *policy;
2069 unsigned long flags;
2070
2071 if (!governor)
2072 return;
2073
2074 if (cpufreq_disabled())
2075 return;
2076
2077 /* clear last_governor for all inactive policies */
2078 read_lock_irqsave(&cpufreq_driver_lock, flags);
2079 for_each_inactive_policy(policy) {
2080 if (!strcmp(policy->last_governor, governor->name)) {
2081 policy->governor = NULL;
2082 strcpy(policy->last_governor, "\0");
2083 }
2084 }
2085 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2086
2087 mutex_lock(&cpufreq_governor_mutex);
2088 list_del(&governor->governor_list);
2089 mutex_unlock(&cpufreq_governor_mutex);
2090 return;
2091}
2092EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2093
2094
2095/*********************************************************************
2096 * POLICY INTERFACE *
2097 *********************************************************************/
2098
2099/**
2100 * cpufreq_get_policy - get the current cpufreq_policy
2101 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2102 * is written
2103 *
2104 * Reads the current cpufreq policy.
2105 */
2106int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2107{
2108 struct cpufreq_policy *cpu_policy;
2109 if (!policy)
2110 return -EINVAL;
2111
2112 cpu_policy = cpufreq_cpu_get(cpu);
2113 if (!cpu_policy)
2114 return -EINVAL;
2115
2116 memcpy(policy, cpu_policy, sizeof(*policy));
2117
2118 cpufreq_cpu_put(cpu_policy);
2119 return 0;
2120}
2121EXPORT_SYMBOL(cpufreq_get_policy);
2122
2123/*
2124 * policy : current policy.
2125 * new_policy: policy to be set.
2126 */
2127static int cpufreq_set_policy(struct cpufreq_policy *policy,
2128 struct cpufreq_policy *new_policy)
2129{
2130 struct cpufreq_governor *old_gov;
2131 int ret;
2132
2133 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2134 new_policy->cpu, new_policy->min, new_policy->max);
2135
2136 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2137
2138 /*
2139 * This check works well when we store new min/max freq attributes,
2140 * because new_policy is a copy of policy with one field updated.
2141 */
2142 if (new_policy->min > new_policy->max)
2143 return -EINVAL;
2144
2145 /* verify the cpu speed can be set within this limit */
2146 ret = cpufreq_driver->verify(new_policy);
2147 if (ret)
2148 return ret;
2149
2150 /* adjust if necessary - all reasons */
2151 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2152 CPUFREQ_ADJUST, new_policy);
2153
2154 /*
2155 * verify the cpu speed can be set within this limit, which might be
2156 * different to the first one
2157 */
2158 ret = cpufreq_driver->verify(new_policy);
2159 if (ret)
2160 return ret;
2161
2162 /* notification of the new policy */
2163 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2164 CPUFREQ_NOTIFY, new_policy);
2165
2166 policy->min = new_policy->min;
2167 policy->max = new_policy->max;
2168
2169 pr_debug("new min and max freqs are %u - %u kHz\n",
2170 policy->min, policy->max);
2171
2172 if (cpufreq_driver->setpolicy) {
2173 policy->policy = new_policy->policy;
2174 pr_debug("setting range\n");
2175 return cpufreq_driver->setpolicy(new_policy);
2176 }
2177
2178 if (new_policy->governor == policy->governor)
2179 goto out;
2180
2181 pr_debug("governor switch\n");
2182
2183 /* save old, working values */
2184 old_gov = policy->governor;
2185 /* end old governor */
2186 if (old_gov) {
2187 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
2188 if (ret) {
2189 /* This can happen due to race with other operations */
2190 pr_debug("%s: Failed to Stop Governor: %s (%d)\n",
2191 __func__, old_gov->name, ret);
2192 return ret;
2193 }
2194
2195 up_write(&policy->rwsem);
2196 ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2197 down_write(&policy->rwsem);
2198
2199 if (ret) {
2200 pr_err("%s: Failed to Exit Governor: %s (%d)\n",
2201 __func__, old_gov->name, ret);
2202 return ret;
2203 }
2204 }
2205
2206 /* start new governor */
2207 policy->governor = new_policy->governor;
2208 ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT);
2209 if (!ret) {
2210 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
2211 if (!ret)
2212 goto out;
2213
2214 up_write(&policy->rwsem);
2215 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2216 down_write(&policy->rwsem);
2217 }
2218
2219 /* new governor failed, so re-start old one */
2220 pr_debug("starting governor %s failed\n", policy->governor->name);
2221 if (old_gov) {
2222 policy->governor = old_gov;
2223 if (__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT))
2224 policy->governor = NULL;
2225 else
2226 __cpufreq_governor(policy, CPUFREQ_GOV_START);
2227 }
2228
2229 return ret;
2230
2231 out:
2232 pr_debug("governor: change or update limits\n");
2233 return __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2234}
2235
2236/**
2237 * cpufreq_update_policy - re-evaluate an existing cpufreq policy
2238 * @cpu: CPU which shall be re-evaluated
2239 *
2240 * Useful for policy notifiers which have different necessities
2241 * at different times.
2242 */
2243int cpufreq_update_policy(unsigned int cpu)
2244{
2245 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2246 struct cpufreq_policy new_policy;
2247 int ret;
2248
2249 if (!policy)
2250 return -ENODEV;
2251
2252 down_write(&policy->rwsem);
2253
2254 pr_debug("updating policy for CPU %u\n", cpu);
2255 memcpy(&new_policy, policy, sizeof(*policy));
2256 new_policy.min = policy->user_policy.min;
2257 new_policy.max = policy->user_policy.max;
2258
2259 /*
2260 * BIOS might change freq behind our back
2261 * -> ask driver for current freq and notify governors about a change
2262 */
2263 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2264 new_policy.cur = cpufreq_driver->get(cpu);
2265 if (WARN_ON(!new_policy.cur)) {
2266 ret = -EIO;
2267 goto unlock;
2268 }
2269
2270 if (!policy->cur) {
2271 pr_debug("Driver did not initialize current freq\n");
2272 policy->cur = new_policy.cur;
2273 } else {
2274 if (policy->cur != new_policy.cur && has_target())
2275 cpufreq_out_of_sync(policy, new_policy.cur);
2276 }
2277 }
2278
2279 ret = cpufreq_set_policy(policy, &new_policy);
2280
2281unlock:
2282 up_write(&policy->rwsem);
2283
2284 cpufreq_cpu_put(policy);
2285 return ret;
2286}
2287EXPORT_SYMBOL(cpufreq_update_policy);
2288
2289static int cpufreq_cpu_callback(struct notifier_block *nfb,
2290 unsigned long action, void *hcpu)
2291{
2292 unsigned int cpu = (unsigned long)hcpu;
2293
2294 switch (action & ~CPU_TASKS_FROZEN) {
2295 case CPU_ONLINE:
2296 cpufreq_online(cpu);
2297 break;
2298
2299 case CPU_DOWN_PREPARE:
2300 cpufreq_offline_prepare(cpu);
2301 break;
2302
2303 case CPU_POST_DEAD:
2304 cpufreq_offline_finish(cpu);
2305 break;
2306
2307 case CPU_DOWN_FAILED:
2308 cpufreq_online(cpu);
2309 break;
2310 }
2311 return NOTIFY_OK;
2312}
2313
2314static struct notifier_block __refdata cpufreq_cpu_notifier = {
2315 .notifier_call = cpufreq_cpu_callback,
2316};
2317
2318/*********************************************************************
2319 * BOOST *
2320 *********************************************************************/
2321static int cpufreq_boost_set_sw(int state)
2322{
2323 struct cpufreq_frequency_table *freq_table;
2324 struct cpufreq_policy *policy;
2325 int ret = -EINVAL;
2326
2327 for_each_active_policy(policy) {
2328 freq_table = cpufreq_frequency_get_table(policy->cpu);
2329 if (freq_table) {
2330 ret = cpufreq_frequency_table_cpuinfo(policy,
2331 freq_table);
2332 if (ret) {
2333 pr_err("%s: Policy frequency update failed\n",
2334 __func__);
2335 break;
2336 }
2337 policy->user_policy.max = policy->max;
2338 __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2339 }
2340 }
2341
2342 return ret;
2343}
2344
2345int cpufreq_boost_trigger_state(int state)
2346{
2347 unsigned long flags;
2348 int ret = 0;
2349
2350 if (cpufreq_driver->boost_enabled == state)
2351 return 0;
2352
2353 write_lock_irqsave(&cpufreq_driver_lock, flags);
2354 cpufreq_driver->boost_enabled = state;
2355 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2356
2357 ret = cpufreq_driver->set_boost(state);
2358 if (ret) {
2359 write_lock_irqsave(&cpufreq_driver_lock, flags);
2360 cpufreq_driver->boost_enabled = !state;
2361 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2362
2363 pr_err("%s: Cannot %s BOOST\n",
2364 __func__, state ? "enable" : "disable");
2365 }
2366
2367 return ret;
2368}
2369
2370int cpufreq_boost_supported(void)
2371{
2372 if (likely(cpufreq_driver))
2373 return cpufreq_driver->boost_supported;
2374
2375 return 0;
2376}
2377EXPORT_SYMBOL_GPL(cpufreq_boost_supported);
2378
2379static int create_boost_sysfs_file(void)
2380{
2381 int ret;
2382
2383 if (!cpufreq_boost_supported())
2384 return 0;
2385
2386 /*
2387 * Check if driver provides function to enable boost -
2388 * if not, use cpufreq_boost_set_sw as default
2389 */
2390 if (!cpufreq_driver->set_boost)
2391 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2392
2393 ret = cpufreq_sysfs_create_file(&boost.attr);
2394 if (ret)
2395 pr_err("%s: cannot register global BOOST sysfs file\n",
2396 __func__);
2397
2398 return ret;
2399}
2400
2401static void remove_boost_sysfs_file(void)
2402{
2403 if (cpufreq_boost_supported())
2404 cpufreq_sysfs_remove_file(&boost.attr);
2405}
2406
2407int cpufreq_enable_boost_support(void)
2408{
2409 if (!cpufreq_driver)
2410 return -EINVAL;
2411
2412 if (cpufreq_boost_supported())
2413 return 0;
2414
2415 cpufreq_driver->boost_supported = true;
2416
2417 /* This will get removed on driver unregister */
2418 return create_boost_sysfs_file();
2419}
2420EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2421
2422int cpufreq_boost_enabled(void)
2423{
2424 return cpufreq_driver->boost_enabled;
2425}
2426EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2427
2428/*********************************************************************
2429 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2430 *********************************************************************/
2431
2432/**
2433 * cpufreq_register_driver - register a CPU Frequency driver
2434 * @driver_data: A struct cpufreq_driver containing the values#
2435 * submitted by the CPU Frequency driver.
2436 *
2437 * Registers a CPU Frequency driver to this core code. This code
2438 * returns zero on success, -EBUSY when another driver got here first
2439 * (and isn't unregistered in the meantime).
2440 *
2441 */
2442int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2443{
2444 unsigned long flags;
2445 int ret;
2446
2447 if (cpufreq_disabled())
2448 return -ENODEV;
2449
2450 if (!driver_data || !driver_data->verify || !driver_data->init ||
2451 !(driver_data->setpolicy || driver_data->target_index ||
2452 driver_data->target) ||
2453 (driver_data->setpolicy && (driver_data->target_index ||
2454 driver_data->target)) ||
2455 (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
2456 return -EINVAL;
2457
2458 pr_debug("trying to register driver %s\n", driver_data->name);
2459
2460 /* Protect against concurrent CPU online/offline. */
2461 get_online_cpus();
2462
2463 write_lock_irqsave(&cpufreq_driver_lock, flags);
2464 if (cpufreq_driver) {
2465 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2466 ret = -EEXIST;
2467 goto out;
2468 }
2469 cpufreq_driver = driver_data;
2470 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2471
2472 if (driver_data->setpolicy)
2473 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2474
2475 ret = create_boost_sysfs_file();
2476 if (ret)
2477 goto err_null_driver;
2478
2479 ret = subsys_interface_register(&cpufreq_interface);
2480 if (ret)
2481 goto err_boost_unreg;
2482
2483 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2484 list_empty(&cpufreq_policy_list)) {
2485 /* if all ->init() calls failed, unregister */
2486 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2487 driver_data->name);
2488 goto err_if_unreg;
2489 }
2490
2491 register_hotcpu_notifier(&cpufreq_cpu_notifier);
2492 pr_debug("driver %s up and running\n", driver_data->name);
2493
2494out:
2495 put_online_cpus();
2496 return ret;
2497
2498err_if_unreg:
2499 subsys_interface_unregister(&cpufreq_interface);
2500err_boost_unreg:
2501 remove_boost_sysfs_file();
2502err_null_driver:
2503 write_lock_irqsave(&cpufreq_driver_lock, flags);
2504 cpufreq_driver = NULL;
2505 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2506 goto out;
2507}
2508EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2509
2510/**
2511 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2512 *
2513 * Unregister the current CPUFreq driver. Only call this if you have
2514 * the right to do so, i.e. if you have succeeded in initialising before!
2515 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2516 * currently not initialised.
2517 */
2518int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2519{
2520 unsigned long flags;
2521
2522 if (!cpufreq_driver || (driver != cpufreq_driver))
2523 return -EINVAL;
2524
2525 pr_debug("unregistering driver %s\n", driver->name);
2526
2527 /* Protect against concurrent cpu hotplug */
2528 get_online_cpus();
2529 subsys_interface_unregister(&cpufreq_interface);
2530 remove_boost_sysfs_file();
2531 unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
2532
2533 write_lock_irqsave(&cpufreq_driver_lock, flags);
2534
2535 cpufreq_driver = NULL;
2536
2537 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2538 put_online_cpus();
2539
2540 return 0;
2541}
2542EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2543
2544/*
2545 * Stop cpufreq at shutdown to make sure it isn't holding any locks
2546 * or mutexes when secondary CPUs are halted.
2547 */
2548static struct syscore_ops cpufreq_syscore_ops = {
2549 .shutdown = cpufreq_suspend,
2550};
2551
2552static int __init cpufreq_core_init(void)
2553{
2554 if (cpufreq_disabled())
2555 return -ENODEV;
2556
2557 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2558 BUG_ON(!cpufreq_global_kobject);
2559
2560 register_syscore_ops(&cpufreq_syscore_ops);
2561
2562 return 0;
2563}
2564core_initcall(cpufreq_core_init);