| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * Copyright (c) 2015, 2017-2018, 2022, The Linux Foundation. All rights reserved. |
| 4 | */ |
| 5 | |
| 6 | #include <linux/bitops.h> |
| 7 | #include <linux/delay.h> |
| 8 | #include <linux/err.h> |
| 9 | #include <linux/export.h> |
| 10 | #include <linux/jiffies.h> |
| 11 | #include <linux/kernel.h> |
| 12 | #include <linux/ktime.h> |
| 13 | #include <linux/pm_domain.h> |
| 14 | #include <linux/regmap.h> |
| 15 | #include <linux/regulator/consumer.h> |
| 16 | #include <linux/reset-controller.h> |
| 17 | #include <linux/slab.h> |
| 18 | #include "gdsc.h" |
| 19 | |
| 20 | #define PWR_ON_MASK BIT(31) |
| 21 | #define EN_REST_WAIT_MASK GENMASK_ULL(23, 20) |
| 22 | #define EN_FEW_WAIT_MASK GENMASK_ULL(19, 16) |
| 23 | #define CLK_DIS_WAIT_MASK GENMASK_ULL(15, 12) |
| 24 | #define SW_OVERRIDE_MASK BIT(2) |
| 25 | #define HW_CONTROL_MASK BIT(1) |
| 26 | #define SW_COLLAPSE_MASK BIT(0) |
| 27 | #define GMEM_CLAMP_IO_MASK BIT(0) |
| 28 | #define GMEM_RESET_MASK BIT(4) |
| 29 | |
| 30 | /* CFG_GDSCR */ |
| 31 | #define GDSC_POWER_UP_COMPLETE BIT(16) |
| 32 | #define GDSC_POWER_DOWN_COMPLETE BIT(15) |
| 33 | #define GDSC_RETAIN_FF_ENABLE BIT(11) |
| 34 | #define CFG_GDSCR_OFFSET 0x4 |
| 35 | |
| 36 | /* Wait 2^n CXO cycles between all states. Here, n=2 (4 cycles). */ |
| 37 | #define EN_REST_WAIT_VAL 0x2 |
| 38 | #define EN_FEW_WAIT_VAL 0x8 |
| 39 | #define CLK_DIS_WAIT_VAL 0x2 |
| 40 | |
| 41 | /* Transition delay shifts */ |
| 42 | #define EN_REST_WAIT_SHIFT 20 |
| 43 | #define EN_FEW_WAIT_SHIFT 16 |
| 44 | #define CLK_DIS_WAIT_SHIFT 12 |
| 45 | |
| 46 | #define RETAIN_MEM BIT(14) |
| 47 | #define RETAIN_PERIPH BIT(13) |
| 48 | |
| 49 | #define STATUS_POLL_TIMEOUT_US 2000 |
| 50 | #define TIMEOUT_US 500 |
| 51 | |
| 52 | #define domain_to_gdsc(domain) container_of(domain, struct gdsc, pd) |
| 53 | |
| 54 | enum gdsc_status { |
| 55 | GDSC_OFF, |
| 56 | GDSC_ON |
| 57 | }; |
| 58 | |
| 59 | /* Returns 1 if GDSC status is status, 0 if not, and < 0 on error */ |
| 60 | static int gdsc_check_status(struct gdsc *sc, enum gdsc_status status) |
| 61 | { |
| 62 | unsigned int reg; |
| 63 | u32 val; |
| 64 | int ret; |
| 65 | |
| 66 | if (sc->flags & POLL_CFG_GDSCR) |
| 67 | reg = sc->gdscr + CFG_GDSCR_OFFSET; |
| 68 | else if (sc->gds_hw_ctrl) |
| 69 | reg = sc->gds_hw_ctrl; |
| 70 | else |
| 71 | reg = sc->gdscr; |
| 72 | |
| 73 | ret = regmap_read(sc->regmap, reg, &val); |
| 74 | if (ret) |
| 75 | return ret; |
| 76 | |
| 77 | if (sc->flags & POLL_CFG_GDSCR) { |
| 78 | switch (status) { |
| 79 | case GDSC_ON: |
| 80 | return !!(val & GDSC_POWER_UP_COMPLETE); |
| 81 | case GDSC_OFF: |
| 82 | return !!(val & GDSC_POWER_DOWN_COMPLETE); |
| 83 | } |
| 84 | } |
| 85 | |
| 86 | switch (status) { |
| 87 | case GDSC_ON: |
| 88 | return !!(val & PWR_ON_MASK); |
| 89 | case GDSC_OFF: |
| 90 | return !(val & PWR_ON_MASK); |
| 91 | } |
| 92 | |
| 93 | return -EINVAL; |
| 94 | } |
| 95 | |
| 96 | static int gdsc_hwctrl(struct gdsc *sc, bool en) |
| 97 | { |
| 98 | u32 val = en ? HW_CONTROL_MASK : 0; |
| 99 | |
| 100 | return regmap_update_bits(sc->regmap, sc->gdscr, HW_CONTROL_MASK, val); |
| 101 | } |
| 102 | |
| 103 | static int gdsc_poll_status(struct gdsc *sc, enum gdsc_status status) |
| 104 | { |
| 105 | ktime_t start; |
| 106 | |
| 107 | start = ktime_get(); |
| 108 | do { |
| 109 | if (gdsc_check_status(sc, status)) |
| 110 | return 0; |
| 111 | } while (ktime_us_delta(ktime_get(), start) < STATUS_POLL_TIMEOUT_US); |
| 112 | |
| 113 | if (gdsc_check_status(sc, status)) |
| 114 | return 0; |
| 115 | |
| 116 | return -ETIMEDOUT; |
| 117 | } |
| 118 | |
| 119 | static int gdsc_update_collapse_bit(struct gdsc *sc, bool val) |
| 120 | { |
| 121 | u32 reg, mask; |
| 122 | int ret; |
| 123 | |
| 124 | if (sc->collapse_mask) { |
| 125 | reg = sc->collapse_ctrl; |
| 126 | mask = sc->collapse_mask; |
| 127 | } else { |
| 128 | reg = sc->gdscr; |
| 129 | mask = SW_COLLAPSE_MASK; |
| 130 | } |
| 131 | |
| 132 | ret = regmap_update_bits(sc->regmap, reg, mask, val ? mask : 0); |
| 133 | if (ret) |
| 134 | return ret; |
| 135 | |
| 136 | return 0; |
| 137 | } |
| 138 | |
| 139 | static int gdsc_toggle_logic(struct gdsc *sc, enum gdsc_status status, |
| 140 | bool wait) |
| 141 | { |
| 142 | int ret; |
| 143 | |
| 144 | if (status == GDSC_ON && sc->rsupply) { |
| 145 | ret = regulator_enable(sc->rsupply); |
| 146 | if (ret < 0) |
| 147 | return ret; |
| 148 | } |
| 149 | |
| 150 | ret = gdsc_update_collapse_bit(sc, status == GDSC_OFF); |
| 151 | |
| 152 | /* If disabling votable gdscs, don't poll on status */ |
| 153 | if ((sc->flags & VOTABLE) && status == GDSC_OFF && !wait) { |
| 154 | /* |
| 155 | * Add a short delay here to ensure that an enable |
| 156 | * right after it was disabled does not put it in an |
| 157 | * unknown state |
| 158 | */ |
| 159 | udelay(TIMEOUT_US); |
| 160 | return 0; |
| 161 | } |
| 162 | |
| 163 | if (sc->gds_hw_ctrl) { |
| 164 | /* |
| 165 | * The gds hw controller asserts/de-asserts the status bit soon |
| 166 | * after it receives a power on/off request from a master. |
| 167 | * The controller then takes around 8 xo cycles to start its |
| 168 | * internal state machine and update the status bit. During |
| 169 | * this time, the status bit does not reflect the true status |
| 170 | * of the core. |
| 171 | * Add a delay of 1 us between writing to the SW_COLLAPSE bit |
| 172 | * and polling the status bit. |
| 173 | */ |
| 174 | udelay(1); |
| 175 | } |
| 176 | |
| 177 | ret = gdsc_poll_status(sc, status); |
| 178 | WARN(ret, "%s status stuck at 'o%s'", sc->pd.name, status ? "ff" : "n"); |
| 179 | |
| 180 | if (!ret && status == GDSC_OFF && sc->rsupply) { |
| 181 | ret = regulator_disable(sc->rsupply); |
| 182 | if (ret < 0) |
| 183 | return ret; |
| 184 | } |
| 185 | |
| 186 | return ret; |
| 187 | } |
| 188 | |
| 189 | static inline int gdsc_deassert_reset(struct gdsc *sc) |
| 190 | { |
| 191 | int i; |
| 192 | |
| 193 | for (i = 0; i < sc->reset_count; i++) |
| 194 | sc->rcdev->ops->deassert(sc->rcdev, sc->resets[i]); |
| 195 | return 0; |
| 196 | } |
| 197 | |
| 198 | static inline int gdsc_assert_reset(struct gdsc *sc) |
| 199 | { |
| 200 | int i; |
| 201 | |
| 202 | for (i = 0; i < sc->reset_count; i++) |
| 203 | sc->rcdev->ops->assert(sc->rcdev, sc->resets[i]); |
| 204 | return 0; |
| 205 | } |
| 206 | |
| 207 | static inline void gdsc_force_mem_on(struct gdsc *sc) |
| 208 | { |
| 209 | int i; |
| 210 | u32 mask = RETAIN_MEM; |
| 211 | |
| 212 | if (!(sc->flags & NO_RET_PERIPH)) |
| 213 | mask |= RETAIN_PERIPH; |
| 214 | |
| 215 | for (i = 0; i < sc->cxc_count; i++) |
| 216 | regmap_update_bits(sc->regmap, sc->cxcs[i], mask, mask); |
| 217 | } |
| 218 | |
| 219 | static inline void gdsc_clear_mem_on(struct gdsc *sc) |
| 220 | { |
| 221 | int i; |
| 222 | u32 mask = RETAIN_MEM; |
| 223 | |
| 224 | if (!(sc->flags & NO_RET_PERIPH)) |
| 225 | mask |= RETAIN_PERIPH; |
| 226 | |
| 227 | for (i = 0; i < sc->cxc_count; i++) |
| 228 | regmap_update_bits(sc->regmap, sc->cxcs[i], mask, 0); |
| 229 | } |
| 230 | |
| 231 | static inline void gdsc_deassert_clamp_io(struct gdsc *sc) |
| 232 | { |
| 233 | regmap_update_bits(sc->regmap, sc->clamp_io_ctrl, |
| 234 | GMEM_CLAMP_IO_MASK, 0); |
| 235 | } |
| 236 | |
| 237 | static inline void gdsc_assert_clamp_io(struct gdsc *sc) |
| 238 | { |
| 239 | regmap_update_bits(sc->regmap, sc->clamp_io_ctrl, |
| 240 | GMEM_CLAMP_IO_MASK, 1); |
| 241 | } |
| 242 | |
| 243 | static inline void gdsc_assert_reset_aon(struct gdsc *sc) |
| 244 | { |
| 245 | regmap_update_bits(sc->regmap, sc->clamp_io_ctrl, |
| 246 | GMEM_RESET_MASK, 1); |
| 247 | udelay(1); |
| 248 | regmap_update_bits(sc->regmap, sc->clamp_io_ctrl, |
| 249 | GMEM_RESET_MASK, 0); |
| 250 | } |
| 251 | |
| 252 | static void gdsc_retain_ff_on(struct gdsc *sc) |
| 253 | { |
| 254 | u32 mask = GDSC_RETAIN_FF_ENABLE; |
| 255 | |
| 256 | regmap_update_bits(sc->regmap, sc->gdscr, mask, mask); |
| 257 | } |
| 258 | |
| 259 | static int gdsc_enable(struct generic_pm_domain *domain) |
| 260 | { |
| 261 | struct gdsc *sc = domain_to_gdsc(domain); |
| 262 | int ret; |
| 263 | |
| 264 | if (sc->pwrsts == PWRSTS_ON) |
| 265 | return gdsc_deassert_reset(sc); |
| 266 | |
| 267 | if (sc->flags & SW_RESET) { |
| 268 | gdsc_assert_reset(sc); |
| 269 | udelay(1); |
| 270 | gdsc_deassert_reset(sc); |
| 271 | } |
| 272 | |
| 273 | if (sc->flags & CLAMP_IO) { |
| 274 | if (sc->flags & AON_RESET) |
| 275 | gdsc_assert_reset_aon(sc); |
| 276 | gdsc_deassert_clamp_io(sc); |
| 277 | } |
| 278 | |
| 279 | ret = gdsc_toggle_logic(sc, GDSC_ON, false); |
| 280 | if (ret) |
| 281 | return ret; |
| 282 | |
| 283 | if (sc->pwrsts & PWRSTS_OFF) |
| 284 | gdsc_force_mem_on(sc); |
| 285 | |
| 286 | /* |
| 287 | * If clocks to this power domain were already on, they will take an |
| 288 | * additional 4 clock cycles to re-enable after the power domain is |
| 289 | * enabled. Delay to account for this. A delay is also needed to ensure |
| 290 | * clocks are not enabled within 400ns of enabling power to the |
| 291 | * memories. |
| 292 | */ |
| 293 | udelay(1); |
| 294 | |
| 295 | if (sc->flags & RETAIN_FF_ENABLE) |
| 296 | gdsc_retain_ff_on(sc); |
| 297 | |
| 298 | /* Turn on HW trigger mode if supported */ |
| 299 | if (sc->flags & HW_CTRL) { |
| 300 | ret = gdsc_hwctrl(sc, true); |
| 301 | if (ret) |
| 302 | return ret; |
| 303 | /* |
| 304 | * Wait for the GDSC to go through a power down and |
| 305 | * up cycle. In case a firmware ends up polling status |
| 306 | * bits for the gdsc, it might read an 'on' status before |
| 307 | * the GDSC can finish the power cycle. |
| 308 | * We wait 1us before returning to ensure the firmware |
| 309 | * can't immediately poll the status bits. |
| 310 | */ |
| 311 | udelay(1); |
| 312 | } |
| 313 | |
| 314 | return 0; |
| 315 | } |
| 316 | |
| 317 | static int gdsc_disable(struct generic_pm_domain *domain) |
| 318 | { |
| 319 | struct gdsc *sc = domain_to_gdsc(domain); |
| 320 | int ret; |
| 321 | |
| 322 | if (sc->pwrsts == PWRSTS_ON) |
| 323 | return gdsc_assert_reset(sc); |
| 324 | |
| 325 | /* Turn off HW trigger mode if supported */ |
| 326 | if (sc->flags & HW_CTRL) { |
| 327 | ret = gdsc_hwctrl(sc, false); |
| 328 | if (ret < 0) |
| 329 | return ret; |
| 330 | /* |
| 331 | * Wait for the GDSC to go through a power down and |
| 332 | * up cycle. In case we end up polling status |
| 333 | * bits for the gdsc before the power cycle is completed |
| 334 | * it might read an 'on' status wrongly. |
| 335 | */ |
| 336 | udelay(1); |
| 337 | |
| 338 | ret = gdsc_poll_status(sc, GDSC_ON); |
| 339 | if (ret) |
| 340 | return ret; |
| 341 | } |
| 342 | |
| 343 | if (sc->pwrsts & PWRSTS_OFF) |
| 344 | gdsc_clear_mem_on(sc); |
| 345 | |
| 346 | /* |
| 347 | * If the GDSC supports only a Retention state, apart from ON, |
| 348 | * leave it in ON state. |
| 349 | * There is no SW control to transition the GDSC into |
| 350 | * Retention state. This happens in HW when the parent |
| 351 | * domain goes down to a Low power state |
| 352 | */ |
| 353 | if (sc->pwrsts == PWRSTS_RET_ON) |
| 354 | return 0; |
| 355 | |
| 356 | ret = gdsc_toggle_logic(sc, GDSC_OFF, domain->synced_poweroff); |
| 357 | if (ret) |
| 358 | return ret; |
| 359 | |
| 360 | if (sc->flags & CLAMP_IO) |
| 361 | gdsc_assert_clamp_io(sc); |
| 362 | |
| 363 | return 0; |
| 364 | } |
| 365 | |
| 366 | static int gdsc_set_hwmode(struct generic_pm_domain *domain, struct device *dev, bool mode) |
| 367 | { |
| 368 | struct gdsc *sc = domain_to_gdsc(domain); |
| 369 | int ret; |
| 370 | |
| 371 | ret = gdsc_hwctrl(sc, mode); |
| 372 | if (ret) |
| 373 | return ret; |
| 374 | |
| 375 | /* |
| 376 | * Wait for the GDSC to go through a power down and |
| 377 | * up cycle. If we poll the status register before the |
| 378 | * power cycle is finished we might read incorrect values. |
| 379 | */ |
| 380 | udelay(1); |
| 381 | |
| 382 | /* |
| 383 | * When the GDSC is switched to HW mode, HW can disable the GDSC. |
| 384 | * When the GDSC is switched back to SW mode, the GDSC will be enabled |
| 385 | * again, hence we need to poll for GDSC to complete the power up. |
| 386 | */ |
| 387 | if (!mode) |
| 388 | return gdsc_poll_status(sc, GDSC_ON); |
| 389 | |
| 390 | return 0; |
| 391 | } |
| 392 | |
| 393 | static bool gdsc_get_hwmode(struct generic_pm_domain *domain, struct device *dev) |
| 394 | { |
| 395 | struct gdsc *sc = domain_to_gdsc(domain); |
| 396 | u32 val; |
| 397 | |
| 398 | regmap_read(sc->regmap, sc->gdscr, &val); |
| 399 | |
| 400 | return !!(val & HW_CONTROL_MASK); |
| 401 | } |
| 402 | |
| 403 | static int gdsc_init(struct gdsc *sc) |
| 404 | { |
| 405 | u32 mask, val; |
| 406 | int on, ret; |
| 407 | |
| 408 | /* |
| 409 | * Disable HW trigger: collapse/restore occur based on registers writes. |
| 410 | * Disable SW override: Use hardware state-machine for sequencing. |
| 411 | * Configure wait time between states. |
| 412 | */ |
| 413 | mask = HW_CONTROL_MASK | SW_OVERRIDE_MASK | |
| 414 | EN_REST_WAIT_MASK | EN_FEW_WAIT_MASK | CLK_DIS_WAIT_MASK; |
| 415 | |
| 416 | if (!sc->en_rest_wait_val) |
| 417 | sc->en_rest_wait_val = EN_REST_WAIT_VAL; |
| 418 | if (!sc->en_few_wait_val) |
| 419 | sc->en_few_wait_val = EN_FEW_WAIT_VAL; |
| 420 | if (!sc->clk_dis_wait_val) |
| 421 | sc->clk_dis_wait_val = CLK_DIS_WAIT_VAL; |
| 422 | |
| 423 | val = sc->en_rest_wait_val << EN_REST_WAIT_SHIFT | |
| 424 | sc->en_few_wait_val << EN_FEW_WAIT_SHIFT | |
| 425 | sc->clk_dis_wait_val << CLK_DIS_WAIT_SHIFT; |
| 426 | |
| 427 | ret = regmap_update_bits(sc->regmap, sc->gdscr, mask, val); |
| 428 | if (ret) |
| 429 | return ret; |
| 430 | |
| 431 | /* Force gdsc ON if only ON state is supported */ |
| 432 | if (sc->pwrsts == PWRSTS_ON) { |
| 433 | ret = gdsc_toggle_logic(sc, GDSC_ON, false); |
| 434 | if (ret) |
| 435 | return ret; |
| 436 | } |
| 437 | |
| 438 | on = gdsc_check_status(sc, GDSC_ON); |
| 439 | if (on < 0) |
| 440 | return on; |
| 441 | |
| 442 | if (on) { |
| 443 | /* The regulator must be on, sync the kernel state */ |
| 444 | if (sc->rsupply) { |
| 445 | ret = regulator_enable(sc->rsupply); |
| 446 | if (ret < 0) |
| 447 | return ret; |
| 448 | } |
| 449 | |
| 450 | /* |
| 451 | * Votable GDSCs can be ON due to Vote from other masters. |
| 452 | * If a Votable GDSC is ON, make sure we have a Vote. |
| 453 | */ |
| 454 | if (sc->flags & VOTABLE) { |
| 455 | ret = gdsc_update_collapse_bit(sc, false); |
| 456 | if (ret) |
| 457 | goto err_disable_supply; |
| 458 | } |
| 459 | |
| 460 | /* |
| 461 | * Make sure the retain bit is set if the GDSC is already on, |
| 462 | * otherwise we end up turning off the GDSC and destroying all |
| 463 | * the register contents that we thought we were saving. |
| 464 | */ |
| 465 | if (sc->flags & RETAIN_FF_ENABLE) |
| 466 | gdsc_retain_ff_on(sc); |
| 467 | |
| 468 | /* Turn on HW trigger mode if supported */ |
| 469 | if (sc->flags & HW_CTRL) { |
| 470 | ret = gdsc_hwctrl(sc, true); |
| 471 | if (ret < 0) |
| 472 | goto err_disable_supply; |
| 473 | } |
| 474 | |
| 475 | } else if (sc->flags & ALWAYS_ON) { |
| 476 | /* If ALWAYS_ON GDSCs are not ON, turn them ON */ |
| 477 | gdsc_enable(&sc->pd); |
| 478 | on = true; |
| 479 | } |
| 480 | |
| 481 | if (on || (sc->pwrsts & PWRSTS_RET)) |
| 482 | gdsc_force_mem_on(sc); |
| 483 | else |
| 484 | gdsc_clear_mem_on(sc); |
| 485 | |
| 486 | if (sc->flags & ALWAYS_ON) |
| 487 | sc->pd.flags |= GENPD_FLAG_ALWAYS_ON; |
| 488 | if (!sc->pd.power_off) |
| 489 | sc->pd.power_off = gdsc_disable; |
| 490 | if (!sc->pd.power_on) |
| 491 | sc->pd.power_on = gdsc_enable; |
| 492 | if (sc->flags & HW_CTRL_TRIGGER) { |
| 493 | sc->pd.set_hwmode_dev = gdsc_set_hwmode; |
| 494 | sc->pd.get_hwmode_dev = gdsc_get_hwmode; |
| 495 | } |
| 496 | |
| 497 | ret = pm_genpd_init(&sc->pd, NULL, !on); |
| 498 | if (ret) |
| 499 | goto err_disable_supply; |
| 500 | |
| 501 | return 0; |
| 502 | |
| 503 | err_disable_supply: |
| 504 | if (on && sc->rsupply) |
| 505 | regulator_disable(sc->rsupply); |
| 506 | |
| 507 | return ret; |
| 508 | } |
| 509 | |
| 510 | static int gdsc_add_subdomain_list(struct dev_pm_domain_list *pd_list, |
| 511 | struct generic_pm_domain *subdomain) |
| 512 | { |
| 513 | int i, ret; |
| 514 | |
| 515 | for (i = 0; i < pd_list->num_pds; i++) { |
| 516 | struct device *dev = pd_list->pd_devs[i]; |
| 517 | struct generic_pm_domain *genpd = pd_to_genpd(dev->pm_domain); |
| 518 | |
| 519 | ret = pm_genpd_add_subdomain(genpd, subdomain); |
| 520 | if (ret) |
| 521 | return ret; |
| 522 | } |
| 523 | |
| 524 | return 0; |
| 525 | } |
| 526 | |
| 527 | static void gdsc_remove_subdomain_list(struct dev_pm_domain_list *pd_list, |
| 528 | struct generic_pm_domain *subdomain) |
| 529 | { |
| 530 | int i; |
| 531 | |
| 532 | for (i = 0; i < pd_list->num_pds; i++) { |
| 533 | struct device *dev = pd_list->pd_devs[i]; |
| 534 | struct generic_pm_domain *genpd = pd_to_genpd(dev->pm_domain); |
| 535 | |
| 536 | pm_genpd_remove_subdomain(genpd, subdomain); |
| 537 | } |
| 538 | } |
| 539 | |
| 540 | static void gdsc_pm_subdomain_remove(struct gdsc_desc *desc, size_t num) |
| 541 | { |
| 542 | struct device *dev = desc->dev; |
| 543 | struct gdsc **scs = desc->scs; |
| 544 | int i; |
| 545 | |
| 546 | /* Remove subdomains */ |
| 547 | for (i = num - 1; i >= 0; i--) { |
| 548 | if (!scs[i]) |
| 549 | continue; |
| 550 | if (scs[i]->parent) |
| 551 | pm_genpd_remove_subdomain(scs[i]->parent, &scs[i]->pd); |
| 552 | else if (!IS_ERR_OR_NULL(dev->pm_domain)) |
| 553 | pm_genpd_remove_subdomain(pd_to_genpd(dev->pm_domain), &scs[i]->pd); |
| 554 | else if (desc->pd_list) |
| 555 | gdsc_remove_subdomain_list(desc->pd_list, &scs[i]->pd); |
| 556 | } |
| 557 | } |
| 558 | |
| 559 | int gdsc_register(struct gdsc_desc *desc, |
| 560 | struct reset_controller_dev *rcdev, struct regmap *regmap) |
| 561 | { |
| 562 | int i, ret; |
| 563 | struct genpd_onecell_data *data; |
| 564 | struct device *dev = desc->dev; |
| 565 | struct gdsc **scs = desc->scs; |
| 566 | size_t num = desc->num; |
| 567 | |
| 568 | data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); |
| 569 | if (!data) |
| 570 | return -ENOMEM; |
| 571 | |
| 572 | data->domains = devm_kcalloc(dev, num, sizeof(*data->domains), |
| 573 | GFP_KERNEL); |
| 574 | if (!data->domains) |
| 575 | return -ENOMEM; |
| 576 | |
| 577 | for (i = 0; i < num; i++) { |
| 578 | if (!scs[i] || !scs[i]->supply) |
| 579 | continue; |
| 580 | |
| 581 | scs[i]->rsupply = devm_regulator_get_optional(dev, scs[i]->supply); |
| 582 | if (IS_ERR(scs[i]->rsupply)) { |
| 583 | ret = PTR_ERR(scs[i]->rsupply); |
| 584 | if (ret != -ENODEV) |
| 585 | return ret; |
| 586 | |
| 587 | scs[i]->rsupply = NULL; |
| 588 | } |
| 589 | } |
| 590 | |
| 591 | data->num_domains = num; |
| 592 | for (i = 0; i < num; i++) { |
| 593 | if (!scs[i]) |
| 594 | continue; |
| 595 | scs[i]->regmap = regmap; |
| 596 | scs[i]->rcdev = rcdev; |
| 597 | ret = gdsc_init(scs[i]); |
| 598 | if (ret) |
| 599 | return ret; |
| 600 | data->domains[i] = &scs[i]->pd; |
| 601 | } |
| 602 | |
| 603 | /* Add subdomains */ |
| 604 | for (i = 0; i < num; i++) { |
| 605 | if (!scs[i]) |
| 606 | continue; |
| 607 | if (scs[i]->parent) |
| 608 | ret = pm_genpd_add_subdomain(scs[i]->parent, &scs[i]->pd); |
| 609 | else if (!IS_ERR_OR_NULL(dev->pm_domain)) |
| 610 | ret = pm_genpd_add_subdomain(pd_to_genpd(dev->pm_domain), &scs[i]->pd); |
| 611 | else if (desc->pd_list) |
| 612 | ret = gdsc_add_subdomain_list(desc->pd_list, &scs[i]->pd); |
| 613 | |
| 614 | if (ret) |
| 615 | goto err_pm_subdomain_remove; |
| 616 | } |
| 617 | |
| 618 | return of_genpd_add_provider_onecell(dev->of_node, data); |
| 619 | |
| 620 | err_pm_subdomain_remove: |
| 621 | gdsc_pm_subdomain_remove(desc, i); |
| 622 | |
| 623 | return ret; |
| 624 | } |
| 625 | |
| 626 | void gdsc_unregister(struct gdsc_desc *desc) |
| 627 | { |
| 628 | struct device *dev = desc->dev; |
| 629 | size_t num = desc->num; |
| 630 | |
| 631 | gdsc_pm_subdomain_remove(desc, num); |
| 632 | of_genpd_del_provider(dev->of_node); |
| 633 | } |
| 634 | |
| 635 | /* |
| 636 | * On SDM845+ the GPU GX domain is *almost* entirely controlled by the GMU |
| 637 | * running in the CX domain so the CPU doesn't need to know anything about the |
| 638 | * GX domain EXCEPT.... |
| 639 | * |
| 640 | * Hardware constraints dictate that the GX be powered down before the CX. If |
| 641 | * the GMU crashes it could leave the GX on. In order to successfully bring back |
| 642 | * the device the CPU needs to disable the GX headswitch. There being no sane |
| 643 | * way to reach in and touch that register from deep inside the GPU driver we |
| 644 | * need to set up the infrastructure to be able to ensure that the GPU can |
| 645 | * ensure that the GX is off during this super special case. We do this by |
| 646 | * defining a GX gdsc with a dummy enable function and a "default" disable |
| 647 | * function. |
| 648 | * |
| 649 | * This allows us to attach with genpd_dev_pm_attach_by_name() in the GPU |
| 650 | * driver. During power up, nothing will happen from the CPU (and the GMU will |
| 651 | * power up normally but during power down this will ensure that the GX domain |
| 652 | * is *really* off - this gives us a semi standard way of doing what we need. |
| 653 | */ |
| 654 | int gdsc_gx_do_nothing_enable(struct generic_pm_domain *domain) |
| 655 | { |
| 656 | struct gdsc *sc = domain_to_gdsc(domain); |
| 657 | int ret = 0; |
| 658 | |
| 659 | /* Enable the parent supply, when controlled through the regulator framework. */ |
| 660 | if (sc->rsupply) |
| 661 | ret = regulator_enable(sc->rsupply); |
| 662 | |
| 663 | /* Do nothing with the GDSC itself */ |
| 664 | |
| 665 | return ret; |
| 666 | } |
| 667 | EXPORT_SYMBOL_GPL(gdsc_gx_do_nothing_enable); |