Set proper console speed on resume if console suspend is disabled
[linux-2.6-block.git] / drivers / char / tty_io.c
... / ...
CommitLineData
1/*
2 * linux/drivers/char/tty_io.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7/*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
10 *
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
12 *
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
18 *
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
23 *
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
27 *
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
31 *
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
35 *
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
38 *
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
41 *
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
44 *
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
47 *
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
51 *
52 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
54 *
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
57 *
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
60 *
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
63 *
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc()
66 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
67 */
68
69#include <linux/types.h>
70#include <linux/major.h>
71#include <linux/errno.h>
72#include <linux/signal.h>
73#include <linux/fcntl.h>
74#include <linux/sched.h>
75#include <linux/interrupt.h>
76#include <linux/tty.h>
77#include <linux/tty_driver.h>
78#include <linux/tty_flip.h>
79#include <linux/devpts_fs.h>
80#include <linux/file.h>
81#include <linux/fdtable.h>
82#include <linux/console.h>
83#include <linux/timer.h>
84#include <linux/ctype.h>
85#include <linux/kd.h>
86#include <linux/mm.h>
87#include <linux/string.h>
88#include <linux/slab.h>
89#include <linux/poll.h>
90#include <linux/proc_fs.h>
91#include <linux/init.h>
92#include <linux/module.h>
93#include <linux/smp_lock.h>
94#include <linux/device.h>
95#include <linux/wait.h>
96#include <linux/bitops.h>
97#include <linux/delay.h>
98#include <linux/seq_file.h>
99
100#include <linux/uaccess.h>
101#include <asm/system.h>
102
103#include <linux/kbd_kern.h>
104#include <linux/vt_kern.h>
105#include <linux/selection.h>
106
107#include <linux/kmod.h>
108#include <linux/nsproxy.h>
109
110#undef TTY_DEBUG_HANGUP
111
112#define TTY_PARANOIA_CHECK 1
113#define CHECK_TTY_COUNT 1
114
115struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
116 .c_iflag = ICRNL | IXON,
117 .c_oflag = OPOST | ONLCR,
118 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
119 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
120 ECHOCTL | ECHOKE | IEXTEN,
121 .c_cc = INIT_C_CC,
122 .c_ispeed = 38400,
123 .c_ospeed = 38400
124};
125
126EXPORT_SYMBOL(tty_std_termios);
127
128/* This list gets poked at by procfs and various bits of boot up code. This
129 could do with some rationalisation such as pulling the tty proc function
130 into this file */
131
132LIST_HEAD(tty_drivers); /* linked list of tty drivers */
133
134/* Mutex to protect creating and releasing a tty. This is shared with
135 vt.c for deeply disgusting hack reasons */
136DEFINE_MUTEX(tty_mutex);
137EXPORT_SYMBOL(tty_mutex);
138
139static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
140static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
141ssize_t redirected_tty_write(struct file *, const char __user *,
142 size_t, loff_t *);
143static unsigned int tty_poll(struct file *, poll_table *);
144static int tty_open(struct inode *, struct file *);
145static int tty_release(struct inode *, struct file *);
146long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147#ifdef CONFIG_COMPAT
148static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 unsigned long arg);
150#else
151#define tty_compat_ioctl NULL
152#endif
153static int tty_fasync(int fd, struct file *filp, int on);
154static void release_tty(struct tty_struct *tty, int idx);
155static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
156static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157
158/**
159 * alloc_tty_struct - allocate a tty object
160 *
161 * Return a new empty tty structure. The data fields have not
162 * been initialized in any way but has been zeroed
163 *
164 * Locking: none
165 */
166
167struct tty_struct *alloc_tty_struct(void)
168{
169 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
170}
171
172/**
173 * free_tty_struct - free a disused tty
174 * @tty: tty struct to free
175 *
176 * Free the write buffers, tty queue and tty memory itself.
177 *
178 * Locking: none. Must be called after tty is definitely unused
179 */
180
181void free_tty_struct(struct tty_struct *tty)
182{
183 kfree(tty->write_buf);
184 tty_buffer_free_all(tty);
185 kfree(tty);
186}
187
188#define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
189
190/**
191 * tty_name - return tty naming
192 * @tty: tty structure
193 * @buf: buffer for output
194 *
195 * Convert a tty structure into a name. The name reflects the kernel
196 * naming policy and if udev is in use may not reflect user space
197 *
198 * Locking: none
199 */
200
201char *tty_name(struct tty_struct *tty, char *buf)
202{
203 if (!tty) /* Hmm. NULL pointer. That's fun. */
204 strcpy(buf, "NULL tty");
205 else
206 strcpy(buf, tty->name);
207 return buf;
208}
209
210EXPORT_SYMBOL(tty_name);
211
212int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
213 const char *routine)
214{
215#ifdef TTY_PARANOIA_CHECK
216 if (!tty) {
217 printk(KERN_WARNING
218 "null TTY for (%d:%d) in %s\n",
219 imajor(inode), iminor(inode), routine);
220 return 1;
221 }
222 if (tty->magic != TTY_MAGIC) {
223 printk(KERN_WARNING
224 "bad magic number for tty struct (%d:%d) in %s\n",
225 imajor(inode), iminor(inode), routine);
226 return 1;
227 }
228#endif
229 return 0;
230}
231
232static int check_tty_count(struct tty_struct *tty, const char *routine)
233{
234#ifdef CHECK_TTY_COUNT
235 struct list_head *p;
236 int count = 0;
237
238 file_list_lock();
239 list_for_each(p, &tty->tty_files) {
240 count++;
241 }
242 file_list_unlock();
243 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
244 tty->driver->subtype == PTY_TYPE_SLAVE &&
245 tty->link && tty->link->count)
246 count++;
247 if (tty->count != count) {
248 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
249 "!= #fd's(%d) in %s\n",
250 tty->name, tty->count, count, routine);
251 return count;
252 }
253#endif
254 return 0;
255}
256
257/**
258 * get_tty_driver - find device of a tty
259 * @dev_t: device identifier
260 * @index: returns the index of the tty
261 *
262 * This routine returns a tty driver structure, given a device number
263 * and also passes back the index number.
264 *
265 * Locking: caller must hold tty_mutex
266 */
267
268static struct tty_driver *get_tty_driver(dev_t device, int *index)
269{
270 struct tty_driver *p;
271
272 list_for_each_entry(p, &tty_drivers, tty_drivers) {
273 dev_t base = MKDEV(p->major, p->minor_start);
274 if (device < base || device >= base + p->num)
275 continue;
276 *index = device - base;
277 return tty_driver_kref_get(p);
278 }
279 return NULL;
280}
281
282#ifdef CONFIG_CONSOLE_POLL
283
284/**
285 * tty_find_polling_driver - find device of a polled tty
286 * @name: name string to match
287 * @line: pointer to resulting tty line nr
288 *
289 * This routine returns a tty driver structure, given a name
290 * and the condition that the tty driver is capable of polled
291 * operation.
292 */
293struct tty_driver *tty_find_polling_driver(char *name, int *line)
294{
295 struct tty_driver *p, *res = NULL;
296 int tty_line = 0;
297 int len;
298 char *str, *stp;
299
300 for (str = name; *str; str++)
301 if ((*str >= '0' && *str <= '9') || *str == ',')
302 break;
303 if (!*str)
304 return NULL;
305
306 len = str - name;
307 tty_line = simple_strtoul(str, &str, 10);
308
309 mutex_lock(&tty_mutex);
310 /* Search through the tty devices to look for a match */
311 list_for_each_entry(p, &tty_drivers, tty_drivers) {
312 if (strncmp(name, p->name, len) != 0)
313 continue;
314 stp = str;
315 if (*stp == ',')
316 stp++;
317 if (*stp == '\0')
318 stp = NULL;
319
320 if (tty_line >= 0 && tty_line <= p->num && p->ops &&
321 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
322 res = tty_driver_kref_get(p);
323 *line = tty_line;
324 break;
325 }
326 }
327 mutex_unlock(&tty_mutex);
328
329 return res;
330}
331EXPORT_SYMBOL_GPL(tty_find_polling_driver);
332#endif
333
334/**
335 * tty_check_change - check for POSIX terminal changes
336 * @tty: tty to check
337 *
338 * If we try to write to, or set the state of, a terminal and we're
339 * not in the foreground, send a SIGTTOU. If the signal is blocked or
340 * ignored, go ahead and perform the operation. (POSIX 7.2)
341 *
342 * Locking: ctrl_lock
343 */
344
345int tty_check_change(struct tty_struct *tty)
346{
347 unsigned long flags;
348 int ret = 0;
349
350 if (current->signal->tty != tty)
351 return 0;
352
353 spin_lock_irqsave(&tty->ctrl_lock, flags);
354
355 if (!tty->pgrp) {
356 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
357 goto out_unlock;
358 }
359 if (task_pgrp(current) == tty->pgrp)
360 goto out_unlock;
361 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
362 if (is_ignored(SIGTTOU))
363 goto out;
364 if (is_current_pgrp_orphaned()) {
365 ret = -EIO;
366 goto out;
367 }
368 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
369 set_thread_flag(TIF_SIGPENDING);
370 ret = -ERESTARTSYS;
371out:
372 return ret;
373out_unlock:
374 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
375 return ret;
376}
377
378EXPORT_SYMBOL(tty_check_change);
379
380static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
381 size_t count, loff_t *ppos)
382{
383 return 0;
384}
385
386static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
387 size_t count, loff_t *ppos)
388{
389 return -EIO;
390}
391
392/* No kernel lock held - none needed ;) */
393static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
394{
395 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
396}
397
398static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
399 unsigned long arg)
400{
401 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
402}
403
404static long hung_up_tty_compat_ioctl(struct file *file,
405 unsigned int cmd, unsigned long arg)
406{
407 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
408}
409
410static const struct file_operations tty_fops = {
411 .llseek = no_llseek,
412 .read = tty_read,
413 .write = tty_write,
414 .poll = tty_poll,
415 .unlocked_ioctl = tty_ioctl,
416 .compat_ioctl = tty_compat_ioctl,
417 .open = tty_open,
418 .release = tty_release,
419 .fasync = tty_fasync,
420};
421
422static const struct file_operations console_fops = {
423 .llseek = no_llseek,
424 .read = tty_read,
425 .write = redirected_tty_write,
426 .poll = tty_poll,
427 .unlocked_ioctl = tty_ioctl,
428 .compat_ioctl = tty_compat_ioctl,
429 .open = tty_open,
430 .release = tty_release,
431 .fasync = tty_fasync,
432};
433
434static const struct file_operations hung_up_tty_fops = {
435 .llseek = no_llseek,
436 .read = hung_up_tty_read,
437 .write = hung_up_tty_write,
438 .poll = hung_up_tty_poll,
439 .unlocked_ioctl = hung_up_tty_ioctl,
440 .compat_ioctl = hung_up_tty_compat_ioctl,
441 .release = tty_release,
442};
443
444static DEFINE_SPINLOCK(redirect_lock);
445static struct file *redirect;
446
447/**
448 * tty_wakeup - request more data
449 * @tty: terminal
450 *
451 * Internal and external helper for wakeups of tty. This function
452 * informs the line discipline if present that the driver is ready
453 * to receive more output data.
454 */
455
456void tty_wakeup(struct tty_struct *tty)
457{
458 struct tty_ldisc *ld;
459
460 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
461 ld = tty_ldisc_ref(tty);
462 if (ld) {
463 if (ld->ops->write_wakeup)
464 ld->ops->write_wakeup(tty);
465 tty_ldisc_deref(ld);
466 }
467 }
468 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
469}
470
471EXPORT_SYMBOL_GPL(tty_wakeup);
472
473/**
474 * do_tty_hangup - actual handler for hangup events
475 * @work: tty device
476 *
477 * This can be called by the "eventd" kernel thread. That is process
478 * synchronous but doesn't hold any locks, so we need to make sure we
479 * have the appropriate locks for what we're doing.
480 *
481 * The hangup event clears any pending redirections onto the hung up
482 * device. It ensures future writes will error and it does the needed
483 * line discipline hangup and signal delivery. The tty object itself
484 * remains intact.
485 *
486 * Locking:
487 * BKL
488 * redirect lock for undoing redirection
489 * file list lock for manipulating list of ttys
490 * tty_ldisc_lock from called functions
491 * termios_mutex resetting termios data
492 * tasklist_lock to walk task list for hangup event
493 * ->siglock to protect ->signal/->sighand
494 */
495static void do_tty_hangup(struct work_struct *work)
496{
497 struct tty_struct *tty =
498 container_of(work, struct tty_struct, hangup_work);
499 struct file *cons_filp = NULL;
500 struct file *filp, *f = NULL;
501 struct task_struct *p;
502 int closecount = 0, n;
503 unsigned long flags;
504 int refs = 0;
505
506 if (!tty)
507 return;
508
509 /* inuse_filps is protected by the single kernel lock */
510 lock_kernel();
511
512 spin_lock(&redirect_lock);
513 if (redirect && redirect->private_data == tty) {
514 f = redirect;
515 redirect = NULL;
516 }
517 spin_unlock(&redirect_lock);
518
519 check_tty_count(tty, "do_tty_hangup");
520 file_list_lock();
521 /* This breaks for file handles being sent over AF_UNIX sockets ? */
522 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
523 if (filp->f_op->write == redirected_tty_write)
524 cons_filp = filp;
525 if (filp->f_op->write != tty_write)
526 continue;
527 closecount++;
528 tty_fasync(-1, filp, 0); /* can't block */
529 filp->f_op = &hung_up_tty_fops;
530 }
531 file_list_unlock();
532
533 tty_ldisc_hangup(tty);
534
535 read_lock(&tasklist_lock);
536 if (tty->session) {
537 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
538 spin_lock_irq(&p->sighand->siglock);
539 if (p->signal->tty == tty) {
540 p->signal->tty = NULL;
541 /* We defer the dereferences outside fo
542 the tasklist lock */
543 refs++;
544 }
545 if (!p->signal->leader) {
546 spin_unlock_irq(&p->sighand->siglock);
547 continue;
548 }
549 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
550 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
551 put_pid(p->signal->tty_old_pgrp); /* A noop */
552 spin_lock_irqsave(&tty->ctrl_lock, flags);
553 if (tty->pgrp)
554 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
555 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
556 spin_unlock_irq(&p->sighand->siglock);
557 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
558 }
559 read_unlock(&tasklist_lock);
560
561 spin_lock_irqsave(&tty->ctrl_lock, flags);
562 clear_bit(TTY_THROTTLED, &tty->flags);
563 clear_bit(TTY_PUSH, &tty->flags);
564 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
565 put_pid(tty->session);
566 put_pid(tty->pgrp);
567 tty->session = NULL;
568 tty->pgrp = NULL;
569 tty->ctrl_status = 0;
570 set_bit(TTY_HUPPED, &tty->flags);
571 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
572
573 /* Account for the p->signal references we killed */
574 while (refs--)
575 tty_kref_put(tty);
576
577 /*
578 * If one of the devices matches a console pointer, we
579 * cannot just call hangup() because that will cause
580 * tty->count and state->count to go out of sync.
581 * So we just call close() the right number of times.
582 */
583 if (cons_filp) {
584 if (tty->ops->close)
585 for (n = 0; n < closecount; n++)
586 tty->ops->close(tty, cons_filp);
587 } else if (tty->ops->hangup)
588 (tty->ops->hangup)(tty);
589 /*
590 * We don't want to have driver/ldisc interactions beyond
591 * the ones we did here. The driver layer expects no
592 * calls after ->hangup() from the ldisc side. However we
593 * can't yet guarantee all that.
594 */
595 set_bit(TTY_HUPPED, &tty->flags);
596 tty_ldisc_enable(tty);
597 unlock_kernel();
598 if (f)
599 fput(f);
600}
601
602/**
603 * tty_hangup - trigger a hangup event
604 * @tty: tty to hangup
605 *
606 * A carrier loss (virtual or otherwise) has occurred on this like
607 * schedule a hangup sequence to run after this event.
608 */
609
610void tty_hangup(struct tty_struct *tty)
611{
612#ifdef TTY_DEBUG_HANGUP
613 char buf[64];
614 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
615#endif
616 schedule_work(&tty->hangup_work);
617}
618
619EXPORT_SYMBOL(tty_hangup);
620
621/**
622 * tty_vhangup - process vhangup
623 * @tty: tty to hangup
624 *
625 * The user has asked via system call for the terminal to be hung up.
626 * We do this synchronously so that when the syscall returns the process
627 * is complete. That guarantee is necessary for security reasons.
628 */
629
630void tty_vhangup(struct tty_struct *tty)
631{
632#ifdef TTY_DEBUG_HANGUP
633 char buf[64];
634
635 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
636#endif
637 do_tty_hangup(&tty->hangup_work);
638}
639
640EXPORT_SYMBOL(tty_vhangup);
641
642/**
643 * tty_vhangup_self - process vhangup for own ctty
644 *
645 * Perform a vhangup on the current controlling tty
646 */
647
648void tty_vhangup_self(void)
649{
650 struct tty_struct *tty;
651
652 tty = get_current_tty();
653 if (tty) {
654 tty_vhangup(tty);
655 tty_kref_put(tty);
656 }
657}
658
659/**
660 * tty_hung_up_p - was tty hung up
661 * @filp: file pointer of tty
662 *
663 * Return true if the tty has been subject to a vhangup or a carrier
664 * loss
665 */
666
667int tty_hung_up_p(struct file *filp)
668{
669 return (filp->f_op == &hung_up_tty_fops);
670}
671
672EXPORT_SYMBOL(tty_hung_up_p);
673
674static void session_clear_tty(struct pid *session)
675{
676 struct task_struct *p;
677 do_each_pid_task(session, PIDTYPE_SID, p) {
678 proc_clear_tty(p);
679 } while_each_pid_task(session, PIDTYPE_SID, p);
680}
681
682/**
683 * disassociate_ctty - disconnect controlling tty
684 * @on_exit: true if exiting so need to "hang up" the session
685 *
686 * This function is typically called only by the session leader, when
687 * it wants to disassociate itself from its controlling tty.
688 *
689 * It performs the following functions:
690 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
691 * (2) Clears the tty from being controlling the session
692 * (3) Clears the controlling tty for all processes in the
693 * session group.
694 *
695 * The argument on_exit is set to 1 if called when a process is
696 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
697 *
698 * Locking:
699 * BKL is taken for hysterical raisins
700 * tty_mutex is taken to protect tty
701 * ->siglock is taken to protect ->signal/->sighand
702 * tasklist_lock is taken to walk process list for sessions
703 * ->siglock is taken to protect ->signal/->sighand
704 */
705
706void disassociate_ctty(int on_exit)
707{
708 struct tty_struct *tty;
709 struct pid *tty_pgrp = NULL;
710
711
712 tty = get_current_tty();
713 if (tty) {
714 tty_pgrp = get_pid(tty->pgrp);
715 lock_kernel();
716 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
717 tty_vhangup(tty);
718 unlock_kernel();
719 tty_kref_put(tty);
720 } else if (on_exit) {
721 struct pid *old_pgrp;
722 spin_lock_irq(&current->sighand->siglock);
723 old_pgrp = current->signal->tty_old_pgrp;
724 current->signal->tty_old_pgrp = NULL;
725 spin_unlock_irq(&current->sighand->siglock);
726 if (old_pgrp) {
727 kill_pgrp(old_pgrp, SIGHUP, on_exit);
728 kill_pgrp(old_pgrp, SIGCONT, on_exit);
729 put_pid(old_pgrp);
730 }
731 return;
732 }
733 if (tty_pgrp) {
734 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
735 if (!on_exit)
736 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
737 put_pid(tty_pgrp);
738 }
739
740 spin_lock_irq(&current->sighand->siglock);
741 put_pid(current->signal->tty_old_pgrp);
742 current->signal->tty_old_pgrp = NULL;
743 spin_unlock_irq(&current->sighand->siglock);
744
745 tty = get_current_tty();
746 if (tty) {
747 unsigned long flags;
748 spin_lock_irqsave(&tty->ctrl_lock, flags);
749 put_pid(tty->session);
750 put_pid(tty->pgrp);
751 tty->session = NULL;
752 tty->pgrp = NULL;
753 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
754 tty_kref_put(tty);
755 } else {
756#ifdef TTY_DEBUG_HANGUP
757 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
758 " = NULL", tty);
759#endif
760 }
761
762 /* Now clear signal->tty under the lock */
763 read_lock(&tasklist_lock);
764 session_clear_tty(task_session(current));
765 read_unlock(&tasklist_lock);
766}
767
768/**
769 *
770 * no_tty - Ensure the current process does not have a controlling tty
771 */
772void no_tty(void)
773{
774 struct task_struct *tsk = current;
775 lock_kernel();
776 if (tsk->signal->leader)
777 disassociate_ctty(0);
778 unlock_kernel();
779 proc_clear_tty(tsk);
780}
781
782
783/**
784 * stop_tty - propagate flow control
785 * @tty: tty to stop
786 *
787 * Perform flow control to the driver. For PTY/TTY pairs we
788 * must also propagate the TIOCKPKT status. May be called
789 * on an already stopped device and will not re-call the driver
790 * method.
791 *
792 * This functionality is used by both the line disciplines for
793 * halting incoming flow and by the driver. It may therefore be
794 * called from any context, may be under the tty atomic_write_lock
795 * but not always.
796 *
797 * Locking:
798 * Uses the tty control lock internally
799 */
800
801void stop_tty(struct tty_struct *tty)
802{
803 unsigned long flags;
804 spin_lock_irqsave(&tty->ctrl_lock, flags);
805 if (tty->stopped) {
806 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
807 return;
808 }
809 tty->stopped = 1;
810 if (tty->link && tty->link->packet) {
811 tty->ctrl_status &= ~TIOCPKT_START;
812 tty->ctrl_status |= TIOCPKT_STOP;
813 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
814 }
815 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
816 if (tty->ops->stop)
817 (tty->ops->stop)(tty);
818}
819
820EXPORT_SYMBOL(stop_tty);
821
822/**
823 * start_tty - propagate flow control
824 * @tty: tty to start
825 *
826 * Start a tty that has been stopped if at all possible. Perform
827 * any necessary wakeups and propagate the TIOCPKT status. If this
828 * is the tty was previous stopped and is being started then the
829 * driver start method is invoked and the line discipline woken.
830 *
831 * Locking:
832 * ctrl_lock
833 */
834
835void start_tty(struct tty_struct *tty)
836{
837 unsigned long flags;
838 spin_lock_irqsave(&tty->ctrl_lock, flags);
839 if (!tty->stopped || tty->flow_stopped) {
840 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
841 return;
842 }
843 tty->stopped = 0;
844 if (tty->link && tty->link->packet) {
845 tty->ctrl_status &= ~TIOCPKT_STOP;
846 tty->ctrl_status |= TIOCPKT_START;
847 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
848 }
849 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
850 if (tty->ops->start)
851 (tty->ops->start)(tty);
852 /* If we have a running line discipline it may need kicking */
853 tty_wakeup(tty);
854}
855
856EXPORT_SYMBOL(start_tty);
857
858/**
859 * tty_read - read method for tty device files
860 * @file: pointer to tty file
861 * @buf: user buffer
862 * @count: size of user buffer
863 * @ppos: unused
864 *
865 * Perform the read system call function on this terminal device. Checks
866 * for hung up devices before calling the line discipline method.
867 *
868 * Locking:
869 * Locks the line discipline internally while needed. Multiple
870 * read calls may be outstanding in parallel.
871 */
872
873static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
874 loff_t *ppos)
875{
876 int i;
877 struct tty_struct *tty;
878 struct inode *inode;
879 struct tty_ldisc *ld;
880
881 tty = (struct tty_struct *)file->private_data;
882 inode = file->f_path.dentry->d_inode;
883 if (tty_paranoia_check(tty, inode, "tty_read"))
884 return -EIO;
885 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
886 return -EIO;
887
888 /* We want to wait for the line discipline to sort out in this
889 situation */
890 ld = tty_ldisc_ref_wait(tty);
891 if (ld->ops->read)
892 i = (ld->ops->read)(tty, file, buf, count);
893 else
894 i = -EIO;
895 tty_ldisc_deref(ld);
896 if (i > 0)
897 inode->i_atime = current_fs_time(inode->i_sb);
898 return i;
899}
900
901void tty_write_unlock(struct tty_struct *tty)
902{
903 mutex_unlock(&tty->atomic_write_lock);
904 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
905}
906
907int tty_write_lock(struct tty_struct *tty, int ndelay)
908{
909 if (!mutex_trylock(&tty->atomic_write_lock)) {
910 if (ndelay)
911 return -EAGAIN;
912 if (mutex_lock_interruptible(&tty->atomic_write_lock))
913 return -ERESTARTSYS;
914 }
915 return 0;
916}
917
918/*
919 * Split writes up in sane blocksizes to avoid
920 * denial-of-service type attacks
921 */
922static inline ssize_t do_tty_write(
923 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
924 struct tty_struct *tty,
925 struct file *file,
926 const char __user *buf,
927 size_t count)
928{
929 ssize_t ret, written = 0;
930 unsigned int chunk;
931
932 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
933 if (ret < 0)
934 return ret;
935
936 /*
937 * We chunk up writes into a temporary buffer. This
938 * simplifies low-level drivers immensely, since they
939 * don't have locking issues and user mode accesses.
940 *
941 * But if TTY_NO_WRITE_SPLIT is set, we should use a
942 * big chunk-size..
943 *
944 * The default chunk-size is 2kB, because the NTTY
945 * layer has problems with bigger chunks. It will
946 * claim to be able to handle more characters than
947 * it actually does.
948 *
949 * FIXME: This can probably go away now except that 64K chunks
950 * are too likely to fail unless switched to vmalloc...
951 */
952 chunk = 2048;
953 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
954 chunk = 65536;
955 if (count < chunk)
956 chunk = count;
957
958 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
959 if (tty->write_cnt < chunk) {
960 unsigned char *buf_chunk;
961
962 if (chunk < 1024)
963 chunk = 1024;
964
965 buf_chunk = kmalloc(chunk, GFP_KERNEL);
966 if (!buf_chunk) {
967 ret = -ENOMEM;
968 goto out;
969 }
970 kfree(tty->write_buf);
971 tty->write_cnt = chunk;
972 tty->write_buf = buf_chunk;
973 }
974
975 /* Do the write .. */
976 for (;;) {
977 size_t size = count;
978 if (size > chunk)
979 size = chunk;
980 ret = -EFAULT;
981 if (copy_from_user(tty->write_buf, buf, size))
982 break;
983 ret = write(tty, file, tty->write_buf, size);
984 if (ret <= 0)
985 break;
986 written += ret;
987 buf += ret;
988 count -= ret;
989 if (!count)
990 break;
991 ret = -ERESTARTSYS;
992 if (signal_pending(current))
993 break;
994 cond_resched();
995 }
996 if (written) {
997 struct inode *inode = file->f_path.dentry->d_inode;
998 inode->i_mtime = current_fs_time(inode->i_sb);
999 ret = written;
1000 }
1001out:
1002 tty_write_unlock(tty);
1003 return ret;
1004}
1005
1006/**
1007 * tty_write_message - write a message to a certain tty, not just the console.
1008 * @tty: the destination tty_struct
1009 * @msg: the message to write
1010 *
1011 * This is used for messages that need to be redirected to a specific tty.
1012 * We don't put it into the syslog queue right now maybe in the future if
1013 * really needed.
1014 *
1015 * We must still hold the BKL and test the CLOSING flag for the moment.
1016 */
1017
1018void tty_write_message(struct tty_struct *tty, char *msg)
1019{
1020 lock_kernel();
1021 if (tty) {
1022 mutex_lock(&tty->atomic_write_lock);
1023 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags))
1024 tty->ops->write(tty, msg, strlen(msg));
1025 tty_write_unlock(tty);
1026 }
1027 unlock_kernel();
1028 return;
1029}
1030
1031
1032/**
1033 * tty_write - write method for tty device file
1034 * @file: tty file pointer
1035 * @buf: user data to write
1036 * @count: bytes to write
1037 * @ppos: unused
1038 *
1039 * Write data to a tty device via the line discipline.
1040 *
1041 * Locking:
1042 * Locks the line discipline as required
1043 * Writes to the tty driver are serialized by the atomic_write_lock
1044 * and are then processed in chunks to the device. The line discipline
1045 * write method will not be invoked in parallel for each device.
1046 */
1047
1048static ssize_t tty_write(struct file *file, const char __user *buf,
1049 size_t count, loff_t *ppos)
1050{
1051 struct tty_struct *tty;
1052 struct inode *inode = file->f_path.dentry->d_inode;
1053 ssize_t ret;
1054 struct tty_ldisc *ld;
1055
1056 tty = (struct tty_struct *)file->private_data;
1057 if (tty_paranoia_check(tty, inode, "tty_write"))
1058 return -EIO;
1059 if (!tty || !tty->ops->write ||
1060 (test_bit(TTY_IO_ERROR, &tty->flags)))
1061 return -EIO;
1062 /* Short term debug to catch buggy drivers */
1063 if (tty->ops->write_room == NULL)
1064 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1065 tty->driver->name);
1066 ld = tty_ldisc_ref_wait(tty);
1067 if (!ld->ops->write)
1068 ret = -EIO;
1069 else
1070 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1071 tty_ldisc_deref(ld);
1072 return ret;
1073}
1074
1075ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1076 size_t count, loff_t *ppos)
1077{
1078 struct file *p = NULL;
1079
1080 spin_lock(&redirect_lock);
1081 if (redirect) {
1082 get_file(redirect);
1083 p = redirect;
1084 }
1085 spin_unlock(&redirect_lock);
1086
1087 if (p) {
1088 ssize_t res;
1089 res = vfs_write(p, buf, count, &p->f_pos);
1090 fput(p);
1091 return res;
1092 }
1093 return tty_write(file, buf, count, ppos);
1094}
1095
1096static char ptychar[] = "pqrstuvwxyzabcde";
1097
1098/**
1099 * pty_line_name - generate name for a pty
1100 * @driver: the tty driver in use
1101 * @index: the minor number
1102 * @p: output buffer of at least 6 bytes
1103 *
1104 * Generate a name from a driver reference and write it to the output
1105 * buffer.
1106 *
1107 * Locking: None
1108 */
1109static void pty_line_name(struct tty_driver *driver, int index, char *p)
1110{
1111 int i = index + driver->name_base;
1112 /* ->name is initialized to "ttyp", but "tty" is expected */
1113 sprintf(p, "%s%c%x",
1114 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1115 ptychar[i >> 4 & 0xf], i & 0xf);
1116}
1117
1118/**
1119 * tty_line_name - generate name for a tty
1120 * @driver: the tty driver in use
1121 * @index: the minor number
1122 * @p: output buffer of at least 7 bytes
1123 *
1124 * Generate a name from a driver reference and write it to the output
1125 * buffer.
1126 *
1127 * Locking: None
1128 */
1129static void tty_line_name(struct tty_driver *driver, int index, char *p)
1130{
1131 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1132}
1133
1134/**
1135 * tty_driver_lookup_tty() - find an existing tty, if any
1136 * @driver: the driver for the tty
1137 * @idx: the minor number
1138 *
1139 * Return the tty, if found or ERR_PTR() otherwise.
1140 *
1141 * Locking: tty_mutex must be held. If tty is found, the mutex must
1142 * be held until the 'fast-open' is also done. Will change once we
1143 * have refcounting in the driver and per driver locking
1144 */
1145static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1146 struct inode *inode, int idx)
1147{
1148 struct tty_struct *tty;
1149
1150 if (driver->ops->lookup)
1151 return driver->ops->lookup(driver, inode, idx);
1152
1153 tty = driver->ttys[idx];
1154 return tty;
1155}
1156
1157/**
1158 * tty_init_termios - helper for termios setup
1159 * @tty: the tty to set up
1160 *
1161 * Initialise the termios structures for this tty. Thus runs under
1162 * the tty_mutex currently so we can be relaxed about ordering.
1163 */
1164
1165int tty_init_termios(struct tty_struct *tty)
1166{
1167 struct ktermios *tp;
1168 int idx = tty->index;
1169
1170 tp = tty->driver->termios[idx];
1171 if (tp == NULL) {
1172 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1173 if (tp == NULL)
1174 return -ENOMEM;
1175 memcpy(tp, &tty->driver->init_termios,
1176 sizeof(struct ktermios));
1177 tty->driver->termios[idx] = tp;
1178 }
1179 tty->termios = tp;
1180 tty->termios_locked = tp + 1;
1181
1182 /* Compatibility until drivers always set this */
1183 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1184 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1185 return 0;
1186}
1187
1188/**
1189 * tty_driver_install_tty() - install a tty entry in the driver
1190 * @driver: the driver for the tty
1191 * @tty: the tty
1192 *
1193 * Install a tty object into the driver tables. The tty->index field
1194 * will be set by the time this is called. This method is responsible
1195 * for ensuring any need additional structures are allocated and
1196 * configured.
1197 *
1198 * Locking: tty_mutex for now
1199 */
1200static int tty_driver_install_tty(struct tty_driver *driver,
1201 struct tty_struct *tty)
1202{
1203 int idx = tty->index;
1204
1205 if (driver->ops->install)
1206 return driver->ops->install(driver, tty);
1207
1208 if (tty_init_termios(tty) == 0) {
1209 tty_driver_kref_get(driver);
1210 tty->count++;
1211 driver->ttys[idx] = tty;
1212 return 0;
1213 }
1214 return -ENOMEM;
1215}
1216
1217/**
1218 * tty_driver_remove_tty() - remove a tty from the driver tables
1219 * @driver: the driver for the tty
1220 * @idx: the minor number
1221 *
1222 * Remvoe a tty object from the driver tables. The tty->index field
1223 * will be set by the time this is called.
1224 *
1225 * Locking: tty_mutex for now
1226 */
1227static void tty_driver_remove_tty(struct tty_driver *driver,
1228 struct tty_struct *tty)
1229{
1230 if (driver->ops->remove)
1231 driver->ops->remove(driver, tty);
1232 else
1233 driver->ttys[tty->index] = NULL;
1234}
1235
1236/*
1237 * tty_reopen() - fast re-open of an open tty
1238 * @tty - the tty to open
1239 *
1240 * Return 0 on success, -errno on error.
1241 *
1242 * Locking: tty_mutex must be held from the time the tty was found
1243 * till this open completes.
1244 */
1245static int tty_reopen(struct tty_struct *tty)
1246{
1247 struct tty_driver *driver = tty->driver;
1248
1249 if (test_bit(TTY_CLOSING, &tty->flags))
1250 return -EIO;
1251
1252 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1253 driver->subtype == PTY_TYPE_MASTER) {
1254 /*
1255 * special case for PTY masters: only one open permitted,
1256 * and the slave side open count is incremented as well.
1257 */
1258 if (tty->count)
1259 return -EIO;
1260
1261 tty->link->count++;
1262 }
1263 tty->count++;
1264 tty->driver = driver; /* N.B. why do this every time?? */
1265
1266 mutex_lock(&tty->ldisc_mutex);
1267 WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1268 mutex_unlock(&tty->ldisc_mutex);
1269
1270 return 0;
1271}
1272
1273/**
1274 * tty_init_dev - initialise a tty device
1275 * @driver: tty driver we are opening a device on
1276 * @idx: device index
1277 * @ret_tty: returned tty structure
1278 * @first_ok: ok to open a new device (used by ptmx)
1279 *
1280 * Prepare a tty device. This may not be a "new" clean device but
1281 * could also be an active device. The pty drivers require special
1282 * handling because of this.
1283 *
1284 * Locking:
1285 * The function is called under the tty_mutex, which
1286 * protects us from the tty struct or driver itself going away.
1287 *
1288 * On exit the tty device has the line discipline attached and
1289 * a reference count of 1. If a pair was created for pty/tty use
1290 * and the other was a pty master then it too has a reference count of 1.
1291 *
1292 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1293 * failed open. The new code protects the open with a mutex, so it's
1294 * really quite straightforward. The mutex locking can probably be
1295 * relaxed for the (most common) case of reopening a tty.
1296 */
1297
1298struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1299 int first_ok)
1300{
1301 struct tty_struct *tty;
1302 int retval;
1303
1304 /* Check if pty master is being opened multiple times */
1305 if (driver->subtype == PTY_TYPE_MASTER &&
1306 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok)
1307 return ERR_PTR(-EIO);
1308
1309 /*
1310 * First time open is complex, especially for PTY devices.
1311 * This code guarantees that either everything succeeds and the
1312 * TTY is ready for operation, or else the table slots are vacated
1313 * and the allocated memory released. (Except that the termios
1314 * and locked termios may be retained.)
1315 */
1316
1317 if (!try_module_get(driver->owner))
1318 return ERR_PTR(-ENODEV);
1319
1320 tty = alloc_tty_struct();
1321 if (!tty)
1322 goto fail_no_mem;
1323 initialize_tty_struct(tty, driver, idx);
1324
1325 retval = tty_driver_install_tty(driver, tty);
1326 if (retval < 0) {
1327 free_tty_struct(tty);
1328 module_put(driver->owner);
1329 return ERR_PTR(retval);
1330 }
1331
1332 /*
1333 * Structures all installed ... call the ldisc open routines.
1334 * If we fail here just call release_tty to clean up. No need
1335 * to decrement the use counts, as release_tty doesn't care.
1336 */
1337
1338 retval = tty_ldisc_setup(tty, tty->link);
1339 if (retval)
1340 goto release_mem_out;
1341 return tty;
1342
1343fail_no_mem:
1344 module_put(driver->owner);
1345 return ERR_PTR(-ENOMEM);
1346
1347 /* call the tty release_tty routine to clean out this slot */
1348release_mem_out:
1349 if (printk_ratelimit())
1350 printk(KERN_INFO "tty_init_dev: ldisc open failed, "
1351 "clearing slot %d\n", idx);
1352 release_tty(tty, idx);
1353 return ERR_PTR(retval);
1354}
1355
1356void tty_free_termios(struct tty_struct *tty)
1357{
1358 struct ktermios *tp;
1359 int idx = tty->index;
1360 /* Kill this flag and push into drivers for locking etc */
1361 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1362 /* FIXME: Locking on ->termios array */
1363 tp = tty->termios;
1364 tty->driver->termios[idx] = NULL;
1365 kfree(tp);
1366 }
1367}
1368EXPORT_SYMBOL(tty_free_termios);
1369
1370void tty_shutdown(struct tty_struct *tty)
1371{
1372 tty_driver_remove_tty(tty->driver, tty);
1373 tty_free_termios(tty);
1374}
1375EXPORT_SYMBOL(tty_shutdown);
1376
1377/**
1378 * release_one_tty - release tty structure memory
1379 * @kref: kref of tty we are obliterating
1380 *
1381 * Releases memory associated with a tty structure, and clears out the
1382 * driver table slots. This function is called when a device is no longer
1383 * in use. It also gets called when setup of a device fails.
1384 *
1385 * Locking:
1386 * tty_mutex - sometimes only
1387 * takes the file list lock internally when working on the list
1388 * of ttys that the driver keeps.
1389 *
1390 * This method gets called from a work queue so that the driver private
1391 * shutdown ops can sleep (needed for USB at least)
1392 */
1393static void release_one_tty(struct work_struct *work)
1394{
1395 struct tty_struct *tty =
1396 container_of(work, struct tty_struct, hangup_work);
1397 struct tty_driver *driver = tty->driver;
1398
1399 if (tty->ops->shutdown)
1400 tty->ops->shutdown(tty);
1401 else
1402 tty_shutdown(tty);
1403 tty->magic = 0;
1404 tty_driver_kref_put(driver);
1405 module_put(driver->owner);
1406
1407 file_list_lock();
1408 list_del_init(&tty->tty_files);
1409 file_list_unlock();
1410
1411 free_tty_struct(tty);
1412}
1413
1414static void queue_release_one_tty(struct kref *kref)
1415{
1416 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1417 /* The hangup queue is now free so we can reuse it rather than
1418 waste a chunk of memory for each port */
1419 INIT_WORK(&tty->hangup_work, release_one_tty);
1420 schedule_work(&tty->hangup_work);
1421}
1422
1423/**
1424 * tty_kref_put - release a tty kref
1425 * @tty: tty device
1426 *
1427 * Release a reference to a tty device and if need be let the kref
1428 * layer destruct the object for us
1429 */
1430
1431void tty_kref_put(struct tty_struct *tty)
1432{
1433 if (tty)
1434 kref_put(&tty->kref, queue_release_one_tty);
1435}
1436EXPORT_SYMBOL(tty_kref_put);
1437
1438/**
1439 * release_tty - release tty structure memory
1440 *
1441 * Release both @tty and a possible linked partner (think pty pair),
1442 * and decrement the refcount of the backing module.
1443 *
1444 * Locking:
1445 * tty_mutex - sometimes only
1446 * takes the file list lock internally when working on the list
1447 * of ttys that the driver keeps.
1448 * FIXME: should we require tty_mutex is held here ??
1449 *
1450 */
1451static void release_tty(struct tty_struct *tty, int idx)
1452{
1453 /* This should always be true but check for the moment */
1454 WARN_ON(tty->index != idx);
1455
1456 if (tty->link)
1457 tty_kref_put(tty->link);
1458 tty_kref_put(tty);
1459}
1460
1461/*
1462 * Even releasing the tty structures is a tricky business.. We have
1463 * to be very careful that the structures are all released at the
1464 * same time, as interrupts might otherwise get the wrong pointers.
1465 *
1466 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1467 * lead to double frees or releasing memory still in use.
1468 */
1469void tty_release_dev(struct file *filp)
1470{
1471 struct tty_struct *tty, *o_tty;
1472 int pty_master, tty_closing, o_tty_closing, do_sleep;
1473 int devpts;
1474 int idx;
1475 char buf[64];
1476 struct inode *inode;
1477
1478 inode = filp->f_path.dentry->d_inode;
1479 tty = (struct tty_struct *)filp->private_data;
1480 if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1481 return;
1482
1483 check_tty_count(tty, "tty_release_dev");
1484
1485 tty_fasync(-1, filp, 0);
1486
1487 idx = tty->index;
1488 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1489 tty->driver->subtype == PTY_TYPE_MASTER);
1490 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1491 o_tty = tty->link;
1492
1493#ifdef TTY_PARANOIA_CHECK
1494 if (idx < 0 || idx >= tty->driver->num) {
1495 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1496 "free (%s)\n", tty->name);
1497 return;
1498 }
1499 if (!devpts) {
1500 if (tty != tty->driver->ttys[idx]) {
1501 printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1502 "for (%s)\n", idx, tty->name);
1503 return;
1504 }
1505 if (tty->termios != tty->driver->termios[idx]) {
1506 printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1507 "for (%s)\n",
1508 idx, tty->name);
1509 return;
1510 }
1511 }
1512#endif
1513
1514#ifdef TTY_DEBUG_HANGUP
1515 printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1516 tty_name(tty, buf), tty->count);
1517#endif
1518
1519#ifdef TTY_PARANOIA_CHECK
1520 if (tty->driver->other &&
1521 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1522 if (o_tty != tty->driver->other->ttys[idx]) {
1523 printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1524 "not o_tty for (%s)\n",
1525 idx, tty->name);
1526 return;
1527 }
1528 if (o_tty->termios != tty->driver->other->termios[idx]) {
1529 printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1530 "not o_termios for (%s)\n",
1531 idx, tty->name);
1532 return;
1533 }
1534 if (o_tty->link != tty) {
1535 printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1536 return;
1537 }
1538 }
1539#endif
1540 if (tty->ops->close)
1541 tty->ops->close(tty, filp);
1542
1543 /*
1544 * Sanity check: if tty->count is going to zero, there shouldn't be
1545 * any waiters on tty->read_wait or tty->write_wait. We test the
1546 * wait queues and kick everyone out _before_ actually starting to
1547 * close. This ensures that we won't block while releasing the tty
1548 * structure.
1549 *
1550 * The test for the o_tty closing is necessary, since the master and
1551 * slave sides may close in any order. If the slave side closes out
1552 * first, its count will be one, since the master side holds an open.
1553 * Thus this test wouldn't be triggered at the time the slave closes,
1554 * so we do it now.
1555 *
1556 * Note that it's possible for the tty to be opened again while we're
1557 * flushing out waiters. By recalculating the closing flags before
1558 * each iteration we avoid any problems.
1559 */
1560 while (1) {
1561 /* Guard against races with tty->count changes elsewhere and
1562 opens on /dev/tty */
1563
1564 mutex_lock(&tty_mutex);
1565 tty_closing = tty->count <= 1;
1566 o_tty_closing = o_tty &&
1567 (o_tty->count <= (pty_master ? 1 : 0));
1568 do_sleep = 0;
1569
1570 if (tty_closing) {
1571 if (waitqueue_active(&tty->read_wait)) {
1572 wake_up_poll(&tty->read_wait, POLLIN);
1573 do_sleep++;
1574 }
1575 if (waitqueue_active(&tty->write_wait)) {
1576 wake_up_poll(&tty->write_wait, POLLOUT);
1577 do_sleep++;
1578 }
1579 }
1580 if (o_tty_closing) {
1581 if (waitqueue_active(&o_tty->read_wait)) {
1582 wake_up_poll(&o_tty->read_wait, POLLIN);
1583 do_sleep++;
1584 }
1585 if (waitqueue_active(&o_tty->write_wait)) {
1586 wake_up_poll(&o_tty->write_wait, POLLOUT);
1587 do_sleep++;
1588 }
1589 }
1590 if (!do_sleep)
1591 break;
1592
1593 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1594 "active!\n", tty_name(tty, buf));
1595 mutex_unlock(&tty_mutex);
1596 schedule();
1597 }
1598
1599 /*
1600 * The closing flags are now consistent with the open counts on
1601 * both sides, and we've completed the last operation that could
1602 * block, so it's safe to proceed with closing.
1603 */
1604 if (pty_master) {
1605 if (--o_tty->count < 0) {
1606 printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1607 "(%d) for %s\n",
1608 o_tty->count, tty_name(o_tty, buf));
1609 o_tty->count = 0;
1610 }
1611 }
1612 if (--tty->count < 0) {
1613 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1614 tty->count, tty_name(tty, buf));
1615 tty->count = 0;
1616 }
1617
1618 /*
1619 * We've decremented tty->count, so we need to remove this file
1620 * descriptor off the tty->tty_files list; this serves two
1621 * purposes:
1622 * - check_tty_count sees the correct number of file descriptors
1623 * associated with this tty.
1624 * - do_tty_hangup no longer sees this file descriptor as
1625 * something that needs to be handled for hangups.
1626 */
1627 file_kill(filp);
1628 filp->private_data = NULL;
1629
1630 /*
1631 * Perform some housekeeping before deciding whether to return.
1632 *
1633 * Set the TTY_CLOSING flag if this was the last open. In the
1634 * case of a pty we may have to wait around for the other side
1635 * to close, and TTY_CLOSING makes sure we can't be reopened.
1636 */
1637 if (tty_closing)
1638 set_bit(TTY_CLOSING, &tty->flags);
1639 if (o_tty_closing)
1640 set_bit(TTY_CLOSING, &o_tty->flags);
1641
1642 /*
1643 * If _either_ side is closing, make sure there aren't any
1644 * processes that still think tty or o_tty is their controlling
1645 * tty.
1646 */
1647 if (tty_closing || o_tty_closing) {
1648 read_lock(&tasklist_lock);
1649 session_clear_tty(tty->session);
1650 if (o_tty)
1651 session_clear_tty(o_tty->session);
1652 read_unlock(&tasklist_lock);
1653 }
1654
1655 mutex_unlock(&tty_mutex);
1656
1657 /* check whether both sides are closing ... */
1658 if (!tty_closing || (o_tty && !o_tty_closing))
1659 return;
1660
1661#ifdef TTY_DEBUG_HANGUP
1662 printk(KERN_DEBUG "freeing tty structure...");
1663#endif
1664 /*
1665 * Ask the line discipline code to release its structures
1666 */
1667 tty_ldisc_release(tty, o_tty);
1668 /*
1669 * The release_tty function takes care of the details of clearing
1670 * the slots and preserving the termios structure.
1671 */
1672 release_tty(tty, idx);
1673
1674 /* Make this pty number available for reallocation */
1675 if (devpts)
1676 devpts_kill_index(inode, idx);
1677}
1678
1679/**
1680 * __tty_open - open a tty device
1681 * @inode: inode of device file
1682 * @filp: file pointer to tty
1683 *
1684 * tty_open and tty_release keep up the tty count that contains the
1685 * number of opens done on a tty. We cannot use the inode-count, as
1686 * different inodes might point to the same tty.
1687 *
1688 * Open-counting is needed for pty masters, as well as for keeping
1689 * track of serial lines: DTR is dropped when the last close happens.
1690 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1691 *
1692 * The termios state of a pty is reset on first open so that
1693 * settings don't persist across reuse.
1694 *
1695 * Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1696 * tty->count should protect the rest.
1697 * ->siglock protects ->signal/->sighand
1698 */
1699
1700static int __tty_open(struct inode *inode, struct file *filp)
1701{
1702 struct tty_struct *tty = NULL;
1703 int noctty, retval;
1704 struct tty_driver *driver;
1705 int index;
1706 dev_t device = inode->i_rdev;
1707 unsigned saved_flags = filp->f_flags;
1708
1709 nonseekable_open(inode, filp);
1710
1711retry_open:
1712 noctty = filp->f_flags & O_NOCTTY;
1713 index = -1;
1714 retval = 0;
1715
1716 mutex_lock(&tty_mutex);
1717
1718 if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1719 tty = get_current_tty();
1720 if (!tty) {
1721 mutex_unlock(&tty_mutex);
1722 return -ENXIO;
1723 }
1724 driver = tty_driver_kref_get(tty->driver);
1725 index = tty->index;
1726 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1727 /* noctty = 1; */
1728 /* FIXME: Should we take a driver reference ? */
1729 tty_kref_put(tty);
1730 goto got_driver;
1731 }
1732#ifdef CONFIG_VT
1733 if (device == MKDEV(TTY_MAJOR, 0)) {
1734 extern struct tty_driver *console_driver;
1735 driver = tty_driver_kref_get(console_driver);
1736 index = fg_console;
1737 noctty = 1;
1738 goto got_driver;
1739 }
1740#endif
1741 if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1742 struct tty_driver *console_driver = console_device(&index);
1743 if (console_driver) {
1744 driver = tty_driver_kref_get(console_driver);
1745 if (driver) {
1746 /* Don't let /dev/console block */
1747 filp->f_flags |= O_NONBLOCK;
1748 noctty = 1;
1749 goto got_driver;
1750 }
1751 }
1752 mutex_unlock(&tty_mutex);
1753 return -ENODEV;
1754 }
1755
1756 driver = get_tty_driver(device, &index);
1757 if (!driver) {
1758 mutex_unlock(&tty_mutex);
1759 return -ENODEV;
1760 }
1761got_driver:
1762 if (!tty) {
1763 /* check whether we're reopening an existing tty */
1764 tty = tty_driver_lookup_tty(driver, inode, index);
1765
1766 if (IS_ERR(tty)) {
1767 mutex_unlock(&tty_mutex);
1768 return PTR_ERR(tty);
1769 }
1770 }
1771
1772 if (tty) {
1773 retval = tty_reopen(tty);
1774 if (retval)
1775 tty = ERR_PTR(retval);
1776 } else
1777 tty = tty_init_dev(driver, index, 0);
1778
1779 mutex_unlock(&tty_mutex);
1780 tty_driver_kref_put(driver);
1781 if (IS_ERR(tty))
1782 return PTR_ERR(tty);
1783
1784 filp->private_data = tty;
1785 file_move(filp, &tty->tty_files);
1786 check_tty_count(tty, "tty_open");
1787 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1788 tty->driver->subtype == PTY_TYPE_MASTER)
1789 noctty = 1;
1790#ifdef TTY_DEBUG_HANGUP
1791 printk(KERN_DEBUG "opening %s...", tty->name);
1792#endif
1793 if (!retval) {
1794 if (tty->ops->open)
1795 retval = tty->ops->open(tty, filp);
1796 else
1797 retval = -ENODEV;
1798 }
1799 filp->f_flags = saved_flags;
1800
1801 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1802 !capable(CAP_SYS_ADMIN))
1803 retval = -EBUSY;
1804
1805 if (retval) {
1806#ifdef TTY_DEBUG_HANGUP
1807 printk(KERN_DEBUG "error %d in opening %s...", retval,
1808 tty->name);
1809#endif
1810 tty_release_dev(filp);
1811 if (retval != -ERESTARTSYS)
1812 return retval;
1813 if (signal_pending(current))
1814 return retval;
1815 schedule();
1816 /*
1817 * Need to reset f_op in case a hangup happened.
1818 */
1819 if (filp->f_op == &hung_up_tty_fops)
1820 filp->f_op = &tty_fops;
1821 goto retry_open;
1822 }
1823
1824 mutex_lock(&tty_mutex);
1825 spin_lock_irq(&current->sighand->siglock);
1826 if (!noctty &&
1827 current->signal->leader &&
1828 !current->signal->tty &&
1829 tty->session == NULL)
1830 __proc_set_tty(current, tty);
1831 spin_unlock_irq(&current->sighand->siglock);
1832 mutex_unlock(&tty_mutex);
1833 return 0;
1834}
1835
1836/* BKL pushdown: scary code avoidance wrapper */
1837static int tty_open(struct inode *inode, struct file *filp)
1838{
1839 int ret;
1840
1841 lock_kernel();
1842 ret = __tty_open(inode, filp);
1843 unlock_kernel();
1844 return ret;
1845}
1846
1847
1848
1849
1850/**
1851 * tty_release - vfs callback for close
1852 * @inode: inode of tty
1853 * @filp: file pointer for handle to tty
1854 *
1855 * Called the last time each file handle is closed that references
1856 * this tty. There may however be several such references.
1857 *
1858 * Locking:
1859 * Takes bkl. See tty_release_dev
1860 */
1861
1862static int tty_release(struct inode *inode, struct file *filp)
1863{
1864 lock_kernel();
1865 tty_release_dev(filp);
1866 unlock_kernel();
1867 return 0;
1868}
1869
1870/**
1871 * tty_poll - check tty status
1872 * @filp: file being polled
1873 * @wait: poll wait structures to update
1874 *
1875 * Call the line discipline polling method to obtain the poll
1876 * status of the device.
1877 *
1878 * Locking: locks called line discipline but ldisc poll method
1879 * may be re-entered freely by other callers.
1880 */
1881
1882static unsigned int tty_poll(struct file *filp, poll_table *wait)
1883{
1884 struct tty_struct *tty;
1885 struct tty_ldisc *ld;
1886 int ret = 0;
1887
1888 tty = (struct tty_struct *)filp->private_data;
1889 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1890 return 0;
1891
1892 ld = tty_ldisc_ref_wait(tty);
1893 if (ld->ops->poll)
1894 ret = (ld->ops->poll)(tty, filp, wait);
1895 tty_ldisc_deref(ld);
1896 return ret;
1897}
1898
1899static int tty_fasync(int fd, struct file *filp, int on)
1900{
1901 struct tty_struct *tty;
1902 unsigned long flags;
1903 int retval = 0;
1904
1905 lock_kernel();
1906 tty = (struct tty_struct *)filp->private_data;
1907 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1908 goto out;
1909
1910 retval = fasync_helper(fd, filp, on, &tty->fasync);
1911 if (retval <= 0)
1912 goto out;
1913
1914 if (on) {
1915 enum pid_type type;
1916 struct pid *pid;
1917 if (!waitqueue_active(&tty->read_wait))
1918 tty->minimum_to_wake = 1;
1919 spin_lock_irqsave(&tty->ctrl_lock, flags);
1920 if (tty->pgrp) {
1921 pid = tty->pgrp;
1922 type = PIDTYPE_PGID;
1923 } else {
1924 pid = task_pid(current);
1925 type = PIDTYPE_PID;
1926 }
1927 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1928 retval = __f_setown(filp, pid, type, 0);
1929 if (retval)
1930 goto out;
1931 } else {
1932 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
1933 tty->minimum_to_wake = N_TTY_BUF_SIZE;
1934 }
1935 retval = 0;
1936out:
1937 unlock_kernel();
1938 return retval;
1939}
1940
1941/**
1942 * tiocsti - fake input character
1943 * @tty: tty to fake input into
1944 * @p: pointer to character
1945 *
1946 * Fake input to a tty device. Does the necessary locking and
1947 * input management.
1948 *
1949 * FIXME: does not honour flow control ??
1950 *
1951 * Locking:
1952 * Called functions take tty_ldisc_lock
1953 * current->signal->tty check is safe without locks
1954 *
1955 * FIXME: may race normal receive processing
1956 */
1957
1958static int tiocsti(struct tty_struct *tty, char __user *p)
1959{
1960 char ch, mbz = 0;
1961 struct tty_ldisc *ld;
1962
1963 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
1964 return -EPERM;
1965 if (get_user(ch, p))
1966 return -EFAULT;
1967 tty_audit_tiocsti(tty, ch);
1968 ld = tty_ldisc_ref_wait(tty);
1969 ld->ops->receive_buf(tty, &ch, &mbz, 1);
1970 tty_ldisc_deref(ld);
1971 return 0;
1972}
1973
1974/**
1975 * tiocgwinsz - implement window query ioctl
1976 * @tty; tty
1977 * @arg: user buffer for result
1978 *
1979 * Copies the kernel idea of the window size into the user buffer.
1980 *
1981 * Locking: tty->termios_mutex is taken to ensure the winsize data
1982 * is consistent.
1983 */
1984
1985static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
1986{
1987 int err;
1988
1989 mutex_lock(&tty->termios_mutex);
1990 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
1991 mutex_unlock(&tty->termios_mutex);
1992
1993 return err ? -EFAULT: 0;
1994}
1995
1996/**
1997 * tty_do_resize - resize event
1998 * @tty: tty being resized
1999 * @rows: rows (character)
2000 * @cols: cols (character)
2001 *
2002 * Update the termios variables and send the neccessary signals to
2003 * peform a terminal resize correctly
2004 */
2005
2006int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2007{
2008 struct pid *pgrp;
2009 unsigned long flags;
2010
2011 /* Lock the tty */
2012 mutex_lock(&tty->termios_mutex);
2013 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2014 goto done;
2015 /* Get the PID values and reference them so we can
2016 avoid holding the tty ctrl lock while sending signals */
2017 spin_lock_irqsave(&tty->ctrl_lock, flags);
2018 pgrp = get_pid(tty->pgrp);
2019 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2020
2021 if (pgrp)
2022 kill_pgrp(pgrp, SIGWINCH, 1);
2023 put_pid(pgrp);
2024
2025 tty->winsize = *ws;
2026done:
2027 mutex_unlock(&tty->termios_mutex);
2028 return 0;
2029}
2030
2031/**
2032 * tiocswinsz - implement window size set ioctl
2033 * @tty; tty side of tty
2034 * @arg: user buffer for result
2035 *
2036 * Copies the user idea of the window size to the kernel. Traditionally
2037 * this is just advisory information but for the Linux console it
2038 * actually has driver level meaning and triggers a VC resize.
2039 *
2040 * Locking:
2041 * Driver dependant. The default do_resize method takes the
2042 * tty termios mutex and ctrl_lock. The console takes its own lock
2043 * then calls into the default method.
2044 */
2045
2046static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2047{
2048 struct winsize tmp_ws;
2049 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2050 return -EFAULT;
2051
2052 if (tty->ops->resize)
2053 return tty->ops->resize(tty, &tmp_ws);
2054 else
2055 return tty_do_resize(tty, &tmp_ws);
2056}
2057
2058/**
2059 * tioccons - allow admin to move logical console
2060 * @file: the file to become console
2061 *
2062 * Allow the adminstrator to move the redirected console device
2063 *
2064 * Locking: uses redirect_lock to guard the redirect information
2065 */
2066
2067static int tioccons(struct file *file)
2068{
2069 if (!capable(CAP_SYS_ADMIN))
2070 return -EPERM;
2071 if (file->f_op->write == redirected_tty_write) {
2072 struct file *f;
2073 spin_lock(&redirect_lock);
2074 f = redirect;
2075 redirect = NULL;
2076 spin_unlock(&redirect_lock);
2077 if (f)
2078 fput(f);
2079 return 0;
2080 }
2081 spin_lock(&redirect_lock);
2082 if (redirect) {
2083 spin_unlock(&redirect_lock);
2084 return -EBUSY;
2085 }
2086 get_file(file);
2087 redirect = file;
2088 spin_unlock(&redirect_lock);
2089 return 0;
2090}
2091
2092/**
2093 * fionbio - non blocking ioctl
2094 * @file: file to set blocking value
2095 * @p: user parameter
2096 *
2097 * Historical tty interfaces had a blocking control ioctl before
2098 * the generic functionality existed. This piece of history is preserved
2099 * in the expected tty API of posix OS's.
2100 *
2101 * Locking: none, the open file handle ensures it won't go away.
2102 */
2103
2104static int fionbio(struct file *file, int __user *p)
2105{
2106 int nonblock;
2107
2108 if (get_user(nonblock, p))
2109 return -EFAULT;
2110
2111 spin_lock(&file->f_lock);
2112 if (nonblock)
2113 file->f_flags |= O_NONBLOCK;
2114 else
2115 file->f_flags &= ~O_NONBLOCK;
2116 spin_unlock(&file->f_lock);
2117 return 0;
2118}
2119
2120/**
2121 * tiocsctty - set controlling tty
2122 * @tty: tty structure
2123 * @arg: user argument
2124 *
2125 * This ioctl is used to manage job control. It permits a session
2126 * leader to set this tty as the controlling tty for the session.
2127 *
2128 * Locking:
2129 * Takes tty_mutex() to protect tty instance
2130 * Takes tasklist_lock internally to walk sessions
2131 * Takes ->siglock() when updating signal->tty
2132 */
2133
2134static int tiocsctty(struct tty_struct *tty, int arg)
2135{
2136 int ret = 0;
2137 if (current->signal->leader && (task_session(current) == tty->session))
2138 return ret;
2139
2140 mutex_lock(&tty_mutex);
2141 /*
2142 * The process must be a session leader and
2143 * not have a controlling tty already.
2144 */
2145 if (!current->signal->leader || current->signal->tty) {
2146 ret = -EPERM;
2147 goto unlock;
2148 }
2149
2150 if (tty->session) {
2151 /*
2152 * This tty is already the controlling
2153 * tty for another session group!
2154 */
2155 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2156 /*
2157 * Steal it away
2158 */
2159 read_lock(&tasklist_lock);
2160 session_clear_tty(tty->session);
2161 read_unlock(&tasklist_lock);
2162 } else {
2163 ret = -EPERM;
2164 goto unlock;
2165 }
2166 }
2167 proc_set_tty(current, tty);
2168unlock:
2169 mutex_unlock(&tty_mutex);
2170 return ret;
2171}
2172
2173/**
2174 * tty_get_pgrp - return a ref counted pgrp pid
2175 * @tty: tty to read
2176 *
2177 * Returns a refcounted instance of the pid struct for the process
2178 * group controlling the tty.
2179 */
2180
2181struct pid *tty_get_pgrp(struct tty_struct *tty)
2182{
2183 unsigned long flags;
2184 struct pid *pgrp;
2185
2186 spin_lock_irqsave(&tty->ctrl_lock, flags);
2187 pgrp = get_pid(tty->pgrp);
2188 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2189
2190 return pgrp;
2191}
2192EXPORT_SYMBOL_GPL(tty_get_pgrp);
2193
2194/**
2195 * tiocgpgrp - get process group
2196 * @tty: tty passed by user
2197 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2198 * @p: returned pid
2199 *
2200 * Obtain the process group of the tty. If there is no process group
2201 * return an error.
2202 *
2203 * Locking: none. Reference to current->signal->tty is safe.
2204 */
2205
2206static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2207{
2208 struct pid *pid;
2209 int ret;
2210 /*
2211 * (tty == real_tty) is a cheap way of
2212 * testing if the tty is NOT a master pty.
2213 */
2214 if (tty == real_tty && current->signal->tty != real_tty)
2215 return -ENOTTY;
2216 pid = tty_get_pgrp(real_tty);
2217 ret = put_user(pid_vnr(pid), p);
2218 put_pid(pid);
2219 return ret;
2220}
2221
2222/**
2223 * tiocspgrp - attempt to set process group
2224 * @tty: tty passed by user
2225 * @real_tty: tty side device matching tty passed by user
2226 * @p: pid pointer
2227 *
2228 * Set the process group of the tty to the session passed. Only
2229 * permitted where the tty session is our session.
2230 *
2231 * Locking: RCU, ctrl lock
2232 */
2233
2234static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2235{
2236 struct pid *pgrp;
2237 pid_t pgrp_nr;
2238 int retval = tty_check_change(real_tty);
2239 unsigned long flags;
2240
2241 if (retval == -EIO)
2242 return -ENOTTY;
2243 if (retval)
2244 return retval;
2245 if (!current->signal->tty ||
2246 (current->signal->tty != real_tty) ||
2247 (real_tty->session != task_session(current)))
2248 return -ENOTTY;
2249 if (get_user(pgrp_nr, p))
2250 return -EFAULT;
2251 if (pgrp_nr < 0)
2252 return -EINVAL;
2253 rcu_read_lock();
2254 pgrp = find_vpid(pgrp_nr);
2255 retval = -ESRCH;
2256 if (!pgrp)
2257 goto out_unlock;
2258 retval = -EPERM;
2259 if (session_of_pgrp(pgrp) != task_session(current))
2260 goto out_unlock;
2261 retval = 0;
2262 spin_lock_irqsave(&tty->ctrl_lock, flags);
2263 put_pid(real_tty->pgrp);
2264 real_tty->pgrp = get_pid(pgrp);
2265 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2266out_unlock:
2267 rcu_read_unlock();
2268 return retval;
2269}
2270
2271/**
2272 * tiocgsid - get session id
2273 * @tty: tty passed by user
2274 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2275 * @p: pointer to returned session id
2276 *
2277 * Obtain the session id of the tty. If there is no session
2278 * return an error.
2279 *
2280 * Locking: none. Reference to current->signal->tty is safe.
2281 */
2282
2283static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2284{
2285 /*
2286 * (tty == real_tty) is a cheap way of
2287 * testing if the tty is NOT a master pty.
2288 */
2289 if (tty == real_tty && current->signal->tty != real_tty)
2290 return -ENOTTY;
2291 if (!real_tty->session)
2292 return -ENOTTY;
2293 return put_user(pid_vnr(real_tty->session), p);
2294}
2295
2296/**
2297 * tiocsetd - set line discipline
2298 * @tty: tty device
2299 * @p: pointer to user data
2300 *
2301 * Set the line discipline according to user request.
2302 *
2303 * Locking: see tty_set_ldisc, this function is just a helper
2304 */
2305
2306static int tiocsetd(struct tty_struct *tty, int __user *p)
2307{
2308 int ldisc;
2309 int ret;
2310
2311 if (get_user(ldisc, p))
2312 return -EFAULT;
2313
2314 lock_kernel();
2315 ret = tty_set_ldisc(tty, ldisc);
2316 unlock_kernel();
2317
2318 return ret;
2319}
2320
2321/**
2322 * send_break - performed time break
2323 * @tty: device to break on
2324 * @duration: timeout in mS
2325 *
2326 * Perform a timed break on hardware that lacks its own driver level
2327 * timed break functionality.
2328 *
2329 * Locking:
2330 * atomic_write_lock serializes
2331 *
2332 */
2333
2334static int send_break(struct tty_struct *tty, unsigned int duration)
2335{
2336 int retval;
2337
2338 if (tty->ops->break_ctl == NULL)
2339 return 0;
2340
2341 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2342 retval = tty->ops->break_ctl(tty, duration);
2343 else {
2344 /* Do the work ourselves */
2345 if (tty_write_lock(tty, 0) < 0)
2346 return -EINTR;
2347 retval = tty->ops->break_ctl(tty, -1);
2348 if (retval)
2349 goto out;
2350 if (!signal_pending(current))
2351 msleep_interruptible(duration);
2352 retval = tty->ops->break_ctl(tty, 0);
2353out:
2354 tty_write_unlock(tty);
2355 if (signal_pending(current))
2356 retval = -EINTR;
2357 }
2358 return retval;
2359}
2360
2361/**
2362 * tty_tiocmget - get modem status
2363 * @tty: tty device
2364 * @file: user file pointer
2365 * @p: pointer to result
2366 *
2367 * Obtain the modem status bits from the tty driver if the feature
2368 * is supported. Return -EINVAL if it is not available.
2369 *
2370 * Locking: none (up to the driver)
2371 */
2372
2373static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
2374{
2375 int retval = -EINVAL;
2376
2377 if (tty->ops->tiocmget) {
2378 retval = tty->ops->tiocmget(tty, file);
2379
2380 if (retval >= 0)
2381 retval = put_user(retval, p);
2382 }
2383 return retval;
2384}
2385
2386/**
2387 * tty_tiocmset - set modem status
2388 * @tty: tty device
2389 * @file: user file pointer
2390 * @cmd: command - clear bits, set bits or set all
2391 * @p: pointer to desired bits
2392 *
2393 * Set the modem status bits from the tty driver if the feature
2394 * is supported. Return -EINVAL if it is not available.
2395 *
2396 * Locking: none (up to the driver)
2397 */
2398
2399static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
2400 unsigned __user *p)
2401{
2402 int retval;
2403 unsigned int set, clear, val;
2404
2405 if (tty->ops->tiocmset == NULL)
2406 return -EINVAL;
2407
2408 retval = get_user(val, p);
2409 if (retval)
2410 return retval;
2411 set = clear = 0;
2412 switch (cmd) {
2413 case TIOCMBIS:
2414 set = val;
2415 break;
2416 case TIOCMBIC:
2417 clear = val;
2418 break;
2419 case TIOCMSET:
2420 set = val;
2421 clear = ~val;
2422 break;
2423 }
2424 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2425 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2426 return tty->ops->tiocmset(tty, file, set, clear);
2427}
2428
2429struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2430{
2431 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2432 tty->driver->subtype == PTY_TYPE_MASTER)
2433 tty = tty->link;
2434 return tty;
2435}
2436EXPORT_SYMBOL(tty_pair_get_tty);
2437
2438struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2439{
2440 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2441 tty->driver->subtype == PTY_TYPE_MASTER)
2442 return tty;
2443 return tty->link;
2444}
2445EXPORT_SYMBOL(tty_pair_get_pty);
2446
2447/*
2448 * Split this up, as gcc can choke on it otherwise..
2449 */
2450long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2451{
2452 struct tty_struct *tty, *real_tty;
2453 void __user *p = (void __user *)arg;
2454 int retval;
2455 struct tty_ldisc *ld;
2456 struct inode *inode = file->f_dentry->d_inode;
2457
2458 tty = (struct tty_struct *)file->private_data;
2459 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2460 return -EINVAL;
2461
2462 real_tty = tty_pair_get_tty(tty);
2463
2464 /*
2465 * Factor out some common prep work
2466 */
2467 switch (cmd) {
2468 case TIOCSETD:
2469 case TIOCSBRK:
2470 case TIOCCBRK:
2471 case TCSBRK:
2472 case TCSBRKP:
2473 retval = tty_check_change(tty);
2474 if (retval)
2475 return retval;
2476 if (cmd != TIOCCBRK) {
2477 tty_wait_until_sent(tty, 0);
2478 if (signal_pending(current))
2479 return -EINTR;
2480 }
2481 break;
2482 }
2483
2484 /*
2485 * Now do the stuff.
2486 */
2487 switch (cmd) {
2488 case TIOCSTI:
2489 return tiocsti(tty, p);
2490 case TIOCGWINSZ:
2491 return tiocgwinsz(real_tty, p);
2492 case TIOCSWINSZ:
2493 return tiocswinsz(real_tty, p);
2494 case TIOCCONS:
2495 return real_tty != tty ? -EINVAL : tioccons(file);
2496 case FIONBIO:
2497 return fionbio(file, p);
2498 case TIOCEXCL:
2499 set_bit(TTY_EXCLUSIVE, &tty->flags);
2500 return 0;
2501 case TIOCNXCL:
2502 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2503 return 0;
2504 case TIOCNOTTY:
2505 if (current->signal->tty != tty)
2506 return -ENOTTY;
2507 no_tty();
2508 return 0;
2509 case TIOCSCTTY:
2510 return tiocsctty(tty, arg);
2511 case TIOCGPGRP:
2512 return tiocgpgrp(tty, real_tty, p);
2513 case TIOCSPGRP:
2514 return tiocspgrp(tty, real_tty, p);
2515 case TIOCGSID:
2516 return tiocgsid(tty, real_tty, p);
2517 case TIOCGETD:
2518 return put_user(tty->ldisc->ops->num, (int __user *)p);
2519 case TIOCSETD:
2520 return tiocsetd(tty, p);
2521 /*
2522 * Break handling
2523 */
2524 case TIOCSBRK: /* Turn break on, unconditionally */
2525 if (tty->ops->break_ctl)
2526 return tty->ops->break_ctl(tty, -1);
2527 return 0;
2528 case TIOCCBRK: /* Turn break off, unconditionally */
2529 if (tty->ops->break_ctl)
2530 return tty->ops->break_ctl(tty, 0);
2531 return 0;
2532 case TCSBRK: /* SVID version: non-zero arg --> no break */
2533 /* non-zero arg means wait for all output data
2534 * to be sent (performed above) but don't send break.
2535 * This is used by the tcdrain() termios function.
2536 */
2537 if (!arg)
2538 return send_break(tty, 250);
2539 return 0;
2540 case TCSBRKP: /* support for POSIX tcsendbreak() */
2541 return send_break(tty, arg ? arg*100 : 250);
2542
2543 case TIOCMGET:
2544 return tty_tiocmget(tty, file, p);
2545 case TIOCMSET:
2546 case TIOCMBIC:
2547 case TIOCMBIS:
2548 return tty_tiocmset(tty, file, cmd, p);
2549 case TCFLSH:
2550 switch (arg) {
2551 case TCIFLUSH:
2552 case TCIOFLUSH:
2553 /* flush tty buffer and allow ldisc to process ioctl */
2554 tty_buffer_flush(tty);
2555 break;
2556 }
2557 break;
2558 }
2559 if (tty->ops->ioctl) {
2560 retval = (tty->ops->ioctl)(tty, file, cmd, arg);
2561 if (retval != -ENOIOCTLCMD)
2562 return retval;
2563 }
2564 ld = tty_ldisc_ref_wait(tty);
2565 retval = -EINVAL;
2566 if (ld->ops->ioctl) {
2567 retval = ld->ops->ioctl(tty, file, cmd, arg);
2568 if (retval == -ENOIOCTLCMD)
2569 retval = -EINVAL;
2570 }
2571 tty_ldisc_deref(ld);
2572 return retval;
2573}
2574
2575#ifdef CONFIG_COMPAT
2576static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2577 unsigned long arg)
2578{
2579 struct inode *inode = file->f_dentry->d_inode;
2580 struct tty_struct *tty = file->private_data;
2581 struct tty_ldisc *ld;
2582 int retval = -ENOIOCTLCMD;
2583
2584 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2585 return -EINVAL;
2586
2587 if (tty->ops->compat_ioctl) {
2588 retval = (tty->ops->compat_ioctl)(tty, file, cmd, arg);
2589 if (retval != -ENOIOCTLCMD)
2590 return retval;
2591 }
2592
2593 ld = tty_ldisc_ref_wait(tty);
2594 if (ld->ops->compat_ioctl)
2595 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2596 tty_ldisc_deref(ld);
2597
2598 return retval;
2599}
2600#endif
2601
2602/*
2603 * This implements the "Secure Attention Key" --- the idea is to
2604 * prevent trojan horses by killing all processes associated with this
2605 * tty when the user hits the "Secure Attention Key". Required for
2606 * super-paranoid applications --- see the Orange Book for more details.
2607 *
2608 * This code could be nicer; ideally it should send a HUP, wait a few
2609 * seconds, then send a INT, and then a KILL signal. But you then
2610 * have to coordinate with the init process, since all processes associated
2611 * with the current tty must be dead before the new getty is allowed
2612 * to spawn.
2613 *
2614 * Now, if it would be correct ;-/ The current code has a nasty hole -
2615 * it doesn't catch files in flight. We may send the descriptor to ourselves
2616 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2617 *
2618 * Nasty bug: do_SAK is being called in interrupt context. This can
2619 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2620 */
2621void __do_SAK(struct tty_struct *tty)
2622{
2623#ifdef TTY_SOFT_SAK
2624 tty_hangup(tty);
2625#else
2626 struct task_struct *g, *p;
2627 struct pid *session;
2628 int i;
2629 struct file *filp;
2630 struct fdtable *fdt;
2631
2632 if (!tty)
2633 return;
2634 session = tty->session;
2635
2636 tty_ldisc_flush(tty);
2637
2638 tty_driver_flush_buffer(tty);
2639
2640 read_lock(&tasklist_lock);
2641 /* Kill the entire session */
2642 do_each_pid_task(session, PIDTYPE_SID, p) {
2643 printk(KERN_NOTICE "SAK: killed process %d"
2644 " (%s): task_session(p)==tty->session\n",
2645 task_pid_nr(p), p->comm);
2646 send_sig(SIGKILL, p, 1);
2647 } while_each_pid_task(session, PIDTYPE_SID, p);
2648 /* Now kill any processes that happen to have the
2649 * tty open.
2650 */
2651 do_each_thread(g, p) {
2652 if (p->signal->tty == tty) {
2653 printk(KERN_NOTICE "SAK: killed process %d"
2654 " (%s): task_session(p)==tty->session\n",
2655 task_pid_nr(p), p->comm);
2656 send_sig(SIGKILL, p, 1);
2657 continue;
2658 }
2659 task_lock(p);
2660 if (p->files) {
2661 /*
2662 * We don't take a ref to the file, so we must
2663 * hold ->file_lock instead.
2664 */
2665 spin_lock(&p->files->file_lock);
2666 fdt = files_fdtable(p->files);
2667 for (i = 0; i < fdt->max_fds; i++) {
2668 filp = fcheck_files(p->files, i);
2669 if (!filp)
2670 continue;
2671 if (filp->f_op->read == tty_read &&
2672 filp->private_data == tty) {
2673 printk(KERN_NOTICE "SAK: killed process %d"
2674 " (%s): fd#%d opened to the tty\n",
2675 task_pid_nr(p), p->comm, i);
2676 force_sig(SIGKILL, p);
2677 break;
2678 }
2679 }
2680 spin_unlock(&p->files->file_lock);
2681 }
2682 task_unlock(p);
2683 } while_each_thread(g, p);
2684 read_unlock(&tasklist_lock);
2685#endif
2686}
2687
2688static void do_SAK_work(struct work_struct *work)
2689{
2690 struct tty_struct *tty =
2691 container_of(work, struct tty_struct, SAK_work);
2692 __do_SAK(tty);
2693}
2694
2695/*
2696 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2697 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2698 * the values which we write to it will be identical to the values which it
2699 * already has. --akpm
2700 */
2701void do_SAK(struct tty_struct *tty)
2702{
2703 if (!tty)
2704 return;
2705 schedule_work(&tty->SAK_work);
2706}
2707
2708EXPORT_SYMBOL(do_SAK);
2709
2710/**
2711 * initialize_tty_struct
2712 * @tty: tty to initialize
2713 *
2714 * This subroutine initializes a tty structure that has been newly
2715 * allocated.
2716 *
2717 * Locking: none - tty in question must not be exposed at this point
2718 */
2719
2720void initialize_tty_struct(struct tty_struct *tty,
2721 struct tty_driver *driver, int idx)
2722{
2723 memset(tty, 0, sizeof(struct tty_struct));
2724 kref_init(&tty->kref);
2725 tty->magic = TTY_MAGIC;
2726 tty_ldisc_init(tty);
2727 tty->session = NULL;
2728 tty->pgrp = NULL;
2729 tty->overrun_time = jiffies;
2730 tty->buf.head = tty->buf.tail = NULL;
2731 tty_buffer_init(tty);
2732 mutex_init(&tty->termios_mutex);
2733 mutex_init(&tty->ldisc_mutex);
2734 init_waitqueue_head(&tty->write_wait);
2735 init_waitqueue_head(&tty->read_wait);
2736 INIT_WORK(&tty->hangup_work, do_tty_hangup);
2737 mutex_init(&tty->atomic_read_lock);
2738 mutex_init(&tty->atomic_write_lock);
2739 mutex_init(&tty->output_lock);
2740 mutex_init(&tty->echo_lock);
2741 spin_lock_init(&tty->read_lock);
2742 spin_lock_init(&tty->ctrl_lock);
2743 INIT_LIST_HEAD(&tty->tty_files);
2744 INIT_WORK(&tty->SAK_work, do_SAK_work);
2745
2746 tty->driver = driver;
2747 tty->ops = driver->ops;
2748 tty->index = idx;
2749 tty_line_name(driver, idx, tty->name);
2750}
2751
2752/**
2753 * tty_put_char - write one character to a tty
2754 * @tty: tty
2755 * @ch: character
2756 *
2757 * Write one byte to the tty using the provided put_char method
2758 * if present. Returns the number of characters successfully output.
2759 *
2760 * Note: the specific put_char operation in the driver layer may go
2761 * away soon. Don't call it directly, use this method
2762 */
2763
2764int tty_put_char(struct tty_struct *tty, unsigned char ch)
2765{
2766 if (tty->ops->put_char)
2767 return tty->ops->put_char(tty, ch);
2768 return tty->ops->write(tty, &ch, 1);
2769}
2770EXPORT_SYMBOL_GPL(tty_put_char);
2771
2772struct class *tty_class;
2773
2774/**
2775 * tty_register_device - register a tty device
2776 * @driver: the tty driver that describes the tty device
2777 * @index: the index in the tty driver for this tty device
2778 * @device: a struct device that is associated with this tty device.
2779 * This field is optional, if there is no known struct device
2780 * for this tty device it can be set to NULL safely.
2781 *
2782 * Returns a pointer to the struct device for this tty device
2783 * (or ERR_PTR(-EFOO) on error).
2784 *
2785 * This call is required to be made to register an individual tty device
2786 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
2787 * that bit is not set, this function should not be called by a tty
2788 * driver.
2789 *
2790 * Locking: ??
2791 */
2792
2793struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2794 struct device *device)
2795{
2796 char name[64];
2797 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2798
2799 if (index >= driver->num) {
2800 printk(KERN_ERR "Attempt to register invalid tty line number "
2801 " (%d).\n", index);
2802 return ERR_PTR(-EINVAL);
2803 }
2804
2805 if (driver->type == TTY_DRIVER_TYPE_PTY)
2806 pty_line_name(driver, index, name);
2807 else
2808 tty_line_name(driver, index, name);
2809
2810 return device_create(tty_class, device, dev, NULL, name);
2811}
2812EXPORT_SYMBOL(tty_register_device);
2813
2814/**
2815 * tty_unregister_device - unregister a tty device
2816 * @driver: the tty driver that describes the tty device
2817 * @index: the index in the tty driver for this tty device
2818 *
2819 * If a tty device is registered with a call to tty_register_device() then
2820 * this function must be called when the tty device is gone.
2821 *
2822 * Locking: ??
2823 */
2824
2825void tty_unregister_device(struct tty_driver *driver, unsigned index)
2826{
2827 device_destroy(tty_class,
2828 MKDEV(driver->major, driver->minor_start) + index);
2829}
2830EXPORT_SYMBOL(tty_unregister_device);
2831
2832struct tty_driver *alloc_tty_driver(int lines)
2833{
2834 struct tty_driver *driver;
2835
2836 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2837 if (driver) {
2838 kref_init(&driver->kref);
2839 driver->magic = TTY_DRIVER_MAGIC;
2840 driver->num = lines;
2841 /* later we'll move allocation of tables here */
2842 }
2843 return driver;
2844}
2845EXPORT_SYMBOL(alloc_tty_driver);
2846
2847static void destruct_tty_driver(struct kref *kref)
2848{
2849 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
2850 int i;
2851 struct ktermios *tp;
2852 void *p;
2853
2854 if (driver->flags & TTY_DRIVER_INSTALLED) {
2855 /*
2856 * Free the termios and termios_locked structures because
2857 * we don't want to get memory leaks when modular tty
2858 * drivers are removed from the kernel.
2859 */
2860 for (i = 0; i < driver->num; i++) {
2861 tp = driver->termios[i];
2862 if (tp) {
2863 driver->termios[i] = NULL;
2864 kfree(tp);
2865 }
2866 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
2867 tty_unregister_device(driver, i);
2868 }
2869 p = driver->ttys;
2870 proc_tty_unregister_driver(driver);
2871 driver->ttys = NULL;
2872 driver->termios = NULL;
2873 kfree(p);
2874 cdev_del(&driver->cdev);
2875 }
2876 kfree(driver);
2877}
2878
2879void tty_driver_kref_put(struct tty_driver *driver)
2880{
2881 kref_put(&driver->kref, destruct_tty_driver);
2882}
2883EXPORT_SYMBOL(tty_driver_kref_put);
2884
2885void tty_set_operations(struct tty_driver *driver,
2886 const struct tty_operations *op)
2887{
2888 driver->ops = op;
2889};
2890EXPORT_SYMBOL(tty_set_operations);
2891
2892void put_tty_driver(struct tty_driver *d)
2893{
2894 tty_driver_kref_put(d);
2895}
2896EXPORT_SYMBOL(put_tty_driver);
2897
2898/*
2899 * Called by a tty driver to register itself.
2900 */
2901int tty_register_driver(struct tty_driver *driver)
2902{
2903 int error;
2904 int i;
2905 dev_t dev;
2906 void **p = NULL;
2907
2908 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
2909 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
2910 if (!p)
2911 return -ENOMEM;
2912 }
2913
2914 if (!driver->major) {
2915 error = alloc_chrdev_region(&dev, driver->minor_start,
2916 driver->num, driver->name);
2917 if (!error) {
2918 driver->major = MAJOR(dev);
2919 driver->minor_start = MINOR(dev);
2920 }
2921 } else {
2922 dev = MKDEV(driver->major, driver->minor_start);
2923 error = register_chrdev_region(dev, driver->num, driver->name);
2924 }
2925 if (error < 0) {
2926 kfree(p);
2927 return error;
2928 }
2929
2930 if (p) {
2931 driver->ttys = (struct tty_struct **)p;
2932 driver->termios = (struct ktermios **)(p + driver->num);
2933 } else {
2934 driver->ttys = NULL;
2935 driver->termios = NULL;
2936 }
2937
2938 cdev_init(&driver->cdev, &tty_fops);
2939 driver->cdev.owner = driver->owner;
2940 error = cdev_add(&driver->cdev, dev, driver->num);
2941 if (error) {
2942 unregister_chrdev_region(dev, driver->num);
2943 driver->ttys = NULL;
2944 driver->termios = NULL;
2945 kfree(p);
2946 return error;
2947 }
2948
2949 mutex_lock(&tty_mutex);
2950 list_add(&driver->tty_drivers, &tty_drivers);
2951 mutex_unlock(&tty_mutex);
2952
2953 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
2954 for (i = 0; i < driver->num; i++)
2955 tty_register_device(driver, i, NULL);
2956 }
2957 proc_tty_register_driver(driver);
2958 driver->flags |= TTY_DRIVER_INSTALLED;
2959 return 0;
2960}
2961
2962EXPORT_SYMBOL(tty_register_driver);
2963
2964/*
2965 * Called by a tty driver to unregister itself.
2966 */
2967int tty_unregister_driver(struct tty_driver *driver)
2968{
2969#if 0
2970 /* FIXME */
2971 if (driver->refcount)
2972 return -EBUSY;
2973#endif
2974 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
2975 driver->num);
2976 mutex_lock(&tty_mutex);
2977 list_del(&driver->tty_drivers);
2978 mutex_unlock(&tty_mutex);
2979 return 0;
2980}
2981
2982EXPORT_SYMBOL(tty_unregister_driver);
2983
2984dev_t tty_devnum(struct tty_struct *tty)
2985{
2986 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
2987}
2988EXPORT_SYMBOL(tty_devnum);
2989
2990void proc_clear_tty(struct task_struct *p)
2991{
2992 unsigned long flags;
2993 struct tty_struct *tty;
2994 spin_lock_irqsave(&p->sighand->siglock, flags);
2995 tty = p->signal->tty;
2996 p->signal->tty = NULL;
2997 spin_unlock_irqrestore(&p->sighand->siglock, flags);
2998 tty_kref_put(tty);
2999}
3000
3001/* Called under the sighand lock */
3002
3003static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3004{
3005 if (tty) {
3006 unsigned long flags;
3007 /* We should not have a session or pgrp to put here but.... */
3008 spin_lock_irqsave(&tty->ctrl_lock, flags);
3009 put_pid(tty->session);
3010 put_pid(tty->pgrp);
3011 tty->pgrp = get_pid(task_pgrp(tsk));
3012 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3013 tty->session = get_pid(task_session(tsk));
3014 if (tsk->signal->tty) {
3015 printk(KERN_DEBUG "tty not NULL!!\n");
3016 tty_kref_put(tsk->signal->tty);
3017 }
3018 }
3019 put_pid(tsk->signal->tty_old_pgrp);
3020 tsk->signal->tty = tty_kref_get(tty);
3021 tsk->signal->tty_old_pgrp = NULL;
3022}
3023
3024static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3025{
3026 spin_lock_irq(&tsk->sighand->siglock);
3027 __proc_set_tty(tsk, tty);
3028 spin_unlock_irq(&tsk->sighand->siglock);
3029}
3030
3031struct tty_struct *get_current_tty(void)
3032{
3033 struct tty_struct *tty;
3034 unsigned long flags;
3035
3036 spin_lock_irqsave(&current->sighand->siglock, flags);
3037 tty = tty_kref_get(current->signal->tty);
3038 spin_unlock_irqrestore(&current->sighand->siglock, flags);
3039 return tty;
3040}
3041EXPORT_SYMBOL_GPL(get_current_tty);
3042
3043void tty_default_fops(struct file_operations *fops)
3044{
3045 *fops = tty_fops;
3046}
3047
3048/*
3049 * Initialize the console device. This is called *early*, so
3050 * we can't necessarily depend on lots of kernel help here.
3051 * Just do some early initializations, and do the complex setup
3052 * later.
3053 */
3054void __init console_init(void)
3055{
3056 initcall_t *call;
3057
3058 /* Setup the default TTY line discipline. */
3059 tty_ldisc_begin();
3060
3061 /*
3062 * set up the console device so that later boot sequences can
3063 * inform about problems etc..
3064 */
3065 call = __con_initcall_start;
3066 while (call < __con_initcall_end) {
3067 (*call)();
3068 call++;
3069 }
3070}
3071
3072static int __init tty_class_init(void)
3073{
3074 tty_class = class_create(THIS_MODULE, "tty");
3075 if (IS_ERR(tty_class))
3076 return PTR_ERR(tty_class);
3077 return 0;
3078}
3079
3080postcore_initcall(tty_class_init);
3081
3082/* 3/2004 jmc: why do these devices exist? */
3083
3084static struct cdev tty_cdev, console_cdev;
3085
3086/*
3087 * Ok, now we can initialize the rest of the tty devices and can count
3088 * on memory allocations, interrupts etc..
3089 */
3090static int __init tty_init(void)
3091{
3092 cdev_init(&tty_cdev, &tty_fops);
3093 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3094 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3095 panic("Couldn't register /dev/tty driver\n");
3096 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL,
3097 "tty");
3098
3099 cdev_init(&console_cdev, &console_fops);
3100 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3101 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3102 panic("Couldn't register /dev/console driver\n");
3103 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3104 "console");
3105
3106#ifdef CONFIG_VT
3107 vty_init(&console_fops);
3108#endif
3109 return 0;
3110}
3111module_init(tty_init);