Linux 2.6.33-rc7
[linux-2.6-block.git] / drivers / char / tty_io.c
... / ...
CommitLineData
1/*
2 * linux/drivers/char/tty_io.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7/*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
10 *
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
12 *
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
18 *
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
23 *
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
27 *
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
31 *
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
35 *
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
38 *
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
41 *
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
44 *
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
47 *
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
51 *
52 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
54 *
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
57 *
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
60 *
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
63 *
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc()
66 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
67 */
68
69#include <linux/types.h>
70#include <linux/major.h>
71#include <linux/errno.h>
72#include <linux/signal.h>
73#include <linux/fcntl.h>
74#include <linux/sched.h>
75#include <linux/interrupt.h>
76#include <linux/tty.h>
77#include <linux/tty_driver.h>
78#include <linux/tty_flip.h>
79#include <linux/devpts_fs.h>
80#include <linux/file.h>
81#include <linux/fdtable.h>
82#include <linux/console.h>
83#include <linux/timer.h>
84#include <linux/ctype.h>
85#include <linux/kd.h>
86#include <linux/mm.h>
87#include <linux/string.h>
88#include <linux/slab.h>
89#include <linux/poll.h>
90#include <linux/proc_fs.h>
91#include <linux/init.h>
92#include <linux/module.h>
93#include <linux/smp_lock.h>
94#include <linux/device.h>
95#include <linux/wait.h>
96#include <linux/bitops.h>
97#include <linux/delay.h>
98#include <linux/seq_file.h>
99
100#include <linux/uaccess.h>
101#include <asm/system.h>
102
103#include <linux/kbd_kern.h>
104#include <linux/vt_kern.h>
105#include <linux/selection.h>
106
107#include <linux/kmod.h>
108#include <linux/nsproxy.h>
109
110#undef TTY_DEBUG_HANGUP
111
112#define TTY_PARANOIA_CHECK 1
113#define CHECK_TTY_COUNT 1
114
115struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
116 .c_iflag = ICRNL | IXON,
117 .c_oflag = OPOST | ONLCR,
118 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
119 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
120 ECHOCTL | ECHOKE | IEXTEN,
121 .c_cc = INIT_C_CC,
122 .c_ispeed = 38400,
123 .c_ospeed = 38400
124};
125
126EXPORT_SYMBOL(tty_std_termios);
127
128/* This list gets poked at by procfs and various bits of boot up code. This
129 could do with some rationalisation such as pulling the tty proc function
130 into this file */
131
132LIST_HEAD(tty_drivers); /* linked list of tty drivers */
133
134/* Mutex to protect creating and releasing a tty. This is shared with
135 vt.c for deeply disgusting hack reasons */
136DEFINE_MUTEX(tty_mutex);
137EXPORT_SYMBOL(tty_mutex);
138
139static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
140static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
141ssize_t redirected_tty_write(struct file *, const char __user *,
142 size_t, loff_t *);
143static unsigned int tty_poll(struct file *, poll_table *);
144static int tty_open(struct inode *, struct file *);
145long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
146#ifdef CONFIG_COMPAT
147static long tty_compat_ioctl(struct file *file, unsigned int cmd,
148 unsigned long arg);
149#else
150#define tty_compat_ioctl NULL
151#endif
152static int tty_fasync(int fd, struct file *filp, int on);
153static void release_tty(struct tty_struct *tty, int idx);
154static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
155static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
156
157/**
158 * alloc_tty_struct - allocate a tty object
159 *
160 * Return a new empty tty structure. The data fields have not
161 * been initialized in any way but has been zeroed
162 *
163 * Locking: none
164 */
165
166struct tty_struct *alloc_tty_struct(void)
167{
168 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
169}
170
171/**
172 * free_tty_struct - free a disused tty
173 * @tty: tty struct to free
174 *
175 * Free the write buffers, tty queue and tty memory itself.
176 *
177 * Locking: none. Must be called after tty is definitely unused
178 */
179
180void free_tty_struct(struct tty_struct *tty)
181{
182 kfree(tty->write_buf);
183 tty_buffer_free_all(tty);
184 kfree(tty);
185}
186
187#define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
188
189/**
190 * tty_name - return tty naming
191 * @tty: tty structure
192 * @buf: buffer for output
193 *
194 * Convert a tty structure into a name. The name reflects the kernel
195 * naming policy and if udev is in use may not reflect user space
196 *
197 * Locking: none
198 */
199
200char *tty_name(struct tty_struct *tty, char *buf)
201{
202 if (!tty) /* Hmm. NULL pointer. That's fun. */
203 strcpy(buf, "NULL tty");
204 else
205 strcpy(buf, tty->name);
206 return buf;
207}
208
209EXPORT_SYMBOL(tty_name);
210
211int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
212 const char *routine)
213{
214#ifdef TTY_PARANOIA_CHECK
215 if (!tty) {
216 printk(KERN_WARNING
217 "null TTY for (%d:%d) in %s\n",
218 imajor(inode), iminor(inode), routine);
219 return 1;
220 }
221 if (tty->magic != TTY_MAGIC) {
222 printk(KERN_WARNING
223 "bad magic number for tty struct (%d:%d) in %s\n",
224 imajor(inode), iminor(inode), routine);
225 return 1;
226 }
227#endif
228 return 0;
229}
230
231static int check_tty_count(struct tty_struct *tty, const char *routine)
232{
233#ifdef CHECK_TTY_COUNT
234 struct list_head *p;
235 int count = 0;
236
237 file_list_lock();
238 list_for_each(p, &tty->tty_files) {
239 count++;
240 }
241 file_list_unlock();
242 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
243 tty->driver->subtype == PTY_TYPE_SLAVE &&
244 tty->link && tty->link->count)
245 count++;
246 if (tty->count != count) {
247 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
248 "!= #fd's(%d) in %s\n",
249 tty->name, tty->count, count, routine);
250 return count;
251 }
252#endif
253 return 0;
254}
255
256/**
257 * get_tty_driver - find device of a tty
258 * @dev_t: device identifier
259 * @index: returns the index of the tty
260 *
261 * This routine returns a tty driver structure, given a device number
262 * and also passes back the index number.
263 *
264 * Locking: caller must hold tty_mutex
265 */
266
267static struct tty_driver *get_tty_driver(dev_t device, int *index)
268{
269 struct tty_driver *p;
270
271 list_for_each_entry(p, &tty_drivers, tty_drivers) {
272 dev_t base = MKDEV(p->major, p->minor_start);
273 if (device < base || device >= base + p->num)
274 continue;
275 *index = device - base;
276 return tty_driver_kref_get(p);
277 }
278 return NULL;
279}
280
281#ifdef CONFIG_CONSOLE_POLL
282
283/**
284 * tty_find_polling_driver - find device of a polled tty
285 * @name: name string to match
286 * @line: pointer to resulting tty line nr
287 *
288 * This routine returns a tty driver structure, given a name
289 * and the condition that the tty driver is capable of polled
290 * operation.
291 */
292struct tty_driver *tty_find_polling_driver(char *name, int *line)
293{
294 struct tty_driver *p, *res = NULL;
295 int tty_line = 0;
296 int len;
297 char *str, *stp;
298
299 for (str = name; *str; str++)
300 if ((*str >= '0' && *str <= '9') || *str == ',')
301 break;
302 if (!*str)
303 return NULL;
304
305 len = str - name;
306 tty_line = simple_strtoul(str, &str, 10);
307
308 mutex_lock(&tty_mutex);
309 /* Search through the tty devices to look for a match */
310 list_for_each_entry(p, &tty_drivers, tty_drivers) {
311 if (strncmp(name, p->name, len) != 0)
312 continue;
313 stp = str;
314 if (*stp == ',')
315 stp++;
316 if (*stp == '\0')
317 stp = NULL;
318
319 if (tty_line >= 0 && tty_line <= p->num && p->ops &&
320 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
321 res = tty_driver_kref_get(p);
322 *line = tty_line;
323 break;
324 }
325 }
326 mutex_unlock(&tty_mutex);
327
328 return res;
329}
330EXPORT_SYMBOL_GPL(tty_find_polling_driver);
331#endif
332
333/**
334 * tty_check_change - check for POSIX terminal changes
335 * @tty: tty to check
336 *
337 * If we try to write to, or set the state of, a terminal and we're
338 * not in the foreground, send a SIGTTOU. If the signal is blocked or
339 * ignored, go ahead and perform the operation. (POSIX 7.2)
340 *
341 * Locking: ctrl_lock
342 */
343
344int tty_check_change(struct tty_struct *tty)
345{
346 unsigned long flags;
347 int ret = 0;
348
349 if (current->signal->tty != tty)
350 return 0;
351
352 spin_lock_irqsave(&tty->ctrl_lock, flags);
353
354 if (!tty->pgrp) {
355 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
356 goto out_unlock;
357 }
358 if (task_pgrp(current) == tty->pgrp)
359 goto out_unlock;
360 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
361 if (is_ignored(SIGTTOU))
362 goto out;
363 if (is_current_pgrp_orphaned()) {
364 ret = -EIO;
365 goto out;
366 }
367 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
368 set_thread_flag(TIF_SIGPENDING);
369 ret = -ERESTARTSYS;
370out:
371 return ret;
372out_unlock:
373 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
374 return ret;
375}
376
377EXPORT_SYMBOL(tty_check_change);
378
379static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
380 size_t count, loff_t *ppos)
381{
382 return 0;
383}
384
385static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
386 size_t count, loff_t *ppos)
387{
388 return -EIO;
389}
390
391/* No kernel lock held - none needed ;) */
392static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
393{
394 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
395}
396
397static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
398 unsigned long arg)
399{
400 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
401}
402
403static long hung_up_tty_compat_ioctl(struct file *file,
404 unsigned int cmd, unsigned long arg)
405{
406 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
407}
408
409static const struct file_operations tty_fops = {
410 .llseek = no_llseek,
411 .read = tty_read,
412 .write = tty_write,
413 .poll = tty_poll,
414 .unlocked_ioctl = tty_ioctl,
415 .compat_ioctl = tty_compat_ioctl,
416 .open = tty_open,
417 .release = tty_release,
418 .fasync = tty_fasync,
419};
420
421static const struct file_operations console_fops = {
422 .llseek = no_llseek,
423 .read = tty_read,
424 .write = redirected_tty_write,
425 .poll = tty_poll,
426 .unlocked_ioctl = tty_ioctl,
427 .compat_ioctl = tty_compat_ioctl,
428 .open = tty_open,
429 .release = tty_release,
430 .fasync = tty_fasync,
431};
432
433static const struct file_operations hung_up_tty_fops = {
434 .llseek = no_llseek,
435 .read = hung_up_tty_read,
436 .write = hung_up_tty_write,
437 .poll = hung_up_tty_poll,
438 .unlocked_ioctl = hung_up_tty_ioctl,
439 .compat_ioctl = hung_up_tty_compat_ioctl,
440 .release = tty_release,
441};
442
443static DEFINE_SPINLOCK(redirect_lock);
444static struct file *redirect;
445
446/**
447 * tty_wakeup - request more data
448 * @tty: terminal
449 *
450 * Internal and external helper for wakeups of tty. This function
451 * informs the line discipline if present that the driver is ready
452 * to receive more output data.
453 */
454
455void tty_wakeup(struct tty_struct *tty)
456{
457 struct tty_ldisc *ld;
458
459 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
460 ld = tty_ldisc_ref(tty);
461 if (ld) {
462 if (ld->ops->write_wakeup)
463 ld->ops->write_wakeup(tty);
464 tty_ldisc_deref(ld);
465 }
466 }
467 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
468}
469
470EXPORT_SYMBOL_GPL(tty_wakeup);
471
472/**
473 * do_tty_hangup - actual handler for hangup events
474 * @work: tty device
475 *
476 * This can be called by the "eventd" kernel thread. That is process
477 * synchronous but doesn't hold any locks, so we need to make sure we
478 * have the appropriate locks for what we're doing.
479 *
480 * The hangup event clears any pending redirections onto the hung up
481 * device. It ensures future writes will error and it does the needed
482 * line discipline hangup and signal delivery. The tty object itself
483 * remains intact.
484 *
485 * Locking:
486 * BKL
487 * redirect lock for undoing redirection
488 * file list lock for manipulating list of ttys
489 * tty_ldisc_lock from called functions
490 * termios_mutex resetting termios data
491 * tasklist_lock to walk task list for hangup event
492 * ->siglock to protect ->signal/->sighand
493 */
494static void do_tty_hangup(struct work_struct *work)
495{
496 struct tty_struct *tty =
497 container_of(work, struct tty_struct, hangup_work);
498 struct file *cons_filp = NULL;
499 struct file *filp, *f = NULL;
500 struct task_struct *p;
501 int closecount = 0, n;
502 unsigned long flags;
503 int refs = 0;
504
505 if (!tty)
506 return;
507
508
509 spin_lock(&redirect_lock);
510 if (redirect && redirect->private_data == tty) {
511 f = redirect;
512 redirect = NULL;
513 }
514 spin_unlock(&redirect_lock);
515
516 /* inuse_filps is protected by the single kernel lock */
517 lock_kernel();
518 check_tty_count(tty, "do_tty_hangup");
519
520 file_list_lock();
521 /* This breaks for file handles being sent over AF_UNIX sockets ? */
522 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
523 if (filp->f_op->write == redirected_tty_write)
524 cons_filp = filp;
525 if (filp->f_op->write != tty_write)
526 continue;
527 closecount++;
528 tty_fasync(-1, filp, 0); /* can't block */
529 filp->f_op = &hung_up_tty_fops;
530 }
531 file_list_unlock();
532
533 tty_ldisc_hangup(tty);
534
535 read_lock(&tasklist_lock);
536 if (tty->session) {
537 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
538 spin_lock_irq(&p->sighand->siglock);
539 if (p->signal->tty == tty) {
540 p->signal->tty = NULL;
541 /* We defer the dereferences outside fo
542 the tasklist lock */
543 refs++;
544 }
545 if (!p->signal->leader) {
546 spin_unlock_irq(&p->sighand->siglock);
547 continue;
548 }
549 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
550 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
551 put_pid(p->signal->tty_old_pgrp); /* A noop */
552 spin_lock_irqsave(&tty->ctrl_lock, flags);
553 if (tty->pgrp)
554 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
555 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
556 spin_unlock_irq(&p->sighand->siglock);
557 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
558 }
559 read_unlock(&tasklist_lock);
560
561 spin_lock_irqsave(&tty->ctrl_lock, flags);
562 clear_bit(TTY_THROTTLED, &tty->flags);
563 clear_bit(TTY_PUSH, &tty->flags);
564 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
565 put_pid(tty->session);
566 put_pid(tty->pgrp);
567 tty->session = NULL;
568 tty->pgrp = NULL;
569 tty->ctrl_status = 0;
570 set_bit(TTY_HUPPED, &tty->flags);
571 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
572
573 /* Account for the p->signal references we killed */
574 while (refs--)
575 tty_kref_put(tty);
576
577 /*
578 * If one of the devices matches a console pointer, we
579 * cannot just call hangup() because that will cause
580 * tty->count and state->count to go out of sync.
581 * So we just call close() the right number of times.
582 */
583 if (cons_filp) {
584 if (tty->ops->close)
585 for (n = 0; n < closecount; n++)
586 tty->ops->close(tty, cons_filp);
587 } else if (tty->ops->hangup)
588 (tty->ops->hangup)(tty);
589 /*
590 * We don't want to have driver/ldisc interactions beyond
591 * the ones we did here. The driver layer expects no
592 * calls after ->hangup() from the ldisc side. However we
593 * can't yet guarantee all that.
594 */
595 set_bit(TTY_HUPPED, &tty->flags);
596 tty_ldisc_enable(tty);
597 unlock_kernel();
598 if (f)
599 fput(f);
600}
601
602/**
603 * tty_hangup - trigger a hangup event
604 * @tty: tty to hangup
605 *
606 * A carrier loss (virtual or otherwise) has occurred on this like
607 * schedule a hangup sequence to run after this event.
608 */
609
610void tty_hangup(struct tty_struct *tty)
611{
612#ifdef TTY_DEBUG_HANGUP
613 char buf[64];
614 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
615#endif
616 schedule_work(&tty->hangup_work);
617}
618
619EXPORT_SYMBOL(tty_hangup);
620
621/**
622 * tty_vhangup - process vhangup
623 * @tty: tty to hangup
624 *
625 * The user has asked via system call for the terminal to be hung up.
626 * We do this synchronously so that when the syscall returns the process
627 * is complete. That guarantee is necessary for security reasons.
628 */
629
630void tty_vhangup(struct tty_struct *tty)
631{
632#ifdef TTY_DEBUG_HANGUP
633 char buf[64];
634
635 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
636#endif
637 do_tty_hangup(&tty->hangup_work);
638}
639
640EXPORT_SYMBOL(tty_vhangup);
641
642/**
643 * tty_vhangup_self - process vhangup for own ctty
644 *
645 * Perform a vhangup on the current controlling tty
646 */
647
648void tty_vhangup_self(void)
649{
650 struct tty_struct *tty;
651
652 tty = get_current_tty();
653 if (tty) {
654 tty_vhangup(tty);
655 tty_kref_put(tty);
656 }
657}
658
659/**
660 * tty_hung_up_p - was tty hung up
661 * @filp: file pointer of tty
662 *
663 * Return true if the tty has been subject to a vhangup or a carrier
664 * loss
665 */
666
667int tty_hung_up_p(struct file *filp)
668{
669 return (filp->f_op == &hung_up_tty_fops);
670}
671
672EXPORT_SYMBOL(tty_hung_up_p);
673
674static void session_clear_tty(struct pid *session)
675{
676 struct task_struct *p;
677 do_each_pid_task(session, PIDTYPE_SID, p) {
678 proc_clear_tty(p);
679 } while_each_pid_task(session, PIDTYPE_SID, p);
680}
681
682/**
683 * disassociate_ctty - disconnect controlling tty
684 * @on_exit: true if exiting so need to "hang up" the session
685 *
686 * This function is typically called only by the session leader, when
687 * it wants to disassociate itself from its controlling tty.
688 *
689 * It performs the following functions:
690 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
691 * (2) Clears the tty from being controlling the session
692 * (3) Clears the controlling tty for all processes in the
693 * session group.
694 *
695 * The argument on_exit is set to 1 if called when a process is
696 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
697 *
698 * Locking:
699 * BKL is taken for hysterical raisins
700 * tty_mutex is taken to protect tty
701 * ->siglock is taken to protect ->signal/->sighand
702 * tasklist_lock is taken to walk process list for sessions
703 * ->siglock is taken to protect ->signal/->sighand
704 */
705
706void disassociate_ctty(int on_exit)
707{
708 struct tty_struct *tty;
709 struct pid *tty_pgrp = NULL;
710
711 if (!current->signal->leader)
712 return;
713
714 tty = get_current_tty();
715 if (tty) {
716 tty_pgrp = get_pid(tty->pgrp);
717 lock_kernel();
718 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
719 tty_vhangup(tty);
720 unlock_kernel();
721 tty_kref_put(tty);
722 } else if (on_exit) {
723 struct pid *old_pgrp;
724 spin_lock_irq(&current->sighand->siglock);
725 old_pgrp = current->signal->tty_old_pgrp;
726 current->signal->tty_old_pgrp = NULL;
727 spin_unlock_irq(&current->sighand->siglock);
728 if (old_pgrp) {
729 kill_pgrp(old_pgrp, SIGHUP, on_exit);
730 kill_pgrp(old_pgrp, SIGCONT, on_exit);
731 put_pid(old_pgrp);
732 }
733 return;
734 }
735 if (tty_pgrp) {
736 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
737 if (!on_exit)
738 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
739 put_pid(tty_pgrp);
740 }
741
742 spin_lock_irq(&current->sighand->siglock);
743 put_pid(current->signal->tty_old_pgrp);
744 current->signal->tty_old_pgrp = NULL;
745 spin_unlock_irq(&current->sighand->siglock);
746
747 tty = get_current_tty();
748 if (tty) {
749 unsigned long flags;
750 spin_lock_irqsave(&tty->ctrl_lock, flags);
751 put_pid(tty->session);
752 put_pid(tty->pgrp);
753 tty->session = NULL;
754 tty->pgrp = NULL;
755 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
756 tty_kref_put(tty);
757 } else {
758#ifdef TTY_DEBUG_HANGUP
759 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
760 " = NULL", tty);
761#endif
762 }
763
764 /* Now clear signal->tty under the lock */
765 read_lock(&tasklist_lock);
766 session_clear_tty(task_session(current));
767 read_unlock(&tasklist_lock);
768}
769
770/**
771 *
772 * no_tty - Ensure the current process does not have a controlling tty
773 */
774void no_tty(void)
775{
776 struct task_struct *tsk = current;
777 lock_kernel();
778 disassociate_ctty(0);
779 unlock_kernel();
780 proc_clear_tty(tsk);
781}
782
783
784/**
785 * stop_tty - propagate flow control
786 * @tty: tty to stop
787 *
788 * Perform flow control to the driver. For PTY/TTY pairs we
789 * must also propagate the TIOCKPKT status. May be called
790 * on an already stopped device and will not re-call the driver
791 * method.
792 *
793 * This functionality is used by both the line disciplines for
794 * halting incoming flow and by the driver. It may therefore be
795 * called from any context, may be under the tty atomic_write_lock
796 * but not always.
797 *
798 * Locking:
799 * Uses the tty control lock internally
800 */
801
802void stop_tty(struct tty_struct *tty)
803{
804 unsigned long flags;
805 spin_lock_irqsave(&tty->ctrl_lock, flags);
806 if (tty->stopped) {
807 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
808 return;
809 }
810 tty->stopped = 1;
811 if (tty->link && tty->link->packet) {
812 tty->ctrl_status &= ~TIOCPKT_START;
813 tty->ctrl_status |= TIOCPKT_STOP;
814 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
815 }
816 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
817 if (tty->ops->stop)
818 (tty->ops->stop)(tty);
819}
820
821EXPORT_SYMBOL(stop_tty);
822
823/**
824 * start_tty - propagate flow control
825 * @tty: tty to start
826 *
827 * Start a tty that has been stopped if at all possible. Perform
828 * any necessary wakeups and propagate the TIOCPKT status. If this
829 * is the tty was previous stopped and is being started then the
830 * driver start method is invoked and the line discipline woken.
831 *
832 * Locking:
833 * ctrl_lock
834 */
835
836void start_tty(struct tty_struct *tty)
837{
838 unsigned long flags;
839 spin_lock_irqsave(&tty->ctrl_lock, flags);
840 if (!tty->stopped || tty->flow_stopped) {
841 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
842 return;
843 }
844 tty->stopped = 0;
845 if (tty->link && tty->link->packet) {
846 tty->ctrl_status &= ~TIOCPKT_STOP;
847 tty->ctrl_status |= TIOCPKT_START;
848 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
849 }
850 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
851 if (tty->ops->start)
852 (tty->ops->start)(tty);
853 /* If we have a running line discipline it may need kicking */
854 tty_wakeup(tty);
855}
856
857EXPORT_SYMBOL(start_tty);
858
859/**
860 * tty_read - read method for tty device files
861 * @file: pointer to tty file
862 * @buf: user buffer
863 * @count: size of user buffer
864 * @ppos: unused
865 *
866 * Perform the read system call function on this terminal device. Checks
867 * for hung up devices before calling the line discipline method.
868 *
869 * Locking:
870 * Locks the line discipline internally while needed. Multiple
871 * read calls may be outstanding in parallel.
872 */
873
874static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
875 loff_t *ppos)
876{
877 int i;
878 struct tty_struct *tty;
879 struct inode *inode;
880 struct tty_ldisc *ld;
881
882 tty = (struct tty_struct *)file->private_data;
883 inode = file->f_path.dentry->d_inode;
884 if (tty_paranoia_check(tty, inode, "tty_read"))
885 return -EIO;
886 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
887 return -EIO;
888
889 /* We want to wait for the line discipline to sort out in this
890 situation */
891 ld = tty_ldisc_ref_wait(tty);
892 if (ld->ops->read)
893 i = (ld->ops->read)(tty, file, buf, count);
894 else
895 i = -EIO;
896 tty_ldisc_deref(ld);
897 if (i > 0)
898 inode->i_atime = current_fs_time(inode->i_sb);
899 return i;
900}
901
902void tty_write_unlock(struct tty_struct *tty)
903{
904 mutex_unlock(&tty->atomic_write_lock);
905 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
906}
907
908int tty_write_lock(struct tty_struct *tty, int ndelay)
909{
910 if (!mutex_trylock(&tty->atomic_write_lock)) {
911 if (ndelay)
912 return -EAGAIN;
913 if (mutex_lock_interruptible(&tty->atomic_write_lock))
914 return -ERESTARTSYS;
915 }
916 return 0;
917}
918
919/*
920 * Split writes up in sane blocksizes to avoid
921 * denial-of-service type attacks
922 */
923static inline ssize_t do_tty_write(
924 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
925 struct tty_struct *tty,
926 struct file *file,
927 const char __user *buf,
928 size_t count)
929{
930 ssize_t ret, written = 0;
931 unsigned int chunk;
932
933 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
934 if (ret < 0)
935 return ret;
936
937 /*
938 * We chunk up writes into a temporary buffer. This
939 * simplifies low-level drivers immensely, since they
940 * don't have locking issues and user mode accesses.
941 *
942 * But if TTY_NO_WRITE_SPLIT is set, we should use a
943 * big chunk-size..
944 *
945 * The default chunk-size is 2kB, because the NTTY
946 * layer has problems with bigger chunks. It will
947 * claim to be able to handle more characters than
948 * it actually does.
949 *
950 * FIXME: This can probably go away now except that 64K chunks
951 * are too likely to fail unless switched to vmalloc...
952 */
953 chunk = 2048;
954 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
955 chunk = 65536;
956 if (count < chunk)
957 chunk = count;
958
959 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
960 if (tty->write_cnt < chunk) {
961 unsigned char *buf_chunk;
962
963 if (chunk < 1024)
964 chunk = 1024;
965
966 buf_chunk = kmalloc(chunk, GFP_KERNEL);
967 if (!buf_chunk) {
968 ret = -ENOMEM;
969 goto out;
970 }
971 kfree(tty->write_buf);
972 tty->write_cnt = chunk;
973 tty->write_buf = buf_chunk;
974 }
975
976 /* Do the write .. */
977 for (;;) {
978 size_t size = count;
979 if (size > chunk)
980 size = chunk;
981 ret = -EFAULT;
982 if (copy_from_user(tty->write_buf, buf, size))
983 break;
984 ret = write(tty, file, tty->write_buf, size);
985 if (ret <= 0)
986 break;
987 written += ret;
988 buf += ret;
989 count -= ret;
990 if (!count)
991 break;
992 ret = -ERESTARTSYS;
993 if (signal_pending(current))
994 break;
995 cond_resched();
996 }
997 if (written) {
998 struct inode *inode = file->f_path.dentry->d_inode;
999 inode->i_mtime = current_fs_time(inode->i_sb);
1000 ret = written;
1001 }
1002out:
1003 tty_write_unlock(tty);
1004 return ret;
1005}
1006
1007/**
1008 * tty_write_message - write a message to a certain tty, not just the console.
1009 * @tty: the destination tty_struct
1010 * @msg: the message to write
1011 *
1012 * This is used for messages that need to be redirected to a specific tty.
1013 * We don't put it into the syslog queue right now maybe in the future if
1014 * really needed.
1015 *
1016 * We must still hold the BKL and test the CLOSING flag for the moment.
1017 */
1018
1019void tty_write_message(struct tty_struct *tty, char *msg)
1020{
1021 if (tty) {
1022 mutex_lock(&tty->atomic_write_lock);
1023 lock_kernel();
1024 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1025 unlock_kernel();
1026 tty->ops->write(tty, msg, strlen(msg));
1027 } else
1028 unlock_kernel();
1029 tty_write_unlock(tty);
1030 }
1031 return;
1032}
1033
1034
1035/**
1036 * tty_write - write method for tty device file
1037 * @file: tty file pointer
1038 * @buf: user data to write
1039 * @count: bytes to write
1040 * @ppos: unused
1041 *
1042 * Write data to a tty device via the line discipline.
1043 *
1044 * Locking:
1045 * Locks the line discipline as required
1046 * Writes to the tty driver are serialized by the atomic_write_lock
1047 * and are then processed in chunks to the device. The line discipline
1048 * write method will not be invoked in parallel for each device.
1049 */
1050
1051static ssize_t tty_write(struct file *file, const char __user *buf,
1052 size_t count, loff_t *ppos)
1053{
1054 struct tty_struct *tty;
1055 struct inode *inode = file->f_path.dentry->d_inode;
1056 ssize_t ret;
1057 struct tty_ldisc *ld;
1058
1059 tty = (struct tty_struct *)file->private_data;
1060 if (tty_paranoia_check(tty, inode, "tty_write"))
1061 return -EIO;
1062 if (!tty || !tty->ops->write ||
1063 (test_bit(TTY_IO_ERROR, &tty->flags)))
1064 return -EIO;
1065 /* Short term debug to catch buggy drivers */
1066 if (tty->ops->write_room == NULL)
1067 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1068 tty->driver->name);
1069 ld = tty_ldisc_ref_wait(tty);
1070 if (!ld->ops->write)
1071 ret = -EIO;
1072 else
1073 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1074 tty_ldisc_deref(ld);
1075 return ret;
1076}
1077
1078ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1079 size_t count, loff_t *ppos)
1080{
1081 struct file *p = NULL;
1082
1083 spin_lock(&redirect_lock);
1084 if (redirect) {
1085 get_file(redirect);
1086 p = redirect;
1087 }
1088 spin_unlock(&redirect_lock);
1089
1090 if (p) {
1091 ssize_t res;
1092 res = vfs_write(p, buf, count, &p->f_pos);
1093 fput(p);
1094 return res;
1095 }
1096 return tty_write(file, buf, count, ppos);
1097}
1098
1099static char ptychar[] = "pqrstuvwxyzabcde";
1100
1101/**
1102 * pty_line_name - generate name for a pty
1103 * @driver: the tty driver in use
1104 * @index: the minor number
1105 * @p: output buffer of at least 6 bytes
1106 *
1107 * Generate a name from a driver reference and write it to the output
1108 * buffer.
1109 *
1110 * Locking: None
1111 */
1112static void pty_line_name(struct tty_driver *driver, int index, char *p)
1113{
1114 int i = index + driver->name_base;
1115 /* ->name is initialized to "ttyp", but "tty" is expected */
1116 sprintf(p, "%s%c%x",
1117 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1118 ptychar[i >> 4 & 0xf], i & 0xf);
1119}
1120
1121/**
1122 * tty_line_name - generate name for a tty
1123 * @driver: the tty driver in use
1124 * @index: the minor number
1125 * @p: output buffer of at least 7 bytes
1126 *
1127 * Generate a name from a driver reference and write it to the output
1128 * buffer.
1129 *
1130 * Locking: None
1131 */
1132static void tty_line_name(struct tty_driver *driver, int index, char *p)
1133{
1134 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1135}
1136
1137/**
1138 * tty_driver_lookup_tty() - find an existing tty, if any
1139 * @driver: the driver for the tty
1140 * @idx: the minor number
1141 *
1142 * Return the tty, if found or ERR_PTR() otherwise.
1143 *
1144 * Locking: tty_mutex must be held. If tty is found, the mutex must
1145 * be held until the 'fast-open' is also done. Will change once we
1146 * have refcounting in the driver and per driver locking
1147 */
1148static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1149 struct inode *inode, int idx)
1150{
1151 struct tty_struct *tty;
1152
1153 if (driver->ops->lookup)
1154 return driver->ops->lookup(driver, inode, idx);
1155
1156 tty = driver->ttys[idx];
1157 return tty;
1158}
1159
1160/**
1161 * tty_init_termios - helper for termios setup
1162 * @tty: the tty to set up
1163 *
1164 * Initialise the termios structures for this tty. Thus runs under
1165 * the tty_mutex currently so we can be relaxed about ordering.
1166 */
1167
1168int tty_init_termios(struct tty_struct *tty)
1169{
1170 struct ktermios *tp;
1171 int idx = tty->index;
1172
1173 tp = tty->driver->termios[idx];
1174 if (tp == NULL) {
1175 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1176 if (tp == NULL)
1177 return -ENOMEM;
1178 memcpy(tp, &tty->driver->init_termios,
1179 sizeof(struct ktermios));
1180 tty->driver->termios[idx] = tp;
1181 }
1182 tty->termios = tp;
1183 tty->termios_locked = tp + 1;
1184
1185 /* Compatibility until drivers always set this */
1186 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1187 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1188 return 0;
1189}
1190EXPORT_SYMBOL_GPL(tty_init_termios);
1191
1192/**
1193 * tty_driver_install_tty() - install a tty entry in the driver
1194 * @driver: the driver for the tty
1195 * @tty: the tty
1196 *
1197 * Install a tty object into the driver tables. The tty->index field
1198 * will be set by the time this is called. This method is responsible
1199 * for ensuring any need additional structures are allocated and
1200 * configured.
1201 *
1202 * Locking: tty_mutex for now
1203 */
1204static int tty_driver_install_tty(struct tty_driver *driver,
1205 struct tty_struct *tty)
1206{
1207 int idx = tty->index;
1208 int ret;
1209
1210 if (driver->ops->install) {
1211 lock_kernel();
1212 ret = driver->ops->install(driver, tty);
1213 unlock_kernel();
1214 return ret;
1215 }
1216
1217 if (tty_init_termios(tty) == 0) {
1218 lock_kernel();
1219 tty_driver_kref_get(driver);
1220 tty->count++;
1221 driver->ttys[idx] = tty;
1222 unlock_kernel();
1223 return 0;
1224 }
1225 return -ENOMEM;
1226}
1227
1228/**
1229 * tty_driver_remove_tty() - remove a tty from the driver tables
1230 * @driver: the driver for the tty
1231 * @idx: the minor number
1232 *
1233 * Remvoe a tty object from the driver tables. The tty->index field
1234 * will be set by the time this is called.
1235 *
1236 * Locking: tty_mutex for now
1237 */
1238static void tty_driver_remove_tty(struct tty_driver *driver,
1239 struct tty_struct *tty)
1240{
1241 if (driver->ops->remove)
1242 driver->ops->remove(driver, tty);
1243 else
1244 driver->ttys[tty->index] = NULL;
1245}
1246
1247/*
1248 * tty_reopen() - fast re-open of an open tty
1249 * @tty - the tty to open
1250 *
1251 * Return 0 on success, -errno on error.
1252 *
1253 * Locking: tty_mutex must be held from the time the tty was found
1254 * till this open completes.
1255 */
1256static int tty_reopen(struct tty_struct *tty)
1257{
1258 struct tty_driver *driver = tty->driver;
1259
1260 if (test_bit(TTY_CLOSING, &tty->flags))
1261 return -EIO;
1262
1263 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1264 driver->subtype == PTY_TYPE_MASTER) {
1265 /*
1266 * special case for PTY masters: only one open permitted,
1267 * and the slave side open count is incremented as well.
1268 */
1269 if (tty->count)
1270 return -EIO;
1271
1272 tty->link->count++;
1273 }
1274 tty->count++;
1275 tty->driver = driver; /* N.B. why do this every time?? */
1276
1277 mutex_lock(&tty->ldisc_mutex);
1278 WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1279 mutex_unlock(&tty->ldisc_mutex);
1280
1281 return 0;
1282}
1283
1284/**
1285 * tty_init_dev - initialise a tty device
1286 * @driver: tty driver we are opening a device on
1287 * @idx: device index
1288 * @ret_tty: returned tty structure
1289 * @first_ok: ok to open a new device (used by ptmx)
1290 *
1291 * Prepare a tty device. This may not be a "new" clean device but
1292 * could also be an active device. The pty drivers require special
1293 * handling because of this.
1294 *
1295 * Locking:
1296 * The function is called under the tty_mutex, which
1297 * protects us from the tty struct or driver itself going away.
1298 *
1299 * On exit the tty device has the line discipline attached and
1300 * a reference count of 1. If a pair was created for pty/tty use
1301 * and the other was a pty master then it too has a reference count of 1.
1302 *
1303 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1304 * failed open. The new code protects the open with a mutex, so it's
1305 * really quite straightforward. The mutex locking can probably be
1306 * relaxed for the (most common) case of reopening a tty.
1307 */
1308
1309struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1310 int first_ok)
1311{
1312 struct tty_struct *tty;
1313 int retval;
1314
1315 lock_kernel();
1316 /* Check if pty master is being opened multiple times */
1317 if (driver->subtype == PTY_TYPE_MASTER &&
1318 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1319 unlock_kernel();
1320 return ERR_PTR(-EIO);
1321 }
1322 unlock_kernel();
1323
1324 /*
1325 * First time open is complex, especially for PTY devices.
1326 * This code guarantees that either everything succeeds and the
1327 * TTY is ready for operation, or else the table slots are vacated
1328 * and the allocated memory released. (Except that the termios
1329 * and locked termios may be retained.)
1330 */
1331
1332 if (!try_module_get(driver->owner))
1333 return ERR_PTR(-ENODEV);
1334
1335 tty = alloc_tty_struct();
1336 if (!tty)
1337 goto fail_no_mem;
1338 initialize_tty_struct(tty, driver, idx);
1339
1340 retval = tty_driver_install_tty(driver, tty);
1341 if (retval < 0) {
1342 free_tty_struct(tty);
1343 module_put(driver->owner);
1344 return ERR_PTR(retval);
1345 }
1346
1347 /*
1348 * Structures all installed ... call the ldisc open routines.
1349 * If we fail here just call release_tty to clean up. No need
1350 * to decrement the use counts, as release_tty doesn't care.
1351 */
1352 retval = tty_ldisc_setup(tty, tty->link);
1353 if (retval)
1354 goto release_mem_out;
1355 return tty;
1356
1357fail_no_mem:
1358 module_put(driver->owner);
1359 return ERR_PTR(-ENOMEM);
1360
1361 /* call the tty release_tty routine to clean out this slot */
1362release_mem_out:
1363 if (printk_ratelimit())
1364 printk(KERN_INFO "tty_init_dev: ldisc open failed, "
1365 "clearing slot %d\n", idx);
1366 lock_kernel();
1367 release_tty(tty, idx);
1368 unlock_kernel();
1369 return ERR_PTR(retval);
1370}
1371
1372void tty_free_termios(struct tty_struct *tty)
1373{
1374 struct ktermios *tp;
1375 int idx = tty->index;
1376 /* Kill this flag and push into drivers for locking etc */
1377 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1378 /* FIXME: Locking on ->termios array */
1379 tp = tty->termios;
1380 tty->driver->termios[idx] = NULL;
1381 kfree(tp);
1382 }
1383}
1384EXPORT_SYMBOL(tty_free_termios);
1385
1386void tty_shutdown(struct tty_struct *tty)
1387{
1388 tty_driver_remove_tty(tty->driver, tty);
1389 tty_free_termios(tty);
1390}
1391EXPORT_SYMBOL(tty_shutdown);
1392
1393/**
1394 * release_one_tty - release tty structure memory
1395 * @kref: kref of tty we are obliterating
1396 *
1397 * Releases memory associated with a tty structure, and clears out the
1398 * driver table slots. This function is called when a device is no longer
1399 * in use. It also gets called when setup of a device fails.
1400 *
1401 * Locking:
1402 * tty_mutex - sometimes only
1403 * takes the file list lock internally when working on the list
1404 * of ttys that the driver keeps.
1405 *
1406 * This method gets called from a work queue so that the driver private
1407 * cleanup ops can sleep (needed for USB at least)
1408 */
1409static void release_one_tty(struct work_struct *work)
1410{
1411 struct tty_struct *tty =
1412 container_of(work, struct tty_struct, hangup_work);
1413 struct tty_driver *driver = tty->driver;
1414
1415 if (tty->ops->cleanup)
1416 tty->ops->cleanup(tty);
1417
1418 tty->magic = 0;
1419 tty_driver_kref_put(driver);
1420 module_put(driver->owner);
1421
1422 file_list_lock();
1423 list_del_init(&tty->tty_files);
1424 file_list_unlock();
1425
1426 free_tty_struct(tty);
1427}
1428
1429static void queue_release_one_tty(struct kref *kref)
1430{
1431 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1432
1433 if (tty->ops->shutdown)
1434 tty->ops->shutdown(tty);
1435 else
1436 tty_shutdown(tty);
1437
1438 /* The hangup queue is now free so we can reuse it rather than
1439 waste a chunk of memory for each port */
1440 INIT_WORK(&tty->hangup_work, release_one_tty);
1441 schedule_work(&tty->hangup_work);
1442}
1443
1444/**
1445 * tty_kref_put - release a tty kref
1446 * @tty: tty device
1447 *
1448 * Release a reference to a tty device and if need be let the kref
1449 * layer destruct the object for us
1450 */
1451
1452void tty_kref_put(struct tty_struct *tty)
1453{
1454 if (tty)
1455 kref_put(&tty->kref, queue_release_one_tty);
1456}
1457EXPORT_SYMBOL(tty_kref_put);
1458
1459/**
1460 * release_tty - release tty structure memory
1461 *
1462 * Release both @tty and a possible linked partner (think pty pair),
1463 * and decrement the refcount of the backing module.
1464 *
1465 * Locking:
1466 * tty_mutex - sometimes only
1467 * takes the file list lock internally when working on the list
1468 * of ttys that the driver keeps.
1469 * FIXME: should we require tty_mutex is held here ??
1470 *
1471 */
1472static void release_tty(struct tty_struct *tty, int idx)
1473{
1474 /* This should always be true but check for the moment */
1475 WARN_ON(tty->index != idx);
1476
1477 if (tty->link)
1478 tty_kref_put(tty->link);
1479 tty_kref_put(tty);
1480}
1481
1482/**
1483 * tty_release - vfs callback for close
1484 * @inode: inode of tty
1485 * @filp: file pointer for handle to tty
1486 *
1487 * Called the last time each file handle is closed that references
1488 * this tty. There may however be several such references.
1489 *
1490 * Locking:
1491 * Takes bkl. See tty_release_dev
1492 *
1493 * Even releasing the tty structures is a tricky business.. We have
1494 * to be very careful that the structures are all released at the
1495 * same time, as interrupts might otherwise get the wrong pointers.
1496 *
1497 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1498 * lead to double frees or releasing memory still in use.
1499 */
1500
1501int tty_release(struct inode *inode, struct file *filp)
1502{
1503 struct tty_struct *tty, *o_tty;
1504 int pty_master, tty_closing, o_tty_closing, do_sleep;
1505 int devpts;
1506 int idx;
1507 char buf[64];
1508
1509 tty = (struct tty_struct *)filp->private_data;
1510 if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1511 return 0;
1512
1513 lock_kernel();
1514 check_tty_count(tty, "tty_release_dev");
1515
1516 tty_fasync(-1, filp, 0);
1517
1518 idx = tty->index;
1519 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1520 tty->driver->subtype == PTY_TYPE_MASTER);
1521 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1522 o_tty = tty->link;
1523
1524#ifdef TTY_PARANOIA_CHECK
1525 if (idx < 0 || idx >= tty->driver->num) {
1526 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1527 "free (%s)\n", tty->name);
1528 unlock_kernel();
1529 return 0;
1530 }
1531 if (!devpts) {
1532 if (tty != tty->driver->ttys[idx]) {
1533 unlock_kernel();
1534 printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1535 "for (%s)\n", idx, tty->name);
1536 return 0;
1537 }
1538 if (tty->termios != tty->driver->termios[idx]) {
1539 unlock_kernel();
1540 printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1541 "for (%s)\n",
1542 idx, tty->name);
1543 return 0;
1544 }
1545 }
1546#endif
1547
1548#ifdef TTY_DEBUG_HANGUP
1549 printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1550 tty_name(tty, buf), tty->count);
1551#endif
1552
1553#ifdef TTY_PARANOIA_CHECK
1554 if (tty->driver->other &&
1555 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1556 if (o_tty != tty->driver->other->ttys[idx]) {
1557 unlock_kernel();
1558 printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1559 "not o_tty for (%s)\n",
1560 idx, tty->name);
1561 return 0 ;
1562 }
1563 if (o_tty->termios != tty->driver->other->termios[idx]) {
1564 unlock_kernel();
1565 printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1566 "not o_termios for (%s)\n",
1567 idx, tty->name);
1568 return 0;
1569 }
1570 if (o_tty->link != tty) {
1571 unlock_kernel();
1572 printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1573 return 0;
1574 }
1575 }
1576#endif
1577 if (tty->ops->close)
1578 tty->ops->close(tty, filp);
1579
1580 unlock_kernel();
1581 /*
1582 * Sanity check: if tty->count is going to zero, there shouldn't be
1583 * any waiters on tty->read_wait or tty->write_wait. We test the
1584 * wait queues and kick everyone out _before_ actually starting to
1585 * close. This ensures that we won't block while releasing the tty
1586 * structure.
1587 *
1588 * The test for the o_tty closing is necessary, since the master and
1589 * slave sides may close in any order. If the slave side closes out
1590 * first, its count will be one, since the master side holds an open.
1591 * Thus this test wouldn't be triggered at the time the slave closes,
1592 * so we do it now.
1593 *
1594 * Note that it's possible for the tty to be opened again while we're
1595 * flushing out waiters. By recalculating the closing flags before
1596 * each iteration we avoid any problems.
1597 */
1598 while (1) {
1599 /* Guard against races with tty->count changes elsewhere and
1600 opens on /dev/tty */
1601
1602 mutex_lock(&tty_mutex);
1603 lock_kernel();
1604 tty_closing = tty->count <= 1;
1605 o_tty_closing = o_tty &&
1606 (o_tty->count <= (pty_master ? 1 : 0));
1607 do_sleep = 0;
1608
1609 if (tty_closing) {
1610 if (waitqueue_active(&tty->read_wait)) {
1611 wake_up_poll(&tty->read_wait, POLLIN);
1612 do_sleep++;
1613 }
1614 if (waitqueue_active(&tty->write_wait)) {
1615 wake_up_poll(&tty->write_wait, POLLOUT);
1616 do_sleep++;
1617 }
1618 }
1619 if (o_tty_closing) {
1620 if (waitqueue_active(&o_tty->read_wait)) {
1621 wake_up_poll(&o_tty->read_wait, POLLIN);
1622 do_sleep++;
1623 }
1624 if (waitqueue_active(&o_tty->write_wait)) {
1625 wake_up_poll(&o_tty->write_wait, POLLOUT);
1626 do_sleep++;
1627 }
1628 }
1629 if (!do_sleep)
1630 break;
1631
1632 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1633 "active!\n", tty_name(tty, buf));
1634 unlock_kernel();
1635 mutex_unlock(&tty_mutex);
1636 schedule();
1637 }
1638
1639 /*
1640 * The closing flags are now consistent with the open counts on
1641 * both sides, and we've completed the last operation that could
1642 * block, so it's safe to proceed with closing.
1643 */
1644 if (pty_master) {
1645 if (--o_tty->count < 0) {
1646 printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1647 "(%d) for %s\n",
1648 o_tty->count, tty_name(o_tty, buf));
1649 o_tty->count = 0;
1650 }
1651 }
1652 if (--tty->count < 0) {
1653 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1654 tty->count, tty_name(tty, buf));
1655 tty->count = 0;
1656 }
1657
1658 /*
1659 * We've decremented tty->count, so we need to remove this file
1660 * descriptor off the tty->tty_files list; this serves two
1661 * purposes:
1662 * - check_tty_count sees the correct number of file descriptors
1663 * associated with this tty.
1664 * - do_tty_hangup no longer sees this file descriptor as
1665 * something that needs to be handled for hangups.
1666 */
1667 file_kill(filp);
1668 filp->private_data = NULL;
1669
1670 /*
1671 * Perform some housekeeping before deciding whether to return.
1672 *
1673 * Set the TTY_CLOSING flag if this was the last open. In the
1674 * case of a pty we may have to wait around for the other side
1675 * to close, and TTY_CLOSING makes sure we can't be reopened.
1676 */
1677 if (tty_closing)
1678 set_bit(TTY_CLOSING, &tty->flags);
1679 if (o_tty_closing)
1680 set_bit(TTY_CLOSING, &o_tty->flags);
1681
1682 /*
1683 * If _either_ side is closing, make sure there aren't any
1684 * processes that still think tty or o_tty is their controlling
1685 * tty.
1686 */
1687 if (tty_closing || o_tty_closing) {
1688 read_lock(&tasklist_lock);
1689 session_clear_tty(tty->session);
1690 if (o_tty)
1691 session_clear_tty(o_tty->session);
1692 read_unlock(&tasklist_lock);
1693 }
1694
1695 mutex_unlock(&tty_mutex);
1696
1697 /* check whether both sides are closing ... */
1698 if (!tty_closing || (o_tty && !o_tty_closing)) {
1699 unlock_kernel();
1700 return 0;
1701 }
1702
1703#ifdef TTY_DEBUG_HANGUP
1704 printk(KERN_DEBUG "freeing tty structure...");
1705#endif
1706 /*
1707 * Ask the line discipline code to release its structures
1708 */
1709 tty_ldisc_release(tty, o_tty);
1710 /*
1711 * The release_tty function takes care of the details of clearing
1712 * the slots and preserving the termios structure.
1713 */
1714 release_tty(tty, idx);
1715
1716 /* Make this pty number available for reallocation */
1717 if (devpts)
1718 devpts_kill_index(inode, idx);
1719 unlock_kernel();
1720 return 0;
1721}
1722
1723/**
1724 * tty_open - open a tty device
1725 * @inode: inode of device file
1726 * @filp: file pointer to tty
1727 *
1728 * tty_open and tty_release keep up the tty count that contains the
1729 * number of opens done on a tty. We cannot use the inode-count, as
1730 * different inodes might point to the same tty.
1731 *
1732 * Open-counting is needed for pty masters, as well as for keeping
1733 * track of serial lines: DTR is dropped when the last close happens.
1734 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1735 *
1736 * The termios state of a pty is reset on first open so that
1737 * settings don't persist across reuse.
1738 *
1739 * Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1740 * tty->count should protect the rest.
1741 * ->siglock protects ->signal/->sighand
1742 */
1743
1744static int tty_open(struct inode *inode, struct file *filp)
1745{
1746 struct tty_struct *tty = NULL;
1747 int noctty, retval;
1748 struct tty_driver *driver;
1749 int index;
1750 dev_t device = inode->i_rdev;
1751 unsigned saved_flags = filp->f_flags;
1752
1753 nonseekable_open(inode, filp);
1754
1755retry_open:
1756 noctty = filp->f_flags & O_NOCTTY;
1757 index = -1;
1758 retval = 0;
1759
1760 mutex_lock(&tty_mutex);
1761 lock_kernel();
1762
1763 if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1764 tty = get_current_tty();
1765 if (!tty) {
1766 unlock_kernel();
1767 mutex_unlock(&tty_mutex);
1768 return -ENXIO;
1769 }
1770 driver = tty_driver_kref_get(tty->driver);
1771 index = tty->index;
1772 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1773 /* noctty = 1; */
1774 /* FIXME: Should we take a driver reference ? */
1775 tty_kref_put(tty);
1776 goto got_driver;
1777 }
1778#ifdef CONFIG_VT
1779 if (device == MKDEV(TTY_MAJOR, 0)) {
1780 extern struct tty_driver *console_driver;
1781 driver = tty_driver_kref_get(console_driver);
1782 index = fg_console;
1783 noctty = 1;
1784 goto got_driver;
1785 }
1786#endif
1787 if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1788 struct tty_driver *console_driver = console_device(&index);
1789 if (console_driver) {
1790 driver = tty_driver_kref_get(console_driver);
1791 if (driver) {
1792 /* Don't let /dev/console block */
1793 filp->f_flags |= O_NONBLOCK;
1794 noctty = 1;
1795 goto got_driver;
1796 }
1797 }
1798 unlock_kernel();
1799 mutex_unlock(&tty_mutex);
1800 return -ENODEV;
1801 }
1802
1803 driver = get_tty_driver(device, &index);
1804 if (!driver) {
1805 unlock_kernel();
1806 mutex_unlock(&tty_mutex);
1807 return -ENODEV;
1808 }
1809got_driver:
1810 if (!tty) {
1811 /* check whether we're reopening an existing tty */
1812 tty = tty_driver_lookup_tty(driver, inode, index);
1813
1814 if (IS_ERR(tty)) {
1815 unlock_kernel();
1816 mutex_unlock(&tty_mutex);
1817 return PTR_ERR(tty);
1818 }
1819 }
1820
1821 if (tty) {
1822 retval = tty_reopen(tty);
1823 if (retval)
1824 tty = ERR_PTR(retval);
1825 } else
1826 tty = tty_init_dev(driver, index, 0);
1827
1828 mutex_unlock(&tty_mutex);
1829 tty_driver_kref_put(driver);
1830 if (IS_ERR(tty)) {
1831 unlock_kernel();
1832 return PTR_ERR(tty);
1833 }
1834
1835 filp->private_data = tty;
1836 file_move(filp, &tty->tty_files);
1837 check_tty_count(tty, "tty_open");
1838 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1839 tty->driver->subtype == PTY_TYPE_MASTER)
1840 noctty = 1;
1841#ifdef TTY_DEBUG_HANGUP
1842 printk(KERN_DEBUG "opening %s...", tty->name);
1843#endif
1844 if (!retval) {
1845 if (tty->ops->open)
1846 retval = tty->ops->open(tty, filp);
1847 else
1848 retval = -ENODEV;
1849 }
1850 filp->f_flags = saved_flags;
1851
1852 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1853 !capable(CAP_SYS_ADMIN))
1854 retval = -EBUSY;
1855
1856 if (retval) {
1857#ifdef TTY_DEBUG_HANGUP
1858 printk(KERN_DEBUG "error %d in opening %s...", retval,
1859 tty->name);
1860#endif
1861 tty_release(inode, filp);
1862 if (retval != -ERESTARTSYS) {
1863 unlock_kernel();
1864 return retval;
1865 }
1866 if (signal_pending(current)) {
1867 unlock_kernel();
1868 return retval;
1869 }
1870 schedule();
1871 /*
1872 * Need to reset f_op in case a hangup happened.
1873 */
1874 if (filp->f_op == &hung_up_tty_fops)
1875 filp->f_op = &tty_fops;
1876 goto retry_open;
1877 }
1878 unlock_kernel();
1879
1880
1881 mutex_lock(&tty_mutex);
1882 lock_kernel();
1883 spin_lock_irq(&current->sighand->siglock);
1884 if (!noctty &&
1885 current->signal->leader &&
1886 !current->signal->tty &&
1887 tty->session == NULL)
1888 __proc_set_tty(current, tty);
1889 spin_unlock_irq(&current->sighand->siglock);
1890 unlock_kernel();
1891 mutex_unlock(&tty_mutex);
1892 return 0;
1893}
1894
1895
1896
1897/**
1898 * tty_poll - check tty status
1899 * @filp: file being polled
1900 * @wait: poll wait structures to update
1901 *
1902 * Call the line discipline polling method to obtain the poll
1903 * status of the device.
1904 *
1905 * Locking: locks called line discipline but ldisc poll method
1906 * may be re-entered freely by other callers.
1907 */
1908
1909static unsigned int tty_poll(struct file *filp, poll_table *wait)
1910{
1911 struct tty_struct *tty;
1912 struct tty_ldisc *ld;
1913 int ret = 0;
1914
1915 tty = (struct tty_struct *)filp->private_data;
1916 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1917 return 0;
1918
1919 ld = tty_ldisc_ref_wait(tty);
1920 if (ld->ops->poll)
1921 ret = (ld->ops->poll)(tty, filp, wait);
1922 tty_ldisc_deref(ld);
1923 return ret;
1924}
1925
1926static int tty_fasync(int fd, struct file *filp, int on)
1927{
1928 struct tty_struct *tty;
1929 unsigned long flags;
1930 int retval = 0;
1931
1932 lock_kernel();
1933 tty = (struct tty_struct *)filp->private_data;
1934 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1935 goto out;
1936
1937 retval = fasync_helper(fd, filp, on, &tty->fasync);
1938 if (retval <= 0)
1939 goto out;
1940
1941 if (on) {
1942 enum pid_type type;
1943 struct pid *pid;
1944 if (!waitqueue_active(&tty->read_wait))
1945 tty->minimum_to_wake = 1;
1946 spin_lock_irqsave(&tty->ctrl_lock, flags);
1947 if (tty->pgrp) {
1948 pid = tty->pgrp;
1949 type = PIDTYPE_PGID;
1950 } else {
1951 pid = task_pid(current);
1952 type = PIDTYPE_PID;
1953 }
1954 retval = __f_setown(filp, pid, type, 0);
1955 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1956 if (retval)
1957 goto out;
1958 } else {
1959 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
1960 tty->minimum_to_wake = N_TTY_BUF_SIZE;
1961 }
1962 retval = 0;
1963out:
1964 unlock_kernel();
1965 return retval;
1966}
1967
1968/**
1969 * tiocsti - fake input character
1970 * @tty: tty to fake input into
1971 * @p: pointer to character
1972 *
1973 * Fake input to a tty device. Does the necessary locking and
1974 * input management.
1975 *
1976 * FIXME: does not honour flow control ??
1977 *
1978 * Locking:
1979 * Called functions take tty_ldisc_lock
1980 * current->signal->tty check is safe without locks
1981 *
1982 * FIXME: may race normal receive processing
1983 */
1984
1985static int tiocsti(struct tty_struct *tty, char __user *p)
1986{
1987 char ch, mbz = 0;
1988 struct tty_ldisc *ld;
1989
1990 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
1991 return -EPERM;
1992 if (get_user(ch, p))
1993 return -EFAULT;
1994 tty_audit_tiocsti(tty, ch);
1995 ld = tty_ldisc_ref_wait(tty);
1996 ld->ops->receive_buf(tty, &ch, &mbz, 1);
1997 tty_ldisc_deref(ld);
1998 return 0;
1999}
2000
2001/**
2002 * tiocgwinsz - implement window query ioctl
2003 * @tty; tty
2004 * @arg: user buffer for result
2005 *
2006 * Copies the kernel idea of the window size into the user buffer.
2007 *
2008 * Locking: tty->termios_mutex is taken to ensure the winsize data
2009 * is consistent.
2010 */
2011
2012static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2013{
2014 int err;
2015
2016 mutex_lock(&tty->termios_mutex);
2017 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2018 mutex_unlock(&tty->termios_mutex);
2019
2020 return err ? -EFAULT: 0;
2021}
2022
2023/**
2024 * tty_do_resize - resize event
2025 * @tty: tty being resized
2026 * @rows: rows (character)
2027 * @cols: cols (character)
2028 *
2029 * Update the termios variables and send the neccessary signals to
2030 * peform a terminal resize correctly
2031 */
2032
2033int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2034{
2035 struct pid *pgrp;
2036 unsigned long flags;
2037
2038 /* Lock the tty */
2039 mutex_lock(&tty->termios_mutex);
2040 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2041 goto done;
2042 /* Get the PID values and reference them so we can
2043 avoid holding the tty ctrl lock while sending signals */
2044 spin_lock_irqsave(&tty->ctrl_lock, flags);
2045 pgrp = get_pid(tty->pgrp);
2046 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2047
2048 if (pgrp)
2049 kill_pgrp(pgrp, SIGWINCH, 1);
2050 put_pid(pgrp);
2051
2052 tty->winsize = *ws;
2053done:
2054 mutex_unlock(&tty->termios_mutex);
2055 return 0;
2056}
2057
2058/**
2059 * tiocswinsz - implement window size set ioctl
2060 * @tty; tty side of tty
2061 * @arg: user buffer for result
2062 *
2063 * Copies the user idea of the window size to the kernel. Traditionally
2064 * this is just advisory information but for the Linux console it
2065 * actually has driver level meaning and triggers a VC resize.
2066 *
2067 * Locking:
2068 * Driver dependant. The default do_resize method takes the
2069 * tty termios mutex and ctrl_lock. The console takes its own lock
2070 * then calls into the default method.
2071 */
2072
2073static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2074{
2075 struct winsize tmp_ws;
2076 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2077 return -EFAULT;
2078
2079 if (tty->ops->resize)
2080 return tty->ops->resize(tty, &tmp_ws);
2081 else
2082 return tty_do_resize(tty, &tmp_ws);
2083}
2084
2085/**
2086 * tioccons - allow admin to move logical console
2087 * @file: the file to become console
2088 *
2089 * Allow the adminstrator to move the redirected console device
2090 *
2091 * Locking: uses redirect_lock to guard the redirect information
2092 */
2093
2094static int tioccons(struct file *file)
2095{
2096 if (!capable(CAP_SYS_ADMIN))
2097 return -EPERM;
2098 if (file->f_op->write == redirected_tty_write) {
2099 struct file *f;
2100 spin_lock(&redirect_lock);
2101 f = redirect;
2102 redirect = NULL;
2103 spin_unlock(&redirect_lock);
2104 if (f)
2105 fput(f);
2106 return 0;
2107 }
2108 spin_lock(&redirect_lock);
2109 if (redirect) {
2110 spin_unlock(&redirect_lock);
2111 return -EBUSY;
2112 }
2113 get_file(file);
2114 redirect = file;
2115 spin_unlock(&redirect_lock);
2116 return 0;
2117}
2118
2119/**
2120 * fionbio - non blocking ioctl
2121 * @file: file to set blocking value
2122 * @p: user parameter
2123 *
2124 * Historical tty interfaces had a blocking control ioctl before
2125 * the generic functionality existed. This piece of history is preserved
2126 * in the expected tty API of posix OS's.
2127 *
2128 * Locking: none, the open file handle ensures it won't go away.
2129 */
2130
2131static int fionbio(struct file *file, int __user *p)
2132{
2133 int nonblock;
2134
2135 if (get_user(nonblock, p))
2136 return -EFAULT;
2137
2138 spin_lock(&file->f_lock);
2139 if (nonblock)
2140 file->f_flags |= O_NONBLOCK;
2141 else
2142 file->f_flags &= ~O_NONBLOCK;
2143 spin_unlock(&file->f_lock);
2144 return 0;
2145}
2146
2147/**
2148 * tiocsctty - set controlling tty
2149 * @tty: tty structure
2150 * @arg: user argument
2151 *
2152 * This ioctl is used to manage job control. It permits a session
2153 * leader to set this tty as the controlling tty for the session.
2154 *
2155 * Locking:
2156 * Takes tty_mutex() to protect tty instance
2157 * Takes tasklist_lock internally to walk sessions
2158 * Takes ->siglock() when updating signal->tty
2159 */
2160
2161static int tiocsctty(struct tty_struct *tty, int arg)
2162{
2163 int ret = 0;
2164 if (current->signal->leader && (task_session(current) == tty->session))
2165 return ret;
2166
2167 mutex_lock(&tty_mutex);
2168 /*
2169 * The process must be a session leader and
2170 * not have a controlling tty already.
2171 */
2172 if (!current->signal->leader || current->signal->tty) {
2173 ret = -EPERM;
2174 goto unlock;
2175 }
2176
2177 if (tty->session) {
2178 /*
2179 * This tty is already the controlling
2180 * tty for another session group!
2181 */
2182 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2183 /*
2184 * Steal it away
2185 */
2186 read_lock(&tasklist_lock);
2187 session_clear_tty(tty->session);
2188 read_unlock(&tasklist_lock);
2189 } else {
2190 ret = -EPERM;
2191 goto unlock;
2192 }
2193 }
2194 proc_set_tty(current, tty);
2195unlock:
2196 mutex_unlock(&tty_mutex);
2197 return ret;
2198}
2199
2200/**
2201 * tty_get_pgrp - return a ref counted pgrp pid
2202 * @tty: tty to read
2203 *
2204 * Returns a refcounted instance of the pid struct for the process
2205 * group controlling the tty.
2206 */
2207
2208struct pid *tty_get_pgrp(struct tty_struct *tty)
2209{
2210 unsigned long flags;
2211 struct pid *pgrp;
2212
2213 spin_lock_irqsave(&tty->ctrl_lock, flags);
2214 pgrp = get_pid(tty->pgrp);
2215 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2216
2217 return pgrp;
2218}
2219EXPORT_SYMBOL_GPL(tty_get_pgrp);
2220
2221/**
2222 * tiocgpgrp - get process group
2223 * @tty: tty passed by user
2224 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2225 * @p: returned pid
2226 *
2227 * Obtain the process group of the tty. If there is no process group
2228 * return an error.
2229 *
2230 * Locking: none. Reference to current->signal->tty is safe.
2231 */
2232
2233static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2234{
2235 struct pid *pid;
2236 int ret;
2237 /*
2238 * (tty == real_tty) is a cheap way of
2239 * testing if the tty is NOT a master pty.
2240 */
2241 if (tty == real_tty && current->signal->tty != real_tty)
2242 return -ENOTTY;
2243 pid = tty_get_pgrp(real_tty);
2244 ret = put_user(pid_vnr(pid), p);
2245 put_pid(pid);
2246 return ret;
2247}
2248
2249/**
2250 * tiocspgrp - attempt to set process group
2251 * @tty: tty passed by user
2252 * @real_tty: tty side device matching tty passed by user
2253 * @p: pid pointer
2254 *
2255 * Set the process group of the tty to the session passed. Only
2256 * permitted where the tty session is our session.
2257 *
2258 * Locking: RCU, ctrl lock
2259 */
2260
2261static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2262{
2263 struct pid *pgrp;
2264 pid_t pgrp_nr;
2265 int retval = tty_check_change(real_tty);
2266 unsigned long flags;
2267
2268 if (retval == -EIO)
2269 return -ENOTTY;
2270 if (retval)
2271 return retval;
2272 if (!current->signal->tty ||
2273 (current->signal->tty != real_tty) ||
2274 (real_tty->session != task_session(current)))
2275 return -ENOTTY;
2276 if (get_user(pgrp_nr, p))
2277 return -EFAULT;
2278 if (pgrp_nr < 0)
2279 return -EINVAL;
2280 rcu_read_lock();
2281 pgrp = find_vpid(pgrp_nr);
2282 retval = -ESRCH;
2283 if (!pgrp)
2284 goto out_unlock;
2285 retval = -EPERM;
2286 if (session_of_pgrp(pgrp) != task_session(current))
2287 goto out_unlock;
2288 retval = 0;
2289 spin_lock_irqsave(&tty->ctrl_lock, flags);
2290 put_pid(real_tty->pgrp);
2291 real_tty->pgrp = get_pid(pgrp);
2292 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2293out_unlock:
2294 rcu_read_unlock();
2295 return retval;
2296}
2297
2298/**
2299 * tiocgsid - get session id
2300 * @tty: tty passed by user
2301 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2302 * @p: pointer to returned session id
2303 *
2304 * Obtain the session id of the tty. If there is no session
2305 * return an error.
2306 *
2307 * Locking: none. Reference to current->signal->tty is safe.
2308 */
2309
2310static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2311{
2312 /*
2313 * (tty == real_tty) is a cheap way of
2314 * testing if the tty is NOT a master pty.
2315 */
2316 if (tty == real_tty && current->signal->tty != real_tty)
2317 return -ENOTTY;
2318 if (!real_tty->session)
2319 return -ENOTTY;
2320 return put_user(pid_vnr(real_tty->session), p);
2321}
2322
2323/**
2324 * tiocsetd - set line discipline
2325 * @tty: tty device
2326 * @p: pointer to user data
2327 *
2328 * Set the line discipline according to user request.
2329 *
2330 * Locking: see tty_set_ldisc, this function is just a helper
2331 */
2332
2333static int tiocsetd(struct tty_struct *tty, int __user *p)
2334{
2335 int ldisc;
2336 int ret;
2337
2338 if (get_user(ldisc, p))
2339 return -EFAULT;
2340
2341 ret = tty_set_ldisc(tty, ldisc);
2342
2343 return ret;
2344}
2345
2346/**
2347 * send_break - performed time break
2348 * @tty: device to break on
2349 * @duration: timeout in mS
2350 *
2351 * Perform a timed break on hardware that lacks its own driver level
2352 * timed break functionality.
2353 *
2354 * Locking:
2355 * atomic_write_lock serializes
2356 *
2357 */
2358
2359static int send_break(struct tty_struct *tty, unsigned int duration)
2360{
2361 int retval;
2362
2363 if (tty->ops->break_ctl == NULL)
2364 return 0;
2365
2366 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2367 retval = tty->ops->break_ctl(tty, duration);
2368 else {
2369 /* Do the work ourselves */
2370 if (tty_write_lock(tty, 0) < 0)
2371 return -EINTR;
2372 retval = tty->ops->break_ctl(tty, -1);
2373 if (retval)
2374 goto out;
2375 if (!signal_pending(current))
2376 msleep_interruptible(duration);
2377 retval = tty->ops->break_ctl(tty, 0);
2378out:
2379 tty_write_unlock(tty);
2380 if (signal_pending(current))
2381 retval = -EINTR;
2382 }
2383 return retval;
2384}
2385
2386/**
2387 * tty_tiocmget - get modem status
2388 * @tty: tty device
2389 * @file: user file pointer
2390 * @p: pointer to result
2391 *
2392 * Obtain the modem status bits from the tty driver if the feature
2393 * is supported. Return -EINVAL if it is not available.
2394 *
2395 * Locking: none (up to the driver)
2396 */
2397
2398static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
2399{
2400 int retval = -EINVAL;
2401
2402 if (tty->ops->tiocmget) {
2403 retval = tty->ops->tiocmget(tty, file);
2404
2405 if (retval >= 0)
2406 retval = put_user(retval, p);
2407 }
2408 return retval;
2409}
2410
2411/**
2412 * tty_tiocmset - set modem status
2413 * @tty: tty device
2414 * @file: user file pointer
2415 * @cmd: command - clear bits, set bits or set all
2416 * @p: pointer to desired bits
2417 *
2418 * Set the modem status bits from the tty driver if the feature
2419 * is supported. Return -EINVAL if it is not available.
2420 *
2421 * Locking: none (up to the driver)
2422 */
2423
2424static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
2425 unsigned __user *p)
2426{
2427 int retval;
2428 unsigned int set, clear, val;
2429
2430 if (tty->ops->tiocmset == NULL)
2431 return -EINVAL;
2432
2433 retval = get_user(val, p);
2434 if (retval)
2435 return retval;
2436 set = clear = 0;
2437 switch (cmd) {
2438 case TIOCMBIS:
2439 set = val;
2440 break;
2441 case TIOCMBIC:
2442 clear = val;
2443 break;
2444 case TIOCMSET:
2445 set = val;
2446 clear = ~val;
2447 break;
2448 }
2449 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2450 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2451 return tty->ops->tiocmset(tty, file, set, clear);
2452}
2453
2454struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2455{
2456 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2457 tty->driver->subtype == PTY_TYPE_MASTER)
2458 tty = tty->link;
2459 return tty;
2460}
2461EXPORT_SYMBOL(tty_pair_get_tty);
2462
2463struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2464{
2465 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2466 tty->driver->subtype == PTY_TYPE_MASTER)
2467 return tty;
2468 return tty->link;
2469}
2470EXPORT_SYMBOL(tty_pair_get_pty);
2471
2472/*
2473 * Split this up, as gcc can choke on it otherwise..
2474 */
2475long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2476{
2477 struct tty_struct *tty, *real_tty;
2478 void __user *p = (void __user *)arg;
2479 int retval;
2480 struct tty_ldisc *ld;
2481 struct inode *inode = file->f_dentry->d_inode;
2482
2483 tty = (struct tty_struct *)file->private_data;
2484 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2485 return -EINVAL;
2486
2487 real_tty = tty_pair_get_tty(tty);
2488
2489 /*
2490 * Factor out some common prep work
2491 */
2492 switch (cmd) {
2493 case TIOCSETD:
2494 case TIOCSBRK:
2495 case TIOCCBRK:
2496 case TCSBRK:
2497 case TCSBRKP:
2498 retval = tty_check_change(tty);
2499 if (retval)
2500 return retval;
2501 if (cmd != TIOCCBRK) {
2502 tty_wait_until_sent(tty, 0);
2503 if (signal_pending(current))
2504 return -EINTR;
2505 }
2506 break;
2507 }
2508
2509 /*
2510 * Now do the stuff.
2511 */
2512 switch (cmd) {
2513 case TIOCSTI:
2514 return tiocsti(tty, p);
2515 case TIOCGWINSZ:
2516 return tiocgwinsz(real_tty, p);
2517 case TIOCSWINSZ:
2518 return tiocswinsz(real_tty, p);
2519 case TIOCCONS:
2520 return real_tty != tty ? -EINVAL : tioccons(file);
2521 case FIONBIO:
2522 return fionbio(file, p);
2523 case TIOCEXCL:
2524 set_bit(TTY_EXCLUSIVE, &tty->flags);
2525 return 0;
2526 case TIOCNXCL:
2527 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2528 return 0;
2529 case TIOCNOTTY:
2530 if (current->signal->tty != tty)
2531 return -ENOTTY;
2532 no_tty();
2533 return 0;
2534 case TIOCSCTTY:
2535 return tiocsctty(tty, arg);
2536 case TIOCGPGRP:
2537 return tiocgpgrp(tty, real_tty, p);
2538 case TIOCSPGRP:
2539 return tiocspgrp(tty, real_tty, p);
2540 case TIOCGSID:
2541 return tiocgsid(tty, real_tty, p);
2542 case TIOCGETD:
2543 return put_user(tty->ldisc->ops->num, (int __user *)p);
2544 case TIOCSETD:
2545 return tiocsetd(tty, p);
2546 /*
2547 * Break handling
2548 */
2549 case TIOCSBRK: /* Turn break on, unconditionally */
2550 if (tty->ops->break_ctl)
2551 return tty->ops->break_ctl(tty, -1);
2552 return 0;
2553 case TIOCCBRK: /* Turn break off, unconditionally */
2554 if (tty->ops->break_ctl)
2555 return tty->ops->break_ctl(tty, 0);
2556 return 0;
2557 case TCSBRK: /* SVID version: non-zero arg --> no break */
2558 /* non-zero arg means wait for all output data
2559 * to be sent (performed above) but don't send break.
2560 * This is used by the tcdrain() termios function.
2561 */
2562 if (!arg)
2563 return send_break(tty, 250);
2564 return 0;
2565 case TCSBRKP: /* support for POSIX tcsendbreak() */
2566 return send_break(tty, arg ? arg*100 : 250);
2567
2568 case TIOCMGET:
2569 return tty_tiocmget(tty, file, p);
2570 case TIOCMSET:
2571 case TIOCMBIC:
2572 case TIOCMBIS:
2573 return tty_tiocmset(tty, file, cmd, p);
2574 case TCFLSH:
2575 switch (arg) {
2576 case TCIFLUSH:
2577 case TCIOFLUSH:
2578 /* flush tty buffer and allow ldisc to process ioctl */
2579 tty_buffer_flush(tty);
2580 break;
2581 }
2582 break;
2583 }
2584 if (tty->ops->ioctl) {
2585 retval = (tty->ops->ioctl)(tty, file, cmd, arg);
2586 if (retval != -ENOIOCTLCMD)
2587 return retval;
2588 }
2589 ld = tty_ldisc_ref_wait(tty);
2590 retval = -EINVAL;
2591 if (ld->ops->ioctl) {
2592 retval = ld->ops->ioctl(tty, file, cmd, arg);
2593 if (retval == -ENOIOCTLCMD)
2594 retval = -EINVAL;
2595 }
2596 tty_ldisc_deref(ld);
2597 return retval;
2598}
2599
2600#ifdef CONFIG_COMPAT
2601static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2602 unsigned long arg)
2603{
2604 struct inode *inode = file->f_dentry->d_inode;
2605 struct tty_struct *tty = file->private_data;
2606 struct tty_ldisc *ld;
2607 int retval = -ENOIOCTLCMD;
2608
2609 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2610 return -EINVAL;
2611
2612 if (tty->ops->compat_ioctl) {
2613 retval = (tty->ops->compat_ioctl)(tty, file, cmd, arg);
2614 if (retval != -ENOIOCTLCMD)
2615 return retval;
2616 }
2617
2618 ld = tty_ldisc_ref_wait(tty);
2619 if (ld->ops->compat_ioctl)
2620 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2621 tty_ldisc_deref(ld);
2622
2623 return retval;
2624}
2625#endif
2626
2627/*
2628 * This implements the "Secure Attention Key" --- the idea is to
2629 * prevent trojan horses by killing all processes associated with this
2630 * tty when the user hits the "Secure Attention Key". Required for
2631 * super-paranoid applications --- see the Orange Book for more details.
2632 *
2633 * This code could be nicer; ideally it should send a HUP, wait a few
2634 * seconds, then send a INT, and then a KILL signal. But you then
2635 * have to coordinate with the init process, since all processes associated
2636 * with the current tty must be dead before the new getty is allowed
2637 * to spawn.
2638 *
2639 * Now, if it would be correct ;-/ The current code has a nasty hole -
2640 * it doesn't catch files in flight. We may send the descriptor to ourselves
2641 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2642 *
2643 * Nasty bug: do_SAK is being called in interrupt context. This can
2644 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2645 */
2646void __do_SAK(struct tty_struct *tty)
2647{
2648#ifdef TTY_SOFT_SAK
2649 tty_hangup(tty);
2650#else
2651 struct task_struct *g, *p;
2652 struct pid *session;
2653 int i;
2654 struct file *filp;
2655 struct fdtable *fdt;
2656
2657 if (!tty)
2658 return;
2659 session = tty->session;
2660
2661 tty_ldisc_flush(tty);
2662
2663 tty_driver_flush_buffer(tty);
2664
2665 read_lock(&tasklist_lock);
2666 /* Kill the entire session */
2667 do_each_pid_task(session, PIDTYPE_SID, p) {
2668 printk(KERN_NOTICE "SAK: killed process %d"
2669 " (%s): task_session(p)==tty->session\n",
2670 task_pid_nr(p), p->comm);
2671 send_sig(SIGKILL, p, 1);
2672 } while_each_pid_task(session, PIDTYPE_SID, p);
2673 /* Now kill any processes that happen to have the
2674 * tty open.
2675 */
2676 do_each_thread(g, p) {
2677 if (p->signal->tty == tty) {
2678 printk(KERN_NOTICE "SAK: killed process %d"
2679 " (%s): task_session(p)==tty->session\n",
2680 task_pid_nr(p), p->comm);
2681 send_sig(SIGKILL, p, 1);
2682 continue;
2683 }
2684 task_lock(p);
2685 if (p->files) {
2686 /*
2687 * We don't take a ref to the file, so we must
2688 * hold ->file_lock instead.
2689 */
2690 spin_lock(&p->files->file_lock);
2691 fdt = files_fdtable(p->files);
2692 for (i = 0; i < fdt->max_fds; i++) {
2693 filp = fcheck_files(p->files, i);
2694 if (!filp)
2695 continue;
2696 if (filp->f_op->read == tty_read &&
2697 filp->private_data == tty) {
2698 printk(KERN_NOTICE "SAK: killed process %d"
2699 " (%s): fd#%d opened to the tty\n",
2700 task_pid_nr(p), p->comm, i);
2701 force_sig(SIGKILL, p);
2702 break;
2703 }
2704 }
2705 spin_unlock(&p->files->file_lock);
2706 }
2707 task_unlock(p);
2708 } while_each_thread(g, p);
2709 read_unlock(&tasklist_lock);
2710#endif
2711}
2712
2713static void do_SAK_work(struct work_struct *work)
2714{
2715 struct tty_struct *tty =
2716 container_of(work, struct tty_struct, SAK_work);
2717 __do_SAK(tty);
2718}
2719
2720/*
2721 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2722 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2723 * the values which we write to it will be identical to the values which it
2724 * already has. --akpm
2725 */
2726void do_SAK(struct tty_struct *tty)
2727{
2728 if (!tty)
2729 return;
2730 schedule_work(&tty->SAK_work);
2731}
2732
2733EXPORT_SYMBOL(do_SAK);
2734
2735/**
2736 * initialize_tty_struct
2737 * @tty: tty to initialize
2738 *
2739 * This subroutine initializes a tty structure that has been newly
2740 * allocated.
2741 *
2742 * Locking: none - tty in question must not be exposed at this point
2743 */
2744
2745void initialize_tty_struct(struct tty_struct *tty,
2746 struct tty_driver *driver, int idx)
2747{
2748 memset(tty, 0, sizeof(struct tty_struct));
2749 kref_init(&tty->kref);
2750 tty->magic = TTY_MAGIC;
2751 tty_ldisc_init(tty);
2752 tty->session = NULL;
2753 tty->pgrp = NULL;
2754 tty->overrun_time = jiffies;
2755 tty->buf.head = tty->buf.tail = NULL;
2756 tty_buffer_init(tty);
2757 mutex_init(&tty->termios_mutex);
2758 mutex_init(&tty->ldisc_mutex);
2759 init_waitqueue_head(&tty->write_wait);
2760 init_waitqueue_head(&tty->read_wait);
2761 INIT_WORK(&tty->hangup_work, do_tty_hangup);
2762 mutex_init(&tty->atomic_read_lock);
2763 mutex_init(&tty->atomic_write_lock);
2764 mutex_init(&tty->output_lock);
2765 mutex_init(&tty->echo_lock);
2766 spin_lock_init(&tty->read_lock);
2767 spin_lock_init(&tty->ctrl_lock);
2768 INIT_LIST_HEAD(&tty->tty_files);
2769 INIT_WORK(&tty->SAK_work, do_SAK_work);
2770
2771 tty->driver = driver;
2772 tty->ops = driver->ops;
2773 tty->index = idx;
2774 tty_line_name(driver, idx, tty->name);
2775}
2776
2777/**
2778 * tty_put_char - write one character to a tty
2779 * @tty: tty
2780 * @ch: character
2781 *
2782 * Write one byte to the tty using the provided put_char method
2783 * if present. Returns the number of characters successfully output.
2784 *
2785 * Note: the specific put_char operation in the driver layer may go
2786 * away soon. Don't call it directly, use this method
2787 */
2788
2789int tty_put_char(struct tty_struct *tty, unsigned char ch)
2790{
2791 if (tty->ops->put_char)
2792 return tty->ops->put_char(tty, ch);
2793 return tty->ops->write(tty, &ch, 1);
2794}
2795EXPORT_SYMBOL_GPL(tty_put_char);
2796
2797struct class *tty_class;
2798
2799/**
2800 * tty_register_device - register a tty device
2801 * @driver: the tty driver that describes the tty device
2802 * @index: the index in the tty driver for this tty device
2803 * @device: a struct device that is associated with this tty device.
2804 * This field is optional, if there is no known struct device
2805 * for this tty device it can be set to NULL safely.
2806 *
2807 * Returns a pointer to the struct device for this tty device
2808 * (or ERR_PTR(-EFOO) on error).
2809 *
2810 * This call is required to be made to register an individual tty device
2811 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
2812 * that bit is not set, this function should not be called by a tty
2813 * driver.
2814 *
2815 * Locking: ??
2816 */
2817
2818struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2819 struct device *device)
2820{
2821 char name[64];
2822 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2823
2824 if (index >= driver->num) {
2825 printk(KERN_ERR "Attempt to register invalid tty line number "
2826 " (%d).\n", index);
2827 return ERR_PTR(-EINVAL);
2828 }
2829
2830 if (driver->type == TTY_DRIVER_TYPE_PTY)
2831 pty_line_name(driver, index, name);
2832 else
2833 tty_line_name(driver, index, name);
2834
2835 return device_create(tty_class, device, dev, NULL, name);
2836}
2837EXPORT_SYMBOL(tty_register_device);
2838
2839/**
2840 * tty_unregister_device - unregister a tty device
2841 * @driver: the tty driver that describes the tty device
2842 * @index: the index in the tty driver for this tty device
2843 *
2844 * If a tty device is registered with a call to tty_register_device() then
2845 * this function must be called when the tty device is gone.
2846 *
2847 * Locking: ??
2848 */
2849
2850void tty_unregister_device(struct tty_driver *driver, unsigned index)
2851{
2852 device_destroy(tty_class,
2853 MKDEV(driver->major, driver->minor_start) + index);
2854}
2855EXPORT_SYMBOL(tty_unregister_device);
2856
2857struct tty_driver *alloc_tty_driver(int lines)
2858{
2859 struct tty_driver *driver;
2860
2861 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2862 if (driver) {
2863 kref_init(&driver->kref);
2864 driver->magic = TTY_DRIVER_MAGIC;
2865 driver->num = lines;
2866 /* later we'll move allocation of tables here */
2867 }
2868 return driver;
2869}
2870EXPORT_SYMBOL(alloc_tty_driver);
2871
2872static void destruct_tty_driver(struct kref *kref)
2873{
2874 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
2875 int i;
2876 struct ktermios *tp;
2877 void *p;
2878
2879 if (driver->flags & TTY_DRIVER_INSTALLED) {
2880 /*
2881 * Free the termios and termios_locked structures because
2882 * we don't want to get memory leaks when modular tty
2883 * drivers are removed from the kernel.
2884 */
2885 for (i = 0; i < driver->num; i++) {
2886 tp = driver->termios[i];
2887 if (tp) {
2888 driver->termios[i] = NULL;
2889 kfree(tp);
2890 }
2891 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
2892 tty_unregister_device(driver, i);
2893 }
2894 p = driver->ttys;
2895 proc_tty_unregister_driver(driver);
2896 driver->ttys = NULL;
2897 driver->termios = NULL;
2898 kfree(p);
2899 cdev_del(&driver->cdev);
2900 }
2901 kfree(driver);
2902}
2903
2904void tty_driver_kref_put(struct tty_driver *driver)
2905{
2906 kref_put(&driver->kref, destruct_tty_driver);
2907}
2908EXPORT_SYMBOL(tty_driver_kref_put);
2909
2910void tty_set_operations(struct tty_driver *driver,
2911 const struct tty_operations *op)
2912{
2913 driver->ops = op;
2914};
2915EXPORT_SYMBOL(tty_set_operations);
2916
2917void put_tty_driver(struct tty_driver *d)
2918{
2919 tty_driver_kref_put(d);
2920}
2921EXPORT_SYMBOL(put_tty_driver);
2922
2923/*
2924 * Called by a tty driver to register itself.
2925 */
2926int tty_register_driver(struct tty_driver *driver)
2927{
2928 int error;
2929 int i;
2930 dev_t dev;
2931 void **p = NULL;
2932
2933 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
2934 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
2935 if (!p)
2936 return -ENOMEM;
2937 }
2938
2939 if (!driver->major) {
2940 error = alloc_chrdev_region(&dev, driver->minor_start,
2941 driver->num, driver->name);
2942 if (!error) {
2943 driver->major = MAJOR(dev);
2944 driver->minor_start = MINOR(dev);
2945 }
2946 } else {
2947 dev = MKDEV(driver->major, driver->minor_start);
2948 error = register_chrdev_region(dev, driver->num, driver->name);
2949 }
2950 if (error < 0) {
2951 kfree(p);
2952 return error;
2953 }
2954
2955 if (p) {
2956 driver->ttys = (struct tty_struct **)p;
2957 driver->termios = (struct ktermios **)(p + driver->num);
2958 } else {
2959 driver->ttys = NULL;
2960 driver->termios = NULL;
2961 }
2962
2963 cdev_init(&driver->cdev, &tty_fops);
2964 driver->cdev.owner = driver->owner;
2965 error = cdev_add(&driver->cdev, dev, driver->num);
2966 if (error) {
2967 unregister_chrdev_region(dev, driver->num);
2968 driver->ttys = NULL;
2969 driver->termios = NULL;
2970 kfree(p);
2971 return error;
2972 }
2973
2974 mutex_lock(&tty_mutex);
2975 list_add(&driver->tty_drivers, &tty_drivers);
2976 mutex_unlock(&tty_mutex);
2977
2978 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
2979 for (i = 0; i < driver->num; i++)
2980 tty_register_device(driver, i, NULL);
2981 }
2982 proc_tty_register_driver(driver);
2983 driver->flags |= TTY_DRIVER_INSTALLED;
2984 return 0;
2985}
2986
2987EXPORT_SYMBOL(tty_register_driver);
2988
2989/*
2990 * Called by a tty driver to unregister itself.
2991 */
2992int tty_unregister_driver(struct tty_driver *driver)
2993{
2994#if 0
2995 /* FIXME */
2996 if (driver->refcount)
2997 return -EBUSY;
2998#endif
2999 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3000 driver->num);
3001 mutex_lock(&tty_mutex);
3002 list_del(&driver->tty_drivers);
3003 mutex_unlock(&tty_mutex);
3004 return 0;
3005}
3006
3007EXPORT_SYMBOL(tty_unregister_driver);
3008
3009dev_t tty_devnum(struct tty_struct *tty)
3010{
3011 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3012}
3013EXPORT_SYMBOL(tty_devnum);
3014
3015void proc_clear_tty(struct task_struct *p)
3016{
3017 unsigned long flags;
3018 struct tty_struct *tty;
3019 spin_lock_irqsave(&p->sighand->siglock, flags);
3020 tty = p->signal->tty;
3021 p->signal->tty = NULL;
3022 spin_unlock_irqrestore(&p->sighand->siglock, flags);
3023 tty_kref_put(tty);
3024}
3025
3026/* Called under the sighand lock */
3027
3028static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3029{
3030 if (tty) {
3031 unsigned long flags;
3032 /* We should not have a session or pgrp to put here but.... */
3033 spin_lock_irqsave(&tty->ctrl_lock, flags);
3034 put_pid(tty->session);
3035 put_pid(tty->pgrp);
3036 tty->pgrp = get_pid(task_pgrp(tsk));
3037 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3038 tty->session = get_pid(task_session(tsk));
3039 if (tsk->signal->tty) {
3040 printk(KERN_DEBUG "tty not NULL!!\n");
3041 tty_kref_put(tsk->signal->tty);
3042 }
3043 }
3044 put_pid(tsk->signal->tty_old_pgrp);
3045 tsk->signal->tty = tty_kref_get(tty);
3046 tsk->signal->tty_old_pgrp = NULL;
3047}
3048
3049static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3050{
3051 spin_lock_irq(&tsk->sighand->siglock);
3052 __proc_set_tty(tsk, tty);
3053 spin_unlock_irq(&tsk->sighand->siglock);
3054}
3055
3056struct tty_struct *get_current_tty(void)
3057{
3058 struct tty_struct *tty;
3059 unsigned long flags;
3060
3061 spin_lock_irqsave(&current->sighand->siglock, flags);
3062 tty = tty_kref_get(current->signal->tty);
3063 spin_unlock_irqrestore(&current->sighand->siglock, flags);
3064 return tty;
3065}
3066EXPORT_SYMBOL_GPL(get_current_tty);
3067
3068void tty_default_fops(struct file_operations *fops)
3069{
3070 *fops = tty_fops;
3071}
3072
3073/*
3074 * Initialize the console device. This is called *early*, so
3075 * we can't necessarily depend on lots of kernel help here.
3076 * Just do some early initializations, and do the complex setup
3077 * later.
3078 */
3079void __init console_init(void)
3080{
3081 initcall_t *call;
3082
3083 /* Setup the default TTY line discipline. */
3084 tty_ldisc_begin();
3085
3086 /*
3087 * set up the console device so that later boot sequences can
3088 * inform about problems etc..
3089 */
3090 call = __con_initcall_start;
3091 while (call < __con_initcall_end) {
3092 (*call)();
3093 call++;
3094 }
3095}
3096
3097static char *tty_devnode(struct device *dev, mode_t *mode)
3098{
3099 if (!mode)
3100 return NULL;
3101 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3102 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3103 *mode = 0666;
3104 return NULL;
3105}
3106
3107static int __init tty_class_init(void)
3108{
3109 tty_class = class_create(THIS_MODULE, "tty");
3110 if (IS_ERR(tty_class))
3111 return PTR_ERR(tty_class);
3112 tty_class->devnode = tty_devnode;
3113 return 0;
3114}
3115
3116postcore_initcall(tty_class_init);
3117
3118/* 3/2004 jmc: why do these devices exist? */
3119
3120static struct cdev tty_cdev, console_cdev;
3121
3122/*
3123 * Ok, now we can initialize the rest of the tty devices and can count
3124 * on memory allocations, interrupts etc..
3125 */
3126static int __init tty_init(void)
3127{
3128 cdev_init(&tty_cdev, &tty_fops);
3129 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3130 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3131 panic("Couldn't register /dev/tty driver\n");
3132 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL,
3133 "tty");
3134
3135 cdev_init(&console_cdev, &console_fops);
3136 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3137 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3138 panic("Couldn't register /dev/console driver\n");
3139 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3140 "console");
3141
3142#ifdef CONFIG_VT
3143 vty_init(&console_fops);
3144#endif
3145 return 0;
3146}
3147module_init(tty_init);