ceph: just skip unrecognized info in ceph_reply_info_extra
[linux-block.git] / drivers / block / rbd.c
... / ...
CommitLineData
1
2/*
3 rbd.c -- Export ceph rados objects as a Linux block device
4
5
6 based on drivers/block/osdblk.c:
7
8 Copyright 2009 Red Hat, Inc.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25 For usage instructions, please refer to:
26
27 Documentation/ABI/testing/sysfs-bus-rbd
28
29 */
30
31#include <linux/ceph/libceph.h>
32#include <linux/ceph/osd_client.h>
33#include <linux/ceph/mon_client.h>
34#include <linux/ceph/cls_lock_client.h>
35#include <linux/ceph/striper.h>
36#include <linux/ceph/decode.h>
37#include <linux/parser.h>
38#include <linux/bsearch.h>
39
40#include <linux/kernel.h>
41#include <linux/device.h>
42#include <linux/module.h>
43#include <linux/blk-mq.h>
44#include <linux/fs.h>
45#include <linux/blkdev.h>
46#include <linux/slab.h>
47#include <linux/idr.h>
48#include <linux/workqueue.h>
49
50#include "rbd_types.h"
51
52#define RBD_DEBUG /* Activate rbd_assert() calls */
53
54/*
55 * Increment the given counter and return its updated value.
56 * If the counter is already 0 it will not be incremented.
57 * If the counter is already at its maximum value returns
58 * -EINVAL without updating it.
59 */
60static int atomic_inc_return_safe(atomic_t *v)
61{
62 unsigned int counter;
63
64 counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65 if (counter <= (unsigned int)INT_MAX)
66 return (int)counter;
67
68 atomic_dec(v);
69
70 return -EINVAL;
71}
72
73/* Decrement the counter. Return the resulting value, or -EINVAL */
74static int atomic_dec_return_safe(atomic_t *v)
75{
76 int counter;
77
78 counter = atomic_dec_return(v);
79 if (counter >= 0)
80 return counter;
81
82 atomic_inc(v);
83
84 return -EINVAL;
85}
86
87#define RBD_DRV_NAME "rbd"
88
89#define RBD_MINORS_PER_MAJOR 256
90#define RBD_SINGLE_MAJOR_PART_SHIFT 4
91
92#define RBD_MAX_PARENT_CHAIN_LEN 16
93
94#define RBD_SNAP_DEV_NAME_PREFIX "snap_"
95#define RBD_MAX_SNAP_NAME_LEN \
96 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97
98#define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
99
100#define RBD_SNAP_HEAD_NAME "-"
101
102#define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
103
104/* This allows a single page to hold an image name sent by OSD */
105#define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
106#define RBD_IMAGE_ID_LEN_MAX 64
107
108#define RBD_OBJ_PREFIX_LEN_MAX 64
109
110#define RBD_NOTIFY_TIMEOUT 5 /* seconds */
111#define RBD_RETRY_DELAY msecs_to_jiffies(1000)
112
113/* Feature bits */
114
115#define RBD_FEATURE_LAYERING (1ULL<<0)
116#define RBD_FEATURE_STRIPINGV2 (1ULL<<1)
117#define RBD_FEATURE_EXCLUSIVE_LOCK (1ULL<<2)
118#define RBD_FEATURE_OBJECT_MAP (1ULL<<3)
119#define RBD_FEATURE_FAST_DIFF (1ULL<<4)
120#define RBD_FEATURE_DEEP_FLATTEN (1ULL<<5)
121#define RBD_FEATURE_DATA_POOL (1ULL<<7)
122#define RBD_FEATURE_OPERATIONS (1ULL<<8)
123
124#define RBD_FEATURES_ALL (RBD_FEATURE_LAYERING | \
125 RBD_FEATURE_STRIPINGV2 | \
126 RBD_FEATURE_EXCLUSIVE_LOCK | \
127 RBD_FEATURE_OBJECT_MAP | \
128 RBD_FEATURE_FAST_DIFF | \
129 RBD_FEATURE_DEEP_FLATTEN | \
130 RBD_FEATURE_DATA_POOL | \
131 RBD_FEATURE_OPERATIONS)
132
133/* Features supported by this (client software) implementation. */
134
135#define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
136
137/*
138 * An RBD device name will be "rbd#", where the "rbd" comes from
139 * RBD_DRV_NAME above, and # is a unique integer identifier.
140 */
141#define DEV_NAME_LEN 32
142
143/*
144 * block device image metadata (in-memory version)
145 */
146struct rbd_image_header {
147 /* These six fields never change for a given rbd image */
148 char *object_prefix;
149 __u8 obj_order;
150 u64 stripe_unit;
151 u64 stripe_count;
152 s64 data_pool_id;
153 u64 features; /* Might be changeable someday? */
154
155 /* The remaining fields need to be updated occasionally */
156 u64 image_size;
157 struct ceph_snap_context *snapc;
158 char *snap_names; /* format 1 only */
159 u64 *snap_sizes; /* format 1 only */
160};
161
162/*
163 * An rbd image specification.
164 *
165 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166 * identify an image. Each rbd_dev structure includes a pointer to
167 * an rbd_spec structure that encapsulates this identity.
168 *
169 * Each of the id's in an rbd_spec has an associated name. For a
170 * user-mapped image, the names are supplied and the id's associated
171 * with them are looked up. For a layered image, a parent image is
172 * defined by the tuple, and the names are looked up.
173 *
174 * An rbd_dev structure contains a parent_spec pointer which is
175 * non-null if the image it represents is a child in a layered
176 * image. This pointer will refer to the rbd_spec structure used
177 * by the parent rbd_dev for its own identity (i.e., the structure
178 * is shared between the parent and child).
179 *
180 * Since these structures are populated once, during the discovery
181 * phase of image construction, they are effectively immutable so
182 * we make no effort to synchronize access to them.
183 *
184 * Note that code herein does not assume the image name is known (it
185 * could be a null pointer).
186 */
187struct rbd_spec {
188 u64 pool_id;
189 const char *pool_name;
190 const char *pool_ns; /* NULL if default, never "" */
191
192 const char *image_id;
193 const char *image_name;
194
195 u64 snap_id;
196 const char *snap_name;
197
198 struct kref kref;
199};
200
201/*
202 * an instance of the client. multiple devices may share an rbd client.
203 */
204struct rbd_client {
205 struct ceph_client *client;
206 struct kref kref;
207 struct list_head node;
208};
209
210struct pending_result {
211 int result; /* first nonzero result */
212 int num_pending;
213};
214
215struct rbd_img_request;
216
217enum obj_request_type {
218 OBJ_REQUEST_NODATA = 1,
219 OBJ_REQUEST_BIO, /* pointer into provided bio (list) */
220 OBJ_REQUEST_BVECS, /* pointer into provided bio_vec array */
221 OBJ_REQUEST_OWN_BVECS, /* private bio_vec array, doesn't own pages */
222};
223
224enum obj_operation_type {
225 OBJ_OP_READ = 1,
226 OBJ_OP_WRITE,
227 OBJ_OP_DISCARD,
228 OBJ_OP_ZEROOUT,
229};
230
231#define RBD_OBJ_FLAG_DELETION (1U << 0)
232#define RBD_OBJ_FLAG_COPYUP_ENABLED (1U << 1)
233#define RBD_OBJ_FLAG_COPYUP_ZEROS (1U << 2)
234#define RBD_OBJ_FLAG_MAY_EXIST (1U << 3)
235#define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT (1U << 4)
236
237enum rbd_obj_read_state {
238 RBD_OBJ_READ_START = 1,
239 RBD_OBJ_READ_OBJECT,
240 RBD_OBJ_READ_PARENT,
241};
242
243/*
244 * Writes go through the following state machine to deal with
245 * layering:
246 *
247 * . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
248 * . | .
249 * . v .
250 * . RBD_OBJ_WRITE_READ_FROM_PARENT. . . .
251 * . | . .
252 * . v v (deep-copyup .
253 * (image . RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC . not needed) .
254 * flattened) v | . .
255 * . v . .
256 * . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . . (copyup .
257 * | not needed) v
258 * v .
259 * done . . . . . . . . . . . . . . . . . .
260 * ^
261 * |
262 * RBD_OBJ_WRITE_FLAT
263 *
264 * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265 * assert_exists guard is needed or not (in some cases it's not needed
266 * even if there is a parent).
267 */
268enum rbd_obj_write_state {
269 RBD_OBJ_WRITE_START = 1,
270 RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271 RBD_OBJ_WRITE_OBJECT,
272 __RBD_OBJ_WRITE_COPYUP,
273 RBD_OBJ_WRITE_COPYUP,
274 RBD_OBJ_WRITE_POST_OBJECT_MAP,
275};
276
277enum rbd_obj_copyup_state {
278 RBD_OBJ_COPYUP_START = 1,
279 RBD_OBJ_COPYUP_READ_PARENT,
280 __RBD_OBJ_COPYUP_OBJECT_MAPS,
281 RBD_OBJ_COPYUP_OBJECT_MAPS,
282 __RBD_OBJ_COPYUP_WRITE_OBJECT,
283 RBD_OBJ_COPYUP_WRITE_OBJECT,
284};
285
286struct rbd_obj_request {
287 struct ceph_object_extent ex;
288 unsigned int flags; /* RBD_OBJ_FLAG_* */
289 union {
290 enum rbd_obj_read_state read_state; /* for reads */
291 enum rbd_obj_write_state write_state; /* for writes */
292 };
293
294 struct rbd_img_request *img_request;
295 struct ceph_file_extent *img_extents;
296 u32 num_img_extents;
297
298 union {
299 struct ceph_bio_iter bio_pos;
300 struct {
301 struct ceph_bvec_iter bvec_pos;
302 u32 bvec_count;
303 u32 bvec_idx;
304 };
305 };
306
307 enum rbd_obj_copyup_state copyup_state;
308 struct bio_vec *copyup_bvecs;
309 u32 copyup_bvec_count;
310
311 struct list_head osd_reqs; /* w/ r_private_item */
312
313 struct mutex state_mutex;
314 struct pending_result pending;
315 struct kref kref;
316};
317
318enum img_req_flags {
319 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
320 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
321};
322
323enum rbd_img_state {
324 RBD_IMG_START = 1,
325 RBD_IMG_EXCLUSIVE_LOCK,
326 __RBD_IMG_OBJECT_REQUESTS,
327 RBD_IMG_OBJECT_REQUESTS,
328};
329
330struct rbd_img_request {
331 struct rbd_device *rbd_dev;
332 enum obj_operation_type op_type;
333 enum obj_request_type data_type;
334 unsigned long flags;
335 enum rbd_img_state state;
336 union {
337 u64 snap_id; /* for reads */
338 struct ceph_snap_context *snapc; /* for writes */
339 };
340 union {
341 struct request *rq; /* block request */
342 struct rbd_obj_request *obj_request; /* obj req initiator */
343 };
344
345 struct list_head lock_item;
346 struct list_head object_extents; /* obj_req.ex structs */
347
348 struct mutex state_mutex;
349 struct pending_result pending;
350 struct work_struct work;
351 int work_result;
352 struct kref kref;
353};
354
355#define for_each_obj_request(ireq, oreq) \
356 list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
357#define for_each_obj_request_safe(ireq, oreq, n) \
358 list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
359
360enum rbd_watch_state {
361 RBD_WATCH_STATE_UNREGISTERED,
362 RBD_WATCH_STATE_REGISTERED,
363 RBD_WATCH_STATE_ERROR,
364};
365
366enum rbd_lock_state {
367 RBD_LOCK_STATE_UNLOCKED,
368 RBD_LOCK_STATE_LOCKED,
369 RBD_LOCK_STATE_RELEASING,
370};
371
372/* WatchNotify::ClientId */
373struct rbd_client_id {
374 u64 gid;
375 u64 handle;
376};
377
378struct rbd_mapping {
379 u64 size;
380 u64 features;
381};
382
383/*
384 * a single device
385 */
386struct rbd_device {
387 int dev_id; /* blkdev unique id */
388
389 int major; /* blkdev assigned major */
390 int minor;
391 struct gendisk *disk; /* blkdev's gendisk and rq */
392
393 u32 image_format; /* Either 1 or 2 */
394 struct rbd_client *rbd_client;
395
396 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
397
398 spinlock_t lock; /* queue, flags, open_count */
399
400 struct rbd_image_header header;
401 unsigned long flags; /* possibly lock protected */
402 struct rbd_spec *spec;
403 struct rbd_options *opts;
404 char *config_info; /* add{,_single_major} string */
405
406 struct ceph_object_id header_oid;
407 struct ceph_object_locator header_oloc;
408
409 struct ceph_file_layout layout; /* used for all rbd requests */
410
411 struct mutex watch_mutex;
412 enum rbd_watch_state watch_state;
413 struct ceph_osd_linger_request *watch_handle;
414 u64 watch_cookie;
415 struct delayed_work watch_dwork;
416
417 struct rw_semaphore lock_rwsem;
418 enum rbd_lock_state lock_state;
419 char lock_cookie[32];
420 struct rbd_client_id owner_cid;
421 struct work_struct acquired_lock_work;
422 struct work_struct released_lock_work;
423 struct delayed_work lock_dwork;
424 struct work_struct unlock_work;
425 spinlock_t lock_lists_lock;
426 struct list_head acquiring_list;
427 struct list_head running_list;
428 struct completion acquire_wait;
429 int acquire_err;
430 struct completion releasing_wait;
431
432 spinlock_t object_map_lock;
433 u8 *object_map;
434 u64 object_map_size; /* in objects */
435 u64 object_map_flags;
436
437 struct workqueue_struct *task_wq;
438
439 struct rbd_spec *parent_spec;
440 u64 parent_overlap;
441 atomic_t parent_ref;
442 struct rbd_device *parent;
443
444 /* Block layer tags. */
445 struct blk_mq_tag_set tag_set;
446
447 /* protects updating the header */
448 struct rw_semaphore header_rwsem;
449
450 struct rbd_mapping mapping;
451
452 struct list_head node;
453
454 /* sysfs related */
455 struct device dev;
456 unsigned long open_count; /* protected by lock */
457};
458
459/*
460 * Flag bits for rbd_dev->flags:
461 * - REMOVING (which is coupled with rbd_dev->open_count) is protected
462 * by rbd_dev->lock
463 */
464enum rbd_dev_flags {
465 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
466 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
467};
468
469static DEFINE_MUTEX(client_mutex); /* Serialize client creation */
470
471static LIST_HEAD(rbd_dev_list); /* devices */
472static DEFINE_SPINLOCK(rbd_dev_list_lock);
473
474static LIST_HEAD(rbd_client_list); /* clients */
475static DEFINE_SPINLOCK(rbd_client_list_lock);
476
477/* Slab caches for frequently-allocated structures */
478
479static struct kmem_cache *rbd_img_request_cache;
480static struct kmem_cache *rbd_obj_request_cache;
481
482static int rbd_major;
483static DEFINE_IDA(rbd_dev_id_ida);
484
485static struct workqueue_struct *rbd_wq;
486
487static struct ceph_snap_context rbd_empty_snapc = {
488 .nref = REFCOUNT_INIT(1),
489};
490
491/*
492 * single-major requires >= 0.75 version of userspace rbd utility.
493 */
494static bool single_major = true;
495module_param(single_major, bool, 0444);
496MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
497
498static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count);
499static ssize_t remove_store(struct bus_type *bus, const char *buf,
500 size_t count);
501static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
502 size_t count);
503static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
504 size_t count);
505static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
506
507static int rbd_dev_id_to_minor(int dev_id)
508{
509 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
510}
511
512static int minor_to_rbd_dev_id(int minor)
513{
514 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
515}
516
517static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
518{
519 lockdep_assert_held(&rbd_dev->lock_rwsem);
520
521 return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
522 rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
523}
524
525static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
526{
527 bool is_lock_owner;
528
529 down_read(&rbd_dev->lock_rwsem);
530 is_lock_owner = __rbd_is_lock_owner(rbd_dev);
531 up_read(&rbd_dev->lock_rwsem);
532 return is_lock_owner;
533}
534
535static ssize_t supported_features_show(struct bus_type *bus, char *buf)
536{
537 return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
538}
539
540static BUS_ATTR_WO(add);
541static BUS_ATTR_WO(remove);
542static BUS_ATTR_WO(add_single_major);
543static BUS_ATTR_WO(remove_single_major);
544static BUS_ATTR_RO(supported_features);
545
546static struct attribute *rbd_bus_attrs[] = {
547 &bus_attr_add.attr,
548 &bus_attr_remove.attr,
549 &bus_attr_add_single_major.attr,
550 &bus_attr_remove_single_major.attr,
551 &bus_attr_supported_features.attr,
552 NULL,
553};
554
555static umode_t rbd_bus_is_visible(struct kobject *kobj,
556 struct attribute *attr, int index)
557{
558 if (!single_major &&
559 (attr == &bus_attr_add_single_major.attr ||
560 attr == &bus_attr_remove_single_major.attr))
561 return 0;
562
563 return attr->mode;
564}
565
566static const struct attribute_group rbd_bus_group = {
567 .attrs = rbd_bus_attrs,
568 .is_visible = rbd_bus_is_visible,
569};
570__ATTRIBUTE_GROUPS(rbd_bus);
571
572static struct bus_type rbd_bus_type = {
573 .name = "rbd",
574 .bus_groups = rbd_bus_groups,
575};
576
577static void rbd_root_dev_release(struct device *dev)
578{
579}
580
581static struct device rbd_root_dev = {
582 .init_name = "rbd",
583 .release = rbd_root_dev_release,
584};
585
586static __printf(2, 3)
587void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
588{
589 struct va_format vaf;
590 va_list args;
591
592 va_start(args, fmt);
593 vaf.fmt = fmt;
594 vaf.va = &args;
595
596 if (!rbd_dev)
597 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
598 else if (rbd_dev->disk)
599 printk(KERN_WARNING "%s: %s: %pV\n",
600 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
601 else if (rbd_dev->spec && rbd_dev->spec->image_name)
602 printk(KERN_WARNING "%s: image %s: %pV\n",
603 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
604 else if (rbd_dev->spec && rbd_dev->spec->image_id)
605 printk(KERN_WARNING "%s: id %s: %pV\n",
606 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
607 else /* punt */
608 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
609 RBD_DRV_NAME, rbd_dev, &vaf);
610 va_end(args);
611}
612
613#ifdef RBD_DEBUG
614#define rbd_assert(expr) \
615 if (unlikely(!(expr))) { \
616 printk(KERN_ERR "\nAssertion failure in %s() " \
617 "at line %d:\n\n" \
618 "\trbd_assert(%s);\n\n", \
619 __func__, __LINE__, #expr); \
620 BUG(); \
621 }
622#else /* !RBD_DEBUG */
623# define rbd_assert(expr) ((void) 0)
624#endif /* !RBD_DEBUG */
625
626static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
627
628static int rbd_dev_refresh(struct rbd_device *rbd_dev);
629static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
630static int rbd_dev_header_info(struct rbd_device *rbd_dev);
631static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
632static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
633 u64 snap_id);
634static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
635 u8 *order, u64 *snap_size);
636static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
637 u64 *snap_features);
638static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
639
640static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
641static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
642
643/*
644 * Return true if nothing else is pending.
645 */
646static bool pending_result_dec(struct pending_result *pending, int *result)
647{
648 rbd_assert(pending->num_pending > 0);
649
650 if (*result && !pending->result)
651 pending->result = *result;
652 if (--pending->num_pending)
653 return false;
654
655 *result = pending->result;
656 return true;
657}
658
659static int rbd_open(struct block_device *bdev, fmode_t mode)
660{
661 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
662 bool removing = false;
663
664 spin_lock_irq(&rbd_dev->lock);
665 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
666 removing = true;
667 else
668 rbd_dev->open_count++;
669 spin_unlock_irq(&rbd_dev->lock);
670 if (removing)
671 return -ENOENT;
672
673 (void) get_device(&rbd_dev->dev);
674
675 return 0;
676}
677
678static void rbd_release(struct gendisk *disk, fmode_t mode)
679{
680 struct rbd_device *rbd_dev = disk->private_data;
681 unsigned long open_count_before;
682
683 spin_lock_irq(&rbd_dev->lock);
684 open_count_before = rbd_dev->open_count--;
685 spin_unlock_irq(&rbd_dev->lock);
686 rbd_assert(open_count_before > 0);
687
688 put_device(&rbd_dev->dev);
689}
690
691static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
692{
693 int ro;
694
695 if (get_user(ro, (int __user *)arg))
696 return -EFAULT;
697
698 /* Snapshots can't be marked read-write */
699 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
700 return -EROFS;
701
702 /* Let blkdev_roset() handle it */
703 return -ENOTTY;
704}
705
706static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
707 unsigned int cmd, unsigned long arg)
708{
709 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
710 int ret;
711
712 switch (cmd) {
713 case BLKROSET:
714 ret = rbd_ioctl_set_ro(rbd_dev, arg);
715 break;
716 default:
717 ret = -ENOTTY;
718 }
719
720 return ret;
721}
722
723#ifdef CONFIG_COMPAT
724static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
725 unsigned int cmd, unsigned long arg)
726{
727 return rbd_ioctl(bdev, mode, cmd, arg);
728}
729#endif /* CONFIG_COMPAT */
730
731static const struct block_device_operations rbd_bd_ops = {
732 .owner = THIS_MODULE,
733 .open = rbd_open,
734 .release = rbd_release,
735 .ioctl = rbd_ioctl,
736#ifdef CONFIG_COMPAT
737 .compat_ioctl = rbd_compat_ioctl,
738#endif
739};
740
741/*
742 * Initialize an rbd client instance. Success or not, this function
743 * consumes ceph_opts. Caller holds client_mutex.
744 */
745static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
746{
747 struct rbd_client *rbdc;
748 int ret = -ENOMEM;
749
750 dout("%s:\n", __func__);
751 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
752 if (!rbdc)
753 goto out_opt;
754
755 kref_init(&rbdc->kref);
756 INIT_LIST_HEAD(&rbdc->node);
757
758 rbdc->client = ceph_create_client(ceph_opts, rbdc);
759 if (IS_ERR(rbdc->client))
760 goto out_rbdc;
761 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
762
763 ret = ceph_open_session(rbdc->client);
764 if (ret < 0)
765 goto out_client;
766
767 spin_lock(&rbd_client_list_lock);
768 list_add_tail(&rbdc->node, &rbd_client_list);
769 spin_unlock(&rbd_client_list_lock);
770
771 dout("%s: rbdc %p\n", __func__, rbdc);
772
773 return rbdc;
774out_client:
775 ceph_destroy_client(rbdc->client);
776out_rbdc:
777 kfree(rbdc);
778out_opt:
779 if (ceph_opts)
780 ceph_destroy_options(ceph_opts);
781 dout("%s: error %d\n", __func__, ret);
782
783 return ERR_PTR(ret);
784}
785
786static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
787{
788 kref_get(&rbdc->kref);
789
790 return rbdc;
791}
792
793/*
794 * Find a ceph client with specific addr and configuration. If
795 * found, bump its reference count.
796 */
797static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
798{
799 struct rbd_client *client_node;
800 bool found = false;
801
802 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
803 return NULL;
804
805 spin_lock(&rbd_client_list_lock);
806 list_for_each_entry(client_node, &rbd_client_list, node) {
807 if (!ceph_compare_options(ceph_opts, client_node->client)) {
808 __rbd_get_client(client_node);
809
810 found = true;
811 break;
812 }
813 }
814 spin_unlock(&rbd_client_list_lock);
815
816 return found ? client_node : NULL;
817}
818
819/*
820 * (Per device) rbd map options
821 */
822enum {
823 Opt_queue_depth,
824 Opt_alloc_size,
825 Opt_lock_timeout,
826 Opt_last_int,
827 /* int args above */
828 Opt_pool_ns,
829 Opt_last_string,
830 /* string args above */
831 Opt_read_only,
832 Opt_read_write,
833 Opt_lock_on_read,
834 Opt_exclusive,
835 Opt_notrim,
836 Opt_err
837};
838
839static match_table_t rbd_opts_tokens = {
840 {Opt_queue_depth, "queue_depth=%d"},
841 {Opt_alloc_size, "alloc_size=%d"},
842 {Opt_lock_timeout, "lock_timeout=%d"},
843 /* int args above */
844 {Opt_pool_ns, "_pool_ns=%s"},
845 /* string args above */
846 {Opt_read_only, "read_only"},
847 {Opt_read_only, "ro"}, /* Alternate spelling */
848 {Opt_read_write, "read_write"},
849 {Opt_read_write, "rw"}, /* Alternate spelling */
850 {Opt_lock_on_read, "lock_on_read"},
851 {Opt_exclusive, "exclusive"},
852 {Opt_notrim, "notrim"},
853 {Opt_err, NULL}
854};
855
856struct rbd_options {
857 int queue_depth;
858 int alloc_size;
859 unsigned long lock_timeout;
860 bool read_only;
861 bool lock_on_read;
862 bool exclusive;
863 bool trim;
864};
865
866#define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
867#define RBD_ALLOC_SIZE_DEFAULT (64 * 1024)
868#define RBD_LOCK_TIMEOUT_DEFAULT 0 /* no timeout */
869#define RBD_READ_ONLY_DEFAULT false
870#define RBD_LOCK_ON_READ_DEFAULT false
871#define RBD_EXCLUSIVE_DEFAULT false
872#define RBD_TRIM_DEFAULT true
873
874struct parse_rbd_opts_ctx {
875 struct rbd_spec *spec;
876 struct rbd_options *opts;
877};
878
879static int parse_rbd_opts_token(char *c, void *private)
880{
881 struct parse_rbd_opts_ctx *pctx = private;
882 substring_t argstr[MAX_OPT_ARGS];
883 int token, intval, ret;
884
885 token = match_token(c, rbd_opts_tokens, argstr);
886 if (token < Opt_last_int) {
887 ret = match_int(&argstr[0], &intval);
888 if (ret < 0) {
889 pr_err("bad option arg (not int) at '%s'\n", c);
890 return ret;
891 }
892 dout("got int token %d val %d\n", token, intval);
893 } else if (token > Opt_last_int && token < Opt_last_string) {
894 dout("got string token %d val %s\n", token, argstr[0].from);
895 } else {
896 dout("got token %d\n", token);
897 }
898
899 switch (token) {
900 case Opt_queue_depth:
901 if (intval < 1) {
902 pr_err("queue_depth out of range\n");
903 return -EINVAL;
904 }
905 pctx->opts->queue_depth = intval;
906 break;
907 case Opt_alloc_size:
908 if (intval < SECTOR_SIZE) {
909 pr_err("alloc_size out of range\n");
910 return -EINVAL;
911 }
912 if (!is_power_of_2(intval)) {
913 pr_err("alloc_size must be a power of 2\n");
914 return -EINVAL;
915 }
916 pctx->opts->alloc_size = intval;
917 break;
918 case Opt_lock_timeout:
919 /* 0 is "wait forever" (i.e. infinite timeout) */
920 if (intval < 0 || intval > INT_MAX / 1000) {
921 pr_err("lock_timeout out of range\n");
922 return -EINVAL;
923 }
924 pctx->opts->lock_timeout = msecs_to_jiffies(intval * 1000);
925 break;
926 case Opt_pool_ns:
927 kfree(pctx->spec->pool_ns);
928 pctx->spec->pool_ns = match_strdup(argstr);
929 if (!pctx->spec->pool_ns)
930 return -ENOMEM;
931 break;
932 case Opt_read_only:
933 pctx->opts->read_only = true;
934 break;
935 case Opt_read_write:
936 pctx->opts->read_only = false;
937 break;
938 case Opt_lock_on_read:
939 pctx->opts->lock_on_read = true;
940 break;
941 case Opt_exclusive:
942 pctx->opts->exclusive = true;
943 break;
944 case Opt_notrim:
945 pctx->opts->trim = false;
946 break;
947 default:
948 /* libceph prints "bad option" msg */
949 return -EINVAL;
950 }
951
952 return 0;
953}
954
955static char* obj_op_name(enum obj_operation_type op_type)
956{
957 switch (op_type) {
958 case OBJ_OP_READ:
959 return "read";
960 case OBJ_OP_WRITE:
961 return "write";
962 case OBJ_OP_DISCARD:
963 return "discard";
964 case OBJ_OP_ZEROOUT:
965 return "zeroout";
966 default:
967 return "???";
968 }
969}
970
971/*
972 * Destroy ceph client
973 *
974 * Caller must hold rbd_client_list_lock.
975 */
976static void rbd_client_release(struct kref *kref)
977{
978 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
979
980 dout("%s: rbdc %p\n", __func__, rbdc);
981 spin_lock(&rbd_client_list_lock);
982 list_del(&rbdc->node);
983 spin_unlock(&rbd_client_list_lock);
984
985 ceph_destroy_client(rbdc->client);
986 kfree(rbdc);
987}
988
989/*
990 * Drop reference to ceph client node. If it's not referenced anymore, release
991 * it.
992 */
993static void rbd_put_client(struct rbd_client *rbdc)
994{
995 if (rbdc)
996 kref_put(&rbdc->kref, rbd_client_release);
997}
998
999/*
1000 * Get a ceph client with specific addr and configuration, if one does
1001 * not exist create it. Either way, ceph_opts is consumed by this
1002 * function.
1003 */
1004static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
1005{
1006 struct rbd_client *rbdc;
1007 int ret;
1008
1009 mutex_lock(&client_mutex);
1010 rbdc = rbd_client_find(ceph_opts);
1011 if (rbdc) {
1012 ceph_destroy_options(ceph_opts);
1013
1014 /*
1015 * Using an existing client. Make sure ->pg_pools is up to
1016 * date before we look up the pool id in do_rbd_add().
1017 */
1018 ret = ceph_wait_for_latest_osdmap(rbdc->client,
1019 rbdc->client->options->mount_timeout);
1020 if (ret) {
1021 rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
1022 rbd_put_client(rbdc);
1023 rbdc = ERR_PTR(ret);
1024 }
1025 } else {
1026 rbdc = rbd_client_create(ceph_opts);
1027 }
1028 mutex_unlock(&client_mutex);
1029
1030 return rbdc;
1031}
1032
1033static bool rbd_image_format_valid(u32 image_format)
1034{
1035 return image_format == 1 || image_format == 2;
1036}
1037
1038static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
1039{
1040 size_t size;
1041 u32 snap_count;
1042
1043 /* The header has to start with the magic rbd header text */
1044 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
1045 return false;
1046
1047 /* The bio layer requires at least sector-sized I/O */
1048
1049 if (ondisk->options.order < SECTOR_SHIFT)
1050 return false;
1051
1052 /* If we use u64 in a few spots we may be able to loosen this */
1053
1054 if (ondisk->options.order > 8 * sizeof (int) - 1)
1055 return false;
1056
1057 /*
1058 * The size of a snapshot header has to fit in a size_t, and
1059 * that limits the number of snapshots.
1060 */
1061 snap_count = le32_to_cpu(ondisk->snap_count);
1062 size = SIZE_MAX - sizeof (struct ceph_snap_context);
1063 if (snap_count > size / sizeof (__le64))
1064 return false;
1065
1066 /*
1067 * Not only that, but the size of the entire the snapshot
1068 * header must also be representable in a size_t.
1069 */
1070 size -= snap_count * sizeof (__le64);
1071 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
1072 return false;
1073
1074 return true;
1075}
1076
1077/*
1078 * returns the size of an object in the image
1079 */
1080static u32 rbd_obj_bytes(struct rbd_image_header *header)
1081{
1082 return 1U << header->obj_order;
1083}
1084
1085static void rbd_init_layout(struct rbd_device *rbd_dev)
1086{
1087 if (rbd_dev->header.stripe_unit == 0 ||
1088 rbd_dev->header.stripe_count == 0) {
1089 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
1090 rbd_dev->header.stripe_count = 1;
1091 }
1092
1093 rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
1094 rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
1095 rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
1096 rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
1097 rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
1098 RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
1099}
1100
1101/*
1102 * Fill an rbd image header with information from the given format 1
1103 * on-disk header.
1104 */
1105static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1106 struct rbd_image_header_ondisk *ondisk)
1107{
1108 struct rbd_image_header *header = &rbd_dev->header;
1109 bool first_time = header->object_prefix == NULL;
1110 struct ceph_snap_context *snapc;
1111 char *object_prefix = NULL;
1112 char *snap_names = NULL;
1113 u64 *snap_sizes = NULL;
1114 u32 snap_count;
1115 int ret = -ENOMEM;
1116 u32 i;
1117
1118 /* Allocate this now to avoid having to handle failure below */
1119
1120 if (first_time) {
1121 object_prefix = kstrndup(ondisk->object_prefix,
1122 sizeof(ondisk->object_prefix),
1123 GFP_KERNEL);
1124 if (!object_prefix)
1125 return -ENOMEM;
1126 }
1127
1128 /* Allocate the snapshot context and fill it in */
1129
1130 snap_count = le32_to_cpu(ondisk->snap_count);
1131 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1132 if (!snapc)
1133 goto out_err;
1134 snapc->seq = le64_to_cpu(ondisk->snap_seq);
1135 if (snap_count) {
1136 struct rbd_image_snap_ondisk *snaps;
1137 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1138
1139 /* We'll keep a copy of the snapshot names... */
1140
1141 if (snap_names_len > (u64)SIZE_MAX)
1142 goto out_2big;
1143 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1144 if (!snap_names)
1145 goto out_err;
1146
1147 /* ...as well as the array of their sizes. */
1148 snap_sizes = kmalloc_array(snap_count,
1149 sizeof(*header->snap_sizes),
1150 GFP_KERNEL);
1151 if (!snap_sizes)
1152 goto out_err;
1153
1154 /*
1155 * Copy the names, and fill in each snapshot's id
1156 * and size.
1157 *
1158 * Note that rbd_dev_v1_header_info() guarantees the
1159 * ondisk buffer we're working with has
1160 * snap_names_len bytes beyond the end of the
1161 * snapshot id array, this memcpy() is safe.
1162 */
1163 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1164 snaps = ondisk->snaps;
1165 for (i = 0; i < snap_count; i++) {
1166 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1167 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1168 }
1169 }
1170
1171 /* We won't fail any more, fill in the header */
1172
1173 if (first_time) {
1174 header->object_prefix = object_prefix;
1175 header->obj_order = ondisk->options.order;
1176 rbd_init_layout(rbd_dev);
1177 } else {
1178 ceph_put_snap_context(header->snapc);
1179 kfree(header->snap_names);
1180 kfree(header->snap_sizes);
1181 }
1182
1183 /* The remaining fields always get updated (when we refresh) */
1184
1185 header->image_size = le64_to_cpu(ondisk->image_size);
1186 header->snapc = snapc;
1187 header->snap_names = snap_names;
1188 header->snap_sizes = snap_sizes;
1189
1190 return 0;
1191out_2big:
1192 ret = -EIO;
1193out_err:
1194 kfree(snap_sizes);
1195 kfree(snap_names);
1196 ceph_put_snap_context(snapc);
1197 kfree(object_prefix);
1198
1199 return ret;
1200}
1201
1202static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1203{
1204 const char *snap_name;
1205
1206 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1207
1208 /* Skip over names until we find the one we are looking for */
1209
1210 snap_name = rbd_dev->header.snap_names;
1211 while (which--)
1212 snap_name += strlen(snap_name) + 1;
1213
1214 return kstrdup(snap_name, GFP_KERNEL);
1215}
1216
1217/*
1218 * Snapshot id comparison function for use with qsort()/bsearch().
1219 * Note that result is for snapshots in *descending* order.
1220 */
1221static int snapid_compare_reverse(const void *s1, const void *s2)
1222{
1223 u64 snap_id1 = *(u64 *)s1;
1224 u64 snap_id2 = *(u64 *)s2;
1225
1226 if (snap_id1 < snap_id2)
1227 return 1;
1228 return snap_id1 == snap_id2 ? 0 : -1;
1229}
1230
1231/*
1232 * Search a snapshot context to see if the given snapshot id is
1233 * present.
1234 *
1235 * Returns the position of the snapshot id in the array if it's found,
1236 * or BAD_SNAP_INDEX otherwise.
1237 *
1238 * Note: The snapshot array is in kept sorted (by the osd) in
1239 * reverse order, highest snapshot id first.
1240 */
1241static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1242{
1243 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1244 u64 *found;
1245
1246 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1247 sizeof (snap_id), snapid_compare_reverse);
1248
1249 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1250}
1251
1252static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1253 u64 snap_id)
1254{
1255 u32 which;
1256 const char *snap_name;
1257
1258 which = rbd_dev_snap_index(rbd_dev, snap_id);
1259 if (which == BAD_SNAP_INDEX)
1260 return ERR_PTR(-ENOENT);
1261
1262 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1263 return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1264}
1265
1266static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1267{
1268 if (snap_id == CEPH_NOSNAP)
1269 return RBD_SNAP_HEAD_NAME;
1270
1271 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1272 if (rbd_dev->image_format == 1)
1273 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1274
1275 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1276}
1277
1278static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1279 u64 *snap_size)
1280{
1281 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1282 if (snap_id == CEPH_NOSNAP) {
1283 *snap_size = rbd_dev->header.image_size;
1284 } else if (rbd_dev->image_format == 1) {
1285 u32 which;
1286
1287 which = rbd_dev_snap_index(rbd_dev, snap_id);
1288 if (which == BAD_SNAP_INDEX)
1289 return -ENOENT;
1290
1291 *snap_size = rbd_dev->header.snap_sizes[which];
1292 } else {
1293 u64 size = 0;
1294 int ret;
1295
1296 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1297 if (ret)
1298 return ret;
1299
1300 *snap_size = size;
1301 }
1302 return 0;
1303}
1304
1305static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1306 u64 *snap_features)
1307{
1308 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1309 if (snap_id == CEPH_NOSNAP) {
1310 *snap_features = rbd_dev->header.features;
1311 } else if (rbd_dev->image_format == 1) {
1312 *snap_features = 0; /* No features for format 1 */
1313 } else {
1314 u64 features = 0;
1315 int ret;
1316
1317 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1318 if (ret)
1319 return ret;
1320
1321 *snap_features = features;
1322 }
1323 return 0;
1324}
1325
1326static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1327{
1328 u64 snap_id = rbd_dev->spec->snap_id;
1329 u64 size = 0;
1330 u64 features = 0;
1331 int ret;
1332
1333 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1334 if (ret)
1335 return ret;
1336 ret = rbd_snap_features(rbd_dev, snap_id, &features);
1337 if (ret)
1338 return ret;
1339
1340 rbd_dev->mapping.size = size;
1341 rbd_dev->mapping.features = features;
1342
1343 return 0;
1344}
1345
1346static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1347{
1348 rbd_dev->mapping.size = 0;
1349 rbd_dev->mapping.features = 0;
1350}
1351
1352static void zero_bvec(struct bio_vec *bv)
1353{
1354 void *buf;
1355 unsigned long flags;
1356
1357 buf = bvec_kmap_irq(bv, &flags);
1358 memset(buf, 0, bv->bv_len);
1359 flush_dcache_page(bv->bv_page);
1360 bvec_kunmap_irq(buf, &flags);
1361}
1362
1363static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1364{
1365 struct ceph_bio_iter it = *bio_pos;
1366
1367 ceph_bio_iter_advance(&it, off);
1368 ceph_bio_iter_advance_step(&it, bytes, ({
1369 zero_bvec(&bv);
1370 }));
1371}
1372
1373static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1374{
1375 struct ceph_bvec_iter it = *bvec_pos;
1376
1377 ceph_bvec_iter_advance(&it, off);
1378 ceph_bvec_iter_advance_step(&it, bytes, ({
1379 zero_bvec(&bv);
1380 }));
1381}
1382
1383/*
1384 * Zero a range in @obj_req data buffer defined by a bio (list) or
1385 * (private) bio_vec array.
1386 *
1387 * @off is relative to the start of the data buffer.
1388 */
1389static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1390 u32 bytes)
1391{
1392 dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1393
1394 switch (obj_req->img_request->data_type) {
1395 case OBJ_REQUEST_BIO:
1396 zero_bios(&obj_req->bio_pos, off, bytes);
1397 break;
1398 case OBJ_REQUEST_BVECS:
1399 case OBJ_REQUEST_OWN_BVECS:
1400 zero_bvecs(&obj_req->bvec_pos, off, bytes);
1401 break;
1402 default:
1403 BUG();
1404 }
1405}
1406
1407static void rbd_obj_request_destroy(struct kref *kref);
1408static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1409{
1410 rbd_assert(obj_request != NULL);
1411 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1412 kref_read(&obj_request->kref));
1413 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1414}
1415
1416static void rbd_img_request_destroy(struct kref *kref);
1417static void rbd_img_request_put(struct rbd_img_request *img_request)
1418{
1419 rbd_assert(img_request != NULL);
1420 dout("%s: img %p (was %d)\n", __func__, img_request,
1421 kref_read(&img_request->kref));
1422 kref_put(&img_request->kref, rbd_img_request_destroy);
1423}
1424
1425static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1426 struct rbd_obj_request *obj_request)
1427{
1428 rbd_assert(obj_request->img_request == NULL);
1429
1430 /* Image request now owns object's original reference */
1431 obj_request->img_request = img_request;
1432 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1433}
1434
1435static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1436 struct rbd_obj_request *obj_request)
1437{
1438 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1439 list_del(&obj_request->ex.oe_item);
1440 rbd_assert(obj_request->img_request == img_request);
1441 rbd_obj_request_put(obj_request);
1442}
1443
1444static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1445{
1446 struct rbd_obj_request *obj_req = osd_req->r_priv;
1447
1448 dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1449 __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1450 obj_req->ex.oe_off, obj_req->ex.oe_len);
1451 ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1452}
1453
1454/*
1455 * The default/initial value for all image request flags is 0. Each
1456 * is conditionally set to 1 at image request initialization time
1457 * and currently never change thereafter.
1458 */
1459static void img_request_layered_set(struct rbd_img_request *img_request)
1460{
1461 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1462 smp_mb();
1463}
1464
1465static void img_request_layered_clear(struct rbd_img_request *img_request)
1466{
1467 clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1468 smp_mb();
1469}
1470
1471static bool img_request_layered_test(struct rbd_img_request *img_request)
1472{
1473 smp_mb();
1474 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1475}
1476
1477static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1478{
1479 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1480
1481 return !obj_req->ex.oe_off &&
1482 obj_req->ex.oe_len == rbd_dev->layout.object_size;
1483}
1484
1485static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1486{
1487 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1488
1489 return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1490 rbd_dev->layout.object_size;
1491}
1492
1493/*
1494 * Must be called after rbd_obj_calc_img_extents().
1495 */
1496static bool rbd_obj_copyup_enabled(struct rbd_obj_request *obj_req)
1497{
1498 if (!obj_req->num_img_extents ||
1499 (rbd_obj_is_entire(obj_req) &&
1500 !obj_req->img_request->snapc->num_snaps))
1501 return false;
1502
1503 return true;
1504}
1505
1506static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1507{
1508 return ceph_file_extents_bytes(obj_req->img_extents,
1509 obj_req->num_img_extents);
1510}
1511
1512static bool rbd_img_is_write(struct rbd_img_request *img_req)
1513{
1514 switch (img_req->op_type) {
1515 case OBJ_OP_READ:
1516 return false;
1517 case OBJ_OP_WRITE:
1518 case OBJ_OP_DISCARD:
1519 case OBJ_OP_ZEROOUT:
1520 return true;
1521 default:
1522 BUG();
1523 }
1524}
1525
1526static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1527{
1528 struct rbd_obj_request *obj_req = osd_req->r_priv;
1529 int result;
1530
1531 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1532 osd_req->r_result, obj_req);
1533
1534 /*
1535 * Writes aren't allowed to return a data payload. In some
1536 * guarded write cases (e.g. stat + zero on an empty object)
1537 * a stat response makes it through, but we don't care.
1538 */
1539 if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1540 result = 0;
1541 else
1542 result = osd_req->r_result;
1543
1544 rbd_obj_handle_request(obj_req, result);
1545}
1546
1547static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1548{
1549 struct rbd_obj_request *obj_request = osd_req->r_priv;
1550
1551 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1552 osd_req->r_snapid = obj_request->img_request->snap_id;
1553}
1554
1555static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1556{
1557 struct rbd_obj_request *obj_request = osd_req->r_priv;
1558
1559 osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1560 ktime_get_real_ts64(&osd_req->r_mtime);
1561 osd_req->r_data_offset = obj_request->ex.oe_off;
1562}
1563
1564static struct ceph_osd_request *
1565__rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1566 struct ceph_snap_context *snapc, int num_ops)
1567{
1568 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1569 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1570 struct ceph_osd_request *req;
1571 const char *name_format = rbd_dev->image_format == 1 ?
1572 RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1573 int ret;
1574
1575 req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1576 if (!req)
1577 return ERR_PTR(-ENOMEM);
1578
1579 list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1580 req->r_callback = rbd_osd_req_callback;
1581 req->r_priv = obj_req;
1582
1583 /*
1584 * Data objects may be stored in a separate pool, but always in
1585 * the same namespace in that pool as the header in its pool.
1586 */
1587 ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1588 req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1589
1590 ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1591 rbd_dev->header.object_prefix,
1592 obj_req->ex.oe_objno);
1593 if (ret)
1594 return ERR_PTR(ret);
1595
1596 return req;
1597}
1598
1599static struct ceph_osd_request *
1600rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1601{
1602 return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1603 num_ops);
1604}
1605
1606static struct rbd_obj_request *rbd_obj_request_create(void)
1607{
1608 struct rbd_obj_request *obj_request;
1609
1610 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1611 if (!obj_request)
1612 return NULL;
1613
1614 ceph_object_extent_init(&obj_request->ex);
1615 INIT_LIST_HEAD(&obj_request->osd_reqs);
1616 mutex_init(&obj_request->state_mutex);
1617 kref_init(&obj_request->kref);
1618
1619 dout("%s %p\n", __func__, obj_request);
1620 return obj_request;
1621}
1622
1623static void rbd_obj_request_destroy(struct kref *kref)
1624{
1625 struct rbd_obj_request *obj_request;
1626 struct ceph_osd_request *osd_req;
1627 u32 i;
1628
1629 obj_request = container_of(kref, struct rbd_obj_request, kref);
1630
1631 dout("%s: obj %p\n", __func__, obj_request);
1632
1633 while (!list_empty(&obj_request->osd_reqs)) {
1634 osd_req = list_first_entry(&obj_request->osd_reqs,
1635 struct ceph_osd_request, r_private_item);
1636 list_del_init(&osd_req->r_private_item);
1637 ceph_osdc_put_request(osd_req);
1638 }
1639
1640 switch (obj_request->img_request->data_type) {
1641 case OBJ_REQUEST_NODATA:
1642 case OBJ_REQUEST_BIO:
1643 case OBJ_REQUEST_BVECS:
1644 break; /* Nothing to do */
1645 case OBJ_REQUEST_OWN_BVECS:
1646 kfree(obj_request->bvec_pos.bvecs);
1647 break;
1648 default:
1649 BUG();
1650 }
1651
1652 kfree(obj_request->img_extents);
1653 if (obj_request->copyup_bvecs) {
1654 for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1655 if (obj_request->copyup_bvecs[i].bv_page)
1656 __free_page(obj_request->copyup_bvecs[i].bv_page);
1657 }
1658 kfree(obj_request->copyup_bvecs);
1659 }
1660
1661 kmem_cache_free(rbd_obj_request_cache, obj_request);
1662}
1663
1664/* It's OK to call this for a device with no parent */
1665
1666static void rbd_spec_put(struct rbd_spec *spec);
1667static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1668{
1669 rbd_dev_remove_parent(rbd_dev);
1670 rbd_spec_put(rbd_dev->parent_spec);
1671 rbd_dev->parent_spec = NULL;
1672 rbd_dev->parent_overlap = 0;
1673}
1674
1675/*
1676 * Parent image reference counting is used to determine when an
1677 * image's parent fields can be safely torn down--after there are no
1678 * more in-flight requests to the parent image. When the last
1679 * reference is dropped, cleaning them up is safe.
1680 */
1681static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1682{
1683 int counter;
1684
1685 if (!rbd_dev->parent_spec)
1686 return;
1687
1688 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1689 if (counter > 0)
1690 return;
1691
1692 /* Last reference; clean up parent data structures */
1693
1694 if (!counter)
1695 rbd_dev_unparent(rbd_dev);
1696 else
1697 rbd_warn(rbd_dev, "parent reference underflow");
1698}
1699
1700/*
1701 * If an image has a non-zero parent overlap, get a reference to its
1702 * parent.
1703 *
1704 * Returns true if the rbd device has a parent with a non-zero
1705 * overlap and a reference for it was successfully taken, or
1706 * false otherwise.
1707 */
1708static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1709{
1710 int counter = 0;
1711
1712 if (!rbd_dev->parent_spec)
1713 return false;
1714
1715 down_read(&rbd_dev->header_rwsem);
1716 if (rbd_dev->parent_overlap)
1717 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1718 up_read(&rbd_dev->header_rwsem);
1719
1720 if (counter < 0)
1721 rbd_warn(rbd_dev, "parent reference overflow");
1722
1723 return counter > 0;
1724}
1725
1726/*
1727 * Caller is responsible for filling in the list of object requests
1728 * that comprises the image request, and the Linux request pointer
1729 * (if there is one).
1730 */
1731static struct rbd_img_request *rbd_img_request_create(
1732 struct rbd_device *rbd_dev,
1733 enum obj_operation_type op_type,
1734 struct ceph_snap_context *snapc)
1735{
1736 struct rbd_img_request *img_request;
1737
1738 img_request = kmem_cache_zalloc(rbd_img_request_cache, GFP_NOIO);
1739 if (!img_request)
1740 return NULL;
1741
1742 img_request->rbd_dev = rbd_dev;
1743 img_request->op_type = op_type;
1744 if (!rbd_img_is_write(img_request))
1745 img_request->snap_id = rbd_dev->spec->snap_id;
1746 else
1747 img_request->snapc = snapc;
1748
1749 if (rbd_dev_parent_get(rbd_dev))
1750 img_request_layered_set(img_request);
1751
1752 INIT_LIST_HEAD(&img_request->lock_item);
1753 INIT_LIST_HEAD(&img_request->object_extents);
1754 mutex_init(&img_request->state_mutex);
1755 kref_init(&img_request->kref);
1756
1757 return img_request;
1758}
1759
1760static void rbd_img_request_destroy(struct kref *kref)
1761{
1762 struct rbd_img_request *img_request;
1763 struct rbd_obj_request *obj_request;
1764 struct rbd_obj_request *next_obj_request;
1765
1766 img_request = container_of(kref, struct rbd_img_request, kref);
1767
1768 dout("%s: img %p\n", __func__, img_request);
1769
1770 WARN_ON(!list_empty(&img_request->lock_item));
1771 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1772 rbd_img_obj_request_del(img_request, obj_request);
1773
1774 if (img_request_layered_test(img_request)) {
1775 img_request_layered_clear(img_request);
1776 rbd_dev_parent_put(img_request->rbd_dev);
1777 }
1778
1779 if (rbd_img_is_write(img_request))
1780 ceph_put_snap_context(img_request->snapc);
1781
1782 kmem_cache_free(rbd_img_request_cache, img_request);
1783}
1784
1785#define BITS_PER_OBJ 2
1786#define OBJS_PER_BYTE (BITS_PER_BYTE / BITS_PER_OBJ)
1787#define OBJ_MASK ((1 << BITS_PER_OBJ) - 1)
1788
1789static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1790 u64 *index, u8 *shift)
1791{
1792 u32 off;
1793
1794 rbd_assert(objno < rbd_dev->object_map_size);
1795 *index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1796 *shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1797}
1798
1799static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1800{
1801 u64 index;
1802 u8 shift;
1803
1804 lockdep_assert_held(&rbd_dev->object_map_lock);
1805 __rbd_object_map_index(rbd_dev, objno, &index, &shift);
1806 return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1807}
1808
1809static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1810{
1811 u64 index;
1812 u8 shift;
1813 u8 *p;
1814
1815 lockdep_assert_held(&rbd_dev->object_map_lock);
1816 rbd_assert(!(val & ~OBJ_MASK));
1817
1818 __rbd_object_map_index(rbd_dev, objno, &index, &shift);
1819 p = &rbd_dev->object_map[index];
1820 *p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1821}
1822
1823static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1824{
1825 u8 state;
1826
1827 spin_lock(&rbd_dev->object_map_lock);
1828 state = __rbd_object_map_get(rbd_dev, objno);
1829 spin_unlock(&rbd_dev->object_map_lock);
1830 return state;
1831}
1832
1833static bool use_object_map(struct rbd_device *rbd_dev)
1834{
1835 return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1836 !(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1837}
1838
1839static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1840{
1841 u8 state;
1842
1843 /* fall back to default logic if object map is disabled or invalid */
1844 if (!use_object_map(rbd_dev))
1845 return true;
1846
1847 state = rbd_object_map_get(rbd_dev, objno);
1848 return state != OBJECT_NONEXISTENT;
1849}
1850
1851static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1852 struct ceph_object_id *oid)
1853{
1854 if (snap_id == CEPH_NOSNAP)
1855 ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1856 rbd_dev->spec->image_id);
1857 else
1858 ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1859 rbd_dev->spec->image_id, snap_id);
1860}
1861
1862static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1863{
1864 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1865 CEPH_DEFINE_OID_ONSTACK(oid);
1866 u8 lock_type;
1867 char *lock_tag;
1868 struct ceph_locker *lockers;
1869 u32 num_lockers;
1870 bool broke_lock = false;
1871 int ret;
1872
1873 rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1874
1875again:
1876 ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1877 CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1878 if (ret != -EBUSY || broke_lock) {
1879 if (ret == -EEXIST)
1880 ret = 0; /* already locked by myself */
1881 if (ret)
1882 rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1883 return ret;
1884 }
1885
1886 ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1887 RBD_LOCK_NAME, &lock_type, &lock_tag,
1888 &lockers, &num_lockers);
1889 if (ret) {
1890 if (ret == -ENOENT)
1891 goto again;
1892
1893 rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1894 return ret;
1895 }
1896
1897 kfree(lock_tag);
1898 if (num_lockers == 0)
1899 goto again;
1900
1901 rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1902 ENTITY_NAME(lockers[0].id.name));
1903
1904 ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1905 RBD_LOCK_NAME, lockers[0].id.cookie,
1906 &lockers[0].id.name);
1907 ceph_free_lockers(lockers, num_lockers);
1908 if (ret) {
1909 if (ret == -ENOENT)
1910 goto again;
1911
1912 rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1913 return ret;
1914 }
1915
1916 broke_lock = true;
1917 goto again;
1918}
1919
1920static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1921{
1922 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1923 CEPH_DEFINE_OID_ONSTACK(oid);
1924 int ret;
1925
1926 rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1927
1928 ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1929 "");
1930 if (ret && ret != -ENOENT)
1931 rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1932}
1933
1934static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1935{
1936 u8 struct_v;
1937 u32 struct_len;
1938 u32 header_len;
1939 void *header_end;
1940 int ret;
1941
1942 ceph_decode_32_safe(p, end, header_len, e_inval);
1943 header_end = *p + header_len;
1944
1945 ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1946 &struct_len);
1947 if (ret)
1948 return ret;
1949
1950 ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1951
1952 *p = header_end;
1953 return 0;
1954
1955e_inval:
1956 return -EINVAL;
1957}
1958
1959static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1960{
1961 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1962 CEPH_DEFINE_OID_ONSTACK(oid);
1963 struct page **pages;
1964 void *p, *end;
1965 size_t reply_len;
1966 u64 num_objects;
1967 u64 object_map_bytes;
1968 u64 object_map_size;
1969 int num_pages;
1970 int ret;
1971
1972 rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1973
1974 num_objects = ceph_get_num_objects(&rbd_dev->layout,
1975 rbd_dev->mapping.size);
1976 object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1977 BITS_PER_BYTE);
1978 num_pages = calc_pages_for(0, object_map_bytes) + 1;
1979 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1980 if (IS_ERR(pages))
1981 return PTR_ERR(pages);
1982
1983 reply_len = num_pages * PAGE_SIZE;
1984 rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1985 ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1986 "rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1987 NULL, 0, pages, &reply_len);
1988 if (ret)
1989 goto out;
1990
1991 p = page_address(pages[0]);
1992 end = p + min(reply_len, (size_t)PAGE_SIZE);
1993 ret = decode_object_map_header(&p, end, &object_map_size);
1994 if (ret)
1995 goto out;
1996
1997 if (object_map_size != num_objects) {
1998 rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1999 object_map_size, num_objects);
2000 ret = -EINVAL;
2001 goto out;
2002 }
2003
2004 if (offset_in_page(p) + object_map_bytes > reply_len) {
2005 ret = -EINVAL;
2006 goto out;
2007 }
2008
2009 rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
2010 if (!rbd_dev->object_map) {
2011 ret = -ENOMEM;
2012 goto out;
2013 }
2014
2015 rbd_dev->object_map_size = object_map_size;
2016 ceph_copy_from_page_vector(pages, rbd_dev->object_map,
2017 offset_in_page(p), object_map_bytes);
2018
2019out:
2020 ceph_release_page_vector(pages, num_pages);
2021 return ret;
2022}
2023
2024static void rbd_object_map_free(struct rbd_device *rbd_dev)
2025{
2026 kvfree(rbd_dev->object_map);
2027 rbd_dev->object_map = NULL;
2028 rbd_dev->object_map_size = 0;
2029}
2030
2031static int rbd_object_map_load(struct rbd_device *rbd_dev)
2032{
2033 int ret;
2034
2035 ret = __rbd_object_map_load(rbd_dev);
2036 if (ret)
2037 return ret;
2038
2039 ret = rbd_dev_v2_get_flags(rbd_dev);
2040 if (ret) {
2041 rbd_object_map_free(rbd_dev);
2042 return ret;
2043 }
2044
2045 if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
2046 rbd_warn(rbd_dev, "object map is invalid");
2047
2048 return 0;
2049}
2050
2051static int rbd_object_map_open(struct rbd_device *rbd_dev)
2052{
2053 int ret;
2054
2055 ret = rbd_object_map_lock(rbd_dev);
2056 if (ret)
2057 return ret;
2058
2059 ret = rbd_object_map_load(rbd_dev);
2060 if (ret) {
2061 rbd_object_map_unlock(rbd_dev);
2062 return ret;
2063 }
2064
2065 return 0;
2066}
2067
2068static void rbd_object_map_close(struct rbd_device *rbd_dev)
2069{
2070 rbd_object_map_free(rbd_dev);
2071 rbd_object_map_unlock(rbd_dev);
2072}
2073
2074/*
2075 * This function needs snap_id (or more precisely just something to
2076 * distinguish between HEAD and snapshot object maps), new_state and
2077 * current_state that were passed to rbd_object_map_update().
2078 *
2079 * To avoid allocating and stashing a context we piggyback on the OSD
2080 * request. A HEAD update has two ops (assert_locked). For new_state
2081 * and current_state we decode our own object_map_update op, encoded in
2082 * rbd_cls_object_map_update().
2083 */
2084static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
2085 struct ceph_osd_request *osd_req)
2086{
2087 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2088 struct ceph_osd_data *osd_data;
2089 u64 objno;
2090 u8 state, new_state, current_state;
2091 bool has_current_state;
2092 void *p;
2093
2094 if (osd_req->r_result)
2095 return osd_req->r_result;
2096
2097 /*
2098 * Nothing to do for a snapshot object map.
2099 */
2100 if (osd_req->r_num_ops == 1)
2101 return 0;
2102
2103 /*
2104 * Update in-memory HEAD object map.
2105 */
2106 rbd_assert(osd_req->r_num_ops == 2);
2107 osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
2108 rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
2109
2110 p = page_address(osd_data->pages[0]);
2111 objno = ceph_decode_64(&p);
2112 rbd_assert(objno == obj_req->ex.oe_objno);
2113 rbd_assert(ceph_decode_64(&p) == objno + 1);
2114 new_state = ceph_decode_8(&p);
2115 has_current_state = ceph_decode_8(&p);
2116 if (has_current_state)
2117 current_state = ceph_decode_8(&p);
2118
2119 spin_lock(&rbd_dev->object_map_lock);
2120 state = __rbd_object_map_get(rbd_dev, objno);
2121 if (!has_current_state || current_state == state ||
2122 (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
2123 __rbd_object_map_set(rbd_dev, objno, new_state);
2124 spin_unlock(&rbd_dev->object_map_lock);
2125
2126 return 0;
2127}
2128
2129static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
2130{
2131 struct rbd_obj_request *obj_req = osd_req->r_priv;
2132 int result;
2133
2134 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
2135 osd_req->r_result, obj_req);
2136
2137 result = rbd_object_map_update_finish(obj_req, osd_req);
2138 rbd_obj_handle_request(obj_req, result);
2139}
2140
2141static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
2142{
2143 u8 state = rbd_object_map_get(rbd_dev, objno);
2144
2145 if (state == new_state ||
2146 (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
2147 (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
2148 return false;
2149
2150 return true;
2151}
2152
2153static int rbd_cls_object_map_update(struct ceph_osd_request *req,
2154 int which, u64 objno, u8 new_state,
2155 const u8 *current_state)
2156{
2157 struct page **pages;
2158 void *p, *start;
2159 int ret;
2160
2161 ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2162 if (ret)
2163 return ret;
2164
2165 pages = ceph_alloc_page_vector(1, GFP_NOIO);
2166 if (IS_ERR(pages))
2167 return PTR_ERR(pages);
2168
2169 p = start = page_address(pages[0]);
2170 ceph_encode_64(&p, objno);
2171 ceph_encode_64(&p, objno + 1);
2172 ceph_encode_8(&p, new_state);
2173 if (current_state) {
2174 ceph_encode_8(&p, 1);
2175 ceph_encode_8(&p, *current_state);
2176 } else {
2177 ceph_encode_8(&p, 0);
2178 }
2179
2180 osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2181 false, true);
2182 return 0;
2183}
2184
2185/*
2186 * Return:
2187 * 0 - object map update sent
2188 * 1 - object map update isn't needed
2189 * <0 - error
2190 */
2191static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2192 u8 new_state, const u8 *current_state)
2193{
2194 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2195 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2196 struct ceph_osd_request *req;
2197 int num_ops = 1;
2198 int which = 0;
2199 int ret;
2200
2201 if (snap_id == CEPH_NOSNAP) {
2202 if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2203 return 1;
2204
2205 num_ops++; /* assert_locked */
2206 }
2207
2208 req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2209 if (!req)
2210 return -ENOMEM;
2211
2212 list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2213 req->r_callback = rbd_object_map_callback;
2214 req->r_priv = obj_req;
2215
2216 rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2217 ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2218 req->r_flags = CEPH_OSD_FLAG_WRITE;
2219 ktime_get_real_ts64(&req->r_mtime);
2220
2221 if (snap_id == CEPH_NOSNAP) {
2222 /*
2223 * Protect against possible race conditions during lock
2224 * ownership transitions.
2225 */
2226 ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2227 CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2228 if (ret)
2229 return ret;
2230 }
2231
2232 ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2233 new_state, current_state);
2234 if (ret)
2235 return ret;
2236
2237 ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2238 if (ret)
2239 return ret;
2240
2241 ceph_osdc_start_request(osdc, req, false);
2242 return 0;
2243}
2244
2245static void prune_extents(struct ceph_file_extent *img_extents,
2246 u32 *num_img_extents, u64 overlap)
2247{
2248 u32 cnt = *num_img_extents;
2249
2250 /* drop extents completely beyond the overlap */
2251 while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2252 cnt--;
2253
2254 if (cnt) {
2255 struct ceph_file_extent *ex = &img_extents[cnt - 1];
2256
2257 /* trim final overlapping extent */
2258 if (ex->fe_off + ex->fe_len > overlap)
2259 ex->fe_len = overlap - ex->fe_off;
2260 }
2261
2262 *num_img_extents = cnt;
2263}
2264
2265/*
2266 * Determine the byte range(s) covered by either just the object extent
2267 * or the entire object in the parent image.
2268 */
2269static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2270 bool entire)
2271{
2272 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2273 int ret;
2274
2275 if (!rbd_dev->parent_overlap)
2276 return 0;
2277
2278 ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2279 entire ? 0 : obj_req->ex.oe_off,
2280 entire ? rbd_dev->layout.object_size :
2281 obj_req->ex.oe_len,
2282 &obj_req->img_extents,
2283 &obj_req->num_img_extents);
2284 if (ret)
2285 return ret;
2286
2287 prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2288 rbd_dev->parent_overlap);
2289 return 0;
2290}
2291
2292static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2293{
2294 struct rbd_obj_request *obj_req = osd_req->r_priv;
2295
2296 switch (obj_req->img_request->data_type) {
2297 case OBJ_REQUEST_BIO:
2298 osd_req_op_extent_osd_data_bio(osd_req, which,
2299 &obj_req->bio_pos,
2300 obj_req->ex.oe_len);
2301 break;
2302 case OBJ_REQUEST_BVECS:
2303 case OBJ_REQUEST_OWN_BVECS:
2304 rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2305 obj_req->ex.oe_len);
2306 rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2307 osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2308 &obj_req->bvec_pos);
2309 break;
2310 default:
2311 BUG();
2312 }
2313}
2314
2315static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2316{
2317 struct page **pages;
2318
2319 /*
2320 * The response data for a STAT call consists of:
2321 * le64 length;
2322 * struct {
2323 * le32 tv_sec;
2324 * le32 tv_nsec;
2325 * } mtime;
2326 */
2327 pages = ceph_alloc_page_vector(1, GFP_NOIO);
2328 if (IS_ERR(pages))
2329 return PTR_ERR(pages);
2330
2331 osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2332 osd_req_op_raw_data_in_pages(osd_req, which, pages,
2333 8 + sizeof(struct ceph_timespec),
2334 0, false, true);
2335 return 0;
2336}
2337
2338static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2339 u32 bytes)
2340{
2341 struct rbd_obj_request *obj_req = osd_req->r_priv;
2342 int ret;
2343
2344 ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2345 if (ret)
2346 return ret;
2347
2348 osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2349 obj_req->copyup_bvec_count, bytes);
2350 return 0;
2351}
2352
2353static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2354{
2355 obj_req->read_state = RBD_OBJ_READ_START;
2356 return 0;
2357}
2358
2359static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2360 int which)
2361{
2362 struct rbd_obj_request *obj_req = osd_req->r_priv;
2363 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2364 u16 opcode;
2365
2366 if (!use_object_map(rbd_dev) ||
2367 !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2368 osd_req_op_alloc_hint_init(osd_req, which++,
2369 rbd_dev->layout.object_size,
2370 rbd_dev->layout.object_size);
2371 }
2372
2373 if (rbd_obj_is_entire(obj_req))
2374 opcode = CEPH_OSD_OP_WRITEFULL;
2375 else
2376 opcode = CEPH_OSD_OP_WRITE;
2377
2378 osd_req_op_extent_init(osd_req, which, opcode,
2379 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2380 rbd_osd_setup_data(osd_req, which);
2381}
2382
2383static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2384{
2385 int ret;
2386
2387 /* reverse map the entire object onto the parent */
2388 ret = rbd_obj_calc_img_extents(obj_req, true);
2389 if (ret)
2390 return ret;
2391
2392 if (rbd_obj_copyup_enabled(obj_req))
2393 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2394
2395 obj_req->write_state = RBD_OBJ_WRITE_START;
2396 return 0;
2397}
2398
2399static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2400{
2401 return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2402 CEPH_OSD_OP_ZERO;
2403}
2404
2405static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2406 int which)
2407{
2408 struct rbd_obj_request *obj_req = osd_req->r_priv;
2409
2410 if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2411 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2412 osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2413 } else {
2414 osd_req_op_extent_init(osd_req, which,
2415 truncate_or_zero_opcode(obj_req),
2416 obj_req->ex.oe_off, obj_req->ex.oe_len,
2417 0, 0);
2418 }
2419}
2420
2421static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2422{
2423 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2424 u64 off, next_off;
2425 int ret;
2426
2427 /*
2428 * Align the range to alloc_size boundary and punt on discards
2429 * that are too small to free up any space.
2430 *
2431 * alloc_size == object_size && is_tail() is a special case for
2432 * filestore with filestore_punch_hole = false, needed to allow
2433 * truncate (in addition to delete).
2434 */
2435 if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2436 !rbd_obj_is_tail(obj_req)) {
2437 off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2438 next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2439 rbd_dev->opts->alloc_size);
2440 if (off >= next_off)
2441 return 1;
2442
2443 dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2444 obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2445 off, next_off - off);
2446 obj_req->ex.oe_off = off;
2447 obj_req->ex.oe_len = next_off - off;
2448 }
2449
2450 /* reverse map the entire object onto the parent */
2451 ret = rbd_obj_calc_img_extents(obj_req, true);
2452 if (ret)
2453 return ret;
2454
2455 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2456 if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2457 obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2458
2459 obj_req->write_state = RBD_OBJ_WRITE_START;
2460 return 0;
2461}
2462
2463static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2464 int which)
2465{
2466 struct rbd_obj_request *obj_req = osd_req->r_priv;
2467 u16 opcode;
2468
2469 if (rbd_obj_is_entire(obj_req)) {
2470 if (obj_req->num_img_extents) {
2471 if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2472 osd_req_op_init(osd_req, which++,
2473 CEPH_OSD_OP_CREATE, 0);
2474 opcode = CEPH_OSD_OP_TRUNCATE;
2475 } else {
2476 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2477 osd_req_op_init(osd_req, which++,
2478 CEPH_OSD_OP_DELETE, 0);
2479 opcode = 0;
2480 }
2481 } else {
2482 opcode = truncate_or_zero_opcode(obj_req);
2483 }
2484
2485 if (opcode)
2486 osd_req_op_extent_init(osd_req, which, opcode,
2487 obj_req->ex.oe_off, obj_req->ex.oe_len,
2488 0, 0);
2489}
2490
2491static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2492{
2493 int ret;
2494
2495 /* reverse map the entire object onto the parent */
2496 ret = rbd_obj_calc_img_extents(obj_req, true);
2497 if (ret)
2498 return ret;
2499
2500 if (rbd_obj_copyup_enabled(obj_req))
2501 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2502 if (!obj_req->num_img_extents) {
2503 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2504 if (rbd_obj_is_entire(obj_req))
2505 obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2506 }
2507
2508 obj_req->write_state = RBD_OBJ_WRITE_START;
2509 return 0;
2510}
2511
2512static int count_write_ops(struct rbd_obj_request *obj_req)
2513{
2514 struct rbd_img_request *img_req = obj_req->img_request;
2515
2516 switch (img_req->op_type) {
2517 case OBJ_OP_WRITE:
2518 if (!use_object_map(img_req->rbd_dev) ||
2519 !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2520 return 2; /* setallochint + write/writefull */
2521
2522 return 1; /* write/writefull */
2523 case OBJ_OP_DISCARD:
2524 return 1; /* delete/truncate/zero */
2525 case OBJ_OP_ZEROOUT:
2526 if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2527 !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2528 return 2; /* create + truncate */
2529
2530 return 1; /* delete/truncate/zero */
2531 default:
2532 BUG();
2533 }
2534}
2535
2536static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2537 int which)
2538{
2539 struct rbd_obj_request *obj_req = osd_req->r_priv;
2540
2541 switch (obj_req->img_request->op_type) {
2542 case OBJ_OP_WRITE:
2543 __rbd_osd_setup_write_ops(osd_req, which);
2544 break;
2545 case OBJ_OP_DISCARD:
2546 __rbd_osd_setup_discard_ops(osd_req, which);
2547 break;
2548 case OBJ_OP_ZEROOUT:
2549 __rbd_osd_setup_zeroout_ops(osd_req, which);
2550 break;
2551 default:
2552 BUG();
2553 }
2554}
2555
2556/*
2557 * Prune the list of object requests (adjust offset and/or length, drop
2558 * redundant requests). Prepare object request state machines and image
2559 * request state machine for execution.
2560 */
2561static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2562{
2563 struct rbd_obj_request *obj_req, *next_obj_req;
2564 int ret;
2565
2566 for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2567 switch (img_req->op_type) {
2568 case OBJ_OP_READ:
2569 ret = rbd_obj_init_read(obj_req);
2570 break;
2571 case OBJ_OP_WRITE:
2572 ret = rbd_obj_init_write(obj_req);
2573 break;
2574 case OBJ_OP_DISCARD:
2575 ret = rbd_obj_init_discard(obj_req);
2576 break;
2577 case OBJ_OP_ZEROOUT:
2578 ret = rbd_obj_init_zeroout(obj_req);
2579 break;
2580 default:
2581 BUG();
2582 }
2583 if (ret < 0)
2584 return ret;
2585 if (ret > 0) {
2586 rbd_img_obj_request_del(img_req, obj_req);
2587 continue;
2588 }
2589 }
2590
2591 img_req->state = RBD_IMG_START;
2592 return 0;
2593}
2594
2595union rbd_img_fill_iter {
2596 struct ceph_bio_iter bio_iter;
2597 struct ceph_bvec_iter bvec_iter;
2598};
2599
2600struct rbd_img_fill_ctx {
2601 enum obj_request_type pos_type;
2602 union rbd_img_fill_iter *pos;
2603 union rbd_img_fill_iter iter;
2604 ceph_object_extent_fn_t set_pos_fn;
2605 ceph_object_extent_fn_t count_fn;
2606 ceph_object_extent_fn_t copy_fn;
2607};
2608
2609static struct ceph_object_extent *alloc_object_extent(void *arg)
2610{
2611 struct rbd_img_request *img_req = arg;
2612 struct rbd_obj_request *obj_req;
2613
2614 obj_req = rbd_obj_request_create();
2615 if (!obj_req)
2616 return NULL;
2617
2618 rbd_img_obj_request_add(img_req, obj_req);
2619 return &obj_req->ex;
2620}
2621
2622/*
2623 * While su != os && sc == 1 is technically not fancy (it's the same
2624 * layout as su == os && sc == 1), we can't use the nocopy path for it
2625 * because ->set_pos_fn() should be called only once per object.
2626 * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2627 * treat su != os && sc == 1 as fancy.
2628 */
2629static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2630{
2631 return l->stripe_unit != l->object_size;
2632}
2633
2634static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2635 struct ceph_file_extent *img_extents,
2636 u32 num_img_extents,
2637 struct rbd_img_fill_ctx *fctx)
2638{
2639 u32 i;
2640 int ret;
2641
2642 img_req->data_type = fctx->pos_type;
2643
2644 /*
2645 * Create object requests and set each object request's starting
2646 * position in the provided bio (list) or bio_vec array.
2647 */
2648 fctx->iter = *fctx->pos;
2649 for (i = 0; i < num_img_extents; i++) {
2650 ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2651 img_extents[i].fe_off,
2652 img_extents[i].fe_len,
2653 &img_req->object_extents,
2654 alloc_object_extent, img_req,
2655 fctx->set_pos_fn, &fctx->iter);
2656 if (ret)
2657 return ret;
2658 }
2659
2660 return __rbd_img_fill_request(img_req);
2661}
2662
2663/*
2664 * Map a list of image extents to a list of object extents, create the
2665 * corresponding object requests (normally each to a different object,
2666 * but not always) and add them to @img_req. For each object request,
2667 * set up its data descriptor to point to the corresponding chunk(s) of
2668 * @fctx->pos data buffer.
2669 *
2670 * Because ceph_file_to_extents() will merge adjacent object extents
2671 * together, each object request's data descriptor may point to multiple
2672 * different chunks of @fctx->pos data buffer.
2673 *
2674 * @fctx->pos data buffer is assumed to be large enough.
2675 */
2676static int rbd_img_fill_request(struct rbd_img_request *img_req,
2677 struct ceph_file_extent *img_extents,
2678 u32 num_img_extents,
2679 struct rbd_img_fill_ctx *fctx)
2680{
2681 struct rbd_device *rbd_dev = img_req->rbd_dev;
2682 struct rbd_obj_request *obj_req;
2683 u32 i;
2684 int ret;
2685
2686 if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2687 !rbd_layout_is_fancy(&rbd_dev->layout))
2688 return rbd_img_fill_request_nocopy(img_req, img_extents,
2689 num_img_extents, fctx);
2690
2691 img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2692
2693 /*
2694 * Create object requests and determine ->bvec_count for each object
2695 * request. Note that ->bvec_count sum over all object requests may
2696 * be greater than the number of bio_vecs in the provided bio (list)
2697 * or bio_vec array because when mapped, those bio_vecs can straddle
2698 * stripe unit boundaries.
2699 */
2700 fctx->iter = *fctx->pos;
2701 for (i = 0; i < num_img_extents; i++) {
2702 ret = ceph_file_to_extents(&rbd_dev->layout,
2703 img_extents[i].fe_off,
2704 img_extents[i].fe_len,
2705 &img_req->object_extents,
2706 alloc_object_extent, img_req,
2707 fctx->count_fn, &fctx->iter);
2708 if (ret)
2709 return ret;
2710 }
2711
2712 for_each_obj_request(img_req, obj_req) {
2713 obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2714 sizeof(*obj_req->bvec_pos.bvecs),
2715 GFP_NOIO);
2716 if (!obj_req->bvec_pos.bvecs)
2717 return -ENOMEM;
2718 }
2719
2720 /*
2721 * Fill in each object request's private bio_vec array, splitting and
2722 * rearranging the provided bio_vecs in stripe unit chunks as needed.
2723 */
2724 fctx->iter = *fctx->pos;
2725 for (i = 0; i < num_img_extents; i++) {
2726 ret = ceph_iterate_extents(&rbd_dev->layout,
2727 img_extents[i].fe_off,
2728 img_extents[i].fe_len,
2729 &img_req->object_extents,
2730 fctx->copy_fn, &fctx->iter);
2731 if (ret)
2732 return ret;
2733 }
2734
2735 return __rbd_img_fill_request(img_req);
2736}
2737
2738static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2739 u64 off, u64 len)
2740{
2741 struct ceph_file_extent ex = { off, len };
2742 union rbd_img_fill_iter dummy;
2743 struct rbd_img_fill_ctx fctx = {
2744 .pos_type = OBJ_REQUEST_NODATA,
2745 .pos = &dummy,
2746 };
2747
2748 return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2749}
2750
2751static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2752{
2753 struct rbd_obj_request *obj_req =
2754 container_of(ex, struct rbd_obj_request, ex);
2755 struct ceph_bio_iter *it = arg;
2756
2757 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2758 obj_req->bio_pos = *it;
2759 ceph_bio_iter_advance(it, bytes);
2760}
2761
2762static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2763{
2764 struct rbd_obj_request *obj_req =
2765 container_of(ex, struct rbd_obj_request, ex);
2766 struct ceph_bio_iter *it = arg;
2767
2768 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2769 ceph_bio_iter_advance_step(it, bytes, ({
2770 obj_req->bvec_count++;
2771 }));
2772
2773}
2774
2775static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2776{
2777 struct rbd_obj_request *obj_req =
2778 container_of(ex, struct rbd_obj_request, ex);
2779 struct ceph_bio_iter *it = arg;
2780
2781 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2782 ceph_bio_iter_advance_step(it, bytes, ({
2783 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2784 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2785 }));
2786}
2787
2788static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2789 struct ceph_file_extent *img_extents,
2790 u32 num_img_extents,
2791 struct ceph_bio_iter *bio_pos)
2792{
2793 struct rbd_img_fill_ctx fctx = {
2794 .pos_type = OBJ_REQUEST_BIO,
2795 .pos = (union rbd_img_fill_iter *)bio_pos,
2796 .set_pos_fn = set_bio_pos,
2797 .count_fn = count_bio_bvecs,
2798 .copy_fn = copy_bio_bvecs,
2799 };
2800
2801 return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2802 &fctx);
2803}
2804
2805static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2806 u64 off, u64 len, struct bio *bio)
2807{
2808 struct ceph_file_extent ex = { off, len };
2809 struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2810
2811 return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2812}
2813
2814static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2815{
2816 struct rbd_obj_request *obj_req =
2817 container_of(ex, struct rbd_obj_request, ex);
2818 struct ceph_bvec_iter *it = arg;
2819
2820 obj_req->bvec_pos = *it;
2821 ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2822 ceph_bvec_iter_advance(it, bytes);
2823}
2824
2825static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2826{
2827 struct rbd_obj_request *obj_req =
2828 container_of(ex, struct rbd_obj_request, ex);
2829 struct ceph_bvec_iter *it = arg;
2830
2831 ceph_bvec_iter_advance_step(it, bytes, ({
2832 obj_req->bvec_count++;
2833 }));
2834}
2835
2836static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2837{
2838 struct rbd_obj_request *obj_req =
2839 container_of(ex, struct rbd_obj_request, ex);
2840 struct ceph_bvec_iter *it = arg;
2841
2842 ceph_bvec_iter_advance_step(it, bytes, ({
2843 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2844 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2845 }));
2846}
2847
2848static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2849 struct ceph_file_extent *img_extents,
2850 u32 num_img_extents,
2851 struct ceph_bvec_iter *bvec_pos)
2852{
2853 struct rbd_img_fill_ctx fctx = {
2854 .pos_type = OBJ_REQUEST_BVECS,
2855 .pos = (union rbd_img_fill_iter *)bvec_pos,
2856 .set_pos_fn = set_bvec_pos,
2857 .count_fn = count_bvecs,
2858 .copy_fn = copy_bvecs,
2859 };
2860
2861 return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2862 &fctx);
2863}
2864
2865static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2866 struct ceph_file_extent *img_extents,
2867 u32 num_img_extents,
2868 struct bio_vec *bvecs)
2869{
2870 struct ceph_bvec_iter it = {
2871 .bvecs = bvecs,
2872 .iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2873 num_img_extents) },
2874 };
2875
2876 return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2877 &it);
2878}
2879
2880static void rbd_img_handle_request_work(struct work_struct *work)
2881{
2882 struct rbd_img_request *img_req =
2883 container_of(work, struct rbd_img_request, work);
2884
2885 rbd_img_handle_request(img_req, img_req->work_result);
2886}
2887
2888static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2889{
2890 INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2891 img_req->work_result = result;
2892 queue_work(rbd_wq, &img_req->work);
2893}
2894
2895static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2896{
2897 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2898
2899 if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2900 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2901 return true;
2902 }
2903
2904 dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2905 obj_req->ex.oe_objno);
2906 return false;
2907}
2908
2909static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2910{
2911 struct ceph_osd_request *osd_req;
2912 int ret;
2913
2914 osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2915 if (IS_ERR(osd_req))
2916 return PTR_ERR(osd_req);
2917
2918 osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2919 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2920 rbd_osd_setup_data(osd_req, 0);
2921 rbd_osd_format_read(osd_req);
2922
2923 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2924 if (ret)
2925 return ret;
2926
2927 rbd_osd_submit(osd_req);
2928 return 0;
2929}
2930
2931static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2932{
2933 struct rbd_img_request *img_req = obj_req->img_request;
2934 struct rbd_img_request *child_img_req;
2935 int ret;
2936
2937 child_img_req = rbd_img_request_create(img_req->rbd_dev->parent,
2938 OBJ_OP_READ, NULL);
2939 if (!child_img_req)
2940 return -ENOMEM;
2941
2942 __set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2943 child_img_req->obj_request = obj_req;
2944
2945 dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2946 obj_req);
2947
2948 if (!rbd_img_is_write(img_req)) {
2949 switch (img_req->data_type) {
2950 case OBJ_REQUEST_BIO:
2951 ret = __rbd_img_fill_from_bio(child_img_req,
2952 obj_req->img_extents,
2953 obj_req->num_img_extents,
2954 &obj_req->bio_pos);
2955 break;
2956 case OBJ_REQUEST_BVECS:
2957 case OBJ_REQUEST_OWN_BVECS:
2958 ret = __rbd_img_fill_from_bvecs(child_img_req,
2959 obj_req->img_extents,
2960 obj_req->num_img_extents,
2961 &obj_req->bvec_pos);
2962 break;
2963 default:
2964 BUG();
2965 }
2966 } else {
2967 ret = rbd_img_fill_from_bvecs(child_img_req,
2968 obj_req->img_extents,
2969 obj_req->num_img_extents,
2970 obj_req->copyup_bvecs);
2971 }
2972 if (ret) {
2973 rbd_img_request_put(child_img_req);
2974 return ret;
2975 }
2976
2977 /* avoid parent chain recursion */
2978 rbd_img_schedule(child_img_req, 0);
2979 return 0;
2980}
2981
2982static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2983{
2984 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2985 int ret;
2986
2987again:
2988 switch (obj_req->read_state) {
2989 case RBD_OBJ_READ_START:
2990 rbd_assert(!*result);
2991
2992 if (!rbd_obj_may_exist(obj_req)) {
2993 *result = -ENOENT;
2994 obj_req->read_state = RBD_OBJ_READ_OBJECT;
2995 goto again;
2996 }
2997
2998 ret = rbd_obj_read_object(obj_req);
2999 if (ret) {
3000 *result = ret;
3001 return true;
3002 }
3003 obj_req->read_state = RBD_OBJ_READ_OBJECT;
3004 return false;
3005 case RBD_OBJ_READ_OBJECT:
3006 if (*result == -ENOENT && rbd_dev->parent_overlap) {
3007 /* reverse map this object extent onto the parent */
3008 ret = rbd_obj_calc_img_extents(obj_req, false);
3009 if (ret) {
3010 *result = ret;
3011 return true;
3012 }
3013 if (obj_req->num_img_extents) {
3014 ret = rbd_obj_read_from_parent(obj_req);
3015 if (ret) {
3016 *result = ret;
3017 return true;
3018 }
3019 obj_req->read_state = RBD_OBJ_READ_PARENT;
3020 return false;
3021 }
3022 }
3023
3024 /*
3025 * -ENOENT means a hole in the image -- zero-fill the entire
3026 * length of the request. A short read also implies zero-fill
3027 * to the end of the request.
3028 */
3029 if (*result == -ENOENT) {
3030 rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
3031 *result = 0;
3032 } else if (*result >= 0) {
3033 if (*result < obj_req->ex.oe_len)
3034 rbd_obj_zero_range(obj_req, *result,
3035 obj_req->ex.oe_len - *result);
3036 else
3037 rbd_assert(*result == obj_req->ex.oe_len);
3038 *result = 0;
3039 }
3040 return true;
3041 case RBD_OBJ_READ_PARENT:
3042 /*
3043 * The parent image is read only up to the overlap -- zero-fill
3044 * from the overlap to the end of the request.
3045 */
3046 if (!*result) {
3047 u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
3048
3049 if (obj_overlap < obj_req->ex.oe_len)
3050 rbd_obj_zero_range(obj_req, obj_overlap,
3051 obj_req->ex.oe_len - obj_overlap);
3052 }
3053 return true;
3054 default:
3055 BUG();
3056 }
3057}
3058
3059static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
3060{
3061 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3062
3063 if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
3064 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
3065
3066 if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
3067 (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
3068 dout("%s %p noop for nonexistent\n", __func__, obj_req);
3069 return true;
3070 }
3071
3072 return false;
3073}
3074
3075/*
3076 * Return:
3077 * 0 - object map update sent
3078 * 1 - object map update isn't needed
3079 * <0 - error
3080 */
3081static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
3082{
3083 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3084 u8 new_state;
3085
3086 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3087 return 1;
3088
3089 if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3090 new_state = OBJECT_PENDING;
3091 else
3092 new_state = OBJECT_EXISTS;
3093
3094 return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
3095}
3096
3097static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
3098{
3099 struct ceph_osd_request *osd_req;
3100 int num_ops = count_write_ops(obj_req);
3101 int which = 0;
3102 int ret;
3103
3104 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
3105 num_ops++; /* stat */
3106
3107 osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3108 if (IS_ERR(osd_req))
3109 return PTR_ERR(osd_req);
3110
3111 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3112 ret = rbd_osd_setup_stat(osd_req, which++);
3113 if (ret)
3114 return ret;
3115 }
3116
3117 rbd_osd_setup_write_ops(osd_req, which);
3118 rbd_osd_format_write(osd_req);
3119
3120 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3121 if (ret)
3122 return ret;
3123
3124 rbd_osd_submit(osd_req);
3125 return 0;
3126}
3127
3128/*
3129 * copyup_bvecs pages are never highmem pages
3130 */
3131static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
3132{
3133 struct ceph_bvec_iter it = {
3134 .bvecs = bvecs,
3135 .iter = { .bi_size = bytes },
3136 };
3137
3138 ceph_bvec_iter_advance_step(&it, bytes, ({
3139 if (memchr_inv(page_address(bv.bv_page) + bv.bv_offset, 0,
3140 bv.bv_len))
3141 return false;
3142 }));
3143 return true;
3144}
3145
3146#define MODS_ONLY U32_MAX
3147
3148static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
3149 u32 bytes)
3150{
3151 struct ceph_osd_request *osd_req;
3152 int ret;
3153
3154 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3155 rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3156
3157 osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3158 if (IS_ERR(osd_req))
3159 return PTR_ERR(osd_req);
3160
3161 ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3162 if (ret)
3163 return ret;
3164
3165 rbd_osd_format_write(osd_req);
3166
3167 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3168 if (ret)
3169 return ret;
3170
3171 rbd_osd_submit(osd_req);
3172 return 0;
3173}
3174
3175static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3176 u32 bytes)
3177{
3178 struct ceph_osd_request *osd_req;
3179 int num_ops = count_write_ops(obj_req);
3180 int which = 0;
3181 int ret;
3182
3183 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3184
3185 if (bytes != MODS_ONLY)
3186 num_ops++; /* copyup */
3187
3188 osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3189 if (IS_ERR(osd_req))
3190 return PTR_ERR(osd_req);
3191
3192 if (bytes != MODS_ONLY) {
3193 ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3194 if (ret)
3195 return ret;
3196 }
3197
3198 rbd_osd_setup_write_ops(osd_req, which);
3199 rbd_osd_format_write(osd_req);
3200
3201 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3202 if (ret)
3203 return ret;
3204
3205 rbd_osd_submit(osd_req);
3206 return 0;
3207}
3208
3209static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3210{
3211 u32 i;
3212
3213 rbd_assert(!obj_req->copyup_bvecs);
3214 obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3215 obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3216 sizeof(*obj_req->copyup_bvecs),
3217 GFP_NOIO);
3218 if (!obj_req->copyup_bvecs)
3219 return -ENOMEM;
3220
3221 for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3222 unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3223
3224 obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO);
3225 if (!obj_req->copyup_bvecs[i].bv_page)
3226 return -ENOMEM;
3227
3228 obj_req->copyup_bvecs[i].bv_offset = 0;
3229 obj_req->copyup_bvecs[i].bv_len = len;
3230 obj_overlap -= len;
3231 }
3232
3233 rbd_assert(!obj_overlap);
3234 return 0;
3235}
3236
3237/*
3238 * The target object doesn't exist. Read the data for the entire
3239 * target object up to the overlap point (if any) from the parent,
3240 * so we can use it for a copyup.
3241 */
3242static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3243{
3244 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3245 int ret;
3246
3247 rbd_assert(obj_req->num_img_extents);
3248 prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3249 rbd_dev->parent_overlap);
3250 if (!obj_req->num_img_extents) {
3251 /*
3252 * The overlap has become 0 (most likely because the
3253 * image has been flattened). Re-submit the original write
3254 * request -- pass MODS_ONLY since the copyup isn't needed
3255 * anymore.
3256 */
3257 return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3258 }
3259
3260 ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3261 if (ret)
3262 return ret;
3263
3264 return rbd_obj_read_from_parent(obj_req);
3265}
3266
3267static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3268{
3269 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3270 struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3271 u8 new_state;
3272 u32 i;
3273 int ret;
3274
3275 rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3276
3277 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3278 return;
3279
3280 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3281 return;
3282
3283 for (i = 0; i < snapc->num_snaps; i++) {
3284 if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3285 i + 1 < snapc->num_snaps)
3286 new_state = OBJECT_EXISTS_CLEAN;
3287 else
3288 new_state = OBJECT_EXISTS;
3289
3290 ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3291 new_state, NULL);
3292 if (ret < 0) {
3293 obj_req->pending.result = ret;
3294 return;
3295 }
3296
3297 rbd_assert(!ret);
3298 obj_req->pending.num_pending++;
3299 }
3300}
3301
3302static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3303{
3304 u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3305 int ret;
3306
3307 rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3308
3309 /*
3310 * Only send non-zero copyup data to save some I/O and network
3311 * bandwidth -- zero copyup data is equivalent to the object not
3312 * existing.
3313 */
3314 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3315 bytes = 0;
3316
3317 if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3318 /*
3319 * Send a copyup request with an empty snapshot context to
3320 * deep-copyup the object through all existing snapshots.
3321 * A second request with the current snapshot context will be
3322 * sent for the actual modification.
3323 */
3324 ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3325 if (ret) {
3326 obj_req->pending.result = ret;
3327 return;
3328 }
3329
3330 obj_req->pending.num_pending++;
3331 bytes = MODS_ONLY;
3332 }
3333
3334 ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3335 if (ret) {
3336 obj_req->pending.result = ret;
3337 return;
3338 }
3339
3340 obj_req->pending.num_pending++;
3341}
3342
3343static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3344{
3345 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3346 int ret;
3347
3348again:
3349 switch (obj_req->copyup_state) {
3350 case RBD_OBJ_COPYUP_START:
3351 rbd_assert(!*result);
3352
3353 ret = rbd_obj_copyup_read_parent(obj_req);
3354 if (ret) {
3355 *result = ret;
3356 return true;
3357 }
3358 if (obj_req->num_img_extents)
3359 obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3360 else
3361 obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3362 return false;
3363 case RBD_OBJ_COPYUP_READ_PARENT:
3364 if (*result)
3365 return true;
3366
3367 if (is_zero_bvecs(obj_req->copyup_bvecs,
3368 rbd_obj_img_extents_bytes(obj_req))) {
3369 dout("%s %p detected zeros\n", __func__, obj_req);
3370 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3371 }
3372
3373 rbd_obj_copyup_object_maps(obj_req);
3374 if (!obj_req->pending.num_pending) {
3375 *result = obj_req->pending.result;
3376 obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3377 goto again;
3378 }
3379 obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3380 return false;
3381 case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3382 if (!pending_result_dec(&obj_req->pending, result))
3383 return false;
3384 /* fall through */
3385 case RBD_OBJ_COPYUP_OBJECT_MAPS:
3386 if (*result) {
3387 rbd_warn(rbd_dev, "snap object map update failed: %d",
3388 *result);
3389 return true;
3390 }
3391
3392 rbd_obj_copyup_write_object(obj_req);
3393 if (!obj_req->pending.num_pending) {
3394 *result = obj_req->pending.result;
3395 obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3396 goto again;
3397 }
3398 obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3399 return false;
3400 case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3401 if (!pending_result_dec(&obj_req->pending, result))
3402 return false;
3403 /* fall through */
3404 case RBD_OBJ_COPYUP_WRITE_OBJECT:
3405 return true;
3406 default:
3407 BUG();
3408 }
3409}
3410
3411/*
3412 * Return:
3413 * 0 - object map update sent
3414 * 1 - object map update isn't needed
3415 * <0 - error
3416 */
3417static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3418{
3419 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3420 u8 current_state = OBJECT_PENDING;
3421
3422 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3423 return 1;
3424
3425 if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3426 return 1;
3427
3428 return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3429 &current_state);
3430}
3431
3432static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3433{
3434 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3435 int ret;
3436
3437again:
3438 switch (obj_req->write_state) {
3439 case RBD_OBJ_WRITE_START:
3440 rbd_assert(!*result);
3441
3442 if (rbd_obj_write_is_noop(obj_req))
3443 return true;
3444
3445 ret = rbd_obj_write_pre_object_map(obj_req);
3446 if (ret < 0) {
3447 *result = ret;
3448 return true;
3449 }
3450 obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3451 if (ret > 0)
3452 goto again;
3453 return false;
3454 case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3455 if (*result) {
3456 rbd_warn(rbd_dev, "pre object map update failed: %d",
3457 *result);
3458 return true;
3459 }
3460 ret = rbd_obj_write_object(obj_req);
3461 if (ret) {
3462 *result = ret;
3463 return true;
3464 }
3465 obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3466 return false;
3467 case RBD_OBJ_WRITE_OBJECT:
3468 if (*result == -ENOENT) {
3469 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3470 *result = 0;
3471 obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3472 obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3473 goto again;
3474 }
3475 /*
3476 * On a non-existent object:
3477 * delete - -ENOENT, truncate/zero - 0
3478 */
3479 if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3480 *result = 0;
3481 }
3482 if (*result)
3483 return true;
3484
3485 obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3486 goto again;
3487 case __RBD_OBJ_WRITE_COPYUP:
3488 if (!rbd_obj_advance_copyup(obj_req, result))
3489 return false;
3490 /* fall through */
3491 case RBD_OBJ_WRITE_COPYUP:
3492 if (*result) {
3493 rbd_warn(rbd_dev, "copyup failed: %d", *result);
3494 return true;
3495 }
3496 ret = rbd_obj_write_post_object_map(obj_req);
3497 if (ret < 0) {
3498 *result = ret;
3499 return true;
3500 }
3501 obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3502 if (ret > 0)
3503 goto again;
3504 return false;
3505 case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3506 if (*result)
3507 rbd_warn(rbd_dev, "post object map update failed: %d",
3508 *result);
3509 return true;
3510 default:
3511 BUG();
3512 }
3513}
3514
3515/*
3516 * Return true if @obj_req is completed.
3517 */
3518static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3519 int *result)
3520{
3521 struct rbd_img_request *img_req = obj_req->img_request;
3522 struct rbd_device *rbd_dev = img_req->rbd_dev;
3523 bool done;
3524
3525 mutex_lock(&obj_req->state_mutex);
3526 if (!rbd_img_is_write(img_req))
3527 done = rbd_obj_advance_read(obj_req, result);
3528 else
3529 done = rbd_obj_advance_write(obj_req, result);
3530 mutex_unlock(&obj_req->state_mutex);
3531
3532 if (done && *result) {
3533 rbd_assert(*result < 0);
3534 rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3535 obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3536 obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3537 }
3538 return done;
3539}
3540
3541/*
3542 * This is open-coded in rbd_img_handle_request() to avoid parent chain
3543 * recursion.
3544 */
3545static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3546{
3547 if (__rbd_obj_handle_request(obj_req, &result))
3548 rbd_img_handle_request(obj_req->img_request, result);
3549}
3550
3551static bool need_exclusive_lock(struct rbd_img_request *img_req)
3552{
3553 struct rbd_device *rbd_dev = img_req->rbd_dev;
3554
3555 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3556 return false;
3557
3558 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
3559 return false;
3560
3561 rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3562 if (rbd_dev->opts->lock_on_read ||
3563 (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3564 return true;
3565
3566 return rbd_img_is_write(img_req);
3567}
3568
3569static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3570{
3571 struct rbd_device *rbd_dev = img_req->rbd_dev;
3572 bool locked;
3573
3574 lockdep_assert_held(&rbd_dev->lock_rwsem);
3575 locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3576 spin_lock(&rbd_dev->lock_lists_lock);
3577 rbd_assert(list_empty(&img_req->lock_item));
3578 if (!locked)
3579 list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3580 else
3581 list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3582 spin_unlock(&rbd_dev->lock_lists_lock);
3583 return locked;
3584}
3585
3586static void rbd_lock_del_request(struct rbd_img_request *img_req)
3587{
3588 struct rbd_device *rbd_dev = img_req->rbd_dev;
3589 bool need_wakeup;
3590
3591 lockdep_assert_held(&rbd_dev->lock_rwsem);
3592 spin_lock(&rbd_dev->lock_lists_lock);
3593 rbd_assert(!list_empty(&img_req->lock_item));
3594 list_del_init(&img_req->lock_item);
3595 need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING &&
3596 list_empty(&rbd_dev->running_list));
3597 spin_unlock(&rbd_dev->lock_lists_lock);
3598 if (need_wakeup)
3599 complete(&rbd_dev->releasing_wait);
3600}
3601
3602static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3603{
3604 struct rbd_device *rbd_dev = img_req->rbd_dev;
3605
3606 if (!need_exclusive_lock(img_req))
3607 return 1;
3608
3609 if (rbd_lock_add_request(img_req))
3610 return 1;
3611
3612 if (rbd_dev->opts->exclusive) {
3613 WARN_ON(1); /* lock got released? */
3614 return -EROFS;
3615 }
3616
3617 /*
3618 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3619 * and cancel_delayed_work() in wake_lock_waiters().
3620 */
3621 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3622 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3623 return 0;
3624}
3625
3626static void rbd_img_object_requests(struct rbd_img_request *img_req)
3627{
3628 struct rbd_obj_request *obj_req;
3629
3630 rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3631
3632 for_each_obj_request(img_req, obj_req) {
3633 int result = 0;
3634
3635 if (__rbd_obj_handle_request(obj_req, &result)) {
3636 if (result) {
3637 img_req->pending.result = result;
3638 return;
3639 }
3640 } else {
3641 img_req->pending.num_pending++;
3642 }
3643 }
3644}
3645
3646static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3647{
3648 struct rbd_device *rbd_dev = img_req->rbd_dev;
3649 int ret;
3650
3651again:
3652 switch (img_req->state) {
3653 case RBD_IMG_START:
3654 rbd_assert(!*result);
3655
3656 ret = rbd_img_exclusive_lock(img_req);
3657 if (ret < 0) {
3658 *result = ret;
3659 return true;
3660 }
3661 img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3662 if (ret > 0)
3663 goto again;
3664 return false;
3665 case RBD_IMG_EXCLUSIVE_LOCK:
3666 if (*result)
3667 return true;
3668
3669 rbd_assert(!need_exclusive_lock(img_req) ||
3670 __rbd_is_lock_owner(rbd_dev));
3671
3672 rbd_img_object_requests(img_req);
3673 if (!img_req->pending.num_pending) {
3674 *result = img_req->pending.result;
3675 img_req->state = RBD_IMG_OBJECT_REQUESTS;
3676 goto again;
3677 }
3678 img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3679 return false;
3680 case __RBD_IMG_OBJECT_REQUESTS:
3681 if (!pending_result_dec(&img_req->pending, result))
3682 return false;
3683 /* fall through */
3684 case RBD_IMG_OBJECT_REQUESTS:
3685 return true;
3686 default:
3687 BUG();
3688 }
3689}
3690
3691/*
3692 * Return true if @img_req is completed.
3693 */
3694static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3695 int *result)
3696{
3697 struct rbd_device *rbd_dev = img_req->rbd_dev;
3698 bool done;
3699
3700 if (need_exclusive_lock(img_req)) {
3701 down_read(&rbd_dev->lock_rwsem);
3702 mutex_lock(&img_req->state_mutex);
3703 done = rbd_img_advance(img_req, result);
3704 if (done)
3705 rbd_lock_del_request(img_req);
3706 mutex_unlock(&img_req->state_mutex);
3707 up_read(&rbd_dev->lock_rwsem);
3708 } else {
3709 mutex_lock(&img_req->state_mutex);
3710 done = rbd_img_advance(img_req, result);
3711 mutex_unlock(&img_req->state_mutex);
3712 }
3713
3714 if (done && *result) {
3715 rbd_assert(*result < 0);
3716 rbd_warn(rbd_dev, "%s%s result %d",
3717 test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3718 obj_op_name(img_req->op_type), *result);
3719 }
3720 return done;
3721}
3722
3723static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3724{
3725again:
3726 if (!__rbd_img_handle_request(img_req, &result))
3727 return;
3728
3729 if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3730 struct rbd_obj_request *obj_req = img_req->obj_request;
3731
3732 rbd_img_request_put(img_req);
3733 if (__rbd_obj_handle_request(obj_req, &result)) {
3734 img_req = obj_req->img_request;
3735 goto again;
3736 }
3737 } else {
3738 struct request *rq = img_req->rq;
3739
3740 rbd_img_request_put(img_req);
3741 blk_mq_end_request(rq, errno_to_blk_status(result));
3742 }
3743}
3744
3745static const struct rbd_client_id rbd_empty_cid;
3746
3747static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3748 const struct rbd_client_id *rhs)
3749{
3750 return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3751}
3752
3753static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3754{
3755 struct rbd_client_id cid;
3756
3757 mutex_lock(&rbd_dev->watch_mutex);
3758 cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3759 cid.handle = rbd_dev->watch_cookie;
3760 mutex_unlock(&rbd_dev->watch_mutex);
3761 return cid;
3762}
3763
3764/*
3765 * lock_rwsem must be held for write
3766 */
3767static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3768 const struct rbd_client_id *cid)
3769{
3770 dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3771 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3772 cid->gid, cid->handle);
3773 rbd_dev->owner_cid = *cid; /* struct */
3774}
3775
3776static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3777{
3778 mutex_lock(&rbd_dev->watch_mutex);
3779 sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3780 mutex_unlock(&rbd_dev->watch_mutex);
3781}
3782
3783static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3784{
3785 struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3786
3787 rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3788 strcpy(rbd_dev->lock_cookie, cookie);
3789 rbd_set_owner_cid(rbd_dev, &cid);
3790 queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3791}
3792
3793/*
3794 * lock_rwsem must be held for write
3795 */
3796static int rbd_lock(struct rbd_device *rbd_dev)
3797{
3798 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3799 char cookie[32];
3800 int ret;
3801
3802 WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3803 rbd_dev->lock_cookie[0] != '\0');
3804
3805 format_lock_cookie(rbd_dev, cookie);
3806 ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3807 RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3808 RBD_LOCK_TAG, "", 0);
3809 if (ret)
3810 return ret;
3811
3812 __rbd_lock(rbd_dev, cookie);
3813 return 0;
3814}
3815
3816/*
3817 * lock_rwsem must be held for write
3818 */
3819static void rbd_unlock(struct rbd_device *rbd_dev)
3820{
3821 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3822 int ret;
3823
3824 WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3825 rbd_dev->lock_cookie[0] == '\0');
3826
3827 ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3828 RBD_LOCK_NAME, rbd_dev->lock_cookie);
3829 if (ret && ret != -ENOENT)
3830 rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3831
3832 /* treat errors as the image is unlocked */
3833 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3834 rbd_dev->lock_cookie[0] = '\0';
3835 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3836 queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3837}
3838
3839static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3840 enum rbd_notify_op notify_op,
3841 struct page ***preply_pages,
3842 size_t *preply_len)
3843{
3844 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3845 struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3846 char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3847 int buf_size = sizeof(buf);
3848 void *p = buf;
3849
3850 dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3851
3852 /* encode *LockPayload NotifyMessage (op + ClientId) */
3853 ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3854 ceph_encode_32(&p, notify_op);
3855 ceph_encode_64(&p, cid.gid);
3856 ceph_encode_64(&p, cid.handle);
3857
3858 return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3859 &rbd_dev->header_oloc, buf, buf_size,
3860 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3861}
3862
3863static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3864 enum rbd_notify_op notify_op)
3865{
3866 struct page **reply_pages;
3867 size_t reply_len;
3868
3869 __rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len);
3870 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3871}
3872
3873static void rbd_notify_acquired_lock(struct work_struct *work)
3874{
3875 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3876 acquired_lock_work);
3877
3878 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3879}
3880
3881static void rbd_notify_released_lock(struct work_struct *work)
3882{
3883 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3884 released_lock_work);
3885
3886 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3887}
3888
3889static int rbd_request_lock(struct rbd_device *rbd_dev)
3890{
3891 struct page **reply_pages;
3892 size_t reply_len;
3893 bool lock_owner_responded = false;
3894 int ret;
3895
3896 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3897
3898 ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3899 &reply_pages, &reply_len);
3900 if (ret && ret != -ETIMEDOUT) {
3901 rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3902 goto out;
3903 }
3904
3905 if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3906 void *p = page_address(reply_pages[0]);
3907 void *const end = p + reply_len;
3908 u32 n;
3909
3910 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3911 while (n--) {
3912 u8 struct_v;
3913 u32 len;
3914
3915 ceph_decode_need(&p, end, 8 + 8, e_inval);
3916 p += 8 + 8; /* skip gid and cookie */
3917
3918 ceph_decode_32_safe(&p, end, len, e_inval);
3919 if (!len)
3920 continue;
3921
3922 if (lock_owner_responded) {
3923 rbd_warn(rbd_dev,
3924 "duplicate lock owners detected");
3925 ret = -EIO;
3926 goto out;
3927 }
3928
3929 lock_owner_responded = true;
3930 ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3931 &struct_v, &len);
3932 if (ret) {
3933 rbd_warn(rbd_dev,
3934 "failed to decode ResponseMessage: %d",
3935 ret);
3936 goto e_inval;
3937 }
3938
3939 ret = ceph_decode_32(&p);
3940 }
3941 }
3942
3943 if (!lock_owner_responded) {
3944 rbd_warn(rbd_dev, "no lock owners detected");
3945 ret = -ETIMEDOUT;
3946 }
3947
3948out:
3949 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3950 return ret;
3951
3952e_inval:
3953 ret = -EINVAL;
3954 goto out;
3955}
3956
3957/*
3958 * Either image request state machine(s) or rbd_add_acquire_lock()
3959 * (i.e. "rbd map").
3960 */
3961static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3962{
3963 struct rbd_img_request *img_req;
3964
3965 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3966 lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3967
3968 cancel_delayed_work(&rbd_dev->lock_dwork);
3969 if (!completion_done(&rbd_dev->acquire_wait)) {
3970 rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3971 list_empty(&rbd_dev->running_list));
3972 rbd_dev->acquire_err = result;
3973 complete_all(&rbd_dev->acquire_wait);
3974 return;
3975 }
3976
3977 list_for_each_entry(img_req, &rbd_dev->acquiring_list, lock_item) {
3978 mutex_lock(&img_req->state_mutex);
3979 rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3980 rbd_img_schedule(img_req, result);
3981 mutex_unlock(&img_req->state_mutex);
3982 }
3983
3984 list_splice_tail_init(&rbd_dev->acquiring_list, &rbd_dev->running_list);
3985}
3986
3987static int get_lock_owner_info(struct rbd_device *rbd_dev,
3988 struct ceph_locker **lockers, u32 *num_lockers)
3989{
3990 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3991 u8 lock_type;
3992 char *lock_tag;
3993 int ret;
3994
3995 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3996
3997 ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3998 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3999 &lock_type, &lock_tag, lockers, num_lockers);
4000 if (ret)
4001 return ret;
4002
4003 if (*num_lockers == 0) {
4004 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
4005 goto out;
4006 }
4007
4008 if (strcmp(lock_tag, RBD_LOCK_TAG)) {
4009 rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
4010 lock_tag);
4011 ret = -EBUSY;
4012 goto out;
4013 }
4014
4015 if (lock_type == CEPH_CLS_LOCK_SHARED) {
4016 rbd_warn(rbd_dev, "shared lock type detected");
4017 ret = -EBUSY;
4018 goto out;
4019 }
4020
4021 if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
4022 strlen(RBD_LOCK_COOKIE_PREFIX))) {
4023 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
4024 (*lockers)[0].id.cookie);
4025 ret = -EBUSY;
4026 goto out;
4027 }
4028
4029out:
4030 kfree(lock_tag);
4031 return ret;
4032}
4033
4034static int find_watcher(struct rbd_device *rbd_dev,
4035 const struct ceph_locker *locker)
4036{
4037 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4038 struct ceph_watch_item *watchers;
4039 u32 num_watchers;
4040 u64 cookie;
4041 int i;
4042 int ret;
4043
4044 ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
4045 &rbd_dev->header_oloc, &watchers,
4046 &num_watchers);
4047 if (ret)
4048 return ret;
4049
4050 sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
4051 for (i = 0; i < num_watchers; i++) {
4052 if (!memcmp(&watchers[i].addr, &locker->info.addr,
4053 sizeof(locker->info.addr)) &&
4054 watchers[i].cookie == cookie) {
4055 struct rbd_client_id cid = {
4056 .gid = le64_to_cpu(watchers[i].name.num),
4057 .handle = cookie,
4058 };
4059
4060 dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
4061 rbd_dev, cid.gid, cid.handle);
4062 rbd_set_owner_cid(rbd_dev, &cid);
4063 ret = 1;
4064 goto out;
4065 }
4066 }
4067
4068 dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
4069 ret = 0;
4070out:
4071 kfree(watchers);
4072 return ret;
4073}
4074
4075/*
4076 * lock_rwsem must be held for write
4077 */
4078static int rbd_try_lock(struct rbd_device *rbd_dev)
4079{
4080 struct ceph_client *client = rbd_dev->rbd_client->client;
4081 struct ceph_locker *lockers;
4082 u32 num_lockers;
4083 int ret;
4084
4085 for (;;) {
4086 ret = rbd_lock(rbd_dev);
4087 if (ret != -EBUSY)
4088 return ret;
4089
4090 /* determine if the current lock holder is still alive */
4091 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
4092 if (ret)
4093 return ret;
4094
4095 if (num_lockers == 0)
4096 goto again;
4097
4098 ret = find_watcher(rbd_dev, lockers);
4099 if (ret)
4100 goto out; /* request lock or error */
4101
4102 rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
4103 ENTITY_NAME(lockers[0].id.name));
4104
4105 ret = ceph_monc_blacklist_add(&client->monc,
4106 &lockers[0].info.addr);
4107 if (ret) {
4108 rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d",
4109 ENTITY_NAME(lockers[0].id.name), ret);
4110 goto out;
4111 }
4112
4113 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
4114 &rbd_dev->header_oloc, RBD_LOCK_NAME,
4115 lockers[0].id.cookie,
4116 &lockers[0].id.name);
4117 if (ret && ret != -ENOENT)
4118 goto out;
4119
4120again:
4121 ceph_free_lockers(lockers, num_lockers);
4122 }
4123
4124out:
4125 ceph_free_lockers(lockers, num_lockers);
4126 return ret;
4127}
4128
4129static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
4130{
4131 int ret;
4132
4133 if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
4134 ret = rbd_object_map_open(rbd_dev);
4135 if (ret)
4136 return ret;
4137 }
4138
4139 return 0;
4140}
4141
4142/*
4143 * Return:
4144 * 0 - lock acquired
4145 * 1 - caller should call rbd_request_lock()
4146 * <0 - error
4147 */
4148static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4149{
4150 int ret;
4151
4152 down_read(&rbd_dev->lock_rwsem);
4153 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4154 rbd_dev->lock_state);
4155 if (__rbd_is_lock_owner(rbd_dev)) {
4156 up_read(&rbd_dev->lock_rwsem);
4157 return 0;
4158 }
4159
4160 up_read(&rbd_dev->lock_rwsem);
4161 down_write(&rbd_dev->lock_rwsem);
4162 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4163 rbd_dev->lock_state);
4164 if (__rbd_is_lock_owner(rbd_dev)) {
4165 up_write(&rbd_dev->lock_rwsem);
4166 return 0;
4167 }
4168
4169 ret = rbd_try_lock(rbd_dev);
4170 if (ret < 0) {
4171 rbd_warn(rbd_dev, "failed to lock header: %d", ret);
4172 if (ret == -EBLACKLISTED)
4173 goto out;
4174
4175 ret = 1; /* request lock anyway */
4176 }
4177 if (ret > 0) {
4178 up_write(&rbd_dev->lock_rwsem);
4179 return ret;
4180 }
4181
4182 rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4183 rbd_assert(list_empty(&rbd_dev->running_list));
4184
4185 ret = rbd_post_acquire_action(rbd_dev);
4186 if (ret) {
4187 rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4188 /*
4189 * Can't stay in RBD_LOCK_STATE_LOCKED because
4190 * rbd_lock_add_request() would let the request through,
4191 * assuming that e.g. object map is locked and loaded.
4192 */
4193 rbd_unlock(rbd_dev);
4194 }
4195
4196out:
4197 wake_lock_waiters(rbd_dev, ret);
4198 up_write(&rbd_dev->lock_rwsem);
4199 return ret;
4200}
4201
4202static void rbd_acquire_lock(struct work_struct *work)
4203{
4204 struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4205 struct rbd_device, lock_dwork);
4206 int ret;
4207
4208 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4209again:
4210 ret = rbd_try_acquire_lock(rbd_dev);
4211 if (ret <= 0) {
4212 dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4213 return;
4214 }
4215
4216 ret = rbd_request_lock(rbd_dev);
4217 if (ret == -ETIMEDOUT) {
4218 goto again; /* treat this as a dead client */
4219 } else if (ret == -EROFS) {
4220 rbd_warn(rbd_dev, "peer will not release lock");
4221 down_write(&rbd_dev->lock_rwsem);
4222 wake_lock_waiters(rbd_dev, ret);
4223 up_write(&rbd_dev->lock_rwsem);
4224 } else if (ret < 0) {
4225 rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4226 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4227 RBD_RETRY_DELAY);
4228 } else {
4229 /*
4230 * lock owner acked, but resend if we don't see them
4231 * release the lock
4232 */
4233 dout("%s rbd_dev %p requeueing lock_dwork\n", __func__,
4234 rbd_dev);
4235 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4236 msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4237 }
4238}
4239
4240static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4241{
4242 bool need_wait;
4243
4244 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4245 lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4246
4247 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4248 return false;
4249
4250 /*
4251 * Ensure that all in-flight IO is flushed.
4252 */
4253 rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
4254 rbd_assert(!completion_done(&rbd_dev->releasing_wait));
4255 need_wait = !list_empty(&rbd_dev->running_list);
4256 downgrade_write(&rbd_dev->lock_rwsem);
4257 if (need_wait)
4258 wait_for_completion(&rbd_dev->releasing_wait);
4259 up_read(&rbd_dev->lock_rwsem);
4260
4261 down_write(&rbd_dev->lock_rwsem);
4262 if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
4263 return false;
4264
4265 rbd_assert(list_empty(&rbd_dev->running_list));
4266 return true;
4267}
4268
4269static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4270{
4271 if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4272 rbd_object_map_close(rbd_dev);
4273}
4274
4275static void __rbd_release_lock(struct rbd_device *rbd_dev)
4276{
4277 rbd_assert(list_empty(&rbd_dev->running_list));
4278
4279 rbd_pre_release_action(rbd_dev);
4280 rbd_unlock(rbd_dev);
4281}
4282
4283/*
4284 * lock_rwsem must be held for write
4285 */
4286static void rbd_release_lock(struct rbd_device *rbd_dev)
4287{
4288 if (!rbd_quiesce_lock(rbd_dev))
4289 return;
4290
4291 __rbd_release_lock(rbd_dev);
4292
4293 /*
4294 * Give others a chance to grab the lock - we would re-acquire
4295 * almost immediately if we got new IO while draining the running
4296 * list otherwise. We need to ack our own notifications, so this
4297 * lock_dwork will be requeued from rbd_handle_released_lock() by
4298 * way of maybe_kick_acquire().
4299 */
4300 cancel_delayed_work(&rbd_dev->lock_dwork);
4301}
4302
4303static void rbd_release_lock_work(struct work_struct *work)
4304{
4305 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4306 unlock_work);
4307
4308 down_write(&rbd_dev->lock_rwsem);
4309 rbd_release_lock(rbd_dev);
4310 up_write(&rbd_dev->lock_rwsem);
4311}
4312
4313static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4314{
4315 bool have_requests;
4316
4317 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4318 if (__rbd_is_lock_owner(rbd_dev))
4319 return;
4320
4321 spin_lock(&rbd_dev->lock_lists_lock);
4322 have_requests = !list_empty(&rbd_dev->acquiring_list);
4323 spin_unlock(&rbd_dev->lock_lists_lock);
4324 if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4325 dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4326 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4327 }
4328}
4329
4330static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4331 void **p)
4332{
4333 struct rbd_client_id cid = { 0 };
4334
4335 if (struct_v >= 2) {
4336 cid.gid = ceph_decode_64(p);
4337 cid.handle = ceph_decode_64(p);
4338 }
4339
4340 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4341 cid.handle);
4342 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4343 down_write(&rbd_dev->lock_rwsem);
4344 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4345 /*
4346 * we already know that the remote client is
4347 * the owner
4348 */
4349 up_write(&rbd_dev->lock_rwsem);
4350 return;
4351 }
4352
4353 rbd_set_owner_cid(rbd_dev, &cid);
4354 downgrade_write(&rbd_dev->lock_rwsem);
4355 } else {
4356 down_read(&rbd_dev->lock_rwsem);
4357 }
4358
4359 maybe_kick_acquire(rbd_dev);
4360 up_read(&rbd_dev->lock_rwsem);
4361}
4362
4363static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4364 void **p)
4365{
4366 struct rbd_client_id cid = { 0 };
4367
4368 if (struct_v >= 2) {
4369 cid.gid = ceph_decode_64(p);
4370 cid.handle = ceph_decode_64(p);
4371 }
4372
4373 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4374 cid.handle);
4375 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4376 down_write(&rbd_dev->lock_rwsem);
4377 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4378 dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n",
4379 __func__, rbd_dev, cid.gid, cid.handle,
4380 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4381 up_write(&rbd_dev->lock_rwsem);
4382 return;
4383 }
4384
4385 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4386 downgrade_write(&rbd_dev->lock_rwsem);
4387 } else {
4388 down_read(&rbd_dev->lock_rwsem);
4389 }
4390
4391 maybe_kick_acquire(rbd_dev);
4392 up_read(&rbd_dev->lock_rwsem);
4393}
4394
4395/*
4396 * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4397 * ResponseMessage is needed.
4398 */
4399static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4400 void **p)
4401{
4402 struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4403 struct rbd_client_id cid = { 0 };
4404 int result = 1;
4405
4406 if (struct_v >= 2) {
4407 cid.gid = ceph_decode_64(p);
4408 cid.handle = ceph_decode_64(p);
4409 }
4410
4411 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4412 cid.handle);
4413 if (rbd_cid_equal(&cid, &my_cid))
4414 return result;
4415
4416 down_read(&rbd_dev->lock_rwsem);
4417 if (__rbd_is_lock_owner(rbd_dev)) {
4418 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4419 rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4420 goto out_unlock;
4421
4422 /*
4423 * encode ResponseMessage(0) so the peer can detect
4424 * a missing owner
4425 */
4426 result = 0;
4427
4428 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4429 if (!rbd_dev->opts->exclusive) {
4430 dout("%s rbd_dev %p queueing unlock_work\n",
4431 __func__, rbd_dev);
4432 queue_work(rbd_dev->task_wq,
4433 &rbd_dev->unlock_work);
4434 } else {
4435 /* refuse to release the lock */
4436 result = -EROFS;
4437 }
4438 }
4439 }
4440
4441out_unlock:
4442 up_read(&rbd_dev->lock_rwsem);
4443 return result;
4444}
4445
4446static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4447 u64 notify_id, u64 cookie, s32 *result)
4448{
4449 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4450 char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4451 int buf_size = sizeof(buf);
4452 int ret;
4453
4454 if (result) {
4455 void *p = buf;
4456
4457 /* encode ResponseMessage */
4458 ceph_start_encoding(&p, 1, 1,
4459 buf_size - CEPH_ENCODING_START_BLK_LEN);
4460 ceph_encode_32(&p, *result);
4461 } else {
4462 buf_size = 0;
4463 }
4464
4465 ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4466 &rbd_dev->header_oloc, notify_id, cookie,
4467 buf, buf_size);
4468 if (ret)
4469 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4470}
4471
4472static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4473 u64 cookie)
4474{
4475 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4476 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4477}
4478
4479static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4480 u64 notify_id, u64 cookie, s32 result)
4481{
4482 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4483 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4484}
4485
4486static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4487 u64 notifier_id, void *data, size_t data_len)
4488{
4489 struct rbd_device *rbd_dev = arg;
4490 void *p = data;
4491 void *const end = p + data_len;
4492 u8 struct_v = 0;
4493 u32 len;
4494 u32 notify_op;
4495 int ret;
4496
4497 dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4498 __func__, rbd_dev, cookie, notify_id, data_len);
4499 if (data_len) {
4500 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4501 &struct_v, &len);
4502 if (ret) {
4503 rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4504 ret);
4505 return;
4506 }
4507
4508 notify_op = ceph_decode_32(&p);
4509 } else {
4510 /* legacy notification for header updates */
4511 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4512 len = 0;
4513 }
4514
4515 dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4516 switch (notify_op) {
4517 case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4518 rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4519 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4520 break;
4521 case RBD_NOTIFY_OP_RELEASED_LOCK:
4522 rbd_handle_released_lock(rbd_dev, struct_v, &p);
4523 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4524 break;
4525 case RBD_NOTIFY_OP_REQUEST_LOCK:
4526 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4527 if (ret <= 0)
4528 rbd_acknowledge_notify_result(rbd_dev, notify_id,
4529 cookie, ret);
4530 else
4531 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4532 break;
4533 case RBD_NOTIFY_OP_HEADER_UPDATE:
4534 ret = rbd_dev_refresh(rbd_dev);
4535 if (ret)
4536 rbd_warn(rbd_dev, "refresh failed: %d", ret);
4537
4538 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4539 break;
4540 default:
4541 if (rbd_is_lock_owner(rbd_dev))
4542 rbd_acknowledge_notify_result(rbd_dev, notify_id,
4543 cookie, -EOPNOTSUPP);
4544 else
4545 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4546 break;
4547 }
4548}
4549
4550static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4551
4552static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4553{
4554 struct rbd_device *rbd_dev = arg;
4555
4556 rbd_warn(rbd_dev, "encountered watch error: %d", err);
4557
4558 down_write(&rbd_dev->lock_rwsem);
4559 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4560 up_write(&rbd_dev->lock_rwsem);
4561
4562 mutex_lock(&rbd_dev->watch_mutex);
4563 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4564 __rbd_unregister_watch(rbd_dev);
4565 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4566
4567 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4568 }
4569 mutex_unlock(&rbd_dev->watch_mutex);
4570}
4571
4572/*
4573 * watch_mutex must be locked
4574 */
4575static int __rbd_register_watch(struct rbd_device *rbd_dev)
4576{
4577 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4578 struct ceph_osd_linger_request *handle;
4579
4580 rbd_assert(!rbd_dev->watch_handle);
4581 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4582
4583 handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4584 &rbd_dev->header_oloc, rbd_watch_cb,
4585 rbd_watch_errcb, rbd_dev);
4586 if (IS_ERR(handle))
4587 return PTR_ERR(handle);
4588
4589 rbd_dev->watch_handle = handle;
4590 return 0;
4591}
4592
4593/*
4594 * watch_mutex must be locked
4595 */
4596static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4597{
4598 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4599 int ret;
4600
4601 rbd_assert(rbd_dev->watch_handle);
4602 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4603
4604 ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4605 if (ret)
4606 rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4607
4608 rbd_dev->watch_handle = NULL;
4609}
4610
4611static int rbd_register_watch(struct rbd_device *rbd_dev)
4612{
4613 int ret;
4614
4615 mutex_lock(&rbd_dev->watch_mutex);
4616 rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4617 ret = __rbd_register_watch(rbd_dev);
4618 if (ret)
4619 goto out;
4620
4621 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4622 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4623
4624out:
4625 mutex_unlock(&rbd_dev->watch_mutex);
4626 return ret;
4627}
4628
4629static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4630{
4631 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4632
4633 cancel_work_sync(&rbd_dev->acquired_lock_work);
4634 cancel_work_sync(&rbd_dev->released_lock_work);
4635 cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4636 cancel_work_sync(&rbd_dev->unlock_work);
4637}
4638
4639static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4640{
4641 cancel_tasks_sync(rbd_dev);
4642
4643 mutex_lock(&rbd_dev->watch_mutex);
4644 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4645 __rbd_unregister_watch(rbd_dev);
4646 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4647 mutex_unlock(&rbd_dev->watch_mutex);
4648
4649 cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4650 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4651}
4652
4653/*
4654 * lock_rwsem must be held for write
4655 */
4656static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4657{
4658 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4659 char cookie[32];
4660 int ret;
4661
4662 if (!rbd_quiesce_lock(rbd_dev))
4663 return;
4664
4665 format_lock_cookie(rbd_dev, cookie);
4666 ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4667 &rbd_dev->header_oloc, RBD_LOCK_NAME,
4668 CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4669 RBD_LOCK_TAG, cookie);
4670 if (ret) {
4671 if (ret != -EOPNOTSUPP)
4672 rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4673 ret);
4674
4675 /*
4676 * Lock cookie cannot be updated on older OSDs, so do
4677 * a manual release and queue an acquire.
4678 */
4679 __rbd_release_lock(rbd_dev);
4680 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4681 } else {
4682 __rbd_lock(rbd_dev, cookie);
4683 wake_lock_waiters(rbd_dev, 0);
4684 }
4685}
4686
4687static void rbd_reregister_watch(struct work_struct *work)
4688{
4689 struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4690 struct rbd_device, watch_dwork);
4691 int ret;
4692
4693 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4694
4695 mutex_lock(&rbd_dev->watch_mutex);
4696 if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4697 mutex_unlock(&rbd_dev->watch_mutex);
4698 return;
4699 }
4700
4701 ret = __rbd_register_watch(rbd_dev);
4702 if (ret) {
4703 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4704 if (ret != -EBLACKLISTED && ret != -ENOENT) {
4705 queue_delayed_work(rbd_dev->task_wq,
4706 &rbd_dev->watch_dwork,
4707 RBD_RETRY_DELAY);
4708 mutex_unlock(&rbd_dev->watch_mutex);
4709 return;
4710 }
4711
4712 mutex_unlock(&rbd_dev->watch_mutex);
4713 down_write(&rbd_dev->lock_rwsem);
4714 wake_lock_waiters(rbd_dev, ret);
4715 up_write(&rbd_dev->lock_rwsem);
4716 return;
4717 }
4718
4719 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4720 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4721 mutex_unlock(&rbd_dev->watch_mutex);
4722
4723 down_write(&rbd_dev->lock_rwsem);
4724 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4725 rbd_reacquire_lock(rbd_dev);
4726 up_write(&rbd_dev->lock_rwsem);
4727
4728 ret = rbd_dev_refresh(rbd_dev);
4729 if (ret)
4730 rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4731}
4732
4733/*
4734 * Synchronous osd object method call. Returns the number of bytes
4735 * returned in the outbound buffer, or a negative error code.
4736 */
4737static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4738 struct ceph_object_id *oid,
4739 struct ceph_object_locator *oloc,
4740 const char *method_name,
4741 const void *outbound,
4742 size_t outbound_size,
4743 void *inbound,
4744 size_t inbound_size)
4745{
4746 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4747 struct page *req_page = NULL;
4748 struct page *reply_page;
4749 int ret;
4750
4751 /*
4752 * Method calls are ultimately read operations. The result
4753 * should placed into the inbound buffer provided. They
4754 * also supply outbound data--parameters for the object
4755 * method. Currently if this is present it will be a
4756 * snapshot id.
4757 */
4758 if (outbound) {
4759 if (outbound_size > PAGE_SIZE)
4760 return -E2BIG;
4761
4762 req_page = alloc_page(GFP_KERNEL);
4763 if (!req_page)
4764 return -ENOMEM;
4765
4766 memcpy(page_address(req_page), outbound, outbound_size);
4767 }
4768
4769 reply_page = alloc_page(GFP_KERNEL);
4770 if (!reply_page) {
4771 if (req_page)
4772 __free_page(req_page);
4773 return -ENOMEM;
4774 }
4775
4776 ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4777 CEPH_OSD_FLAG_READ, req_page, outbound_size,
4778 &reply_page, &inbound_size);
4779 if (!ret) {
4780 memcpy(inbound, page_address(reply_page), inbound_size);
4781 ret = inbound_size;
4782 }
4783
4784 if (req_page)
4785 __free_page(req_page);
4786 __free_page(reply_page);
4787 return ret;
4788}
4789
4790static void rbd_queue_workfn(struct work_struct *work)
4791{
4792 struct request *rq = blk_mq_rq_from_pdu(work);
4793 struct rbd_device *rbd_dev = rq->q->queuedata;
4794 struct rbd_img_request *img_request;
4795 struct ceph_snap_context *snapc = NULL;
4796 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4797 u64 length = blk_rq_bytes(rq);
4798 enum obj_operation_type op_type;
4799 u64 mapping_size;
4800 int result;
4801
4802 switch (req_op(rq)) {
4803 case REQ_OP_DISCARD:
4804 op_type = OBJ_OP_DISCARD;
4805 break;
4806 case REQ_OP_WRITE_ZEROES:
4807 op_type = OBJ_OP_ZEROOUT;
4808 break;
4809 case REQ_OP_WRITE:
4810 op_type = OBJ_OP_WRITE;
4811 break;
4812 case REQ_OP_READ:
4813 op_type = OBJ_OP_READ;
4814 break;
4815 default:
4816 dout("%s: non-fs request type %d\n", __func__, req_op(rq));
4817 result = -EIO;
4818 goto err;
4819 }
4820
4821 /* Ignore/skip any zero-length requests */
4822
4823 if (!length) {
4824 dout("%s: zero-length request\n", __func__);
4825 result = 0;
4826 goto err_rq;
4827 }
4828
4829 if (op_type != OBJ_OP_READ && rbd_dev->spec->snap_id != CEPH_NOSNAP) {
4830 rbd_warn(rbd_dev, "%s on read-only snapshot",
4831 obj_op_name(op_type));
4832 result = -EIO;
4833 goto err;
4834 }
4835
4836 /*
4837 * Quit early if the mapped snapshot no longer exists. It's
4838 * still possible the snapshot will have disappeared by the
4839 * time our request arrives at the osd, but there's no sense in
4840 * sending it if we already know.
4841 */
4842 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
4843 dout("request for non-existent snapshot");
4844 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
4845 result = -ENXIO;
4846 goto err_rq;
4847 }
4848
4849 if (offset && length > U64_MAX - offset + 1) {
4850 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
4851 length);
4852 result = -EINVAL;
4853 goto err_rq; /* Shouldn't happen */
4854 }
4855
4856 blk_mq_start_request(rq);
4857
4858 down_read(&rbd_dev->header_rwsem);
4859 mapping_size = rbd_dev->mapping.size;
4860 if (op_type != OBJ_OP_READ) {
4861 snapc = rbd_dev->header.snapc;
4862 ceph_get_snap_context(snapc);
4863 }
4864 up_read(&rbd_dev->header_rwsem);
4865
4866 if (offset + length > mapping_size) {
4867 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4868 length, mapping_size);
4869 result = -EIO;
4870 goto err_rq;
4871 }
4872
4873 img_request = rbd_img_request_create(rbd_dev, op_type, snapc);
4874 if (!img_request) {
4875 result = -ENOMEM;
4876 goto err_rq;
4877 }
4878 img_request->rq = rq;
4879 snapc = NULL; /* img_request consumes a ref */
4880
4881 dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4882 img_request, obj_op_name(op_type), offset, length);
4883
4884 if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4885 result = rbd_img_fill_nodata(img_request, offset, length);
4886 else
4887 result = rbd_img_fill_from_bio(img_request, offset, length,
4888 rq->bio);
4889 if (result)
4890 goto err_img_request;
4891
4892 rbd_img_handle_request(img_request, 0);
4893 return;
4894
4895err_img_request:
4896 rbd_img_request_put(img_request);
4897err_rq:
4898 if (result)
4899 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4900 obj_op_name(op_type), length, offset, result);
4901 ceph_put_snap_context(snapc);
4902err:
4903 blk_mq_end_request(rq, errno_to_blk_status(result));
4904}
4905
4906static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4907 const struct blk_mq_queue_data *bd)
4908{
4909 struct request *rq = bd->rq;
4910 struct work_struct *work = blk_mq_rq_to_pdu(rq);
4911
4912 queue_work(rbd_wq, work);
4913 return BLK_STS_OK;
4914}
4915
4916static void rbd_free_disk(struct rbd_device *rbd_dev)
4917{
4918 blk_cleanup_queue(rbd_dev->disk->queue);
4919 blk_mq_free_tag_set(&rbd_dev->tag_set);
4920 put_disk(rbd_dev->disk);
4921 rbd_dev->disk = NULL;
4922}
4923
4924static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4925 struct ceph_object_id *oid,
4926 struct ceph_object_locator *oloc,
4927 void *buf, int buf_len)
4928
4929{
4930 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4931 struct ceph_osd_request *req;
4932 struct page **pages;
4933 int num_pages = calc_pages_for(0, buf_len);
4934 int ret;
4935
4936 req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4937 if (!req)
4938 return -ENOMEM;
4939
4940 ceph_oid_copy(&req->r_base_oid, oid);
4941 ceph_oloc_copy(&req->r_base_oloc, oloc);
4942 req->r_flags = CEPH_OSD_FLAG_READ;
4943
4944 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4945 if (IS_ERR(pages)) {
4946 ret = PTR_ERR(pages);
4947 goto out_req;
4948 }
4949
4950 osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4951 osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4952 true);
4953
4954 ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4955 if (ret)
4956 goto out_req;
4957
4958 ceph_osdc_start_request(osdc, req, false);
4959 ret = ceph_osdc_wait_request(osdc, req);
4960 if (ret >= 0)
4961 ceph_copy_from_page_vector(pages, buf, 0, ret);
4962
4963out_req:
4964 ceph_osdc_put_request(req);
4965 return ret;
4966}
4967
4968/*
4969 * Read the complete header for the given rbd device. On successful
4970 * return, the rbd_dev->header field will contain up-to-date
4971 * information about the image.
4972 */
4973static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4974{
4975 struct rbd_image_header_ondisk *ondisk = NULL;
4976 u32 snap_count = 0;
4977 u64 names_size = 0;
4978 u32 want_count;
4979 int ret;
4980
4981 /*
4982 * The complete header will include an array of its 64-bit
4983 * snapshot ids, followed by the names of those snapshots as
4984 * a contiguous block of NUL-terminated strings. Note that
4985 * the number of snapshots could change by the time we read
4986 * it in, in which case we re-read it.
4987 */
4988 do {
4989 size_t size;
4990
4991 kfree(ondisk);
4992
4993 size = sizeof (*ondisk);
4994 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4995 size += names_size;
4996 ondisk = kmalloc(size, GFP_KERNEL);
4997 if (!ondisk)
4998 return -ENOMEM;
4999
5000 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
5001 &rbd_dev->header_oloc, ondisk, size);
5002 if (ret < 0)
5003 goto out;
5004 if ((size_t)ret < size) {
5005 ret = -ENXIO;
5006 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
5007 size, ret);
5008 goto out;
5009 }
5010 if (!rbd_dev_ondisk_valid(ondisk)) {
5011 ret = -ENXIO;
5012 rbd_warn(rbd_dev, "invalid header");
5013 goto out;
5014 }
5015
5016 names_size = le64_to_cpu(ondisk->snap_names_len);
5017 want_count = snap_count;
5018 snap_count = le32_to_cpu(ondisk->snap_count);
5019 } while (snap_count != want_count);
5020
5021 ret = rbd_header_from_disk(rbd_dev, ondisk);
5022out:
5023 kfree(ondisk);
5024
5025 return ret;
5026}
5027
5028/*
5029 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
5030 * has disappeared from the (just updated) snapshot context.
5031 */
5032static void rbd_exists_validate(struct rbd_device *rbd_dev)
5033{
5034 u64 snap_id;
5035
5036 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
5037 return;
5038
5039 snap_id = rbd_dev->spec->snap_id;
5040 if (snap_id == CEPH_NOSNAP)
5041 return;
5042
5043 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
5044 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5045}
5046
5047static void rbd_dev_update_size(struct rbd_device *rbd_dev)
5048{
5049 sector_t size;
5050
5051 /*
5052 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
5053 * try to update its size. If REMOVING is set, updating size
5054 * is just useless work since the device can't be opened.
5055 */
5056 if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
5057 !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
5058 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
5059 dout("setting size to %llu sectors", (unsigned long long)size);
5060 set_capacity(rbd_dev->disk, size);
5061 revalidate_disk(rbd_dev->disk);
5062 }
5063}
5064
5065static int rbd_dev_refresh(struct rbd_device *rbd_dev)
5066{
5067 u64 mapping_size;
5068 int ret;
5069
5070 down_write(&rbd_dev->header_rwsem);
5071 mapping_size = rbd_dev->mapping.size;
5072
5073 ret = rbd_dev_header_info(rbd_dev);
5074 if (ret)
5075 goto out;
5076
5077 /*
5078 * If there is a parent, see if it has disappeared due to the
5079 * mapped image getting flattened.
5080 */
5081 if (rbd_dev->parent) {
5082 ret = rbd_dev_v2_parent_info(rbd_dev);
5083 if (ret)
5084 goto out;
5085 }
5086
5087 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
5088 rbd_dev->mapping.size = rbd_dev->header.image_size;
5089 } else {
5090 /* validate mapped snapshot's EXISTS flag */
5091 rbd_exists_validate(rbd_dev);
5092 }
5093
5094out:
5095 up_write(&rbd_dev->header_rwsem);
5096 if (!ret && mapping_size != rbd_dev->mapping.size)
5097 rbd_dev_update_size(rbd_dev);
5098
5099 return ret;
5100}
5101
5102static int rbd_init_request(struct blk_mq_tag_set *set, struct request *rq,
5103 unsigned int hctx_idx, unsigned int numa_node)
5104{
5105 struct work_struct *work = blk_mq_rq_to_pdu(rq);
5106
5107 INIT_WORK(work, rbd_queue_workfn);
5108 return 0;
5109}
5110
5111static const struct blk_mq_ops rbd_mq_ops = {
5112 .queue_rq = rbd_queue_rq,
5113 .init_request = rbd_init_request,
5114};
5115
5116static int rbd_init_disk(struct rbd_device *rbd_dev)
5117{
5118 struct gendisk *disk;
5119 struct request_queue *q;
5120 unsigned int objset_bytes =
5121 rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
5122 int err;
5123
5124 /* create gendisk info */
5125 disk = alloc_disk(single_major ?
5126 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
5127 RBD_MINORS_PER_MAJOR);
5128 if (!disk)
5129 return -ENOMEM;
5130
5131 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
5132 rbd_dev->dev_id);
5133 disk->major = rbd_dev->major;
5134 disk->first_minor = rbd_dev->minor;
5135 if (single_major)
5136 disk->flags |= GENHD_FL_EXT_DEVT;
5137 disk->fops = &rbd_bd_ops;
5138 disk->private_data = rbd_dev;
5139
5140 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
5141 rbd_dev->tag_set.ops = &rbd_mq_ops;
5142 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
5143 rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
5144 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
5145 rbd_dev->tag_set.nr_hw_queues = 1;
5146 rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
5147
5148 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
5149 if (err)
5150 goto out_disk;
5151
5152 q = blk_mq_init_queue(&rbd_dev->tag_set);
5153 if (IS_ERR(q)) {
5154 err = PTR_ERR(q);
5155 goto out_tag_set;
5156 }
5157
5158 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
5159 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
5160
5161 blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
5162 q->limits.max_sectors = queue_max_hw_sectors(q);
5163 blk_queue_max_segments(q, USHRT_MAX);
5164 blk_queue_max_segment_size(q, UINT_MAX);
5165 blk_queue_io_min(q, rbd_dev->opts->alloc_size);
5166 blk_queue_io_opt(q, rbd_dev->opts->alloc_size);
5167
5168 if (rbd_dev->opts->trim) {
5169 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
5170 q->limits.discard_granularity = rbd_dev->opts->alloc_size;
5171 blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
5172 blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
5173 }
5174
5175 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
5176 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
5177
5178 /*
5179 * disk_release() expects a queue ref from add_disk() and will
5180 * put it. Hold an extra ref until add_disk() is called.
5181 */
5182 WARN_ON(!blk_get_queue(q));
5183 disk->queue = q;
5184 q->queuedata = rbd_dev;
5185
5186 rbd_dev->disk = disk;
5187
5188 return 0;
5189out_tag_set:
5190 blk_mq_free_tag_set(&rbd_dev->tag_set);
5191out_disk:
5192 put_disk(disk);
5193 return err;
5194}
5195
5196/*
5197 sysfs
5198*/
5199
5200static struct rbd_device *dev_to_rbd_dev(struct device *dev)
5201{
5202 return container_of(dev, struct rbd_device, dev);
5203}
5204
5205static ssize_t rbd_size_show(struct device *dev,
5206 struct device_attribute *attr, char *buf)
5207{
5208 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5209
5210 return sprintf(buf, "%llu\n",
5211 (unsigned long long)rbd_dev->mapping.size);
5212}
5213
5214/*
5215 * Note this shows the features for whatever's mapped, which is not
5216 * necessarily the base image.
5217 */
5218static ssize_t rbd_features_show(struct device *dev,
5219 struct device_attribute *attr, char *buf)
5220{
5221 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5222
5223 return sprintf(buf, "0x%016llx\n",
5224 (unsigned long long)rbd_dev->mapping.features);
5225}
5226
5227static ssize_t rbd_major_show(struct device *dev,
5228 struct device_attribute *attr, char *buf)
5229{
5230 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5231
5232 if (rbd_dev->major)
5233 return sprintf(buf, "%d\n", rbd_dev->major);
5234
5235 return sprintf(buf, "(none)\n");
5236}
5237
5238static ssize_t rbd_minor_show(struct device *dev,
5239 struct device_attribute *attr, char *buf)
5240{
5241 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5242
5243 return sprintf(buf, "%d\n", rbd_dev->minor);
5244}
5245
5246static ssize_t rbd_client_addr_show(struct device *dev,
5247 struct device_attribute *attr, char *buf)
5248{
5249 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5250 struct ceph_entity_addr *client_addr =
5251 ceph_client_addr(rbd_dev->rbd_client->client);
5252
5253 return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5254 le32_to_cpu(client_addr->nonce));
5255}
5256
5257static ssize_t rbd_client_id_show(struct device *dev,
5258 struct device_attribute *attr, char *buf)
5259{
5260 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5261
5262 return sprintf(buf, "client%lld\n",
5263 ceph_client_gid(rbd_dev->rbd_client->client));
5264}
5265
5266static ssize_t rbd_cluster_fsid_show(struct device *dev,
5267 struct device_attribute *attr, char *buf)
5268{
5269 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5270
5271 return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5272}
5273
5274static ssize_t rbd_config_info_show(struct device *dev,
5275 struct device_attribute *attr, char *buf)
5276{
5277 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5278
5279 return sprintf(buf, "%s\n", rbd_dev->config_info);
5280}
5281
5282static ssize_t rbd_pool_show(struct device *dev,
5283 struct device_attribute *attr, char *buf)
5284{
5285 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5286
5287 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5288}
5289
5290static ssize_t rbd_pool_id_show(struct device *dev,
5291 struct device_attribute *attr, char *buf)
5292{
5293 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5294
5295 return sprintf(buf, "%llu\n",
5296 (unsigned long long) rbd_dev->spec->pool_id);
5297}
5298
5299static ssize_t rbd_pool_ns_show(struct device *dev,
5300 struct device_attribute *attr, char *buf)
5301{
5302 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5303
5304 return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5305}
5306
5307static ssize_t rbd_name_show(struct device *dev,
5308 struct device_attribute *attr, char *buf)
5309{
5310 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5311
5312 if (rbd_dev->spec->image_name)
5313 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5314
5315 return sprintf(buf, "(unknown)\n");
5316}
5317
5318static ssize_t rbd_image_id_show(struct device *dev,
5319 struct device_attribute *attr, char *buf)
5320{
5321 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5322
5323 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5324}
5325
5326/*
5327 * Shows the name of the currently-mapped snapshot (or
5328 * RBD_SNAP_HEAD_NAME for the base image).
5329 */
5330static ssize_t rbd_snap_show(struct device *dev,
5331 struct device_attribute *attr,
5332 char *buf)
5333{
5334 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5335
5336 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5337}
5338
5339static ssize_t rbd_snap_id_show(struct device *dev,
5340 struct device_attribute *attr, char *buf)
5341{
5342 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5343
5344 return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5345}
5346
5347/*
5348 * For a v2 image, shows the chain of parent images, separated by empty
5349 * lines. For v1 images or if there is no parent, shows "(no parent
5350 * image)".
5351 */
5352static ssize_t rbd_parent_show(struct device *dev,
5353 struct device_attribute *attr,
5354 char *buf)
5355{
5356 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5357 ssize_t count = 0;
5358
5359 if (!rbd_dev->parent)
5360 return sprintf(buf, "(no parent image)\n");
5361
5362 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5363 struct rbd_spec *spec = rbd_dev->parent_spec;
5364
5365 count += sprintf(&buf[count], "%s"
5366 "pool_id %llu\npool_name %s\n"
5367 "pool_ns %s\n"
5368 "image_id %s\nimage_name %s\n"
5369 "snap_id %llu\nsnap_name %s\n"
5370 "overlap %llu\n",
5371 !count ? "" : "\n", /* first? */
5372 spec->pool_id, spec->pool_name,
5373 spec->pool_ns ?: "",
5374 spec->image_id, spec->image_name ?: "(unknown)",
5375 spec->snap_id, spec->snap_name,
5376 rbd_dev->parent_overlap);
5377 }
5378
5379 return count;
5380}
5381
5382static ssize_t rbd_image_refresh(struct device *dev,
5383 struct device_attribute *attr,
5384 const char *buf,
5385 size_t size)
5386{
5387 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5388 int ret;
5389
5390 ret = rbd_dev_refresh(rbd_dev);
5391 if (ret)
5392 return ret;
5393
5394 return size;
5395}
5396
5397static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5398static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5399static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5400static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5401static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5402static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5403static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5404static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5405static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5406static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5407static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5408static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5409static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5410static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5411static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5412static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5413static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5414
5415static struct attribute *rbd_attrs[] = {
5416 &dev_attr_size.attr,
5417 &dev_attr_features.attr,
5418 &dev_attr_major.attr,
5419 &dev_attr_minor.attr,
5420 &dev_attr_client_addr.attr,
5421 &dev_attr_client_id.attr,
5422 &dev_attr_cluster_fsid.attr,
5423 &dev_attr_config_info.attr,
5424 &dev_attr_pool.attr,
5425 &dev_attr_pool_id.attr,
5426 &dev_attr_pool_ns.attr,
5427 &dev_attr_name.attr,
5428 &dev_attr_image_id.attr,
5429 &dev_attr_current_snap.attr,
5430 &dev_attr_snap_id.attr,
5431 &dev_attr_parent.attr,
5432 &dev_attr_refresh.attr,
5433 NULL
5434};
5435
5436static struct attribute_group rbd_attr_group = {
5437 .attrs = rbd_attrs,
5438};
5439
5440static const struct attribute_group *rbd_attr_groups[] = {
5441 &rbd_attr_group,
5442 NULL
5443};
5444
5445static void rbd_dev_release(struct device *dev);
5446
5447static const struct device_type rbd_device_type = {
5448 .name = "rbd",
5449 .groups = rbd_attr_groups,
5450 .release = rbd_dev_release,
5451};
5452
5453static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5454{
5455 kref_get(&spec->kref);
5456
5457 return spec;
5458}
5459
5460static void rbd_spec_free(struct kref *kref);
5461static void rbd_spec_put(struct rbd_spec *spec)
5462{
5463 if (spec)
5464 kref_put(&spec->kref, rbd_spec_free);
5465}
5466
5467static struct rbd_spec *rbd_spec_alloc(void)
5468{
5469 struct rbd_spec *spec;
5470
5471 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5472 if (!spec)
5473 return NULL;
5474
5475 spec->pool_id = CEPH_NOPOOL;
5476 spec->snap_id = CEPH_NOSNAP;
5477 kref_init(&spec->kref);
5478
5479 return spec;
5480}
5481
5482static void rbd_spec_free(struct kref *kref)
5483{
5484 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5485
5486 kfree(spec->pool_name);
5487 kfree(spec->pool_ns);
5488 kfree(spec->image_id);
5489 kfree(spec->image_name);
5490 kfree(spec->snap_name);
5491 kfree(spec);
5492}
5493
5494static void rbd_dev_free(struct rbd_device *rbd_dev)
5495{
5496 WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5497 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5498
5499 ceph_oid_destroy(&rbd_dev->header_oid);
5500 ceph_oloc_destroy(&rbd_dev->header_oloc);
5501 kfree(rbd_dev->config_info);
5502
5503 rbd_put_client(rbd_dev->rbd_client);
5504 rbd_spec_put(rbd_dev->spec);
5505 kfree(rbd_dev->opts);
5506 kfree(rbd_dev);
5507}
5508
5509static void rbd_dev_release(struct device *dev)
5510{
5511 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5512 bool need_put = !!rbd_dev->opts;
5513
5514 if (need_put) {
5515 destroy_workqueue(rbd_dev->task_wq);
5516 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5517 }
5518
5519 rbd_dev_free(rbd_dev);
5520
5521 /*
5522 * This is racy, but way better than putting module outside of
5523 * the release callback. The race window is pretty small, so
5524 * doing something similar to dm (dm-builtin.c) is overkill.
5525 */
5526 if (need_put)
5527 module_put(THIS_MODULE);
5528}
5529
5530static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
5531 struct rbd_spec *spec)
5532{
5533 struct rbd_device *rbd_dev;
5534
5535 rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5536 if (!rbd_dev)
5537 return NULL;
5538
5539 spin_lock_init(&rbd_dev->lock);
5540 INIT_LIST_HEAD(&rbd_dev->node);
5541 init_rwsem(&rbd_dev->header_rwsem);
5542
5543 rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5544 ceph_oid_init(&rbd_dev->header_oid);
5545 rbd_dev->header_oloc.pool = spec->pool_id;
5546 if (spec->pool_ns) {
5547 WARN_ON(!*spec->pool_ns);
5548 rbd_dev->header_oloc.pool_ns =
5549 ceph_find_or_create_string(spec->pool_ns,
5550 strlen(spec->pool_ns));
5551 }
5552
5553 mutex_init(&rbd_dev->watch_mutex);
5554 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5555 INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5556
5557 init_rwsem(&rbd_dev->lock_rwsem);
5558 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5559 INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5560 INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5561 INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5562 INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5563 spin_lock_init(&rbd_dev->lock_lists_lock);
5564 INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5565 INIT_LIST_HEAD(&rbd_dev->running_list);
5566 init_completion(&rbd_dev->acquire_wait);
5567 init_completion(&rbd_dev->releasing_wait);
5568
5569 spin_lock_init(&rbd_dev->object_map_lock);
5570
5571 rbd_dev->dev.bus = &rbd_bus_type;
5572 rbd_dev->dev.type = &rbd_device_type;
5573 rbd_dev->dev.parent = &rbd_root_dev;
5574 device_initialize(&rbd_dev->dev);
5575
5576 rbd_dev->rbd_client = rbdc;
5577 rbd_dev->spec = spec;
5578
5579 return rbd_dev;
5580}
5581
5582/*
5583 * Create a mapping rbd_dev.
5584 */
5585static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5586 struct rbd_spec *spec,
5587 struct rbd_options *opts)
5588{
5589 struct rbd_device *rbd_dev;
5590
5591 rbd_dev = __rbd_dev_create(rbdc, spec);
5592 if (!rbd_dev)
5593 return NULL;
5594
5595 rbd_dev->opts = opts;
5596
5597 /* get an id and fill in device name */
5598 rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
5599 minor_to_rbd_dev_id(1 << MINORBITS),
5600 GFP_KERNEL);
5601 if (rbd_dev->dev_id < 0)
5602 goto fail_rbd_dev;
5603
5604 sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5605 rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5606 rbd_dev->name);
5607 if (!rbd_dev->task_wq)
5608 goto fail_dev_id;
5609
5610 /* we have a ref from do_rbd_add() */
5611 __module_get(THIS_MODULE);
5612
5613 dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5614 return rbd_dev;
5615
5616fail_dev_id:
5617 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5618fail_rbd_dev:
5619 rbd_dev_free(rbd_dev);
5620 return NULL;
5621}
5622
5623static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5624{
5625 if (rbd_dev)
5626 put_device(&rbd_dev->dev);
5627}
5628
5629/*
5630 * Get the size and object order for an image snapshot, or if
5631 * snap_id is CEPH_NOSNAP, gets this information for the base
5632 * image.
5633 */
5634static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5635 u8 *order, u64 *snap_size)
5636{
5637 __le64 snapid = cpu_to_le64(snap_id);
5638 int ret;
5639 struct {
5640 u8 order;
5641 __le64 size;
5642 } __attribute__ ((packed)) size_buf = { 0 };
5643
5644 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5645 &rbd_dev->header_oloc, "get_size",
5646 &snapid, sizeof(snapid),
5647 &size_buf, sizeof(size_buf));
5648 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5649 if (ret < 0)
5650 return ret;
5651 if (ret < sizeof (size_buf))
5652 return -ERANGE;
5653
5654 if (order) {
5655 *order = size_buf.order;
5656 dout(" order %u", (unsigned int)*order);
5657 }
5658 *snap_size = le64_to_cpu(size_buf.size);
5659
5660 dout(" snap_id 0x%016llx snap_size = %llu\n",
5661 (unsigned long long)snap_id,
5662 (unsigned long long)*snap_size);
5663
5664 return 0;
5665}
5666
5667static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
5668{
5669 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
5670 &rbd_dev->header.obj_order,
5671 &rbd_dev->header.image_size);
5672}
5673
5674static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
5675{
5676 size_t size;
5677 void *reply_buf;
5678 int ret;
5679 void *p;
5680
5681 /* Response will be an encoded string, which includes a length */
5682 size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5683 reply_buf = kzalloc(size, GFP_KERNEL);
5684 if (!reply_buf)
5685 return -ENOMEM;
5686
5687 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5688 &rbd_dev->header_oloc, "get_object_prefix",
5689 NULL, 0, reply_buf, size);
5690 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5691 if (ret < 0)
5692 goto out;
5693
5694 p = reply_buf;
5695 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
5696 p + ret, NULL, GFP_NOIO);
5697 ret = 0;
5698
5699 if (IS_ERR(rbd_dev->header.object_prefix)) {
5700 ret = PTR_ERR(rbd_dev->header.object_prefix);
5701 rbd_dev->header.object_prefix = NULL;
5702 } else {
5703 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
5704 }
5705out:
5706 kfree(reply_buf);
5707
5708 return ret;
5709}
5710
5711static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5712 u64 *snap_features)
5713{
5714 __le64 snapid = cpu_to_le64(snap_id);
5715 struct {
5716 __le64 features;
5717 __le64 incompat;
5718 } __attribute__ ((packed)) features_buf = { 0 };
5719 u64 unsup;
5720 int ret;
5721
5722 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5723 &rbd_dev->header_oloc, "get_features",
5724 &snapid, sizeof(snapid),
5725 &features_buf, sizeof(features_buf));
5726 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5727 if (ret < 0)
5728 return ret;
5729 if (ret < sizeof (features_buf))
5730 return -ERANGE;
5731
5732 unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5733 if (unsup) {
5734 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5735 unsup);
5736 return -ENXIO;
5737 }
5738
5739 *snap_features = le64_to_cpu(features_buf.features);
5740
5741 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5742 (unsigned long long)snap_id,
5743 (unsigned long long)*snap_features,
5744 (unsigned long long)le64_to_cpu(features_buf.incompat));
5745
5746 return 0;
5747}
5748
5749static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
5750{
5751 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
5752 &rbd_dev->header.features);
5753}
5754
5755/*
5756 * These are generic image flags, but since they are used only for
5757 * object map, store them in rbd_dev->object_map_flags.
5758 *
5759 * For the same reason, this function is called only on object map
5760 * (re)load and not on header refresh.
5761 */
5762static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5763{
5764 __le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5765 __le64 flags;
5766 int ret;
5767
5768 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5769 &rbd_dev->header_oloc, "get_flags",
5770 &snapid, sizeof(snapid),
5771 &flags, sizeof(flags));
5772 if (ret < 0)
5773 return ret;
5774 if (ret < sizeof(flags))
5775 return -EBADMSG;
5776
5777 rbd_dev->object_map_flags = le64_to_cpu(flags);
5778 return 0;
5779}
5780
5781struct parent_image_info {
5782 u64 pool_id;
5783 const char *pool_ns;
5784 const char *image_id;
5785 u64 snap_id;
5786
5787 bool has_overlap;
5788 u64 overlap;
5789};
5790
5791/*
5792 * The caller is responsible for @pii.
5793 */
5794static int decode_parent_image_spec(void **p, void *end,
5795 struct parent_image_info *pii)
5796{
5797 u8 struct_v;
5798 u32 struct_len;
5799 int ret;
5800
5801 ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5802 &struct_v, &struct_len);
5803 if (ret)
5804 return ret;
5805
5806 ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5807 pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5808 if (IS_ERR(pii->pool_ns)) {
5809 ret = PTR_ERR(pii->pool_ns);
5810 pii->pool_ns = NULL;
5811 return ret;
5812 }
5813 pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5814 if (IS_ERR(pii->image_id)) {
5815 ret = PTR_ERR(pii->image_id);
5816 pii->image_id = NULL;
5817 return ret;
5818 }
5819 ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5820 return 0;
5821
5822e_inval:
5823 return -EINVAL;
5824}
5825
5826static int __get_parent_info(struct rbd_device *rbd_dev,
5827 struct page *req_page,
5828 struct page *reply_page,
5829 struct parent_image_info *pii)
5830{
5831 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5832 size_t reply_len = PAGE_SIZE;
5833 void *p, *end;
5834 int ret;
5835
5836 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5837 "rbd", "parent_get", CEPH_OSD_FLAG_READ,
5838 req_page, sizeof(u64), &reply_page, &reply_len);
5839 if (ret)
5840 return ret == -EOPNOTSUPP ? 1 : ret;
5841
5842 p = page_address(reply_page);
5843 end = p + reply_len;
5844 ret = decode_parent_image_spec(&p, end, pii);
5845 if (ret)
5846 return ret;
5847
5848 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5849 "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5850 req_page, sizeof(u64), &reply_page, &reply_len);
5851 if (ret)
5852 return ret;
5853
5854 p = page_address(reply_page);
5855 end = p + reply_len;
5856 ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5857 if (pii->has_overlap)
5858 ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5859
5860 return 0;
5861
5862e_inval:
5863 return -EINVAL;
5864}
5865
5866/*
5867 * The caller is responsible for @pii.
5868 */
5869static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5870 struct page *req_page,
5871 struct page *reply_page,
5872 struct parent_image_info *pii)
5873{
5874 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5875 size_t reply_len = PAGE_SIZE;
5876 void *p, *end;
5877 int ret;
5878
5879 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5880 "rbd", "get_parent", CEPH_OSD_FLAG_READ,
5881 req_page, sizeof(u64), &reply_page, &reply_len);
5882 if (ret)
5883 return ret;
5884
5885 p = page_address(reply_page);
5886 end = p + reply_len;
5887 ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5888 pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5889 if (IS_ERR(pii->image_id)) {
5890 ret = PTR_ERR(pii->image_id);
5891 pii->image_id = NULL;
5892 return ret;
5893 }
5894 ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5895 pii->has_overlap = true;
5896 ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5897
5898 return 0;
5899
5900e_inval:
5901 return -EINVAL;
5902}
5903
5904static int get_parent_info(struct rbd_device *rbd_dev,
5905 struct parent_image_info *pii)
5906{
5907 struct page *req_page, *reply_page;
5908 void *p;
5909 int ret;
5910
5911 req_page = alloc_page(GFP_KERNEL);
5912 if (!req_page)
5913 return -ENOMEM;
5914
5915 reply_page = alloc_page(GFP_KERNEL);
5916 if (!reply_page) {
5917 __free_page(req_page);
5918 return -ENOMEM;
5919 }
5920
5921 p = page_address(req_page);
5922 ceph_encode_64(&p, rbd_dev->spec->snap_id);
5923 ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5924 if (ret > 0)
5925 ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5926 pii);
5927
5928 __free_page(req_page);
5929 __free_page(reply_page);
5930 return ret;
5931}
5932
5933static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
5934{
5935 struct rbd_spec *parent_spec;
5936 struct parent_image_info pii = { 0 };
5937 int ret;
5938
5939 parent_spec = rbd_spec_alloc();
5940 if (!parent_spec)
5941 return -ENOMEM;
5942
5943 ret = get_parent_info(rbd_dev, &pii);
5944 if (ret)
5945 goto out_err;
5946
5947 dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5948 __func__, pii.pool_id, pii.pool_ns, pii.image_id, pii.snap_id,
5949 pii.has_overlap, pii.overlap);
5950
5951 if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) {
5952 /*
5953 * Either the parent never existed, or we have
5954 * record of it but the image got flattened so it no
5955 * longer has a parent. When the parent of a
5956 * layered image disappears we immediately set the
5957 * overlap to 0. The effect of this is that all new
5958 * requests will be treated as if the image had no
5959 * parent.
5960 *
5961 * If !pii.has_overlap, the parent image spec is not
5962 * applicable. It's there to avoid duplication in each
5963 * snapshot record.
5964 */
5965 if (rbd_dev->parent_overlap) {
5966 rbd_dev->parent_overlap = 0;
5967 rbd_dev_parent_put(rbd_dev);
5968 pr_info("%s: clone image has been flattened\n",
5969 rbd_dev->disk->disk_name);
5970 }
5971
5972 goto out; /* No parent? No problem. */
5973 }
5974
5975 /* The ceph file layout needs to fit pool id in 32 bits */
5976
5977 ret = -EIO;
5978 if (pii.pool_id > (u64)U32_MAX) {
5979 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5980 (unsigned long long)pii.pool_id, U32_MAX);
5981 goto out_err;
5982 }
5983
5984 /*
5985 * The parent won't change (except when the clone is
5986 * flattened, already handled that). So we only need to
5987 * record the parent spec we have not already done so.
5988 */
5989 if (!rbd_dev->parent_spec) {
5990 parent_spec->pool_id = pii.pool_id;
5991 if (pii.pool_ns && *pii.pool_ns) {
5992 parent_spec->pool_ns = pii.pool_ns;
5993 pii.pool_ns = NULL;
5994 }
5995 parent_spec->image_id = pii.image_id;
5996 pii.image_id = NULL;
5997 parent_spec->snap_id = pii.snap_id;
5998
5999 rbd_dev->parent_spec = parent_spec;
6000 parent_spec = NULL; /* rbd_dev now owns this */
6001 }
6002
6003 /*
6004 * We always update the parent overlap. If it's zero we issue
6005 * a warning, as we will proceed as if there was no parent.
6006 */
6007 if (!pii.overlap) {
6008 if (parent_spec) {
6009 /* refresh, careful to warn just once */
6010 if (rbd_dev->parent_overlap)
6011 rbd_warn(rbd_dev,
6012 "clone now standalone (overlap became 0)");
6013 } else {
6014 /* initial probe */
6015 rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
6016 }
6017 }
6018 rbd_dev->parent_overlap = pii.overlap;
6019
6020out:
6021 ret = 0;
6022out_err:
6023 kfree(pii.pool_ns);
6024 kfree(pii.image_id);
6025 rbd_spec_put(parent_spec);
6026 return ret;
6027}
6028
6029static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
6030{
6031 struct {
6032 __le64 stripe_unit;
6033 __le64 stripe_count;
6034 } __attribute__ ((packed)) striping_info_buf = { 0 };
6035 size_t size = sizeof (striping_info_buf);
6036 void *p;
6037 int ret;
6038
6039 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6040 &rbd_dev->header_oloc, "get_stripe_unit_count",
6041 NULL, 0, &striping_info_buf, size);
6042 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6043 if (ret < 0)
6044 return ret;
6045 if (ret < size)
6046 return -ERANGE;
6047
6048 p = &striping_info_buf;
6049 rbd_dev->header.stripe_unit = ceph_decode_64(&p);
6050 rbd_dev->header.stripe_count = ceph_decode_64(&p);
6051 return 0;
6052}
6053
6054static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
6055{
6056 __le64 data_pool_id;
6057 int ret;
6058
6059 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6060 &rbd_dev->header_oloc, "get_data_pool",
6061 NULL, 0, &data_pool_id, sizeof(data_pool_id));
6062 if (ret < 0)
6063 return ret;
6064 if (ret < sizeof(data_pool_id))
6065 return -EBADMSG;
6066
6067 rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
6068 WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
6069 return 0;
6070}
6071
6072static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
6073{
6074 CEPH_DEFINE_OID_ONSTACK(oid);
6075 size_t image_id_size;
6076 char *image_id;
6077 void *p;
6078 void *end;
6079 size_t size;
6080 void *reply_buf = NULL;
6081 size_t len = 0;
6082 char *image_name = NULL;
6083 int ret;
6084
6085 rbd_assert(!rbd_dev->spec->image_name);
6086
6087 len = strlen(rbd_dev->spec->image_id);
6088 image_id_size = sizeof (__le32) + len;
6089 image_id = kmalloc(image_id_size, GFP_KERNEL);
6090 if (!image_id)
6091 return NULL;
6092
6093 p = image_id;
6094 end = image_id + image_id_size;
6095 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
6096
6097 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
6098 reply_buf = kmalloc(size, GFP_KERNEL);
6099 if (!reply_buf)
6100 goto out;
6101
6102 ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
6103 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6104 "dir_get_name", image_id, image_id_size,
6105 reply_buf, size);
6106 if (ret < 0)
6107 goto out;
6108 p = reply_buf;
6109 end = reply_buf + ret;
6110
6111 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
6112 if (IS_ERR(image_name))
6113 image_name = NULL;
6114 else
6115 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
6116out:
6117 kfree(reply_buf);
6118 kfree(image_id);
6119
6120 return image_name;
6121}
6122
6123static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
6124{
6125 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
6126 const char *snap_name;
6127 u32 which = 0;
6128
6129 /* Skip over names until we find the one we are looking for */
6130
6131 snap_name = rbd_dev->header.snap_names;
6132 while (which < snapc->num_snaps) {
6133 if (!strcmp(name, snap_name))
6134 return snapc->snaps[which];
6135 snap_name += strlen(snap_name) + 1;
6136 which++;
6137 }
6138 return CEPH_NOSNAP;
6139}
6140
6141static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
6142{
6143 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
6144 u32 which;
6145 bool found = false;
6146 u64 snap_id;
6147
6148 for (which = 0; !found && which < snapc->num_snaps; which++) {
6149 const char *snap_name;
6150
6151 snap_id = snapc->snaps[which];
6152 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
6153 if (IS_ERR(snap_name)) {
6154 /* ignore no-longer existing snapshots */
6155 if (PTR_ERR(snap_name) == -ENOENT)
6156 continue;
6157 else
6158 break;
6159 }
6160 found = !strcmp(name, snap_name);
6161 kfree(snap_name);
6162 }
6163 return found ? snap_id : CEPH_NOSNAP;
6164}
6165
6166/*
6167 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
6168 * no snapshot by that name is found, or if an error occurs.
6169 */
6170static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
6171{
6172 if (rbd_dev->image_format == 1)
6173 return rbd_v1_snap_id_by_name(rbd_dev, name);
6174
6175 return rbd_v2_snap_id_by_name(rbd_dev, name);
6176}
6177
6178/*
6179 * An image being mapped will have everything but the snap id.
6180 */
6181static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
6182{
6183 struct rbd_spec *spec = rbd_dev->spec;
6184
6185 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
6186 rbd_assert(spec->image_id && spec->image_name);
6187 rbd_assert(spec->snap_name);
6188
6189 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
6190 u64 snap_id;
6191
6192 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
6193 if (snap_id == CEPH_NOSNAP)
6194 return -ENOENT;
6195
6196 spec->snap_id = snap_id;
6197 } else {
6198 spec->snap_id = CEPH_NOSNAP;
6199 }
6200
6201 return 0;
6202}
6203
6204/*
6205 * A parent image will have all ids but none of the names.
6206 *
6207 * All names in an rbd spec are dynamically allocated. It's OK if we
6208 * can't figure out the name for an image id.
6209 */
6210static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
6211{
6212 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
6213 struct rbd_spec *spec = rbd_dev->spec;
6214 const char *pool_name;
6215 const char *image_name;
6216 const char *snap_name;
6217 int ret;
6218
6219 rbd_assert(spec->pool_id != CEPH_NOPOOL);
6220 rbd_assert(spec->image_id);
6221 rbd_assert(spec->snap_id != CEPH_NOSNAP);
6222
6223 /* Get the pool name; we have to make our own copy of this */
6224
6225 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
6226 if (!pool_name) {
6227 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
6228 return -EIO;
6229 }
6230 pool_name = kstrdup(pool_name, GFP_KERNEL);
6231 if (!pool_name)
6232 return -ENOMEM;
6233
6234 /* Fetch the image name; tolerate failure here */
6235
6236 image_name = rbd_dev_image_name(rbd_dev);
6237 if (!image_name)
6238 rbd_warn(rbd_dev, "unable to get image name");
6239
6240 /* Fetch the snapshot name */
6241
6242 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6243 if (IS_ERR(snap_name)) {
6244 ret = PTR_ERR(snap_name);
6245 goto out_err;
6246 }
6247
6248 spec->pool_name = pool_name;
6249 spec->image_name = image_name;
6250 spec->snap_name = snap_name;
6251
6252 return 0;
6253
6254out_err:
6255 kfree(image_name);
6256 kfree(pool_name);
6257 return ret;
6258}
6259
6260static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
6261{
6262 size_t size;
6263 int ret;
6264 void *reply_buf;
6265 void *p;
6266 void *end;
6267 u64 seq;
6268 u32 snap_count;
6269 struct ceph_snap_context *snapc;
6270 u32 i;
6271
6272 /*
6273 * We'll need room for the seq value (maximum snapshot id),
6274 * snapshot count, and array of that many snapshot ids.
6275 * For now we have a fixed upper limit on the number we're
6276 * prepared to receive.
6277 */
6278 size = sizeof (__le64) + sizeof (__le32) +
6279 RBD_MAX_SNAP_COUNT * sizeof (__le64);
6280 reply_buf = kzalloc(size, GFP_KERNEL);
6281 if (!reply_buf)
6282 return -ENOMEM;
6283
6284 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6285 &rbd_dev->header_oloc, "get_snapcontext",
6286 NULL, 0, reply_buf, size);
6287 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6288 if (ret < 0)
6289 goto out;
6290
6291 p = reply_buf;
6292 end = reply_buf + ret;
6293 ret = -ERANGE;
6294 ceph_decode_64_safe(&p, end, seq, out);
6295 ceph_decode_32_safe(&p, end, snap_count, out);
6296
6297 /*
6298 * Make sure the reported number of snapshot ids wouldn't go
6299 * beyond the end of our buffer. But before checking that,
6300 * make sure the computed size of the snapshot context we
6301 * allocate is representable in a size_t.
6302 */
6303 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6304 / sizeof (u64)) {
6305 ret = -EINVAL;
6306 goto out;
6307 }
6308 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6309 goto out;
6310 ret = 0;
6311
6312 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6313 if (!snapc) {
6314 ret = -ENOMEM;
6315 goto out;
6316 }
6317 snapc->seq = seq;
6318 for (i = 0; i < snap_count; i++)
6319 snapc->snaps[i] = ceph_decode_64(&p);
6320
6321 ceph_put_snap_context(rbd_dev->header.snapc);
6322 rbd_dev->header.snapc = snapc;
6323
6324 dout(" snap context seq = %llu, snap_count = %u\n",
6325 (unsigned long long)seq, (unsigned int)snap_count);
6326out:
6327 kfree(reply_buf);
6328
6329 return ret;
6330}
6331
6332static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6333 u64 snap_id)
6334{
6335 size_t size;
6336 void *reply_buf;
6337 __le64 snapid;
6338 int ret;
6339 void *p;
6340 void *end;
6341 char *snap_name;
6342
6343 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6344 reply_buf = kmalloc(size, GFP_KERNEL);
6345 if (!reply_buf)
6346 return ERR_PTR(-ENOMEM);
6347
6348 snapid = cpu_to_le64(snap_id);
6349 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6350 &rbd_dev->header_oloc, "get_snapshot_name",
6351 &snapid, sizeof(snapid), reply_buf, size);
6352 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6353 if (ret < 0) {
6354 snap_name = ERR_PTR(ret);
6355 goto out;
6356 }
6357
6358 p = reply_buf;
6359 end = reply_buf + ret;
6360 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6361 if (IS_ERR(snap_name))
6362 goto out;
6363
6364 dout(" snap_id 0x%016llx snap_name = %s\n",
6365 (unsigned long long)snap_id, snap_name);
6366out:
6367 kfree(reply_buf);
6368
6369 return snap_name;
6370}
6371
6372static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
6373{
6374 bool first_time = rbd_dev->header.object_prefix == NULL;
6375 int ret;
6376
6377 ret = rbd_dev_v2_image_size(rbd_dev);
6378 if (ret)
6379 return ret;
6380
6381 if (first_time) {
6382 ret = rbd_dev_v2_header_onetime(rbd_dev);
6383 if (ret)
6384 return ret;
6385 }
6386
6387 ret = rbd_dev_v2_snap_context(rbd_dev);
6388 if (ret && first_time) {
6389 kfree(rbd_dev->header.object_prefix);
6390 rbd_dev->header.object_prefix = NULL;
6391 }
6392
6393 return ret;
6394}
6395
6396static int rbd_dev_header_info(struct rbd_device *rbd_dev)
6397{
6398 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6399
6400 if (rbd_dev->image_format == 1)
6401 return rbd_dev_v1_header_info(rbd_dev);
6402
6403 return rbd_dev_v2_header_info(rbd_dev);
6404}
6405
6406/*
6407 * Skips over white space at *buf, and updates *buf to point to the
6408 * first found non-space character (if any). Returns the length of
6409 * the token (string of non-white space characters) found. Note
6410 * that *buf must be terminated with '\0'.
6411 */
6412static inline size_t next_token(const char **buf)
6413{
6414 /*
6415 * These are the characters that produce nonzero for
6416 * isspace() in the "C" and "POSIX" locales.
6417 */
6418 const char *spaces = " \f\n\r\t\v";
6419
6420 *buf += strspn(*buf, spaces); /* Find start of token */
6421
6422 return strcspn(*buf, spaces); /* Return token length */
6423}
6424
6425/*
6426 * Finds the next token in *buf, dynamically allocates a buffer big
6427 * enough to hold a copy of it, and copies the token into the new
6428 * buffer. The copy is guaranteed to be terminated with '\0'. Note
6429 * that a duplicate buffer is created even for a zero-length token.
6430 *
6431 * Returns a pointer to the newly-allocated duplicate, or a null
6432 * pointer if memory for the duplicate was not available. If
6433 * the lenp argument is a non-null pointer, the length of the token
6434 * (not including the '\0') is returned in *lenp.
6435 *
6436 * If successful, the *buf pointer will be updated to point beyond
6437 * the end of the found token.
6438 *
6439 * Note: uses GFP_KERNEL for allocation.
6440 */
6441static inline char *dup_token(const char **buf, size_t *lenp)
6442{
6443 char *dup;
6444 size_t len;
6445
6446 len = next_token(buf);
6447 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6448 if (!dup)
6449 return NULL;
6450 *(dup + len) = '\0';
6451 *buf += len;
6452
6453 if (lenp)
6454 *lenp = len;
6455
6456 return dup;
6457}
6458
6459/*
6460 * Parse the options provided for an "rbd add" (i.e., rbd image
6461 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
6462 * and the data written is passed here via a NUL-terminated buffer.
6463 * Returns 0 if successful or an error code otherwise.
6464 *
6465 * The information extracted from these options is recorded in
6466 * the other parameters which return dynamically-allocated
6467 * structures:
6468 * ceph_opts
6469 * The address of a pointer that will refer to a ceph options
6470 * structure. Caller must release the returned pointer using
6471 * ceph_destroy_options() when it is no longer needed.
6472 * rbd_opts
6473 * Address of an rbd options pointer. Fully initialized by
6474 * this function; caller must release with kfree().
6475 * spec
6476 * Address of an rbd image specification pointer. Fully
6477 * initialized by this function based on parsed options.
6478 * Caller must release with rbd_spec_put().
6479 *
6480 * The options passed take this form:
6481 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6482 * where:
6483 * <mon_addrs>
6484 * A comma-separated list of one or more monitor addresses.
6485 * A monitor address is an ip address, optionally followed
6486 * by a port number (separated by a colon).
6487 * I.e.: ip1[:port1][,ip2[:port2]...]
6488 * <options>
6489 * A comma-separated list of ceph and/or rbd options.
6490 * <pool_name>
6491 * The name of the rados pool containing the rbd image.
6492 * <image_name>
6493 * The name of the image in that pool to map.
6494 * <snap_id>
6495 * An optional snapshot id. If provided, the mapping will
6496 * present data from the image at the time that snapshot was
6497 * created. The image head is used if no snapshot id is
6498 * provided. Snapshot mappings are always read-only.
6499 */
6500static int rbd_add_parse_args(const char *buf,
6501 struct ceph_options **ceph_opts,
6502 struct rbd_options **opts,
6503 struct rbd_spec **rbd_spec)
6504{
6505 size_t len;
6506 char *options;
6507 const char *mon_addrs;
6508 char *snap_name;
6509 size_t mon_addrs_size;
6510 struct parse_rbd_opts_ctx pctx = { 0 };
6511 struct ceph_options *copts;
6512 int ret;
6513
6514 /* The first four tokens are required */
6515
6516 len = next_token(&buf);
6517 if (!len) {
6518 rbd_warn(NULL, "no monitor address(es) provided");
6519 return -EINVAL;
6520 }
6521 mon_addrs = buf;
6522 mon_addrs_size = len + 1;
6523 buf += len;
6524
6525 ret = -EINVAL;
6526 options = dup_token(&buf, NULL);
6527 if (!options)
6528 return -ENOMEM;
6529 if (!*options) {
6530 rbd_warn(NULL, "no options provided");
6531 goto out_err;
6532 }
6533
6534 pctx.spec = rbd_spec_alloc();
6535 if (!pctx.spec)
6536 goto out_mem;
6537
6538 pctx.spec->pool_name = dup_token(&buf, NULL);
6539 if (!pctx.spec->pool_name)
6540 goto out_mem;
6541 if (!*pctx.spec->pool_name) {
6542 rbd_warn(NULL, "no pool name provided");
6543 goto out_err;
6544 }
6545
6546 pctx.spec->image_name = dup_token(&buf, NULL);
6547 if (!pctx.spec->image_name)
6548 goto out_mem;
6549 if (!*pctx.spec->image_name) {
6550 rbd_warn(NULL, "no image name provided");
6551 goto out_err;
6552 }
6553
6554 /*
6555 * Snapshot name is optional; default is to use "-"
6556 * (indicating the head/no snapshot).
6557 */
6558 len = next_token(&buf);
6559 if (!len) {
6560 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6561 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6562 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
6563 ret = -ENAMETOOLONG;
6564 goto out_err;
6565 }
6566 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6567 if (!snap_name)
6568 goto out_mem;
6569 *(snap_name + len) = '\0';
6570 pctx.spec->snap_name = snap_name;
6571
6572 /* Initialize all rbd options to the defaults */
6573
6574 pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6575 if (!pctx.opts)
6576 goto out_mem;
6577
6578 pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6579 pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6580 pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6581 pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6582 pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6583 pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6584 pctx.opts->trim = RBD_TRIM_DEFAULT;
6585
6586 copts = ceph_parse_options(options, mon_addrs,
6587 mon_addrs + mon_addrs_size - 1,
6588 parse_rbd_opts_token, &pctx);
6589 if (IS_ERR(copts)) {
6590 ret = PTR_ERR(copts);
6591 goto out_err;
6592 }
6593 kfree(options);
6594
6595 *ceph_opts = copts;
6596 *opts = pctx.opts;
6597 *rbd_spec = pctx.spec;
6598
6599 return 0;
6600out_mem:
6601 ret = -ENOMEM;
6602out_err:
6603 kfree(pctx.opts);
6604 rbd_spec_put(pctx.spec);
6605 kfree(options);
6606
6607 return ret;
6608}
6609
6610static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6611{
6612 down_write(&rbd_dev->lock_rwsem);
6613 if (__rbd_is_lock_owner(rbd_dev))
6614 __rbd_release_lock(rbd_dev);
6615 up_write(&rbd_dev->lock_rwsem);
6616}
6617
6618/*
6619 * If the wait is interrupted, an error is returned even if the lock
6620 * was successfully acquired. rbd_dev_image_unlock() will release it
6621 * if needed.
6622 */
6623static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6624{
6625 long ret;
6626
6627 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6628 if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6629 return 0;
6630
6631 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6632 return -EINVAL;
6633 }
6634
6635 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
6636 return 0;
6637
6638 rbd_assert(!rbd_is_lock_owner(rbd_dev));
6639 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6640 ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6641 ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6642 if (ret > 0)
6643 ret = rbd_dev->acquire_err;
6644 else if (!ret)
6645 ret = -ETIMEDOUT;
6646
6647 if (ret) {
6648 rbd_warn(rbd_dev, "failed to acquire exclusive lock: %ld", ret);
6649 return ret;
6650 }
6651
6652 /*
6653 * The lock may have been released by now, unless automatic lock
6654 * transitions are disabled.
6655 */
6656 rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev));
6657 return 0;
6658}
6659
6660/*
6661 * An rbd format 2 image has a unique identifier, distinct from the
6662 * name given to it by the user. Internally, that identifier is
6663 * what's used to specify the names of objects related to the image.
6664 *
6665 * A special "rbd id" object is used to map an rbd image name to its
6666 * id. If that object doesn't exist, then there is no v2 rbd image
6667 * with the supplied name.
6668 *
6669 * This function will record the given rbd_dev's image_id field if
6670 * it can be determined, and in that case will return 0. If any
6671 * errors occur a negative errno will be returned and the rbd_dev's
6672 * image_id field will be unchanged (and should be NULL).
6673 */
6674static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6675{
6676 int ret;
6677 size_t size;
6678 CEPH_DEFINE_OID_ONSTACK(oid);
6679 void *response;
6680 char *image_id;
6681
6682 /*
6683 * When probing a parent image, the image id is already
6684 * known (and the image name likely is not). There's no
6685 * need to fetch the image id again in this case. We
6686 * do still need to set the image format though.
6687 */
6688 if (rbd_dev->spec->image_id) {
6689 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6690
6691 return 0;
6692 }
6693
6694 /*
6695 * First, see if the format 2 image id file exists, and if
6696 * so, get the image's persistent id from it.
6697 */
6698 ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6699 rbd_dev->spec->image_name);
6700 if (ret)
6701 return ret;
6702
6703 dout("rbd id object name is %s\n", oid.name);
6704
6705 /* Response will be an encoded string, which includes a length */
6706 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6707 response = kzalloc(size, GFP_NOIO);
6708 if (!response) {
6709 ret = -ENOMEM;
6710 goto out;
6711 }
6712
6713 /* If it doesn't exist we'll assume it's a format 1 image */
6714
6715 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6716 "get_id", NULL, 0,
6717 response, size);
6718 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6719 if (ret == -ENOENT) {
6720 image_id = kstrdup("", GFP_KERNEL);
6721 ret = image_id ? 0 : -ENOMEM;
6722 if (!ret)
6723 rbd_dev->image_format = 1;
6724 } else if (ret >= 0) {
6725 void *p = response;
6726
6727 image_id = ceph_extract_encoded_string(&p, p + ret,
6728 NULL, GFP_NOIO);
6729 ret = PTR_ERR_OR_ZERO(image_id);
6730 if (!ret)
6731 rbd_dev->image_format = 2;
6732 }
6733
6734 if (!ret) {
6735 rbd_dev->spec->image_id = image_id;
6736 dout("image_id is %s\n", image_id);
6737 }
6738out:
6739 kfree(response);
6740 ceph_oid_destroy(&oid);
6741 return ret;
6742}
6743
6744/*
6745 * Undo whatever state changes are made by v1 or v2 header info
6746 * call.
6747 */
6748static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6749{
6750 struct rbd_image_header *header;
6751
6752 rbd_dev_parent_put(rbd_dev);
6753 rbd_object_map_free(rbd_dev);
6754 rbd_dev_mapping_clear(rbd_dev);
6755
6756 /* Free dynamic fields from the header, then zero it out */
6757
6758 header = &rbd_dev->header;
6759 ceph_put_snap_context(header->snapc);
6760 kfree(header->snap_sizes);
6761 kfree(header->snap_names);
6762 kfree(header->object_prefix);
6763 memset(header, 0, sizeof (*header));
6764}
6765
6766static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
6767{
6768 int ret;
6769
6770 ret = rbd_dev_v2_object_prefix(rbd_dev);
6771 if (ret)
6772 goto out_err;
6773
6774 /*
6775 * Get the and check features for the image. Currently the
6776 * features are assumed to never change.
6777 */
6778 ret = rbd_dev_v2_features(rbd_dev);
6779 if (ret)
6780 goto out_err;
6781
6782 /* If the image supports fancy striping, get its parameters */
6783
6784 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
6785 ret = rbd_dev_v2_striping_info(rbd_dev);
6786 if (ret < 0)
6787 goto out_err;
6788 }
6789
6790 if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
6791 ret = rbd_dev_v2_data_pool(rbd_dev);
6792 if (ret)
6793 goto out_err;
6794 }
6795
6796 rbd_init_layout(rbd_dev);
6797 return 0;
6798
6799out_err:
6800 rbd_dev->header.features = 0;
6801 kfree(rbd_dev->header.object_prefix);
6802 rbd_dev->header.object_prefix = NULL;
6803 return ret;
6804}
6805
6806/*
6807 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6808 * rbd_dev_image_probe() recursion depth, which means it's also the
6809 * length of the already discovered part of the parent chain.
6810 */
6811static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6812{
6813 struct rbd_device *parent = NULL;
6814 int ret;
6815
6816 if (!rbd_dev->parent_spec)
6817 return 0;
6818
6819 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6820 pr_info("parent chain is too long (%d)\n", depth);
6821 ret = -EINVAL;
6822 goto out_err;
6823 }
6824
6825 parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
6826 if (!parent) {
6827 ret = -ENOMEM;
6828 goto out_err;
6829 }
6830
6831 /*
6832 * Images related by parent/child relationships always share
6833 * rbd_client and spec/parent_spec, so bump their refcounts.
6834 */
6835 __rbd_get_client(rbd_dev->rbd_client);
6836 rbd_spec_get(rbd_dev->parent_spec);
6837
6838 ret = rbd_dev_image_probe(parent, depth);
6839 if (ret < 0)
6840 goto out_err;
6841
6842 rbd_dev->parent = parent;
6843 atomic_set(&rbd_dev->parent_ref, 1);
6844 return 0;
6845
6846out_err:
6847 rbd_dev_unparent(rbd_dev);
6848 rbd_dev_destroy(parent);
6849 return ret;
6850}
6851
6852static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6853{
6854 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6855 rbd_free_disk(rbd_dev);
6856 if (!single_major)
6857 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6858}
6859
6860/*
6861 * rbd_dev->header_rwsem must be locked for write and will be unlocked
6862 * upon return.
6863 */
6864static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6865{
6866 int ret;
6867
6868 /* Record our major and minor device numbers. */
6869
6870 if (!single_major) {
6871 ret = register_blkdev(0, rbd_dev->name);
6872 if (ret < 0)
6873 goto err_out_unlock;
6874
6875 rbd_dev->major = ret;
6876 rbd_dev->minor = 0;
6877 } else {
6878 rbd_dev->major = rbd_major;
6879 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6880 }
6881
6882 /* Set up the blkdev mapping. */
6883
6884 ret = rbd_init_disk(rbd_dev);
6885 if (ret)
6886 goto err_out_blkdev;
6887
6888 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6889 set_disk_ro(rbd_dev->disk, rbd_dev->opts->read_only);
6890
6891 ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6892 if (ret)
6893 goto err_out_disk;
6894
6895 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6896 up_write(&rbd_dev->header_rwsem);
6897 return 0;
6898
6899err_out_disk:
6900 rbd_free_disk(rbd_dev);
6901err_out_blkdev:
6902 if (!single_major)
6903 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6904err_out_unlock:
6905 up_write(&rbd_dev->header_rwsem);
6906 return ret;
6907}
6908
6909static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6910{
6911 struct rbd_spec *spec = rbd_dev->spec;
6912 int ret;
6913
6914 /* Record the header object name for this rbd image. */
6915
6916 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6917 if (rbd_dev->image_format == 1)
6918 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6919 spec->image_name, RBD_SUFFIX);
6920 else
6921 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6922 RBD_HEADER_PREFIX, spec->image_id);
6923
6924 return ret;
6925}
6926
6927static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6928{
6929 rbd_dev_unprobe(rbd_dev);
6930 if (rbd_dev->opts)
6931 rbd_unregister_watch(rbd_dev);
6932 rbd_dev->image_format = 0;
6933 kfree(rbd_dev->spec->image_id);
6934 rbd_dev->spec->image_id = NULL;
6935}
6936
6937/*
6938 * Probe for the existence of the header object for the given rbd
6939 * device. If this image is the one being mapped (i.e., not a
6940 * parent), initiate a watch on its header object before using that
6941 * object to get detailed information about the rbd image.
6942 */
6943static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6944{
6945 int ret;
6946
6947 /*
6948 * Get the id from the image id object. Unless there's an
6949 * error, rbd_dev->spec->image_id will be filled in with
6950 * a dynamically-allocated string, and rbd_dev->image_format
6951 * will be set to either 1 or 2.
6952 */
6953 ret = rbd_dev_image_id(rbd_dev);
6954 if (ret)
6955 return ret;
6956
6957 ret = rbd_dev_header_name(rbd_dev);
6958 if (ret)
6959 goto err_out_format;
6960
6961 if (!depth) {
6962 ret = rbd_register_watch(rbd_dev);
6963 if (ret) {
6964 if (ret == -ENOENT)
6965 pr_info("image %s/%s%s%s does not exist\n",
6966 rbd_dev->spec->pool_name,
6967 rbd_dev->spec->pool_ns ?: "",
6968 rbd_dev->spec->pool_ns ? "/" : "",
6969 rbd_dev->spec->image_name);
6970 goto err_out_format;
6971 }
6972 }
6973
6974 ret = rbd_dev_header_info(rbd_dev);
6975 if (ret)
6976 goto err_out_watch;
6977
6978 /*
6979 * If this image is the one being mapped, we have pool name and
6980 * id, image name and id, and snap name - need to fill snap id.
6981 * Otherwise this is a parent image, identified by pool, image
6982 * and snap ids - need to fill in names for those ids.
6983 */
6984 if (!depth)
6985 ret = rbd_spec_fill_snap_id(rbd_dev);
6986 else
6987 ret = rbd_spec_fill_names(rbd_dev);
6988 if (ret) {
6989 if (ret == -ENOENT)
6990 pr_info("snap %s/%s%s%s@%s does not exist\n",
6991 rbd_dev->spec->pool_name,
6992 rbd_dev->spec->pool_ns ?: "",
6993 rbd_dev->spec->pool_ns ? "/" : "",
6994 rbd_dev->spec->image_name,
6995 rbd_dev->spec->snap_name);
6996 goto err_out_probe;
6997 }
6998
6999 ret = rbd_dev_mapping_set(rbd_dev);
7000 if (ret)
7001 goto err_out_probe;
7002
7003 if (rbd_dev->spec->snap_id != CEPH_NOSNAP &&
7004 (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
7005 ret = rbd_object_map_load(rbd_dev);
7006 if (ret)
7007 goto err_out_probe;
7008 }
7009
7010 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
7011 ret = rbd_dev_v2_parent_info(rbd_dev);
7012 if (ret)
7013 goto err_out_probe;
7014 }
7015
7016 ret = rbd_dev_probe_parent(rbd_dev, depth);
7017 if (ret)
7018 goto err_out_probe;
7019
7020 dout("discovered format %u image, header name is %s\n",
7021 rbd_dev->image_format, rbd_dev->header_oid.name);
7022 return 0;
7023
7024err_out_probe:
7025 rbd_dev_unprobe(rbd_dev);
7026err_out_watch:
7027 if (!depth)
7028 rbd_unregister_watch(rbd_dev);
7029err_out_format:
7030 rbd_dev->image_format = 0;
7031 kfree(rbd_dev->spec->image_id);
7032 rbd_dev->spec->image_id = NULL;
7033 return ret;
7034}
7035
7036static ssize_t do_rbd_add(struct bus_type *bus,
7037 const char *buf,
7038 size_t count)
7039{
7040 struct rbd_device *rbd_dev = NULL;
7041 struct ceph_options *ceph_opts = NULL;
7042 struct rbd_options *rbd_opts = NULL;
7043 struct rbd_spec *spec = NULL;
7044 struct rbd_client *rbdc;
7045 int rc;
7046
7047 if (!try_module_get(THIS_MODULE))
7048 return -ENODEV;
7049
7050 /* parse add command */
7051 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
7052 if (rc < 0)
7053 goto out;
7054
7055 rbdc = rbd_get_client(ceph_opts);
7056 if (IS_ERR(rbdc)) {
7057 rc = PTR_ERR(rbdc);
7058 goto err_out_args;
7059 }
7060
7061 /* pick the pool */
7062 rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7063 if (rc < 0) {
7064 if (rc == -ENOENT)
7065 pr_info("pool %s does not exist\n", spec->pool_name);
7066 goto err_out_client;
7067 }
7068 spec->pool_id = (u64)rc;
7069
7070 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7071 if (!rbd_dev) {
7072 rc = -ENOMEM;
7073 goto err_out_client;
7074 }
7075 rbdc = NULL; /* rbd_dev now owns this */
7076 spec = NULL; /* rbd_dev now owns this */
7077 rbd_opts = NULL; /* rbd_dev now owns this */
7078
7079 rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7080 if (!rbd_dev->config_info) {
7081 rc = -ENOMEM;
7082 goto err_out_rbd_dev;
7083 }
7084
7085 down_write(&rbd_dev->header_rwsem);
7086 rc = rbd_dev_image_probe(rbd_dev, 0);
7087 if (rc < 0) {
7088 up_write(&rbd_dev->header_rwsem);
7089 goto err_out_rbd_dev;
7090 }
7091
7092 /* If we are mapping a snapshot it must be marked read-only */
7093 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
7094 rbd_dev->opts->read_only = true;
7095
7096 if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7097 rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7098 rbd_dev->layout.object_size);
7099 rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7100 }
7101
7102 rc = rbd_dev_device_setup(rbd_dev);
7103 if (rc)
7104 goto err_out_image_probe;
7105
7106 rc = rbd_add_acquire_lock(rbd_dev);
7107 if (rc)
7108 goto err_out_image_lock;
7109
7110 /* Everything's ready. Announce the disk to the world. */
7111
7112 rc = device_add(&rbd_dev->dev);
7113 if (rc)
7114 goto err_out_image_lock;
7115
7116 add_disk(rbd_dev->disk);
7117 /* see rbd_init_disk() */
7118 blk_put_queue(rbd_dev->disk->queue);
7119
7120 spin_lock(&rbd_dev_list_lock);
7121 list_add_tail(&rbd_dev->node, &rbd_dev_list);
7122 spin_unlock(&rbd_dev_list_lock);
7123
7124 pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7125 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7126 rbd_dev->header.features);
7127 rc = count;
7128out:
7129 module_put(THIS_MODULE);
7130 return rc;
7131
7132err_out_image_lock:
7133 rbd_dev_image_unlock(rbd_dev);
7134 rbd_dev_device_release(rbd_dev);
7135err_out_image_probe:
7136 rbd_dev_image_release(rbd_dev);
7137err_out_rbd_dev:
7138 rbd_dev_destroy(rbd_dev);
7139err_out_client:
7140 rbd_put_client(rbdc);
7141err_out_args:
7142 rbd_spec_put(spec);
7143 kfree(rbd_opts);
7144 goto out;
7145}
7146
7147static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count)
7148{
7149 if (single_major)
7150 return -EINVAL;
7151
7152 return do_rbd_add(bus, buf, count);
7153}
7154
7155static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
7156 size_t count)
7157{
7158 return do_rbd_add(bus, buf, count);
7159}
7160
7161static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7162{
7163 while (rbd_dev->parent) {
7164 struct rbd_device *first = rbd_dev;
7165 struct rbd_device *second = first->parent;
7166 struct rbd_device *third;
7167
7168 /*
7169 * Follow to the parent with no grandparent and
7170 * remove it.
7171 */
7172 while (second && (third = second->parent)) {
7173 first = second;
7174 second = third;
7175 }
7176 rbd_assert(second);
7177 rbd_dev_image_release(second);
7178 rbd_dev_destroy(second);
7179 first->parent = NULL;
7180 first->parent_overlap = 0;
7181
7182 rbd_assert(first->parent_spec);
7183 rbd_spec_put(first->parent_spec);
7184 first->parent_spec = NULL;
7185 }
7186}
7187
7188static ssize_t do_rbd_remove(struct bus_type *bus,
7189 const char *buf,
7190 size_t count)
7191{
7192 struct rbd_device *rbd_dev = NULL;
7193 struct list_head *tmp;
7194 int dev_id;
7195 char opt_buf[6];
7196 bool force = false;
7197 int ret;
7198
7199 dev_id = -1;
7200 opt_buf[0] = '\0';
7201 sscanf(buf, "%d %5s", &dev_id, opt_buf);
7202 if (dev_id < 0) {
7203 pr_err("dev_id out of range\n");
7204 return -EINVAL;
7205 }
7206 if (opt_buf[0] != '\0') {
7207 if (!strcmp(opt_buf, "force")) {
7208 force = true;
7209 } else {
7210 pr_err("bad remove option at '%s'\n", opt_buf);
7211 return -EINVAL;
7212 }
7213 }
7214
7215 ret = -ENOENT;
7216 spin_lock(&rbd_dev_list_lock);
7217 list_for_each(tmp, &rbd_dev_list) {
7218 rbd_dev = list_entry(tmp, struct rbd_device, node);
7219 if (rbd_dev->dev_id == dev_id) {
7220 ret = 0;
7221 break;
7222 }
7223 }
7224 if (!ret) {
7225 spin_lock_irq(&rbd_dev->lock);
7226 if (rbd_dev->open_count && !force)
7227 ret = -EBUSY;
7228 else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7229 &rbd_dev->flags))
7230 ret = -EINPROGRESS;
7231 spin_unlock_irq(&rbd_dev->lock);
7232 }
7233 spin_unlock(&rbd_dev_list_lock);
7234 if (ret)
7235 return ret;
7236
7237 if (force) {
7238 /*
7239 * Prevent new IO from being queued and wait for existing
7240 * IO to complete/fail.
7241 */
7242 blk_mq_freeze_queue(rbd_dev->disk->queue);
7243 blk_set_queue_dying(rbd_dev->disk->queue);
7244 }
7245
7246 del_gendisk(rbd_dev->disk);
7247 spin_lock(&rbd_dev_list_lock);
7248 list_del_init(&rbd_dev->node);
7249 spin_unlock(&rbd_dev_list_lock);
7250 device_del(&rbd_dev->dev);
7251
7252 rbd_dev_image_unlock(rbd_dev);
7253 rbd_dev_device_release(rbd_dev);
7254 rbd_dev_image_release(rbd_dev);
7255 rbd_dev_destroy(rbd_dev);
7256 return count;
7257}
7258
7259static ssize_t remove_store(struct bus_type *bus, const char *buf, size_t count)
7260{
7261 if (single_major)
7262 return -EINVAL;
7263
7264 return do_rbd_remove(bus, buf, count);
7265}
7266
7267static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
7268 size_t count)
7269{
7270 return do_rbd_remove(bus, buf, count);
7271}
7272
7273/*
7274 * create control files in sysfs
7275 * /sys/bus/rbd/...
7276 */
7277static int __init rbd_sysfs_init(void)
7278{
7279 int ret;
7280
7281 ret = device_register(&rbd_root_dev);
7282 if (ret < 0)
7283 return ret;
7284
7285 ret = bus_register(&rbd_bus_type);
7286 if (ret < 0)
7287 device_unregister(&rbd_root_dev);
7288
7289 return ret;
7290}
7291
7292static void __exit rbd_sysfs_cleanup(void)
7293{
7294 bus_unregister(&rbd_bus_type);
7295 device_unregister(&rbd_root_dev);
7296}
7297
7298static int __init rbd_slab_init(void)
7299{
7300 rbd_assert(!rbd_img_request_cache);
7301 rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7302 if (!rbd_img_request_cache)
7303 return -ENOMEM;
7304
7305 rbd_assert(!rbd_obj_request_cache);
7306 rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7307 if (!rbd_obj_request_cache)
7308 goto out_err;
7309
7310 return 0;
7311
7312out_err:
7313 kmem_cache_destroy(rbd_img_request_cache);
7314 rbd_img_request_cache = NULL;
7315 return -ENOMEM;
7316}
7317
7318static void rbd_slab_exit(void)
7319{
7320 rbd_assert(rbd_obj_request_cache);
7321 kmem_cache_destroy(rbd_obj_request_cache);
7322 rbd_obj_request_cache = NULL;
7323
7324 rbd_assert(rbd_img_request_cache);
7325 kmem_cache_destroy(rbd_img_request_cache);
7326 rbd_img_request_cache = NULL;
7327}
7328
7329static int __init rbd_init(void)
7330{
7331 int rc;
7332
7333 if (!libceph_compatible(NULL)) {
7334 rbd_warn(NULL, "libceph incompatibility (quitting)");
7335 return -EINVAL;
7336 }
7337
7338 rc = rbd_slab_init();
7339 if (rc)
7340 return rc;
7341
7342 /*
7343 * The number of active work items is limited by the number of
7344 * rbd devices * queue depth, so leave @max_active at default.
7345 */
7346 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
7347 if (!rbd_wq) {
7348 rc = -ENOMEM;
7349 goto err_out_slab;
7350 }
7351
7352 if (single_major) {
7353 rbd_major = register_blkdev(0, RBD_DRV_NAME);
7354 if (rbd_major < 0) {
7355 rc = rbd_major;
7356 goto err_out_wq;
7357 }
7358 }
7359
7360 rc = rbd_sysfs_init();
7361 if (rc)
7362 goto err_out_blkdev;
7363
7364 if (single_major)
7365 pr_info("loaded (major %d)\n", rbd_major);
7366 else
7367 pr_info("loaded\n");
7368
7369 return 0;
7370
7371err_out_blkdev:
7372 if (single_major)
7373 unregister_blkdev(rbd_major, RBD_DRV_NAME);
7374err_out_wq:
7375 destroy_workqueue(rbd_wq);
7376err_out_slab:
7377 rbd_slab_exit();
7378 return rc;
7379}
7380
7381static void __exit rbd_exit(void)
7382{
7383 ida_destroy(&rbd_dev_id_ida);
7384 rbd_sysfs_cleanup();
7385 if (single_major)
7386 unregister_blkdev(rbd_major, RBD_DRV_NAME);
7387 destroy_workqueue(rbd_wq);
7388 rbd_slab_exit();
7389}
7390
7391module_init(rbd_init);
7392module_exit(rbd_exit);
7393
7394MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
7395MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
7396MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
7397/* following authorship retained from original osdblk.c */
7398MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
7399
7400MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7401MODULE_LICENSE("GPL");