NVMe: Version 0.7
[linux-2.6-block.git] / drivers / block / nvme.c
... / ...
CommitLineData
1/*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19#include <linux/nvme.h>
20#include <linux/bio.h>
21#include <linux/bitops.h>
22#include <linux/blkdev.h>
23#include <linux/delay.h>
24#include <linux/errno.h>
25#include <linux/fs.h>
26#include <linux/genhd.h>
27#include <linux/idr.h>
28#include <linux/init.h>
29#include <linux/interrupt.h>
30#include <linux/io.h>
31#include <linux/kdev_t.h>
32#include <linux/kthread.h>
33#include <linux/kernel.h>
34#include <linux/mm.h>
35#include <linux/module.h>
36#include <linux/moduleparam.h>
37#include <linux/pci.h>
38#include <linux/poison.h>
39#include <linux/sched.h>
40#include <linux/slab.h>
41#include <linux/types.h>
42#include <linux/version.h>
43
44#define NVME_Q_DEPTH 1024
45#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
46#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
47#define NVME_MINORS 64
48#define IO_TIMEOUT (5 * HZ)
49#define ADMIN_TIMEOUT (60 * HZ)
50
51static int nvme_major;
52module_param(nvme_major, int, 0);
53
54static int use_threaded_interrupts;
55module_param(use_threaded_interrupts, int, 0);
56
57static DEFINE_SPINLOCK(dev_list_lock);
58static LIST_HEAD(dev_list);
59static struct task_struct *nvme_thread;
60
61/*
62 * Represents an NVM Express device. Each nvme_dev is a PCI function.
63 */
64struct nvme_dev {
65 struct list_head node;
66 struct nvme_queue **queues;
67 u32 __iomem *dbs;
68 struct pci_dev *pci_dev;
69 struct dma_pool *prp_page_pool;
70 struct dma_pool *prp_small_pool;
71 int instance;
72 int queue_count;
73 u32 ctrl_config;
74 struct msix_entry *entry;
75 struct nvme_bar __iomem *bar;
76 struct list_head namespaces;
77 char serial[20];
78 char model[40];
79 char firmware_rev[8];
80};
81
82/*
83 * An NVM Express namespace is equivalent to a SCSI LUN
84 */
85struct nvme_ns {
86 struct list_head list;
87
88 struct nvme_dev *dev;
89 struct request_queue *queue;
90 struct gendisk *disk;
91
92 int ns_id;
93 int lba_shift;
94};
95
96/*
97 * An NVM Express queue. Each device has at least two (one for admin
98 * commands and one for I/O commands).
99 */
100struct nvme_queue {
101 struct device *q_dmadev;
102 struct nvme_dev *dev;
103 spinlock_t q_lock;
104 struct nvme_command *sq_cmds;
105 volatile struct nvme_completion *cqes;
106 dma_addr_t sq_dma_addr;
107 dma_addr_t cq_dma_addr;
108 wait_queue_head_t sq_full;
109 wait_queue_t sq_cong_wait;
110 struct bio_list sq_cong;
111 u32 __iomem *q_db;
112 u16 q_depth;
113 u16 cq_vector;
114 u16 sq_head;
115 u16 sq_tail;
116 u16 cq_head;
117 u16 cq_phase;
118 unsigned long cmdid_data[];
119};
120
121/*
122 * Check we didin't inadvertently grow the command struct
123 */
124static inline void _nvme_check_size(void)
125{
126 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
127 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
128 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
129 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
130 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
131 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
132 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
133 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
134 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
135}
136
137struct nvme_cmd_info {
138 unsigned long ctx;
139 unsigned long timeout;
140};
141
142static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
143{
144 return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
145}
146
147/**
148 * alloc_cmdid() - Allocate a Command ID
149 * @nvmeq: The queue that will be used for this command
150 * @ctx: A pointer that will be passed to the handler
151 * @handler: The ID of the handler to call
152 *
153 * Allocate a Command ID for a queue. The data passed in will
154 * be passed to the completion handler. This is implemented by using
155 * the bottom two bits of the ctx pointer to store the handler ID.
156 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
157 * We can change this if it becomes a problem.
158 *
159 * May be called with local interrupts disabled and the q_lock held,
160 * or with interrupts enabled and no locks held.
161 */
162static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler,
163 unsigned timeout)
164{
165 int depth = nvmeq->q_depth - 1;
166 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
167 int cmdid;
168
169 BUG_ON((unsigned long)ctx & 3);
170
171 do {
172 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
173 if (cmdid >= depth)
174 return -EBUSY;
175 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
176
177 info[cmdid].ctx = (unsigned long)ctx | handler;
178 info[cmdid].timeout = jiffies + timeout;
179 return cmdid;
180}
181
182static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
183 int handler, unsigned timeout)
184{
185 int cmdid;
186 wait_event_killable(nvmeq->sq_full,
187 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
188 return (cmdid < 0) ? -EINTR : cmdid;
189}
190
191/*
192 * If you need more than four handlers, you'll need to change how
193 * alloc_cmdid and nvme_process_cq work. Consider using a special
194 * CMD_CTX value instead, if that works for your situation.
195 */
196enum {
197 sync_completion_id = 0,
198 bio_completion_id,
199};
200
201/* Special values must be a multiple of 4, and less than 0x1000 */
202#define CMD_CTX_BASE (POISON_POINTER_DELTA + sync_completion_id)
203#define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
204#define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
205#define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
206#define CMD_CTX_FLUSH (0x318 + CMD_CTX_BASE)
207
208/*
209 * Called with local interrupts disabled and the q_lock held. May not sleep.
210 */
211static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
212{
213 unsigned long data;
214 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
215
216 if (cmdid >= nvmeq->q_depth)
217 return CMD_CTX_INVALID;
218 data = info[cmdid].ctx;
219 info[cmdid].ctx = CMD_CTX_COMPLETED;
220 clear_bit(cmdid, nvmeq->cmdid_data);
221 wake_up(&nvmeq->sq_full);
222 return data;
223}
224
225static unsigned long cancel_cmdid(struct nvme_queue *nvmeq, int cmdid)
226{
227 unsigned long data;
228 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
229 data = info[cmdid].ctx;
230 info[cmdid].ctx = CMD_CTX_CANCELLED;
231 return data;
232}
233
234static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
235{
236 return ns->dev->queues[get_cpu() + 1];
237}
238
239static void put_nvmeq(struct nvme_queue *nvmeq)
240{
241 put_cpu();
242}
243
244/**
245 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
246 * @nvmeq: The queue to use
247 * @cmd: The command to send
248 *
249 * Safe to use from interrupt context
250 */
251static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
252{
253 unsigned long flags;
254 u16 tail;
255 spin_lock_irqsave(&nvmeq->q_lock, flags);
256 tail = nvmeq->sq_tail;
257 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
258 if (++tail == nvmeq->q_depth)
259 tail = 0;
260 writel(tail, nvmeq->q_db);
261 nvmeq->sq_tail = tail;
262 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
263
264 return 0;
265}
266
267struct nvme_prps {
268 int npages; /* 0 means small pool in use */
269 dma_addr_t first_dma;
270 __le64 *list[0];
271};
272
273static void nvme_free_prps(struct nvme_dev *dev, struct nvme_prps *prps)
274{
275 const int last_prp = PAGE_SIZE / 8 - 1;
276 int i;
277 dma_addr_t prp_dma;
278
279 if (!prps)
280 return;
281
282 prp_dma = prps->first_dma;
283
284 if (prps->npages == 0)
285 dma_pool_free(dev->prp_small_pool, prps->list[0], prp_dma);
286 for (i = 0; i < prps->npages; i++) {
287 __le64 *prp_list = prps->list[i];
288 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
289 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
290 prp_dma = next_prp_dma;
291 }
292 kfree(prps);
293}
294
295struct nvme_bio {
296 struct bio *bio;
297 int nents;
298 struct nvme_prps *prps;
299 struct scatterlist sg[0];
300};
301
302/* XXX: use a mempool */
303static struct nvme_bio *alloc_nbio(unsigned nseg, gfp_t gfp)
304{
305 return kzalloc(sizeof(struct nvme_bio) +
306 sizeof(struct scatterlist) * nseg, gfp);
307}
308
309static void free_nbio(struct nvme_queue *nvmeq, struct nvme_bio *nbio)
310{
311 nvme_free_prps(nvmeq->dev, nbio->prps);
312 kfree(nbio);
313}
314
315static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
316 struct nvme_completion *cqe)
317{
318 struct nvme_bio *nbio = ctx;
319 struct bio *bio = nbio->bio;
320 u16 status = le16_to_cpup(&cqe->status) >> 1;
321
322 dma_unmap_sg(nvmeq->q_dmadev, nbio->sg, nbio->nents,
323 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
324 free_nbio(nvmeq, nbio);
325 if (status) {
326 bio_endio(bio, -EIO);
327 } else if (bio->bi_vcnt > bio->bi_idx) {
328 if (bio_list_empty(&nvmeq->sq_cong))
329 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
330 bio_list_add(&nvmeq->sq_cong, bio);
331 wake_up_process(nvme_thread);
332 } else {
333 bio_endio(bio, 0);
334 }
335}
336
337/* length is in bytes. gfp flags indicates whether we may sleep. */
338static struct nvme_prps *nvme_setup_prps(struct nvme_dev *dev,
339 struct nvme_common_command *cmd,
340 struct scatterlist *sg, int *len,
341 gfp_t gfp)
342{
343 struct dma_pool *pool;
344 int length = *len;
345 int dma_len = sg_dma_len(sg);
346 u64 dma_addr = sg_dma_address(sg);
347 int offset = offset_in_page(dma_addr);
348 __le64 *prp_list;
349 dma_addr_t prp_dma;
350 int nprps, npages, i;
351 struct nvme_prps *prps = NULL;
352
353 cmd->prp1 = cpu_to_le64(dma_addr);
354 length -= (PAGE_SIZE - offset);
355 if (length <= 0)
356 return prps;
357
358 dma_len -= (PAGE_SIZE - offset);
359 if (dma_len) {
360 dma_addr += (PAGE_SIZE - offset);
361 } else {
362 sg = sg_next(sg);
363 dma_addr = sg_dma_address(sg);
364 dma_len = sg_dma_len(sg);
365 }
366
367 if (length <= PAGE_SIZE) {
368 cmd->prp2 = cpu_to_le64(dma_addr);
369 return prps;
370 }
371
372 nprps = DIV_ROUND_UP(length, PAGE_SIZE);
373 npages = DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
374 prps = kmalloc(sizeof(*prps) + sizeof(__le64 *) * npages, gfp);
375 if (!prps) {
376 cmd->prp2 = cpu_to_le64(dma_addr);
377 *len = (*len - length) + PAGE_SIZE;
378 return prps;
379 }
380
381 if (nprps <= (256 / 8)) {
382 pool = dev->prp_small_pool;
383 prps->npages = 0;
384 } else {
385 pool = dev->prp_page_pool;
386 prps->npages = 1;
387 }
388
389 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
390 if (!prp_list) {
391 cmd->prp2 = cpu_to_le64(dma_addr);
392 *len = (*len - length) + PAGE_SIZE;
393 kfree(prps);
394 return NULL;
395 }
396 prps->list[0] = prp_list;
397 prps->first_dma = prp_dma;
398 cmd->prp2 = cpu_to_le64(prp_dma);
399 i = 0;
400 for (;;) {
401 if (i == PAGE_SIZE / 8) {
402 __le64 *old_prp_list = prp_list;
403 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
404 if (!prp_list) {
405 *len = (*len - length);
406 return prps;
407 }
408 prps->list[prps->npages++] = prp_list;
409 prp_list[0] = old_prp_list[i - 1];
410 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
411 i = 1;
412 }
413 prp_list[i++] = cpu_to_le64(dma_addr);
414 dma_len -= PAGE_SIZE;
415 dma_addr += PAGE_SIZE;
416 length -= PAGE_SIZE;
417 if (length <= 0)
418 break;
419 if (dma_len > 0)
420 continue;
421 BUG_ON(dma_len < 0);
422 sg = sg_next(sg);
423 dma_addr = sg_dma_address(sg);
424 dma_len = sg_dma_len(sg);
425 }
426
427 return prps;
428}
429
430/* NVMe scatterlists require no holes in the virtual address */
431#define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2) ((vec2)->bv_offset || \
432 (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
433
434static int nvme_map_bio(struct device *dev, struct nvme_bio *nbio,
435 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
436{
437 struct bio_vec *bvec, *bvprv = NULL;
438 struct scatterlist *sg = NULL;
439 int i, old_idx, length = 0, nsegs = 0;
440
441 sg_init_table(nbio->sg, psegs);
442 old_idx = bio->bi_idx;
443 bio_for_each_segment(bvec, bio, i) {
444 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
445 sg->length += bvec->bv_len;
446 } else {
447 if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
448 break;
449 sg = sg ? sg + 1 : nbio->sg;
450 sg_set_page(sg, bvec->bv_page, bvec->bv_len,
451 bvec->bv_offset);
452 nsegs++;
453 }
454 length += bvec->bv_len;
455 bvprv = bvec;
456 }
457 bio->bi_idx = i;
458 nbio->nents = nsegs;
459 sg_mark_end(sg);
460 if (dma_map_sg(dev, nbio->sg, nbio->nents, dma_dir) == 0) {
461 bio->bi_idx = old_idx;
462 return -ENOMEM;
463 }
464 return length;
465}
466
467static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
468 int cmdid)
469{
470 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
471
472 memset(cmnd, 0, sizeof(*cmnd));
473 cmnd->common.opcode = nvme_cmd_flush;
474 cmnd->common.command_id = cmdid;
475 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
476
477 if (++nvmeq->sq_tail == nvmeq->q_depth)
478 nvmeq->sq_tail = 0;
479 writel(nvmeq->sq_tail, nvmeq->q_db);
480
481 return 0;
482}
483
484static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
485{
486 int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
487 sync_completion_id, IO_TIMEOUT);
488 if (unlikely(cmdid < 0))
489 return cmdid;
490
491 return nvme_submit_flush(nvmeq, ns, cmdid);
492}
493
494/*
495 * Called with local interrupts disabled and the q_lock held. May not sleep.
496 */
497static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
498 struct bio *bio)
499{
500 struct nvme_command *cmnd;
501 struct nvme_bio *nbio;
502 enum dma_data_direction dma_dir;
503 int cmdid, length, result = -ENOMEM;
504 u16 control;
505 u32 dsmgmt;
506 int psegs = bio_phys_segments(ns->queue, bio);
507
508 if ((bio->bi_rw & REQ_FLUSH) && psegs) {
509 result = nvme_submit_flush_data(nvmeq, ns);
510 if (result)
511 return result;
512 }
513
514 nbio = alloc_nbio(psegs, GFP_ATOMIC);
515 if (!nbio)
516 goto nomem;
517 nbio->bio = bio;
518
519 result = -EBUSY;
520 cmdid = alloc_cmdid(nvmeq, nbio, bio_completion_id, IO_TIMEOUT);
521 if (unlikely(cmdid < 0))
522 goto free_nbio;
523
524 if ((bio->bi_rw & REQ_FLUSH) && !psegs)
525 return nvme_submit_flush(nvmeq, ns, cmdid);
526
527 control = 0;
528 if (bio->bi_rw & REQ_FUA)
529 control |= NVME_RW_FUA;
530 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
531 control |= NVME_RW_LR;
532
533 dsmgmt = 0;
534 if (bio->bi_rw & REQ_RAHEAD)
535 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
536
537 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
538
539 memset(cmnd, 0, sizeof(*cmnd));
540 if (bio_data_dir(bio)) {
541 cmnd->rw.opcode = nvme_cmd_write;
542 dma_dir = DMA_TO_DEVICE;
543 } else {
544 cmnd->rw.opcode = nvme_cmd_read;
545 dma_dir = DMA_FROM_DEVICE;
546 }
547
548 result = nvme_map_bio(nvmeq->q_dmadev, nbio, bio, dma_dir, psegs);
549 if (result < 0)
550 goto free_nbio;
551 length = result;
552
553 cmnd->rw.command_id = cmdid;
554 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
555 nbio->prps = nvme_setup_prps(nvmeq->dev, &cmnd->common, nbio->sg,
556 &length, GFP_ATOMIC);
557 cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
558 cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
559 cmnd->rw.control = cpu_to_le16(control);
560 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
561
562 bio->bi_sector += length >> 9;
563
564 if (++nvmeq->sq_tail == nvmeq->q_depth)
565 nvmeq->sq_tail = 0;
566 writel(nvmeq->sq_tail, nvmeq->q_db);
567
568 return 0;
569
570 free_nbio:
571 free_nbio(nvmeq, nbio);
572 nomem:
573 return result;
574}
575
576/*
577 * NB: return value of non-zero would mean that we were a stacking driver.
578 * make_request must always succeed.
579 */
580static int nvme_make_request(struct request_queue *q, struct bio *bio)
581{
582 struct nvme_ns *ns = q->queuedata;
583 struct nvme_queue *nvmeq = get_nvmeq(ns);
584 int result = -EBUSY;
585
586 spin_lock_irq(&nvmeq->q_lock);
587 if (bio_list_empty(&nvmeq->sq_cong))
588 result = nvme_submit_bio_queue(nvmeq, ns, bio);
589 if (unlikely(result)) {
590 if (bio_list_empty(&nvmeq->sq_cong))
591 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
592 bio_list_add(&nvmeq->sq_cong, bio);
593 }
594
595 spin_unlock_irq(&nvmeq->q_lock);
596 put_nvmeq(nvmeq);
597
598 return 0;
599}
600
601struct sync_cmd_info {
602 struct task_struct *task;
603 u32 result;
604 int status;
605};
606
607static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
608 struct nvme_completion *cqe)
609{
610 struct sync_cmd_info *cmdinfo = ctx;
611 if (unlikely((unsigned long)cmdinfo == CMD_CTX_CANCELLED))
612 return;
613 if ((unsigned long)cmdinfo == CMD_CTX_FLUSH)
614 return;
615 if (unlikely((unsigned long)cmdinfo == CMD_CTX_COMPLETED)) {
616 dev_warn(nvmeq->q_dmadev,
617 "completed id %d twice on queue %d\n",
618 cqe->command_id, le16_to_cpup(&cqe->sq_id));
619 return;
620 }
621 if (unlikely((unsigned long)cmdinfo == CMD_CTX_INVALID)) {
622 dev_warn(nvmeq->q_dmadev,
623 "invalid id %d completed on queue %d\n",
624 cqe->command_id, le16_to_cpup(&cqe->sq_id));
625 return;
626 }
627 cmdinfo->result = le32_to_cpup(&cqe->result);
628 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
629 wake_up_process(cmdinfo->task);
630}
631
632typedef void (*completion_fn)(struct nvme_queue *, void *,
633 struct nvme_completion *);
634
635static const completion_fn nvme_completions[4] = {
636 [sync_completion_id] = sync_completion,
637 [bio_completion_id] = bio_completion,
638};
639
640static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
641{
642 u16 head, phase;
643
644 head = nvmeq->cq_head;
645 phase = nvmeq->cq_phase;
646
647 for (;;) {
648 unsigned long data;
649 void *ptr;
650 unsigned char handler;
651 struct nvme_completion cqe = nvmeq->cqes[head];
652 if ((le16_to_cpu(cqe.status) & 1) != phase)
653 break;
654 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
655 if (++head == nvmeq->q_depth) {
656 head = 0;
657 phase = !phase;
658 }
659
660 data = free_cmdid(nvmeq, cqe.command_id);
661 handler = data & 3;
662 ptr = (void *)(data & ~3UL);
663 nvme_completions[handler](nvmeq, ptr, &cqe);
664 }
665
666 /* If the controller ignores the cq head doorbell and continuously
667 * writes to the queue, it is theoretically possible to wrap around
668 * the queue twice and mistakenly return IRQ_NONE. Linux only
669 * requires that 0.1% of your interrupts are handled, so this isn't
670 * a big problem.
671 */
672 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
673 return IRQ_NONE;
674
675 writel(head, nvmeq->q_db + 1);
676 nvmeq->cq_head = head;
677 nvmeq->cq_phase = phase;
678
679 return IRQ_HANDLED;
680}
681
682static irqreturn_t nvme_irq(int irq, void *data)
683{
684 irqreturn_t result;
685 struct nvme_queue *nvmeq = data;
686 spin_lock(&nvmeq->q_lock);
687 result = nvme_process_cq(nvmeq);
688 spin_unlock(&nvmeq->q_lock);
689 return result;
690}
691
692static irqreturn_t nvme_irq_check(int irq, void *data)
693{
694 struct nvme_queue *nvmeq = data;
695 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
696 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
697 return IRQ_NONE;
698 return IRQ_WAKE_THREAD;
699}
700
701static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
702{
703 spin_lock_irq(&nvmeq->q_lock);
704 cancel_cmdid(nvmeq, cmdid);
705 spin_unlock_irq(&nvmeq->q_lock);
706}
707
708/*
709 * Returns 0 on success. If the result is negative, it's a Linux error code;
710 * if the result is positive, it's an NVM Express status code
711 */
712static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
713 struct nvme_command *cmd, u32 *result, unsigned timeout)
714{
715 int cmdid;
716 struct sync_cmd_info cmdinfo;
717
718 cmdinfo.task = current;
719 cmdinfo.status = -EINTR;
720
721 cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion_id,
722 timeout);
723 if (cmdid < 0)
724 return cmdid;
725 cmd->common.command_id = cmdid;
726
727 set_current_state(TASK_KILLABLE);
728 nvme_submit_cmd(nvmeq, cmd);
729 schedule();
730
731 if (cmdinfo.status == -EINTR) {
732 nvme_abort_command(nvmeq, cmdid);
733 return -EINTR;
734 }
735
736 if (result)
737 *result = cmdinfo.result;
738
739 return cmdinfo.status;
740}
741
742static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
743 u32 *result)
744{
745 return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
746}
747
748static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
749{
750 int status;
751 struct nvme_command c;
752
753 memset(&c, 0, sizeof(c));
754 c.delete_queue.opcode = opcode;
755 c.delete_queue.qid = cpu_to_le16(id);
756
757 status = nvme_submit_admin_cmd(dev, &c, NULL);
758 if (status)
759 return -EIO;
760 return 0;
761}
762
763static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
764 struct nvme_queue *nvmeq)
765{
766 int status;
767 struct nvme_command c;
768 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
769
770 memset(&c, 0, sizeof(c));
771 c.create_cq.opcode = nvme_admin_create_cq;
772 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
773 c.create_cq.cqid = cpu_to_le16(qid);
774 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
775 c.create_cq.cq_flags = cpu_to_le16(flags);
776 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
777
778 status = nvme_submit_admin_cmd(dev, &c, NULL);
779 if (status)
780 return -EIO;
781 return 0;
782}
783
784static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
785 struct nvme_queue *nvmeq)
786{
787 int status;
788 struct nvme_command c;
789 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
790
791 memset(&c, 0, sizeof(c));
792 c.create_sq.opcode = nvme_admin_create_sq;
793 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
794 c.create_sq.sqid = cpu_to_le16(qid);
795 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
796 c.create_sq.sq_flags = cpu_to_le16(flags);
797 c.create_sq.cqid = cpu_to_le16(qid);
798
799 status = nvme_submit_admin_cmd(dev, &c, NULL);
800 if (status)
801 return -EIO;
802 return 0;
803}
804
805static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
806{
807 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
808}
809
810static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
811{
812 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
813}
814
815static int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
816 dma_addr_t dma_addr)
817{
818 struct nvme_command c;
819
820 memset(&c, 0, sizeof(c));
821 c.identify.opcode = nvme_admin_identify;
822 c.identify.nsid = cpu_to_le32(nsid);
823 c.identify.prp1 = cpu_to_le64(dma_addr);
824 c.identify.cns = cpu_to_le32(cns);
825
826 return nvme_submit_admin_cmd(dev, &c, NULL);
827}
828
829static int nvme_get_features(struct nvme_dev *dev, unsigned fid,
830 unsigned dword11, dma_addr_t dma_addr, u32 *result)
831{
832 struct nvme_command c;
833
834 memset(&c, 0, sizeof(c));
835 c.features.opcode = nvme_admin_get_features;
836 c.features.prp1 = cpu_to_le64(dma_addr);
837 c.features.fid = cpu_to_le32(fid);
838 c.features.dword11 = cpu_to_le32(dword11);
839
840 return nvme_submit_admin_cmd(dev, &c, result);
841}
842
843static void nvme_free_queue(struct nvme_dev *dev, int qid)
844{
845 struct nvme_queue *nvmeq = dev->queues[qid];
846 int vector = dev->entry[nvmeq->cq_vector].vector;
847
848 irq_set_affinity_hint(vector, NULL);
849 free_irq(vector, nvmeq);
850
851 /* Don't tell the adapter to delete the admin queue */
852 if (qid) {
853 adapter_delete_sq(dev, qid);
854 adapter_delete_cq(dev, qid);
855 }
856
857 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
858 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
859 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
860 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
861 kfree(nvmeq);
862}
863
864static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
865 int depth, int vector)
866{
867 struct device *dmadev = &dev->pci_dev->dev;
868 unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
869 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
870 if (!nvmeq)
871 return NULL;
872
873 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
874 &nvmeq->cq_dma_addr, GFP_KERNEL);
875 if (!nvmeq->cqes)
876 goto free_nvmeq;
877 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
878
879 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
880 &nvmeq->sq_dma_addr, GFP_KERNEL);
881 if (!nvmeq->sq_cmds)
882 goto free_cqdma;
883
884 nvmeq->q_dmadev = dmadev;
885 nvmeq->dev = dev;
886 spin_lock_init(&nvmeq->q_lock);
887 nvmeq->cq_head = 0;
888 nvmeq->cq_phase = 1;
889 init_waitqueue_head(&nvmeq->sq_full);
890 init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
891 bio_list_init(&nvmeq->sq_cong);
892 nvmeq->q_db = &dev->dbs[qid * 2];
893 nvmeq->q_depth = depth;
894 nvmeq->cq_vector = vector;
895
896 return nvmeq;
897
898 free_cqdma:
899 dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
900 nvmeq->cq_dma_addr);
901 free_nvmeq:
902 kfree(nvmeq);
903 return NULL;
904}
905
906static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
907 const char *name)
908{
909 if (use_threaded_interrupts)
910 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
911 nvme_irq_check, nvme_irq,
912 IRQF_DISABLED | IRQF_SHARED,
913 name, nvmeq);
914 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
915 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
916}
917
918static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
919 int qid, int cq_size, int vector)
920{
921 int result;
922 struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
923
924 if (!nvmeq)
925 return ERR_PTR(-ENOMEM);
926
927 result = adapter_alloc_cq(dev, qid, nvmeq);
928 if (result < 0)
929 goto free_nvmeq;
930
931 result = adapter_alloc_sq(dev, qid, nvmeq);
932 if (result < 0)
933 goto release_cq;
934
935 result = queue_request_irq(dev, nvmeq, "nvme");
936 if (result < 0)
937 goto release_sq;
938
939 return nvmeq;
940
941 release_sq:
942 adapter_delete_sq(dev, qid);
943 release_cq:
944 adapter_delete_cq(dev, qid);
945 free_nvmeq:
946 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
947 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
948 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
949 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
950 kfree(nvmeq);
951 return ERR_PTR(result);
952}
953
954static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
955{
956 int result;
957 u32 aqa;
958 u64 cap;
959 unsigned long timeout;
960 struct nvme_queue *nvmeq;
961
962 dev->dbs = ((void __iomem *)dev->bar) + 4096;
963
964 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
965 if (!nvmeq)
966 return -ENOMEM;
967
968 aqa = nvmeq->q_depth - 1;
969 aqa |= aqa << 16;
970
971 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
972 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
973 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
974 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
975
976 writel(0, &dev->bar->cc);
977 writel(aqa, &dev->bar->aqa);
978 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
979 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
980 writel(dev->ctrl_config, &dev->bar->cc);
981
982 cap = readq(&dev->bar->cap);
983 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
984
985 while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
986 msleep(100);
987 if (fatal_signal_pending(current))
988 return -EINTR;
989 if (time_after(jiffies, timeout)) {
990 dev_err(&dev->pci_dev->dev,
991 "Device not ready; aborting initialisation\n");
992 return -ENODEV;
993 }
994 }
995
996 result = queue_request_irq(dev, nvmeq, "nvme admin");
997 dev->queues[0] = nvmeq;
998 return result;
999}
1000
1001static int nvme_map_user_pages(struct nvme_dev *dev, int write,
1002 unsigned long addr, unsigned length,
1003 struct scatterlist **sgp)
1004{
1005 int i, err, count, nents, offset;
1006 struct scatterlist *sg;
1007 struct page **pages;
1008
1009 if (addr & 3)
1010 return -EINVAL;
1011 if (!length)
1012 return -EINVAL;
1013
1014 offset = offset_in_page(addr);
1015 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1016 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1017
1018 err = get_user_pages_fast(addr, count, 1, pages);
1019 if (err < count) {
1020 count = err;
1021 err = -EFAULT;
1022 goto put_pages;
1023 }
1024
1025 sg = kcalloc(count, sizeof(*sg), GFP_KERNEL);
1026 sg_init_table(sg, count);
1027 for (i = 0; i < count; i++) {
1028 sg_set_page(&sg[i], pages[i],
1029 min_t(int, length, PAGE_SIZE - offset), offset);
1030 length -= (PAGE_SIZE - offset);
1031 offset = 0;
1032 }
1033
1034 err = -ENOMEM;
1035 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1036 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1037 if (!nents)
1038 goto put_pages;
1039
1040 kfree(pages);
1041 *sgp = sg;
1042 return nents;
1043
1044 put_pages:
1045 for (i = 0; i < count; i++)
1046 put_page(pages[i]);
1047 kfree(pages);
1048 return err;
1049}
1050
1051static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1052 unsigned long addr, int length, struct scatterlist *sg)
1053{
1054 int i, count;
1055
1056 count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE);
1057 dma_unmap_sg(&dev->pci_dev->dev, sg, count, DMA_FROM_DEVICE);
1058
1059 for (i = 0; i < count; i++)
1060 put_page(sg_page(&sg[i]));
1061}
1062
1063static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1064{
1065 struct nvme_dev *dev = ns->dev;
1066 struct nvme_queue *nvmeq;
1067 struct nvme_user_io io;
1068 struct nvme_command c;
1069 unsigned length;
1070 int nents, status;
1071 struct scatterlist *sg;
1072 struct nvme_prps *prps;
1073
1074 if (copy_from_user(&io, uio, sizeof(io)))
1075 return -EFAULT;
1076 length = (io.nblocks + 1) << ns->lba_shift;
1077
1078 switch (io.opcode) {
1079 case nvme_cmd_write:
1080 case nvme_cmd_read:
1081 case nvme_cmd_compare:
1082 nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr,
1083 length, &sg);
1084 break;
1085 default:
1086 return -EINVAL;
1087 }
1088
1089 if (nents < 0)
1090 return nents;
1091
1092 memset(&c, 0, sizeof(c));
1093 c.rw.opcode = io.opcode;
1094 c.rw.flags = io.flags;
1095 c.rw.nsid = cpu_to_le32(ns->ns_id);
1096 c.rw.slba = cpu_to_le64(io.slba);
1097 c.rw.length = cpu_to_le16(io.nblocks);
1098 c.rw.control = cpu_to_le16(io.control);
1099 c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
1100 c.rw.reftag = io.reftag;
1101 c.rw.apptag = io.apptag;
1102 c.rw.appmask = io.appmask;
1103 /* XXX: metadata */
1104 prps = nvme_setup_prps(dev, &c.common, sg, &length, GFP_KERNEL);
1105
1106 nvmeq = get_nvmeq(ns);
1107 /*
1108 * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1109 * disabled. We may be preempted at any point, and be rescheduled
1110 * to a different CPU. That will cause cacheline bouncing, but no
1111 * additional races since q_lock already protects against other CPUs.
1112 */
1113 put_nvmeq(nvmeq);
1114 if (length != (io.nblocks + 1) << ns->lba_shift)
1115 status = -ENOMEM;
1116 else
1117 status = nvme_submit_sync_cmd(nvmeq, &c, NULL, IO_TIMEOUT);
1118
1119 nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg);
1120 nvme_free_prps(dev, prps);
1121 return status;
1122}
1123
1124static int nvme_user_admin_cmd(struct nvme_ns *ns,
1125 struct nvme_admin_cmd __user *ucmd)
1126{
1127 struct nvme_dev *dev = ns->dev;
1128 struct nvme_admin_cmd cmd;
1129 struct nvme_command c;
1130 int status, length, nents = 0;
1131 struct scatterlist *sg;
1132 struct nvme_prps *prps = NULL;
1133
1134 if (!capable(CAP_SYS_ADMIN))
1135 return -EACCES;
1136 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1137 return -EFAULT;
1138
1139 memset(&c, 0, sizeof(c));
1140 c.common.opcode = cmd.opcode;
1141 c.common.flags = cmd.flags;
1142 c.common.nsid = cpu_to_le32(cmd.nsid);
1143 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1144 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1145 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1146 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1147 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1148 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1149 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1150 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1151
1152 length = cmd.data_len;
1153 if (cmd.data_len) {
1154 nents = nvme_map_user_pages(dev, 1, cmd.addr, length, &sg);
1155 if (nents < 0)
1156 return nents;
1157 prps = nvme_setup_prps(dev, &c.common, sg, &length, GFP_KERNEL);
1158 }
1159
1160 if (length != cmd.data_len)
1161 status = -ENOMEM;
1162 else
1163 status = nvme_submit_admin_cmd(dev, &c, NULL);
1164 if (cmd.data_len) {
1165 nvme_unmap_user_pages(dev, 0, cmd.addr, cmd.data_len, sg);
1166 nvme_free_prps(dev, prps);
1167 }
1168 return status;
1169}
1170
1171static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1172 unsigned long arg)
1173{
1174 struct nvme_ns *ns = bdev->bd_disk->private_data;
1175
1176 switch (cmd) {
1177 case NVME_IOCTL_ID:
1178 return ns->ns_id;
1179 case NVME_IOCTL_ADMIN_CMD:
1180 return nvme_user_admin_cmd(ns, (void __user *)arg);
1181 case NVME_IOCTL_SUBMIT_IO:
1182 return nvme_submit_io(ns, (void __user *)arg);
1183 default:
1184 return -ENOTTY;
1185 }
1186}
1187
1188static const struct block_device_operations nvme_fops = {
1189 .owner = THIS_MODULE,
1190 .ioctl = nvme_ioctl,
1191 .compat_ioctl = nvme_ioctl,
1192};
1193
1194static void nvme_timeout_ios(struct nvme_queue *nvmeq)
1195{
1196 int depth = nvmeq->q_depth - 1;
1197 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1198 unsigned long now = jiffies;
1199 int cmdid;
1200
1201 for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
1202 unsigned long data;
1203 void *ptr;
1204 unsigned char handler;
1205 static struct nvme_completion cqe = { .status = cpu_to_le16(NVME_SC_ABORT_REQ) << 1, };
1206
1207 if (!time_after(now, info[cmdid].timeout))
1208 continue;
1209 dev_warn(nvmeq->q_dmadev, "Timing out I/O %d\n", cmdid);
1210 data = cancel_cmdid(nvmeq, cmdid);
1211 handler = data & 3;
1212 ptr = (void *)(data & ~3UL);
1213 nvme_completions[handler](nvmeq, ptr, &cqe);
1214 }
1215}
1216
1217static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1218{
1219 while (bio_list_peek(&nvmeq->sq_cong)) {
1220 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1221 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1222 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1223 bio_list_add_head(&nvmeq->sq_cong, bio);
1224 break;
1225 }
1226 if (bio_list_empty(&nvmeq->sq_cong))
1227 remove_wait_queue(&nvmeq->sq_full,
1228 &nvmeq->sq_cong_wait);
1229 }
1230}
1231
1232static int nvme_kthread(void *data)
1233{
1234 struct nvme_dev *dev;
1235
1236 while (!kthread_should_stop()) {
1237 __set_current_state(TASK_RUNNING);
1238 spin_lock(&dev_list_lock);
1239 list_for_each_entry(dev, &dev_list, node) {
1240 int i;
1241 for (i = 0; i < dev->queue_count; i++) {
1242 struct nvme_queue *nvmeq = dev->queues[i];
1243 if (!nvmeq)
1244 continue;
1245 spin_lock_irq(&nvmeq->q_lock);
1246 if (nvme_process_cq(nvmeq))
1247 printk("process_cq did something\n");
1248 nvme_timeout_ios(nvmeq);
1249 nvme_resubmit_bios(nvmeq);
1250 spin_unlock_irq(&nvmeq->q_lock);
1251 }
1252 }
1253 spin_unlock(&dev_list_lock);
1254 set_current_state(TASK_INTERRUPTIBLE);
1255 schedule_timeout(HZ);
1256 }
1257 return 0;
1258}
1259
1260static DEFINE_IDA(nvme_index_ida);
1261
1262static int nvme_get_ns_idx(void)
1263{
1264 int index, error;
1265
1266 do {
1267 if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
1268 return -1;
1269
1270 spin_lock(&dev_list_lock);
1271 error = ida_get_new(&nvme_index_ida, &index);
1272 spin_unlock(&dev_list_lock);
1273 } while (error == -EAGAIN);
1274
1275 if (error)
1276 index = -1;
1277 return index;
1278}
1279
1280static void nvme_put_ns_idx(int index)
1281{
1282 spin_lock(&dev_list_lock);
1283 ida_remove(&nvme_index_ida, index);
1284 spin_unlock(&dev_list_lock);
1285}
1286
1287static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
1288 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1289{
1290 struct nvme_ns *ns;
1291 struct gendisk *disk;
1292 int lbaf;
1293
1294 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1295 return NULL;
1296
1297 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1298 if (!ns)
1299 return NULL;
1300 ns->queue = blk_alloc_queue(GFP_KERNEL);
1301 if (!ns->queue)
1302 goto out_free_ns;
1303 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
1304 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
1305 blk_queue_make_request(ns->queue, nvme_make_request);
1306 ns->dev = dev;
1307 ns->queue->queuedata = ns;
1308
1309 disk = alloc_disk(NVME_MINORS);
1310 if (!disk)
1311 goto out_free_queue;
1312 ns->ns_id = nsid;
1313 ns->disk = disk;
1314 lbaf = id->flbas & 0xf;
1315 ns->lba_shift = id->lbaf[lbaf].ds;
1316
1317 disk->major = nvme_major;
1318 disk->minors = NVME_MINORS;
1319 disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
1320 disk->fops = &nvme_fops;
1321 disk->private_data = ns;
1322 disk->queue = ns->queue;
1323 disk->driverfs_dev = &dev->pci_dev->dev;
1324 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1325 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1326
1327 return ns;
1328
1329 out_free_queue:
1330 blk_cleanup_queue(ns->queue);
1331 out_free_ns:
1332 kfree(ns);
1333 return NULL;
1334}
1335
1336static void nvme_ns_free(struct nvme_ns *ns)
1337{
1338 int index = ns->disk->first_minor / NVME_MINORS;
1339 put_disk(ns->disk);
1340 nvme_put_ns_idx(index);
1341 blk_cleanup_queue(ns->queue);
1342 kfree(ns);
1343}
1344
1345static int set_queue_count(struct nvme_dev *dev, int count)
1346{
1347 int status;
1348 u32 result;
1349 u32 q_count = (count - 1) | ((count - 1) << 16);
1350
1351 status = nvme_get_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
1352 &result);
1353 if (status)
1354 return -EIO;
1355 return min(result & 0xffff, result >> 16) + 1;
1356}
1357
1358static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1359{
1360 int result, cpu, i, nr_io_queues;
1361
1362 nr_io_queues = num_online_cpus();
1363 result = set_queue_count(dev, nr_io_queues);
1364 if (result < 0)
1365 return result;
1366 if (result < nr_io_queues)
1367 nr_io_queues = result;
1368
1369 /* Deregister the admin queue's interrupt */
1370 free_irq(dev->entry[0].vector, dev->queues[0]);
1371
1372 for (i = 0; i < nr_io_queues; i++)
1373 dev->entry[i].entry = i;
1374 for (;;) {
1375 result = pci_enable_msix(dev->pci_dev, dev->entry,
1376 nr_io_queues);
1377 if (result == 0) {
1378 break;
1379 } else if (result > 0) {
1380 nr_io_queues = result;
1381 continue;
1382 } else {
1383 nr_io_queues = 1;
1384 break;
1385 }
1386 }
1387
1388 result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1389 /* XXX: handle failure here */
1390
1391 cpu = cpumask_first(cpu_online_mask);
1392 for (i = 0; i < nr_io_queues; i++) {
1393 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1394 cpu = cpumask_next(cpu, cpu_online_mask);
1395 }
1396
1397 for (i = 0; i < nr_io_queues; i++) {
1398 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1399 NVME_Q_DEPTH, i);
1400 if (IS_ERR(dev->queues[i + 1]))
1401 return PTR_ERR(dev->queues[i + 1]);
1402 dev->queue_count++;
1403 }
1404
1405 for (; i < num_possible_cpus(); i++) {
1406 int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1407 dev->queues[i + 1] = dev->queues[target + 1];
1408 }
1409
1410 return 0;
1411}
1412
1413static void nvme_free_queues(struct nvme_dev *dev)
1414{
1415 int i;
1416
1417 for (i = dev->queue_count - 1; i >= 0; i--)
1418 nvme_free_queue(dev, i);
1419}
1420
1421static int __devinit nvme_dev_add(struct nvme_dev *dev)
1422{
1423 int res, nn, i;
1424 struct nvme_ns *ns, *next;
1425 struct nvme_id_ctrl *ctrl;
1426 struct nvme_id_ns *id_ns;
1427 void *mem;
1428 dma_addr_t dma_addr;
1429
1430 res = nvme_setup_io_queues(dev);
1431 if (res)
1432 return res;
1433
1434 mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1435 GFP_KERNEL);
1436
1437 res = nvme_identify(dev, 0, 1, dma_addr);
1438 if (res) {
1439 res = -EIO;
1440 goto out_free;
1441 }
1442
1443 ctrl = mem;
1444 nn = le32_to_cpup(&ctrl->nn);
1445 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1446 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1447 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1448
1449 id_ns = mem;
1450 for (i = 1; i <= nn; i++) {
1451 res = nvme_identify(dev, i, 0, dma_addr);
1452 if (res)
1453 continue;
1454
1455 if (id_ns->ncap == 0)
1456 continue;
1457
1458 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
1459 dma_addr + 4096, NULL);
1460 if (res)
1461 continue;
1462
1463 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
1464 if (ns)
1465 list_add_tail(&ns->list, &dev->namespaces);
1466 }
1467 list_for_each_entry(ns, &dev->namespaces, list)
1468 add_disk(ns->disk);
1469
1470 goto out;
1471
1472 out_free:
1473 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1474 list_del(&ns->list);
1475 nvme_ns_free(ns);
1476 }
1477
1478 out:
1479 dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
1480 return res;
1481}
1482
1483static int nvme_dev_remove(struct nvme_dev *dev)
1484{
1485 struct nvme_ns *ns, *next;
1486
1487 spin_lock(&dev_list_lock);
1488 list_del(&dev->node);
1489 spin_unlock(&dev_list_lock);
1490
1491 /* TODO: wait all I/O finished or cancel them */
1492
1493 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1494 list_del(&ns->list);
1495 del_gendisk(ns->disk);
1496 nvme_ns_free(ns);
1497 }
1498
1499 nvme_free_queues(dev);
1500
1501 return 0;
1502}
1503
1504static int nvme_setup_prp_pools(struct nvme_dev *dev)
1505{
1506 struct device *dmadev = &dev->pci_dev->dev;
1507 dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1508 PAGE_SIZE, PAGE_SIZE, 0);
1509 if (!dev->prp_page_pool)
1510 return -ENOMEM;
1511
1512 /* Optimisation for I/Os between 4k and 128k */
1513 dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1514 256, 256, 0);
1515 if (!dev->prp_small_pool) {
1516 dma_pool_destroy(dev->prp_page_pool);
1517 return -ENOMEM;
1518 }
1519 return 0;
1520}
1521
1522static void nvme_release_prp_pools(struct nvme_dev *dev)
1523{
1524 dma_pool_destroy(dev->prp_page_pool);
1525 dma_pool_destroy(dev->prp_small_pool);
1526}
1527
1528/* XXX: Use an ida or something to let remove / add work correctly */
1529static void nvme_set_instance(struct nvme_dev *dev)
1530{
1531 static int instance;
1532 dev->instance = instance++;
1533}
1534
1535static void nvme_release_instance(struct nvme_dev *dev)
1536{
1537}
1538
1539static int __devinit nvme_probe(struct pci_dev *pdev,
1540 const struct pci_device_id *id)
1541{
1542 int bars, result = -ENOMEM;
1543 struct nvme_dev *dev;
1544
1545 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1546 if (!dev)
1547 return -ENOMEM;
1548 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1549 GFP_KERNEL);
1550 if (!dev->entry)
1551 goto free;
1552 dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1553 GFP_KERNEL);
1554 if (!dev->queues)
1555 goto free;
1556
1557 if (pci_enable_device_mem(pdev))
1558 goto free;
1559 pci_set_master(pdev);
1560 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1561 if (pci_request_selected_regions(pdev, bars, "nvme"))
1562 goto disable;
1563
1564 INIT_LIST_HEAD(&dev->namespaces);
1565 dev->pci_dev = pdev;
1566 pci_set_drvdata(pdev, dev);
1567 dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1568 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1569 nvme_set_instance(dev);
1570 dev->entry[0].vector = pdev->irq;
1571
1572 result = nvme_setup_prp_pools(dev);
1573 if (result)
1574 goto disable_msix;
1575
1576 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1577 if (!dev->bar) {
1578 result = -ENOMEM;
1579 goto disable_msix;
1580 }
1581
1582 result = nvme_configure_admin_queue(dev);
1583 if (result)
1584 goto unmap;
1585 dev->queue_count++;
1586
1587 spin_lock(&dev_list_lock);
1588 list_add(&dev->node, &dev_list);
1589 spin_unlock(&dev_list_lock);
1590
1591 result = nvme_dev_add(dev);
1592 if (result)
1593 goto delete;
1594
1595 return 0;
1596
1597 delete:
1598 spin_lock(&dev_list_lock);
1599 list_del(&dev->node);
1600 spin_unlock(&dev_list_lock);
1601
1602 nvme_free_queues(dev);
1603 unmap:
1604 iounmap(dev->bar);
1605 disable_msix:
1606 pci_disable_msix(pdev);
1607 nvme_release_instance(dev);
1608 nvme_release_prp_pools(dev);
1609 disable:
1610 pci_disable_device(pdev);
1611 pci_release_regions(pdev);
1612 free:
1613 kfree(dev->queues);
1614 kfree(dev->entry);
1615 kfree(dev);
1616 return result;
1617}
1618
1619static void __devexit nvme_remove(struct pci_dev *pdev)
1620{
1621 struct nvme_dev *dev = pci_get_drvdata(pdev);
1622 nvme_dev_remove(dev);
1623 pci_disable_msix(pdev);
1624 iounmap(dev->bar);
1625 nvme_release_instance(dev);
1626 nvme_release_prp_pools(dev);
1627 pci_disable_device(pdev);
1628 pci_release_regions(pdev);
1629 kfree(dev->queues);
1630 kfree(dev->entry);
1631 kfree(dev);
1632}
1633
1634/* These functions are yet to be implemented */
1635#define nvme_error_detected NULL
1636#define nvme_dump_registers NULL
1637#define nvme_link_reset NULL
1638#define nvme_slot_reset NULL
1639#define nvme_error_resume NULL
1640#define nvme_suspend NULL
1641#define nvme_resume NULL
1642
1643static struct pci_error_handlers nvme_err_handler = {
1644 .error_detected = nvme_error_detected,
1645 .mmio_enabled = nvme_dump_registers,
1646 .link_reset = nvme_link_reset,
1647 .slot_reset = nvme_slot_reset,
1648 .resume = nvme_error_resume,
1649};
1650
1651/* Move to pci_ids.h later */
1652#define PCI_CLASS_STORAGE_EXPRESS 0x010802
1653
1654static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1655 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1656 { 0, }
1657};
1658MODULE_DEVICE_TABLE(pci, nvme_id_table);
1659
1660static struct pci_driver nvme_driver = {
1661 .name = "nvme",
1662 .id_table = nvme_id_table,
1663 .probe = nvme_probe,
1664 .remove = __devexit_p(nvme_remove),
1665 .suspend = nvme_suspend,
1666 .resume = nvme_resume,
1667 .err_handler = &nvme_err_handler,
1668};
1669
1670static int __init nvme_init(void)
1671{
1672 int result = -EBUSY;
1673
1674 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1675 if (IS_ERR(nvme_thread))
1676 return PTR_ERR(nvme_thread);
1677
1678 nvme_major = register_blkdev(nvme_major, "nvme");
1679 if (nvme_major <= 0)
1680 goto kill_kthread;
1681
1682 result = pci_register_driver(&nvme_driver);
1683 if (result)
1684 goto unregister_blkdev;
1685 return 0;
1686
1687 unregister_blkdev:
1688 unregister_blkdev(nvme_major, "nvme");
1689 kill_kthread:
1690 kthread_stop(nvme_thread);
1691 return result;
1692}
1693
1694static void __exit nvme_exit(void)
1695{
1696 pci_unregister_driver(&nvme_driver);
1697 unregister_blkdev(nvme_major, "nvme");
1698 kthread_stop(nvme_thread);
1699}
1700
1701MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1702MODULE_LICENSE("GPL");
1703MODULE_VERSION("0.7");
1704module_init(nvme_init);
1705module_exit(nvme_exit);