Merge branch 'stable/for-jens-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / drivers / block / nvme-core.c
... / ...
CommitLineData
1/*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15#include <linux/nvme.h>
16#include <linux/bitops.h>
17#include <linux/blkdev.h>
18#include <linux/blk-mq.h>
19#include <linux/cpu.h>
20#include <linux/delay.h>
21#include <linux/errno.h>
22#include <linux/fs.h>
23#include <linux/genhd.h>
24#include <linux/hdreg.h>
25#include <linux/idr.h>
26#include <linux/init.h>
27#include <linux/interrupt.h>
28#include <linux/io.h>
29#include <linux/kdev_t.h>
30#include <linux/kthread.h>
31#include <linux/kernel.h>
32#include <linux/list_sort.h>
33#include <linux/mm.h>
34#include <linux/module.h>
35#include <linux/moduleparam.h>
36#include <linux/pci.h>
37#include <linux/poison.h>
38#include <linux/ptrace.h>
39#include <linux/sched.h>
40#include <linux/slab.h>
41#include <linux/t10-pi.h>
42#include <linux/types.h>
43#include <scsi/sg.h>
44#include <asm-generic/io-64-nonatomic-lo-hi.h>
45
46#define NVME_MINORS (1U << MINORBITS)
47#define NVME_Q_DEPTH 1024
48#define NVME_AQ_DEPTH 256
49#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
50#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
51#define ADMIN_TIMEOUT (admin_timeout * HZ)
52#define SHUTDOWN_TIMEOUT (shutdown_timeout * HZ)
53
54static unsigned char admin_timeout = 60;
55module_param(admin_timeout, byte, 0644);
56MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
57
58unsigned char nvme_io_timeout = 30;
59module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
60MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
61
62static unsigned char shutdown_timeout = 5;
63module_param(shutdown_timeout, byte, 0644);
64MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
65
66static int nvme_major;
67module_param(nvme_major, int, 0);
68
69static int nvme_char_major;
70module_param(nvme_char_major, int, 0);
71
72static int use_threaded_interrupts;
73module_param(use_threaded_interrupts, int, 0);
74
75static bool use_cmb_sqes = true;
76module_param(use_cmb_sqes, bool, 0644);
77MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
78
79static DEFINE_SPINLOCK(dev_list_lock);
80static LIST_HEAD(dev_list);
81static struct task_struct *nvme_thread;
82static struct workqueue_struct *nvme_workq;
83static wait_queue_head_t nvme_kthread_wait;
84
85static struct class *nvme_class;
86
87static void nvme_reset_failed_dev(struct work_struct *ws);
88static int nvme_reset(struct nvme_dev *dev);
89static int nvme_process_cq(struct nvme_queue *nvmeq);
90
91struct async_cmd_info {
92 struct kthread_work work;
93 struct kthread_worker *worker;
94 struct request *req;
95 u32 result;
96 int status;
97 void *ctx;
98};
99
100/*
101 * An NVM Express queue. Each device has at least two (one for admin
102 * commands and one for I/O commands).
103 */
104struct nvme_queue {
105 struct device *q_dmadev;
106 struct nvme_dev *dev;
107 char irqname[24]; /* nvme4294967295-65535\0 */
108 spinlock_t q_lock;
109 struct nvme_command *sq_cmds;
110 struct nvme_command __iomem *sq_cmds_io;
111 volatile struct nvme_completion *cqes;
112 struct blk_mq_tags **tags;
113 dma_addr_t sq_dma_addr;
114 dma_addr_t cq_dma_addr;
115 u32 __iomem *q_db;
116 u16 q_depth;
117 s16 cq_vector;
118 u16 sq_head;
119 u16 sq_tail;
120 u16 cq_head;
121 u16 qid;
122 u8 cq_phase;
123 u8 cqe_seen;
124 struct async_cmd_info cmdinfo;
125};
126
127/*
128 * Check we didin't inadvertently grow the command struct
129 */
130static inline void _nvme_check_size(void)
131{
132 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
133 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
134 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
135 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
136 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
137 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
138 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
139 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
140 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
141 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
142 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
143 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
144}
145
146typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
147 struct nvme_completion *);
148
149struct nvme_cmd_info {
150 nvme_completion_fn fn;
151 void *ctx;
152 int aborted;
153 struct nvme_queue *nvmeq;
154 struct nvme_iod iod[0];
155};
156
157/*
158 * Max size of iod being embedded in the request payload
159 */
160#define NVME_INT_PAGES 2
161#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->page_size)
162#define NVME_INT_MASK 0x01
163
164/*
165 * Will slightly overestimate the number of pages needed. This is OK
166 * as it only leads to a small amount of wasted memory for the lifetime of
167 * the I/O.
168 */
169static int nvme_npages(unsigned size, struct nvme_dev *dev)
170{
171 unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
172 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
173}
174
175static unsigned int nvme_cmd_size(struct nvme_dev *dev)
176{
177 unsigned int ret = sizeof(struct nvme_cmd_info);
178
179 ret += sizeof(struct nvme_iod);
180 ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
181 ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
182
183 return ret;
184}
185
186static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
187 unsigned int hctx_idx)
188{
189 struct nvme_dev *dev = data;
190 struct nvme_queue *nvmeq = dev->queues[0];
191
192 WARN_ON(hctx_idx != 0);
193 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
194 WARN_ON(nvmeq->tags);
195
196 hctx->driver_data = nvmeq;
197 nvmeq->tags = &dev->admin_tagset.tags[0];
198 return 0;
199}
200
201static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
202{
203 struct nvme_queue *nvmeq = hctx->driver_data;
204
205 nvmeq->tags = NULL;
206}
207
208static int nvme_admin_init_request(void *data, struct request *req,
209 unsigned int hctx_idx, unsigned int rq_idx,
210 unsigned int numa_node)
211{
212 struct nvme_dev *dev = data;
213 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
214 struct nvme_queue *nvmeq = dev->queues[0];
215
216 BUG_ON(!nvmeq);
217 cmd->nvmeq = nvmeq;
218 return 0;
219}
220
221static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
222 unsigned int hctx_idx)
223{
224 struct nvme_dev *dev = data;
225 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
226
227 if (!nvmeq->tags)
228 nvmeq->tags = &dev->tagset.tags[hctx_idx];
229
230 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
231 hctx->driver_data = nvmeq;
232 return 0;
233}
234
235static int nvme_init_request(void *data, struct request *req,
236 unsigned int hctx_idx, unsigned int rq_idx,
237 unsigned int numa_node)
238{
239 struct nvme_dev *dev = data;
240 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
241 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
242
243 BUG_ON(!nvmeq);
244 cmd->nvmeq = nvmeq;
245 return 0;
246}
247
248static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
249 nvme_completion_fn handler)
250{
251 cmd->fn = handler;
252 cmd->ctx = ctx;
253 cmd->aborted = 0;
254 blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
255}
256
257static void *iod_get_private(struct nvme_iod *iod)
258{
259 return (void *) (iod->private & ~0x1UL);
260}
261
262/*
263 * If bit 0 is set, the iod is embedded in the request payload.
264 */
265static bool iod_should_kfree(struct nvme_iod *iod)
266{
267 return (iod->private & NVME_INT_MASK) == 0;
268}
269
270/* Special values must be less than 0x1000 */
271#define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
272#define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
273#define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
274#define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
275
276static void special_completion(struct nvme_queue *nvmeq, void *ctx,
277 struct nvme_completion *cqe)
278{
279 if (ctx == CMD_CTX_CANCELLED)
280 return;
281 if (ctx == CMD_CTX_COMPLETED) {
282 dev_warn(nvmeq->q_dmadev,
283 "completed id %d twice on queue %d\n",
284 cqe->command_id, le16_to_cpup(&cqe->sq_id));
285 return;
286 }
287 if (ctx == CMD_CTX_INVALID) {
288 dev_warn(nvmeq->q_dmadev,
289 "invalid id %d completed on queue %d\n",
290 cqe->command_id, le16_to_cpup(&cqe->sq_id));
291 return;
292 }
293 dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
294}
295
296static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
297{
298 void *ctx;
299
300 if (fn)
301 *fn = cmd->fn;
302 ctx = cmd->ctx;
303 cmd->fn = special_completion;
304 cmd->ctx = CMD_CTX_CANCELLED;
305 return ctx;
306}
307
308static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
309 struct nvme_completion *cqe)
310{
311 u32 result = le32_to_cpup(&cqe->result);
312 u16 status = le16_to_cpup(&cqe->status) >> 1;
313
314 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
315 ++nvmeq->dev->event_limit;
316 if (status != NVME_SC_SUCCESS)
317 return;
318
319 switch (result & 0xff07) {
320 case NVME_AER_NOTICE_NS_CHANGED:
321 dev_info(nvmeq->q_dmadev, "rescanning\n");
322 schedule_work(&nvmeq->dev->scan_work);
323 default:
324 dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
325 }
326}
327
328static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
329 struct nvme_completion *cqe)
330{
331 struct request *req = ctx;
332
333 u16 status = le16_to_cpup(&cqe->status) >> 1;
334 u32 result = le32_to_cpup(&cqe->result);
335
336 blk_mq_free_request(req);
337
338 dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
339 ++nvmeq->dev->abort_limit;
340}
341
342static void async_completion(struct nvme_queue *nvmeq, void *ctx,
343 struct nvme_completion *cqe)
344{
345 struct async_cmd_info *cmdinfo = ctx;
346 cmdinfo->result = le32_to_cpup(&cqe->result);
347 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
348 queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
349 blk_mq_free_request(cmdinfo->req);
350}
351
352static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
353 unsigned int tag)
354{
355 struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
356
357 return blk_mq_rq_to_pdu(req);
358}
359
360/*
361 * Called with local interrupts disabled and the q_lock held. May not sleep.
362 */
363static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
364 nvme_completion_fn *fn)
365{
366 struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
367 void *ctx;
368 if (tag >= nvmeq->q_depth) {
369 *fn = special_completion;
370 return CMD_CTX_INVALID;
371 }
372 if (fn)
373 *fn = cmd->fn;
374 ctx = cmd->ctx;
375 cmd->fn = special_completion;
376 cmd->ctx = CMD_CTX_COMPLETED;
377 return ctx;
378}
379
380/**
381 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
382 * @nvmeq: The queue to use
383 * @cmd: The command to send
384 *
385 * Safe to use from interrupt context
386 */
387static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
388 struct nvme_command *cmd)
389{
390 u16 tail = nvmeq->sq_tail;
391
392 if (nvmeq->sq_cmds_io)
393 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
394 else
395 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
396
397 if (++tail == nvmeq->q_depth)
398 tail = 0;
399 writel(tail, nvmeq->q_db);
400 nvmeq->sq_tail = tail;
401}
402
403static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
404{
405 unsigned long flags;
406 spin_lock_irqsave(&nvmeq->q_lock, flags);
407 __nvme_submit_cmd(nvmeq, cmd);
408 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
409}
410
411static __le64 **iod_list(struct nvme_iod *iod)
412{
413 return ((void *)iod) + iod->offset;
414}
415
416static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
417 unsigned nseg, unsigned long private)
418{
419 iod->private = private;
420 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
421 iod->npages = -1;
422 iod->length = nbytes;
423 iod->nents = 0;
424}
425
426static struct nvme_iod *
427__nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
428 unsigned long priv, gfp_t gfp)
429{
430 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
431 sizeof(__le64 *) * nvme_npages(bytes, dev) +
432 sizeof(struct scatterlist) * nseg, gfp);
433
434 if (iod)
435 iod_init(iod, bytes, nseg, priv);
436
437 return iod;
438}
439
440static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
441 gfp_t gfp)
442{
443 unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
444 sizeof(struct nvme_dsm_range);
445 struct nvme_iod *iod;
446
447 if (rq->nr_phys_segments <= NVME_INT_PAGES &&
448 size <= NVME_INT_BYTES(dev)) {
449 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
450
451 iod = cmd->iod;
452 iod_init(iod, size, rq->nr_phys_segments,
453 (unsigned long) rq | NVME_INT_MASK);
454 return iod;
455 }
456
457 return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
458 (unsigned long) rq, gfp);
459}
460
461static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
462{
463 const int last_prp = dev->page_size / 8 - 1;
464 int i;
465 __le64 **list = iod_list(iod);
466 dma_addr_t prp_dma = iod->first_dma;
467
468 if (iod->npages == 0)
469 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
470 for (i = 0; i < iod->npages; i++) {
471 __le64 *prp_list = list[i];
472 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
473 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
474 prp_dma = next_prp_dma;
475 }
476
477 if (iod_should_kfree(iod))
478 kfree(iod);
479}
480
481static int nvme_error_status(u16 status)
482{
483 switch (status & 0x7ff) {
484 case NVME_SC_SUCCESS:
485 return 0;
486 case NVME_SC_CAP_EXCEEDED:
487 return -ENOSPC;
488 default:
489 return -EIO;
490 }
491}
492
493#ifdef CONFIG_BLK_DEV_INTEGRITY
494static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
495{
496 if (be32_to_cpu(pi->ref_tag) == v)
497 pi->ref_tag = cpu_to_be32(p);
498}
499
500static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
501{
502 if (be32_to_cpu(pi->ref_tag) == p)
503 pi->ref_tag = cpu_to_be32(v);
504}
505
506/**
507 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
508 *
509 * The virtual start sector is the one that was originally submitted by the
510 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
511 * start sector may be different. Remap protection information to match the
512 * physical LBA on writes, and back to the original seed on reads.
513 *
514 * Type 0 and 3 do not have a ref tag, so no remapping required.
515 */
516static void nvme_dif_remap(struct request *req,
517 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
518{
519 struct nvme_ns *ns = req->rq_disk->private_data;
520 struct bio_integrity_payload *bip;
521 struct t10_pi_tuple *pi;
522 void *p, *pmap;
523 u32 i, nlb, ts, phys, virt;
524
525 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
526 return;
527
528 bip = bio_integrity(req->bio);
529 if (!bip)
530 return;
531
532 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
533
534 p = pmap;
535 virt = bip_get_seed(bip);
536 phys = nvme_block_nr(ns, blk_rq_pos(req));
537 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
538 ts = ns->disk->integrity->tuple_size;
539
540 for (i = 0; i < nlb; i++, virt++, phys++) {
541 pi = (struct t10_pi_tuple *)p;
542 dif_swap(phys, virt, pi);
543 p += ts;
544 }
545 kunmap_atomic(pmap);
546}
547
548static int nvme_noop_verify(struct blk_integrity_iter *iter)
549{
550 return 0;
551}
552
553static int nvme_noop_generate(struct blk_integrity_iter *iter)
554{
555 return 0;
556}
557
558struct blk_integrity nvme_meta_noop = {
559 .name = "NVME_META_NOOP",
560 .generate_fn = nvme_noop_generate,
561 .verify_fn = nvme_noop_verify,
562};
563
564static void nvme_init_integrity(struct nvme_ns *ns)
565{
566 struct blk_integrity integrity;
567
568 switch (ns->pi_type) {
569 case NVME_NS_DPS_PI_TYPE3:
570 integrity = t10_pi_type3_crc;
571 break;
572 case NVME_NS_DPS_PI_TYPE1:
573 case NVME_NS_DPS_PI_TYPE2:
574 integrity = t10_pi_type1_crc;
575 break;
576 default:
577 integrity = nvme_meta_noop;
578 break;
579 }
580 integrity.tuple_size = ns->ms;
581 blk_integrity_register(ns->disk, &integrity);
582 blk_queue_max_integrity_segments(ns->queue, 1);
583}
584#else /* CONFIG_BLK_DEV_INTEGRITY */
585static void nvme_dif_remap(struct request *req,
586 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
587{
588}
589static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
590{
591}
592static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
593{
594}
595static void nvme_init_integrity(struct nvme_ns *ns)
596{
597}
598#endif
599
600static void req_completion(struct nvme_queue *nvmeq, void *ctx,
601 struct nvme_completion *cqe)
602{
603 struct nvme_iod *iod = ctx;
604 struct request *req = iod_get_private(iod);
605 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
606
607 u16 status = le16_to_cpup(&cqe->status) >> 1;
608
609 if (unlikely(status)) {
610 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
611 && (jiffies - req->start_time) < req->timeout) {
612 unsigned long flags;
613
614 blk_mq_requeue_request(req);
615 spin_lock_irqsave(req->q->queue_lock, flags);
616 if (!blk_queue_stopped(req->q))
617 blk_mq_kick_requeue_list(req->q);
618 spin_unlock_irqrestore(req->q->queue_lock, flags);
619 return;
620 }
621 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
622 if (cmd_rq->ctx == CMD_CTX_CANCELLED)
623 req->errors = -EINTR;
624 else
625 req->errors = status;
626 } else {
627 req->errors = nvme_error_status(status);
628 }
629 } else
630 req->errors = 0;
631 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
632 u32 result = le32_to_cpup(&cqe->result);
633 req->special = (void *)(uintptr_t)result;
634 }
635
636 if (cmd_rq->aborted)
637 dev_warn(nvmeq->dev->dev,
638 "completing aborted command with status:%04x\n",
639 status);
640
641 if (iod->nents) {
642 dma_unmap_sg(nvmeq->dev->dev, iod->sg, iod->nents,
643 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
644 if (blk_integrity_rq(req)) {
645 if (!rq_data_dir(req))
646 nvme_dif_remap(req, nvme_dif_complete);
647 dma_unmap_sg(nvmeq->dev->dev, iod->meta_sg, 1,
648 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
649 }
650 }
651 nvme_free_iod(nvmeq->dev, iod);
652
653 blk_mq_complete_request(req);
654}
655
656/* length is in bytes. gfp flags indicates whether we may sleep. */
657static int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
658 int total_len, gfp_t gfp)
659{
660 struct dma_pool *pool;
661 int length = total_len;
662 struct scatterlist *sg = iod->sg;
663 int dma_len = sg_dma_len(sg);
664 u64 dma_addr = sg_dma_address(sg);
665 u32 page_size = dev->page_size;
666 int offset = dma_addr & (page_size - 1);
667 __le64 *prp_list;
668 __le64 **list = iod_list(iod);
669 dma_addr_t prp_dma;
670 int nprps, i;
671
672 length -= (page_size - offset);
673 if (length <= 0)
674 return total_len;
675
676 dma_len -= (page_size - offset);
677 if (dma_len) {
678 dma_addr += (page_size - offset);
679 } else {
680 sg = sg_next(sg);
681 dma_addr = sg_dma_address(sg);
682 dma_len = sg_dma_len(sg);
683 }
684
685 if (length <= page_size) {
686 iod->first_dma = dma_addr;
687 return total_len;
688 }
689
690 nprps = DIV_ROUND_UP(length, page_size);
691 if (nprps <= (256 / 8)) {
692 pool = dev->prp_small_pool;
693 iod->npages = 0;
694 } else {
695 pool = dev->prp_page_pool;
696 iod->npages = 1;
697 }
698
699 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
700 if (!prp_list) {
701 iod->first_dma = dma_addr;
702 iod->npages = -1;
703 return (total_len - length) + page_size;
704 }
705 list[0] = prp_list;
706 iod->first_dma = prp_dma;
707 i = 0;
708 for (;;) {
709 if (i == page_size >> 3) {
710 __le64 *old_prp_list = prp_list;
711 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
712 if (!prp_list)
713 return total_len - length;
714 list[iod->npages++] = prp_list;
715 prp_list[0] = old_prp_list[i - 1];
716 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
717 i = 1;
718 }
719 prp_list[i++] = cpu_to_le64(dma_addr);
720 dma_len -= page_size;
721 dma_addr += page_size;
722 length -= page_size;
723 if (length <= 0)
724 break;
725 if (dma_len > 0)
726 continue;
727 BUG_ON(dma_len < 0);
728 sg = sg_next(sg);
729 dma_addr = sg_dma_address(sg);
730 dma_len = sg_dma_len(sg);
731 }
732
733 return total_len;
734}
735
736static void nvme_submit_priv(struct nvme_queue *nvmeq, struct request *req,
737 struct nvme_iod *iod)
738{
739 struct nvme_command cmnd;
740
741 memcpy(&cmnd, req->cmd, sizeof(cmnd));
742 cmnd.rw.command_id = req->tag;
743 if (req->nr_phys_segments) {
744 cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
745 cmnd.rw.prp2 = cpu_to_le64(iod->first_dma);
746 }
747
748 __nvme_submit_cmd(nvmeq, &cmnd);
749}
750
751/*
752 * We reuse the small pool to allocate the 16-byte range here as it is not
753 * worth having a special pool for these or additional cases to handle freeing
754 * the iod.
755 */
756static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
757 struct request *req, struct nvme_iod *iod)
758{
759 struct nvme_dsm_range *range =
760 (struct nvme_dsm_range *)iod_list(iod)[0];
761 struct nvme_command cmnd;
762
763 range->cattr = cpu_to_le32(0);
764 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
765 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
766
767 memset(&cmnd, 0, sizeof(cmnd));
768 cmnd.dsm.opcode = nvme_cmd_dsm;
769 cmnd.dsm.command_id = req->tag;
770 cmnd.dsm.nsid = cpu_to_le32(ns->ns_id);
771 cmnd.dsm.prp1 = cpu_to_le64(iod->first_dma);
772 cmnd.dsm.nr = 0;
773 cmnd.dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
774
775 __nvme_submit_cmd(nvmeq, &cmnd);
776}
777
778static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
779 int cmdid)
780{
781 struct nvme_command cmnd;
782
783 memset(&cmnd, 0, sizeof(cmnd));
784 cmnd.common.opcode = nvme_cmd_flush;
785 cmnd.common.command_id = cmdid;
786 cmnd.common.nsid = cpu_to_le32(ns->ns_id);
787
788 __nvme_submit_cmd(nvmeq, &cmnd);
789}
790
791static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
792 struct nvme_ns *ns)
793{
794 struct request *req = iod_get_private(iod);
795 struct nvme_command cmnd;
796 u16 control = 0;
797 u32 dsmgmt = 0;
798
799 if (req->cmd_flags & REQ_FUA)
800 control |= NVME_RW_FUA;
801 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
802 control |= NVME_RW_LR;
803
804 if (req->cmd_flags & REQ_RAHEAD)
805 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
806
807 memset(&cmnd, 0, sizeof(cmnd));
808 cmnd.rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
809 cmnd.rw.command_id = req->tag;
810 cmnd.rw.nsid = cpu_to_le32(ns->ns_id);
811 cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
812 cmnd.rw.prp2 = cpu_to_le64(iod->first_dma);
813 cmnd.rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
814 cmnd.rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
815
816 if (ns->ms) {
817 switch (ns->pi_type) {
818 case NVME_NS_DPS_PI_TYPE3:
819 control |= NVME_RW_PRINFO_PRCHK_GUARD;
820 break;
821 case NVME_NS_DPS_PI_TYPE1:
822 case NVME_NS_DPS_PI_TYPE2:
823 control |= NVME_RW_PRINFO_PRCHK_GUARD |
824 NVME_RW_PRINFO_PRCHK_REF;
825 cmnd.rw.reftag = cpu_to_le32(
826 nvme_block_nr(ns, blk_rq_pos(req)));
827 break;
828 }
829 if (blk_integrity_rq(req))
830 cmnd.rw.metadata =
831 cpu_to_le64(sg_dma_address(iod->meta_sg));
832 else
833 control |= NVME_RW_PRINFO_PRACT;
834 }
835
836 cmnd.rw.control = cpu_to_le16(control);
837 cmnd.rw.dsmgmt = cpu_to_le32(dsmgmt);
838
839 __nvme_submit_cmd(nvmeq, &cmnd);
840
841 return 0;
842}
843
844/*
845 * NOTE: ns is NULL when called on the admin queue.
846 */
847static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
848 const struct blk_mq_queue_data *bd)
849{
850 struct nvme_ns *ns = hctx->queue->queuedata;
851 struct nvme_queue *nvmeq = hctx->driver_data;
852 struct nvme_dev *dev = nvmeq->dev;
853 struct request *req = bd->rq;
854 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
855 struct nvme_iod *iod;
856 enum dma_data_direction dma_dir;
857
858 /*
859 * If formated with metadata, require the block layer provide a buffer
860 * unless this namespace is formated such that the metadata can be
861 * stripped/generated by the controller with PRACT=1.
862 */
863 if (ns && ns->ms && !blk_integrity_rq(req)) {
864 if (!(ns->pi_type && ns->ms == 8) &&
865 req->cmd_type != REQ_TYPE_DRV_PRIV) {
866 req->errors = -EFAULT;
867 blk_mq_complete_request(req);
868 return BLK_MQ_RQ_QUEUE_OK;
869 }
870 }
871
872 iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
873 if (!iod)
874 return BLK_MQ_RQ_QUEUE_BUSY;
875
876 if (req->cmd_flags & REQ_DISCARD) {
877 void *range;
878 /*
879 * We reuse the small pool to allocate the 16-byte range here
880 * as it is not worth having a special pool for these or
881 * additional cases to handle freeing the iod.
882 */
883 range = dma_pool_alloc(dev->prp_small_pool, GFP_ATOMIC,
884 &iod->first_dma);
885 if (!range)
886 goto retry_cmd;
887 iod_list(iod)[0] = (__le64 *)range;
888 iod->npages = 0;
889 } else if (req->nr_phys_segments) {
890 dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
891
892 sg_init_table(iod->sg, req->nr_phys_segments);
893 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
894 if (!iod->nents)
895 goto error_cmd;
896
897 if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
898 goto retry_cmd;
899
900 if (blk_rq_bytes(req) !=
901 nvme_setup_prps(dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
902 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
903 goto retry_cmd;
904 }
905 if (blk_integrity_rq(req)) {
906 if (blk_rq_count_integrity_sg(req->q, req->bio) != 1)
907 goto error_cmd;
908
909 sg_init_table(iod->meta_sg, 1);
910 if (blk_rq_map_integrity_sg(
911 req->q, req->bio, iod->meta_sg) != 1)
912 goto error_cmd;
913
914 if (rq_data_dir(req))
915 nvme_dif_remap(req, nvme_dif_prep);
916
917 if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir))
918 goto error_cmd;
919 }
920 }
921
922 nvme_set_info(cmd, iod, req_completion);
923 spin_lock_irq(&nvmeq->q_lock);
924 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
925 nvme_submit_priv(nvmeq, req, iod);
926 else if (req->cmd_flags & REQ_DISCARD)
927 nvme_submit_discard(nvmeq, ns, req, iod);
928 else if (req->cmd_flags & REQ_FLUSH)
929 nvme_submit_flush(nvmeq, ns, req->tag);
930 else
931 nvme_submit_iod(nvmeq, iod, ns);
932
933 nvme_process_cq(nvmeq);
934 spin_unlock_irq(&nvmeq->q_lock);
935 return BLK_MQ_RQ_QUEUE_OK;
936
937 error_cmd:
938 nvme_free_iod(dev, iod);
939 return BLK_MQ_RQ_QUEUE_ERROR;
940 retry_cmd:
941 nvme_free_iod(dev, iod);
942 return BLK_MQ_RQ_QUEUE_BUSY;
943}
944
945static int nvme_process_cq(struct nvme_queue *nvmeq)
946{
947 u16 head, phase;
948
949 head = nvmeq->cq_head;
950 phase = nvmeq->cq_phase;
951
952 for (;;) {
953 void *ctx;
954 nvme_completion_fn fn;
955 struct nvme_completion cqe = nvmeq->cqes[head];
956 if ((le16_to_cpu(cqe.status) & 1) != phase)
957 break;
958 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
959 if (++head == nvmeq->q_depth) {
960 head = 0;
961 phase = !phase;
962 }
963 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
964 fn(nvmeq, ctx, &cqe);
965 }
966
967 /* If the controller ignores the cq head doorbell and continuously
968 * writes to the queue, it is theoretically possible to wrap around
969 * the queue twice and mistakenly return IRQ_NONE. Linux only
970 * requires that 0.1% of your interrupts are handled, so this isn't
971 * a big problem.
972 */
973 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
974 return 0;
975
976 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
977 nvmeq->cq_head = head;
978 nvmeq->cq_phase = phase;
979
980 nvmeq->cqe_seen = 1;
981 return 1;
982}
983
984static irqreturn_t nvme_irq(int irq, void *data)
985{
986 irqreturn_t result;
987 struct nvme_queue *nvmeq = data;
988 spin_lock(&nvmeq->q_lock);
989 nvme_process_cq(nvmeq);
990 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
991 nvmeq->cqe_seen = 0;
992 spin_unlock(&nvmeq->q_lock);
993 return result;
994}
995
996static irqreturn_t nvme_irq_check(int irq, void *data)
997{
998 struct nvme_queue *nvmeq = data;
999 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
1000 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
1001 return IRQ_NONE;
1002 return IRQ_WAKE_THREAD;
1003}
1004
1005/*
1006 * Returns 0 on success. If the result is negative, it's a Linux error code;
1007 * if the result is positive, it's an NVM Express status code
1008 */
1009int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1010 void *buffer, void __user *ubuffer, unsigned bufflen,
1011 u32 *result, unsigned timeout)
1012{
1013 bool write = cmd->common.opcode & 1;
1014 struct bio *bio = NULL;
1015 struct request *req;
1016 int ret;
1017
1018 req = blk_mq_alloc_request(q, write, GFP_KERNEL, false);
1019 if (IS_ERR(req))
1020 return PTR_ERR(req);
1021
1022 req->cmd_type = REQ_TYPE_DRV_PRIV;
1023 req->cmd_flags |= REQ_FAILFAST_DRIVER;
1024 req->__data_len = 0;
1025 req->__sector = (sector_t) -1;
1026 req->bio = req->biotail = NULL;
1027
1028 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
1029
1030 req->cmd = (unsigned char *)cmd;
1031 req->cmd_len = sizeof(struct nvme_command);
1032 req->special = (void *)0;
1033
1034 if (buffer && bufflen) {
1035 ret = blk_rq_map_kern(q, req, buffer, bufflen, __GFP_WAIT);
1036 if (ret)
1037 goto out;
1038 } else if (ubuffer && bufflen) {
1039 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, __GFP_WAIT);
1040 if (ret)
1041 goto out;
1042 bio = req->bio;
1043 }
1044
1045 blk_execute_rq(req->q, NULL, req, 0);
1046 if (bio)
1047 blk_rq_unmap_user(bio);
1048 if (result)
1049 *result = (u32)(uintptr_t)req->special;
1050 ret = req->errors;
1051 out:
1052 blk_mq_free_request(req);
1053 return ret;
1054}
1055
1056int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1057 void *buffer, unsigned bufflen)
1058{
1059 return __nvme_submit_sync_cmd(q, cmd, buffer, NULL, bufflen, NULL, 0);
1060}
1061
1062static int nvme_submit_async_admin_req(struct nvme_dev *dev)
1063{
1064 struct nvme_queue *nvmeq = dev->queues[0];
1065 struct nvme_command c;
1066 struct nvme_cmd_info *cmd_info;
1067 struct request *req;
1068
1069 req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, true);
1070 if (IS_ERR(req))
1071 return PTR_ERR(req);
1072
1073 req->cmd_flags |= REQ_NO_TIMEOUT;
1074 cmd_info = blk_mq_rq_to_pdu(req);
1075 nvme_set_info(cmd_info, NULL, async_req_completion);
1076
1077 memset(&c, 0, sizeof(c));
1078 c.common.opcode = nvme_admin_async_event;
1079 c.common.command_id = req->tag;
1080
1081 blk_mq_free_request(req);
1082 __nvme_submit_cmd(nvmeq, &c);
1083 return 0;
1084}
1085
1086static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
1087 struct nvme_command *cmd,
1088 struct async_cmd_info *cmdinfo, unsigned timeout)
1089{
1090 struct nvme_queue *nvmeq = dev->queues[0];
1091 struct request *req;
1092 struct nvme_cmd_info *cmd_rq;
1093
1094 req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
1095 if (IS_ERR(req))
1096 return PTR_ERR(req);
1097
1098 req->timeout = timeout;
1099 cmd_rq = blk_mq_rq_to_pdu(req);
1100 cmdinfo->req = req;
1101 nvme_set_info(cmd_rq, cmdinfo, async_completion);
1102 cmdinfo->status = -EINTR;
1103
1104 cmd->common.command_id = req->tag;
1105
1106 nvme_submit_cmd(nvmeq, cmd);
1107 return 0;
1108}
1109
1110static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1111{
1112 struct nvme_command c;
1113
1114 memset(&c, 0, sizeof(c));
1115 c.delete_queue.opcode = opcode;
1116 c.delete_queue.qid = cpu_to_le16(id);
1117
1118 return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1119}
1120
1121static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1122 struct nvme_queue *nvmeq)
1123{
1124 struct nvme_command c;
1125 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1126
1127 /*
1128 * Note: we (ab)use the fact the the prp fields survive if no data
1129 * is attached to the request.
1130 */
1131 memset(&c, 0, sizeof(c));
1132 c.create_cq.opcode = nvme_admin_create_cq;
1133 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1134 c.create_cq.cqid = cpu_to_le16(qid);
1135 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1136 c.create_cq.cq_flags = cpu_to_le16(flags);
1137 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1138
1139 return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1140}
1141
1142static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1143 struct nvme_queue *nvmeq)
1144{
1145 struct nvme_command c;
1146 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1147
1148 /*
1149 * Note: we (ab)use the fact the the prp fields survive if no data
1150 * is attached to the request.
1151 */
1152 memset(&c, 0, sizeof(c));
1153 c.create_sq.opcode = nvme_admin_create_sq;
1154 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1155 c.create_sq.sqid = cpu_to_le16(qid);
1156 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1157 c.create_sq.sq_flags = cpu_to_le16(flags);
1158 c.create_sq.cqid = cpu_to_le16(qid);
1159
1160 return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1161}
1162
1163static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1164{
1165 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1166}
1167
1168static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1169{
1170 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1171}
1172
1173int nvme_identify_ctrl(struct nvme_dev *dev, struct nvme_id_ctrl **id)
1174{
1175 struct nvme_command c = { };
1176 int error;
1177
1178 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1179 c.identify.opcode = nvme_admin_identify;
1180 c.identify.cns = cpu_to_le32(1);
1181
1182 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1183 if (!*id)
1184 return -ENOMEM;
1185
1186 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1187 sizeof(struct nvme_id_ctrl));
1188 if (error)
1189 kfree(*id);
1190 return error;
1191}
1192
1193int nvme_identify_ns(struct nvme_dev *dev, unsigned nsid,
1194 struct nvme_id_ns **id)
1195{
1196 struct nvme_command c = { };
1197 int error;
1198
1199 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1200 c.identify.opcode = nvme_admin_identify,
1201 c.identify.nsid = cpu_to_le32(nsid),
1202
1203 *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
1204 if (!*id)
1205 return -ENOMEM;
1206
1207 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1208 sizeof(struct nvme_id_ns));
1209 if (error)
1210 kfree(*id);
1211 return error;
1212}
1213
1214int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
1215 dma_addr_t dma_addr, u32 *result)
1216{
1217 struct nvme_command c;
1218
1219 memset(&c, 0, sizeof(c));
1220 c.features.opcode = nvme_admin_get_features;
1221 c.features.nsid = cpu_to_le32(nsid);
1222 c.features.prp1 = cpu_to_le64(dma_addr);
1223 c.features.fid = cpu_to_le32(fid);
1224
1225 return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
1226 result, 0);
1227}
1228
1229int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1230 dma_addr_t dma_addr, u32 *result)
1231{
1232 struct nvme_command c;
1233
1234 memset(&c, 0, sizeof(c));
1235 c.features.opcode = nvme_admin_set_features;
1236 c.features.prp1 = cpu_to_le64(dma_addr);
1237 c.features.fid = cpu_to_le32(fid);
1238 c.features.dword11 = cpu_to_le32(dword11);
1239
1240 return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
1241 result, 0);
1242}
1243
1244int nvme_get_log_page(struct nvme_dev *dev, struct nvme_smart_log **log)
1245{
1246 struct nvme_command c = { };
1247 int error;
1248
1249 c.common.opcode = nvme_admin_get_log_page,
1250 c.common.nsid = cpu_to_le32(0xFFFFFFFF),
1251 c.common.cdw10[0] = cpu_to_le32(
1252 (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
1253 NVME_LOG_SMART),
1254
1255 *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
1256 if (!*log)
1257 return -ENOMEM;
1258
1259 error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
1260 sizeof(struct nvme_smart_log));
1261 if (error)
1262 kfree(*log);
1263 return error;
1264}
1265
1266/**
1267 * nvme_abort_req - Attempt aborting a request
1268 *
1269 * Schedule controller reset if the command was already aborted once before and
1270 * still hasn't been returned to the driver, or if this is the admin queue.
1271 */
1272static void nvme_abort_req(struct request *req)
1273{
1274 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1275 struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1276 struct nvme_dev *dev = nvmeq->dev;
1277 struct request *abort_req;
1278 struct nvme_cmd_info *abort_cmd;
1279 struct nvme_command cmd;
1280
1281 if (!nvmeq->qid || cmd_rq->aborted) {
1282 unsigned long flags;
1283
1284 spin_lock_irqsave(&dev_list_lock, flags);
1285 if (work_busy(&dev->reset_work))
1286 goto out;
1287 list_del_init(&dev->node);
1288 dev_warn(dev->dev, "I/O %d QID %d timeout, reset controller\n",
1289 req->tag, nvmeq->qid);
1290 dev->reset_workfn = nvme_reset_failed_dev;
1291 queue_work(nvme_workq, &dev->reset_work);
1292 out:
1293 spin_unlock_irqrestore(&dev_list_lock, flags);
1294 return;
1295 }
1296
1297 if (!dev->abort_limit)
1298 return;
1299
1300 abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC,
1301 false);
1302 if (IS_ERR(abort_req))
1303 return;
1304
1305 abort_cmd = blk_mq_rq_to_pdu(abort_req);
1306 nvme_set_info(abort_cmd, abort_req, abort_completion);
1307
1308 memset(&cmd, 0, sizeof(cmd));
1309 cmd.abort.opcode = nvme_admin_abort_cmd;
1310 cmd.abort.cid = req->tag;
1311 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1312 cmd.abort.command_id = abort_req->tag;
1313
1314 --dev->abort_limit;
1315 cmd_rq->aborted = 1;
1316
1317 dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
1318 nvmeq->qid);
1319 nvme_submit_cmd(dev->queues[0], &cmd);
1320}
1321
1322static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
1323{
1324 struct nvme_queue *nvmeq = data;
1325 void *ctx;
1326 nvme_completion_fn fn;
1327 struct nvme_cmd_info *cmd;
1328 struct nvme_completion cqe;
1329
1330 if (!blk_mq_request_started(req))
1331 return;
1332
1333 cmd = blk_mq_rq_to_pdu(req);
1334
1335 if (cmd->ctx == CMD_CTX_CANCELLED)
1336 return;
1337
1338 if (blk_queue_dying(req->q))
1339 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1340 else
1341 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1342
1343
1344 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1345 req->tag, nvmeq->qid);
1346 ctx = cancel_cmd_info(cmd, &fn);
1347 fn(nvmeq, ctx, &cqe);
1348}
1349
1350static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1351{
1352 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1353 struct nvme_queue *nvmeq = cmd->nvmeq;
1354
1355 dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1356 nvmeq->qid);
1357 spin_lock_irq(&nvmeq->q_lock);
1358 nvme_abort_req(req);
1359 spin_unlock_irq(&nvmeq->q_lock);
1360
1361 /*
1362 * The aborted req will be completed on receiving the abort req.
1363 * We enable the timer again. If hit twice, it'll cause a device reset,
1364 * as the device then is in a faulty state.
1365 */
1366 return BLK_EH_RESET_TIMER;
1367}
1368
1369static void nvme_free_queue(struct nvme_queue *nvmeq)
1370{
1371 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1372 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1373 if (nvmeq->sq_cmds)
1374 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1375 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1376 kfree(nvmeq);
1377}
1378
1379static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1380{
1381 int i;
1382
1383 for (i = dev->queue_count - 1; i >= lowest; i--) {
1384 struct nvme_queue *nvmeq = dev->queues[i];
1385 dev->queue_count--;
1386 dev->queues[i] = NULL;
1387 nvme_free_queue(nvmeq);
1388 }
1389}
1390
1391/**
1392 * nvme_suspend_queue - put queue into suspended state
1393 * @nvmeq - queue to suspend
1394 */
1395static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1396{
1397 int vector;
1398
1399 spin_lock_irq(&nvmeq->q_lock);
1400 if (nvmeq->cq_vector == -1) {
1401 spin_unlock_irq(&nvmeq->q_lock);
1402 return 1;
1403 }
1404 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1405 nvmeq->dev->online_queues--;
1406 nvmeq->cq_vector = -1;
1407 spin_unlock_irq(&nvmeq->q_lock);
1408
1409 if (!nvmeq->qid && nvmeq->dev->admin_q)
1410 blk_mq_freeze_queue_start(nvmeq->dev->admin_q);
1411
1412 irq_set_affinity_hint(vector, NULL);
1413 free_irq(vector, nvmeq);
1414
1415 return 0;
1416}
1417
1418static void nvme_clear_queue(struct nvme_queue *nvmeq)
1419{
1420 spin_lock_irq(&nvmeq->q_lock);
1421 if (nvmeq->tags && *nvmeq->tags)
1422 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1423 spin_unlock_irq(&nvmeq->q_lock);
1424}
1425
1426static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1427{
1428 struct nvme_queue *nvmeq = dev->queues[qid];
1429
1430 if (!nvmeq)
1431 return;
1432 if (nvme_suspend_queue(nvmeq))
1433 return;
1434
1435 /* Don't tell the adapter to delete the admin queue.
1436 * Don't tell a removed adapter to delete IO queues. */
1437 if (qid && readl(&dev->bar->csts) != -1) {
1438 adapter_delete_sq(dev, qid);
1439 adapter_delete_cq(dev, qid);
1440 }
1441
1442 spin_lock_irq(&nvmeq->q_lock);
1443 nvme_process_cq(nvmeq);
1444 spin_unlock_irq(&nvmeq->q_lock);
1445}
1446
1447static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1448 int entry_size)
1449{
1450 int q_depth = dev->q_depth;
1451 unsigned q_size_aligned = roundup(q_depth * entry_size, dev->page_size);
1452
1453 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1454 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1455 mem_per_q = round_down(mem_per_q, dev->page_size);
1456 q_depth = div_u64(mem_per_q, entry_size);
1457
1458 /*
1459 * Ensure the reduced q_depth is above some threshold where it
1460 * would be better to map queues in system memory with the
1461 * original depth
1462 */
1463 if (q_depth < 64)
1464 return -ENOMEM;
1465 }
1466
1467 return q_depth;
1468}
1469
1470static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1471 int qid, int depth)
1472{
1473 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1474 unsigned offset = (qid - 1) *
1475 roundup(SQ_SIZE(depth), dev->page_size);
1476 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1477 nvmeq->sq_cmds_io = dev->cmb + offset;
1478 } else {
1479 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1480 &nvmeq->sq_dma_addr, GFP_KERNEL);
1481 if (!nvmeq->sq_cmds)
1482 return -ENOMEM;
1483 }
1484
1485 return 0;
1486}
1487
1488static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1489 int depth)
1490{
1491 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1492 if (!nvmeq)
1493 return NULL;
1494
1495 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1496 &nvmeq->cq_dma_addr, GFP_KERNEL);
1497 if (!nvmeq->cqes)
1498 goto free_nvmeq;
1499
1500 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1501 goto free_cqdma;
1502
1503 nvmeq->q_dmadev = dev->dev;
1504 nvmeq->dev = dev;
1505 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1506 dev->instance, qid);
1507 spin_lock_init(&nvmeq->q_lock);
1508 nvmeq->cq_head = 0;
1509 nvmeq->cq_phase = 1;
1510 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1511 nvmeq->q_depth = depth;
1512 nvmeq->qid = qid;
1513 nvmeq->cq_vector = -1;
1514 dev->queues[qid] = nvmeq;
1515
1516 /* make sure queue descriptor is set before queue count, for kthread */
1517 mb();
1518 dev->queue_count++;
1519
1520 return nvmeq;
1521
1522 free_cqdma:
1523 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1524 nvmeq->cq_dma_addr);
1525 free_nvmeq:
1526 kfree(nvmeq);
1527 return NULL;
1528}
1529
1530static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1531 const char *name)
1532{
1533 if (use_threaded_interrupts)
1534 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1535 nvme_irq_check, nvme_irq, IRQF_SHARED,
1536 name, nvmeq);
1537 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1538 IRQF_SHARED, name, nvmeq);
1539}
1540
1541static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1542{
1543 struct nvme_dev *dev = nvmeq->dev;
1544
1545 spin_lock_irq(&nvmeq->q_lock);
1546 nvmeq->sq_tail = 0;
1547 nvmeq->cq_head = 0;
1548 nvmeq->cq_phase = 1;
1549 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1550 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1551 dev->online_queues++;
1552 spin_unlock_irq(&nvmeq->q_lock);
1553}
1554
1555static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1556{
1557 struct nvme_dev *dev = nvmeq->dev;
1558 int result;
1559
1560 nvmeq->cq_vector = qid - 1;
1561 result = adapter_alloc_cq(dev, qid, nvmeq);
1562 if (result < 0)
1563 return result;
1564
1565 result = adapter_alloc_sq(dev, qid, nvmeq);
1566 if (result < 0)
1567 goto release_cq;
1568
1569 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1570 if (result < 0)
1571 goto release_sq;
1572
1573 nvme_init_queue(nvmeq, qid);
1574 return result;
1575
1576 release_sq:
1577 adapter_delete_sq(dev, qid);
1578 release_cq:
1579 adapter_delete_cq(dev, qid);
1580 return result;
1581}
1582
1583static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1584{
1585 unsigned long timeout;
1586 u32 bit = enabled ? NVME_CSTS_RDY : 0;
1587
1588 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1589
1590 while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1591 msleep(100);
1592 if (fatal_signal_pending(current))
1593 return -EINTR;
1594 if (time_after(jiffies, timeout)) {
1595 dev_err(dev->dev,
1596 "Device not ready; aborting %s\n", enabled ?
1597 "initialisation" : "reset");
1598 return -ENODEV;
1599 }
1600 }
1601
1602 return 0;
1603}
1604
1605/*
1606 * If the device has been passed off to us in an enabled state, just clear
1607 * the enabled bit. The spec says we should set the 'shutdown notification
1608 * bits', but doing so may cause the device to complete commands to the
1609 * admin queue ... and we don't know what memory that might be pointing at!
1610 */
1611static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1612{
1613 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1614 dev->ctrl_config &= ~NVME_CC_ENABLE;
1615 writel(dev->ctrl_config, &dev->bar->cc);
1616
1617 return nvme_wait_ready(dev, cap, false);
1618}
1619
1620static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1621{
1622 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1623 dev->ctrl_config |= NVME_CC_ENABLE;
1624 writel(dev->ctrl_config, &dev->bar->cc);
1625
1626 return nvme_wait_ready(dev, cap, true);
1627}
1628
1629static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1630{
1631 unsigned long timeout;
1632
1633 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1634 dev->ctrl_config |= NVME_CC_SHN_NORMAL;
1635
1636 writel(dev->ctrl_config, &dev->bar->cc);
1637
1638 timeout = SHUTDOWN_TIMEOUT + jiffies;
1639 while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1640 NVME_CSTS_SHST_CMPLT) {
1641 msleep(100);
1642 if (fatal_signal_pending(current))
1643 return -EINTR;
1644 if (time_after(jiffies, timeout)) {
1645 dev_err(dev->dev,
1646 "Device shutdown incomplete; abort shutdown\n");
1647 return -ENODEV;
1648 }
1649 }
1650
1651 return 0;
1652}
1653
1654static struct blk_mq_ops nvme_mq_admin_ops = {
1655 .queue_rq = nvme_queue_rq,
1656 .map_queue = blk_mq_map_queue,
1657 .init_hctx = nvme_admin_init_hctx,
1658 .exit_hctx = nvme_admin_exit_hctx,
1659 .init_request = nvme_admin_init_request,
1660 .timeout = nvme_timeout,
1661};
1662
1663static struct blk_mq_ops nvme_mq_ops = {
1664 .queue_rq = nvme_queue_rq,
1665 .map_queue = blk_mq_map_queue,
1666 .init_hctx = nvme_init_hctx,
1667 .init_request = nvme_init_request,
1668 .timeout = nvme_timeout,
1669};
1670
1671static void nvme_dev_remove_admin(struct nvme_dev *dev)
1672{
1673 if (dev->admin_q && !blk_queue_dying(dev->admin_q)) {
1674 blk_cleanup_queue(dev->admin_q);
1675 blk_mq_free_tag_set(&dev->admin_tagset);
1676 }
1677}
1678
1679static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1680{
1681 if (!dev->admin_q) {
1682 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1683 dev->admin_tagset.nr_hw_queues = 1;
1684 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1685 dev->admin_tagset.reserved_tags = 1;
1686 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1687 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1688 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1689 dev->admin_tagset.driver_data = dev;
1690
1691 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1692 return -ENOMEM;
1693
1694 dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
1695 if (IS_ERR(dev->admin_q)) {
1696 blk_mq_free_tag_set(&dev->admin_tagset);
1697 return -ENOMEM;
1698 }
1699 if (!blk_get_queue(dev->admin_q)) {
1700 nvme_dev_remove_admin(dev);
1701 dev->admin_q = NULL;
1702 return -ENODEV;
1703 }
1704 } else
1705 blk_mq_unfreeze_queue(dev->admin_q);
1706
1707 return 0;
1708}
1709
1710static int nvme_configure_admin_queue(struct nvme_dev *dev)
1711{
1712 int result;
1713 u32 aqa;
1714 u64 cap = readq(&dev->bar->cap);
1715 struct nvme_queue *nvmeq;
1716 unsigned page_shift = PAGE_SHIFT;
1717 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
1718 unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
1719
1720 if (page_shift < dev_page_min) {
1721 dev_err(dev->dev,
1722 "Minimum device page size (%u) too large for "
1723 "host (%u)\n", 1 << dev_page_min,
1724 1 << page_shift);
1725 return -ENODEV;
1726 }
1727 if (page_shift > dev_page_max) {
1728 dev_info(dev->dev,
1729 "Device maximum page size (%u) smaller than "
1730 "host (%u); enabling work-around\n",
1731 1 << dev_page_max, 1 << page_shift);
1732 page_shift = dev_page_max;
1733 }
1734
1735 dev->subsystem = readl(&dev->bar->vs) >= NVME_VS(1, 1) ?
1736 NVME_CAP_NSSRC(cap) : 0;
1737
1738 if (dev->subsystem && (readl(&dev->bar->csts) & NVME_CSTS_NSSRO))
1739 writel(NVME_CSTS_NSSRO, &dev->bar->csts);
1740
1741 result = nvme_disable_ctrl(dev, cap);
1742 if (result < 0)
1743 return result;
1744
1745 nvmeq = dev->queues[0];
1746 if (!nvmeq) {
1747 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1748 if (!nvmeq)
1749 return -ENOMEM;
1750 }
1751
1752 aqa = nvmeq->q_depth - 1;
1753 aqa |= aqa << 16;
1754
1755 dev->page_size = 1 << page_shift;
1756
1757 dev->ctrl_config = NVME_CC_CSS_NVM;
1758 dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1759 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1760 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1761
1762 writel(aqa, &dev->bar->aqa);
1763 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1764 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1765
1766 result = nvme_enable_ctrl(dev, cap);
1767 if (result)
1768 goto free_nvmeq;
1769
1770 nvmeq->cq_vector = 0;
1771 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1772 if (result) {
1773 nvmeq->cq_vector = -1;
1774 goto free_nvmeq;
1775 }
1776
1777 return result;
1778
1779 free_nvmeq:
1780 nvme_free_queues(dev, 0);
1781 return result;
1782}
1783
1784static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1785{
1786 struct nvme_dev *dev = ns->dev;
1787 struct nvme_user_io io;
1788 struct nvme_command c;
1789 unsigned length, meta_len;
1790 int status, write;
1791 dma_addr_t meta_dma = 0;
1792 void *meta = NULL;
1793 void __user *metadata;
1794
1795 if (copy_from_user(&io, uio, sizeof(io)))
1796 return -EFAULT;
1797
1798 switch (io.opcode) {
1799 case nvme_cmd_write:
1800 case nvme_cmd_read:
1801 case nvme_cmd_compare:
1802 break;
1803 default:
1804 return -EINVAL;
1805 }
1806
1807 length = (io.nblocks + 1) << ns->lba_shift;
1808 meta_len = (io.nblocks + 1) * ns->ms;
1809 metadata = (void __user *)(unsigned long)io.metadata;
1810 write = io.opcode & 1;
1811
1812 if (ns->ext) {
1813 length += meta_len;
1814 meta_len = 0;
1815 }
1816 if (meta_len) {
1817 if (((io.metadata & 3) || !io.metadata) && !ns->ext)
1818 return -EINVAL;
1819
1820 meta = dma_alloc_coherent(dev->dev, meta_len,
1821 &meta_dma, GFP_KERNEL);
1822
1823 if (!meta) {
1824 status = -ENOMEM;
1825 goto unmap;
1826 }
1827 if (write) {
1828 if (copy_from_user(meta, metadata, meta_len)) {
1829 status = -EFAULT;
1830 goto unmap;
1831 }
1832 }
1833 }
1834
1835 memset(&c, 0, sizeof(c));
1836 c.rw.opcode = io.opcode;
1837 c.rw.flags = io.flags;
1838 c.rw.nsid = cpu_to_le32(ns->ns_id);
1839 c.rw.slba = cpu_to_le64(io.slba);
1840 c.rw.length = cpu_to_le16(io.nblocks);
1841 c.rw.control = cpu_to_le16(io.control);
1842 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1843 c.rw.reftag = cpu_to_le32(io.reftag);
1844 c.rw.apptag = cpu_to_le16(io.apptag);
1845 c.rw.appmask = cpu_to_le16(io.appmask);
1846 c.rw.metadata = cpu_to_le64(meta_dma);
1847
1848 status = __nvme_submit_sync_cmd(ns->queue, &c, NULL,
1849 (void __user *)io.addr, length, NULL, 0);
1850 unmap:
1851 if (meta) {
1852 if (status == NVME_SC_SUCCESS && !write) {
1853 if (copy_to_user(metadata, meta, meta_len))
1854 status = -EFAULT;
1855 }
1856 dma_free_coherent(dev->dev, meta_len, meta, meta_dma);
1857 }
1858 return status;
1859}
1860
1861static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1862 struct nvme_passthru_cmd __user *ucmd)
1863{
1864 struct nvme_passthru_cmd cmd;
1865 struct nvme_command c;
1866 unsigned timeout = 0;
1867 int status;
1868
1869 if (!capable(CAP_SYS_ADMIN))
1870 return -EACCES;
1871 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1872 return -EFAULT;
1873
1874 memset(&c, 0, sizeof(c));
1875 c.common.opcode = cmd.opcode;
1876 c.common.flags = cmd.flags;
1877 c.common.nsid = cpu_to_le32(cmd.nsid);
1878 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1879 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1880 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1881 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1882 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1883 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1884 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1885 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1886
1887 if (cmd.timeout_ms)
1888 timeout = msecs_to_jiffies(cmd.timeout_ms);
1889
1890 status = __nvme_submit_sync_cmd(ns ? ns->queue : dev->admin_q, &c,
1891 NULL, (void __user *)cmd.addr, cmd.data_len,
1892 &cmd.result, timeout);
1893 if (status >= 0) {
1894 if (put_user(cmd.result, &ucmd->result))
1895 return -EFAULT;
1896 }
1897
1898 return status;
1899}
1900
1901static int nvme_subsys_reset(struct nvme_dev *dev)
1902{
1903 if (!dev->subsystem)
1904 return -ENOTTY;
1905
1906 writel(0x4E564D65, &dev->bar->nssr); /* "NVMe" */
1907 return 0;
1908}
1909
1910static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1911 unsigned long arg)
1912{
1913 struct nvme_ns *ns = bdev->bd_disk->private_data;
1914
1915 switch (cmd) {
1916 case NVME_IOCTL_ID:
1917 force_successful_syscall_return();
1918 return ns->ns_id;
1919 case NVME_IOCTL_ADMIN_CMD:
1920 return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
1921 case NVME_IOCTL_IO_CMD:
1922 return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
1923 case NVME_IOCTL_SUBMIT_IO:
1924 return nvme_submit_io(ns, (void __user *)arg);
1925 case SG_GET_VERSION_NUM:
1926 return nvme_sg_get_version_num((void __user *)arg);
1927 case SG_IO:
1928 return nvme_sg_io(ns, (void __user *)arg);
1929 default:
1930 return -ENOTTY;
1931 }
1932}
1933
1934#ifdef CONFIG_COMPAT
1935static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1936 unsigned int cmd, unsigned long arg)
1937{
1938 switch (cmd) {
1939 case SG_IO:
1940 return -ENOIOCTLCMD;
1941 }
1942 return nvme_ioctl(bdev, mode, cmd, arg);
1943}
1944#else
1945#define nvme_compat_ioctl NULL
1946#endif
1947
1948static int nvme_open(struct block_device *bdev, fmode_t mode)
1949{
1950 int ret = 0;
1951 struct nvme_ns *ns;
1952
1953 spin_lock(&dev_list_lock);
1954 ns = bdev->bd_disk->private_data;
1955 if (!ns)
1956 ret = -ENXIO;
1957 else if (!kref_get_unless_zero(&ns->dev->kref))
1958 ret = -ENXIO;
1959 spin_unlock(&dev_list_lock);
1960
1961 return ret;
1962}
1963
1964static void nvme_free_dev(struct kref *kref);
1965
1966static void nvme_release(struct gendisk *disk, fmode_t mode)
1967{
1968 struct nvme_ns *ns = disk->private_data;
1969 struct nvme_dev *dev = ns->dev;
1970
1971 kref_put(&dev->kref, nvme_free_dev);
1972}
1973
1974static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1975{
1976 /* some standard values */
1977 geo->heads = 1 << 6;
1978 geo->sectors = 1 << 5;
1979 geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1980 return 0;
1981}
1982
1983static void nvme_config_discard(struct nvme_ns *ns)
1984{
1985 u32 logical_block_size = queue_logical_block_size(ns->queue);
1986 ns->queue->limits.discard_zeroes_data = 0;
1987 ns->queue->limits.discard_alignment = logical_block_size;
1988 ns->queue->limits.discard_granularity = logical_block_size;
1989 blk_queue_max_discard_sectors(ns->queue, 0xffffffff);
1990 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1991}
1992
1993static int nvme_revalidate_disk(struct gendisk *disk)
1994{
1995 struct nvme_ns *ns = disk->private_data;
1996 struct nvme_dev *dev = ns->dev;
1997 struct nvme_id_ns *id;
1998 u8 lbaf, pi_type;
1999 u16 old_ms;
2000 unsigned short bs;
2001
2002 if (nvme_identify_ns(dev, ns->ns_id, &id)) {
2003 dev_warn(dev->dev, "%s: Identify failure nvme%dn%d\n", __func__,
2004 dev->instance, ns->ns_id);
2005 return -ENODEV;
2006 }
2007 if (id->ncap == 0) {
2008 kfree(id);
2009 return -ENODEV;
2010 }
2011
2012 old_ms = ns->ms;
2013 lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2014 ns->lba_shift = id->lbaf[lbaf].ds;
2015 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
2016 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
2017
2018 /*
2019 * If identify namespace failed, use default 512 byte block size so
2020 * block layer can use before failing read/write for 0 capacity.
2021 */
2022 if (ns->lba_shift == 0)
2023 ns->lba_shift = 9;
2024 bs = 1 << ns->lba_shift;
2025
2026 /* XXX: PI implementation requires metadata equal t10 pi tuple size */
2027 pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
2028 id->dps & NVME_NS_DPS_PI_MASK : 0;
2029
2030 if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
2031 ns->ms != old_ms ||
2032 bs != queue_logical_block_size(disk->queue) ||
2033 (ns->ms && ns->ext)))
2034 blk_integrity_unregister(disk);
2035
2036 ns->pi_type = pi_type;
2037 blk_queue_logical_block_size(ns->queue, bs);
2038
2039 if (ns->ms && !blk_get_integrity(disk) && (disk->flags & GENHD_FL_UP) &&
2040 !ns->ext)
2041 nvme_init_integrity(ns);
2042
2043 if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
2044 set_capacity(disk, 0);
2045 else
2046 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
2047
2048 if (dev->oncs & NVME_CTRL_ONCS_DSM)
2049 nvme_config_discard(ns);
2050
2051 kfree(id);
2052 return 0;
2053}
2054
2055static const struct block_device_operations nvme_fops = {
2056 .owner = THIS_MODULE,
2057 .ioctl = nvme_ioctl,
2058 .compat_ioctl = nvme_compat_ioctl,
2059 .open = nvme_open,
2060 .release = nvme_release,
2061 .getgeo = nvme_getgeo,
2062 .revalidate_disk= nvme_revalidate_disk,
2063};
2064
2065static int nvme_kthread(void *data)
2066{
2067 struct nvme_dev *dev, *next;
2068
2069 while (!kthread_should_stop()) {
2070 set_current_state(TASK_INTERRUPTIBLE);
2071 spin_lock(&dev_list_lock);
2072 list_for_each_entry_safe(dev, next, &dev_list, node) {
2073 int i;
2074 u32 csts = readl(&dev->bar->csts);
2075
2076 if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
2077 csts & NVME_CSTS_CFS) {
2078 if (work_busy(&dev->reset_work))
2079 continue;
2080 list_del_init(&dev->node);
2081 dev_warn(dev->dev,
2082 "Failed status: %x, reset controller\n",
2083 readl(&dev->bar->csts));
2084 dev->reset_workfn = nvme_reset_failed_dev;
2085 queue_work(nvme_workq, &dev->reset_work);
2086 continue;
2087 }
2088 for (i = 0; i < dev->queue_count; i++) {
2089 struct nvme_queue *nvmeq = dev->queues[i];
2090 if (!nvmeq)
2091 continue;
2092 spin_lock_irq(&nvmeq->q_lock);
2093 nvme_process_cq(nvmeq);
2094
2095 while ((i == 0) && (dev->event_limit > 0)) {
2096 if (nvme_submit_async_admin_req(dev))
2097 break;
2098 dev->event_limit--;
2099 }
2100 spin_unlock_irq(&nvmeq->q_lock);
2101 }
2102 }
2103 spin_unlock(&dev_list_lock);
2104 schedule_timeout(round_jiffies_relative(HZ));
2105 }
2106 return 0;
2107}
2108
2109static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
2110{
2111 struct nvme_ns *ns;
2112 struct gendisk *disk;
2113 int node = dev_to_node(dev->dev);
2114
2115 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2116 if (!ns)
2117 return;
2118
2119 ns->queue = blk_mq_init_queue(&dev->tagset);
2120 if (IS_ERR(ns->queue))
2121 goto out_free_ns;
2122 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
2123 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2124 ns->dev = dev;
2125 ns->queue->queuedata = ns;
2126
2127 disk = alloc_disk_node(0, node);
2128 if (!disk)
2129 goto out_free_queue;
2130
2131 ns->ns_id = nsid;
2132 ns->disk = disk;
2133 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2134 list_add_tail(&ns->list, &dev->namespaces);
2135
2136 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2137 if (dev->max_hw_sectors) {
2138 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
2139 blk_queue_max_segments(ns->queue,
2140 ((dev->max_hw_sectors << 9) / dev->page_size) + 1);
2141 }
2142 if (dev->stripe_size)
2143 blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
2144 if (dev->vwc & NVME_CTRL_VWC_PRESENT)
2145 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
2146 blk_queue_virt_boundary(ns->queue, dev->page_size - 1);
2147
2148 disk->major = nvme_major;
2149 disk->first_minor = 0;
2150 disk->fops = &nvme_fops;
2151 disk->private_data = ns;
2152 disk->queue = ns->queue;
2153 disk->driverfs_dev = dev->device;
2154 disk->flags = GENHD_FL_EXT_DEVT;
2155 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
2156
2157 /*
2158 * Initialize capacity to 0 until we establish the namespace format and
2159 * setup integrity extentions if necessary. The revalidate_disk after
2160 * add_disk allows the driver to register with integrity if the format
2161 * requires it.
2162 */
2163 set_capacity(disk, 0);
2164 if (nvme_revalidate_disk(ns->disk))
2165 goto out_free_disk;
2166
2167 add_disk(ns->disk);
2168 if (ns->ms) {
2169 struct block_device *bd = bdget_disk(ns->disk, 0);
2170 if (!bd)
2171 return;
2172 if (blkdev_get(bd, FMODE_READ, NULL)) {
2173 bdput(bd);
2174 return;
2175 }
2176 blkdev_reread_part(bd);
2177 blkdev_put(bd, FMODE_READ);
2178 }
2179 return;
2180 out_free_disk:
2181 kfree(disk);
2182 list_del(&ns->list);
2183 out_free_queue:
2184 blk_cleanup_queue(ns->queue);
2185 out_free_ns:
2186 kfree(ns);
2187}
2188
2189static void nvme_create_io_queues(struct nvme_dev *dev)
2190{
2191 unsigned i;
2192
2193 for (i = dev->queue_count; i <= dev->max_qid; i++)
2194 if (!nvme_alloc_queue(dev, i, dev->q_depth))
2195 break;
2196
2197 for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
2198 if (nvme_create_queue(dev->queues[i], i))
2199 break;
2200}
2201
2202static int set_queue_count(struct nvme_dev *dev, int count)
2203{
2204 int status;
2205 u32 result;
2206 u32 q_count = (count - 1) | ((count - 1) << 16);
2207
2208 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
2209 &result);
2210 if (status < 0)
2211 return status;
2212 if (status > 0) {
2213 dev_err(dev->dev, "Could not set queue count (%d)\n", status);
2214 return 0;
2215 }
2216 return min(result & 0xffff, result >> 16) + 1;
2217}
2218
2219static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
2220{
2221 u64 szu, size, offset;
2222 u32 cmbloc;
2223 resource_size_t bar_size;
2224 struct pci_dev *pdev = to_pci_dev(dev->dev);
2225 void __iomem *cmb;
2226 dma_addr_t dma_addr;
2227
2228 if (!use_cmb_sqes)
2229 return NULL;
2230
2231 dev->cmbsz = readl(&dev->bar->cmbsz);
2232 if (!(NVME_CMB_SZ(dev->cmbsz)))
2233 return NULL;
2234
2235 cmbloc = readl(&dev->bar->cmbloc);
2236
2237 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
2238 size = szu * NVME_CMB_SZ(dev->cmbsz);
2239 offset = szu * NVME_CMB_OFST(cmbloc);
2240 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
2241
2242 if (offset > bar_size)
2243 return NULL;
2244
2245 /*
2246 * Controllers may support a CMB size larger than their BAR,
2247 * for example, due to being behind a bridge. Reduce the CMB to
2248 * the reported size of the BAR
2249 */
2250 if (size > bar_size - offset)
2251 size = bar_size - offset;
2252
2253 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
2254 cmb = ioremap_wc(dma_addr, size);
2255 if (!cmb)
2256 return NULL;
2257
2258 dev->cmb_dma_addr = dma_addr;
2259 dev->cmb_size = size;
2260 return cmb;
2261}
2262
2263static inline void nvme_release_cmb(struct nvme_dev *dev)
2264{
2265 if (dev->cmb) {
2266 iounmap(dev->cmb);
2267 dev->cmb = NULL;
2268 }
2269}
2270
2271static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2272{
2273 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
2274}
2275
2276static int nvme_setup_io_queues(struct nvme_dev *dev)
2277{
2278 struct nvme_queue *adminq = dev->queues[0];
2279 struct pci_dev *pdev = to_pci_dev(dev->dev);
2280 int result, i, vecs, nr_io_queues, size;
2281
2282 nr_io_queues = num_possible_cpus();
2283 result = set_queue_count(dev, nr_io_queues);
2284 if (result <= 0)
2285 return result;
2286 if (result < nr_io_queues)
2287 nr_io_queues = result;
2288
2289 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
2290 result = nvme_cmb_qdepth(dev, nr_io_queues,
2291 sizeof(struct nvme_command));
2292 if (result > 0)
2293 dev->q_depth = result;
2294 else
2295 nvme_release_cmb(dev);
2296 }
2297
2298 size = db_bar_size(dev, nr_io_queues);
2299 if (size > 8192) {
2300 iounmap(dev->bar);
2301 do {
2302 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2303 if (dev->bar)
2304 break;
2305 if (!--nr_io_queues)
2306 return -ENOMEM;
2307 size = db_bar_size(dev, nr_io_queues);
2308 } while (1);
2309 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2310 adminq->q_db = dev->dbs;
2311 }
2312
2313 /* Deregister the admin queue's interrupt */
2314 free_irq(dev->entry[0].vector, adminq);
2315
2316 /*
2317 * If we enable msix early due to not intx, disable it again before
2318 * setting up the full range we need.
2319 */
2320 if (!pdev->irq)
2321 pci_disable_msix(pdev);
2322
2323 for (i = 0; i < nr_io_queues; i++)
2324 dev->entry[i].entry = i;
2325 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2326 if (vecs < 0) {
2327 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2328 if (vecs < 0) {
2329 vecs = 1;
2330 } else {
2331 for (i = 0; i < vecs; i++)
2332 dev->entry[i].vector = i + pdev->irq;
2333 }
2334 }
2335
2336 /*
2337 * Should investigate if there's a performance win from allocating
2338 * more queues than interrupt vectors; it might allow the submission
2339 * path to scale better, even if the receive path is limited by the
2340 * number of interrupts.
2341 */
2342 nr_io_queues = vecs;
2343 dev->max_qid = nr_io_queues;
2344
2345 result = queue_request_irq(dev, adminq, adminq->irqname);
2346 if (result) {
2347 adminq->cq_vector = -1;
2348 goto free_queues;
2349 }
2350
2351 /* Free previously allocated queues that are no longer usable */
2352 nvme_free_queues(dev, nr_io_queues + 1);
2353 nvme_create_io_queues(dev);
2354
2355 return 0;
2356
2357 free_queues:
2358 nvme_free_queues(dev, 1);
2359 return result;
2360}
2361
2362static void nvme_free_namespace(struct nvme_ns *ns)
2363{
2364 list_del(&ns->list);
2365
2366 spin_lock(&dev_list_lock);
2367 ns->disk->private_data = NULL;
2368 spin_unlock(&dev_list_lock);
2369
2370 put_disk(ns->disk);
2371 kfree(ns);
2372}
2373
2374static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2375{
2376 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2377 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2378
2379 return nsa->ns_id - nsb->ns_id;
2380}
2381
2382static struct nvme_ns *nvme_find_ns(struct nvme_dev *dev, unsigned nsid)
2383{
2384 struct nvme_ns *ns;
2385
2386 list_for_each_entry(ns, &dev->namespaces, list) {
2387 if (ns->ns_id == nsid)
2388 return ns;
2389 if (ns->ns_id > nsid)
2390 break;
2391 }
2392 return NULL;
2393}
2394
2395static inline bool nvme_io_incapable(struct nvme_dev *dev)
2396{
2397 return (!dev->bar || readl(&dev->bar->csts) & NVME_CSTS_CFS ||
2398 dev->online_queues < 2);
2399}
2400
2401static void nvme_ns_remove(struct nvme_ns *ns)
2402{
2403 bool kill = nvme_io_incapable(ns->dev) && !blk_queue_dying(ns->queue);
2404
2405 if (kill)
2406 blk_set_queue_dying(ns->queue);
2407 if (ns->disk->flags & GENHD_FL_UP) {
2408 if (blk_get_integrity(ns->disk))
2409 blk_integrity_unregister(ns->disk);
2410 del_gendisk(ns->disk);
2411 }
2412 if (kill || !blk_queue_dying(ns->queue)) {
2413 blk_mq_abort_requeue_list(ns->queue);
2414 blk_cleanup_queue(ns->queue);
2415 }
2416}
2417
2418static void nvme_scan_namespaces(struct nvme_dev *dev, unsigned nn)
2419{
2420 struct nvme_ns *ns, *next;
2421 unsigned i;
2422
2423 for (i = 1; i <= nn; i++) {
2424 ns = nvme_find_ns(dev, i);
2425 if (ns) {
2426 if (revalidate_disk(ns->disk)) {
2427 nvme_ns_remove(ns);
2428 nvme_free_namespace(ns);
2429 }
2430 } else
2431 nvme_alloc_ns(dev, i);
2432 }
2433 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2434 if (ns->ns_id > nn) {
2435 nvme_ns_remove(ns);
2436 nvme_free_namespace(ns);
2437 }
2438 }
2439 list_sort(NULL, &dev->namespaces, ns_cmp);
2440}
2441
2442static void nvme_dev_scan(struct work_struct *work)
2443{
2444 struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
2445 struct nvme_id_ctrl *ctrl;
2446
2447 if (!dev->tagset.tags)
2448 return;
2449 if (nvme_identify_ctrl(dev, &ctrl))
2450 return;
2451 nvme_scan_namespaces(dev, le32_to_cpup(&ctrl->nn));
2452 kfree(ctrl);
2453}
2454
2455/*
2456 * Return: error value if an error occurred setting up the queues or calling
2457 * Identify Device. 0 if these succeeded, even if adding some of the
2458 * namespaces failed. At the moment, these failures are silent. TBD which
2459 * failures should be reported.
2460 */
2461static int nvme_dev_add(struct nvme_dev *dev)
2462{
2463 struct pci_dev *pdev = to_pci_dev(dev->dev);
2464 int res;
2465 struct nvme_id_ctrl *ctrl;
2466 int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
2467
2468 res = nvme_identify_ctrl(dev, &ctrl);
2469 if (res) {
2470 dev_err(dev->dev, "Identify Controller failed (%d)\n", res);
2471 return -EIO;
2472 }
2473
2474 dev->oncs = le16_to_cpup(&ctrl->oncs);
2475 dev->abort_limit = ctrl->acl + 1;
2476 dev->vwc = ctrl->vwc;
2477 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2478 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2479 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2480 if (ctrl->mdts)
2481 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2482 if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2483 (pdev->device == 0x0953) && ctrl->vs[3]) {
2484 unsigned int max_hw_sectors;
2485
2486 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2487 max_hw_sectors = dev->stripe_size >> (shift - 9);
2488 if (dev->max_hw_sectors) {
2489 dev->max_hw_sectors = min(max_hw_sectors,
2490 dev->max_hw_sectors);
2491 } else
2492 dev->max_hw_sectors = max_hw_sectors;
2493 }
2494 kfree(ctrl);
2495
2496 if (!dev->tagset.tags) {
2497 dev->tagset.ops = &nvme_mq_ops;
2498 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2499 dev->tagset.timeout = NVME_IO_TIMEOUT;
2500 dev->tagset.numa_node = dev_to_node(dev->dev);
2501 dev->tagset.queue_depth =
2502 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2503 dev->tagset.cmd_size = nvme_cmd_size(dev);
2504 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2505 dev->tagset.driver_data = dev;
2506
2507 if (blk_mq_alloc_tag_set(&dev->tagset))
2508 return 0;
2509 }
2510 schedule_work(&dev->scan_work);
2511 return 0;
2512}
2513
2514static int nvme_dev_map(struct nvme_dev *dev)
2515{
2516 u64 cap;
2517 int bars, result = -ENOMEM;
2518 struct pci_dev *pdev = to_pci_dev(dev->dev);
2519
2520 if (pci_enable_device_mem(pdev))
2521 return result;
2522
2523 dev->entry[0].vector = pdev->irq;
2524 pci_set_master(pdev);
2525 bars = pci_select_bars(pdev, IORESOURCE_MEM);
2526 if (!bars)
2527 goto disable_pci;
2528
2529 if (pci_request_selected_regions(pdev, bars, "nvme"))
2530 goto disable_pci;
2531
2532 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2533 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2534 goto disable;
2535
2536 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2537 if (!dev->bar)
2538 goto disable;
2539
2540 if (readl(&dev->bar->csts) == -1) {
2541 result = -ENODEV;
2542 goto unmap;
2543 }
2544
2545 /*
2546 * Some devices don't advertse INTx interrupts, pre-enable a single
2547 * MSIX vec for setup. We'll adjust this later.
2548 */
2549 if (!pdev->irq) {
2550 result = pci_enable_msix(pdev, dev->entry, 1);
2551 if (result < 0)
2552 goto unmap;
2553 }
2554
2555 cap = readq(&dev->bar->cap);
2556 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2557 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2558 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2559 if (readl(&dev->bar->vs) >= NVME_VS(1, 2))
2560 dev->cmb = nvme_map_cmb(dev);
2561
2562 return 0;
2563
2564 unmap:
2565 iounmap(dev->bar);
2566 dev->bar = NULL;
2567 disable:
2568 pci_release_regions(pdev);
2569 disable_pci:
2570 pci_disable_device(pdev);
2571 return result;
2572}
2573
2574static void nvme_dev_unmap(struct nvme_dev *dev)
2575{
2576 struct pci_dev *pdev = to_pci_dev(dev->dev);
2577
2578 if (pdev->msi_enabled)
2579 pci_disable_msi(pdev);
2580 else if (pdev->msix_enabled)
2581 pci_disable_msix(pdev);
2582
2583 if (dev->bar) {
2584 iounmap(dev->bar);
2585 dev->bar = NULL;
2586 pci_release_regions(pdev);
2587 }
2588
2589 if (pci_is_enabled(pdev))
2590 pci_disable_device(pdev);
2591}
2592
2593struct nvme_delq_ctx {
2594 struct task_struct *waiter;
2595 struct kthread_worker *worker;
2596 atomic_t refcount;
2597};
2598
2599static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2600{
2601 dq->waiter = current;
2602 mb();
2603
2604 for (;;) {
2605 set_current_state(TASK_KILLABLE);
2606 if (!atomic_read(&dq->refcount))
2607 break;
2608 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2609 fatal_signal_pending(current)) {
2610 /*
2611 * Disable the controller first since we can't trust it
2612 * at this point, but leave the admin queue enabled
2613 * until all queue deletion requests are flushed.
2614 * FIXME: This may take a while if there are more h/w
2615 * queues than admin tags.
2616 */
2617 set_current_state(TASK_RUNNING);
2618 nvme_disable_ctrl(dev, readq(&dev->bar->cap));
2619 nvme_clear_queue(dev->queues[0]);
2620 flush_kthread_worker(dq->worker);
2621 nvme_disable_queue(dev, 0);
2622 return;
2623 }
2624 }
2625 set_current_state(TASK_RUNNING);
2626}
2627
2628static void nvme_put_dq(struct nvme_delq_ctx *dq)
2629{
2630 atomic_dec(&dq->refcount);
2631 if (dq->waiter)
2632 wake_up_process(dq->waiter);
2633}
2634
2635static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2636{
2637 atomic_inc(&dq->refcount);
2638 return dq;
2639}
2640
2641static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2642{
2643 struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2644 nvme_put_dq(dq);
2645}
2646
2647static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2648 kthread_work_func_t fn)
2649{
2650 struct nvme_command c;
2651
2652 memset(&c, 0, sizeof(c));
2653 c.delete_queue.opcode = opcode;
2654 c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2655
2656 init_kthread_work(&nvmeq->cmdinfo.work, fn);
2657 return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2658 ADMIN_TIMEOUT);
2659}
2660
2661static void nvme_del_cq_work_handler(struct kthread_work *work)
2662{
2663 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2664 cmdinfo.work);
2665 nvme_del_queue_end(nvmeq);
2666}
2667
2668static int nvme_delete_cq(struct nvme_queue *nvmeq)
2669{
2670 return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2671 nvme_del_cq_work_handler);
2672}
2673
2674static void nvme_del_sq_work_handler(struct kthread_work *work)
2675{
2676 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2677 cmdinfo.work);
2678 int status = nvmeq->cmdinfo.status;
2679
2680 if (!status)
2681 status = nvme_delete_cq(nvmeq);
2682 if (status)
2683 nvme_del_queue_end(nvmeq);
2684}
2685
2686static int nvme_delete_sq(struct nvme_queue *nvmeq)
2687{
2688 return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2689 nvme_del_sq_work_handler);
2690}
2691
2692static void nvme_del_queue_start(struct kthread_work *work)
2693{
2694 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2695 cmdinfo.work);
2696 if (nvme_delete_sq(nvmeq))
2697 nvme_del_queue_end(nvmeq);
2698}
2699
2700static void nvme_disable_io_queues(struct nvme_dev *dev)
2701{
2702 int i;
2703 DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2704 struct nvme_delq_ctx dq;
2705 struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2706 &worker, "nvme%d", dev->instance);
2707
2708 if (IS_ERR(kworker_task)) {
2709 dev_err(dev->dev,
2710 "Failed to create queue del task\n");
2711 for (i = dev->queue_count - 1; i > 0; i--)
2712 nvme_disable_queue(dev, i);
2713 return;
2714 }
2715
2716 dq.waiter = NULL;
2717 atomic_set(&dq.refcount, 0);
2718 dq.worker = &worker;
2719 for (i = dev->queue_count - 1; i > 0; i--) {
2720 struct nvme_queue *nvmeq = dev->queues[i];
2721
2722 if (nvme_suspend_queue(nvmeq))
2723 continue;
2724 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2725 nvmeq->cmdinfo.worker = dq.worker;
2726 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2727 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2728 }
2729 nvme_wait_dq(&dq, dev);
2730 kthread_stop(kworker_task);
2731}
2732
2733/*
2734* Remove the node from the device list and check
2735* for whether or not we need to stop the nvme_thread.
2736*/
2737static void nvme_dev_list_remove(struct nvme_dev *dev)
2738{
2739 struct task_struct *tmp = NULL;
2740
2741 spin_lock(&dev_list_lock);
2742 list_del_init(&dev->node);
2743 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2744 tmp = nvme_thread;
2745 nvme_thread = NULL;
2746 }
2747 spin_unlock(&dev_list_lock);
2748
2749 if (tmp)
2750 kthread_stop(tmp);
2751}
2752
2753static void nvme_freeze_queues(struct nvme_dev *dev)
2754{
2755 struct nvme_ns *ns;
2756
2757 list_for_each_entry(ns, &dev->namespaces, list) {
2758 blk_mq_freeze_queue_start(ns->queue);
2759
2760 spin_lock_irq(ns->queue->queue_lock);
2761 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2762 spin_unlock_irq(ns->queue->queue_lock);
2763
2764 blk_mq_cancel_requeue_work(ns->queue);
2765 blk_mq_stop_hw_queues(ns->queue);
2766 }
2767}
2768
2769static void nvme_unfreeze_queues(struct nvme_dev *dev)
2770{
2771 struct nvme_ns *ns;
2772
2773 list_for_each_entry(ns, &dev->namespaces, list) {
2774 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2775 blk_mq_unfreeze_queue(ns->queue);
2776 blk_mq_start_stopped_hw_queues(ns->queue, true);
2777 blk_mq_kick_requeue_list(ns->queue);
2778 }
2779}
2780
2781static void nvme_dev_shutdown(struct nvme_dev *dev)
2782{
2783 int i;
2784 u32 csts = -1;
2785
2786 nvme_dev_list_remove(dev);
2787
2788 if (dev->bar) {
2789 nvme_freeze_queues(dev);
2790 csts = readl(&dev->bar->csts);
2791 }
2792 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2793 for (i = dev->queue_count - 1; i >= 0; i--) {
2794 struct nvme_queue *nvmeq = dev->queues[i];
2795 nvme_suspend_queue(nvmeq);
2796 }
2797 } else {
2798 nvme_disable_io_queues(dev);
2799 nvme_shutdown_ctrl(dev);
2800 nvme_disable_queue(dev, 0);
2801 }
2802 nvme_dev_unmap(dev);
2803
2804 for (i = dev->queue_count - 1; i >= 0; i--)
2805 nvme_clear_queue(dev->queues[i]);
2806}
2807
2808static void nvme_dev_remove(struct nvme_dev *dev)
2809{
2810 struct nvme_ns *ns;
2811
2812 list_for_each_entry(ns, &dev->namespaces, list)
2813 nvme_ns_remove(ns);
2814}
2815
2816static int nvme_setup_prp_pools(struct nvme_dev *dev)
2817{
2818 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2819 PAGE_SIZE, PAGE_SIZE, 0);
2820 if (!dev->prp_page_pool)
2821 return -ENOMEM;
2822
2823 /* Optimisation for I/Os between 4k and 128k */
2824 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2825 256, 256, 0);
2826 if (!dev->prp_small_pool) {
2827 dma_pool_destroy(dev->prp_page_pool);
2828 return -ENOMEM;
2829 }
2830 return 0;
2831}
2832
2833static void nvme_release_prp_pools(struct nvme_dev *dev)
2834{
2835 dma_pool_destroy(dev->prp_page_pool);
2836 dma_pool_destroy(dev->prp_small_pool);
2837}
2838
2839static DEFINE_IDA(nvme_instance_ida);
2840
2841static int nvme_set_instance(struct nvme_dev *dev)
2842{
2843 int instance, error;
2844
2845 do {
2846 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2847 return -ENODEV;
2848
2849 spin_lock(&dev_list_lock);
2850 error = ida_get_new(&nvme_instance_ida, &instance);
2851 spin_unlock(&dev_list_lock);
2852 } while (error == -EAGAIN);
2853
2854 if (error)
2855 return -ENODEV;
2856
2857 dev->instance = instance;
2858 return 0;
2859}
2860
2861static void nvme_release_instance(struct nvme_dev *dev)
2862{
2863 spin_lock(&dev_list_lock);
2864 ida_remove(&nvme_instance_ida, dev->instance);
2865 spin_unlock(&dev_list_lock);
2866}
2867
2868static void nvme_free_namespaces(struct nvme_dev *dev)
2869{
2870 struct nvme_ns *ns, *next;
2871
2872 list_for_each_entry_safe(ns, next, &dev->namespaces, list)
2873 nvme_free_namespace(ns);
2874}
2875
2876static void nvme_free_dev(struct kref *kref)
2877{
2878 struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
2879
2880 put_device(dev->dev);
2881 put_device(dev->device);
2882 nvme_free_namespaces(dev);
2883 nvme_release_instance(dev);
2884 if (dev->tagset.tags)
2885 blk_mq_free_tag_set(&dev->tagset);
2886 if (dev->admin_q)
2887 blk_put_queue(dev->admin_q);
2888 kfree(dev->queues);
2889 kfree(dev->entry);
2890 kfree(dev);
2891}
2892
2893static int nvme_dev_open(struct inode *inode, struct file *f)
2894{
2895 struct nvme_dev *dev;
2896 int instance = iminor(inode);
2897 int ret = -ENODEV;
2898
2899 spin_lock(&dev_list_lock);
2900 list_for_each_entry(dev, &dev_list, node) {
2901 if (dev->instance == instance) {
2902 if (!dev->admin_q) {
2903 ret = -EWOULDBLOCK;
2904 break;
2905 }
2906 if (!kref_get_unless_zero(&dev->kref))
2907 break;
2908 f->private_data = dev;
2909 ret = 0;
2910 break;
2911 }
2912 }
2913 spin_unlock(&dev_list_lock);
2914
2915 return ret;
2916}
2917
2918static int nvme_dev_release(struct inode *inode, struct file *f)
2919{
2920 struct nvme_dev *dev = f->private_data;
2921 kref_put(&dev->kref, nvme_free_dev);
2922 return 0;
2923}
2924
2925static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2926{
2927 struct nvme_dev *dev = f->private_data;
2928 struct nvme_ns *ns;
2929
2930 switch (cmd) {
2931 case NVME_IOCTL_ADMIN_CMD:
2932 return nvme_user_cmd(dev, NULL, (void __user *)arg);
2933 case NVME_IOCTL_IO_CMD:
2934 if (list_empty(&dev->namespaces))
2935 return -ENOTTY;
2936 ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
2937 return nvme_user_cmd(dev, ns, (void __user *)arg);
2938 case NVME_IOCTL_RESET:
2939 dev_warn(dev->dev, "resetting controller\n");
2940 return nvme_reset(dev);
2941 case NVME_IOCTL_SUBSYS_RESET:
2942 return nvme_subsys_reset(dev);
2943 default:
2944 return -ENOTTY;
2945 }
2946}
2947
2948static const struct file_operations nvme_dev_fops = {
2949 .owner = THIS_MODULE,
2950 .open = nvme_dev_open,
2951 .release = nvme_dev_release,
2952 .unlocked_ioctl = nvme_dev_ioctl,
2953 .compat_ioctl = nvme_dev_ioctl,
2954};
2955
2956static void nvme_set_irq_hints(struct nvme_dev *dev)
2957{
2958 struct nvme_queue *nvmeq;
2959 int i;
2960
2961 for (i = 0; i < dev->online_queues; i++) {
2962 nvmeq = dev->queues[i];
2963
2964 if (!nvmeq->tags || !(*nvmeq->tags))
2965 continue;
2966
2967 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2968 blk_mq_tags_cpumask(*nvmeq->tags));
2969 }
2970}
2971
2972static int nvme_dev_start(struct nvme_dev *dev)
2973{
2974 int result;
2975 bool start_thread = false;
2976
2977 result = nvme_dev_map(dev);
2978 if (result)
2979 return result;
2980
2981 result = nvme_configure_admin_queue(dev);
2982 if (result)
2983 goto unmap;
2984
2985 spin_lock(&dev_list_lock);
2986 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2987 start_thread = true;
2988 nvme_thread = NULL;
2989 }
2990 list_add(&dev->node, &dev_list);
2991 spin_unlock(&dev_list_lock);
2992
2993 if (start_thread) {
2994 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2995 wake_up_all(&nvme_kthread_wait);
2996 } else
2997 wait_event_killable(nvme_kthread_wait, nvme_thread);
2998
2999 if (IS_ERR_OR_NULL(nvme_thread)) {
3000 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
3001 goto disable;
3002 }
3003
3004 nvme_init_queue(dev->queues[0], 0);
3005 result = nvme_alloc_admin_tags(dev);
3006 if (result)
3007 goto disable;
3008
3009 result = nvme_setup_io_queues(dev);
3010 if (result)
3011 goto free_tags;
3012
3013 nvme_set_irq_hints(dev);
3014
3015 dev->event_limit = 1;
3016 return result;
3017
3018 free_tags:
3019 nvme_dev_remove_admin(dev);
3020 blk_put_queue(dev->admin_q);
3021 dev->admin_q = NULL;
3022 dev->queues[0]->tags = NULL;
3023 disable:
3024 nvme_disable_queue(dev, 0);
3025 nvme_dev_list_remove(dev);
3026 unmap:
3027 nvme_dev_unmap(dev);
3028 return result;
3029}
3030
3031static int nvme_remove_dead_ctrl(void *arg)
3032{
3033 struct nvme_dev *dev = (struct nvme_dev *)arg;
3034 struct pci_dev *pdev = to_pci_dev(dev->dev);
3035
3036 if (pci_get_drvdata(pdev))
3037 pci_stop_and_remove_bus_device_locked(pdev);
3038 kref_put(&dev->kref, nvme_free_dev);
3039 return 0;
3040}
3041
3042static void nvme_remove_disks(struct work_struct *ws)
3043{
3044 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
3045
3046 nvme_free_queues(dev, 1);
3047 nvme_dev_remove(dev);
3048}
3049
3050static int nvme_dev_resume(struct nvme_dev *dev)
3051{
3052 int ret;
3053
3054 ret = nvme_dev_start(dev);
3055 if (ret)
3056 return ret;
3057 if (dev->online_queues < 2) {
3058 spin_lock(&dev_list_lock);
3059 dev->reset_workfn = nvme_remove_disks;
3060 queue_work(nvme_workq, &dev->reset_work);
3061 spin_unlock(&dev_list_lock);
3062 } else {
3063 nvme_unfreeze_queues(dev);
3064 nvme_dev_add(dev);
3065 nvme_set_irq_hints(dev);
3066 }
3067 return 0;
3068}
3069
3070static void nvme_dead_ctrl(struct nvme_dev *dev)
3071{
3072 dev_warn(dev->dev, "Device failed to resume\n");
3073 kref_get(&dev->kref);
3074 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
3075 dev->instance))) {
3076 dev_err(dev->dev,
3077 "Failed to start controller remove task\n");
3078 kref_put(&dev->kref, nvme_free_dev);
3079 }
3080}
3081
3082static void nvme_dev_reset(struct nvme_dev *dev)
3083{
3084 bool in_probe = work_busy(&dev->probe_work);
3085
3086 nvme_dev_shutdown(dev);
3087
3088 /* Synchronize with device probe so that work will see failure status
3089 * and exit gracefully without trying to schedule another reset */
3090 flush_work(&dev->probe_work);
3091
3092 /* Fail this device if reset occured during probe to avoid
3093 * infinite initialization loops. */
3094 if (in_probe) {
3095 nvme_dead_ctrl(dev);
3096 return;
3097 }
3098 /* Schedule device resume asynchronously so the reset work is available
3099 * to cleanup errors that may occur during reinitialization */
3100 schedule_work(&dev->probe_work);
3101}
3102
3103static void nvme_reset_failed_dev(struct work_struct *ws)
3104{
3105 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
3106 nvme_dev_reset(dev);
3107}
3108
3109static void nvme_reset_workfn(struct work_struct *work)
3110{
3111 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
3112 dev->reset_workfn(work);
3113}
3114
3115static int nvme_reset(struct nvme_dev *dev)
3116{
3117 int ret = -EBUSY;
3118
3119 if (!dev->admin_q || blk_queue_dying(dev->admin_q))
3120 return -ENODEV;
3121
3122 spin_lock(&dev_list_lock);
3123 if (!work_pending(&dev->reset_work)) {
3124 dev->reset_workfn = nvme_reset_failed_dev;
3125 queue_work(nvme_workq, &dev->reset_work);
3126 ret = 0;
3127 }
3128 spin_unlock(&dev_list_lock);
3129
3130 if (!ret) {
3131 flush_work(&dev->reset_work);
3132 flush_work(&dev->probe_work);
3133 return 0;
3134 }
3135
3136 return ret;
3137}
3138
3139static ssize_t nvme_sysfs_reset(struct device *dev,
3140 struct device_attribute *attr, const char *buf,
3141 size_t count)
3142{
3143 struct nvme_dev *ndev = dev_get_drvdata(dev);
3144 int ret;
3145
3146 ret = nvme_reset(ndev);
3147 if (ret < 0)
3148 return ret;
3149
3150 return count;
3151}
3152static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3153
3154static void nvme_async_probe(struct work_struct *work);
3155static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3156{
3157 int node, result = -ENOMEM;
3158 struct nvme_dev *dev;
3159
3160 node = dev_to_node(&pdev->dev);
3161 if (node == NUMA_NO_NODE)
3162 set_dev_node(&pdev->dev, 0);
3163
3164 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
3165 if (!dev)
3166 return -ENOMEM;
3167 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
3168 GFP_KERNEL, node);
3169 if (!dev->entry)
3170 goto free;
3171 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
3172 GFP_KERNEL, node);
3173 if (!dev->queues)
3174 goto free;
3175
3176 INIT_LIST_HEAD(&dev->namespaces);
3177 dev->reset_workfn = nvme_reset_failed_dev;
3178 INIT_WORK(&dev->reset_work, nvme_reset_workfn);
3179 dev->dev = get_device(&pdev->dev);
3180 pci_set_drvdata(pdev, dev);
3181 result = nvme_set_instance(dev);
3182 if (result)
3183 goto put_pci;
3184
3185 result = nvme_setup_prp_pools(dev);
3186 if (result)
3187 goto release;
3188
3189 kref_init(&dev->kref);
3190 dev->device = device_create(nvme_class, &pdev->dev,
3191 MKDEV(nvme_char_major, dev->instance),
3192 dev, "nvme%d", dev->instance);
3193 if (IS_ERR(dev->device)) {
3194 result = PTR_ERR(dev->device);
3195 goto release_pools;
3196 }
3197 get_device(dev->device);
3198 dev_set_drvdata(dev->device, dev);
3199
3200 result = device_create_file(dev->device, &dev_attr_reset_controller);
3201 if (result)
3202 goto put_dev;
3203
3204 INIT_LIST_HEAD(&dev->node);
3205 INIT_WORK(&dev->scan_work, nvme_dev_scan);
3206 INIT_WORK(&dev->probe_work, nvme_async_probe);
3207 schedule_work(&dev->probe_work);
3208 return 0;
3209
3210 put_dev:
3211 device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3212 put_device(dev->device);
3213 release_pools:
3214 nvme_release_prp_pools(dev);
3215 release:
3216 nvme_release_instance(dev);
3217 put_pci:
3218 put_device(dev->dev);
3219 free:
3220 kfree(dev->queues);
3221 kfree(dev->entry);
3222 kfree(dev);
3223 return result;
3224}
3225
3226static void nvme_async_probe(struct work_struct *work)
3227{
3228 struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
3229
3230 if (nvme_dev_resume(dev) && !work_busy(&dev->reset_work))
3231 nvme_dead_ctrl(dev);
3232}
3233
3234static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
3235{
3236 struct nvme_dev *dev = pci_get_drvdata(pdev);
3237
3238 if (prepare)
3239 nvme_dev_shutdown(dev);
3240 else
3241 nvme_dev_resume(dev);
3242}
3243
3244static void nvme_shutdown(struct pci_dev *pdev)
3245{
3246 struct nvme_dev *dev = pci_get_drvdata(pdev);
3247 nvme_dev_shutdown(dev);
3248}
3249
3250static void nvme_remove(struct pci_dev *pdev)
3251{
3252 struct nvme_dev *dev = pci_get_drvdata(pdev);
3253
3254 spin_lock(&dev_list_lock);
3255 list_del_init(&dev->node);
3256 spin_unlock(&dev_list_lock);
3257
3258 pci_set_drvdata(pdev, NULL);
3259 flush_work(&dev->probe_work);
3260 flush_work(&dev->reset_work);
3261 flush_work(&dev->scan_work);
3262 device_remove_file(dev->device, &dev_attr_reset_controller);
3263 nvme_dev_remove(dev);
3264 nvme_dev_shutdown(dev);
3265 nvme_dev_remove_admin(dev);
3266 device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3267 nvme_free_queues(dev, 0);
3268 nvme_release_cmb(dev);
3269 nvme_release_prp_pools(dev);
3270 kref_put(&dev->kref, nvme_free_dev);
3271}
3272
3273/* These functions are yet to be implemented */
3274#define nvme_error_detected NULL
3275#define nvme_dump_registers NULL
3276#define nvme_link_reset NULL
3277#define nvme_slot_reset NULL
3278#define nvme_error_resume NULL
3279
3280#ifdef CONFIG_PM_SLEEP
3281static int nvme_suspend(struct device *dev)
3282{
3283 struct pci_dev *pdev = to_pci_dev(dev);
3284 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3285
3286 nvme_dev_shutdown(ndev);
3287 return 0;
3288}
3289
3290static int nvme_resume(struct device *dev)
3291{
3292 struct pci_dev *pdev = to_pci_dev(dev);
3293 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3294
3295 if (nvme_dev_resume(ndev) && !work_busy(&ndev->reset_work)) {
3296 ndev->reset_workfn = nvme_reset_failed_dev;
3297 queue_work(nvme_workq, &ndev->reset_work);
3298 }
3299 return 0;
3300}
3301#endif
3302
3303static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
3304
3305static const struct pci_error_handlers nvme_err_handler = {
3306 .error_detected = nvme_error_detected,
3307 .mmio_enabled = nvme_dump_registers,
3308 .link_reset = nvme_link_reset,
3309 .slot_reset = nvme_slot_reset,
3310 .resume = nvme_error_resume,
3311 .reset_notify = nvme_reset_notify,
3312};
3313
3314/* Move to pci_ids.h later */
3315#define PCI_CLASS_STORAGE_EXPRESS 0x010802
3316
3317static const struct pci_device_id nvme_id_table[] = {
3318 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3319 { 0, }
3320};
3321MODULE_DEVICE_TABLE(pci, nvme_id_table);
3322
3323static struct pci_driver nvme_driver = {
3324 .name = "nvme",
3325 .id_table = nvme_id_table,
3326 .probe = nvme_probe,
3327 .remove = nvme_remove,
3328 .shutdown = nvme_shutdown,
3329 .driver = {
3330 .pm = &nvme_dev_pm_ops,
3331 },
3332 .err_handler = &nvme_err_handler,
3333};
3334
3335static int __init nvme_init(void)
3336{
3337 int result;
3338
3339 init_waitqueue_head(&nvme_kthread_wait);
3340
3341 nvme_workq = create_singlethread_workqueue("nvme");
3342 if (!nvme_workq)
3343 return -ENOMEM;
3344
3345 result = register_blkdev(nvme_major, "nvme");
3346 if (result < 0)
3347 goto kill_workq;
3348 else if (result > 0)
3349 nvme_major = result;
3350
3351 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
3352 &nvme_dev_fops);
3353 if (result < 0)
3354 goto unregister_blkdev;
3355 else if (result > 0)
3356 nvme_char_major = result;
3357
3358 nvme_class = class_create(THIS_MODULE, "nvme");
3359 if (IS_ERR(nvme_class)) {
3360 result = PTR_ERR(nvme_class);
3361 goto unregister_chrdev;
3362 }
3363
3364 result = pci_register_driver(&nvme_driver);
3365 if (result)
3366 goto destroy_class;
3367 return 0;
3368
3369 destroy_class:
3370 class_destroy(nvme_class);
3371 unregister_chrdev:
3372 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3373 unregister_blkdev:
3374 unregister_blkdev(nvme_major, "nvme");
3375 kill_workq:
3376 destroy_workqueue(nvme_workq);
3377 return result;
3378}
3379
3380static void __exit nvme_exit(void)
3381{
3382 pci_unregister_driver(&nvme_driver);
3383 unregister_blkdev(nvme_major, "nvme");
3384 destroy_workqueue(nvme_workq);
3385 class_destroy(nvme_class);
3386 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3387 BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
3388 _nvme_check_size();
3389}
3390
3391MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3392MODULE_LICENSE("GPL");
3393MODULE_VERSION("1.0");
3394module_init(nvme_init);
3395module_exit(nvme_exit);