Merge tag 'x86-timers-2024-09-17' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / drivers / base / regmap / regmap.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2//
3// Register map access API
4//
5// Copyright 2011 Wolfson Microelectronics plc
6//
7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9#include <linux/device.h>
10#include <linux/slab.h>
11#include <linux/export.h>
12#include <linux/mutex.h>
13#include <linux/err.h>
14#include <linux/property.h>
15#include <linux/rbtree.h>
16#include <linux/sched.h>
17#include <linux/delay.h>
18#include <linux/log2.h>
19#include <linux/hwspinlock.h>
20#include <asm/unaligned.h>
21
22#define CREATE_TRACE_POINTS
23#include "trace.h"
24
25#include "internal.h"
26
27/*
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used. For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
32 */
33#undef LOG_DEVICE
34
35#ifdef LOG_DEVICE
36static inline bool regmap_should_log(struct regmap *map)
37{
38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39}
40#else
41static inline bool regmap_should_log(struct regmap *map) { return false; }
42#endif
43
44
45static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 unsigned int mask, unsigned int val,
47 bool *change, bool force_write);
48
49static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 unsigned int *val);
51static int _regmap_bus_read(void *context, unsigned int reg,
52 unsigned int *val);
53static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 unsigned int val);
55static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 unsigned int val);
57static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 unsigned int val);
59
60bool regmap_reg_in_ranges(unsigned int reg,
61 const struct regmap_range *ranges,
62 unsigned int nranges)
63{
64 const struct regmap_range *r;
65 int i;
66
67 for (i = 0, r = ranges; i < nranges; i++, r++)
68 if (regmap_reg_in_range(reg, r))
69 return true;
70 return false;
71}
72EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73
74bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 const struct regmap_access_table *table)
76{
77 /* Check "no ranges" first */
78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 return false;
80
81 /* In case zero "yes ranges" are supplied, any reg is OK */
82 if (!table->n_yes_ranges)
83 return true;
84
85 return regmap_reg_in_ranges(reg, table->yes_ranges,
86 table->n_yes_ranges);
87}
88EXPORT_SYMBOL_GPL(regmap_check_range_table);
89
90bool regmap_writeable(struct regmap *map, unsigned int reg)
91{
92 if (map->max_register_is_set && reg > map->max_register)
93 return false;
94
95 if (map->writeable_reg)
96 return map->writeable_reg(map->dev, reg);
97
98 if (map->wr_table)
99 return regmap_check_range_table(map, reg, map->wr_table);
100
101 return true;
102}
103
104bool regmap_cached(struct regmap *map, unsigned int reg)
105{
106 int ret;
107 unsigned int val;
108
109 if (map->cache_type == REGCACHE_NONE)
110 return false;
111
112 if (!map->cache_ops)
113 return false;
114
115 if (map->max_register_is_set && reg > map->max_register)
116 return false;
117
118 map->lock(map->lock_arg);
119 ret = regcache_read(map, reg, &val);
120 map->unlock(map->lock_arg);
121 if (ret)
122 return false;
123
124 return true;
125}
126
127bool regmap_readable(struct regmap *map, unsigned int reg)
128{
129 if (!map->reg_read)
130 return false;
131
132 if (map->max_register_is_set && reg > map->max_register)
133 return false;
134
135 if (map->format.format_write)
136 return false;
137
138 if (map->readable_reg)
139 return map->readable_reg(map->dev, reg);
140
141 if (map->rd_table)
142 return regmap_check_range_table(map, reg, map->rd_table);
143
144 return true;
145}
146
147bool regmap_volatile(struct regmap *map, unsigned int reg)
148{
149 if (!map->format.format_write && !regmap_readable(map, reg))
150 return false;
151
152 if (map->volatile_reg)
153 return map->volatile_reg(map->dev, reg);
154
155 if (map->volatile_table)
156 return regmap_check_range_table(map, reg, map->volatile_table);
157
158 if (map->cache_ops)
159 return false;
160 else
161 return true;
162}
163
164bool regmap_precious(struct regmap *map, unsigned int reg)
165{
166 if (!regmap_readable(map, reg))
167 return false;
168
169 if (map->precious_reg)
170 return map->precious_reg(map->dev, reg);
171
172 if (map->precious_table)
173 return regmap_check_range_table(map, reg, map->precious_table);
174
175 return false;
176}
177
178bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179{
180 if (map->writeable_noinc_reg)
181 return map->writeable_noinc_reg(map->dev, reg);
182
183 if (map->wr_noinc_table)
184 return regmap_check_range_table(map, reg, map->wr_noinc_table);
185
186 return true;
187}
188
189bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190{
191 if (map->readable_noinc_reg)
192 return map->readable_noinc_reg(map->dev, reg);
193
194 if (map->rd_noinc_table)
195 return regmap_check_range_table(map, reg, map->rd_noinc_table);
196
197 return true;
198}
199
200static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 size_t num)
202{
203 unsigned int i;
204
205 for (i = 0; i < num; i++)
206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 return false;
208
209 return true;
210}
211
212static void regmap_format_12_20_write(struct regmap *map,
213 unsigned int reg, unsigned int val)
214{
215 u8 *out = map->work_buf;
216
217 out[0] = reg >> 4;
218 out[1] = (reg << 4) | (val >> 16);
219 out[2] = val >> 8;
220 out[3] = val;
221}
222
223
224static void regmap_format_2_6_write(struct regmap *map,
225 unsigned int reg, unsigned int val)
226{
227 u8 *out = map->work_buf;
228
229 *out = (reg << 6) | val;
230}
231
232static void regmap_format_4_12_write(struct regmap *map,
233 unsigned int reg, unsigned int val)
234{
235 __be16 *out = map->work_buf;
236 *out = cpu_to_be16((reg << 12) | val);
237}
238
239static void regmap_format_7_9_write(struct regmap *map,
240 unsigned int reg, unsigned int val)
241{
242 __be16 *out = map->work_buf;
243 *out = cpu_to_be16((reg << 9) | val);
244}
245
246static void regmap_format_7_17_write(struct regmap *map,
247 unsigned int reg, unsigned int val)
248{
249 u8 *out = map->work_buf;
250
251 out[2] = val;
252 out[1] = val >> 8;
253 out[0] = (val >> 16) | (reg << 1);
254}
255
256static void regmap_format_10_14_write(struct regmap *map,
257 unsigned int reg, unsigned int val)
258{
259 u8 *out = map->work_buf;
260
261 out[2] = val;
262 out[1] = (val >> 8) | (reg << 6);
263 out[0] = reg >> 2;
264}
265
266static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267{
268 u8 *b = buf;
269
270 b[0] = val << shift;
271}
272
273static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274{
275 put_unaligned_be16(val << shift, buf);
276}
277
278static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
279{
280 put_unaligned_le16(val << shift, buf);
281}
282
283static void regmap_format_16_native(void *buf, unsigned int val,
284 unsigned int shift)
285{
286 u16 v = val << shift;
287
288 memcpy(buf, &v, sizeof(v));
289}
290
291static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift)
292{
293 put_unaligned_be24(val << shift, buf);
294}
295
296static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
297{
298 put_unaligned_be32(val << shift, buf);
299}
300
301static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
302{
303 put_unaligned_le32(val << shift, buf);
304}
305
306static void regmap_format_32_native(void *buf, unsigned int val,
307 unsigned int shift)
308{
309 u32 v = val << shift;
310
311 memcpy(buf, &v, sizeof(v));
312}
313
314static void regmap_parse_inplace_noop(void *buf)
315{
316}
317
318static unsigned int regmap_parse_8(const void *buf)
319{
320 const u8 *b = buf;
321
322 return b[0];
323}
324
325static unsigned int regmap_parse_16_be(const void *buf)
326{
327 return get_unaligned_be16(buf);
328}
329
330static unsigned int regmap_parse_16_le(const void *buf)
331{
332 return get_unaligned_le16(buf);
333}
334
335static void regmap_parse_16_be_inplace(void *buf)
336{
337 u16 v = get_unaligned_be16(buf);
338
339 memcpy(buf, &v, sizeof(v));
340}
341
342static void regmap_parse_16_le_inplace(void *buf)
343{
344 u16 v = get_unaligned_le16(buf);
345
346 memcpy(buf, &v, sizeof(v));
347}
348
349static unsigned int regmap_parse_16_native(const void *buf)
350{
351 u16 v;
352
353 memcpy(&v, buf, sizeof(v));
354 return v;
355}
356
357static unsigned int regmap_parse_24_be(const void *buf)
358{
359 return get_unaligned_be24(buf);
360}
361
362static unsigned int regmap_parse_32_be(const void *buf)
363{
364 return get_unaligned_be32(buf);
365}
366
367static unsigned int regmap_parse_32_le(const void *buf)
368{
369 return get_unaligned_le32(buf);
370}
371
372static void regmap_parse_32_be_inplace(void *buf)
373{
374 u32 v = get_unaligned_be32(buf);
375
376 memcpy(buf, &v, sizeof(v));
377}
378
379static void regmap_parse_32_le_inplace(void *buf)
380{
381 u32 v = get_unaligned_le32(buf);
382
383 memcpy(buf, &v, sizeof(v));
384}
385
386static unsigned int regmap_parse_32_native(const void *buf)
387{
388 u32 v;
389
390 memcpy(&v, buf, sizeof(v));
391 return v;
392}
393
394static void regmap_lock_hwlock(void *__map)
395{
396 struct regmap *map = __map;
397
398 hwspin_lock_timeout(map->hwlock, UINT_MAX);
399}
400
401static void regmap_lock_hwlock_irq(void *__map)
402{
403 struct regmap *map = __map;
404
405 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
406}
407
408static void regmap_lock_hwlock_irqsave(void *__map)
409{
410 struct regmap *map = __map;
411
412 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
413 &map->spinlock_flags);
414}
415
416static void regmap_unlock_hwlock(void *__map)
417{
418 struct regmap *map = __map;
419
420 hwspin_unlock(map->hwlock);
421}
422
423static void regmap_unlock_hwlock_irq(void *__map)
424{
425 struct regmap *map = __map;
426
427 hwspin_unlock_irq(map->hwlock);
428}
429
430static void regmap_unlock_hwlock_irqrestore(void *__map)
431{
432 struct regmap *map = __map;
433
434 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
435}
436
437static void regmap_lock_unlock_none(void *__map)
438{
439
440}
441
442static void regmap_lock_mutex(void *__map)
443{
444 struct regmap *map = __map;
445 mutex_lock(&map->mutex);
446}
447
448static void regmap_unlock_mutex(void *__map)
449{
450 struct regmap *map = __map;
451 mutex_unlock(&map->mutex);
452}
453
454static void regmap_lock_spinlock(void *__map)
455__acquires(&map->spinlock)
456{
457 struct regmap *map = __map;
458 unsigned long flags;
459
460 spin_lock_irqsave(&map->spinlock, flags);
461 map->spinlock_flags = flags;
462}
463
464static void regmap_unlock_spinlock(void *__map)
465__releases(&map->spinlock)
466{
467 struct regmap *map = __map;
468 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
469}
470
471static void regmap_lock_raw_spinlock(void *__map)
472__acquires(&map->raw_spinlock)
473{
474 struct regmap *map = __map;
475 unsigned long flags;
476
477 raw_spin_lock_irqsave(&map->raw_spinlock, flags);
478 map->raw_spinlock_flags = flags;
479}
480
481static void regmap_unlock_raw_spinlock(void *__map)
482__releases(&map->raw_spinlock)
483{
484 struct regmap *map = __map;
485 raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
486}
487
488static void dev_get_regmap_release(struct device *dev, void *res)
489{
490 /*
491 * We don't actually have anything to do here; the goal here
492 * is not to manage the regmap but to provide a simple way to
493 * get the regmap back given a struct device.
494 */
495}
496
497static bool _regmap_range_add(struct regmap *map,
498 struct regmap_range_node *data)
499{
500 struct rb_root *root = &map->range_tree;
501 struct rb_node **new = &(root->rb_node), *parent = NULL;
502
503 while (*new) {
504 struct regmap_range_node *this =
505 rb_entry(*new, struct regmap_range_node, node);
506
507 parent = *new;
508 if (data->range_max < this->range_min)
509 new = &((*new)->rb_left);
510 else if (data->range_min > this->range_max)
511 new = &((*new)->rb_right);
512 else
513 return false;
514 }
515
516 rb_link_node(&data->node, parent, new);
517 rb_insert_color(&data->node, root);
518
519 return true;
520}
521
522static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
523 unsigned int reg)
524{
525 struct rb_node *node = map->range_tree.rb_node;
526
527 while (node) {
528 struct regmap_range_node *this =
529 rb_entry(node, struct regmap_range_node, node);
530
531 if (reg < this->range_min)
532 node = node->rb_left;
533 else if (reg > this->range_max)
534 node = node->rb_right;
535 else
536 return this;
537 }
538
539 return NULL;
540}
541
542static void regmap_range_exit(struct regmap *map)
543{
544 struct rb_node *next;
545 struct regmap_range_node *range_node;
546
547 next = rb_first(&map->range_tree);
548 while (next) {
549 range_node = rb_entry(next, struct regmap_range_node, node);
550 next = rb_next(&range_node->node);
551 rb_erase(&range_node->node, &map->range_tree);
552 kfree(range_node);
553 }
554
555 kfree(map->selector_work_buf);
556}
557
558static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
559{
560 if (config->name) {
561 const char *name = kstrdup_const(config->name, GFP_KERNEL);
562
563 if (!name)
564 return -ENOMEM;
565
566 kfree_const(map->name);
567 map->name = name;
568 }
569
570 return 0;
571}
572
573int regmap_attach_dev(struct device *dev, struct regmap *map,
574 const struct regmap_config *config)
575{
576 struct regmap **m;
577 int ret;
578
579 map->dev = dev;
580
581 ret = regmap_set_name(map, config);
582 if (ret)
583 return ret;
584
585 regmap_debugfs_exit(map);
586 regmap_debugfs_init(map);
587
588 /* Add a devres resource for dev_get_regmap() */
589 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
590 if (!m) {
591 regmap_debugfs_exit(map);
592 return -ENOMEM;
593 }
594 *m = map;
595 devres_add(dev, m);
596
597 return 0;
598}
599EXPORT_SYMBOL_GPL(regmap_attach_dev);
600
601static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
602 const struct regmap_config *config)
603{
604 enum regmap_endian endian;
605
606 /* Retrieve the endianness specification from the regmap config */
607 endian = config->reg_format_endian;
608
609 /* If the regmap config specified a non-default value, use that */
610 if (endian != REGMAP_ENDIAN_DEFAULT)
611 return endian;
612
613 /* Retrieve the endianness specification from the bus config */
614 if (bus && bus->reg_format_endian_default)
615 endian = bus->reg_format_endian_default;
616
617 /* If the bus specified a non-default value, use that */
618 if (endian != REGMAP_ENDIAN_DEFAULT)
619 return endian;
620
621 /* Use this if no other value was found */
622 return REGMAP_ENDIAN_BIG;
623}
624
625enum regmap_endian regmap_get_val_endian(struct device *dev,
626 const struct regmap_bus *bus,
627 const struct regmap_config *config)
628{
629 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
630 enum regmap_endian endian;
631
632 /* Retrieve the endianness specification from the regmap config */
633 endian = config->val_format_endian;
634
635 /* If the regmap config specified a non-default value, use that */
636 if (endian != REGMAP_ENDIAN_DEFAULT)
637 return endian;
638
639 /* If the firmware node exist try to get endianness from it */
640 if (fwnode_property_read_bool(fwnode, "big-endian"))
641 endian = REGMAP_ENDIAN_BIG;
642 else if (fwnode_property_read_bool(fwnode, "little-endian"))
643 endian = REGMAP_ENDIAN_LITTLE;
644 else if (fwnode_property_read_bool(fwnode, "native-endian"))
645 endian = REGMAP_ENDIAN_NATIVE;
646
647 /* If the endianness was specified in fwnode, use that */
648 if (endian != REGMAP_ENDIAN_DEFAULT)
649 return endian;
650
651 /* Retrieve the endianness specification from the bus config */
652 if (bus && bus->val_format_endian_default)
653 endian = bus->val_format_endian_default;
654
655 /* If the bus specified a non-default value, use that */
656 if (endian != REGMAP_ENDIAN_DEFAULT)
657 return endian;
658
659 /* Use this if no other value was found */
660 return REGMAP_ENDIAN_BIG;
661}
662EXPORT_SYMBOL_GPL(regmap_get_val_endian);
663
664struct regmap *__regmap_init(struct device *dev,
665 const struct regmap_bus *bus,
666 void *bus_context,
667 const struct regmap_config *config,
668 struct lock_class_key *lock_key,
669 const char *lock_name)
670{
671 struct regmap *map;
672 int ret = -EINVAL;
673 enum regmap_endian reg_endian, val_endian;
674 int i, j;
675
676 if (!config)
677 goto err;
678
679 map = kzalloc(sizeof(*map), GFP_KERNEL);
680 if (map == NULL) {
681 ret = -ENOMEM;
682 goto err;
683 }
684
685 ret = regmap_set_name(map, config);
686 if (ret)
687 goto err_map;
688
689 ret = -EINVAL; /* Later error paths rely on this */
690
691 if (config->disable_locking) {
692 map->lock = map->unlock = regmap_lock_unlock_none;
693 map->can_sleep = config->can_sleep;
694 regmap_debugfs_disable(map);
695 } else if (config->lock && config->unlock) {
696 map->lock = config->lock;
697 map->unlock = config->unlock;
698 map->lock_arg = config->lock_arg;
699 map->can_sleep = config->can_sleep;
700 } else if (config->use_hwlock) {
701 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
702 if (!map->hwlock) {
703 ret = -ENXIO;
704 goto err_name;
705 }
706
707 switch (config->hwlock_mode) {
708 case HWLOCK_IRQSTATE:
709 map->lock = regmap_lock_hwlock_irqsave;
710 map->unlock = regmap_unlock_hwlock_irqrestore;
711 break;
712 case HWLOCK_IRQ:
713 map->lock = regmap_lock_hwlock_irq;
714 map->unlock = regmap_unlock_hwlock_irq;
715 break;
716 default:
717 map->lock = regmap_lock_hwlock;
718 map->unlock = regmap_unlock_hwlock;
719 break;
720 }
721
722 map->lock_arg = map;
723 } else {
724 if ((bus && bus->fast_io) ||
725 config->fast_io) {
726 if (config->use_raw_spinlock) {
727 raw_spin_lock_init(&map->raw_spinlock);
728 map->lock = regmap_lock_raw_spinlock;
729 map->unlock = regmap_unlock_raw_spinlock;
730 lockdep_set_class_and_name(&map->raw_spinlock,
731 lock_key, lock_name);
732 } else {
733 spin_lock_init(&map->spinlock);
734 map->lock = regmap_lock_spinlock;
735 map->unlock = regmap_unlock_spinlock;
736 lockdep_set_class_and_name(&map->spinlock,
737 lock_key, lock_name);
738 }
739 } else {
740 mutex_init(&map->mutex);
741 map->lock = regmap_lock_mutex;
742 map->unlock = regmap_unlock_mutex;
743 map->can_sleep = true;
744 lockdep_set_class_and_name(&map->mutex,
745 lock_key, lock_name);
746 }
747 map->lock_arg = map;
748 }
749
750 /*
751 * When we write in fast-paths with regmap_bulk_write() don't allocate
752 * scratch buffers with sleeping allocations.
753 */
754 if ((bus && bus->fast_io) || config->fast_io)
755 map->alloc_flags = GFP_ATOMIC;
756 else
757 map->alloc_flags = GFP_KERNEL;
758
759 map->reg_base = config->reg_base;
760
761 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
762 map->format.pad_bytes = config->pad_bits / 8;
763 map->format.reg_shift = config->reg_shift;
764 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
765 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
766 config->val_bits + config->pad_bits, 8);
767 map->reg_shift = config->pad_bits % 8;
768 if (config->reg_stride)
769 map->reg_stride = config->reg_stride;
770 else
771 map->reg_stride = 1;
772 if (is_power_of_2(map->reg_stride))
773 map->reg_stride_order = ilog2(map->reg_stride);
774 else
775 map->reg_stride_order = -1;
776 map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
777 map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
778 map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
779 if (bus) {
780 map->max_raw_read = bus->max_raw_read;
781 map->max_raw_write = bus->max_raw_write;
782 } else if (config->max_raw_read && config->max_raw_write) {
783 map->max_raw_read = config->max_raw_read;
784 map->max_raw_write = config->max_raw_write;
785 }
786 map->dev = dev;
787 map->bus = bus;
788 map->bus_context = bus_context;
789 map->max_register = config->max_register;
790 map->max_register_is_set = map->max_register ?: config->max_register_is_0;
791 map->wr_table = config->wr_table;
792 map->rd_table = config->rd_table;
793 map->volatile_table = config->volatile_table;
794 map->precious_table = config->precious_table;
795 map->wr_noinc_table = config->wr_noinc_table;
796 map->rd_noinc_table = config->rd_noinc_table;
797 map->writeable_reg = config->writeable_reg;
798 map->readable_reg = config->readable_reg;
799 map->volatile_reg = config->volatile_reg;
800 map->precious_reg = config->precious_reg;
801 map->writeable_noinc_reg = config->writeable_noinc_reg;
802 map->readable_noinc_reg = config->readable_noinc_reg;
803 map->cache_type = config->cache_type;
804
805 spin_lock_init(&map->async_lock);
806 INIT_LIST_HEAD(&map->async_list);
807 INIT_LIST_HEAD(&map->async_free);
808 init_waitqueue_head(&map->async_waitq);
809
810 if (config->read_flag_mask ||
811 config->write_flag_mask ||
812 config->zero_flag_mask) {
813 map->read_flag_mask = config->read_flag_mask;
814 map->write_flag_mask = config->write_flag_mask;
815 } else if (bus) {
816 map->read_flag_mask = bus->read_flag_mask;
817 }
818
819 if (config && config->read && config->write) {
820 map->reg_read = _regmap_bus_read;
821 if (config->reg_update_bits)
822 map->reg_update_bits = config->reg_update_bits;
823
824 /* Bulk read/write */
825 map->read = config->read;
826 map->write = config->write;
827
828 reg_endian = REGMAP_ENDIAN_NATIVE;
829 val_endian = REGMAP_ENDIAN_NATIVE;
830 } else if (!bus) {
831 map->reg_read = config->reg_read;
832 map->reg_write = config->reg_write;
833 map->reg_update_bits = config->reg_update_bits;
834
835 map->defer_caching = false;
836 goto skip_format_initialization;
837 } else if (!bus->read || !bus->write) {
838 map->reg_read = _regmap_bus_reg_read;
839 map->reg_write = _regmap_bus_reg_write;
840 map->reg_update_bits = bus->reg_update_bits;
841
842 map->defer_caching = false;
843 goto skip_format_initialization;
844 } else {
845 map->reg_read = _regmap_bus_read;
846 map->reg_update_bits = bus->reg_update_bits;
847 /* Bulk read/write */
848 map->read = bus->read;
849 map->write = bus->write;
850
851 reg_endian = regmap_get_reg_endian(bus, config);
852 val_endian = regmap_get_val_endian(dev, bus, config);
853 }
854
855 switch (config->reg_bits + map->reg_shift) {
856 case 2:
857 switch (config->val_bits) {
858 case 6:
859 map->format.format_write = regmap_format_2_6_write;
860 break;
861 default:
862 goto err_hwlock;
863 }
864 break;
865
866 case 4:
867 switch (config->val_bits) {
868 case 12:
869 map->format.format_write = regmap_format_4_12_write;
870 break;
871 default:
872 goto err_hwlock;
873 }
874 break;
875
876 case 7:
877 switch (config->val_bits) {
878 case 9:
879 map->format.format_write = regmap_format_7_9_write;
880 break;
881 case 17:
882 map->format.format_write = regmap_format_7_17_write;
883 break;
884 default:
885 goto err_hwlock;
886 }
887 break;
888
889 case 10:
890 switch (config->val_bits) {
891 case 14:
892 map->format.format_write = regmap_format_10_14_write;
893 break;
894 default:
895 goto err_hwlock;
896 }
897 break;
898
899 case 12:
900 switch (config->val_bits) {
901 case 20:
902 map->format.format_write = regmap_format_12_20_write;
903 break;
904 default:
905 goto err_hwlock;
906 }
907 break;
908
909 case 8:
910 map->format.format_reg = regmap_format_8;
911 break;
912
913 case 16:
914 switch (reg_endian) {
915 case REGMAP_ENDIAN_BIG:
916 map->format.format_reg = regmap_format_16_be;
917 break;
918 case REGMAP_ENDIAN_LITTLE:
919 map->format.format_reg = regmap_format_16_le;
920 break;
921 case REGMAP_ENDIAN_NATIVE:
922 map->format.format_reg = regmap_format_16_native;
923 break;
924 default:
925 goto err_hwlock;
926 }
927 break;
928
929 case 24:
930 switch (reg_endian) {
931 case REGMAP_ENDIAN_BIG:
932 map->format.format_reg = regmap_format_24_be;
933 break;
934 default:
935 goto err_hwlock;
936 }
937 break;
938
939 case 32:
940 switch (reg_endian) {
941 case REGMAP_ENDIAN_BIG:
942 map->format.format_reg = regmap_format_32_be;
943 break;
944 case REGMAP_ENDIAN_LITTLE:
945 map->format.format_reg = regmap_format_32_le;
946 break;
947 case REGMAP_ENDIAN_NATIVE:
948 map->format.format_reg = regmap_format_32_native;
949 break;
950 default:
951 goto err_hwlock;
952 }
953 break;
954
955 default:
956 goto err_hwlock;
957 }
958
959 if (val_endian == REGMAP_ENDIAN_NATIVE)
960 map->format.parse_inplace = regmap_parse_inplace_noop;
961
962 switch (config->val_bits) {
963 case 8:
964 map->format.format_val = regmap_format_8;
965 map->format.parse_val = regmap_parse_8;
966 map->format.parse_inplace = regmap_parse_inplace_noop;
967 break;
968 case 16:
969 switch (val_endian) {
970 case REGMAP_ENDIAN_BIG:
971 map->format.format_val = regmap_format_16_be;
972 map->format.parse_val = regmap_parse_16_be;
973 map->format.parse_inplace = regmap_parse_16_be_inplace;
974 break;
975 case REGMAP_ENDIAN_LITTLE:
976 map->format.format_val = regmap_format_16_le;
977 map->format.parse_val = regmap_parse_16_le;
978 map->format.parse_inplace = regmap_parse_16_le_inplace;
979 break;
980 case REGMAP_ENDIAN_NATIVE:
981 map->format.format_val = regmap_format_16_native;
982 map->format.parse_val = regmap_parse_16_native;
983 break;
984 default:
985 goto err_hwlock;
986 }
987 break;
988 case 24:
989 switch (val_endian) {
990 case REGMAP_ENDIAN_BIG:
991 map->format.format_val = regmap_format_24_be;
992 map->format.parse_val = regmap_parse_24_be;
993 break;
994 default:
995 goto err_hwlock;
996 }
997 break;
998 case 32:
999 switch (val_endian) {
1000 case REGMAP_ENDIAN_BIG:
1001 map->format.format_val = regmap_format_32_be;
1002 map->format.parse_val = regmap_parse_32_be;
1003 map->format.parse_inplace = regmap_parse_32_be_inplace;
1004 break;
1005 case REGMAP_ENDIAN_LITTLE:
1006 map->format.format_val = regmap_format_32_le;
1007 map->format.parse_val = regmap_parse_32_le;
1008 map->format.parse_inplace = regmap_parse_32_le_inplace;
1009 break;
1010 case REGMAP_ENDIAN_NATIVE:
1011 map->format.format_val = regmap_format_32_native;
1012 map->format.parse_val = regmap_parse_32_native;
1013 break;
1014 default:
1015 goto err_hwlock;
1016 }
1017 break;
1018 }
1019
1020 if (map->format.format_write) {
1021 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1022 (val_endian != REGMAP_ENDIAN_BIG))
1023 goto err_hwlock;
1024 map->use_single_write = true;
1025 }
1026
1027 if (!map->format.format_write &&
1028 !(map->format.format_reg && map->format.format_val))
1029 goto err_hwlock;
1030
1031 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1032 if (map->work_buf == NULL) {
1033 ret = -ENOMEM;
1034 goto err_hwlock;
1035 }
1036
1037 if (map->format.format_write) {
1038 map->defer_caching = false;
1039 map->reg_write = _regmap_bus_formatted_write;
1040 } else if (map->format.format_val) {
1041 map->defer_caching = true;
1042 map->reg_write = _regmap_bus_raw_write;
1043 }
1044
1045skip_format_initialization:
1046
1047 map->range_tree = RB_ROOT;
1048 for (i = 0; i < config->num_ranges; i++) {
1049 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1050 struct regmap_range_node *new;
1051
1052 /* Sanity check */
1053 if (range_cfg->range_max < range_cfg->range_min) {
1054 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1055 range_cfg->range_max, range_cfg->range_min);
1056 goto err_range;
1057 }
1058
1059 if (range_cfg->range_max > map->max_register) {
1060 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1061 range_cfg->range_max, map->max_register);
1062 goto err_range;
1063 }
1064
1065 if (range_cfg->selector_reg > map->max_register) {
1066 dev_err(map->dev,
1067 "Invalid range %d: selector out of map\n", i);
1068 goto err_range;
1069 }
1070
1071 if (range_cfg->window_len == 0) {
1072 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1073 i);
1074 goto err_range;
1075 }
1076
1077 /* Make sure, that this register range has no selector
1078 or data window within its boundary */
1079 for (j = 0; j < config->num_ranges; j++) {
1080 unsigned int sel_reg = config->ranges[j].selector_reg;
1081 unsigned int win_min = config->ranges[j].window_start;
1082 unsigned int win_max = win_min +
1083 config->ranges[j].window_len - 1;
1084
1085 /* Allow data window inside its own virtual range */
1086 if (j == i)
1087 continue;
1088
1089 if (range_cfg->range_min <= sel_reg &&
1090 sel_reg <= range_cfg->range_max) {
1091 dev_err(map->dev,
1092 "Range %d: selector for %d in window\n",
1093 i, j);
1094 goto err_range;
1095 }
1096
1097 if (!(win_max < range_cfg->range_min ||
1098 win_min > range_cfg->range_max)) {
1099 dev_err(map->dev,
1100 "Range %d: window for %d in window\n",
1101 i, j);
1102 goto err_range;
1103 }
1104 }
1105
1106 new = kzalloc(sizeof(*new), GFP_KERNEL);
1107 if (new == NULL) {
1108 ret = -ENOMEM;
1109 goto err_range;
1110 }
1111
1112 new->map = map;
1113 new->name = range_cfg->name;
1114 new->range_min = range_cfg->range_min;
1115 new->range_max = range_cfg->range_max;
1116 new->selector_reg = range_cfg->selector_reg;
1117 new->selector_mask = range_cfg->selector_mask;
1118 new->selector_shift = range_cfg->selector_shift;
1119 new->window_start = range_cfg->window_start;
1120 new->window_len = range_cfg->window_len;
1121
1122 if (!_regmap_range_add(map, new)) {
1123 dev_err(map->dev, "Failed to add range %d\n", i);
1124 kfree(new);
1125 goto err_range;
1126 }
1127
1128 if (map->selector_work_buf == NULL) {
1129 map->selector_work_buf =
1130 kzalloc(map->format.buf_size, GFP_KERNEL);
1131 if (map->selector_work_buf == NULL) {
1132 ret = -ENOMEM;
1133 goto err_range;
1134 }
1135 }
1136 }
1137
1138 ret = regcache_init(map, config);
1139 if (ret != 0)
1140 goto err_range;
1141
1142 if (dev) {
1143 ret = regmap_attach_dev(dev, map, config);
1144 if (ret != 0)
1145 goto err_regcache;
1146 } else {
1147 regmap_debugfs_init(map);
1148 }
1149
1150 return map;
1151
1152err_regcache:
1153 regcache_exit(map);
1154err_range:
1155 regmap_range_exit(map);
1156 kfree(map->work_buf);
1157err_hwlock:
1158 if (map->hwlock)
1159 hwspin_lock_free(map->hwlock);
1160err_name:
1161 kfree_const(map->name);
1162err_map:
1163 kfree(map);
1164err:
1165 return ERR_PTR(ret);
1166}
1167EXPORT_SYMBOL_GPL(__regmap_init);
1168
1169static void devm_regmap_release(struct device *dev, void *res)
1170{
1171 regmap_exit(*(struct regmap **)res);
1172}
1173
1174struct regmap *__devm_regmap_init(struct device *dev,
1175 const struct regmap_bus *bus,
1176 void *bus_context,
1177 const struct regmap_config *config,
1178 struct lock_class_key *lock_key,
1179 const char *lock_name)
1180{
1181 struct regmap **ptr, *regmap;
1182
1183 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1184 if (!ptr)
1185 return ERR_PTR(-ENOMEM);
1186
1187 regmap = __regmap_init(dev, bus, bus_context, config,
1188 lock_key, lock_name);
1189 if (!IS_ERR(regmap)) {
1190 *ptr = regmap;
1191 devres_add(dev, ptr);
1192 } else {
1193 devres_free(ptr);
1194 }
1195
1196 return regmap;
1197}
1198EXPORT_SYMBOL_GPL(__devm_regmap_init);
1199
1200static void regmap_field_init(struct regmap_field *rm_field,
1201 struct regmap *regmap, struct reg_field reg_field)
1202{
1203 rm_field->regmap = regmap;
1204 rm_field->reg = reg_field.reg;
1205 rm_field->shift = reg_field.lsb;
1206 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1207
1208 WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1209
1210 rm_field->id_size = reg_field.id_size;
1211 rm_field->id_offset = reg_field.id_offset;
1212}
1213
1214/**
1215 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1216 *
1217 * @dev: Device that will be interacted with
1218 * @regmap: regmap bank in which this register field is located.
1219 * @reg_field: Register field with in the bank.
1220 *
1221 * The return value will be an ERR_PTR() on error or a valid pointer
1222 * to a struct regmap_field. The regmap_field will be automatically freed
1223 * by the device management code.
1224 */
1225struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1226 struct regmap *regmap, struct reg_field reg_field)
1227{
1228 struct regmap_field *rm_field = devm_kzalloc(dev,
1229 sizeof(*rm_field), GFP_KERNEL);
1230 if (!rm_field)
1231 return ERR_PTR(-ENOMEM);
1232
1233 regmap_field_init(rm_field, regmap, reg_field);
1234
1235 return rm_field;
1236
1237}
1238EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1239
1240
1241/**
1242 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1243 *
1244 * @regmap: regmap bank in which this register field is located.
1245 * @rm_field: regmap register fields within the bank.
1246 * @reg_field: Register fields within the bank.
1247 * @num_fields: Number of register fields.
1248 *
1249 * The return value will be an -ENOMEM on error or zero for success.
1250 * Newly allocated regmap_fields should be freed by calling
1251 * regmap_field_bulk_free()
1252 */
1253int regmap_field_bulk_alloc(struct regmap *regmap,
1254 struct regmap_field **rm_field,
1255 const struct reg_field *reg_field,
1256 int num_fields)
1257{
1258 struct regmap_field *rf;
1259 int i;
1260
1261 rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1262 if (!rf)
1263 return -ENOMEM;
1264
1265 for (i = 0; i < num_fields; i++) {
1266 regmap_field_init(&rf[i], regmap, reg_field[i]);
1267 rm_field[i] = &rf[i];
1268 }
1269
1270 return 0;
1271}
1272EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1273
1274/**
1275 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1276 * fields.
1277 *
1278 * @dev: Device that will be interacted with
1279 * @regmap: regmap bank in which this register field is located.
1280 * @rm_field: regmap register fields within the bank.
1281 * @reg_field: Register fields within the bank.
1282 * @num_fields: Number of register fields.
1283 *
1284 * The return value will be an -ENOMEM on error or zero for success.
1285 * Newly allocated regmap_fields will be automatically freed by the
1286 * device management code.
1287 */
1288int devm_regmap_field_bulk_alloc(struct device *dev,
1289 struct regmap *regmap,
1290 struct regmap_field **rm_field,
1291 const struct reg_field *reg_field,
1292 int num_fields)
1293{
1294 struct regmap_field *rf;
1295 int i;
1296
1297 rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1298 if (!rf)
1299 return -ENOMEM;
1300
1301 for (i = 0; i < num_fields; i++) {
1302 regmap_field_init(&rf[i], regmap, reg_field[i]);
1303 rm_field[i] = &rf[i];
1304 }
1305
1306 return 0;
1307}
1308EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1309
1310/**
1311 * regmap_field_bulk_free() - Free register field allocated using
1312 * regmap_field_bulk_alloc.
1313 *
1314 * @field: regmap fields which should be freed.
1315 */
1316void regmap_field_bulk_free(struct regmap_field *field)
1317{
1318 kfree(field);
1319}
1320EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1321
1322/**
1323 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1324 * devm_regmap_field_bulk_alloc.
1325 *
1326 * @dev: Device that will be interacted with
1327 * @field: regmap field which should be freed.
1328 *
1329 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1330 * drivers need not call this function, as the memory allocated via devm
1331 * will be freed as per device-driver life-cycle.
1332 */
1333void devm_regmap_field_bulk_free(struct device *dev,
1334 struct regmap_field *field)
1335{
1336 devm_kfree(dev, field);
1337}
1338EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1339
1340/**
1341 * devm_regmap_field_free() - Free a register field allocated using
1342 * devm_regmap_field_alloc.
1343 *
1344 * @dev: Device that will be interacted with
1345 * @field: regmap field which should be freed.
1346 *
1347 * Free register field allocated using devm_regmap_field_alloc(). Usually
1348 * drivers need not call this function, as the memory allocated via devm
1349 * will be freed as per device-driver life-cyle.
1350 */
1351void devm_regmap_field_free(struct device *dev,
1352 struct regmap_field *field)
1353{
1354 devm_kfree(dev, field);
1355}
1356EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1357
1358/**
1359 * regmap_field_alloc() - Allocate and initialise a register field.
1360 *
1361 * @regmap: regmap bank in which this register field is located.
1362 * @reg_field: Register field with in the bank.
1363 *
1364 * The return value will be an ERR_PTR() on error or a valid pointer
1365 * to a struct regmap_field. The regmap_field should be freed by the
1366 * user once its finished working with it using regmap_field_free().
1367 */
1368struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1369 struct reg_field reg_field)
1370{
1371 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1372
1373 if (!rm_field)
1374 return ERR_PTR(-ENOMEM);
1375
1376 regmap_field_init(rm_field, regmap, reg_field);
1377
1378 return rm_field;
1379}
1380EXPORT_SYMBOL_GPL(regmap_field_alloc);
1381
1382/**
1383 * regmap_field_free() - Free register field allocated using
1384 * regmap_field_alloc.
1385 *
1386 * @field: regmap field which should be freed.
1387 */
1388void regmap_field_free(struct regmap_field *field)
1389{
1390 kfree(field);
1391}
1392EXPORT_SYMBOL_GPL(regmap_field_free);
1393
1394/**
1395 * regmap_reinit_cache() - Reinitialise the current register cache
1396 *
1397 * @map: Register map to operate on.
1398 * @config: New configuration. Only the cache data will be used.
1399 *
1400 * Discard any existing register cache for the map and initialize a
1401 * new cache. This can be used to restore the cache to defaults or to
1402 * update the cache configuration to reflect runtime discovery of the
1403 * hardware.
1404 *
1405 * No explicit locking is done here, the user needs to ensure that
1406 * this function will not race with other calls to regmap.
1407 */
1408int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1409{
1410 int ret;
1411
1412 regcache_exit(map);
1413 regmap_debugfs_exit(map);
1414
1415 map->max_register = config->max_register;
1416 map->max_register_is_set = map->max_register ?: config->max_register_is_0;
1417 map->writeable_reg = config->writeable_reg;
1418 map->readable_reg = config->readable_reg;
1419 map->volatile_reg = config->volatile_reg;
1420 map->precious_reg = config->precious_reg;
1421 map->writeable_noinc_reg = config->writeable_noinc_reg;
1422 map->readable_noinc_reg = config->readable_noinc_reg;
1423 map->cache_type = config->cache_type;
1424
1425 ret = regmap_set_name(map, config);
1426 if (ret)
1427 return ret;
1428
1429 regmap_debugfs_init(map);
1430
1431 map->cache_bypass = false;
1432 map->cache_only = false;
1433
1434 return regcache_init(map, config);
1435}
1436EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1437
1438/**
1439 * regmap_exit() - Free a previously allocated register map
1440 *
1441 * @map: Register map to operate on.
1442 */
1443void regmap_exit(struct regmap *map)
1444{
1445 struct regmap_async *async;
1446
1447 regcache_exit(map);
1448
1449 regmap_debugfs_exit(map);
1450 regmap_range_exit(map);
1451 if (map->bus && map->bus->free_context)
1452 map->bus->free_context(map->bus_context);
1453 kfree(map->work_buf);
1454 while (!list_empty(&map->async_free)) {
1455 async = list_first_entry_or_null(&map->async_free,
1456 struct regmap_async,
1457 list);
1458 list_del(&async->list);
1459 kfree(async->work_buf);
1460 kfree(async);
1461 }
1462 if (map->hwlock)
1463 hwspin_lock_free(map->hwlock);
1464 if (map->lock == regmap_lock_mutex)
1465 mutex_destroy(&map->mutex);
1466 kfree_const(map->name);
1467 kfree(map->patch);
1468 if (map->bus && map->bus->free_on_exit)
1469 kfree(map->bus);
1470 kfree(map);
1471}
1472EXPORT_SYMBOL_GPL(regmap_exit);
1473
1474static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1475{
1476 struct regmap **r = res;
1477 if (!r || !*r) {
1478 WARN_ON(!r || !*r);
1479 return 0;
1480 }
1481
1482 /* If the user didn't specify a name match any */
1483 if (data)
1484 return (*r)->name && !strcmp((*r)->name, data);
1485 else
1486 return 1;
1487}
1488
1489/**
1490 * dev_get_regmap() - Obtain the regmap (if any) for a device
1491 *
1492 * @dev: Device to retrieve the map for
1493 * @name: Optional name for the register map, usually NULL.
1494 *
1495 * Returns the regmap for the device if one is present, or NULL. If
1496 * name is specified then it must match the name specified when
1497 * registering the device, if it is NULL then the first regmap found
1498 * will be used. Devices with multiple register maps are very rare,
1499 * generic code should normally not need to specify a name.
1500 */
1501struct regmap *dev_get_regmap(struct device *dev, const char *name)
1502{
1503 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1504 dev_get_regmap_match, (void *)name);
1505
1506 if (!r)
1507 return NULL;
1508 return *r;
1509}
1510EXPORT_SYMBOL_GPL(dev_get_regmap);
1511
1512/**
1513 * regmap_get_device() - Obtain the device from a regmap
1514 *
1515 * @map: Register map to operate on.
1516 *
1517 * Returns the underlying device that the regmap has been created for.
1518 */
1519struct device *regmap_get_device(struct regmap *map)
1520{
1521 return map->dev;
1522}
1523EXPORT_SYMBOL_GPL(regmap_get_device);
1524
1525static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1526 struct regmap_range_node *range,
1527 unsigned int val_num)
1528{
1529 void *orig_work_buf;
1530 unsigned int win_offset;
1531 unsigned int win_page;
1532 bool page_chg;
1533 int ret;
1534
1535 win_offset = (*reg - range->range_min) % range->window_len;
1536 win_page = (*reg - range->range_min) / range->window_len;
1537
1538 if (val_num > 1) {
1539 /* Bulk write shouldn't cross range boundary */
1540 if (*reg + val_num - 1 > range->range_max)
1541 return -EINVAL;
1542
1543 /* ... or single page boundary */
1544 if (val_num > range->window_len - win_offset)
1545 return -EINVAL;
1546 }
1547
1548 /* It is possible to have selector register inside data window.
1549 In that case, selector register is located on every page and
1550 it needs no page switching, when accessed alone. */
1551 if (val_num > 1 ||
1552 range->window_start + win_offset != range->selector_reg) {
1553 /* Use separate work_buf during page switching */
1554 orig_work_buf = map->work_buf;
1555 map->work_buf = map->selector_work_buf;
1556
1557 ret = _regmap_update_bits(map, range->selector_reg,
1558 range->selector_mask,
1559 win_page << range->selector_shift,
1560 &page_chg, false);
1561
1562 map->work_buf = orig_work_buf;
1563
1564 if (ret != 0)
1565 return ret;
1566 }
1567
1568 *reg = range->window_start + win_offset;
1569
1570 return 0;
1571}
1572
1573static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1574 unsigned long mask)
1575{
1576 u8 *buf;
1577 int i;
1578
1579 if (!mask || !map->work_buf)
1580 return;
1581
1582 buf = map->work_buf;
1583
1584 for (i = 0; i < max_bytes; i++)
1585 buf[i] |= (mask >> (8 * i)) & 0xff;
1586}
1587
1588static unsigned int regmap_reg_addr(struct regmap *map, unsigned int reg)
1589{
1590 reg += map->reg_base;
1591
1592 if (map->format.reg_shift > 0)
1593 reg >>= map->format.reg_shift;
1594 else if (map->format.reg_shift < 0)
1595 reg <<= -(map->format.reg_shift);
1596
1597 return reg;
1598}
1599
1600static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1601 const void *val, size_t val_len, bool noinc)
1602{
1603 struct regmap_range_node *range;
1604 unsigned long flags;
1605 void *work_val = map->work_buf + map->format.reg_bytes +
1606 map->format.pad_bytes;
1607 void *buf;
1608 int ret = -ENOTSUPP;
1609 size_t len;
1610 int i;
1611
1612 /* Check for unwritable or noinc registers in range
1613 * before we start
1614 */
1615 if (!regmap_writeable_noinc(map, reg)) {
1616 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1617 unsigned int element =
1618 reg + regmap_get_offset(map, i);
1619 if (!regmap_writeable(map, element) ||
1620 regmap_writeable_noinc(map, element))
1621 return -EINVAL;
1622 }
1623 }
1624
1625 if (!map->cache_bypass && map->format.parse_val) {
1626 unsigned int ival, offset;
1627 int val_bytes = map->format.val_bytes;
1628
1629 /* Cache the last written value for noinc writes */
1630 i = noinc ? val_len - val_bytes : 0;
1631 for (; i < val_len; i += val_bytes) {
1632 ival = map->format.parse_val(val + i);
1633 offset = noinc ? 0 : regmap_get_offset(map, i / val_bytes);
1634 ret = regcache_write(map, reg + offset, ival);
1635 if (ret) {
1636 dev_err(map->dev,
1637 "Error in caching of register: %x ret: %d\n",
1638 reg + offset, ret);
1639 return ret;
1640 }
1641 }
1642 if (map->cache_only) {
1643 map->cache_dirty = true;
1644 return 0;
1645 }
1646 }
1647
1648 range = _regmap_range_lookup(map, reg);
1649 if (range) {
1650 int val_num = val_len / map->format.val_bytes;
1651 int win_offset = (reg - range->range_min) % range->window_len;
1652 int win_residue = range->window_len - win_offset;
1653
1654 /* If the write goes beyond the end of the window split it */
1655 while (val_num > win_residue) {
1656 dev_dbg(map->dev, "Writing window %d/%zu\n",
1657 win_residue, val_len / map->format.val_bytes);
1658 ret = _regmap_raw_write_impl(map, reg, val,
1659 win_residue *
1660 map->format.val_bytes, noinc);
1661 if (ret != 0)
1662 return ret;
1663
1664 reg += win_residue;
1665 val_num -= win_residue;
1666 val += win_residue * map->format.val_bytes;
1667 val_len -= win_residue * map->format.val_bytes;
1668
1669 win_offset = (reg - range->range_min) %
1670 range->window_len;
1671 win_residue = range->window_len - win_offset;
1672 }
1673
1674 ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1675 if (ret != 0)
1676 return ret;
1677 }
1678
1679 reg = regmap_reg_addr(map, reg);
1680 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1681 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1682 map->write_flag_mask);
1683
1684 /*
1685 * Essentially all I/O mechanisms will be faster with a single
1686 * buffer to write. Since register syncs often generate raw
1687 * writes of single registers optimise that case.
1688 */
1689 if (val != work_val && val_len == map->format.val_bytes) {
1690 memcpy(work_val, val, map->format.val_bytes);
1691 val = work_val;
1692 }
1693
1694 if (map->async && map->bus && map->bus->async_write) {
1695 struct regmap_async *async;
1696
1697 trace_regmap_async_write_start(map, reg, val_len);
1698
1699 spin_lock_irqsave(&map->async_lock, flags);
1700 async = list_first_entry_or_null(&map->async_free,
1701 struct regmap_async,
1702 list);
1703 if (async)
1704 list_del(&async->list);
1705 spin_unlock_irqrestore(&map->async_lock, flags);
1706
1707 if (!async) {
1708 async = map->bus->async_alloc();
1709 if (!async)
1710 return -ENOMEM;
1711
1712 async->work_buf = kzalloc(map->format.buf_size,
1713 GFP_KERNEL | GFP_DMA);
1714 if (!async->work_buf) {
1715 kfree(async);
1716 return -ENOMEM;
1717 }
1718 }
1719
1720 async->map = map;
1721
1722 /* If the caller supplied the value we can use it safely. */
1723 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1724 map->format.reg_bytes + map->format.val_bytes);
1725
1726 spin_lock_irqsave(&map->async_lock, flags);
1727 list_add_tail(&async->list, &map->async_list);
1728 spin_unlock_irqrestore(&map->async_lock, flags);
1729
1730 if (val != work_val)
1731 ret = map->bus->async_write(map->bus_context,
1732 async->work_buf,
1733 map->format.reg_bytes +
1734 map->format.pad_bytes,
1735 val, val_len, async);
1736 else
1737 ret = map->bus->async_write(map->bus_context,
1738 async->work_buf,
1739 map->format.reg_bytes +
1740 map->format.pad_bytes +
1741 val_len, NULL, 0, async);
1742
1743 if (ret != 0) {
1744 dev_err(map->dev, "Failed to schedule write: %d\n",
1745 ret);
1746
1747 spin_lock_irqsave(&map->async_lock, flags);
1748 list_move(&async->list, &map->async_free);
1749 spin_unlock_irqrestore(&map->async_lock, flags);
1750 }
1751
1752 return ret;
1753 }
1754
1755 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1756
1757 /* If we're doing a single register write we can probably just
1758 * send the work_buf directly, otherwise try to do a gather
1759 * write.
1760 */
1761 if (val == work_val)
1762 ret = map->write(map->bus_context, map->work_buf,
1763 map->format.reg_bytes +
1764 map->format.pad_bytes +
1765 val_len);
1766 else if (map->bus && map->bus->gather_write)
1767 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1768 map->format.reg_bytes +
1769 map->format.pad_bytes,
1770 val, val_len);
1771 else
1772 ret = -ENOTSUPP;
1773
1774 /* If that didn't work fall back on linearising by hand. */
1775 if (ret == -ENOTSUPP) {
1776 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1777 buf = kzalloc(len, GFP_KERNEL);
1778 if (!buf)
1779 return -ENOMEM;
1780
1781 memcpy(buf, map->work_buf, map->format.reg_bytes);
1782 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1783 val, val_len);
1784 ret = map->write(map->bus_context, buf, len);
1785
1786 kfree(buf);
1787 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1788 /* regcache_drop_region() takes lock that we already have,
1789 * thus call map->cache_ops->drop() directly
1790 */
1791 if (map->cache_ops && map->cache_ops->drop)
1792 map->cache_ops->drop(map, reg, reg + 1);
1793 }
1794
1795 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1796
1797 return ret;
1798}
1799
1800/**
1801 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1802 *
1803 * @map: Map to check.
1804 */
1805bool regmap_can_raw_write(struct regmap *map)
1806{
1807 return map->write && map->format.format_val && map->format.format_reg;
1808}
1809EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1810
1811/**
1812 * regmap_get_raw_read_max - Get the maximum size we can read
1813 *
1814 * @map: Map to check.
1815 */
1816size_t regmap_get_raw_read_max(struct regmap *map)
1817{
1818 return map->max_raw_read;
1819}
1820EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1821
1822/**
1823 * regmap_get_raw_write_max - Get the maximum size we can read
1824 *
1825 * @map: Map to check.
1826 */
1827size_t regmap_get_raw_write_max(struct regmap *map)
1828{
1829 return map->max_raw_write;
1830}
1831EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1832
1833static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1834 unsigned int val)
1835{
1836 int ret;
1837 struct regmap_range_node *range;
1838 struct regmap *map = context;
1839
1840 WARN_ON(!map->format.format_write);
1841
1842 range = _regmap_range_lookup(map, reg);
1843 if (range) {
1844 ret = _regmap_select_page(map, &reg, range, 1);
1845 if (ret != 0)
1846 return ret;
1847 }
1848
1849 reg = regmap_reg_addr(map, reg);
1850 map->format.format_write(map, reg, val);
1851
1852 trace_regmap_hw_write_start(map, reg, 1);
1853
1854 ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
1855
1856 trace_regmap_hw_write_done(map, reg, 1);
1857
1858 return ret;
1859}
1860
1861static int _regmap_bus_reg_write(void *context, unsigned int reg,
1862 unsigned int val)
1863{
1864 struct regmap *map = context;
1865 struct regmap_range_node *range;
1866 int ret;
1867
1868 range = _regmap_range_lookup(map, reg);
1869 if (range) {
1870 ret = _regmap_select_page(map, &reg, range, 1);
1871 if (ret != 0)
1872 return ret;
1873 }
1874
1875 reg = regmap_reg_addr(map, reg);
1876 return map->bus->reg_write(map->bus_context, reg, val);
1877}
1878
1879static int _regmap_bus_raw_write(void *context, unsigned int reg,
1880 unsigned int val)
1881{
1882 struct regmap *map = context;
1883
1884 WARN_ON(!map->format.format_val);
1885
1886 map->format.format_val(map->work_buf + map->format.reg_bytes
1887 + map->format.pad_bytes, val, 0);
1888 return _regmap_raw_write_impl(map, reg,
1889 map->work_buf +
1890 map->format.reg_bytes +
1891 map->format.pad_bytes,
1892 map->format.val_bytes,
1893 false);
1894}
1895
1896static inline void *_regmap_map_get_context(struct regmap *map)
1897{
1898 return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1899}
1900
1901int _regmap_write(struct regmap *map, unsigned int reg,
1902 unsigned int val)
1903{
1904 int ret;
1905 void *context = _regmap_map_get_context(map);
1906
1907 if (!regmap_writeable(map, reg))
1908 return -EIO;
1909
1910 if (!map->cache_bypass && !map->defer_caching) {
1911 ret = regcache_write(map, reg, val);
1912 if (ret != 0)
1913 return ret;
1914 if (map->cache_only) {
1915 map->cache_dirty = true;
1916 return 0;
1917 }
1918 }
1919
1920 ret = map->reg_write(context, reg, val);
1921 if (ret == 0) {
1922 if (regmap_should_log(map))
1923 dev_info(map->dev, "%x <= %x\n", reg, val);
1924
1925 trace_regmap_reg_write(map, reg, val);
1926 }
1927
1928 return ret;
1929}
1930
1931/**
1932 * regmap_write() - Write a value to a single register
1933 *
1934 * @map: Register map to write to
1935 * @reg: Register to write to
1936 * @val: Value to be written
1937 *
1938 * A value of zero will be returned on success, a negative errno will
1939 * be returned in error cases.
1940 */
1941int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1942{
1943 int ret;
1944
1945 if (!IS_ALIGNED(reg, map->reg_stride))
1946 return -EINVAL;
1947
1948 map->lock(map->lock_arg);
1949
1950 ret = _regmap_write(map, reg, val);
1951
1952 map->unlock(map->lock_arg);
1953
1954 return ret;
1955}
1956EXPORT_SYMBOL_GPL(regmap_write);
1957
1958/**
1959 * regmap_write_async() - Write a value to a single register asynchronously
1960 *
1961 * @map: Register map to write to
1962 * @reg: Register to write to
1963 * @val: Value to be written
1964 *
1965 * A value of zero will be returned on success, a negative errno will
1966 * be returned in error cases.
1967 */
1968int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1969{
1970 int ret;
1971
1972 if (!IS_ALIGNED(reg, map->reg_stride))
1973 return -EINVAL;
1974
1975 map->lock(map->lock_arg);
1976
1977 map->async = true;
1978
1979 ret = _regmap_write(map, reg, val);
1980
1981 map->async = false;
1982
1983 map->unlock(map->lock_arg);
1984
1985 return ret;
1986}
1987EXPORT_SYMBOL_GPL(regmap_write_async);
1988
1989int _regmap_raw_write(struct regmap *map, unsigned int reg,
1990 const void *val, size_t val_len, bool noinc)
1991{
1992 size_t val_bytes = map->format.val_bytes;
1993 size_t val_count = val_len / val_bytes;
1994 size_t chunk_count, chunk_bytes;
1995 size_t chunk_regs = val_count;
1996 int ret, i;
1997
1998 if (!val_count)
1999 return -EINVAL;
2000
2001 if (map->use_single_write)
2002 chunk_regs = 1;
2003 else if (map->max_raw_write && val_len > map->max_raw_write)
2004 chunk_regs = map->max_raw_write / val_bytes;
2005
2006 chunk_count = val_count / chunk_regs;
2007 chunk_bytes = chunk_regs * val_bytes;
2008
2009 /* Write as many bytes as possible with chunk_size */
2010 for (i = 0; i < chunk_count; i++) {
2011 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2012 if (ret)
2013 return ret;
2014
2015 reg += regmap_get_offset(map, chunk_regs);
2016 val += chunk_bytes;
2017 val_len -= chunk_bytes;
2018 }
2019
2020 /* Write remaining bytes */
2021 if (val_len)
2022 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2023
2024 return ret;
2025}
2026
2027/**
2028 * regmap_raw_write() - Write raw values to one or more registers
2029 *
2030 * @map: Register map to write to
2031 * @reg: Initial register to write to
2032 * @val: Block of data to be written, laid out for direct transmission to the
2033 * device
2034 * @val_len: Length of data pointed to by val.
2035 *
2036 * This function is intended to be used for things like firmware
2037 * download where a large block of data needs to be transferred to the
2038 * device. No formatting will be done on the data provided.
2039 *
2040 * A value of zero will be returned on success, a negative errno will
2041 * be returned in error cases.
2042 */
2043int regmap_raw_write(struct regmap *map, unsigned int reg,
2044 const void *val, size_t val_len)
2045{
2046 int ret;
2047
2048 if (!regmap_can_raw_write(map))
2049 return -EINVAL;
2050 if (val_len % map->format.val_bytes)
2051 return -EINVAL;
2052
2053 map->lock(map->lock_arg);
2054
2055 ret = _regmap_raw_write(map, reg, val, val_len, false);
2056
2057 map->unlock(map->lock_arg);
2058
2059 return ret;
2060}
2061EXPORT_SYMBOL_GPL(regmap_raw_write);
2062
2063static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg,
2064 void *val, unsigned int val_len, bool write)
2065{
2066 size_t val_bytes = map->format.val_bytes;
2067 size_t val_count = val_len / val_bytes;
2068 unsigned int lastval;
2069 u8 *u8p;
2070 u16 *u16p;
2071 u32 *u32p;
2072 int ret;
2073 int i;
2074
2075 switch (val_bytes) {
2076 case 1:
2077 u8p = val;
2078 if (write)
2079 lastval = (unsigned int)u8p[val_count - 1];
2080 break;
2081 case 2:
2082 u16p = val;
2083 if (write)
2084 lastval = (unsigned int)u16p[val_count - 1];
2085 break;
2086 case 4:
2087 u32p = val;
2088 if (write)
2089 lastval = (unsigned int)u32p[val_count - 1];
2090 break;
2091 default:
2092 return -EINVAL;
2093 }
2094
2095 /*
2096 * Update the cache with the last value we write, the rest is just
2097 * gone down in the hardware FIFO. We can't cache FIFOs. This makes
2098 * sure a single read from the cache will work.
2099 */
2100 if (write) {
2101 if (!map->cache_bypass && !map->defer_caching) {
2102 ret = regcache_write(map, reg, lastval);
2103 if (ret != 0)
2104 return ret;
2105 if (map->cache_only) {
2106 map->cache_dirty = true;
2107 return 0;
2108 }
2109 }
2110 ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count);
2111 } else {
2112 ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count);
2113 }
2114
2115 if (!ret && regmap_should_log(map)) {
2116 dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>");
2117 for (i = 0; i < val_count; i++) {
2118 switch (val_bytes) {
2119 case 1:
2120 pr_cont("%x", u8p[i]);
2121 break;
2122 case 2:
2123 pr_cont("%x", u16p[i]);
2124 break;
2125 case 4:
2126 pr_cont("%x", u32p[i]);
2127 break;
2128 default:
2129 break;
2130 }
2131 if (i == (val_count - 1))
2132 pr_cont("]\n");
2133 else
2134 pr_cont(",");
2135 }
2136 }
2137
2138 return 0;
2139}
2140
2141/**
2142 * regmap_noinc_write(): Write data to a register without incrementing the
2143 * register number
2144 *
2145 * @map: Register map to write to
2146 * @reg: Register to write to
2147 * @val: Pointer to data buffer
2148 * @val_len: Length of output buffer in bytes.
2149 *
2150 * The regmap API usually assumes that bulk bus write operations will write a
2151 * range of registers. Some devices have certain registers for which a write
2152 * operation can write to an internal FIFO.
2153 *
2154 * The target register must be volatile but registers after it can be
2155 * completely unrelated cacheable registers.
2156 *
2157 * This will attempt multiple writes as required to write val_len bytes.
2158 *
2159 * A value of zero will be returned on success, a negative errno will be
2160 * returned in error cases.
2161 */
2162int regmap_noinc_write(struct regmap *map, unsigned int reg,
2163 const void *val, size_t val_len)
2164{
2165 size_t write_len;
2166 int ret;
2167
2168 if (!map->write && !(map->bus && map->bus->reg_noinc_write))
2169 return -EINVAL;
2170 if (val_len % map->format.val_bytes)
2171 return -EINVAL;
2172 if (!IS_ALIGNED(reg, map->reg_stride))
2173 return -EINVAL;
2174 if (val_len == 0)
2175 return -EINVAL;
2176
2177 map->lock(map->lock_arg);
2178
2179 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2180 ret = -EINVAL;
2181 goto out_unlock;
2182 }
2183
2184 /*
2185 * Use the accelerated operation if we can. The val drops the const
2186 * typing in order to facilitate code reuse in regmap_noinc_readwrite().
2187 */
2188 if (map->bus->reg_noinc_write) {
2189 ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true);
2190 goto out_unlock;
2191 }
2192
2193 while (val_len) {
2194 if (map->max_raw_write && map->max_raw_write < val_len)
2195 write_len = map->max_raw_write;
2196 else
2197 write_len = val_len;
2198 ret = _regmap_raw_write(map, reg, val, write_len, true);
2199 if (ret)
2200 goto out_unlock;
2201 val = ((u8 *)val) + write_len;
2202 val_len -= write_len;
2203 }
2204
2205out_unlock:
2206 map->unlock(map->lock_arg);
2207 return ret;
2208}
2209EXPORT_SYMBOL_GPL(regmap_noinc_write);
2210
2211/**
2212 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2213 * register field.
2214 *
2215 * @field: Register field to write to
2216 * @mask: Bitmask to change
2217 * @val: Value to be written
2218 * @change: Boolean indicating if a write was done
2219 * @async: Boolean indicating asynchronously
2220 * @force: Boolean indicating use force update
2221 *
2222 * Perform a read/modify/write cycle on the register field with change,
2223 * async, force option.
2224 *
2225 * A value of zero will be returned on success, a negative errno will
2226 * be returned in error cases.
2227 */
2228int regmap_field_update_bits_base(struct regmap_field *field,
2229 unsigned int mask, unsigned int val,
2230 bool *change, bool async, bool force)
2231{
2232 mask = (mask << field->shift) & field->mask;
2233
2234 return regmap_update_bits_base(field->regmap, field->reg,
2235 mask, val << field->shift,
2236 change, async, force);
2237}
2238EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2239
2240/**
2241 * regmap_field_test_bits() - Check if all specified bits are set in a
2242 * register field.
2243 *
2244 * @field: Register field to operate on
2245 * @bits: Bits to test
2246 *
2247 * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the
2248 * tested bits is not set and 1 if all tested bits are set.
2249 */
2250int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2251{
2252 unsigned int val, ret;
2253
2254 ret = regmap_field_read(field, &val);
2255 if (ret)
2256 return ret;
2257
2258 return (val & bits) == bits;
2259}
2260EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2261
2262/**
2263 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2264 * register field with port ID
2265 *
2266 * @field: Register field to write to
2267 * @id: port ID
2268 * @mask: Bitmask to change
2269 * @val: Value to be written
2270 * @change: Boolean indicating if a write was done
2271 * @async: Boolean indicating asynchronously
2272 * @force: Boolean indicating use force update
2273 *
2274 * A value of zero will be returned on success, a negative errno will
2275 * be returned in error cases.
2276 */
2277int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2278 unsigned int mask, unsigned int val,
2279 bool *change, bool async, bool force)
2280{
2281 if (id >= field->id_size)
2282 return -EINVAL;
2283
2284 mask = (mask << field->shift) & field->mask;
2285
2286 return regmap_update_bits_base(field->regmap,
2287 field->reg + (field->id_offset * id),
2288 mask, val << field->shift,
2289 change, async, force);
2290}
2291EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2292
2293/**
2294 * regmap_bulk_write() - Write multiple registers to the device
2295 *
2296 * @map: Register map to write to
2297 * @reg: First register to be write from
2298 * @val: Block of data to be written, in native register size for device
2299 * @val_count: Number of registers to write
2300 *
2301 * This function is intended to be used for writing a large block of
2302 * data to the device either in single transfer or multiple transfer.
2303 *
2304 * A value of zero will be returned on success, a negative errno will
2305 * be returned in error cases.
2306 */
2307int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2308 size_t val_count)
2309{
2310 int ret = 0, i;
2311 size_t val_bytes = map->format.val_bytes;
2312
2313 if (!IS_ALIGNED(reg, map->reg_stride))
2314 return -EINVAL;
2315
2316 /*
2317 * Some devices don't support bulk write, for them we have a series of
2318 * single write operations.
2319 */
2320 if (!map->write || !map->format.parse_inplace) {
2321 map->lock(map->lock_arg);
2322 for (i = 0; i < val_count; i++) {
2323 unsigned int ival;
2324
2325 switch (val_bytes) {
2326 case 1:
2327 ival = *(u8 *)(val + (i * val_bytes));
2328 break;
2329 case 2:
2330 ival = *(u16 *)(val + (i * val_bytes));
2331 break;
2332 case 4:
2333 ival = *(u32 *)(val + (i * val_bytes));
2334 break;
2335 default:
2336 ret = -EINVAL;
2337 goto out;
2338 }
2339
2340 ret = _regmap_write(map,
2341 reg + regmap_get_offset(map, i),
2342 ival);
2343 if (ret != 0)
2344 goto out;
2345 }
2346out:
2347 map->unlock(map->lock_arg);
2348 } else {
2349 void *wval;
2350
2351 wval = kmemdup_array(val, val_count, val_bytes, map->alloc_flags);
2352 if (!wval)
2353 return -ENOMEM;
2354
2355 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2356 map->format.parse_inplace(wval + i);
2357
2358 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2359
2360 kfree(wval);
2361 }
2362
2363 if (!ret)
2364 trace_regmap_bulk_write(map, reg, val, val_bytes * val_count);
2365
2366 return ret;
2367}
2368EXPORT_SYMBOL_GPL(regmap_bulk_write);
2369
2370/*
2371 * _regmap_raw_multi_reg_write()
2372 *
2373 * the (register,newvalue) pairs in regs have not been formatted, but
2374 * they are all in the same page and have been changed to being page
2375 * relative. The page register has been written if that was necessary.
2376 */
2377static int _regmap_raw_multi_reg_write(struct regmap *map,
2378 const struct reg_sequence *regs,
2379 size_t num_regs)
2380{
2381 int ret;
2382 void *buf;
2383 int i;
2384 u8 *u8;
2385 size_t val_bytes = map->format.val_bytes;
2386 size_t reg_bytes = map->format.reg_bytes;
2387 size_t pad_bytes = map->format.pad_bytes;
2388 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2389 size_t len = pair_size * num_regs;
2390
2391 if (!len)
2392 return -EINVAL;
2393
2394 buf = kzalloc(len, GFP_KERNEL);
2395 if (!buf)
2396 return -ENOMEM;
2397
2398 /* We have to linearise by hand. */
2399
2400 u8 = buf;
2401
2402 for (i = 0; i < num_regs; i++) {
2403 unsigned int reg = regs[i].reg;
2404 unsigned int val = regs[i].def;
2405 trace_regmap_hw_write_start(map, reg, 1);
2406 reg = regmap_reg_addr(map, reg);
2407 map->format.format_reg(u8, reg, map->reg_shift);
2408 u8 += reg_bytes + pad_bytes;
2409 map->format.format_val(u8, val, 0);
2410 u8 += val_bytes;
2411 }
2412 u8 = buf;
2413 *u8 |= map->write_flag_mask;
2414
2415 ret = map->write(map->bus_context, buf, len);
2416
2417 kfree(buf);
2418
2419 for (i = 0; i < num_regs; i++) {
2420 int reg = regs[i].reg;
2421 trace_regmap_hw_write_done(map, reg, 1);
2422 }
2423 return ret;
2424}
2425
2426static unsigned int _regmap_register_page(struct regmap *map,
2427 unsigned int reg,
2428 struct regmap_range_node *range)
2429{
2430 unsigned int win_page = (reg - range->range_min) / range->window_len;
2431
2432 return win_page;
2433}
2434
2435static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2436 struct reg_sequence *regs,
2437 size_t num_regs)
2438{
2439 int ret;
2440 int i, n;
2441 struct reg_sequence *base;
2442 unsigned int this_page = 0;
2443 unsigned int page_change = 0;
2444 /*
2445 * the set of registers are not neccessarily in order, but
2446 * since the order of write must be preserved this algorithm
2447 * chops the set each time the page changes. This also applies
2448 * if there is a delay required at any point in the sequence.
2449 */
2450 base = regs;
2451 for (i = 0, n = 0; i < num_regs; i++, n++) {
2452 unsigned int reg = regs[i].reg;
2453 struct regmap_range_node *range;
2454
2455 range = _regmap_range_lookup(map, reg);
2456 if (range) {
2457 unsigned int win_page = _regmap_register_page(map, reg,
2458 range);
2459
2460 if (i == 0)
2461 this_page = win_page;
2462 if (win_page != this_page) {
2463 this_page = win_page;
2464 page_change = 1;
2465 }
2466 }
2467
2468 /* If we have both a page change and a delay make sure to
2469 * write the regs and apply the delay before we change the
2470 * page.
2471 */
2472
2473 if (page_change || regs[i].delay_us) {
2474
2475 /* For situations where the first write requires
2476 * a delay we need to make sure we don't call
2477 * raw_multi_reg_write with n=0
2478 * This can't occur with page breaks as we
2479 * never write on the first iteration
2480 */
2481 if (regs[i].delay_us && i == 0)
2482 n = 1;
2483
2484 ret = _regmap_raw_multi_reg_write(map, base, n);
2485 if (ret != 0)
2486 return ret;
2487
2488 if (regs[i].delay_us) {
2489 if (map->can_sleep)
2490 fsleep(regs[i].delay_us);
2491 else
2492 udelay(regs[i].delay_us);
2493 }
2494
2495 base += n;
2496 n = 0;
2497
2498 if (page_change) {
2499 ret = _regmap_select_page(map,
2500 &base[n].reg,
2501 range, 1);
2502 if (ret != 0)
2503 return ret;
2504
2505 page_change = 0;
2506 }
2507
2508 }
2509
2510 }
2511 if (n > 0)
2512 return _regmap_raw_multi_reg_write(map, base, n);
2513 return 0;
2514}
2515
2516static int _regmap_multi_reg_write(struct regmap *map,
2517 const struct reg_sequence *regs,
2518 size_t num_regs)
2519{
2520 int i;
2521 int ret;
2522
2523 if (!map->can_multi_write) {
2524 for (i = 0; i < num_regs; i++) {
2525 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2526 if (ret != 0)
2527 return ret;
2528
2529 if (regs[i].delay_us) {
2530 if (map->can_sleep)
2531 fsleep(regs[i].delay_us);
2532 else
2533 udelay(regs[i].delay_us);
2534 }
2535 }
2536 return 0;
2537 }
2538
2539 if (!map->format.parse_inplace)
2540 return -EINVAL;
2541
2542 if (map->writeable_reg)
2543 for (i = 0; i < num_regs; i++) {
2544 int reg = regs[i].reg;
2545 if (!map->writeable_reg(map->dev, reg))
2546 return -EINVAL;
2547 if (!IS_ALIGNED(reg, map->reg_stride))
2548 return -EINVAL;
2549 }
2550
2551 if (!map->cache_bypass) {
2552 for (i = 0; i < num_regs; i++) {
2553 unsigned int val = regs[i].def;
2554 unsigned int reg = regs[i].reg;
2555 ret = regcache_write(map, reg, val);
2556 if (ret) {
2557 dev_err(map->dev,
2558 "Error in caching of register: %x ret: %d\n",
2559 reg, ret);
2560 return ret;
2561 }
2562 }
2563 if (map->cache_only) {
2564 map->cache_dirty = true;
2565 return 0;
2566 }
2567 }
2568
2569 WARN_ON(!map->bus);
2570
2571 for (i = 0; i < num_regs; i++) {
2572 unsigned int reg = regs[i].reg;
2573 struct regmap_range_node *range;
2574
2575 /* Coalesce all the writes between a page break or a delay
2576 * in a sequence
2577 */
2578 range = _regmap_range_lookup(map, reg);
2579 if (range || regs[i].delay_us) {
2580 size_t len = sizeof(struct reg_sequence)*num_regs;
2581 struct reg_sequence *base = kmemdup(regs, len,
2582 GFP_KERNEL);
2583 if (!base)
2584 return -ENOMEM;
2585 ret = _regmap_range_multi_paged_reg_write(map, base,
2586 num_regs);
2587 kfree(base);
2588
2589 return ret;
2590 }
2591 }
2592 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2593}
2594
2595/**
2596 * regmap_multi_reg_write() - Write multiple registers to the device
2597 *
2598 * @map: Register map to write to
2599 * @regs: Array of structures containing register,value to be written
2600 * @num_regs: Number of registers to write
2601 *
2602 * Write multiple registers to the device where the set of register, value
2603 * pairs are supplied in any order, possibly not all in a single range.
2604 *
2605 * The 'normal' block write mode will send ultimately send data on the
2606 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2607 * addressed. However, this alternative block multi write mode will send
2608 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2609 * must of course support the mode.
2610 *
2611 * A value of zero will be returned on success, a negative errno will be
2612 * returned in error cases.
2613 */
2614int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2615 int num_regs)
2616{
2617 int ret;
2618
2619 map->lock(map->lock_arg);
2620
2621 ret = _regmap_multi_reg_write(map, regs, num_regs);
2622
2623 map->unlock(map->lock_arg);
2624
2625 return ret;
2626}
2627EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2628
2629/**
2630 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2631 * device but not the cache
2632 *
2633 * @map: Register map to write to
2634 * @regs: Array of structures containing register,value to be written
2635 * @num_regs: Number of registers to write
2636 *
2637 * Write multiple registers to the device but not the cache where the set
2638 * of register are supplied in any order.
2639 *
2640 * This function is intended to be used for writing a large block of data
2641 * atomically to the device in single transfer for those I2C client devices
2642 * that implement this alternative block write mode.
2643 *
2644 * A value of zero will be returned on success, a negative errno will
2645 * be returned in error cases.
2646 */
2647int regmap_multi_reg_write_bypassed(struct regmap *map,
2648 const struct reg_sequence *regs,
2649 int num_regs)
2650{
2651 int ret;
2652 bool bypass;
2653
2654 map->lock(map->lock_arg);
2655
2656 bypass = map->cache_bypass;
2657 map->cache_bypass = true;
2658
2659 ret = _regmap_multi_reg_write(map, regs, num_regs);
2660
2661 map->cache_bypass = bypass;
2662
2663 map->unlock(map->lock_arg);
2664
2665 return ret;
2666}
2667EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2668
2669/**
2670 * regmap_raw_write_async() - Write raw values to one or more registers
2671 * asynchronously
2672 *
2673 * @map: Register map to write to
2674 * @reg: Initial register to write to
2675 * @val: Block of data to be written, laid out for direct transmission to the
2676 * device. Must be valid until regmap_async_complete() is called.
2677 * @val_len: Length of data pointed to by val.
2678 *
2679 * This function is intended to be used for things like firmware
2680 * download where a large block of data needs to be transferred to the
2681 * device. No formatting will be done on the data provided.
2682 *
2683 * If supported by the underlying bus the write will be scheduled
2684 * asynchronously, helping maximise I/O speed on higher speed buses
2685 * like SPI. regmap_async_complete() can be called to ensure that all
2686 * asynchrnous writes have been completed.
2687 *
2688 * A value of zero will be returned on success, a negative errno will
2689 * be returned in error cases.
2690 */
2691int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2692 const void *val, size_t val_len)
2693{
2694 int ret;
2695
2696 if (val_len % map->format.val_bytes)
2697 return -EINVAL;
2698 if (!IS_ALIGNED(reg, map->reg_stride))
2699 return -EINVAL;
2700
2701 map->lock(map->lock_arg);
2702
2703 map->async = true;
2704
2705 ret = _regmap_raw_write(map, reg, val, val_len, false);
2706
2707 map->async = false;
2708
2709 map->unlock(map->lock_arg);
2710
2711 return ret;
2712}
2713EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2714
2715static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2716 unsigned int val_len, bool noinc)
2717{
2718 struct regmap_range_node *range;
2719 int ret;
2720
2721 if (!map->read)
2722 return -EINVAL;
2723
2724 range = _regmap_range_lookup(map, reg);
2725 if (range) {
2726 ret = _regmap_select_page(map, &reg, range,
2727 noinc ? 1 : val_len / map->format.val_bytes);
2728 if (ret != 0)
2729 return ret;
2730 }
2731
2732 reg = regmap_reg_addr(map, reg);
2733 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2734 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2735 map->read_flag_mask);
2736 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2737
2738 ret = map->read(map->bus_context, map->work_buf,
2739 map->format.reg_bytes + map->format.pad_bytes,
2740 val, val_len);
2741
2742 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2743
2744 return ret;
2745}
2746
2747static int _regmap_bus_reg_read(void *context, unsigned int reg,
2748 unsigned int *val)
2749{
2750 struct regmap *map = context;
2751 struct regmap_range_node *range;
2752 int ret;
2753
2754 range = _regmap_range_lookup(map, reg);
2755 if (range) {
2756 ret = _regmap_select_page(map, &reg, range, 1);
2757 if (ret != 0)
2758 return ret;
2759 }
2760
2761 reg = regmap_reg_addr(map, reg);
2762 return map->bus->reg_read(map->bus_context, reg, val);
2763}
2764
2765static int _regmap_bus_read(void *context, unsigned int reg,
2766 unsigned int *val)
2767{
2768 int ret;
2769 struct regmap *map = context;
2770 void *work_val = map->work_buf + map->format.reg_bytes +
2771 map->format.pad_bytes;
2772
2773 if (!map->format.parse_val)
2774 return -EINVAL;
2775
2776 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2777 if (ret == 0)
2778 *val = map->format.parse_val(work_val);
2779
2780 return ret;
2781}
2782
2783static int _regmap_read(struct regmap *map, unsigned int reg,
2784 unsigned int *val)
2785{
2786 int ret;
2787 void *context = _regmap_map_get_context(map);
2788
2789 if (!map->cache_bypass) {
2790 ret = regcache_read(map, reg, val);
2791 if (ret == 0)
2792 return 0;
2793 }
2794
2795 if (map->cache_only)
2796 return -EBUSY;
2797
2798 if (!regmap_readable(map, reg))
2799 return -EIO;
2800
2801 ret = map->reg_read(context, reg, val);
2802 if (ret == 0) {
2803 if (regmap_should_log(map))
2804 dev_info(map->dev, "%x => %x\n", reg, *val);
2805
2806 trace_regmap_reg_read(map, reg, *val);
2807
2808 if (!map->cache_bypass)
2809 regcache_write(map, reg, *val);
2810 }
2811
2812 return ret;
2813}
2814
2815/**
2816 * regmap_read() - Read a value from a single register
2817 *
2818 * @map: Register map to read from
2819 * @reg: Register to be read from
2820 * @val: Pointer to store read value
2821 *
2822 * A value of zero will be returned on success, a negative errno will
2823 * be returned in error cases.
2824 */
2825int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2826{
2827 int ret;
2828
2829 if (!IS_ALIGNED(reg, map->reg_stride))
2830 return -EINVAL;
2831
2832 map->lock(map->lock_arg);
2833
2834 ret = _regmap_read(map, reg, val);
2835
2836 map->unlock(map->lock_arg);
2837
2838 return ret;
2839}
2840EXPORT_SYMBOL_GPL(regmap_read);
2841
2842/**
2843 * regmap_read_bypassed() - Read a value from a single register direct
2844 * from the device, bypassing the cache
2845 *
2846 * @map: Register map to read from
2847 * @reg: Register to be read from
2848 * @val: Pointer to store read value
2849 *
2850 * A value of zero will be returned on success, a negative errno will
2851 * be returned in error cases.
2852 */
2853int regmap_read_bypassed(struct regmap *map, unsigned int reg, unsigned int *val)
2854{
2855 int ret;
2856 bool bypass, cache_only;
2857
2858 if (!IS_ALIGNED(reg, map->reg_stride))
2859 return -EINVAL;
2860
2861 map->lock(map->lock_arg);
2862
2863 bypass = map->cache_bypass;
2864 cache_only = map->cache_only;
2865 map->cache_bypass = true;
2866 map->cache_only = false;
2867
2868 ret = _regmap_read(map, reg, val);
2869
2870 map->cache_bypass = bypass;
2871 map->cache_only = cache_only;
2872
2873 map->unlock(map->lock_arg);
2874
2875 return ret;
2876}
2877EXPORT_SYMBOL_GPL(regmap_read_bypassed);
2878
2879/**
2880 * regmap_raw_read() - Read raw data from the device
2881 *
2882 * @map: Register map to read from
2883 * @reg: First register to be read from
2884 * @val: Pointer to store read value
2885 * @val_len: Size of data to read
2886 *
2887 * A value of zero will be returned on success, a negative errno will
2888 * be returned in error cases.
2889 */
2890int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2891 size_t val_len)
2892{
2893 size_t val_bytes = map->format.val_bytes;
2894 size_t val_count = val_len / val_bytes;
2895 unsigned int v;
2896 int ret, i;
2897
2898 if (val_len % map->format.val_bytes)
2899 return -EINVAL;
2900 if (!IS_ALIGNED(reg, map->reg_stride))
2901 return -EINVAL;
2902 if (val_count == 0)
2903 return -EINVAL;
2904
2905 map->lock(map->lock_arg);
2906
2907 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2908 map->cache_type == REGCACHE_NONE) {
2909 size_t chunk_count, chunk_bytes;
2910 size_t chunk_regs = val_count;
2911
2912 if (!map->cache_bypass && map->cache_only) {
2913 ret = -EBUSY;
2914 goto out;
2915 }
2916
2917 if (!map->read) {
2918 ret = -ENOTSUPP;
2919 goto out;
2920 }
2921
2922 if (map->use_single_read)
2923 chunk_regs = 1;
2924 else if (map->max_raw_read && val_len > map->max_raw_read)
2925 chunk_regs = map->max_raw_read / val_bytes;
2926
2927 chunk_count = val_count / chunk_regs;
2928 chunk_bytes = chunk_regs * val_bytes;
2929
2930 /* Read bytes that fit into whole chunks */
2931 for (i = 0; i < chunk_count; i++) {
2932 ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2933 if (ret != 0)
2934 goto out;
2935
2936 reg += regmap_get_offset(map, chunk_regs);
2937 val += chunk_bytes;
2938 val_len -= chunk_bytes;
2939 }
2940
2941 /* Read remaining bytes */
2942 if (val_len) {
2943 ret = _regmap_raw_read(map, reg, val, val_len, false);
2944 if (ret != 0)
2945 goto out;
2946 }
2947 } else {
2948 /* Otherwise go word by word for the cache; should be low
2949 * cost as we expect to hit the cache.
2950 */
2951 for (i = 0; i < val_count; i++) {
2952 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2953 &v);
2954 if (ret != 0)
2955 goto out;
2956
2957 map->format.format_val(val + (i * val_bytes), v, 0);
2958 }
2959 }
2960
2961 out:
2962 map->unlock(map->lock_arg);
2963
2964 return ret;
2965}
2966EXPORT_SYMBOL_GPL(regmap_raw_read);
2967
2968/**
2969 * regmap_noinc_read(): Read data from a register without incrementing the
2970 * register number
2971 *
2972 * @map: Register map to read from
2973 * @reg: Register to read from
2974 * @val: Pointer to data buffer
2975 * @val_len: Length of output buffer in bytes.
2976 *
2977 * The regmap API usually assumes that bulk read operations will read a
2978 * range of registers. Some devices have certain registers for which a read
2979 * operation read will read from an internal FIFO.
2980 *
2981 * The target register must be volatile but registers after it can be
2982 * completely unrelated cacheable registers.
2983 *
2984 * This will attempt multiple reads as required to read val_len bytes.
2985 *
2986 * A value of zero will be returned on success, a negative errno will be
2987 * returned in error cases.
2988 */
2989int regmap_noinc_read(struct regmap *map, unsigned int reg,
2990 void *val, size_t val_len)
2991{
2992 size_t read_len;
2993 int ret;
2994
2995 if (!map->read)
2996 return -ENOTSUPP;
2997
2998 if (val_len % map->format.val_bytes)
2999 return -EINVAL;
3000 if (!IS_ALIGNED(reg, map->reg_stride))
3001 return -EINVAL;
3002 if (val_len == 0)
3003 return -EINVAL;
3004
3005 map->lock(map->lock_arg);
3006
3007 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
3008 ret = -EINVAL;
3009 goto out_unlock;
3010 }
3011
3012 /*
3013 * We have not defined the FIFO semantics for cache, as the
3014 * cache is just one value deep. Should we return the last
3015 * written value? Just avoid this by always reading the FIFO
3016 * even when using cache. Cache only will not work.
3017 */
3018 if (!map->cache_bypass && map->cache_only) {
3019 ret = -EBUSY;
3020 goto out_unlock;
3021 }
3022
3023 /* Use the accelerated operation if we can */
3024 if (map->bus->reg_noinc_read) {
3025 ret = regmap_noinc_readwrite(map, reg, val, val_len, false);
3026 goto out_unlock;
3027 }
3028
3029 while (val_len) {
3030 if (map->max_raw_read && map->max_raw_read < val_len)
3031 read_len = map->max_raw_read;
3032 else
3033 read_len = val_len;
3034 ret = _regmap_raw_read(map, reg, val, read_len, true);
3035 if (ret)
3036 goto out_unlock;
3037 val = ((u8 *)val) + read_len;
3038 val_len -= read_len;
3039 }
3040
3041out_unlock:
3042 map->unlock(map->lock_arg);
3043 return ret;
3044}
3045EXPORT_SYMBOL_GPL(regmap_noinc_read);
3046
3047/**
3048 * regmap_field_read(): Read a value to a single register field
3049 *
3050 * @field: Register field to read from
3051 * @val: Pointer to store read value
3052 *
3053 * A value of zero will be returned on success, a negative errno will
3054 * be returned in error cases.
3055 */
3056int regmap_field_read(struct regmap_field *field, unsigned int *val)
3057{
3058 int ret;
3059 unsigned int reg_val;
3060 ret = regmap_read(field->regmap, field->reg, &reg_val);
3061 if (ret != 0)
3062 return ret;
3063
3064 reg_val &= field->mask;
3065 reg_val >>= field->shift;
3066 *val = reg_val;
3067
3068 return ret;
3069}
3070EXPORT_SYMBOL_GPL(regmap_field_read);
3071
3072/**
3073 * regmap_fields_read() - Read a value to a single register field with port ID
3074 *
3075 * @field: Register field to read from
3076 * @id: port ID
3077 * @val: Pointer to store read value
3078 *
3079 * A value of zero will be returned on success, a negative errno will
3080 * be returned in error cases.
3081 */
3082int regmap_fields_read(struct regmap_field *field, unsigned int id,
3083 unsigned int *val)
3084{
3085 int ret;
3086 unsigned int reg_val;
3087
3088 if (id >= field->id_size)
3089 return -EINVAL;
3090
3091 ret = regmap_read(field->regmap,
3092 field->reg + (field->id_offset * id),
3093 &reg_val);
3094 if (ret != 0)
3095 return ret;
3096
3097 reg_val &= field->mask;
3098 reg_val >>= field->shift;
3099 *val = reg_val;
3100
3101 return ret;
3102}
3103EXPORT_SYMBOL_GPL(regmap_fields_read);
3104
3105static int _regmap_bulk_read(struct regmap *map, unsigned int reg,
3106 unsigned int *regs, void *val, size_t val_count)
3107{
3108 u32 *u32 = val;
3109 u16 *u16 = val;
3110 u8 *u8 = val;
3111 int ret, i;
3112
3113 map->lock(map->lock_arg);
3114
3115 for (i = 0; i < val_count; i++) {
3116 unsigned int ival;
3117
3118 if (regs) {
3119 if (!IS_ALIGNED(regs[i], map->reg_stride)) {
3120 ret = -EINVAL;
3121 goto out;
3122 }
3123 ret = _regmap_read(map, regs[i], &ival);
3124 } else {
3125 ret = _regmap_read(map, reg + regmap_get_offset(map, i), &ival);
3126 }
3127 if (ret != 0)
3128 goto out;
3129
3130 switch (map->format.val_bytes) {
3131 case 4:
3132 u32[i] = ival;
3133 break;
3134 case 2:
3135 u16[i] = ival;
3136 break;
3137 case 1:
3138 u8[i] = ival;
3139 break;
3140 default:
3141 ret = -EINVAL;
3142 goto out;
3143 }
3144 }
3145out:
3146 map->unlock(map->lock_arg);
3147 return ret;
3148}
3149
3150/**
3151 * regmap_bulk_read() - Read multiple sequential registers from the device
3152 *
3153 * @map: Register map to read from
3154 * @reg: First register to be read from
3155 * @val: Pointer to store read value, in native register size for device
3156 * @val_count: Number of registers to read
3157 *
3158 * A value of zero will be returned on success, a negative errno will
3159 * be returned in error cases.
3160 */
3161int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3162 size_t val_count)
3163{
3164 int ret, i;
3165 size_t val_bytes = map->format.val_bytes;
3166 bool vol = regmap_volatile_range(map, reg, val_count);
3167
3168 if (!IS_ALIGNED(reg, map->reg_stride))
3169 return -EINVAL;
3170 if (val_count == 0)
3171 return -EINVAL;
3172
3173 if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3174 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3175 if (ret != 0)
3176 return ret;
3177
3178 for (i = 0; i < val_count * val_bytes; i += val_bytes)
3179 map->format.parse_inplace(val + i);
3180 } else {
3181 ret = _regmap_bulk_read(map, reg, NULL, val, val_count);
3182 }
3183 if (!ret)
3184 trace_regmap_bulk_read(map, reg, val, val_bytes * val_count);
3185 return ret;
3186}
3187EXPORT_SYMBOL_GPL(regmap_bulk_read);
3188
3189/**
3190 * regmap_multi_reg_read() - Read multiple non-sequential registers from the device
3191 *
3192 * @map: Register map to read from
3193 * @regs: Array of registers to read from
3194 * @val: Pointer to store read value, in native register size for device
3195 * @val_count: Number of registers to read
3196 *
3197 * A value of zero will be returned on success, a negative errno will
3198 * be returned in error cases.
3199 */
3200int regmap_multi_reg_read(struct regmap *map, unsigned int *regs, void *val,
3201 size_t val_count)
3202{
3203 if (val_count == 0)
3204 return -EINVAL;
3205
3206 return _regmap_bulk_read(map, 0, regs, val, val_count);
3207}
3208EXPORT_SYMBOL_GPL(regmap_multi_reg_read);
3209
3210static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3211 unsigned int mask, unsigned int val,
3212 bool *change, bool force_write)
3213{
3214 int ret;
3215 unsigned int tmp, orig;
3216
3217 if (change)
3218 *change = false;
3219
3220 if (regmap_volatile(map, reg) && map->reg_update_bits) {
3221 reg = regmap_reg_addr(map, reg);
3222 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3223 if (ret == 0 && change)
3224 *change = true;
3225 } else {
3226 ret = _regmap_read(map, reg, &orig);
3227 if (ret != 0)
3228 return ret;
3229
3230 tmp = orig & ~mask;
3231 tmp |= val & mask;
3232
3233 if (force_write || (tmp != orig) || map->force_write_field) {
3234 ret = _regmap_write(map, reg, tmp);
3235 if (ret == 0 && change)
3236 *change = true;
3237 }
3238 }
3239
3240 return ret;
3241}
3242
3243/**
3244 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3245 *
3246 * @map: Register map to update
3247 * @reg: Register to update
3248 * @mask: Bitmask to change
3249 * @val: New value for bitmask
3250 * @change: Boolean indicating if a write was done
3251 * @async: Boolean indicating asynchronously
3252 * @force: Boolean indicating use force update
3253 *
3254 * Perform a read/modify/write cycle on a register map with change, async, force
3255 * options.
3256 *
3257 * If async is true:
3258 *
3259 * With most buses the read must be done synchronously so this is most useful
3260 * for devices with a cache which do not need to interact with the hardware to
3261 * determine the current register value.
3262 *
3263 * Returns zero for success, a negative number on error.
3264 */
3265int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3266 unsigned int mask, unsigned int val,
3267 bool *change, bool async, bool force)
3268{
3269 int ret;
3270
3271 map->lock(map->lock_arg);
3272
3273 map->async = async;
3274
3275 ret = _regmap_update_bits(map, reg, mask, val, change, force);
3276
3277 map->async = false;
3278
3279 map->unlock(map->lock_arg);
3280
3281 return ret;
3282}
3283EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3284
3285/**
3286 * regmap_test_bits() - Check if all specified bits are set in a register.
3287 *
3288 * @map: Register map to operate on
3289 * @reg: Register to read from
3290 * @bits: Bits to test
3291 *
3292 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3293 * bits are set and a negative error number if the underlying regmap_read()
3294 * fails.
3295 */
3296int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3297{
3298 unsigned int val, ret;
3299
3300 ret = regmap_read(map, reg, &val);
3301 if (ret)
3302 return ret;
3303
3304 return (val & bits) == bits;
3305}
3306EXPORT_SYMBOL_GPL(regmap_test_bits);
3307
3308void regmap_async_complete_cb(struct regmap_async *async, int ret)
3309{
3310 struct regmap *map = async->map;
3311 bool wake;
3312
3313 trace_regmap_async_io_complete(map);
3314
3315 spin_lock(&map->async_lock);
3316 list_move(&async->list, &map->async_free);
3317 wake = list_empty(&map->async_list);
3318
3319 if (ret != 0)
3320 map->async_ret = ret;
3321
3322 spin_unlock(&map->async_lock);
3323
3324 if (wake)
3325 wake_up(&map->async_waitq);
3326}
3327EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3328
3329static int regmap_async_is_done(struct regmap *map)
3330{
3331 unsigned long flags;
3332 int ret;
3333
3334 spin_lock_irqsave(&map->async_lock, flags);
3335 ret = list_empty(&map->async_list);
3336 spin_unlock_irqrestore(&map->async_lock, flags);
3337
3338 return ret;
3339}
3340
3341/**
3342 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3343 *
3344 * @map: Map to operate on.
3345 *
3346 * Blocks until any pending asynchronous I/O has completed. Returns
3347 * an error code for any failed I/O operations.
3348 */
3349int regmap_async_complete(struct regmap *map)
3350{
3351 unsigned long flags;
3352 int ret;
3353
3354 /* Nothing to do with no async support */
3355 if (!map->bus || !map->bus->async_write)
3356 return 0;
3357
3358 trace_regmap_async_complete_start(map);
3359
3360 wait_event(map->async_waitq, regmap_async_is_done(map));
3361
3362 spin_lock_irqsave(&map->async_lock, flags);
3363 ret = map->async_ret;
3364 map->async_ret = 0;
3365 spin_unlock_irqrestore(&map->async_lock, flags);
3366
3367 trace_regmap_async_complete_done(map);
3368
3369 return ret;
3370}
3371EXPORT_SYMBOL_GPL(regmap_async_complete);
3372
3373/**
3374 * regmap_register_patch - Register and apply register updates to be applied
3375 * on device initialistion
3376 *
3377 * @map: Register map to apply updates to.
3378 * @regs: Values to update.
3379 * @num_regs: Number of entries in regs.
3380 *
3381 * Register a set of register updates to be applied to the device
3382 * whenever the device registers are synchronised with the cache and
3383 * apply them immediately. Typically this is used to apply
3384 * corrections to be applied to the device defaults on startup, such
3385 * as the updates some vendors provide to undocumented registers.
3386 *
3387 * The caller must ensure that this function cannot be called
3388 * concurrently with either itself or regcache_sync().
3389 */
3390int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3391 int num_regs)
3392{
3393 struct reg_sequence *p;
3394 int ret;
3395 bool bypass;
3396
3397 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3398 num_regs))
3399 return 0;
3400
3401 p = krealloc(map->patch,
3402 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3403 GFP_KERNEL);
3404 if (p) {
3405 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3406 map->patch = p;
3407 map->patch_regs += num_regs;
3408 } else {
3409 return -ENOMEM;
3410 }
3411
3412 map->lock(map->lock_arg);
3413
3414 bypass = map->cache_bypass;
3415
3416 map->cache_bypass = true;
3417 map->async = true;
3418
3419 ret = _regmap_multi_reg_write(map, regs, num_regs);
3420
3421 map->async = false;
3422 map->cache_bypass = bypass;
3423
3424 map->unlock(map->lock_arg);
3425
3426 regmap_async_complete(map);
3427
3428 return ret;
3429}
3430EXPORT_SYMBOL_GPL(regmap_register_patch);
3431
3432/**
3433 * regmap_get_val_bytes() - Report the size of a register value
3434 *
3435 * @map: Register map to operate on.
3436 *
3437 * Report the size of a register value, mainly intended to for use by
3438 * generic infrastructure built on top of regmap.
3439 */
3440int regmap_get_val_bytes(struct regmap *map)
3441{
3442 if (map->format.format_write)
3443 return -EINVAL;
3444
3445 return map->format.val_bytes;
3446}
3447EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3448
3449/**
3450 * regmap_get_max_register() - Report the max register value
3451 *
3452 * @map: Register map to operate on.
3453 *
3454 * Report the max register value, mainly intended to for use by
3455 * generic infrastructure built on top of regmap.
3456 */
3457int regmap_get_max_register(struct regmap *map)
3458{
3459 return map->max_register_is_set ? map->max_register : -EINVAL;
3460}
3461EXPORT_SYMBOL_GPL(regmap_get_max_register);
3462
3463/**
3464 * regmap_get_reg_stride() - Report the register address stride
3465 *
3466 * @map: Register map to operate on.
3467 *
3468 * Report the register address stride, mainly intended to for use by
3469 * generic infrastructure built on top of regmap.
3470 */
3471int regmap_get_reg_stride(struct regmap *map)
3472{
3473 return map->reg_stride;
3474}
3475EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3476
3477/**
3478 * regmap_might_sleep() - Returns whether a regmap access might sleep.
3479 *
3480 * @map: Register map to operate on.
3481 *
3482 * Returns true if an access to the register might sleep, else false.
3483 */
3484bool regmap_might_sleep(struct regmap *map)
3485{
3486 return map->can_sleep;
3487}
3488EXPORT_SYMBOL_GPL(regmap_might_sleep);
3489
3490int regmap_parse_val(struct regmap *map, const void *buf,
3491 unsigned int *val)
3492{
3493 if (!map->format.parse_val)
3494 return -EINVAL;
3495
3496 *val = map->format.parse_val(buf);
3497
3498 return 0;
3499}
3500EXPORT_SYMBOL_GPL(regmap_parse_val);
3501
3502static int __init regmap_initcall(void)
3503{
3504 regmap_debugfs_initcall();
3505
3506 return 0;
3507}
3508postcore_initcall(regmap_initcall);