Linux 6.1-rc3
[linux-block.git] / drivers / acpi / scan.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * scan.c - support for transforming the ACPI namespace into individual objects
4 */
5
6#define pr_fmt(fmt) "ACPI: " fmt
7
8#include <linux/module.h>
9#include <linux/init.h>
10#include <linux/slab.h>
11#include <linux/kernel.h>
12#include <linux/acpi.h>
13#include <linux/acpi_iort.h>
14#include <linux/acpi_viot.h>
15#include <linux/iommu.h>
16#include <linux/signal.h>
17#include <linux/kthread.h>
18#include <linux/dmi.h>
19#include <linux/dma-map-ops.h>
20#include <linux/platform_data/x86/apple.h>
21#include <linux/pgtable.h>
22#include <linux/crc32.h>
23#include <linux/dma-direct.h>
24
25#include "internal.h"
26
27extern struct acpi_device *acpi_root;
28
29#define ACPI_BUS_CLASS "system_bus"
30#define ACPI_BUS_HID "LNXSYBUS"
31#define ACPI_BUS_DEVICE_NAME "System Bus"
32
33#define INVALID_ACPI_HANDLE ((acpi_handle)empty_zero_page)
34
35static const char *dummy_hid = "device";
36
37static LIST_HEAD(acpi_dep_list);
38static DEFINE_MUTEX(acpi_dep_list_lock);
39LIST_HEAD(acpi_bus_id_list);
40static DEFINE_MUTEX(acpi_scan_lock);
41static LIST_HEAD(acpi_scan_handlers_list);
42DEFINE_MUTEX(acpi_device_lock);
43LIST_HEAD(acpi_wakeup_device_list);
44static DEFINE_MUTEX(acpi_hp_context_lock);
45
46/*
47 * The UART device described by the SPCR table is the only object which needs
48 * special-casing. Everything else is covered by ACPI namespace paths in STAO
49 * table.
50 */
51static u64 spcr_uart_addr;
52
53void acpi_scan_lock_acquire(void)
54{
55 mutex_lock(&acpi_scan_lock);
56}
57EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
58
59void acpi_scan_lock_release(void)
60{
61 mutex_unlock(&acpi_scan_lock);
62}
63EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
64
65void acpi_lock_hp_context(void)
66{
67 mutex_lock(&acpi_hp_context_lock);
68}
69
70void acpi_unlock_hp_context(void)
71{
72 mutex_unlock(&acpi_hp_context_lock);
73}
74
75void acpi_initialize_hp_context(struct acpi_device *adev,
76 struct acpi_hotplug_context *hp,
77 int (*notify)(struct acpi_device *, u32),
78 void (*uevent)(struct acpi_device *, u32))
79{
80 acpi_lock_hp_context();
81 hp->notify = notify;
82 hp->uevent = uevent;
83 acpi_set_hp_context(adev, hp);
84 acpi_unlock_hp_context();
85}
86EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
87
88int acpi_scan_add_handler(struct acpi_scan_handler *handler)
89{
90 if (!handler)
91 return -EINVAL;
92
93 list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
94 return 0;
95}
96
97int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
98 const char *hotplug_profile_name)
99{
100 int error;
101
102 error = acpi_scan_add_handler(handler);
103 if (error)
104 return error;
105
106 acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
107 return 0;
108}
109
110bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
111{
112 struct acpi_device_physical_node *pn;
113 bool offline = true;
114 char *envp[] = { "EVENT=offline", NULL };
115
116 /*
117 * acpi_container_offline() calls this for all of the container's
118 * children under the container's physical_node_lock lock.
119 */
120 mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
121
122 list_for_each_entry(pn, &adev->physical_node_list, node)
123 if (device_supports_offline(pn->dev) && !pn->dev->offline) {
124 if (uevent)
125 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
126
127 offline = false;
128 break;
129 }
130
131 mutex_unlock(&adev->physical_node_lock);
132 return offline;
133}
134
135static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
136 void **ret_p)
137{
138 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
139 struct acpi_device_physical_node *pn;
140 bool second_pass = (bool)data;
141 acpi_status status = AE_OK;
142
143 if (!device)
144 return AE_OK;
145
146 if (device->handler && !device->handler->hotplug.enabled) {
147 *ret_p = &device->dev;
148 return AE_SUPPORT;
149 }
150
151 mutex_lock(&device->physical_node_lock);
152
153 list_for_each_entry(pn, &device->physical_node_list, node) {
154 int ret;
155
156 if (second_pass) {
157 /* Skip devices offlined by the first pass. */
158 if (pn->put_online)
159 continue;
160 } else {
161 pn->put_online = false;
162 }
163 ret = device_offline(pn->dev);
164 if (ret >= 0) {
165 pn->put_online = !ret;
166 } else {
167 *ret_p = pn->dev;
168 if (second_pass) {
169 status = AE_ERROR;
170 break;
171 }
172 }
173 }
174
175 mutex_unlock(&device->physical_node_lock);
176
177 return status;
178}
179
180static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
181 void **ret_p)
182{
183 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
184 struct acpi_device_physical_node *pn;
185
186 if (!device)
187 return AE_OK;
188
189 mutex_lock(&device->physical_node_lock);
190
191 list_for_each_entry(pn, &device->physical_node_list, node)
192 if (pn->put_online) {
193 device_online(pn->dev);
194 pn->put_online = false;
195 }
196
197 mutex_unlock(&device->physical_node_lock);
198
199 return AE_OK;
200}
201
202static int acpi_scan_try_to_offline(struct acpi_device *device)
203{
204 acpi_handle handle = device->handle;
205 struct device *errdev = NULL;
206 acpi_status status;
207
208 /*
209 * Carry out two passes here and ignore errors in the first pass,
210 * because if the devices in question are memory blocks and
211 * CONFIG_MEMCG is set, one of the blocks may hold data structures
212 * that the other blocks depend on, but it is not known in advance which
213 * block holds them.
214 *
215 * If the first pass is successful, the second one isn't needed, though.
216 */
217 status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
218 NULL, acpi_bus_offline, (void *)false,
219 (void **)&errdev);
220 if (status == AE_SUPPORT) {
221 dev_warn(errdev, "Offline disabled.\n");
222 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
223 acpi_bus_online, NULL, NULL, NULL);
224 return -EPERM;
225 }
226 acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
227 if (errdev) {
228 errdev = NULL;
229 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
230 NULL, acpi_bus_offline, (void *)true,
231 (void **)&errdev);
232 if (!errdev)
233 acpi_bus_offline(handle, 0, (void *)true,
234 (void **)&errdev);
235
236 if (errdev) {
237 dev_warn(errdev, "Offline failed.\n");
238 acpi_bus_online(handle, 0, NULL, NULL);
239 acpi_walk_namespace(ACPI_TYPE_ANY, handle,
240 ACPI_UINT32_MAX, acpi_bus_online,
241 NULL, NULL, NULL);
242 return -EBUSY;
243 }
244 }
245 return 0;
246}
247
248static int acpi_scan_hot_remove(struct acpi_device *device)
249{
250 acpi_handle handle = device->handle;
251 unsigned long long sta;
252 acpi_status status;
253
254 if (device->handler && device->handler->hotplug.demand_offline) {
255 if (!acpi_scan_is_offline(device, true))
256 return -EBUSY;
257 } else {
258 int error = acpi_scan_try_to_offline(device);
259 if (error)
260 return error;
261 }
262
263 acpi_handle_debug(handle, "Ejecting\n");
264
265 acpi_bus_trim(device);
266
267 acpi_evaluate_lck(handle, 0);
268 /*
269 * TBD: _EJD support.
270 */
271 status = acpi_evaluate_ej0(handle);
272 if (status == AE_NOT_FOUND)
273 return -ENODEV;
274 else if (ACPI_FAILURE(status))
275 return -EIO;
276
277 /*
278 * Verify if eject was indeed successful. If not, log an error
279 * message. No need to call _OST since _EJ0 call was made OK.
280 */
281 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
282 if (ACPI_FAILURE(status)) {
283 acpi_handle_warn(handle,
284 "Status check after eject failed (0x%x)\n", status);
285 } else if (sta & ACPI_STA_DEVICE_ENABLED) {
286 acpi_handle_warn(handle,
287 "Eject incomplete - status 0x%llx\n", sta);
288 }
289
290 return 0;
291}
292
293static int acpi_scan_device_not_present(struct acpi_device *adev)
294{
295 if (!acpi_device_enumerated(adev)) {
296 dev_warn(&adev->dev, "Still not present\n");
297 return -EALREADY;
298 }
299 acpi_bus_trim(adev);
300 return 0;
301}
302
303static int acpi_scan_device_check(struct acpi_device *adev)
304{
305 int error;
306
307 acpi_bus_get_status(adev);
308 if (adev->status.present || adev->status.functional) {
309 /*
310 * This function is only called for device objects for which
311 * matching scan handlers exist. The only situation in which
312 * the scan handler is not attached to this device object yet
313 * is when the device has just appeared (either it wasn't
314 * present at all before or it was removed and then added
315 * again).
316 */
317 if (adev->handler) {
318 dev_warn(&adev->dev, "Already enumerated\n");
319 return -EALREADY;
320 }
321 error = acpi_bus_scan(adev->handle);
322 if (error) {
323 dev_warn(&adev->dev, "Namespace scan failure\n");
324 return error;
325 }
326 if (!adev->handler) {
327 dev_warn(&adev->dev, "Enumeration failure\n");
328 error = -ENODEV;
329 }
330 } else {
331 error = acpi_scan_device_not_present(adev);
332 }
333 return error;
334}
335
336static int acpi_scan_bus_check(struct acpi_device *adev, void *not_used)
337{
338 struct acpi_scan_handler *handler = adev->handler;
339 int error;
340
341 acpi_bus_get_status(adev);
342 if (!(adev->status.present || adev->status.functional)) {
343 acpi_scan_device_not_present(adev);
344 return 0;
345 }
346 if (handler && handler->hotplug.scan_dependent)
347 return handler->hotplug.scan_dependent(adev);
348
349 error = acpi_bus_scan(adev->handle);
350 if (error) {
351 dev_warn(&adev->dev, "Namespace scan failure\n");
352 return error;
353 }
354 return acpi_dev_for_each_child(adev, acpi_scan_bus_check, NULL);
355}
356
357static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
358{
359 switch (type) {
360 case ACPI_NOTIFY_BUS_CHECK:
361 return acpi_scan_bus_check(adev, NULL);
362 case ACPI_NOTIFY_DEVICE_CHECK:
363 return acpi_scan_device_check(adev);
364 case ACPI_NOTIFY_EJECT_REQUEST:
365 case ACPI_OST_EC_OSPM_EJECT:
366 if (adev->handler && !adev->handler->hotplug.enabled) {
367 dev_info(&adev->dev, "Eject disabled\n");
368 return -EPERM;
369 }
370 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
371 ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
372 return acpi_scan_hot_remove(adev);
373 }
374 return -EINVAL;
375}
376
377void acpi_device_hotplug(struct acpi_device *adev, u32 src)
378{
379 u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
380 int error = -ENODEV;
381
382 lock_device_hotplug();
383 mutex_lock(&acpi_scan_lock);
384
385 /*
386 * The device object's ACPI handle cannot become invalid as long as we
387 * are holding acpi_scan_lock, but it might have become invalid before
388 * that lock was acquired.
389 */
390 if (adev->handle == INVALID_ACPI_HANDLE)
391 goto err_out;
392
393 if (adev->flags.is_dock_station) {
394 error = dock_notify(adev, src);
395 } else if (adev->flags.hotplug_notify) {
396 error = acpi_generic_hotplug_event(adev, src);
397 } else {
398 int (*notify)(struct acpi_device *, u32);
399
400 acpi_lock_hp_context();
401 notify = adev->hp ? adev->hp->notify : NULL;
402 acpi_unlock_hp_context();
403 /*
404 * There may be additional notify handlers for device objects
405 * without the .event() callback, so ignore them here.
406 */
407 if (notify)
408 error = notify(adev, src);
409 else
410 goto out;
411 }
412 switch (error) {
413 case 0:
414 ost_code = ACPI_OST_SC_SUCCESS;
415 break;
416 case -EPERM:
417 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
418 break;
419 case -EBUSY:
420 ost_code = ACPI_OST_SC_DEVICE_BUSY;
421 break;
422 default:
423 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
424 break;
425 }
426
427 err_out:
428 acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
429
430 out:
431 acpi_put_acpi_dev(adev);
432 mutex_unlock(&acpi_scan_lock);
433 unlock_device_hotplug();
434}
435
436static void acpi_free_power_resources_lists(struct acpi_device *device)
437{
438 int i;
439
440 if (device->wakeup.flags.valid)
441 acpi_power_resources_list_free(&device->wakeup.resources);
442
443 if (!device->power.flags.power_resources)
444 return;
445
446 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
447 struct acpi_device_power_state *ps = &device->power.states[i];
448 acpi_power_resources_list_free(&ps->resources);
449 }
450}
451
452static void acpi_device_release(struct device *dev)
453{
454 struct acpi_device *acpi_dev = to_acpi_device(dev);
455
456 acpi_free_properties(acpi_dev);
457 acpi_free_pnp_ids(&acpi_dev->pnp);
458 acpi_free_power_resources_lists(acpi_dev);
459 kfree(acpi_dev);
460}
461
462static void acpi_device_del(struct acpi_device *device)
463{
464 struct acpi_device_bus_id *acpi_device_bus_id;
465
466 mutex_lock(&acpi_device_lock);
467
468 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
469 if (!strcmp(acpi_device_bus_id->bus_id,
470 acpi_device_hid(device))) {
471 ida_free(&acpi_device_bus_id->instance_ida,
472 device->pnp.instance_no);
473 if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
474 list_del(&acpi_device_bus_id->node);
475 kfree_const(acpi_device_bus_id->bus_id);
476 kfree(acpi_device_bus_id);
477 }
478 break;
479 }
480
481 list_del(&device->wakeup_list);
482
483 mutex_unlock(&acpi_device_lock);
484
485 acpi_power_add_remove_device(device, false);
486 acpi_device_remove_files(device);
487 if (device->remove)
488 device->remove(device);
489
490 device_del(&device->dev);
491}
492
493static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
494
495static LIST_HEAD(acpi_device_del_list);
496static DEFINE_MUTEX(acpi_device_del_lock);
497
498static void acpi_device_del_work_fn(struct work_struct *work_not_used)
499{
500 for (;;) {
501 struct acpi_device *adev;
502
503 mutex_lock(&acpi_device_del_lock);
504
505 if (list_empty(&acpi_device_del_list)) {
506 mutex_unlock(&acpi_device_del_lock);
507 break;
508 }
509 adev = list_first_entry(&acpi_device_del_list,
510 struct acpi_device, del_list);
511 list_del(&adev->del_list);
512
513 mutex_unlock(&acpi_device_del_lock);
514
515 blocking_notifier_call_chain(&acpi_reconfig_chain,
516 ACPI_RECONFIG_DEVICE_REMOVE, adev);
517
518 acpi_device_del(adev);
519 /*
520 * Drop references to all power resources that might have been
521 * used by the device.
522 */
523 acpi_power_transition(adev, ACPI_STATE_D3_COLD);
524 acpi_dev_put(adev);
525 }
526}
527
528/**
529 * acpi_scan_drop_device - Drop an ACPI device object.
530 * @handle: Handle of an ACPI namespace node, not used.
531 * @context: Address of the ACPI device object to drop.
532 *
533 * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
534 * namespace node the device object pointed to by @context is attached to.
535 *
536 * The unregistration is carried out asynchronously to avoid running
537 * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
538 * ensure the correct ordering (the device objects must be unregistered in the
539 * same order in which the corresponding namespace nodes are deleted).
540 */
541static void acpi_scan_drop_device(acpi_handle handle, void *context)
542{
543 static DECLARE_WORK(work, acpi_device_del_work_fn);
544 struct acpi_device *adev = context;
545
546 mutex_lock(&acpi_device_del_lock);
547
548 /*
549 * Use the ACPI hotplug workqueue which is ordered, so this work item
550 * won't run after any hotplug work items submitted subsequently. That
551 * prevents attempts to register device objects identical to those being
552 * deleted from happening concurrently (such attempts result from
553 * hotplug events handled via the ACPI hotplug workqueue). It also will
554 * run after all of the work items submitted previously, which helps
555 * those work items to ensure that they are not accessing stale device
556 * objects.
557 */
558 if (list_empty(&acpi_device_del_list))
559 acpi_queue_hotplug_work(&work);
560
561 list_add_tail(&adev->del_list, &acpi_device_del_list);
562 /* Make acpi_ns_validate_handle() return NULL for this handle. */
563 adev->handle = INVALID_ACPI_HANDLE;
564
565 mutex_unlock(&acpi_device_del_lock);
566}
567
568static struct acpi_device *handle_to_device(acpi_handle handle,
569 void (*callback)(void *))
570{
571 struct acpi_device *adev = NULL;
572 acpi_status status;
573
574 status = acpi_get_data_full(handle, acpi_scan_drop_device,
575 (void **)&adev, callback);
576 if (ACPI_FAILURE(status) || !adev) {
577 acpi_handle_debug(handle, "No context!\n");
578 return NULL;
579 }
580 return adev;
581}
582
583/**
584 * acpi_fetch_acpi_dev - Retrieve ACPI device object.
585 * @handle: ACPI handle associated with the requested ACPI device object.
586 *
587 * Return a pointer to the ACPI device object associated with @handle, if
588 * present, or NULL otherwise.
589 */
590struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle)
591{
592 return handle_to_device(handle, NULL);
593}
594EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev);
595
596static void get_acpi_device(void *dev)
597{
598 acpi_dev_get(dev);
599}
600
601/**
602 * acpi_get_acpi_dev - Retrieve ACPI device object and reference count it.
603 * @handle: ACPI handle associated with the requested ACPI device object.
604 *
605 * Return a pointer to the ACPI device object associated with @handle and bump
606 * up that object's reference counter (under the ACPI Namespace lock), if
607 * present, or return NULL otherwise.
608 *
609 * The ACPI device object reference acquired by this function needs to be
610 * dropped via acpi_dev_put().
611 */
612struct acpi_device *acpi_get_acpi_dev(acpi_handle handle)
613{
614 return handle_to_device(handle, get_acpi_device);
615}
616EXPORT_SYMBOL_GPL(acpi_get_acpi_dev);
617
618static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
619{
620 struct acpi_device_bus_id *acpi_device_bus_id;
621
622 /* Find suitable bus_id and instance number in acpi_bus_id_list. */
623 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
624 if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
625 return acpi_device_bus_id;
626 }
627 return NULL;
628}
629
630static int acpi_device_set_name(struct acpi_device *device,
631 struct acpi_device_bus_id *acpi_device_bus_id)
632{
633 struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
634 int result;
635
636 result = ida_alloc(instance_ida, GFP_KERNEL);
637 if (result < 0)
638 return result;
639
640 device->pnp.instance_no = result;
641 dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
642 return 0;
643}
644
645int acpi_tie_acpi_dev(struct acpi_device *adev)
646{
647 acpi_handle handle = adev->handle;
648 acpi_status status;
649
650 if (!handle)
651 return 0;
652
653 status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
654 if (ACPI_FAILURE(status)) {
655 acpi_handle_err(handle, "Unable to attach device data\n");
656 return -ENODEV;
657 }
658
659 return 0;
660}
661
662static void acpi_store_pld_crc(struct acpi_device *adev)
663{
664 struct acpi_pld_info *pld;
665 acpi_status status;
666
667 status = acpi_get_physical_device_location(adev->handle, &pld);
668 if (ACPI_FAILURE(status))
669 return;
670
671 adev->pld_crc = crc32(~0, pld, sizeof(*pld));
672 ACPI_FREE(pld);
673}
674
675int acpi_device_add(struct acpi_device *device)
676{
677 struct acpi_device_bus_id *acpi_device_bus_id;
678 int result;
679
680 /*
681 * Linkage
682 * -------
683 * Link this device to its parent and siblings.
684 */
685 INIT_LIST_HEAD(&device->wakeup_list);
686 INIT_LIST_HEAD(&device->physical_node_list);
687 INIT_LIST_HEAD(&device->del_list);
688 mutex_init(&device->physical_node_lock);
689
690 mutex_lock(&acpi_device_lock);
691
692 acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
693 if (acpi_device_bus_id) {
694 result = acpi_device_set_name(device, acpi_device_bus_id);
695 if (result)
696 goto err_unlock;
697 } else {
698 acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
699 GFP_KERNEL);
700 if (!acpi_device_bus_id) {
701 result = -ENOMEM;
702 goto err_unlock;
703 }
704 acpi_device_bus_id->bus_id =
705 kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
706 if (!acpi_device_bus_id->bus_id) {
707 kfree(acpi_device_bus_id);
708 result = -ENOMEM;
709 goto err_unlock;
710 }
711
712 ida_init(&acpi_device_bus_id->instance_ida);
713
714 result = acpi_device_set_name(device, acpi_device_bus_id);
715 if (result) {
716 kfree_const(acpi_device_bus_id->bus_id);
717 kfree(acpi_device_bus_id);
718 goto err_unlock;
719 }
720
721 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
722 }
723
724 if (device->wakeup.flags.valid)
725 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
726
727 acpi_store_pld_crc(device);
728
729 mutex_unlock(&acpi_device_lock);
730
731 result = device_add(&device->dev);
732 if (result) {
733 dev_err(&device->dev, "Error registering device\n");
734 goto err;
735 }
736
737 result = acpi_device_setup_files(device);
738 if (result)
739 pr_err("Error creating sysfs interface for device %s\n",
740 dev_name(&device->dev));
741
742 return 0;
743
744err:
745 mutex_lock(&acpi_device_lock);
746
747 list_del(&device->wakeup_list);
748
749err_unlock:
750 mutex_unlock(&acpi_device_lock);
751
752 acpi_detach_data(device->handle, acpi_scan_drop_device);
753
754 return result;
755}
756
757/* --------------------------------------------------------------------------
758 Device Enumeration
759 -------------------------------------------------------------------------- */
760static bool acpi_info_matches_ids(struct acpi_device_info *info,
761 const char * const ids[])
762{
763 struct acpi_pnp_device_id_list *cid_list = NULL;
764 int i, index;
765
766 if (!(info->valid & ACPI_VALID_HID))
767 return false;
768
769 index = match_string(ids, -1, info->hardware_id.string);
770 if (index >= 0)
771 return true;
772
773 if (info->valid & ACPI_VALID_CID)
774 cid_list = &info->compatible_id_list;
775
776 if (!cid_list)
777 return false;
778
779 for (i = 0; i < cid_list->count; i++) {
780 index = match_string(ids, -1, cid_list->ids[i].string);
781 if (index >= 0)
782 return true;
783 }
784
785 return false;
786}
787
788/* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
789static const char * const acpi_ignore_dep_ids[] = {
790 "PNP0D80", /* Windows-compatible System Power Management Controller */
791 "INT33BD", /* Intel Baytrail Mailbox Device */
792 "LATT2021", /* Lattice FW Update Client Driver */
793 NULL
794};
795
796/* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */
797static const char * const acpi_honor_dep_ids[] = {
798 "INT3472", /* Camera sensor PMIC / clk and regulator info */
799 NULL
800};
801
802static struct acpi_device *acpi_find_parent_acpi_dev(acpi_handle handle)
803{
804 struct acpi_device *adev;
805
806 /*
807 * Fixed hardware devices do not appear in the namespace and do not
808 * have handles, but we fabricate acpi_devices for them, so we have
809 * to deal with them specially.
810 */
811 if (!handle)
812 return acpi_root;
813
814 do {
815 acpi_status status;
816
817 status = acpi_get_parent(handle, &handle);
818 if (ACPI_FAILURE(status)) {
819 if (status != AE_NULL_ENTRY)
820 return acpi_root;
821
822 return NULL;
823 }
824 adev = acpi_fetch_acpi_dev(handle);
825 } while (!adev);
826 return adev;
827}
828
829acpi_status
830acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
831{
832 acpi_status status;
833 acpi_handle tmp;
834 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
835 union acpi_object *obj;
836
837 status = acpi_get_handle(handle, "_EJD", &tmp);
838 if (ACPI_FAILURE(status))
839 return status;
840
841 status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
842 if (ACPI_SUCCESS(status)) {
843 obj = buffer.pointer;
844 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
845 ejd);
846 kfree(buffer.pointer);
847 }
848 return status;
849}
850EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
851
852static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
853{
854 acpi_handle handle = dev->handle;
855 struct acpi_device_wakeup *wakeup = &dev->wakeup;
856 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
857 union acpi_object *package = NULL;
858 union acpi_object *element = NULL;
859 acpi_status status;
860 int err = -ENODATA;
861
862 INIT_LIST_HEAD(&wakeup->resources);
863
864 /* _PRW */
865 status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
866 if (ACPI_FAILURE(status)) {
867 acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
868 acpi_format_exception(status));
869 return err;
870 }
871
872 package = (union acpi_object *)buffer.pointer;
873
874 if (!package || package->package.count < 2)
875 goto out;
876
877 element = &(package->package.elements[0]);
878 if (!element)
879 goto out;
880
881 if (element->type == ACPI_TYPE_PACKAGE) {
882 if ((element->package.count < 2) ||
883 (element->package.elements[0].type !=
884 ACPI_TYPE_LOCAL_REFERENCE)
885 || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
886 goto out;
887
888 wakeup->gpe_device =
889 element->package.elements[0].reference.handle;
890 wakeup->gpe_number =
891 (u32) element->package.elements[1].integer.value;
892 } else if (element->type == ACPI_TYPE_INTEGER) {
893 wakeup->gpe_device = NULL;
894 wakeup->gpe_number = element->integer.value;
895 } else {
896 goto out;
897 }
898
899 element = &(package->package.elements[1]);
900 if (element->type != ACPI_TYPE_INTEGER)
901 goto out;
902
903 wakeup->sleep_state = element->integer.value;
904
905 err = acpi_extract_power_resources(package, 2, &wakeup->resources);
906 if (err)
907 goto out;
908
909 if (!list_empty(&wakeup->resources)) {
910 int sleep_state;
911
912 err = acpi_power_wakeup_list_init(&wakeup->resources,
913 &sleep_state);
914 if (err) {
915 acpi_handle_warn(handle, "Retrieving current states "
916 "of wakeup power resources failed\n");
917 acpi_power_resources_list_free(&wakeup->resources);
918 goto out;
919 }
920 if (sleep_state < wakeup->sleep_state) {
921 acpi_handle_warn(handle, "Overriding _PRW sleep state "
922 "(S%d) by S%d from power resources\n",
923 (int)wakeup->sleep_state, sleep_state);
924 wakeup->sleep_state = sleep_state;
925 }
926 }
927
928 out:
929 kfree(buffer.pointer);
930 return err;
931}
932
933static bool acpi_wakeup_gpe_init(struct acpi_device *device)
934{
935 static const struct acpi_device_id button_device_ids[] = {
936 {"PNP0C0C", 0}, /* Power button */
937 {"PNP0C0D", 0}, /* Lid */
938 {"PNP0C0E", 0}, /* Sleep button */
939 {"", 0},
940 };
941 struct acpi_device_wakeup *wakeup = &device->wakeup;
942 acpi_status status;
943
944 wakeup->flags.notifier_present = 0;
945
946 /* Power button, Lid switch always enable wakeup */
947 if (!acpi_match_device_ids(device, button_device_ids)) {
948 if (!acpi_match_device_ids(device, &button_device_ids[1])) {
949 /* Do not use Lid/sleep button for S5 wakeup */
950 if (wakeup->sleep_state == ACPI_STATE_S5)
951 wakeup->sleep_state = ACPI_STATE_S4;
952 }
953 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
954 device_set_wakeup_capable(&device->dev, true);
955 return true;
956 }
957
958 status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
959 wakeup->gpe_number);
960 return ACPI_SUCCESS(status);
961}
962
963static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
964{
965 int err;
966
967 /* Presence of _PRW indicates wake capable */
968 if (!acpi_has_method(device->handle, "_PRW"))
969 return;
970
971 err = acpi_bus_extract_wakeup_device_power_package(device);
972 if (err) {
973 dev_err(&device->dev, "Unable to extract wakeup power resources");
974 return;
975 }
976
977 device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
978 device->wakeup.prepare_count = 0;
979 /*
980 * Call _PSW/_DSW object to disable its ability to wake the sleeping
981 * system for the ACPI device with the _PRW object.
982 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
983 * So it is necessary to call _DSW object first. Only when it is not
984 * present will the _PSW object used.
985 */
986 err = acpi_device_sleep_wake(device, 0, 0, 0);
987 if (err)
988 pr_debug("error in _DSW or _PSW evaluation\n");
989}
990
991static void acpi_bus_init_power_state(struct acpi_device *device, int state)
992{
993 struct acpi_device_power_state *ps = &device->power.states[state];
994 char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
995 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
996 acpi_status status;
997
998 INIT_LIST_HEAD(&ps->resources);
999
1000 /* Evaluate "_PRx" to get referenced power resources */
1001 status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
1002 if (ACPI_SUCCESS(status)) {
1003 union acpi_object *package = buffer.pointer;
1004
1005 if (buffer.length && package
1006 && package->type == ACPI_TYPE_PACKAGE
1007 && package->package.count)
1008 acpi_extract_power_resources(package, 0, &ps->resources);
1009
1010 ACPI_FREE(buffer.pointer);
1011 }
1012
1013 /* Evaluate "_PSx" to see if we can do explicit sets */
1014 pathname[2] = 'S';
1015 if (acpi_has_method(device->handle, pathname))
1016 ps->flags.explicit_set = 1;
1017
1018 /* State is valid if there are means to put the device into it. */
1019 if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1020 ps->flags.valid = 1;
1021
1022 ps->power = -1; /* Unknown - driver assigned */
1023 ps->latency = -1; /* Unknown - driver assigned */
1024}
1025
1026static void acpi_bus_get_power_flags(struct acpi_device *device)
1027{
1028 unsigned long long dsc = ACPI_STATE_D0;
1029 u32 i;
1030
1031 /* Presence of _PS0|_PR0 indicates 'power manageable' */
1032 if (!acpi_has_method(device->handle, "_PS0") &&
1033 !acpi_has_method(device->handle, "_PR0"))
1034 return;
1035
1036 device->flags.power_manageable = 1;
1037
1038 /*
1039 * Power Management Flags
1040 */
1041 if (acpi_has_method(device->handle, "_PSC"))
1042 device->power.flags.explicit_get = 1;
1043
1044 if (acpi_has_method(device->handle, "_IRC"))
1045 device->power.flags.inrush_current = 1;
1046
1047 if (acpi_has_method(device->handle, "_DSW"))
1048 device->power.flags.dsw_present = 1;
1049
1050 acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc);
1051 device->power.state_for_enumeration = dsc;
1052
1053 /*
1054 * Enumerate supported power management states
1055 */
1056 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1057 acpi_bus_init_power_state(device, i);
1058
1059 INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1060
1061 /* Set the defaults for D0 and D3hot (always supported). */
1062 device->power.states[ACPI_STATE_D0].flags.valid = 1;
1063 device->power.states[ACPI_STATE_D0].power = 100;
1064 device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1065
1066 /*
1067 * Use power resources only if the D0 list of them is populated, because
1068 * some platforms may provide _PR3 only to indicate D3cold support and
1069 * in those cases the power resources list returned by it may be bogus.
1070 */
1071 if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1072 device->power.flags.power_resources = 1;
1073 /*
1074 * D3cold is supported if the D3hot list of power resources is
1075 * not empty.
1076 */
1077 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1078 device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1079 }
1080
1081 if (acpi_bus_init_power(device))
1082 device->flags.power_manageable = 0;
1083}
1084
1085static void acpi_bus_get_flags(struct acpi_device *device)
1086{
1087 /* Presence of _STA indicates 'dynamic_status' */
1088 if (acpi_has_method(device->handle, "_STA"))
1089 device->flags.dynamic_status = 1;
1090
1091 /* Presence of _RMV indicates 'removable' */
1092 if (acpi_has_method(device->handle, "_RMV"))
1093 device->flags.removable = 1;
1094
1095 /* Presence of _EJD|_EJ0 indicates 'ejectable' */
1096 if (acpi_has_method(device->handle, "_EJD") ||
1097 acpi_has_method(device->handle, "_EJ0"))
1098 device->flags.ejectable = 1;
1099}
1100
1101static void acpi_device_get_busid(struct acpi_device *device)
1102{
1103 char bus_id[5] = { '?', 0 };
1104 struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1105 int i = 0;
1106
1107 /*
1108 * Bus ID
1109 * ------
1110 * The device's Bus ID is simply the object name.
1111 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1112 */
1113 if (!acpi_dev_parent(device)) {
1114 strcpy(device->pnp.bus_id, "ACPI");
1115 return;
1116 }
1117
1118 switch (device->device_type) {
1119 case ACPI_BUS_TYPE_POWER_BUTTON:
1120 strcpy(device->pnp.bus_id, "PWRF");
1121 break;
1122 case ACPI_BUS_TYPE_SLEEP_BUTTON:
1123 strcpy(device->pnp.bus_id, "SLPF");
1124 break;
1125 case ACPI_BUS_TYPE_ECDT_EC:
1126 strcpy(device->pnp.bus_id, "ECDT");
1127 break;
1128 default:
1129 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1130 /* Clean up trailing underscores (if any) */
1131 for (i = 3; i > 1; i--) {
1132 if (bus_id[i] == '_')
1133 bus_id[i] = '\0';
1134 else
1135 break;
1136 }
1137 strcpy(device->pnp.bus_id, bus_id);
1138 break;
1139 }
1140}
1141
1142/*
1143 * acpi_ata_match - see if an acpi object is an ATA device
1144 *
1145 * If an acpi object has one of the ACPI ATA methods defined,
1146 * then we can safely call it an ATA device.
1147 */
1148bool acpi_ata_match(acpi_handle handle)
1149{
1150 return acpi_has_method(handle, "_GTF") ||
1151 acpi_has_method(handle, "_GTM") ||
1152 acpi_has_method(handle, "_STM") ||
1153 acpi_has_method(handle, "_SDD");
1154}
1155
1156/*
1157 * acpi_bay_match - see if an acpi object is an ejectable driver bay
1158 *
1159 * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1160 * then we can safely call it an ejectable drive bay
1161 */
1162bool acpi_bay_match(acpi_handle handle)
1163{
1164 acpi_handle phandle;
1165
1166 if (!acpi_has_method(handle, "_EJ0"))
1167 return false;
1168 if (acpi_ata_match(handle))
1169 return true;
1170 if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1171 return false;
1172
1173 return acpi_ata_match(phandle);
1174}
1175
1176bool acpi_device_is_battery(struct acpi_device *adev)
1177{
1178 struct acpi_hardware_id *hwid;
1179
1180 list_for_each_entry(hwid, &adev->pnp.ids, list)
1181 if (!strcmp("PNP0C0A", hwid->id))
1182 return true;
1183
1184 return false;
1185}
1186
1187static bool is_ejectable_bay(struct acpi_device *adev)
1188{
1189 acpi_handle handle = adev->handle;
1190
1191 if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1192 return true;
1193
1194 return acpi_bay_match(handle);
1195}
1196
1197/*
1198 * acpi_dock_match - see if an acpi object has a _DCK method
1199 */
1200bool acpi_dock_match(acpi_handle handle)
1201{
1202 return acpi_has_method(handle, "_DCK");
1203}
1204
1205static acpi_status
1206acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1207 void **return_value)
1208{
1209 long *cap = context;
1210
1211 if (acpi_has_method(handle, "_BCM") &&
1212 acpi_has_method(handle, "_BCL")) {
1213 acpi_handle_debug(handle, "Found generic backlight support\n");
1214 *cap |= ACPI_VIDEO_BACKLIGHT;
1215 /* We have backlight support, no need to scan further */
1216 return AE_CTRL_TERMINATE;
1217 }
1218 return 0;
1219}
1220
1221/* Returns true if the ACPI object is a video device which can be
1222 * handled by video.ko.
1223 * The device will get a Linux specific CID added in scan.c to
1224 * identify the device as an ACPI graphics device
1225 * Be aware that the graphics device may not be physically present
1226 * Use acpi_video_get_capabilities() to detect general ACPI video
1227 * capabilities of present cards
1228 */
1229long acpi_is_video_device(acpi_handle handle)
1230{
1231 long video_caps = 0;
1232
1233 /* Is this device able to support video switching ? */
1234 if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1235 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1236
1237 /* Is this device able to retrieve a video ROM ? */
1238 if (acpi_has_method(handle, "_ROM"))
1239 video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1240
1241 /* Is this device able to configure which video head to be POSTed ? */
1242 if (acpi_has_method(handle, "_VPO") &&
1243 acpi_has_method(handle, "_GPD") &&
1244 acpi_has_method(handle, "_SPD"))
1245 video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1246
1247 /* Only check for backlight functionality if one of the above hit. */
1248 if (video_caps)
1249 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1250 ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1251 &video_caps, NULL);
1252
1253 return video_caps;
1254}
1255EXPORT_SYMBOL(acpi_is_video_device);
1256
1257const char *acpi_device_hid(struct acpi_device *device)
1258{
1259 struct acpi_hardware_id *hid;
1260
1261 if (list_empty(&device->pnp.ids))
1262 return dummy_hid;
1263
1264 hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1265 return hid->id;
1266}
1267EXPORT_SYMBOL(acpi_device_hid);
1268
1269static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1270{
1271 struct acpi_hardware_id *id;
1272
1273 id = kmalloc(sizeof(*id), GFP_KERNEL);
1274 if (!id)
1275 return;
1276
1277 id->id = kstrdup_const(dev_id, GFP_KERNEL);
1278 if (!id->id) {
1279 kfree(id);
1280 return;
1281 }
1282
1283 list_add_tail(&id->list, &pnp->ids);
1284 pnp->type.hardware_id = 1;
1285}
1286
1287/*
1288 * Old IBM workstations have a DSDT bug wherein the SMBus object
1289 * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1290 * prefix. Work around this.
1291 */
1292static bool acpi_ibm_smbus_match(acpi_handle handle)
1293{
1294 char node_name[ACPI_PATH_SEGMENT_LENGTH];
1295 struct acpi_buffer path = { sizeof(node_name), node_name };
1296
1297 if (!dmi_name_in_vendors("IBM"))
1298 return false;
1299
1300 /* Look for SMBS object */
1301 if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1302 strcmp("SMBS", path.pointer))
1303 return false;
1304
1305 /* Does it have the necessary (but misnamed) methods? */
1306 if (acpi_has_method(handle, "SBI") &&
1307 acpi_has_method(handle, "SBR") &&
1308 acpi_has_method(handle, "SBW"))
1309 return true;
1310
1311 return false;
1312}
1313
1314static bool acpi_object_is_system_bus(acpi_handle handle)
1315{
1316 acpi_handle tmp;
1317
1318 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1319 tmp == handle)
1320 return true;
1321 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1322 tmp == handle)
1323 return true;
1324
1325 return false;
1326}
1327
1328static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1329 int device_type)
1330{
1331 struct acpi_device_info *info = NULL;
1332 struct acpi_pnp_device_id_list *cid_list;
1333 int i;
1334
1335 switch (device_type) {
1336 case ACPI_BUS_TYPE_DEVICE:
1337 if (handle == ACPI_ROOT_OBJECT) {
1338 acpi_add_id(pnp, ACPI_SYSTEM_HID);
1339 break;
1340 }
1341
1342 acpi_get_object_info(handle, &info);
1343 if (!info) {
1344 pr_err("%s: Error reading device info\n", __func__);
1345 return;
1346 }
1347
1348 if (info->valid & ACPI_VALID_HID) {
1349 acpi_add_id(pnp, info->hardware_id.string);
1350 pnp->type.platform_id = 1;
1351 }
1352 if (info->valid & ACPI_VALID_CID) {
1353 cid_list = &info->compatible_id_list;
1354 for (i = 0; i < cid_list->count; i++)
1355 acpi_add_id(pnp, cid_list->ids[i].string);
1356 }
1357 if (info->valid & ACPI_VALID_ADR) {
1358 pnp->bus_address = info->address;
1359 pnp->type.bus_address = 1;
1360 }
1361 if (info->valid & ACPI_VALID_UID)
1362 pnp->unique_id = kstrdup(info->unique_id.string,
1363 GFP_KERNEL);
1364 if (info->valid & ACPI_VALID_CLS)
1365 acpi_add_id(pnp, info->class_code.string);
1366
1367 kfree(info);
1368
1369 /*
1370 * Some devices don't reliably have _HIDs & _CIDs, so add
1371 * synthetic HIDs to make sure drivers can find them.
1372 */
1373 if (acpi_is_video_device(handle))
1374 acpi_add_id(pnp, ACPI_VIDEO_HID);
1375 else if (acpi_bay_match(handle))
1376 acpi_add_id(pnp, ACPI_BAY_HID);
1377 else if (acpi_dock_match(handle))
1378 acpi_add_id(pnp, ACPI_DOCK_HID);
1379 else if (acpi_ibm_smbus_match(handle))
1380 acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1381 else if (list_empty(&pnp->ids) &&
1382 acpi_object_is_system_bus(handle)) {
1383 /* \_SB, \_TZ, LNXSYBUS */
1384 acpi_add_id(pnp, ACPI_BUS_HID);
1385 strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1386 strcpy(pnp->device_class, ACPI_BUS_CLASS);
1387 }
1388
1389 break;
1390 case ACPI_BUS_TYPE_POWER:
1391 acpi_add_id(pnp, ACPI_POWER_HID);
1392 break;
1393 case ACPI_BUS_TYPE_PROCESSOR:
1394 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1395 break;
1396 case ACPI_BUS_TYPE_THERMAL:
1397 acpi_add_id(pnp, ACPI_THERMAL_HID);
1398 break;
1399 case ACPI_BUS_TYPE_POWER_BUTTON:
1400 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1401 break;
1402 case ACPI_BUS_TYPE_SLEEP_BUTTON:
1403 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1404 break;
1405 case ACPI_BUS_TYPE_ECDT_EC:
1406 acpi_add_id(pnp, ACPI_ECDT_HID);
1407 break;
1408 }
1409}
1410
1411void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1412{
1413 struct acpi_hardware_id *id, *tmp;
1414
1415 list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1416 kfree_const(id->id);
1417 kfree(id);
1418 }
1419 kfree(pnp->unique_id);
1420}
1421
1422/**
1423 * acpi_dma_supported - Check DMA support for the specified device.
1424 * @adev: The pointer to acpi device
1425 *
1426 * Return false if DMA is not supported. Otherwise, return true
1427 */
1428bool acpi_dma_supported(const struct acpi_device *adev)
1429{
1430 if (!adev)
1431 return false;
1432
1433 if (adev->flags.cca_seen)
1434 return true;
1435
1436 /*
1437 * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1438 * DMA on "Intel platforms". Presumably that includes all x86 and
1439 * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1440 */
1441 if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1442 return true;
1443
1444 return false;
1445}
1446
1447/**
1448 * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1449 * @adev: The pointer to acpi device
1450 *
1451 * Return enum dev_dma_attr.
1452 */
1453enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1454{
1455 if (!acpi_dma_supported(adev))
1456 return DEV_DMA_NOT_SUPPORTED;
1457
1458 if (adev->flags.coherent_dma)
1459 return DEV_DMA_COHERENT;
1460 else
1461 return DEV_DMA_NON_COHERENT;
1462}
1463
1464/**
1465 * acpi_dma_get_range() - Get device DMA parameters.
1466 *
1467 * @dev: device to configure
1468 * @map: pointer to DMA ranges result
1469 *
1470 * Evaluate DMA regions and return pointer to DMA regions on
1471 * parsing success; it does not update the passed in values on failure.
1472 *
1473 * Return 0 on success, < 0 on failure.
1474 */
1475int acpi_dma_get_range(struct device *dev, const struct bus_dma_region **map)
1476{
1477 struct acpi_device *adev;
1478 LIST_HEAD(list);
1479 struct resource_entry *rentry;
1480 int ret;
1481 struct device *dma_dev = dev;
1482 struct bus_dma_region *r;
1483
1484 /*
1485 * Walk the device tree chasing an ACPI companion with a _DMA
1486 * object while we go. Stop if we find a device with an ACPI
1487 * companion containing a _DMA method.
1488 */
1489 do {
1490 adev = ACPI_COMPANION(dma_dev);
1491 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1492 break;
1493
1494 dma_dev = dma_dev->parent;
1495 } while (dma_dev);
1496
1497 if (!dma_dev)
1498 return -ENODEV;
1499
1500 if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1501 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1502 return -EINVAL;
1503 }
1504
1505 ret = acpi_dev_get_dma_resources(adev, &list);
1506 if (ret > 0) {
1507 r = kcalloc(ret + 1, sizeof(*r), GFP_KERNEL);
1508 if (!r) {
1509 ret = -ENOMEM;
1510 goto out;
1511 }
1512
1513 *map = r;
1514
1515 list_for_each_entry(rentry, &list, node) {
1516 if (rentry->res->start >= rentry->res->end) {
1517 kfree(*map);
1518 *map = NULL;
1519 ret = -EINVAL;
1520 dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1521 goto out;
1522 }
1523
1524 r->cpu_start = rentry->res->start;
1525 r->dma_start = rentry->res->start - rentry->offset;
1526 r->size = resource_size(rentry->res);
1527 r->offset = rentry->offset;
1528 r++;
1529 }
1530 }
1531 out:
1532 acpi_dev_free_resource_list(&list);
1533
1534 return ret >= 0 ? 0 : ret;
1535}
1536
1537#ifdef CONFIG_IOMMU_API
1538int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1539 struct fwnode_handle *fwnode,
1540 const struct iommu_ops *ops)
1541{
1542 int ret = iommu_fwspec_init(dev, fwnode, ops);
1543
1544 if (!ret)
1545 ret = iommu_fwspec_add_ids(dev, &id, 1);
1546
1547 return ret;
1548}
1549
1550static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev)
1551{
1552 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1553
1554 return fwspec ? fwspec->ops : NULL;
1555}
1556
1557static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1558 const u32 *id_in)
1559{
1560 int err;
1561 const struct iommu_ops *ops;
1562
1563 /*
1564 * If we already translated the fwspec there is nothing left to do,
1565 * return the iommu_ops.
1566 */
1567 ops = acpi_iommu_fwspec_ops(dev);
1568 if (ops)
1569 return ops;
1570
1571 err = iort_iommu_configure_id(dev, id_in);
1572 if (err && err != -EPROBE_DEFER)
1573 err = viot_iommu_configure(dev);
1574
1575 /*
1576 * If we have reason to believe the IOMMU driver missed the initial
1577 * iommu_probe_device() call for dev, replay it to get things in order.
1578 */
1579 if (!err && dev->bus && !device_iommu_mapped(dev))
1580 err = iommu_probe_device(dev);
1581
1582 /* Ignore all other errors apart from EPROBE_DEFER */
1583 if (err == -EPROBE_DEFER) {
1584 return ERR_PTR(err);
1585 } else if (err) {
1586 dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1587 return NULL;
1588 }
1589 return acpi_iommu_fwspec_ops(dev);
1590}
1591
1592#else /* !CONFIG_IOMMU_API */
1593
1594int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1595 struct fwnode_handle *fwnode,
1596 const struct iommu_ops *ops)
1597{
1598 return -ENODEV;
1599}
1600
1601static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1602 const u32 *id_in)
1603{
1604 return NULL;
1605}
1606
1607#endif /* !CONFIG_IOMMU_API */
1608
1609/**
1610 * acpi_dma_configure_id - Set-up DMA configuration for the device.
1611 * @dev: The pointer to the device
1612 * @attr: device dma attributes
1613 * @input_id: input device id const value pointer
1614 */
1615int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1616 const u32 *input_id)
1617{
1618 const struct iommu_ops *iommu;
1619
1620 if (attr == DEV_DMA_NOT_SUPPORTED) {
1621 set_dma_ops(dev, &dma_dummy_ops);
1622 return 0;
1623 }
1624
1625 acpi_arch_dma_setup(dev);
1626
1627 iommu = acpi_iommu_configure_id(dev, input_id);
1628 if (PTR_ERR(iommu) == -EPROBE_DEFER)
1629 return -EPROBE_DEFER;
1630
1631 arch_setup_dma_ops(dev, 0, U64_MAX,
1632 iommu, attr == DEV_DMA_COHERENT);
1633
1634 return 0;
1635}
1636EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1637
1638static void acpi_init_coherency(struct acpi_device *adev)
1639{
1640 unsigned long long cca = 0;
1641 acpi_status status;
1642 struct acpi_device *parent = acpi_dev_parent(adev);
1643
1644 if (parent && parent->flags.cca_seen) {
1645 /*
1646 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1647 * already saw one.
1648 */
1649 adev->flags.cca_seen = 1;
1650 cca = parent->flags.coherent_dma;
1651 } else {
1652 status = acpi_evaluate_integer(adev->handle, "_CCA",
1653 NULL, &cca);
1654 if (ACPI_SUCCESS(status))
1655 adev->flags.cca_seen = 1;
1656 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1657 /*
1658 * If architecture does not specify that _CCA is
1659 * required for DMA-able devices (e.g. x86),
1660 * we default to _CCA=1.
1661 */
1662 cca = 1;
1663 else
1664 acpi_handle_debug(adev->handle,
1665 "ACPI device is missing _CCA.\n");
1666 }
1667
1668 adev->flags.coherent_dma = cca;
1669}
1670
1671static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1672{
1673 bool *is_serial_bus_slave_p = data;
1674
1675 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1676 return 1;
1677
1678 *is_serial_bus_slave_p = true;
1679
1680 /* no need to do more checking */
1681 return -1;
1682}
1683
1684static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1685{
1686 struct acpi_device *parent = acpi_dev_parent(device);
1687 static const struct acpi_device_id indirect_io_hosts[] = {
1688 {"HISI0191", 0},
1689 {}
1690 };
1691
1692 return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1693}
1694
1695static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1696{
1697 struct list_head resource_list;
1698 bool is_serial_bus_slave = false;
1699 static const struct acpi_device_id ignore_serial_bus_ids[] = {
1700 /*
1701 * These devices have multiple SerialBus resources and a client
1702 * device must be instantiated for each of them, each with
1703 * its own device id.
1704 * Normally we only instantiate one client device for the first
1705 * resource, using the ACPI HID as id. These special cases are handled
1706 * by the drivers/platform/x86/serial-multi-instantiate.c driver, which
1707 * knows which client device id to use for each resource.
1708 */
1709 {"BSG1160", },
1710 {"BSG2150", },
1711 {"CSC3551", },
1712 {"INT33FE", },
1713 {"INT3515", },
1714 /* Non-conforming _HID for Cirrus Logic already released */
1715 {"CLSA0100", },
1716 {"CLSA0101", },
1717 /*
1718 * Some ACPI devs contain SerialBus resources even though they are not
1719 * attached to a serial bus at all.
1720 */
1721 {"MSHW0028", },
1722 /*
1723 * HIDs of device with an UartSerialBusV2 resource for which userspace
1724 * expects a regular tty cdev to be created (instead of the in kernel
1725 * serdev) and which have a kernel driver which expects a platform_dev
1726 * such as the rfkill-gpio driver.
1727 */
1728 {"BCM4752", },
1729 {"LNV4752", },
1730 {}
1731 };
1732
1733 if (acpi_is_indirect_io_slave(device))
1734 return true;
1735
1736 /* Macs use device properties in lieu of _CRS resources */
1737 if (x86_apple_machine &&
1738 (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1739 fwnode_property_present(&device->fwnode, "i2cAddress") ||
1740 fwnode_property_present(&device->fwnode, "baud")))
1741 return true;
1742
1743 if (!acpi_match_device_ids(device, ignore_serial_bus_ids))
1744 return false;
1745
1746 INIT_LIST_HEAD(&resource_list);
1747 acpi_dev_get_resources(device, &resource_list,
1748 acpi_check_serial_bus_slave,
1749 &is_serial_bus_slave);
1750 acpi_dev_free_resource_list(&resource_list);
1751
1752 return is_serial_bus_slave;
1753}
1754
1755void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1756 int type, void (*release)(struct device *))
1757{
1758 struct acpi_device *parent = acpi_find_parent_acpi_dev(handle);
1759
1760 INIT_LIST_HEAD(&device->pnp.ids);
1761 device->device_type = type;
1762 device->handle = handle;
1763 device->dev.parent = parent ? &parent->dev : NULL;
1764 device->dev.release = release;
1765 device->dev.bus = &acpi_bus_type;
1766 fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1767 acpi_set_device_status(device, ACPI_STA_DEFAULT);
1768 acpi_device_get_busid(device);
1769 acpi_set_pnp_ids(handle, &device->pnp, type);
1770 acpi_init_properties(device);
1771 acpi_bus_get_flags(device);
1772 device->flags.match_driver = false;
1773 device->flags.initialized = true;
1774 device->flags.enumeration_by_parent =
1775 acpi_device_enumeration_by_parent(device);
1776 acpi_device_clear_enumerated(device);
1777 device_initialize(&device->dev);
1778 dev_set_uevent_suppress(&device->dev, true);
1779 acpi_init_coherency(device);
1780}
1781
1782static void acpi_scan_dep_init(struct acpi_device *adev)
1783{
1784 struct acpi_dep_data *dep;
1785
1786 list_for_each_entry(dep, &acpi_dep_list, node) {
1787 if (dep->consumer == adev->handle) {
1788 if (dep->honor_dep)
1789 adev->flags.honor_deps = 1;
1790
1791 adev->dep_unmet++;
1792 }
1793 }
1794}
1795
1796void acpi_device_add_finalize(struct acpi_device *device)
1797{
1798 dev_set_uevent_suppress(&device->dev, false);
1799 kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1800}
1801
1802static void acpi_scan_init_status(struct acpi_device *adev)
1803{
1804 if (acpi_bus_get_status(adev))
1805 acpi_set_device_status(adev, 0);
1806}
1807
1808static int acpi_add_single_object(struct acpi_device **child,
1809 acpi_handle handle, int type, bool dep_init)
1810{
1811 struct acpi_device *device;
1812 bool release_dep_lock = false;
1813 int result;
1814
1815 device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1816 if (!device)
1817 return -ENOMEM;
1818
1819 acpi_init_device_object(device, handle, type, acpi_device_release);
1820 /*
1821 * Getting the status is delayed till here so that we can call
1822 * acpi_bus_get_status() and use its quirk handling. Note that
1823 * this must be done before the get power-/wakeup_dev-flags calls.
1824 */
1825 if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1826 if (dep_init) {
1827 mutex_lock(&acpi_dep_list_lock);
1828 /*
1829 * Hold the lock until the acpi_tie_acpi_dev() call
1830 * below to prevent concurrent acpi_scan_clear_dep()
1831 * from deleting a dependency list entry without
1832 * updating dep_unmet for the device.
1833 */
1834 release_dep_lock = true;
1835 acpi_scan_dep_init(device);
1836 }
1837 acpi_scan_init_status(device);
1838 }
1839
1840 acpi_bus_get_power_flags(device);
1841 acpi_bus_get_wakeup_device_flags(device);
1842
1843 result = acpi_tie_acpi_dev(device);
1844
1845 if (release_dep_lock)
1846 mutex_unlock(&acpi_dep_list_lock);
1847
1848 if (!result)
1849 result = acpi_device_add(device);
1850
1851 if (result) {
1852 acpi_device_release(&device->dev);
1853 return result;
1854 }
1855
1856 acpi_power_add_remove_device(device, true);
1857 acpi_device_add_finalize(device);
1858
1859 acpi_handle_debug(handle, "Added as %s, parent %s\n",
1860 dev_name(&device->dev), device->dev.parent ?
1861 dev_name(device->dev.parent) : "(null)");
1862
1863 *child = device;
1864 return 0;
1865}
1866
1867static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1868 void *context)
1869{
1870 struct resource *res = context;
1871
1872 if (acpi_dev_resource_memory(ares, res))
1873 return AE_CTRL_TERMINATE;
1874
1875 return AE_OK;
1876}
1877
1878static bool acpi_device_should_be_hidden(acpi_handle handle)
1879{
1880 acpi_status status;
1881 struct resource res;
1882
1883 /* Check if it should ignore the UART device */
1884 if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1885 return false;
1886
1887 /*
1888 * The UART device described in SPCR table is assumed to have only one
1889 * memory resource present. So we only look for the first one here.
1890 */
1891 status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1892 acpi_get_resource_memory, &res);
1893 if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1894 return false;
1895
1896 acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1897 &res.start);
1898
1899 return true;
1900}
1901
1902bool acpi_device_is_present(const struct acpi_device *adev)
1903{
1904 return adev->status.present || adev->status.functional;
1905}
1906
1907static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1908 const char *idstr,
1909 const struct acpi_device_id **matchid)
1910{
1911 const struct acpi_device_id *devid;
1912
1913 if (handler->match)
1914 return handler->match(idstr, matchid);
1915
1916 for (devid = handler->ids; devid->id[0]; devid++)
1917 if (!strcmp((char *)devid->id, idstr)) {
1918 if (matchid)
1919 *matchid = devid;
1920
1921 return true;
1922 }
1923
1924 return false;
1925}
1926
1927static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1928 const struct acpi_device_id **matchid)
1929{
1930 struct acpi_scan_handler *handler;
1931
1932 list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1933 if (acpi_scan_handler_matching(handler, idstr, matchid))
1934 return handler;
1935
1936 return NULL;
1937}
1938
1939void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
1940{
1941 if (!!hotplug->enabled == !!val)
1942 return;
1943
1944 mutex_lock(&acpi_scan_lock);
1945
1946 hotplug->enabled = val;
1947
1948 mutex_unlock(&acpi_scan_lock);
1949}
1950
1951static void acpi_scan_init_hotplug(struct acpi_device *adev)
1952{
1953 struct acpi_hardware_id *hwid;
1954
1955 if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
1956 acpi_dock_add(adev);
1957 return;
1958 }
1959 list_for_each_entry(hwid, &adev->pnp.ids, list) {
1960 struct acpi_scan_handler *handler;
1961
1962 handler = acpi_scan_match_handler(hwid->id, NULL);
1963 if (handler) {
1964 adev->flags.hotplug_notify = true;
1965 break;
1966 }
1967 }
1968}
1969
1970static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep)
1971{
1972 struct acpi_handle_list dep_devices;
1973 acpi_status status;
1974 u32 count;
1975 int i;
1976
1977 /*
1978 * Check for _HID here to avoid deferring the enumeration of:
1979 * 1. PCI devices.
1980 * 2. ACPI nodes describing USB ports.
1981 * Still, checking for _HID catches more then just these cases ...
1982 */
1983 if (!check_dep || !acpi_has_method(handle, "_DEP") ||
1984 !acpi_has_method(handle, "_HID"))
1985 return 0;
1986
1987 status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices);
1988 if (ACPI_FAILURE(status)) {
1989 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
1990 return 0;
1991 }
1992
1993 for (count = 0, i = 0; i < dep_devices.count; i++) {
1994 struct acpi_device_info *info;
1995 struct acpi_dep_data *dep;
1996 bool skip, honor_dep;
1997
1998 status = acpi_get_object_info(dep_devices.handles[i], &info);
1999 if (ACPI_FAILURE(status)) {
2000 acpi_handle_debug(handle, "Error reading _DEP device info\n");
2001 continue;
2002 }
2003
2004 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
2005 honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids);
2006 kfree(info);
2007
2008 if (skip)
2009 continue;
2010
2011 dep = kzalloc(sizeof(*dep), GFP_KERNEL);
2012 if (!dep)
2013 continue;
2014
2015 count++;
2016
2017 dep->supplier = dep_devices.handles[i];
2018 dep->consumer = handle;
2019 dep->honor_dep = honor_dep;
2020
2021 mutex_lock(&acpi_dep_list_lock);
2022 list_add_tail(&dep->node , &acpi_dep_list);
2023 mutex_unlock(&acpi_dep_list_lock);
2024 }
2025
2026 return count;
2027}
2028
2029static bool acpi_bus_scan_second_pass;
2030
2031static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep,
2032 struct acpi_device **adev_p)
2033{
2034 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
2035 acpi_object_type acpi_type;
2036 int type;
2037
2038 if (device)
2039 goto out;
2040
2041 if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2042 return AE_OK;
2043
2044 switch (acpi_type) {
2045 case ACPI_TYPE_DEVICE:
2046 if (acpi_device_should_be_hidden(handle))
2047 return AE_OK;
2048
2049 /* Bail out if there are dependencies. */
2050 if (acpi_scan_check_dep(handle, check_dep) > 0) {
2051 acpi_bus_scan_second_pass = true;
2052 return AE_CTRL_DEPTH;
2053 }
2054
2055 fallthrough;
2056 case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */
2057 type = ACPI_BUS_TYPE_DEVICE;
2058 break;
2059
2060 case ACPI_TYPE_PROCESSOR:
2061 type = ACPI_BUS_TYPE_PROCESSOR;
2062 break;
2063
2064 case ACPI_TYPE_THERMAL:
2065 type = ACPI_BUS_TYPE_THERMAL;
2066 break;
2067
2068 case ACPI_TYPE_POWER:
2069 acpi_add_power_resource(handle);
2070 fallthrough;
2071 default:
2072 return AE_OK;
2073 }
2074
2075 /*
2076 * If check_dep is true at this point, the device has no dependencies,
2077 * or the creation of the device object would have been postponed above.
2078 */
2079 acpi_add_single_object(&device, handle, type, !check_dep);
2080 if (!device)
2081 return AE_CTRL_DEPTH;
2082
2083 acpi_scan_init_hotplug(device);
2084
2085out:
2086 if (!*adev_p)
2087 *adev_p = device;
2088
2089 return AE_OK;
2090}
2091
2092static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2093 void *not_used, void **ret_p)
2094{
2095 return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2096}
2097
2098static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2099 void *not_used, void **ret_p)
2100{
2101 return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2102}
2103
2104static void acpi_default_enumeration(struct acpi_device *device)
2105{
2106 /*
2107 * Do not enumerate devices with enumeration_by_parent flag set as
2108 * they will be enumerated by their respective parents.
2109 */
2110 if (!device->flags.enumeration_by_parent) {
2111 acpi_create_platform_device(device, NULL);
2112 acpi_device_set_enumerated(device);
2113 } else {
2114 blocking_notifier_call_chain(&acpi_reconfig_chain,
2115 ACPI_RECONFIG_DEVICE_ADD, device);
2116 }
2117}
2118
2119static const struct acpi_device_id generic_device_ids[] = {
2120 {ACPI_DT_NAMESPACE_HID, },
2121 {"", },
2122};
2123
2124static int acpi_generic_device_attach(struct acpi_device *adev,
2125 const struct acpi_device_id *not_used)
2126{
2127 /*
2128 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2129 * below can be unconditional.
2130 */
2131 if (adev->data.of_compatible)
2132 acpi_default_enumeration(adev);
2133
2134 return 1;
2135}
2136
2137static struct acpi_scan_handler generic_device_handler = {
2138 .ids = generic_device_ids,
2139 .attach = acpi_generic_device_attach,
2140};
2141
2142static int acpi_scan_attach_handler(struct acpi_device *device)
2143{
2144 struct acpi_hardware_id *hwid;
2145 int ret = 0;
2146
2147 list_for_each_entry(hwid, &device->pnp.ids, list) {
2148 const struct acpi_device_id *devid;
2149 struct acpi_scan_handler *handler;
2150
2151 handler = acpi_scan_match_handler(hwid->id, &devid);
2152 if (handler) {
2153 if (!handler->attach) {
2154 device->pnp.type.platform_id = 0;
2155 continue;
2156 }
2157 device->handler = handler;
2158 ret = handler->attach(device, devid);
2159 if (ret > 0)
2160 break;
2161
2162 device->handler = NULL;
2163 if (ret < 0)
2164 break;
2165 }
2166 }
2167
2168 return ret;
2169}
2170
2171static int acpi_bus_attach(struct acpi_device *device, void *first_pass)
2172{
2173 bool skip = !first_pass && device->flags.visited;
2174 acpi_handle ejd;
2175 int ret;
2176
2177 if (skip)
2178 goto ok;
2179
2180 if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2181 register_dock_dependent_device(device, ejd);
2182
2183 acpi_bus_get_status(device);
2184 /* Skip devices that are not ready for enumeration (e.g. not present) */
2185 if (!acpi_dev_ready_for_enumeration(device)) {
2186 device->flags.initialized = false;
2187 acpi_device_clear_enumerated(device);
2188 device->flags.power_manageable = 0;
2189 return 0;
2190 }
2191 if (device->handler)
2192 goto ok;
2193
2194 if (!device->flags.initialized) {
2195 device->flags.power_manageable =
2196 device->power.states[ACPI_STATE_D0].flags.valid;
2197 if (acpi_bus_init_power(device))
2198 device->flags.power_manageable = 0;
2199
2200 device->flags.initialized = true;
2201 } else if (device->flags.visited) {
2202 goto ok;
2203 }
2204
2205 ret = acpi_scan_attach_handler(device);
2206 if (ret < 0)
2207 return 0;
2208
2209 device->flags.match_driver = true;
2210 if (ret > 0 && !device->flags.enumeration_by_parent) {
2211 acpi_device_set_enumerated(device);
2212 goto ok;
2213 }
2214
2215 ret = device_attach(&device->dev);
2216 if (ret < 0)
2217 return 0;
2218
2219 if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2220 acpi_default_enumeration(device);
2221 else
2222 acpi_device_set_enumerated(device);
2223
2224ok:
2225 acpi_dev_for_each_child(device, acpi_bus_attach, first_pass);
2226
2227 if (!skip && device->handler && device->handler->hotplug.notify_online)
2228 device->handler->hotplug.notify_online(device);
2229
2230 return 0;
2231}
2232
2233static int acpi_dev_get_next_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2234{
2235 struct acpi_device **adev_p = data;
2236 struct acpi_device *adev = *adev_p;
2237
2238 /*
2239 * If we're passed a 'previous' consumer device then we need to skip
2240 * any consumers until we meet the previous one, and then NULL @data
2241 * so the next one can be returned.
2242 */
2243 if (adev) {
2244 if (dep->consumer == adev->handle)
2245 *adev_p = NULL;
2246
2247 return 0;
2248 }
2249
2250 adev = acpi_get_acpi_dev(dep->consumer);
2251 if (adev) {
2252 *(struct acpi_device **)data = adev;
2253 return 1;
2254 }
2255 /* Continue parsing if the device object is not present. */
2256 return 0;
2257}
2258
2259struct acpi_scan_clear_dep_work {
2260 struct work_struct work;
2261 struct acpi_device *adev;
2262};
2263
2264static void acpi_scan_clear_dep_fn(struct work_struct *work)
2265{
2266 struct acpi_scan_clear_dep_work *cdw;
2267
2268 cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
2269
2270 acpi_scan_lock_acquire();
2271 acpi_bus_attach(cdw->adev, (void *)true);
2272 acpi_scan_lock_release();
2273
2274 acpi_dev_put(cdw->adev);
2275 kfree(cdw);
2276}
2277
2278static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2279{
2280 struct acpi_scan_clear_dep_work *cdw;
2281
2282 if (adev->dep_unmet)
2283 return false;
2284
2285 cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
2286 if (!cdw)
2287 return false;
2288
2289 cdw->adev = adev;
2290 INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
2291 /*
2292 * Since the work function may block on the lock until the entire
2293 * initial enumeration of devices is complete, put it into the unbound
2294 * workqueue.
2295 */
2296 queue_work(system_unbound_wq, &cdw->work);
2297
2298 return true;
2299}
2300
2301static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2302{
2303 struct acpi_device *adev = acpi_get_acpi_dev(dep->consumer);
2304
2305 if (adev) {
2306 adev->dep_unmet--;
2307 if (!acpi_scan_clear_dep_queue(adev))
2308 acpi_dev_put(adev);
2309 }
2310
2311 list_del(&dep->node);
2312 kfree(dep);
2313
2314 return 0;
2315}
2316
2317/**
2318 * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2319 * @handle: The ACPI handle of the supplier device
2320 * @callback: Pointer to the callback function to apply
2321 * @data: Pointer to some data to pass to the callback
2322 *
2323 * The return value of the callback determines this function's behaviour. If 0
2324 * is returned we continue to iterate over acpi_dep_list. If a positive value
2325 * is returned then the loop is broken but this function returns 0. If a
2326 * negative value is returned by the callback then the loop is broken and that
2327 * value is returned as the final error.
2328 */
2329static int acpi_walk_dep_device_list(acpi_handle handle,
2330 int (*callback)(struct acpi_dep_data *, void *),
2331 void *data)
2332{
2333 struct acpi_dep_data *dep, *tmp;
2334 int ret = 0;
2335
2336 mutex_lock(&acpi_dep_list_lock);
2337 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2338 if (dep->supplier == handle) {
2339 ret = callback(dep, data);
2340 if (ret)
2341 break;
2342 }
2343 }
2344 mutex_unlock(&acpi_dep_list_lock);
2345
2346 return ret > 0 ? 0 : ret;
2347}
2348
2349/**
2350 * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2351 * @supplier: Pointer to the supplier &struct acpi_device
2352 *
2353 * Clear dependencies on the given device.
2354 */
2355void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2356{
2357 acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2358}
2359EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2360
2361/**
2362 * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration
2363 * @device: Pointer to the &struct acpi_device to check
2364 *
2365 * Check if the device is present and has no unmet dependencies.
2366 *
2367 * Return true if the device is ready for enumeratino. Otherwise, return false.
2368 */
2369bool acpi_dev_ready_for_enumeration(const struct acpi_device *device)
2370{
2371 if (device->flags.honor_deps && device->dep_unmet)
2372 return false;
2373
2374 return acpi_device_is_present(device);
2375}
2376EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration);
2377
2378/**
2379 * acpi_dev_get_next_consumer_dev - Return the next adev dependent on @supplier
2380 * @supplier: Pointer to the dependee device
2381 * @start: Pointer to the current dependent device
2382 *
2383 * Returns the next &struct acpi_device which declares itself dependent on
2384 * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2385 *
2386 * If the returned adev is not passed as @start to this function, the caller is
2387 * responsible for putting the reference to adev when it is no longer needed.
2388 */
2389struct acpi_device *acpi_dev_get_next_consumer_dev(struct acpi_device *supplier,
2390 struct acpi_device *start)
2391{
2392 struct acpi_device *adev = start;
2393
2394 acpi_walk_dep_device_list(supplier->handle,
2395 acpi_dev_get_next_consumer_dev_cb, &adev);
2396
2397 acpi_dev_put(start);
2398
2399 if (adev == start)
2400 return NULL;
2401
2402 return adev;
2403}
2404EXPORT_SYMBOL_GPL(acpi_dev_get_next_consumer_dev);
2405
2406/**
2407 * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2408 * @handle: Root of the namespace scope to scan.
2409 *
2410 * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2411 * found devices.
2412 *
2413 * If no devices were found, -ENODEV is returned, but it does not mean that
2414 * there has been a real error. There just have been no suitable ACPI objects
2415 * in the table trunk from which the kernel could create a device and add an
2416 * appropriate driver.
2417 *
2418 * Must be called under acpi_scan_lock.
2419 */
2420int acpi_bus_scan(acpi_handle handle)
2421{
2422 struct acpi_device *device = NULL;
2423
2424 acpi_bus_scan_second_pass = false;
2425
2426 /* Pass 1: Avoid enumerating devices with missing dependencies. */
2427
2428 if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2429 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2430 acpi_bus_check_add_1, NULL, NULL,
2431 (void **)&device);
2432
2433 if (!device)
2434 return -ENODEV;
2435
2436 acpi_bus_attach(device, (void *)true);
2437
2438 if (!acpi_bus_scan_second_pass)
2439 return 0;
2440
2441 /* Pass 2: Enumerate all of the remaining devices. */
2442
2443 device = NULL;
2444
2445 if (ACPI_SUCCESS(acpi_bus_check_add(handle, false, &device)))
2446 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2447 acpi_bus_check_add_2, NULL, NULL,
2448 (void **)&device);
2449
2450 acpi_bus_attach(device, NULL);
2451
2452 return 0;
2453}
2454EXPORT_SYMBOL(acpi_bus_scan);
2455
2456static int acpi_bus_trim_one(struct acpi_device *adev, void *not_used)
2457{
2458 struct acpi_scan_handler *handler = adev->handler;
2459
2460 acpi_dev_for_each_child_reverse(adev, acpi_bus_trim_one, NULL);
2461
2462 adev->flags.match_driver = false;
2463 if (handler) {
2464 if (handler->detach)
2465 handler->detach(adev);
2466
2467 adev->handler = NULL;
2468 } else {
2469 device_release_driver(&adev->dev);
2470 }
2471 /*
2472 * Most likely, the device is going away, so put it into D3cold before
2473 * that.
2474 */
2475 acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
2476 adev->flags.initialized = false;
2477 acpi_device_clear_enumerated(adev);
2478
2479 return 0;
2480}
2481
2482/**
2483 * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2484 * @adev: Root of the ACPI namespace scope to walk.
2485 *
2486 * Must be called under acpi_scan_lock.
2487 */
2488void acpi_bus_trim(struct acpi_device *adev)
2489{
2490 acpi_bus_trim_one(adev, NULL);
2491}
2492EXPORT_SYMBOL_GPL(acpi_bus_trim);
2493
2494int acpi_bus_register_early_device(int type)
2495{
2496 struct acpi_device *device = NULL;
2497 int result;
2498
2499 result = acpi_add_single_object(&device, NULL, type, false);
2500 if (result)
2501 return result;
2502
2503 device->flags.match_driver = true;
2504 return device_attach(&device->dev);
2505}
2506EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2507
2508static void acpi_bus_scan_fixed(void)
2509{
2510 if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2511 struct acpi_device *adev = NULL;
2512
2513 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_POWER_BUTTON,
2514 false);
2515 if (adev) {
2516 adev->flags.match_driver = true;
2517 if (device_attach(&adev->dev) >= 0)
2518 device_init_wakeup(&adev->dev, true);
2519 else
2520 dev_dbg(&adev->dev, "No driver\n");
2521 }
2522 }
2523
2524 if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2525 struct acpi_device *adev = NULL;
2526
2527 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON,
2528 false);
2529 if (adev) {
2530 adev->flags.match_driver = true;
2531 if (device_attach(&adev->dev) < 0)
2532 dev_dbg(&adev->dev, "No driver\n");
2533 }
2534 }
2535}
2536
2537static void __init acpi_get_spcr_uart_addr(void)
2538{
2539 acpi_status status;
2540 struct acpi_table_spcr *spcr_ptr;
2541
2542 status = acpi_get_table(ACPI_SIG_SPCR, 0,
2543 (struct acpi_table_header **)&spcr_ptr);
2544 if (ACPI_FAILURE(status)) {
2545 pr_warn("STAO table present, but SPCR is missing\n");
2546 return;
2547 }
2548
2549 spcr_uart_addr = spcr_ptr->serial_port.address;
2550 acpi_put_table((struct acpi_table_header *)spcr_ptr);
2551}
2552
2553static bool acpi_scan_initialized;
2554
2555void __init acpi_scan_init(void)
2556{
2557 acpi_status status;
2558 struct acpi_table_stao *stao_ptr;
2559
2560 acpi_pci_root_init();
2561 acpi_pci_link_init();
2562 acpi_processor_init();
2563 acpi_platform_init();
2564 acpi_lpss_init();
2565 acpi_apd_init();
2566 acpi_cmos_rtc_init();
2567 acpi_container_init();
2568 acpi_memory_hotplug_init();
2569 acpi_watchdog_init();
2570 acpi_pnp_init();
2571 acpi_int340x_thermal_init();
2572 acpi_amba_init();
2573 acpi_init_lpit();
2574
2575 acpi_scan_add_handler(&generic_device_handler);
2576
2577 /*
2578 * If there is STAO table, check whether it needs to ignore the UART
2579 * device in SPCR table.
2580 */
2581 status = acpi_get_table(ACPI_SIG_STAO, 0,
2582 (struct acpi_table_header **)&stao_ptr);
2583 if (ACPI_SUCCESS(status)) {
2584 if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2585 pr_info("STAO Name List not yet supported.\n");
2586
2587 if (stao_ptr->ignore_uart)
2588 acpi_get_spcr_uart_addr();
2589
2590 acpi_put_table((struct acpi_table_header *)stao_ptr);
2591 }
2592
2593 acpi_gpe_apply_masked_gpes();
2594 acpi_update_all_gpes();
2595
2596 /*
2597 * Although we call __add_memory() that is documented to require the
2598 * device_hotplug_lock, it is not necessary here because this is an
2599 * early code when userspace or any other code path cannot trigger
2600 * hotplug/hotunplug operations.
2601 */
2602 mutex_lock(&acpi_scan_lock);
2603 /*
2604 * Enumerate devices in the ACPI namespace.
2605 */
2606 if (acpi_bus_scan(ACPI_ROOT_OBJECT))
2607 goto unlock;
2608
2609 acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT);
2610 if (!acpi_root)
2611 goto unlock;
2612
2613 /* Fixed feature devices do not exist on HW-reduced platform */
2614 if (!acpi_gbl_reduced_hardware)
2615 acpi_bus_scan_fixed();
2616
2617 acpi_turn_off_unused_power_resources();
2618
2619 acpi_scan_initialized = true;
2620
2621unlock:
2622 mutex_unlock(&acpi_scan_lock);
2623}
2624
2625static struct acpi_probe_entry *ape;
2626static int acpi_probe_count;
2627static DEFINE_MUTEX(acpi_probe_mutex);
2628
2629static int __init acpi_match_madt(union acpi_subtable_headers *header,
2630 const unsigned long end)
2631{
2632 if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2633 if (!ape->probe_subtbl(header, end))
2634 acpi_probe_count++;
2635
2636 return 0;
2637}
2638
2639int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2640{
2641 int count = 0;
2642
2643 if (acpi_disabled)
2644 return 0;
2645
2646 mutex_lock(&acpi_probe_mutex);
2647 for (ape = ap_head; nr; ape++, nr--) {
2648 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2649 acpi_probe_count = 0;
2650 acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2651 count += acpi_probe_count;
2652 } else {
2653 int res;
2654 res = acpi_table_parse(ape->id, ape->probe_table);
2655 if (!res)
2656 count++;
2657 }
2658 }
2659 mutex_unlock(&acpi_probe_mutex);
2660
2661 return count;
2662}
2663
2664static void acpi_table_events_fn(struct work_struct *work)
2665{
2666 acpi_scan_lock_acquire();
2667 acpi_bus_scan(ACPI_ROOT_OBJECT);
2668 acpi_scan_lock_release();
2669
2670 kfree(work);
2671}
2672
2673void acpi_scan_table_notify(void)
2674{
2675 struct work_struct *work;
2676
2677 if (!acpi_scan_initialized)
2678 return;
2679
2680 work = kmalloc(sizeof(*work), GFP_KERNEL);
2681 if (!work)
2682 return;
2683
2684 INIT_WORK(work, acpi_table_events_fn);
2685 schedule_work(work);
2686}
2687
2688int acpi_reconfig_notifier_register(struct notifier_block *nb)
2689{
2690 return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2691}
2692EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2693
2694int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2695{
2696 return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2697}
2698EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);