| 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | /* |
| 3 | * processor_idle - idle state submodule to the ACPI processor driver |
| 4 | * |
| 5 | * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> |
| 6 | * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> |
| 7 | * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de> |
| 8 | * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> |
| 9 | * - Added processor hotplug support |
| 10 | * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> |
| 11 | * - Added support for C3 on SMP |
| 12 | */ |
| 13 | #define pr_fmt(fmt) "ACPI: " fmt |
| 14 | |
| 15 | #include <linux/module.h> |
| 16 | #include <linux/acpi.h> |
| 17 | #include <linux/dmi.h> |
| 18 | #include <linux/sched.h> /* need_resched() */ |
| 19 | #include <linux/tick.h> |
| 20 | #include <linux/cpuidle.h> |
| 21 | #include <linux/cpu.h> |
| 22 | #include <linux/minmax.h> |
| 23 | #include <linux/perf_event.h> |
| 24 | #include <acpi/processor.h> |
| 25 | #include <linux/context_tracking.h> |
| 26 | |
| 27 | #include "internal.h" |
| 28 | |
| 29 | /* |
| 30 | * Include the apic definitions for x86 to have the APIC timer related defines |
| 31 | * available also for UP (on SMP it gets magically included via linux/smp.h). |
| 32 | * asm/acpi.h is not an option, as it would require more include magic. Also |
| 33 | * creating an empty asm-ia64/apic.h would just trade pest vs. cholera. |
| 34 | */ |
| 35 | #ifdef CONFIG_X86 |
| 36 | #include <asm/apic.h> |
| 37 | #include <asm/cpu.h> |
| 38 | #endif |
| 39 | |
| 40 | #define ACPI_IDLE_STATE_START (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0) |
| 41 | |
| 42 | static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER; |
| 43 | module_param(max_cstate, uint, 0400); |
| 44 | static bool nocst __read_mostly; |
| 45 | module_param(nocst, bool, 0400); |
| 46 | static bool bm_check_disable __read_mostly; |
| 47 | module_param(bm_check_disable, bool, 0400); |
| 48 | |
| 49 | static unsigned int latency_factor __read_mostly = 2; |
| 50 | module_param(latency_factor, uint, 0644); |
| 51 | |
| 52 | static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device); |
| 53 | |
| 54 | struct cpuidle_driver acpi_idle_driver = { |
| 55 | .name = "acpi_idle", |
| 56 | .owner = THIS_MODULE, |
| 57 | }; |
| 58 | |
| 59 | #ifdef CONFIG_ACPI_PROCESSOR_CSTATE |
| 60 | void acpi_idle_rescan_dead_smt_siblings(void) |
| 61 | { |
| 62 | if (cpuidle_get_driver() == &acpi_idle_driver) |
| 63 | arch_cpu_rescan_dead_smt_siblings(); |
| 64 | } |
| 65 | |
| 66 | static |
| 67 | DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate); |
| 68 | |
| 69 | static int disabled_by_idle_boot_param(void) |
| 70 | { |
| 71 | return boot_option_idle_override == IDLE_POLL || |
| 72 | boot_option_idle_override == IDLE_HALT; |
| 73 | } |
| 74 | |
| 75 | /* |
| 76 | * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3. |
| 77 | * For now disable this. Probably a bug somewhere else. |
| 78 | * |
| 79 | * To skip this limit, boot/load with a large max_cstate limit. |
| 80 | */ |
| 81 | static int set_max_cstate(const struct dmi_system_id *id) |
| 82 | { |
| 83 | if (max_cstate > ACPI_PROCESSOR_MAX_POWER) |
| 84 | return 0; |
| 85 | |
| 86 | pr_notice("%s detected - limiting to C%ld max_cstate." |
| 87 | " Override with \"processor.max_cstate=%d\"\n", id->ident, |
| 88 | (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1); |
| 89 | |
| 90 | max_cstate = (long)id->driver_data; |
| 91 | |
| 92 | return 0; |
| 93 | } |
| 94 | |
| 95 | static const struct dmi_system_id processor_power_dmi_table[] = { |
| 96 | { set_max_cstate, "Clevo 5600D", { |
| 97 | DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"), |
| 98 | DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")}, |
| 99 | (void *)2}, |
| 100 | { set_max_cstate, "Pavilion zv5000", { |
| 101 | DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"), |
| 102 | DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")}, |
| 103 | (void *)1}, |
| 104 | { set_max_cstate, "Asus L8400B", { |
| 105 | DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."), |
| 106 | DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")}, |
| 107 | (void *)1}, |
| 108 | {}, |
| 109 | }; |
| 110 | |
| 111 | |
| 112 | /* |
| 113 | * Callers should disable interrupts before the call and enable |
| 114 | * interrupts after return. |
| 115 | */ |
| 116 | static void __cpuidle acpi_safe_halt(void) |
| 117 | { |
| 118 | if (!tif_need_resched()) { |
| 119 | raw_safe_halt(); |
| 120 | raw_local_irq_disable(); |
| 121 | } |
| 122 | } |
| 123 | |
| 124 | #ifdef ARCH_APICTIMER_STOPS_ON_C3 |
| 125 | |
| 126 | /* |
| 127 | * Some BIOS implementations switch to C3 in the published C2 state. |
| 128 | * This seems to be a common problem on AMD boxen, but other vendors |
| 129 | * are affected too. We pick the most conservative approach: we assume |
| 130 | * that the local APIC stops in both C2 and C3. |
| 131 | */ |
| 132 | static void lapic_timer_check_state(int state, struct acpi_processor *pr, |
| 133 | struct acpi_processor_cx *cx) |
| 134 | { |
| 135 | struct acpi_processor_power *pwr = &pr->power; |
| 136 | u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2; |
| 137 | |
| 138 | if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT)) |
| 139 | return; |
| 140 | |
| 141 | if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) |
| 142 | type = ACPI_STATE_C1; |
| 143 | |
| 144 | /* |
| 145 | * Check, if one of the previous states already marked the lapic |
| 146 | * unstable |
| 147 | */ |
| 148 | if (pwr->timer_broadcast_on_state < state) |
| 149 | return; |
| 150 | |
| 151 | if (cx->type >= type) |
| 152 | pr->power.timer_broadcast_on_state = state; |
| 153 | } |
| 154 | |
| 155 | static void __lapic_timer_propagate_broadcast(void *arg) |
| 156 | { |
| 157 | struct acpi_processor *pr = arg; |
| 158 | |
| 159 | if (pr->power.timer_broadcast_on_state < INT_MAX) |
| 160 | tick_broadcast_enable(); |
| 161 | else |
| 162 | tick_broadcast_disable(); |
| 163 | } |
| 164 | |
| 165 | static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) |
| 166 | { |
| 167 | smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast, |
| 168 | (void *)pr, 1); |
| 169 | } |
| 170 | |
| 171 | /* Power(C) State timer broadcast control */ |
| 172 | static bool lapic_timer_needs_broadcast(struct acpi_processor *pr, |
| 173 | struct acpi_processor_cx *cx) |
| 174 | { |
| 175 | return cx - pr->power.states >= pr->power.timer_broadcast_on_state; |
| 176 | } |
| 177 | |
| 178 | #else |
| 179 | |
| 180 | static void lapic_timer_check_state(int state, struct acpi_processor *pr, |
| 181 | struct acpi_processor_cx *cstate) { } |
| 182 | static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { } |
| 183 | |
| 184 | static bool lapic_timer_needs_broadcast(struct acpi_processor *pr, |
| 185 | struct acpi_processor_cx *cx) |
| 186 | { |
| 187 | return false; |
| 188 | } |
| 189 | |
| 190 | #endif |
| 191 | |
| 192 | #if defined(CONFIG_X86) |
| 193 | static void tsc_check_state(int state) |
| 194 | { |
| 195 | switch (boot_cpu_data.x86_vendor) { |
| 196 | case X86_VENDOR_HYGON: |
| 197 | case X86_VENDOR_AMD: |
| 198 | case X86_VENDOR_INTEL: |
| 199 | case X86_VENDOR_CENTAUR: |
| 200 | case X86_VENDOR_ZHAOXIN: |
| 201 | /* |
| 202 | * AMD Fam10h TSC will tick in all |
| 203 | * C/P/S0/S1 states when this bit is set. |
| 204 | */ |
| 205 | if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) |
| 206 | return; |
| 207 | fallthrough; |
| 208 | default: |
| 209 | /* TSC could halt in idle, so notify users */ |
| 210 | if (state > ACPI_STATE_C1) |
| 211 | mark_tsc_unstable("TSC halts in idle"); |
| 212 | } |
| 213 | } |
| 214 | #else |
| 215 | static void tsc_check_state(int state) { return; } |
| 216 | #endif |
| 217 | |
| 218 | static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr) |
| 219 | { |
| 220 | |
| 221 | if (!pr->pblk) |
| 222 | return -ENODEV; |
| 223 | |
| 224 | /* if info is obtained from pblk/fadt, type equals state */ |
| 225 | pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2; |
| 226 | pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3; |
| 227 | |
| 228 | #ifndef CONFIG_HOTPLUG_CPU |
| 229 | /* |
| 230 | * Check for P_LVL2_UP flag before entering C2 and above on |
| 231 | * an SMP system. |
| 232 | */ |
| 233 | if ((num_online_cpus() > 1) && |
| 234 | !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) |
| 235 | return -ENODEV; |
| 236 | #endif |
| 237 | |
| 238 | /* determine C2 and C3 address from pblk */ |
| 239 | pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4; |
| 240 | pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5; |
| 241 | |
| 242 | /* determine latencies from FADT */ |
| 243 | pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency; |
| 244 | pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency; |
| 245 | |
| 246 | /* |
| 247 | * FADT specified C2 latency must be less than or equal to |
| 248 | * 100 microseconds. |
| 249 | */ |
| 250 | if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) { |
| 251 | acpi_handle_debug(pr->handle, "C2 latency too large [%d]\n", |
| 252 | acpi_gbl_FADT.c2_latency); |
| 253 | /* invalidate C2 */ |
| 254 | pr->power.states[ACPI_STATE_C2].address = 0; |
| 255 | } |
| 256 | |
| 257 | /* |
| 258 | * FADT supplied C3 latency must be less than or equal to |
| 259 | * 1000 microseconds. |
| 260 | */ |
| 261 | if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) { |
| 262 | acpi_handle_debug(pr->handle, "C3 latency too large [%d]\n", |
| 263 | acpi_gbl_FADT.c3_latency); |
| 264 | /* invalidate C3 */ |
| 265 | pr->power.states[ACPI_STATE_C3].address = 0; |
| 266 | } |
| 267 | |
| 268 | acpi_handle_debug(pr->handle, "lvl2[0x%08x] lvl3[0x%08x]\n", |
| 269 | pr->power.states[ACPI_STATE_C2].address, |
| 270 | pr->power.states[ACPI_STATE_C3].address); |
| 271 | |
| 272 | snprintf(pr->power.states[ACPI_STATE_C2].desc, |
| 273 | ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x", |
| 274 | pr->power.states[ACPI_STATE_C2].address); |
| 275 | snprintf(pr->power.states[ACPI_STATE_C3].desc, |
| 276 | ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x", |
| 277 | pr->power.states[ACPI_STATE_C3].address); |
| 278 | |
| 279 | if (!pr->power.states[ACPI_STATE_C2].address && |
| 280 | !pr->power.states[ACPI_STATE_C3].address) |
| 281 | return -ENODEV; |
| 282 | |
| 283 | return 0; |
| 284 | } |
| 285 | |
| 286 | static int acpi_processor_get_power_info_default(struct acpi_processor *pr) |
| 287 | { |
| 288 | if (!pr->power.states[ACPI_STATE_C1].valid) { |
| 289 | /* set the first C-State to C1 */ |
| 290 | /* all processors need to support C1 */ |
| 291 | pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1; |
| 292 | pr->power.states[ACPI_STATE_C1].valid = 1; |
| 293 | pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT; |
| 294 | |
| 295 | snprintf(pr->power.states[ACPI_STATE_C1].desc, |
| 296 | ACPI_CX_DESC_LEN, "ACPI HLT"); |
| 297 | } |
| 298 | /* the C0 state only exists as a filler in our array */ |
| 299 | pr->power.states[ACPI_STATE_C0].valid = 1; |
| 300 | return 0; |
| 301 | } |
| 302 | |
| 303 | static int acpi_processor_get_power_info_cst(struct acpi_processor *pr) |
| 304 | { |
| 305 | int ret; |
| 306 | |
| 307 | if (nocst) |
| 308 | return -ENODEV; |
| 309 | |
| 310 | ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power); |
| 311 | if (ret) |
| 312 | return ret; |
| 313 | |
| 314 | if (!pr->power.count) |
| 315 | return -EFAULT; |
| 316 | |
| 317 | pr->flags.has_cst = 1; |
| 318 | return 0; |
| 319 | } |
| 320 | |
| 321 | static void acpi_processor_power_verify_c3(struct acpi_processor *pr, |
| 322 | struct acpi_processor_cx *cx) |
| 323 | { |
| 324 | static int bm_check_flag = -1; |
| 325 | static int bm_control_flag = -1; |
| 326 | |
| 327 | |
| 328 | if (!cx->address) |
| 329 | return; |
| 330 | |
| 331 | /* |
| 332 | * PIIX4 Erratum #18: We don't support C3 when Type-F (fast) |
| 333 | * DMA transfers are used by any ISA device to avoid livelock. |
| 334 | * Note that we could disable Type-F DMA (as recommended by |
| 335 | * the erratum), but this is known to disrupt certain ISA |
| 336 | * devices thus we take the conservative approach. |
| 337 | */ |
| 338 | if (errata.piix4.fdma) { |
| 339 | acpi_handle_debug(pr->handle, |
| 340 | "C3 not supported on PIIX4 with Type-F DMA\n"); |
| 341 | return; |
| 342 | } |
| 343 | |
| 344 | /* All the logic here assumes flags.bm_check is same across all CPUs */ |
| 345 | if (bm_check_flag == -1) { |
| 346 | /* Determine whether bm_check is needed based on CPU */ |
| 347 | acpi_processor_power_init_bm_check(&(pr->flags), pr->id); |
| 348 | bm_check_flag = pr->flags.bm_check; |
| 349 | bm_control_flag = pr->flags.bm_control; |
| 350 | } else { |
| 351 | pr->flags.bm_check = bm_check_flag; |
| 352 | pr->flags.bm_control = bm_control_flag; |
| 353 | } |
| 354 | |
| 355 | if (pr->flags.bm_check) { |
| 356 | if (!pr->flags.bm_control) { |
| 357 | if (pr->flags.has_cst != 1) { |
| 358 | /* bus mastering control is necessary */ |
| 359 | acpi_handle_debug(pr->handle, |
| 360 | "C3 support requires BM control\n"); |
| 361 | return; |
| 362 | } else { |
| 363 | /* Here we enter C3 without bus mastering */ |
| 364 | acpi_handle_debug(pr->handle, |
| 365 | "C3 support without BM control\n"); |
| 366 | } |
| 367 | } |
| 368 | } else { |
| 369 | /* |
| 370 | * WBINVD should be set in fadt, for C3 state to be |
| 371 | * supported on when bm_check is not required. |
| 372 | */ |
| 373 | if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) { |
| 374 | acpi_handle_debug(pr->handle, |
| 375 | "Cache invalidation should work properly" |
| 376 | " for C3 to be enabled on SMP systems\n"); |
| 377 | return; |
| 378 | } |
| 379 | } |
| 380 | |
| 381 | /* |
| 382 | * Otherwise we've met all of our C3 requirements. |
| 383 | * Normalize the C3 latency to expidite policy. Enable |
| 384 | * checking of bus mastering status (bm_check) so we can |
| 385 | * use this in our C3 policy |
| 386 | */ |
| 387 | cx->valid = 1; |
| 388 | |
| 389 | /* |
| 390 | * On older chipsets, BM_RLD needs to be set |
| 391 | * in order for Bus Master activity to wake the |
| 392 | * system from C3. Newer chipsets handle DMA |
| 393 | * during C3 automatically and BM_RLD is a NOP. |
| 394 | * In either case, the proper way to |
| 395 | * handle BM_RLD is to set it and leave it set. |
| 396 | */ |
| 397 | acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1); |
| 398 | } |
| 399 | |
| 400 | static void acpi_cst_latency_sort(struct acpi_processor_cx *states, size_t length) |
| 401 | { |
| 402 | int i, j, k; |
| 403 | |
| 404 | for (i = 1; i < length; i++) { |
| 405 | if (!states[i].valid) |
| 406 | continue; |
| 407 | |
| 408 | for (j = i - 1, k = i; j >= 0; j--) { |
| 409 | if (!states[j].valid) |
| 410 | continue; |
| 411 | |
| 412 | if (states[j].latency > states[k].latency) |
| 413 | swap(states[j].latency, states[k].latency); |
| 414 | |
| 415 | k = j; |
| 416 | } |
| 417 | } |
| 418 | } |
| 419 | |
| 420 | static int acpi_processor_power_verify(struct acpi_processor *pr) |
| 421 | { |
| 422 | unsigned int i; |
| 423 | unsigned int working = 0; |
| 424 | unsigned int last_latency = 0; |
| 425 | unsigned int last_type = 0; |
| 426 | bool buggy_latency = false; |
| 427 | |
| 428 | pr->power.timer_broadcast_on_state = INT_MAX; |
| 429 | |
| 430 | for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) { |
| 431 | struct acpi_processor_cx *cx = &pr->power.states[i]; |
| 432 | |
| 433 | switch (cx->type) { |
| 434 | case ACPI_STATE_C1: |
| 435 | cx->valid = 1; |
| 436 | break; |
| 437 | |
| 438 | case ACPI_STATE_C2: |
| 439 | if (!cx->address) |
| 440 | break; |
| 441 | cx->valid = 1; |
| 442 | break; |
| 443 | |
| 444 | case ACPI_STATE_C3: |
| 445 | acpi_processor_power_verify_c3(pr, cx); |
| 446 | break; |
| 447 | } |
| 448 | if (!cx->valid) |
| 449 | continue; |
| 450 | if (cx->type >= last_type && cx->latency < last_latency) |
| 451 | buggy_latency = true; |
| 452 | last_latency = cx->latency; |
| 453 | last_type = cx->type; |
| 454 | |
| 455 | lapic_timer_check_state(i, pr, cx); |
| 456 | tsc_check_state(cx->type); |
| 457 | working++; |
| 458 | } |
| 459 | |
| 460 | if (buggy_latency) { |
| 461 | pr_notice("FW issue: working around C-state latencies out of order\n"); |
| 462 | acpi_cst_latency_sort(&pr->power.states[1], max_cstate); |
| 463 | } |
| 464 | |
| 465 | lapic_timer_propagate_broadcast(pr); |
| 466 | |
| 467 | return working; |
| 468 | } |
| 469 | |
| 470 | static int acpi_processor_get_cstate_info(struct acpi_processor *pr) |
| 471 | { |
| 472 | int result; |
| 473 | |
| 474 | /* NOTE: the idle thread may not be running while calling |
| 475 | * this function */ |
| 476 | |
| 477 | /* Zero initialize all the C-states info. */ |
| 478 | memset(pr->power.states, 0, sizeof(pr->power.states)); |
| 479 | |
| 480 | result = acpi_processor_get_power_info_cst(pr); |
| 481 | if (result == -ENODEV) |
| 482 | result = acpi_processor_get_power_info_fadt(pr); |
| 483 | |
| 484 | if (result) |
| 485 | return result; |
| 486 | |
| 487 | acpi_processor_get_power_info_default(pr); |
| 488 | |
| 489 | pr->power.count = acpi_processor_power_verify(pr); |
| 490 | pr->flags.power = 1; |
| 491 | |
| 492 | return 0; |
| 493 | } |
| 494 | |
| 495 | /** |
| 496 | * acpi_idle_bm_check - checks if bus master activity was detected |
| 497 | */ |
| 498 | static int acpi_idle_bm_check(void) |
| 499 | { |
| 500 | u32 bm_status = 0; |
| 501 | |
| 502 | if (bm_check_disable) |
| 503 | return 0; |
| 504 | |
| 505 | acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status); |
| 506 | if (bm_status) |
| 507 | acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1); |
| 508 | /* |
| 509 | * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect |
| 510 | * the true state of bus mastering activity; forcing us to |
| 511 | * manually check the BMIDEA bit of each IDE channel. |
| 512 | */ |
| 513 | else if (errata.piix4.bmisx) { |
| 514 | if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01) |
| 515 | || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01)) |
| 516 | bm_status = 1; |
| 517 | } |
| 518 | return bm_status; |
| 519 | } |
| 520 | |
| 521 | static __cpuidle void io_idle(unsigned long addr) |
| 522 | { |
| 523 | /* IO port based C-state */ |
| 524 | inb(addr); |
| 525 | |
| 526 | #ifdef CONFIG_X86 |
| 527 | /* No delay is needed if we are in guest */ |
| 528 | if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) |
| 529 | return; |
| 530 | /* |
| 531 | * Modern (>=Nehalem) Intel systems use ACPI via intel_idle, |
| 532 | * not this code. Assume that any Intel systems using this |
| 533 | * are ancient and may need the dummy wait. This also assumes |
| 534 | * that the motivating chipset issue was Intel-only. |
| 535 | */ |
| 536 | if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) |
| 537 | return; |
| 538 | #endif |
| 539 | /* |
| 540 | * Dummy wait op - must do something useless after P_LVL2 read |
| 541 | * because chipsets cannot guarantee that STPCLK# signal gets |
| 542 | * asserted in time to freeze execution properly |
| 543 | * |
| 544 | * This workaround has been in place since the original ACPI |
| 545 | * implementation was merged, circa 2002. |
| 546 | * |
| 547 | * If a profile is pointing to this instruction, please first |
| 548 | * consider moving your system to a more modern idle |
| 549 | * mechanism. |
| 550 | */ |
| 551 | inl(acpi_gbl_FADT.xpm_timer_block.address); |
| 552 | } |
| 553 | |
| 554 | /** |
| 555 | * acpi_idle_do_entry - enter idle state using the appropriate method |
| 556 | * @cx: cstate data |
| 557 | * |
| 558 | * Caller disables interrupt before call and enables interrupt after return. |
| 559 | */ |
| 560 | static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx) |
| 561 | { |
| 562 | perf_lopwr_cb(true); |
| 563 | |
| 564 | if (cx->entry_method == ACPI_CSTATE_FFH) { |
| 565 | /* Call into architectural FFH based C-state */ |
| 566 | acpi_processor_ffh_cstate_enter(cx); |
| 567 | } else if (cx->entry_method == ACPI_CSTATE_HALT) { |
| 568 | acpi_safe_halt(); |
| 569 | } else { |
| 570 | io_idle(cx->address); |
| 571 | } |
| 572 | |
| 573 | perf_lopwr_cb(false); |
| 574 | } |
| 575 | |
| 576 | /** |
| 577 | * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining) |
| 578 | * @dev: the target CPU |
| 579 | * @index: the index of suggested state |
| 580 | */ |
| 581 | static void acpi_idle_play_dead(struct cpuidle_device *dev, int index) |
| 582 | { |
| 583 | struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu); |
| 584 | |
| 585 | ACPI_FLUSH_CPU_CACHE(); |
| 586 | |
| 587 | while (1) { |
| 588 | |
| 589 | if (cx->entry_method == ACPI_CSTATE_HALT) |
| 590 | raw_safe_halt(); |
| 591 | else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) { |
| 592 | io_idle(cx->address); |
| 593 | } else if (cx->entry_method == ACPI_CSTATE_FFH) { |
| 594 | acpi_processor_ffh_play_dead(cx); |
| 595 | } else |
| 596 | return; |
| 597 | } |
| 598 | } |
| 599 | |
| 600 | static __always_inline bool acpi_idle_fallback_to_c1(struct acpi_processor *pr) |
| 601 | { |
| 602 | return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst && |
| 603 | !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED); |
| 604 | } |
| 605 | |
| 606 | static int c3_cpu_count; |
| 607 | static DEFINE_RAW_SPINLOCK(c3_lock); |
| 608 | |
| 609 | /** |
| 610 | * acpi_idle_enter_bm - enters C3 with proper BM handling |
| 611 | * @drv: cpuidle driver |
| 612 | * @pr: Target processor |
| 613 | * @cx: Target state context |
| 614 | * @index: index of target state |
| 615 | */ |
| 616 | static int __cpuidle acpi_idle_enter_bm(struct cpuidle_driver *drv, |
| 617 | struct acpi_processor *pr, |
| 618 | struct acpi_processor_cx *cx, |
| 619 | int index) |
| 620 | { |
| 621 | static struct acpi_processor_cx safe_cx = { |
| 622 | .entry_method = ACPI_CSTATE_HALT, |
| 623 | }; |
| 624 | |
| 625 | /* |
| 626 | * disable bus master |
| 627 | * bm_check implies we need ARB_DIS |
| 628 | * bm_control implies whether we can do ARB_DIS |
| 629 | * |
| 630 | * That leaves a case where bm_check is set and bm_control is not set. |
| 631 | * In that case we cannot do much, we enter C3 without doing anything. |
| 632 | */ |
| 633 | bool dis_bm = pr->flags.bm_control; |
| 634 | |
| 635 | instrumentation_begin(); |
| 636 | |
| 637 | /* If we can skip BM, demote to a safe state. */ |
| 638 | if (!cx->bm_sts_skip && acpi_idle_bm_check()) { |
| 639 | dis_bm = false; |
| 640 | index = drv->safe_state_index; |
| 641 | if (index >= 0) { |
| 642 | cx = this_cpu_read(acpi_cstate[index]); |
| 643 | } else { |
| 644 | cx = &safe_cx; |
| 645 | index = -EBUSY; |
| 646 | } |
| 647 | } |
| 648 | |
| 649 | if (dis_bm) { |
| 650 | raw_spin_lock(&c3_lock); |
| 651 | c3_cpu_count++; |
| 652 | /* Disable bus master arbitration when all CPUs are in C3 */ |
| 653 | if (c3_cpu_count == num_online_cpus()) |
| 654 | acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1); |
| 655 | raw_spin_unlock(&c3_lock); |
| 656 | } |
| 657 | |
| 658 | ct_cpuidle_enter(); |
| 659 | |
| 660 | acpi_idle_do_entry(cx); |
| 661 | |
| 662 | ct_cpuidle_exit(); |
| 663 | |
| 664 | /* Re-enable bus master arbitration */ |
| 665 | if (dis_bm) { |
| 666 | raw_spin_lock(&c3_lock); |
| 667 | acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0); |
| 668 | c3_cpu_count--; |
| 669 | raw_spin_unlock(&c3_lock); |
| 670 | } |
| 671 | |
| 672 | instrumentation_end(); |
| 673 | |
| 674 | return index; |
| 675 | } |
| 676 | |
| 677 | static int __cpuidle acpi_idle_enter(struct cpuidle_device *dev, |
| 678 | struct cpuidle_driver *drv, int index) |
| 679 | { |
| 680 | struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu); |
| 681 | struct acpi_processor *pr; |
| 682 | |
| 683 | pr = __this_cpu_read(processors); |
| 684 | if (unlikely(!pr)) |
| 685 | return -EINVAL; |
| 686 | |
| 687 | if (cx->type != ACPI_STATE_C1) { |
| 688 | if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) |
| 689 | return acpi_idle_enter_bm(drv, pr, cx, index); |
| 690 | |
| 691 | /* C2 to C1 demotion. */ |
| 692 | if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) { |
| 693 | index = ACPI_IDLE_STATE_START; |
| 694 | cx = per_cpu(acpi_cstate[index], dev->cpu); |
| 695 | } |
| 696 | } |
| 697 | |
| 698 | if (cx->type == ACPI_STATE_C3) |
| 699 | ACPI_FLUSH_CPU_CACHE(); |
| 700 | |
| 701 | acpi_idle_do_entry(cx); |
| 702 | |
| 703 | return index; |
| 704 | } |
| 705 | |
| 706 | static int __cpuidle acpi_idle_enter_s2idle(struct cpuidle_device *dev, |
| 707 | struct cpuidle_driver *drv, int index) |
| 708 | { |
| 709 | struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu); |
| 710 | |
| 711 | if (cx->type == ACPI_STATE_C3) { |
| 712 | struct acpi_processor *pr = __this_cpu_read(processors); |
| 713 | |
| 714 | if (unlikely(!pr)) |
| 715 | return 0; |
| 716 | |
| 717 | if (pr->flags.bm_check) { |
| 718 | u8 bm_sts_skip = cx->bm_sts_skip; |
| 719 | |
| 720 | /* Don't check BM_STS, do an unconditional ARB_DIS for S2IDLE */ |
| 721 | cx->bm_sts_skip = 1; |
| 722 | acpi_idle_enter_bm(drv, pr, cx, index); |
| 723 | cx->bm_sts_skip = bm_sts_skip; |
| 724 | |
| 725 | return 0; |
| 726 | } else { |
| 727 | ACPI_FLUSH_CPU_CACHE(); |
| 728 | } |
| 729 | } |
| 730 | acpi_idle_do_entry(cx); |
| 731 | |
| 732 | return 0; |
| 733 | } |
| 734 | |
| 735 | static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr, |
| 736 | struct cpuidle_device *dev) |
| 737 | { |
| 738 | int i, count = ACPI_IDLE_STATE_START; |
| 739 | struct acpi_processor_cx *cx; |
| 740 | struct cpuidle_state *state; |
| 741 | |
| 742 | if (max_cstate == 0) |
| 743 | max_cstate = 1; |
| 744 | |
| 745 | for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) { |
| 746 | state = &acpi_idle_driver.states[count]; |
| 747 | cx = &pr->power.states[i]; |
| 748 | |
| 749 | if (!cx->valid) |
| 750 | continue; |
| 751 | |
| 752 | per_cpu(acpi_cstate[count], dev->cpu) = cx; |
| 753 | |
| 754 | if (lapic_timer_needs_broadcast(pr, cx)) |
| 755 | state->flags |= CPUIDLE_FLAG_TIMER_STOP; |
| 756 | |
| 757 | if (cx->type == ACPI_STATE_C3) { |
| 758 | state->flags |= CPUIDLE_FLAG_TLB_FLUSHED; |
| 759 | if (pr->flags.bm_check) |
| 760 | state->flags |= CPUIDLE_FLAG_RCU_IDLE; |
| 761 | } |
| 762 | |
| 763 | count++; |
| 764 | if (count == CPUIDLE_STATE_MAX) |
| 765 | break; |
| 766 | } |
| 767 | |
| 768 | if (!count) |
| 769 | return -EINVAL; |
| 770 | |
| 771 | return 0; |
| 772 | } |
| 773 | |
| 774 | static int acpi_processor_setup_cstates(struct acpi_processor *pr) |
| 775 | { |
| 776 | int i, count; |
| 777 | struct acpi_processor_cx *cx; |
| 778 | struct cpuidle_state *state; |
| 779 | struct cpuidle_driver *drv = &acpi_idle_driver; |
| 780 | |
| 781 | if (max_cstate == 0) |
| 782 | max_cstate = 1; |
| 783 | |
| 784 | if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) { |
| 785 | cpuidle_poll_state_init(drv); |
| 786 | count = 1; |
| 787 | } else { |
| 788 | count = 0; |
| 789 | } |
| 790 | |
| 791 | for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) { |
| 792 | cx = &pr->power.states[i]; |
| 793 | |
| 794 | if (!cx->valid) |
| 795 | continue; |
| 796 | |
| 797 | state = &drv->states[count]; |
| 798 | snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i); |
| 799 | strscpy(state->desc, cx->desc, CPUIDLE_DESC_LEN); |
| 800 | state->exit_latency = cx->latency; |
| 801 | state->target_residency = cx->latency * latency_factor; |
| 802 | state->enter = acpi_idle_enter; |
| 803 | |
| 804 | state->flags = 0; |
| 805 | |
| 806 | state->enter_dead = acpi_idle_play_dead; |
| 807 | |
| 808 | if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) |
| 809 | drv->safe_state_index = count; |
| 810 | |
| 811 | /* |
| 812 | * Halt-induced C1 is not good for ->enter_s2idle, because it |
| 813 | * re-enables interrupts on exit. Moreover, C1 is generally not |
| 814 | * particularly interesting from the suspend-to-idle angle, so |
| 815 | * avoid C1 and the situations in which we may need to fall back |
| 816 | * to it altogether. |
| 817 | */ |
| 818 | if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr)) |
| 819 | state->enter_s2idle = acpi_idle_enter_s2idle; |
| 820 | |
| 821 | count++; |
| 822 | if (count == CPUIDLE_STATE_MAX) |
| 823 | break; |
| 824 | } |
| 825 | |
| 826 | drv->state_count = count; |
| 827 | |
| 828 | if (!count) |
| 829 | return -EINVAL; |
| 830 | |
| 831 | return 0; |
| 832 | } |
| 833 | |
| 834 | static inline void acpi_processor_cstate_first_run_checks(void) |
| 835 | { |
| 836 | static int first_run; |
| 837 | |
| 838 | if (first_run) |
| 839 | return; |
| 840 | dmi_check_system(processor_power_dmi_table); |
| 841 | max_cstate = acpi_processor_cstate_check(max_cstate); |
| 842 | if (max_cstate < ACPI_C_STATES_MAX) |
| 843 | pr_notice("processor limited to max C-state %d\n", max_cstate); |
| 844 | |
| 845 | first_run++; |
| 846 | |
| 847 | if (nocst) |
| 848 | return; |
| 849 | |
| 850 | acpi_processor_claim_cst_control(); |
| 851 | } |
| 852 | #else |
| 853 | |
| 854 | static inline int disabled_by_idle_boot_param(void) { return 0; } |
| 855 | static inline void acpi_processor_cstate_first_run_checks(void) { } |
| 856 | static int acpi_processor_get_cstate_info(struct acpi_processor *pr) |
| 857 | { |
| 858 | return -ENODEV; |
| 859 | } |
| 860 | |
| 861 | static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr, |
| 862 | struct cpuidle_device *dev) |
| 863 | { |
| 864 | return -EINVAL; |
| 865 | } |
| 866 | |
| 867 | static int acpi_processor_setup_cstates(struct acpi_processor *pr) |
| 868 | { |
| 869 | return -EINVAL; |
| 870 | } |
| 871 | |
| 872 | #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */ |
| 873 | |
| 874 | struct acpi_lpi_states_array { |
| 875 | unsigned int size; |
| 876 | unsigned int composite_states_size; |
| 877 | struct acpi_lpi_state *entries; |
| 878 | struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER]; |
| 879 | }; |
| 880 | |
| 881 | static int obj_get_integer(union acpi_object *obj, u32 *value) |
| 882 | { |
| 883 | if (obj->type != ACPI_TYPE_INTEGER) |
| 884 | return -EINVAL; |
| 885 | |
| 886 | *value = obj->integer.value; |
| 887 | return 0; |
| 888 | } |
| 889 | |
| 890 | static int acpi_processor_evaluate_lpi(acpi_handle handle, |
| 891 | struct acpi_lpi_states_array *info) |
| 892 | { |
| 893 | acpi_status status; |
| 894 | int ret = 0; |
| 895 | int pkg_count, state_idx = 1, loop; |
| 896 | struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; |
| 897 | union acpi_object *lpi_data; |
| 898 | struct acpi_lpi_state *lpi_state; |
| 899 | |
| 900 | status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer); |
| 901 | if (ACPI_FAILURE(status)) { |
| 902 | acpi_handle_debug(handle, "No _LPI, giving up\n"); |
| 903 | return -ENODEV; |
| 904 | } |
| 905 | |
| 906 | lpi_data = buffer.pointer; |
| 907 | |
| 908 | /* There must be at least 4 elements = 3 elements + 1 package */ |
| 909 | if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE || |
| 910 | lpi_data->package.count < 4) { |
| 911 | pr_debug("not enough elements in _LPI\n"); |
| 912 | ret = -ENODATA; |
| 913 | goto end; |
| 914 | } |
| 915 | |
| 916 | pkg_count = lpi_data->package.elements[2].integer.value; |
| 917 | |
| 918 | /* Validate number of power states. */ |
| 919 | if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) { |
| 920 | pr_debug("count given by _LPI is not valid\n"); |
| 921 | ret = -ENODATA; |
| 922 | goto end; |
| 923 | } |
| 924 | |
| 925 | lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL); |
| 926 | if (!lpi_state) { |
| 927 | ret = -ENOMEM; |
| 928 | goto end; |
| 929 | } |
| 930 | |
| 931 | info->size = pkg_count; |
| 932 | info->entries = lpi_state; |
| 933 | |
| 934 | /* LPI States start at index 3 */ |
| 935 | for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) { |
| 936 | union acpi_object *element, *pkg_elem, *obj; |
| 937 | |
| 938 | element = &lpi_data->package.elements[loop]; |
| 939 | if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7) |
| 940 | continue; |
| 941 | |
| 942 | pkg_elem = element->package.elements; |
| 943 | |
| 944 | obj = pkg_elem + 6; |
| 945 | if (obj->type == ACPI_TYPE_BUFFER) { |
| 946 | struct acpi_power_register *reg; |
| 947 | |
| 948 | reg = (struct acpi_power_register *)obj->buffer.pointer; |
| 949 | if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO && |
| 950 | reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) |
| 951 | continue; |
| 952 | |
| 953 | lpi_state->address = reg->address; |
| 954 | lpi_state->entry_method = |
| 955 | reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ? |
| 956 | ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO; |
| 957 | } else if (obj->type == ACPI_TYPE_INTEGER) { |
| 958 | lpi_state->entry_method = ACPI_CSTATE_INTEGER; |
| 959 | lpi_state->address = obj->integer.value; |
| 960 | } else { |
| 961 | continue; |
| 962 | } |
| 963 | |
| 964 | /* elements[7,8] skipped for now i.e. Residency/Usage counter*/ |
| 965 | |
| 966 | obj = pkg_elem + 9; |
| 967 | if (obj->type == ACPI_TYPE_STRING) |
| 968 | strscpy(lpi_state->desc, obj->string.pointer, |
| 969 | ACPI_CX_DESC_LEN); |
| 970 | |
| 971 | lpi_state->index = state_idx; |
| 972 | if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) { |
| 973 | pr_debug("No min. residency found, assuming 10 us\n"); |
| 974 | lpi_state->min_residency = 10; |
| 975 | } |
| 976 | |
| 977 | if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) { |
| 978 | pr_debug("No wakeup residency found, assuming 10 us\n"); |
| 979 | lpi_state->wake_latency = 10; |
| 980 | } |
| 981 | |
| 982 | if (obj_get_integer(pkg_elem + 2, &lpi_state->flags)) |
| 983 | lpi_state->flags = 0; |
| 984 | |
| 985 | if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags)) |
| 986 | lpi_state->arch_flags = 0; |
| 987 | |
| 988 | if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq)) |
| 989 | lpi_state->res_cnt_freq = 1; |
| 990 | |
| 991 | if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state)) |
| 992 | lpi_state->enable_parent_state = 0; |
| 993 | } |
| 994 | |
| 995 | acpi_handle_debug(handle, "Found %d power states\n", state_idx); |
| 996 | end: |
| 997 | kfree(buffer.pointer); |
| 998 | return ret; |
| 999 | } |
| 1000 | |
| 1001 | /* |
| 1002 | * flat_state_cnt - the number of composite LPI states after the process of flattening |
| 1003 | */ |
| 1004 | static int flat_state_cnt; |
| 1005 | |
| 1006 | /** |
| 1007 | * combine_lpi_states - combine local and parent LPI states to form a composite LPI state |
| 1008 | * |
| 1009 | * @local: local LPI state |
| 1010 | * @parent: parent LPI state |
| 1011 | * @result: composite LPI state |
| 1012 | */ |
| 1013 | static bool combine_lpi_states(struct acpi_lpi_state *local, |
| 1014 | struct acpi_lpi_state *parent, |
| 1015 | struct acpi_lpi_state *result) |
| 1016 | { |
| 1017 | if (parent->entry_method == ACPI_CSTATE_INTEGER) { |
| 1018 | if (!parent->address) /* 0 means autopromotable */ |
| 1019 | return false; |
| 1020 | result->address = local->address + parent->address; |
| 1021 | } else { |
| 1022 | result->address = parent->address; |
| 1023 | } |
| 1024 | |
| 1025 | result->min_residency = max(local->min_residency, parent->min_residency); |
| 1026 | result->wake_latency = local->wake_latency + parent->wake_latency; |
| 1027 | result->enable_parent_state = parent->enable_parent_state; |
| 1028 | result->entry_method = local->entry_method; |
| 1029 | |
| 1030 | result->flags = parent->flags; |
| 1031 | result->arch_flags = parent->arch_flags; |
| 1032 | result->index = parent->index; |
| 1033 | |
| 1034 | strscpy(result->desc, local->desc, ACPI_CX_DESC_LEN); |
| 1035 | strlcat(result->desc, "+", ACPI_CX_DESC_LEN); |
| 1036 | strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN); |
| 1037 | return true; |
| 1038 | } |
| 1039 | |
| 1040 | #define ACPI_LPI_STATE_FLAGS_ENABLED BIT(0) |
| 1041 | |
| 1042 | static void stash_composite_state(struct acpi_lpi_states_array *curr_level, |
| 1043 | struct acpi_lpi_state *t) |
| 1044 | { |
| 1045 | curr_level->composite_states[curr_level->composite_states_size++] = t; |
| 1046 | } |
| 1047 | |
| 1048 | static int flatten_lpi_states(struct acpi_processor *pr, |
| 1049 | struct acpi_lpi_states_array *curr_level, |
| 1050 | struct acpi_lpi_states_array *prev_level) |
| 1051 | { |
| 1052 | int i, j, state_count = curr_level->size; |
| 1053 | struct acpi_lpi_state *p, *t = curr_level->entries; |
| 1054 | |
| 1055 | curr_level->composite_states_size = 0; |
| 1056 | for (j = 0; j < state_count; j++, t++) { |
| 1057 | struct acpi_lpi_state *flpi; |
| 1058 | |
| 1059 | if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED)) |
| 1060 | continue; |
| 1061 | |
| 1062 | if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) { |
| 1063 | pr_warn("Limiting number of LPI states to max (%d)\n", |
| 1064 | ACPI_PROCESSOR_MAX_POWER); |
| 1065 | pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n"); |
| 1066 | break; |
| 1067 | } |
| 1068 | |
| 1069 | flpi = &pr->power.lpi_states[flat_state_cnt]; |
| 1070 | |
| 1071 | if (!prev_level) { /* leaf/processor node */ |
| 1072 | memcpy(flpi, t, sizeof(*t)); |
| 1073 | stash_composite_state(curr_level, flpi); |
| 1074 | flat_state_cnt++; |
| 1075 | continue; |
| 1076 | } |
| 1077 | |
| 1078 | for (i = 0; i < prev_level->composite_states_size; i++) { |
| 1079 | p = prev_level->composite_states[i]; |
| 1080 | if (t->index <= p->enable_parent_state && |
| 1081 | combine_lpi_states(p, t, flpi)) { |
| 1082 | stash_composite_state(curr_level, flpi); |
| 1083 | flat_state_cnt++; |
| 1084 | flpi++; |
| 1085 | } |
| 1086 | } |
| 1087 | } |
| 1088 | |
| 1089 | kfree(curr_level->entries); |
| 1090 | return 0; |
| 1091 | } |
| 1092 | |
| 1093 | int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu) |
| 1094 | { |
| 1095 | return -EOPNOTSUPP; |
| 1096 | } |
| 1097 | |
| 1098 | static int acpi_processor_get_lpi_info(struct acpi_processor *pr) |
| 1099 | { |
| 1100 | int ret, i; |
| 1101 | acpi_status status; |
| 1102 | acpi_handle handle = pr->handle, pr_ahandle; |
| 1103 | struct acpi_device *d = NULL; |
| 1104 | struct acpi_lpi_states_array info[2], *tmp, *prev, *curr; |
| 1105 | |
| 1106 | /* make sure our architecture has support */ |
| 1107 | ret = acpi_processor_ffh_lpi_probe(pr->id); |
| 1108 | if (ret == -EOPNOTSUPP) |
| 1109 | return ret; |
| 1110 | |
| 1111 | if (!osc_pc_lpi_support_confirmed) |
| 1112 | return -EOPNOTSUPP; |
| 1113 | |
| 1114 | if (!acpi_has_method(handle, "_LPI")) |
| 1115 | return -EINVAL; |
| 1116 | |
| 1117 | flat_state_cnt = 0; |
| 1118 | prev = &info[0]; |
| 1119 | curr = &info[1]; |
| 1120 | handle = pr->handle; |
| 1121 | ret = acpi_processor_evaluate_lpi(handle, prev); |
| 1122 | if (ret) |
| 1123 | return ret; |
| 1124 | flatten_lpi_states(pr, prev, NULL); |
| 1125 | |
| 1126 | status = acpi_get_parent(handle, &pr_ahandle); |
| 1127 | while (ACPI_SUCCESS(status)) { |
| 1128 | d = acpi_fetch_acpi_dev(pr_ahandle); |
| 1129 | if (!d) |
| 1130 | break; |
| 1131 | |
| 1132 | handle = pr_ahandle; |
| 1133 | |
| 1134 | if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID)) |
| 1135 | break; |
| 1136 | |
| 1137 | /* can be optional ? */ |
| 1138 | if (!acpi_has_method(handle, "_LPI")) |
| 1139 | break; |
| 1140 | |
| 1141 | ret = acpi_processor_evaluate_lpi(handle, curr); |
| 1142 | if (ret) |
| 1143 | break; |
| 1144 | |
| 1145 | /* flatten all the LPI states in this level of hierarchy */ |
| 1146 | flatten_lpi_states(pr, curr, prev); |
| 1147 | |
| 1148 | tmp = prev, prev = curr, curr = tmp; |
| 1149 | |
| 1150 | status = acpi_get_parent(handle, &pr_ahandle); |
| 1151 | } |
| 1152 | |
| 1153 | pr->power.count = flat_state_cnt; |
| 1154 | /* reset the index after flattening */ |
| 1155 | for (i = 0; i < pr->power.count; i++) |
| 1156 | pr->power.lpi_states[i].index = i; |
| 1157 | |
| 1158 | /* Tell driver that _LPI is supported. */ |
| 1159 | pr->flags.has_lpi = 1; |
| 1160 | pr->flags.power = 1; |
| 1161 | |
| 1162 | return 0; |
| 1163 | } |
| 1164 | |
| 1165 | int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi) |
| 1166 | { |
| 1167 | return -ENODEV; |
| 1168 | } |
| 1169 | |
| 1170 | /** |
| 1171 | * acpi_idle_lpi_enter - enters an ACPI any LPI state |
| 1172 | * @dev: the target CPU |
| 1173 | * @drv: cpuidle driver containing cpuidle state info |
| 1174 | * @index: index of target state |
| 1175 | * |
| 1176 | * Return: 0 for success or negative value for error |
| 1177 | */ |
| 1178 | static int acpi_idle_lpi_enter(struct cpuidle_device *dev, |
| 1179 | struct cpuidle_driver *drv, int index) |
| 1180 | { |
| 1181 | struct acpi_processor *pr; |
| 1182 | struct acpi_lpi_state *lpi; |
| 1183 | |
| 1184 | pr = __this_cpu_read(processors); |
| 1185 | |
| 1186 | if (unlikely(!pr)) |
| 1187 | return -EINVAL; |
| 1188 | |
| 1189 | lpi = &pr->power.lpi_states[index]; |
| 1190 | if (lpi->entry_method == ACPI_CSTATE_FFH) |
| 1191 | return acpi_processor_ffh_lpi_enter(lpi); |
| 1192 | |
| 1193 | return -EINVAL; |
| 1194 | } |
| 1195 | |
| 1196 | static int acpi_processor_setup_lpi_states(struct acpi_processor *pr) |
| 1197 | { |
| 1198 | int i; |
| 1199 | struct acpi_lpi_state *lpi; |
| 1200 | struct cpuidle_state *state; |
| 1201 | struct cpuidle_driver *drv = &acpi_idle_driver; |
| 1202 | |
| 1203 | if (!pr->flags.has_lpi) |
| 1204 | return -EOPNOTSUPP; |
| 1205 | |
| 1206 | for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) { |
| 1207 | lpi = &pr->power.lpi_states[i]; |
| 1208 | |
| 1209 | state = &drv->states[i]; |
| 1210 | snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i); |
| 1211 | strscpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN); |
| 1212 | state->exit_latency = lpi->wake_latency; |
| 1213 | state->target_residency = lpi->min_residency; |
| 1214 | state->flags |= arch_get_idle_state_flags(lpi->arch_flags); |
| 1215 | if (i != 0 && lpi->entry_method == ACPI_CSTATE_FFH) |
| 1216 | state->flags |= CPUIDLE_FLAG_RCU_IDLE; |
| 1217 | state->enter = acpi_idle_lpi_enter; |
| 1218 | drv->safe_state_index = i; |
| 1219 | } |
| 1220 | |
| 1221 | drv->state_count = i; |
| 1222 | |
| 1223 | return 0; |
| 1224 | } |
| 1225 | |
| 1226 | /** |
| 1227 | * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle |
| 1228 | * global state data i.e. idle routines |
| 1229 | * |
| 1230 | * @pr: the ACPI processor |
| 1231 | */ |
| 1232 | static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr) |
| 1233 | { |
| 1234 | int i; |
| 1235 | struct cpuidle_driver *drv = &acpi_idle_driver; |
| 1236 | |
| 1237 | if (!pr->flags.power_setup_done || !pr->flags.power) |
| 1238 | return -EINVAL; |
| 1239 | |
| 1240 | drv->safe_state_index = -1; |
| 1241 | for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) { |
| 1242 | drv->states[i].name[0] = '\0'; |
| 1243 | drv->states[i].desc[0] = '\0'; |
| 1244 | } |
| 1245 | |
| 1246 | if (pr->flags.has_lpi) |
| 1247 | return acpi_processor_setup_lpi_states(pr); |
| 1248 | |
| 1249 | return acpi_processor_setup_cstates(pr); |
| 1250 | } |
| 1251 | |
| 1252 | /** |
| 1253 | * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE |
| 1254 | * device i.e. per-cpu data |
| 1255 | * |
| 1256 | * @pr: the ACPI processor |
| 1257 | * @dev : the cpuidle device |
| 1258 | */ |
| 1259 | static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr, |
| 1260 | struct cpuidle_device *dev) |
| 1261 | { |
| 1262 | if (!pr->flags.power_setup_done || !pr->flags.power || !dev) |
| 1263 | return -EINVAL; |
| 1264 | |
| 1265 | dev->cpu = pr->id; |
| 1266 | if (pr->flags.has_lpi) |
| 1267 | return acpi_processor_ffh_lpi_probe(pr->id); |
| 1268 | |
| 1269 | return acpi_processor_setup_cpuidle_cx(pr, dev); |
| 1270 | } |
| 1271 | |
| 1272 | static int acpi_processor_get_power_info(struct acpi_processor *pr) |
| 1273 | { |
| 1274 | int ret; |
| 1275 | |
| 1276 | ret = acpi_processor_get_lpi_info(pr); |
| 1277 | if (ret) |
| 1278 | ret = acpi_processor_get_cstate_info(pr); |
| 1279 | |
| 1280 | return ret; |
| 1281 | } |
| 1282 | |
| 1283 | int acpi_processor_hotplug(struct acpi_processor *pr) |
| 1284 | { |
| 1285 | int ret = 0; |
| 1286 | struct cpuidle_device *dev; |
| 1287 | |
| 1288 | if (disabled_by_idle_boot_param()) |
| 1289 | return 0; |
| 1290 | |
| 1291 | if (!pr->flags.power_setup_done) |
| 1292 | return -ENODEV; |
| 1293 | |
| 1294 | dev = per_cpu(acpi_cpuidle_device, pr->id); |
| 1295 | cpuidle_pause_and_lock(); |
| 1296 | cpuidle_disable_device(dev); |
| 1297 | ret = acpi_processor_get_power_info(pr); |
| 1298 | if (!ret && pr->flags.power) { |
| 1299 | acpi_processor_setup_cpuidle_dev(pr, dev); |
| 1300 | ret = cpuidle_enable_device(dev); |
| 1301 | } |
| 1302 | cpuidle_resume_and_unlock(); |
| 1303 | |
| 1304 | return ret; |
| 1305 | } |
| 1306 | |
| 1307 | int acpi_processor_power_state_has_changed(struct acpi_processor *pr) |
| 1308 | { |
| 1309 | int cpu; |
| 1310 | struct acpi_processor *_pr; |
| 1311 | struct cpuidle_device *dev; |
| 1312 | |
| 1313 | if (disabled_by_idle_boot_param()) |
| 1314 | return 0; |
| 1315 | |
| 1316 | if (!pr->flags.power_setup_done) |
| 1317 | return -ENODEV; |
| 1318 | |
| 1319 | /* |
| 1320 | * FIXME: Design the ACPI notification to make it once per |
| 1321 | * system instead of once per-cpu. This condition is a hack |
| 1322 | * to make the code that updates C-States be called once. |
| 1323 | */ |
| 1324 | |
| 1325 | if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) { |
| 1326 | |
| 1327 | /* Protect against cpu-hotplug */ |
| 1328 | cpus_read_lock(); |
| 1329 | cpuidle_pause_and_lock(); |
| 1330 | |
| 1331 | /* Disable all cpuidle devices */ |
| 1332 | for_each_online_cpu(cpu) { |
| 1333 | _pr = per_cpu(processors, cpu); |
| 1334 | if (!_pr || !_pr->flags.power_setup_done) |
| 1335 | continue; |
| 1336 | dev = per_cpu(acpi_cpuidle_device, cpu); |
| 1337 | cpuidle_disable_device(dev); |
| 1338 | } |
| 1339 | |
| 1340 | /* Populate Updated C-state information */ |
| 1341 | acpi_processor_get_power_info(pr); |
| 1342 | acpi_processor_setup_cpuidle_states(pr); |
| 1343 | |
| 1344 | /* Enable all cpuidle devices */ |
| 1345 | for_each_online_cpu(cpu) { |
| 1346 | _pr = per_cpu(processors, cpu); |
| 1347 | if (!_pr || !_pr->flags.power_setup_done) |
| 1348 | continue; |
| 1349 | acpi_processor_get_power_info(_pr); |
| 1350 | if (_pr->flags.power) { |
| 1351 | dev = per_cpu(acpi_cpuidle_device, cpu); |
| 1352 | acpi_processor_setup_cpuidle_dev(_pr, dev); |
| 1353 | cpuidle_enable_device(dev); |
| 1354 | } |
| 1355 | } |
| 1356 | cpuidle_resume_and_unlock(); |
| 1357 | cpus_read_unlock(); |
| 1358 | } |
| 1359 | |
| 1360 | return 0; |
| 1361 | } |
| 1362 | |
| 1363 | static int acpi_processor_registered; |
| 1364 | |
| 1365 | int acpi_processor_power_init(struct acpi_processor *pr) |
| 1366 | { |
| 1367 | int retval; |
| 1368 | struct cpuidle_device *dev; |
| 1369 | |
| 1370 | if (disabled_by_idle_boot_param()) |
| 1371 | return 0; |
| 1372 | |
| 1373 | acpi_processor_cstate_first_run_checks(); |
| 1374 | |
| 1375 | if (!acpi_processor_get_power_info(pr)) |
| 1376 | pr->flags.power_setup_done = 1; |
| 1377 | |
| 1378 | /* |
| 1379 | * Install the idle handler if processor power management is supported. |
| 1380 | * Note that we use previously set idle handler will be used on |
| 1381 | * platforms that only support C1. |
| 1382 | */ |
| 1383 | if (pr->flags.power) { |
| 1384 | /* Register acpi_idle_driver if not already registered */ |
| 1385 | if (!acpi_processor_registered) { |
| 1386 | acpi_processor_setup_cpuidle_states(pr); |
| 1387 | retval = cpuidle_register_driver(&acpi_idle_driver); |
| 1388 | if (retval) |
| 1389 | return retval; |
| 1390 | pr_debug("%s registered with cpuidle\n", |
| 1391 | acpi_idle_driver.name); |
| 1392 | } |
| 1393 | |
| 1394 | dev = kzalloc(sizeof(*dev), GFP_KERNEL); |
| 1395 | if (!dev) |
| 1396 | return -ENOMEM; |
| 1397 | per_cpu(acpi_cpuidle_device, pr->id) = dev; |
| 1398 | |
| 1399 | acpi_processor_setup_cpuidle_dev(pr, dev); |
| 1400 | |
| 1401 | /* Register per-cpu cpuidle_device. Cpuidle driver |
| 1402 | * must already be registered before registering device |
| 1403 | */ |
| 1404 | retval = cpuidle_register_device(dev); |
| 1405 | if (retval) { |
| 1406 | if (acpi_processor_registered == 0) |
| 1407 | cpuidle_unregister_driver(&acpi_idle_driver); |
| 1408 | return retval; |
| 1409 | } |
| 1410 | acpi_processor_registered++; |
| 1411 | } |
| 1412 | return 0; |
| 1413 | } |
| 1414 | |
| 1415 | int acpi_processor_power_exit(struct acpi_processor *pr) |
| 1416 | { |
| 1417 | struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id); |
| 1418 | |
| 1419 | if (disabled_by_idle_boot_param()) |
| 1420 | return 0; |
| 1421 | |
| 1422 | if (pr->flags.power) { |
| 1423 | cpuidle_unregister_device(dev); |
| 1424 | acpi_processor_registered--; |
| 1425 | if (acpi_processor_registered == 0) |
| 1426 | cpuidle_unregister_driver(&acpi_idle_driver); |
| 1427 | |
| 1428 | kfree(dev); |
| 1429 | } |
| 1430 | |
| 1431 | pr->flags.power_setup_done = 0; |
| 1432 | return 0; |
| 1433 | } |