| 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | /* |
| 3 | * ec.c - ACPI Embedded Controller Driver (v3) |
| 4 | * |
| 5 | * Copyright (C) 2001-2015 Intel Corporation |
| 6 | * Author: 2014, 2015 Lv Zheng <lv.zheng@intel.com> |
| 7 | * 2006, 2007 Alexey Starikovskiy <alexey.y.starikovskiy@intel.com> |
| 8 | * 2006 Denis Sadykov <denis.m.sadykov@intel.com> |
| 9 | * 2004 Luming Yu <luming.yu@intel.com> |
| 10 | * 2001, 2002 Andy Grover <andrew.grover@intel.com> |
| 11 | * 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> |
| 12 | * Copyright (C) 2008 Alexey Starikovskiy <astarikovskiy@suse.de> |
| 13 | */ |
| 14 | |
| 15 | /* Uncomment next line to get verbose printout */ |
| 16 | /* #define DEBUG */ |
| 17 | #define pr_fmt(fmt) "ACPI: EC: " fmt |
| 18 | |
| 19 | #include <linux/kernel.h> |
| 20 | #include <linux/module.h> |
| 21 | #include <linux/init.h> |
| 22 | #include <linux/types.h> |
| 23 | #include <linux/delay.h> |
| 24 | #include <linux/interrupt.h> |
| 25 | #include <linux/list.h> |
| 26 | #include <linux/printk.h> |
| 27 | #include <linux/spinlock.h> |
| 28 | #include <linux/slab.h> |
| 29 | #include <linux/string.h> |
| 30 | #include <linux/suspend.h> |
| 31 | #include <linux/acpi.h> |
| 32 | #include <linux/dmi.h> |
| 33 | #include <asm/io.h> |
| 34 | |
| 35 | #include "internal.h" |
| 36 | |
| 37 | #define ACPI_EC_CLASS "embedded_controller" |
| 38 | #define ACPI_EC_DEVICE_NAME "Embedded Controller" |
| 39 | |
| 40 | /* EC status register */ |
| 41 | #define ACPI_EC_FLAG_OBF 0x01 /* Output buffer full */ |
| 42 | #define ACPI_EC_FLAG_IBF 0x02 /* Input buffer full */ |
| 43 | #define ACPI_EC_FLAG_CMD 0x08 /* Input buffer contains a command */ |
| 44 | #define ACPI_EC_FLAG_BURST 0x10 /* burst mode */ |
| 45 | #define ACPI_EC_FLAG_SCI 0x20 /* EC-SCI occurred */ |
| 46 | |
| 47 | /* |
| 48 | * The SCI_EVT clearing timing is not defined by the ACPI specification. |
| 49 | * This leads to lots of practical timing issues for the host EC driver. |
| 50 | * The following variations are defined (from the target EC firmware's |
| 51 | * perspective): |
| 52 | * STATUS: After indicating SCI_EVT edge triggered IRQ to the host, the |
| 53 | * target can clear SCI_EVT at any time so long as the host can see |
| 54 | * the indication by reading the status register (EC_SC). So the |
| 55 | * host should re-check SCI_EVT after the first time the SCI_EVT |
| 56 | * indication is seen, which is the same time the query request |
| 57 | * (QR_EC) is written to the command register (EC_CMD). SCI_EVT set |
| 58 | * at any later time could indicate another event. Normally such |
| 59 | * kind of EC firmware has implemented an event queue and will |
| 60 | * return 0x00 to indicate "no outstanding event". |
| 61 | * QUERY: After seeing the query request (QR_EC) written to the command |
| 62 | * register (EC_CMD) by the host and having prepared the responding |
| 63 | * event value in the data register (EC_DATA), the target can safely |
| 64 | * clear SCI_EVT because the target can confirm that the current |
| 65 | * event is being handled by the host. The host then should check |
| 66 | * SCI_EVT right after reading the event response from the data |
| 67 | * register (EC_DATA). |
| 68 | * EVENT: After seeing the event response read from the data register |
| 69 | * (EC_DATA) by the host, the target can clear SCI_EVT. As the |
| 70 | * target requires time to notice the change in the data register |
| 71 | * (EC_DATA), the host may be required to wait additional guarding |
| 72 | * time before checking the SCI_EVT again. Such guarding may not be |
| 73 | * necessary if the host is notified via another IRQ. |
| 74 | */ |
| 75 | #define ACPI_EC_EVT_TIMING_STATUS 0x00 |
| 76 | #define ACPI_EC_EVT_TIMING_QUERY 0x01 |
| 77 | #define ACPI_EC_EVT_TIMING_EVENT 0x02 |
| 78 | |
| 79 | /* EC commands */ |
| 80 | enum ec_command { |
| 81 | ACPI_EC_COMMAND_READ = 0x80, |
| 82 | ACPI_EC_COMMAND_WRITE = 0x81, |
| 83 | ACPI_EC_BURST_ENABLE = 0x82, |
| 84 | ACPI_EC_BURST_DISABLE = 0x83, |
| 85 | ACPI_EC_COMMAND_QUERY = 0x84, |
| 86 | }; |
| 87 | |
| 88 | #define ACPI_EC_DELAY 500 /* Wait 500ms max. during EC ops */ |
| 89 | #define ACPI_EC_UDELAY_GLK 1000 /* Wait 1ms max. to get global lock */ |
| 90 | #define ACPI_EC_UDELAY_POLL 550 /* Wait 1ms for EC transaction polling */ |
| 91 | #define ACPI_EC_CLEAR_MAX 100 /* Maximum number of events to query |
| 92 | * when trying to clear the EC */ |
| 93 | #define ACPI_EC_MAX_QUERIES 16 /* Maximum number of parallel queries */ |
| 94 | |
| 95 | enum { |
| 96 | EC_FLAGS_QUERY_ENABLED, /* Query is enabled */ |
| 97 | EC_FLAGS_EVENT_HANDLER_INSTALLED, /* Event handler installed */ |
| 98 | EC_FLAGS_EC_HANDLER_INSTALLED, /* OpReg handler installed */ |
| 99 | EC_FLAGS_EC_REG_CALLED, /* OpReg ACPI _REG method called */ |
| 100 | EC_FLAGS_QUERY_METHODS_INSTALLED, /* _Qxx handlers installed */ |
| 101 | EC_FLAGS_STARTED, /* Driver is started */ |
| 102 | EC_FLAGS_STOPPED, /* Driver is stopped */ |
| 103 | EC_FLAGS_EVENTS_MASKED, /* Events masked */ |
| 104 | }; |
| 105 | |
| 106 | #define ACPI_EC_COMMAND_POLL 0x01 /* Available for command byte */ |
| 107 | #define ACPI_EC_COMMAND_COMPLETE 0x02 /* Completed last byte */ |
| 108 | |
| 109 | /* ec.c is compiled in acpi namespace so this shows up as acpi.ec_delay param */ |
| 110 | static unsigned int ec_delay __read_mostly = ACPI_EC_DELAY; |
| 111 | module_param(ec_delay, uint, 0644); |
| 112 | MODULE_PARM_DESC(ec_delay, "Timeout(ms) waited until an EC command completes"); |
| 113 | |
| 114 | static unsigned int ec_max_queries __read_mostly = ACPI_EC_MAX_QUERIES; |
| 115 | module_param(ec_max_queries, uint, 0644); |
| 116 | MODULE_PARM_DESC(ec_max_queries, "Maximum parallel _Qxx evaluations"); |
| 117 | |
| 118 | static bool ec_busy_polling __read_mostly; |
| 119 | module_param(ec_busy_polling, bool, 0644); |
| 120 | MODULE_PARM_DESC(ec_busy_polling, "Use busy polling to advance EC transaction"); |
| 121 | |
| 122 | static unsigned int ec_polling_guard __read_mostly = ACPI_EC_UDELAY_POLL; |
| 123 | module_param(ec_polling_guard, uint, 0644); |
| 124 | MODULE_PARM_DESC(ec_polling_guard, "Guard time(us) between EC accesses in polling modes"); |
| 125 | |
| 126 | static unsigned int ec_event_clearing __read_mostly = ACPI_EC_EVT_TIMING_QUERY; |
| 127 | |
| 128 | /* |
| 129 | * If the number of false interrupts per one transaction exceeds |
| 130 | * this threshold, will think there is a GPE storm happened and |
| 131 | * will disable the GPE for normal transaction. |
| 132 | */ |
| 133 | static unsigned int ec_storm_threshold __read_mostly = 8; |
| 134 | module_param(ec_storm_threshold, uint, 0644); |
| 135 | MODULE_PARM_DESC(ec_storm_threshold, "Maxim false GPE numbers not considered as GPE storm"); |
| 136 | |
| 137 | static bool ec_freeze_events __read_mostly; |
| 138 | module_param(ec_freeze_events, bool, 0644); |
| 139 | MODULE_PARM_DESC(ec_freeze_events, "Disabling event handling during suspend/resume"); |
| 140 | |
| 141 | static bool ec_no_wakeup __read_mostly; |
| 142 | module_param(ec_no_wakeup, bool, 0644); |
| 143 | MODULE_PARM_DESC(ec_no_wakeup, "Do not wake up from suspend-to-idle"); |
| 144 | |
| 145 | struct acpi_ec_query_handler { |
| 146 | struct list_head node; |
| 147 | acpi_ec_query_func func; |
| 148 | acpi_handle handle; |
| 149 | void *data; |
| 150 | u8 query_bit; |
| 151 | struct kref kref; |
| 152 | }; |
| 153 | |
| 154 | struct transaction { |
| 155 | const u8 *wdata; |
| 156 | u8 *rdata; |
| 157 | unsigned short irq_count; |
| 158 | u8 command; |
| 159 | u8 wi; |
| 160 | u8 ri; |
| 161 | u8 wlen; |
| 162 | u8 rlen; |
| 163 | u8 flags; |
| 164 | }; |
| 165 | |
| 166 | struct acpi_ec_query { |
| 167 | struct transaction transaction; |
| 168 | struct work_struct work; |
| 169 | struct acpi_ec_query_handler *handler; |
| 170 | struct acpi_ec *ec; |
| 171 | }; |
| 172 | |
| 173 | static int acpi_ec_submit_query(struct acpi_ec *ec); |
| 174 | static void advance_transaction(struct acpi_ec *ec, bool interrupt); |
| 175 | static void acpi_ec_event_handler(struct work_struct *work); |
| 176 | |
| 177 | struct acpi_ec *first_ec; |
| 178 | EXPORT_SYMBOL(first_ec); |
| 179 | |
| 180 | static struct acpi_ec *boot_ec; |
| 181 | static bool boot_ec_is_ecdt; |
| 182 | static struct workqueue_struct *ec_wq; |
| 183 | static struct workqueue_struct *ec_query_wq; |
| 184 | |
| 185 | static int EC_FLAGS_CORRECT_ECDT; /* Needs ECDT port address correction */ |
| 186 | static int EC_FLAGS_TRUST_DSDT_GPE; /* Needs DSDT GPE as correction setting */ |
| 187 | static int EC_FLAGS_CLEAR_ON_RESUME; /* Needs acpi_ec_clear() on boot/resume */ |
| 188 | |
| 189 | /* -------------------------------------------------------------------------- |
| 190 | * Logging/Debugging |
| 191 | * -------------------------------------------------------------------------- */ |
| 192 | |
| 193 | /* |
| 194 | * Splitters used by the developers to track the boundary of the EC |
| 195 | * handling processes. |
| 196 | */ |
| 197 | #ifdef DEBUG |
| 198 | #define EC_DBG_SEP " " |
| 199 | #define EC_DBG_DRV "+++++" |
| 200 | #define EC_DBG_STM "=====" |
| 201 | #define EC_DBG_REQ "*****" |
| 202 | #define EC_DBG_EVT "#####" |
| 203 | #else |
| 204 | #define EC_DBG_SEP "" |
| 205 | #define EC_DBG_DRV |
| 206 | #define EC_DBG_STM |
| 207 | #define EC_DBG_REQ |
| 208 | #define EC_DBG_EVT |
| 209 | #endif |
| 210 | |
| 211 | #define ec_log_raw(fmt, ...) \ |
| 212 | pr_info(fmt "\n", ##__VA_ARGS__) |
| 213 | #define ec_dbg_raw(fmt, ...) \ |
| 214 | pr_debug(fmt "\n", ##__VA_ARGS__) |
| 215 | #define ec_log(filter, fmt, ...) \ |
| 216 | ec_log_raw(filter EC_DBG_SEP fmt EC_DBG_SEP filter, ##__VA_ARGS__) |
| 217 | #define ec_dbg(filter, fmt, ...) \ |
| 218 | ec_dbg_raw(filter EC_DBG_SEP fmt EC_DBG_SEP filter, ##__VA_ARGS__) |
| 219 | |
| 220 | #define ec_log_drv(fmt, ...) \ |
| 221 | ec_log(EC_DBG_DRV, fmt, ##__VA_ARGS__) |
| 222 | #define ec_dbg_drv(fmt, ...) \ |
| 223 | ec_dbg(EC_DBG_DRV, fmt, ##__VA_ARGS__) |
| 224 | #define ec_dbg_stm(fmt, ...) \ |
| 225 | ec_dbg(EC_DBG_STM, fmt, ##__VA_ARGS__) |
| 226 | #define ec_dbg_req(fmt, ...) \ |
| 227 | ec_dbg(EC_DBG_REQ, fmt, ##__VA_ARGS__) |
| 228 | #define ec_dbg_evt(fmt, ...) \ |
| 229 | ec_dbg(EC_DBG_EVT, fmt, ##__VA_ARGS__) |
| 230 | #define ec_dbg_ref(ec, fmt, ...) \ |
| 231 | ec_dbg_raw("%lu: " fmt, ec->reference_count, ## __VA_ARGS__) |
| 232 | |
| 233 | /* -------------------------------------------------------------------------- |
| 234 | * Device Flags |
| 235 | * -------------------------------------------------------------------------- */ |
| 236 | |
| 237 | static bool acpi_ec_started(struct acpi_ec *ec) |
| 238 | { |
| 239 | return test_bit(EC_FLAGS_STARTED, &ec->flags) && |
| 240 | !test_bit(EC_FLAGS_STOPPED, &ec->flags); |
| 241 | } |
| 242 | |
| 243 | static bool acpi_ec_event_enabled(struct acpi_ec *ec) |
| 244 | { |
| 245 | /* |
| 246 | * There is an OSPM early stage logic. During the early stages |
| 247 | * (boot/resume), OSPMs shouldn't enable the event handling, only |
| 248 | * the EC transactions are allowed to be performed. |
| 249 | */ |
| 250 | if (!test_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags)) |
| 251 | return false; |
| 252 | /* |
| 253 | * However, disabling the event handling is experimental for late |
| 254 | * stage (suspend), and is controlled by the boot parameter of |
| 255 | * "ec_freeze_events": |
| 256 | * 1. true: The EC event handling is disabled before entering |
| 257 | * the noirq stage. |
| 258 | * 2. false: The EC event handling is automatically disabled as |
| 259 | * soon as the EC driver is stopped. |
| 260 | */ |
| 261 | if (ec_freeze_events) |
| 262 | return acpi_ec_started(ec); |
| 263 | else |
| 264 | return test_bit(EC_FLAGS_STARTED, &ec->flags); |
| 265 | } |
| 266 | |
| 267 | static bool acpi_ec_flushed(struct acpi_ec *ec) |
| 268 | { |
| 269 | return ec->reference_count == 1; |
| 270 | } |
| 271 | |
| 272 | /* -------------------------------------------------------------------------- |
| 273 | * EC Registers |
| 274 | * -------------------------------------------------------------------------- */ |
| 275 | |
| 276 | static inline u8 acpi_ec_read_status(struct acpi_ec *ec) |
| 277 | { |
| 278 | u8 x = inb(ec->command_addr); |
| 279 | |
| 280 | ec_dbg_raw("EC_SC(R) = 0x%2.2x " |
| 281 | "SCI_EVT=%d BURST=%d CMD=%d IBF=%d OBF=%d", |
| 282 | x, |
| 283 | !!(x & ACPI_EC_FLAG_SCI), |
| 284 | !!(x & ACPI_EC_FLAG_BURST), |
| 285 | !!(x & ACPI_EC_FLAG_CMD), |
| 286 | !!(x & ACPI_EC_FLAG_IBF), |
| 287 | !!(x & ACPI_EC_FLAG_OBF)); |
| 288 | return x; |
| 289 | } |
| 290 | |
| 291 | static inline u8 acpi_ec_read_data(struct acpi_ec *ec) |
| 292 | { |
| 293 | u8 x = inb(ec->data_addr); |
| 294 | |
| 295 | ec->timestamp = jiffies; |
| 296 | ec_dbg_raw("EC_DATA(R) = 0x%2.2x", x); |
| 297 | return x; |
| 298 | } |
| 299 | |
| 300 | static inline void acpi_ec_write_cmd(struct acpi_ec *ec, u8 command) |
| 301 | { |
| 302 | ec_dbg_raw("EC_SC(W) = 0x%2.2x", command); |
| 303 | outb(command, ec->command_addr); |
| 304 | ec->timestamp = jiffies; |
| 305 | } |
| 306 | |
| 307 | static inline void acpi_ec_write_data(struct acpi_ec *ec, u8 data) |
| 308 | { |
| 309 | ec_dbg_raw("EC_DATA(W) = 0x%2.2x", data); |
| 310 | outb(data, ec->data_addr); |
| 311 | ec->timestamp = jiffies; |
| 312 | } |
| 313 | |
| 314 | #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG) |
| 315 | static const char *acpi_ec_cmd_string(u8 cmd) |
| 316 | { |
| 317 | switch (cmd) { |
| 318 | case 0x80: |
| 319 | return "RD_EC"; |
| 320 | case 0x81: |
| 321 | return "WR_EC"; |
| 322 | case 0x82: |
| 323 | return "BE_EC"; |
| 324 | case 0x83: |
| 325 | return "BD_EC"; |
| 326 | case 0x84: |
| 327 | return "QR_EC"; |
| 328 | } |
| 329 | return "UNKNOWN"; |
| 330 | } |
| 331 | #else |
| 332 | #define acpi_ec_cmd_string(cmd) "UNDEF" |
| 333 | #endif |
| 334 | |
| 335 | /* -------------------------------------------------------------------------- |
| 336 | * GPE Registers |
| 337 | * -------------------------------------------------------------------------- */ |
| 338 | |
| 339 | static inline bool acpi_ec_gpe_status_set(struct acpi_ec *ec) |
| 340 | { |
| 341 | acpi_event_status gpe_status = 0; |
| 342 | |
| 343 | (void)acpi_get_gpe_status(NULL, ec->gpe, &gpe_status); |
| 344 | return !!(gpe_status & ACPI_EVENT_FLAG_STATUS_SET); |
| 345 | } |
| 346 | |
| 347 | static inline void acpi_ec_enable_gpe(struct acpi_ec *ec, bool open) |
| 348 | { |
| 349 | if (open) |
| 350 | acpi_enable_gpe(NULL, ec->gpe); |
| 351 | else { |
| 352 | BUG_ON(ec->reference_count < 1); |
| 353 | acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_ENABLE); |
| 354 | } |
| 355 | if (acpi_ec_gpe_status_set(ec)) { |
| 356 | /* |
| 357 | * On some platforms, EN=1 writes cannot trigger GPE. So |
| 358 | * software need to manually trigger a pseudo GPE event on |
| 359 | * EN=1 writes. |
| 360 | */ |
| 361 | ec_dbg_raw("Polling quirk"); |
| 362 | advance_transaction(ec, false); |
| 363 | } |
| 364 | } |
| 365 | |
| 366 | static inline void acpi_ec_disable_gpe(struct acpi_ec *ec, bool close) |
| 367 | { |
| 368 | if (close) |
| 369 | acpi_disable_gpe(NULL, ec->gpe); |
| 370 | else { |
| 371 | BUG_ON(ec->reference_count < 1); |
| 372 | acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_DISABLE); |
| 373 | } |
| 374 | } |
| 375 | |
| 376 | /* -------------------------------------------------------------------------- |
| 377 | * Transaction Management |
| 378 | * -------------------------------------------------------------------------- */ |
| 379 | |
| 380 | static void acpi_ec_submit_request(struct acpi_ec *ec) |
| 381 | { |
| 382 | ec->reference_count++; |
| 383 | if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags) && |
| 384 | ec->gpe >= 0 && ec->reference_count == 1) |
| 385 | acpi_ec_enable_gpe(ec, true); |
| 386 | } |
| 387 | |
| 388 | static void acpi_ec_complete_request(struct acpi_ec *ec) |
| 389 | { |
| 390 | bool flushed = false; |
| 391 | |
| 392 | ec->reference_count--; |
| 393 | if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags) && |
| 394 | ec->gpe >= 0 && ec->reference_count == 0) |
| 395 | acpi_ec_disable_gpe(ec, true); |
| 396 | flushed = acpi_ec_flushed(ec); |
| 397 | if (flushed) |
| 398 | wake_up(&ec->wait); |
| 399 | } |
| 400 | |
| 401 | static void acpi_ec_mask_events(struct acpi_ec *ec) |
| 402 | { |
| 403 | if (!test_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags)) { |
| 404 | if (ec->gpe >= 0) |
| 405 | acpi_ec_disable_gpe(ec, false); |
| 406 | else |
| 407 | disable_irq_nosync(ec->irq); |
| 408 | |
| 409 | ec_dbg_drv("Polling enabled"); |
| 410 | set_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags); |
| 411 | } |
| 412 | } |
| 413 | |
| 414 | static void acpi_ec_unmask_events(struct acpi_ec *ec) |
| 415 | { |
| 416 | if (test_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags)) { |
| 417 | clear_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags); |
| 418 | if (ec->gpe >= 0) |
| 419 | acpi_ec_enable_gpe(ec, false); |
| 420 | else |
| 421 | enable_irq(ec->irq); |
| 422 | |
| 423 | ec_dbg_drv("Polling disabled"); |
| 424 | } |
| 425 | } |
| 426 | |
| 427 | /* |
| 428 | * acpi_ec_submit_flushable_request() - Increase the reference count unless |
| 429 | * the flush operation is not in |
| 430 | * progress |
| 431 | * @ec: the EC device |
| 432 | * |
| 433 | * This function must be used before taking a new action that should hold |
| 434 | * the reference count. If this function returns false, then the action |
| 435 | * must be discarded or it will prevent the flush operation from being |
| 436 | * completed. |
| 437 | */ |
| 438 | static bool acpi_ec_submit_flushable_request(struct acpi_ec *ec) |
| 439 | { |
| 440 | if (!acpi_ec_started(ec)) |
| 441 | return false; |
| 442 | acpi_ec_submit_request(ec); |
| 443 | return true; |
| 444 | } |
| 445 | |
| 446 | static void acpi_ec_submit_event(struct acpi_ec *ec) |
| 447 | { |
| 448 | /* |
| 449 | * It is safe to mask the events here, because acpi_ec_close_event() |
| 450 | * will run at least once after this. |
| 451 | */ |
| 452 | acpi_ec_mask_events(ec); |
| 453 | if (!acpi_ec_event_enabled(ec)) |
| 454 | return; |
| 455 | |
| 456 | if (ec->event_state != EC_EVENT_READY) |
| 457 | return; |
| 458 | |
| 459 | ec_dbg_evt("Command(%s) submitted/blocked", |
| 460 | acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY)); |
| 461 | |
| 462 | ec->event_state = EC_EVENT_IN_PROGRESS; |
| 463 | /* |
| 464 | * If events_to_process is greater than 0 at this point, the while () |
| 465 | * loop in acpi_ec_event_handler() is still running and incrementing |
| 466 | * events_to_process will cause it to invoke acpi_ec_submit_query() once |
| 467 | * more, so it is not necessary to queue up the event work to start the |
| 468 | * same loop again. |
| 469 | */ |
| 470 | if (ec->events_to_process++ > 0) |
| 471 | return; |
| 472 | |
| 473 | ec->events_in_progress++; |
| 474 | queue_work(ec_wq, &ec->work); |
| 475 | } |
| 476 | |
| 477 | static void acpi_ec_complete_event(struct acpi_ec *ec) |
| 478 | { |
| 479 | if (ec->event_state == EC_EVENT_IN_PROGRESS) |
| 480 | ec->event_state = EC_EVENT_COMPLETE; |
| 481 | } |
| 482 | |
| 483 | static void acpi_ec_close_event(struct acpi_ec *ec) |
| 484 | { |
| 485 | if (ec->event_state != EC_EVENT_READY) |
| 486 | ec_dbg_evt("Command(%s) unblocked", |
| 487 | acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY)); |
| 488 | |
| 489 | ec->event_state = EC_EVENT_READY; |
| 490 | acpi_ec_unmask_events(ec); |
| 491 | } |
| 492 | |
| 493 | static inline void __acpi_ec_enable_event(struct acpi_ec *ec) |
| 494 | { |
| 495 | if (!test_and_set_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags)) |
| 496 | ec_log_drv("event unblocked"); |
| 497 | /* |
| 498 | * Unconditionally invoke this once after enabling the event |
| 499 | * handling mechanism to detect the pending events. |
| 500 | */ |
| 501 | advance_transaction(ec, false); |
| 502 | } |
| 503 | |
| 504 | static inline void __acpi_ec_disable_event(struct acpi_ec *ec) |
| 505 | { |
| 506 | if (test_and_clear_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags)) |
| 507 | ec_log_drv("event blocked"); |
| 508 | } |
| 509 | |
| 510 | /* |
| 511 | * Process _Q events that might have accumulated in the EC. |
| 512 | * Run with locked ec mutex. |
| 513 | */ |
| 514 | static void acpi_ec_clear(struct acpi_ec *ec) |
| 515 | { |
| 516 | int i; |
| 517 | |
| 518 | for (i = 0; i < ACPI_EC_CLEAR_MAX; i++) { |
| 519 | if (acpi_ec_submit_query(ec)) |
| 520 | break; |
| 521 | } |
| 522 | if (unlikely(i == ACPI_EC_CLEAR_MAX)) |
| 523 | pr_warn("Warning: Maximum of %d stale EC events cleared\n", i); |
| 524 | else |
| 525 | pr_info("%d stale EC events cleared\n", i); |
| 526 | } |
| 527 | |
| 528 | static void acpi_ec_enable_event(struct acpi_ec *ec) |
| 529 | { |
| 530 | unsigned long flags; |
| 531 | |
| 532 | spin_lock_irqsave(&ec->lock, flags); |
| 533 | if (acpi_ec_started(ec)) |
| 534 | __acpi_ec_enable_event(ec); |
| 535 | spin_unlock_irqrestore(&ec->lock, flags); |
| 536 | |
| 537 | /* Drain additional events if hardware requires that */ |
| 538 | if (EC_FLAGS_CLEAR_ON_RESUME) |
| 539 | acpi_ec_clear(ec); |
| 540 | } |
| 541 | |
| 542 | #ifdef CONFIG_PM_SLEEP |
| 543 | static void __acpi_ec_flush_work(void) |
| 544 | { |
| 545 | flush_workqueue(ec_wq); /* flush ec->work */ |
| 546 | flush_workqueue(ec_query_wq); /* flush queries */ |
| 547 | } |
| 548 | |
| 549 | static void acpi_ec_disable_event(struct acpi_ec *ec) |
| 550 | { |
| 551 | unsigned long flags; |
| 552 | |
| 553 | spin_lock_irqsave(&ec->lock, flags); |
| 554 | __acpi_ec_disable_event(ec); |
| 555 | spin_unlock_irqrestore(&ec->lock, flags); |
| 556 | |
| 557 | /* |
| 558 | * When ec_freeze_events is true, we need to flush events in |
| 559 | * the proper position before entering the noirq stage. |
| 560 | */ |
| 561 | __acpi_ec_flush_work(); |
| 562 | } |
| 563 | |
| 564 | void acpi_ec_flush_work(void) |
| 565 | { |
| 566 | /* Without ec_wq there is nothing to flush. */ |
| 567 | if (!ec_wq) |
| 568 | return; |
| 569 | |
| 570 | __acpi_ec_flush_work(); |
| 571 | } |
| 572 | #endif /* CONFIG_PM_SLEEP */ |
| 573 | |
| 574 | static bool acpi_ec_guard_event(struct acpi_ec *ec) |
| 575 | { |
| 576 | unsigned long flags; |
| 577 | bool guarded; |
| 578 | |
| 579 | spin_lock_irqsave(&ec->lock, flags); |
| 580 | /* |
| 581 | * If firmware SCI_EVT clearing timing is "event", we actually |
| 582 | * don't know when the SCI_EVT will be cleared by firmware after |
| 583 | * evaluating _Qxx, so we need to re-check SCI_EVT after waiting an |
| 584 | * acceptable period. |
| 585 | * |
| 586 | * The guarding period is applicable if the event state is not |
| 587 | * EC_EVENT_READY, but otherwise if the current transaction is of the |
| 588 | * ACPI_EC_COMMAND_QUERY type, the guarding should have elapsed already |
| 589 | * and it should not be applied to let the transaction transition into |
| 590 | * the ACPI_EC_COMMAND_POLL state immediately. |
| 591 | */ |
| 592 | guarded = ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT && |
| 593 | ec->event_state != EC_EVENT_READY && |
| 594 | (!ec->curr || ec->curr->command != ACPI_EC_COMMAND_QUERY); |
| 595 | spin_unlock_irqrestore(&ec->lock, flags); |
| 596 | return guarded; |
| 597 | } |
| 598 | |
| 599 | static int ec_transaction_polled(struct acpi_ec *ec) |
| 600 | { |
| 601 | unsigned long flags; |
| 602 | int ret = 0; |
| 603 | |
| 604 | spin_lock_irqsave(&ec->lock, flags); |
| 605 | if (ec->curr && (ec->curr->flags & ACPI_EC_COMMAND_POLL)) |
| 606 | ret = 1; |
| 607 | spin_unlock_irqrestore(&ec->lock, flags); |
| 608 | return ret; |
| 609 | } |
| 610 | |
| 611 | static int ec_transaction_completed(struct acpi_ec *ec) |
| 612 | { |
| 613 | unsigned long flags; |
| 614 | int ret = 0; |
| 615 | |
| 616 | spin_lock_irqsave(&ec->lock, flags); |
| 617 | if (ec->curr && (ec->curr->flags & ACPI_EC_COMMAND_COMPLETE)) |
| 618 | ret = 1; |
| 619 | spin_unlock_irqrestore(&ec->lock, flags); |
| 620 | return ret; |
| 621 | } |
| 622 | |
| 623 | static inline void ec_transaction_transition(struct acpi_ec *ec, unsigned long flag) |
| 624 | { |
| 625 | ec->curr->flags |= flag; |
| 626 | |
| 627 | if (ec->curr->command != ACPI_EC_COMMAND_QUERY) |
| 628 | return; |
| 629 | |
| 630 | switch (ec_event_clearing) { |
| 631 | case ACPI_EC_EVT_TIMING_STATUS: |
| 632 | if (flag == ACPI_EC_COMMAND_POLL) |
| 633 | acpi_ec_close_event(ec); |
| 634 | |
| 635 | return; |
| 636 | |
| 637 | case ACPI_EC_EVT_TIMING_QUERY: |
| 638 | if (flag == ACPI_EC_COMMAND_COMPLETE) |
| 639 | acpi_ec_close_event(ec); |
| 640 | |
| 641 | return; |
| 642 | |
| 643 | case ACPI_EC_EVT_TIMING_EVENT: |
| 644 | if (flag == ACPI_EC_COMMAND_COMPLETE) |
| 645 | acpi_ec_complete_event(ec); |
| 646 | } |
| 647 | } |
| 648 | |
| 649 | static void acpi_ec_spurious_interrupt(struct acpi_ec *ec, struct transaction *t) |
| 650 | { |
| 651 | if (t->irq_count < ec_storm_threshold) |
| 652 | ++t->irq_count; |
| 653 | |
| 654 | /* Trigger if the threshold is 0 too. */ |
| 655 | if (t->irq_count == ec_storm_threshold) |
| 656 | acpi_ec_mask_events(ec); |
| 657 | } |
| 658 | |
| 659 | static void advance_transaction(struct acpi_ec *ec, bool interrupt) |
| 660 | { |
| 661 | struct transaction *t = ec->curr; |
| 662 | bool wakeup = false; |
| 663 | u8 status; |
| 664 | |
| 665 | ec_dbg_stm("%s (%d)", interrupt ? "IRQ" : "TASK", smp_processor_id()); |
| 666 | |
| 667 | status = acpi_ec_read_status(ec); |
| 668 | |
| 669 | /* |
| 670 | * Another IRQ or a guarded polling mode advancement is detected, |
| 671 | * the next QR_EC submission is then allowed. |
| 672 | */ |
| 673 | if (!t || !(t->flags & ACPI_EC_COMMAND_POLL)) { |
| 674 | if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT && |
| 675 | ec->event_state == EC_EVENT_COMPLETE) |
| 676 | acpi_ec_close_event(ec); |
| 677 | |
| 678 | if (!t) |
| 679 | goto out; |
| 680 | } |
| 681 | |
| 682 | if (t->flags & ACPI_EC_COMMAND_POLL) { |
| 683 | if (t->wlen > t->wi) { |
| 684 | if (!(status & ACPI_EC_FLAG_IBF)) |
| 685 | acpi_ec_write_data(ec, t->wdata[t->wi++]); |
| 686 | else if (interrupt && !(status & ACPI_EC_FLAG_SCI)) |
| 687 | acpi_ec_spurious_interrupt(ec, t); |
| 688 | } else if (t->rlen > t->ri) { |
| 689 | if (status & ACPI_EC_FLAG_OBF) { |
| 690 | t->rdata[t->ri++] = acpi_ec_read_data(ec); |
| 691 | if (t->rlen == t->ri) { |
| 692 | ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE); |
| 693 | wakeup = true; |
| 694 | if (t->command == ACPI_EC_COMMAND_QUERY) |
| 695 | ec_dbg_evt("Command(%s) completed by hardware", |
| 696 | acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY)); |
| 697 | } |
| 698 | } else if (interrupt && !(status & ACPI_EC_FLAG_SCI)) { |
| 699 | acpi_ec_spurious_interrupt(ec, t); |
| 700 | } |
| 701 | } else if (t->wlen == t->wi && !(status & ACPI_EC_FLAG_IBF)) { |
| 702 | ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE); |
| 703 | wakeup = true; |
| 704 | } |
| 705 | } else if (!(status & ACPI_EC_FLAG_IBF)) { |
| 706 | acpi_ec_write_cmd(ec, t->command); |
| 707 | ec_transaction_transition(ec, ACPI_EC_COMMAND_POLL); |
| 708 | } |
| 709 | |
| 710 | out: |
| 711 | if (status & ACPI_EC_FLAG_SCI) |
| 712 | acpi_ec_submit_event(ec); |
| 713 | |
| 714 | if (wakeup && interrupt) |
| 715 | wake_up(&ec->wait); |
| 716 | } |
| 717 | |
| 718 | static void start_transaction(struct acpi_ec *ec) |
| 719 | { |
| 720 | ec->curr->irq_count = ec->curr->wi = ec->curr->ri = 0; |
| 721 | ec->curr->flags = 0; |
| 722 | } |
| 723 | |
| 724 | static int ec_guard(struct acpi_ec *ec) |
| 725 | { |
| 726 | unsigned long guard = usecs_to_jiffies(ec->polling_guard); |
| 727 | unsigned long timeout = ec->timestamp + guard; |
| 728 | |
| 729 | /* Ensure guarding period before polling EC status */ |
| 730 | do { |
| 731 | if (ec->busy_polling) { |
| 732 | /* Perform busy polling */ |
| 733 | if (ec_transaction_completed(ec)) |
| 734 | return 0; |
| 735 | udelay(jiffies_to_usecs(guard)); |
| 736 | } else { |
| 737 | /* |
| 738 | * Perform wait polling |
| 739 | * 1. Wait the transaction to be completed by the |
| 740 | * GPE handler after the transaction enters |
| 741 | * ACPI_EC_COMMAND_POLL state. |
| 742 | * 2. A special guarding logic is also required |
| 743 | * for event clearing mode "event" before the |
| 744 | * transaction enters ACPI_EC_COMMAND_POLL |
| 745 | * state. |
| 746 | */ |
| 747 | if (!ec_transaction_polled(ec) && |
| 748 | !acpi_ec_guard_event(ec)) |
| 749 | break; |
| 750 | if (wait_event_timeout(ec->wait, |
| 751 | ec_transaction_completed(ec), |
| 752 | guard)) |
| 753 | return 0; |
| 754 | } |
| 755 | } while (time_before(jiffies, timeout)); |
| 756 | return -ETIME; |
| 757 | } |
| 758 | |
| 759 | static int ec_poll(struct acpi_ec *ec) |
| 760 | { |
| 761 | unsigned long flags; |
| 762 | int repeat = 5; /* number of command restarts */ |
| 763 | |
| 764 | while (repeat--) { |
| 765 | unsigned long delay = jiffies + |
| 766 | msecs_to_jiffies(ec_delay); |
| 767 | do { |
| 768 | if (!ec_guard(ec)) |
| 769 | return 0; |
| 770 | spin_lock_irqsave(&ec->lock, flags); |
| 771 | advance_transaction(ec, false); |
| 772 | spin_unlock_irqrestore(&ec->lock, flags); |
| 773 | } while (time_before(jiffies, delay)); |
| 774 | pr_debug("controller reset, restart transaction\n"); |
| 775 | spin_lock_irqsave(&ec->lock, flags); |
| 776 | start_transaction(ec); |
| 777 | spin_unlock_irqrestore(&ec->lock, flags); |
| 778 | } |
| 779 | return -ETIME; |
| 780 | } |
| 781 | |
| 782 | static int acpi_ec_transaction_unlocked(struct acpi_ec *ec, |
| 783 | struct transaction *t) |
| 784 | { |
| 785 | unsigned long tmp; |
| 786 | int ret = 0; |
| 787 | |
| 788 | if (t->rdata) |
| 789 | memset(t->rdata, 0, t->rlen); |
| 790 | |
| 791 | /* start transaction */ |
| 792 | spin_lock_irqsave(&ec->lock, tmp); |
| 793 | /* Enable GPE for command processing (IBF=0/OBF=1) */ |
| 794 | if (!acpi_ec_submit_flushable_request(ec)) { |
| 795 | ret = -EINVAL; |
| 796 | goto unlock; |
| 797 | } |
| 798 | ec_dbg_ref(ec, "Increase command"); |
| 799 | /* following two actions should be kept atomic */ |
| 800 | ec->curr = t; |
| 801 | ec_dbg_req("Command(%s) started", acpi_ec_cmd_string(t->command)); |
| 802 | start_transaction(ec); |
| 803 | spin_unlock_irqrestore(&ec->lock, tmp); |
| 804 | |
| 805 | ret = ec_poll(ec); |
| 806 | |
| 807 | spin_lock_irqsave(&ec->lock, tmp); |
| 808 | if (t->irq_count == ec_storm_threshold) |
| 809 | acpi_ec_unmask_events(ec); |
| 810 | ec_dbg_req("Command(%s) stopped", acpi_ec_cmd_string(t->command)); |
| 811 | ec->curr = NULL; |
| 812 | /* Disable GPE for command processing (IBF=0/OBF=1) */ |
| 813 | acpi_ec_complete_request(ec); |
| 814 | ec_dbg_ref(ec, "Decrease command"); |
| 815 | unlock: |
| 816 | spin_unlock_irqrestore(&ec->lock, tmp); |
| 817 | return ret; |
| 818 | } |
| 819 | |
| 820 | static int acpi_ec_transaction(struct acpi_ec *ec, struct transaction *t) |
| 821 | { |
| 822 | int status; |
| 823 | u32 glk; |
| 824 | |
| 825 | if (!ec || (!t) || (t->wlen && !t->wdata) || (t->rlen && !t->rdata)) |
| 826 | return -EINVAL; |
| 827 | |
| 828 | mutex_lock(&ec->mutex); |
| 829 | if (ec->global_lock) { |
| 830 | status = acpi_acquire_global_lock(ACPI_EC_UDELAY_GLK, &glk); |
| 831 | if (ACPI_FAILURE(status)) { |
| 832 | status = -ENODEV; |
| 833 | goto unlock; |
| 834 | } |
| 835 | } |
| 836 | |
| 837 | status = acpi_ec_transaction_unlocked(ec, t); |
| 838 | |
| 839 | if (ec->global_lock) |
| 840 | acpi_release_global_lock(glk); |
| 841 | unlock: |
| 842 | mutex_unlock(&ec->mutex); |
| 843 | return status; |
| 844 | } |
| 845 | |
| 846 | static int acpi_ec_burst_enable(struct acpi_ec *ec) |
| 847 | { |
| 848 | u8 d; |
| 849 | struct transaction t = {.command = ACPI_EC_BURST_ENABLE, |
| 850 | .wdata = NULL, .rdata = &d, |
| 851 | .wlen = 0, .rlen = 1}; |
| 852 | |
| 853 | return acpi_ec_transaction_unlocked(ec, &t); |
| 854 | } |
| 855 | |
| 856 | static int acpi_ec_burst_disable(struct acpi_ec *ec) |
| 857 | { |
| 858 | struct transaction t = {.command = ACPI_EC_BURST_DISABLE, |
| 859 | .wdata = NULL, .rdata = NULL, |
| 860 | .wlen = 0, .rlen = 0}; |
| 861 | |
| 862 | return (acpi_ec_read_status(ec) & ACPI_EC_FLAG_BURST) ? |
| 863 | acpi_ec_transaction_unlocked(ec, &t) : 0; |
| 864 | } |
| 865 | |
| 866 | static int acpi_ec_read(struct acpi_ec *ec, u8 address, u8 *data) |
| 867 | { |
| 868 | int result; |
| 869 | u8 d; |
| 870 | struct transaction t = {.command = ACPI_EC_COMMAND_READ, |
| 871 | .wdata = &address, .rdata = &d, |
| 872 | .wlen = 1, .rlen = 1}; |
| 873 | |
| 874 | result = acpi_ec_transaction(ec, &t); |
| 875 | *data = d; |
| 876 | return result; |
| 877 | } |
| 878 | |
| 879 | static int acpi_ec_read_unlocked(struct acpi_ec *ec, u8 address, u8 *data) |
| 880 | { |
| 881 | int result; |
| 882 | u8 d; |
| 883 | struct transaction t = {.command = ACPI_EC_COMMAND_READ, |
| 884 | .wdata = &address, .rdata = &d, |
| 885 | .wlen = 1, .rlen = 1}; |
| 886 | |
| 887 | result = acpi_ec_transaction_unlocked(ec, &t); |
| 888 | *data = d; |
| 889 | return result; |
| 890 | } |
| 891 | |
| 892 | static int acpi_ec_write(struct acpi_ec *ec, u8 address, u8 data) |
| 893 | { |
| 894 | u8 wdata[2] = { address, data }; |
| 895 | struct transaction t = {.command = ACPI_EC_COMMAND_WRITE, |
| 896 | .wdata = wdata, .rdata = NULL, |
| 897 | .wlen = 2, .rlen = 0}; |
| 898 | |
| 899 | return acpi_ec_transaction(ec, &t); |
| 900 | } |
| 901 | |
| 902 | static int acpi_ec_write_unlocked(struct acpi_ec *ec, u8 address, u8 data) |
| 903 | { |
| 904 | u8 wdata[2] = { address, data }; |
| 905 | struct transaction t = {.command = ACPI_EC_COMMAND_WRITE, |
| 906 | .wdata = wdata, .rdata = NULL, |
| 907 | .wlen = 2, .rlen = 0}; |
| 908 | |
| 909 | return acpi_ec_transaction_unlocked(ec, &t); |
| 910 | } |
| 911 | |
| 912 | int ec_read(u8 addr, u8 *val) |
| 913 | { |
| 914 | int err; |
| 915 | u8 temp_data; |
| 916 | |
| 917 | if (!first_ec) |
| 918 | return -ENODEV; |
| 919 | |
| 920 | err = acpi_ec_read(first_ec, addr, &temp_data); |
| 921 | |
| 922 | if (!err) { |
| 923 | *val = temp_data; |
| 924 | return 0; |
| 925 | } |
| 926 | return err; |
| 927 | } |
| 928 | EXPORT_SYMBOL(ec_read); |
| 929 | |
| 930 | int ec_write(u8 addr, u8 val) |
| 931 | { |
| 932 | if (!first_ec) |
| 933 | return -ENODEV; |
| 934 | |
| 935 | return acpi_ec_write(first_ec, addr, val); |
| 936 | } |
| 937 | EXPORT_SYMBOL(ec_write); |
| 938 | |
| 939 | int ec_transaction(u8 command, |
| 940 | const u8 *wdata, unsigned wdata_len, |
| 941 | u8 *rdata, unsigned rdata_len) |
| 942 | { |
| 943 | struct transaction t = {.command = command, |
| 944 | .wdata = wdata, .rdata = rdata, |
| 945 | .wlen = wdata_len, .rlen = rdata_len}; |
| 946 | |
| 947 | if (!first_ec) |
| 948 | return -ENODEV; |
| 949 | |
| 950 | return acpi_ec_transaction(first_ec, &t); |
| 951 | } |
| 952 | EXPORT_SYMBOL(ec_transaction); |
| 953 | |
| 954 | /* Get the handle to the EC device */ |
| 955 | acpi_handle ec_get_handle(void) |
| 956 | { |
| 957 | if (!first_ec) |
| 958 | return NULL; |
| 959 | return first_ec->handle; |
| 960 | } |
| 961 | EXPORT_SYMBOL(ec_get_handle); |
| 962 | |
| 963 | static void acpi_ec_start(struct acpi_ec *ec, bool resuming) |
| 964 | { |
| 965 | unsigned long flags; |
| 966 | |
| 967 | spin_lock_irqsave(&ec->lock, flags); |
| 968 | if (!test_and_set_bit(EC_FLAGS_STARTED, &ec->flags)) { |
| 969 | ec_dbg_drv("Starting EC"); |
| 970 | /* Enable GPE for event processing (SCI_EVT=1) */ |
| 971 | if (!resuming) { |
| 972 | acpi_ec_submit_request(ec); |
| 973 | ec_dbg_ref(ec, "Increase driver"); |
| 974 | } |
| 975 | ec_log_drv("EC started"); |
| 976 | } |
| 977 | spin_unlock_irqrestore(&ec->lock, flags); |
| 978 | } |
| 979 | |
| 980 | static bool acpi_ec_stopped(struct acpi_ec *ec) |
| 981 | { |
| 982 | unsigned long flags; |
| 983 | bool flushed; |
| 984 | |
| 985 | spin_lock_irqsave(&ec->lock, flags); |
| 986 | flushed = acpi_ec_flushed(ec); |
| 987 | spin_unlock_irqrestore(&ec->lock, flags); |
| 988 | return flushed; |
| 989 | } |
| 990 | |
| 991 | static void acpi_ec_stop(struct acpi_ec *ec, bool suspending) |
| 992 | { |
| 993 | unsigned long flags; |
| 994 | |
| 995 | spin_lock_irqsave(&ec->lock, flags); |
| 996 | if (acpi_ec_started(ec)) { |
| 997 | ec_dbg_drv("Stopping EC"); |
| 998 | set_bit(EC_FLAGS_STOPPED, &ec->flags); |
| 999 | spin_unlock_irqrestore(&ec->lock, flags); |
| 1000 | wait_event(ec->wait, acpi_ec_stopped(ec)); |
| 1001 | spin_lock_irqsave(&ec->lock, flags); |
| 1002 | /* Disable GPE for event processing (SCI_EVT=1) */ |
| 1003 | if (!suspending) { |
| 1004 | acpi_ec_complete_request(ec); |
| 1005 | ec_dbg_ref(ec, "Decrease driver"); |
| 1006 | } else if (!ec_freeze_events) |
| 1007 | __acpi_ec_disable_event(ec); |
| 1008 | clear_bit(EC_FLAGS_STARTED, &ec->flags); |
| 1009 | clear_bit(EC_FLAGS_STOPPED, &ec->flags); |
| 1010 | ec_log_drv("EC stopped"); |
| 1011 | } |
| 1012 | spin_unlock_irqrestore(&ec->lock, flags); |
| 1013 | } |
| 1014 | |
| 1015 | static void acpi_ec_enter_noirq(struct acpi_ec *ec) |
| 1016 | { |
| 1017 | unsigned long flags; |
| 1018 | |
| 1019 | spin_lock_irqsave(&ec->lock, flags); |
| 1020 | ec->busy_polling = true; |
| 1021 | ec->polling_guard = 0; |
| 1022 | ec_log_drv("interrupt blocked"); |
| 1023 | spin_unlock_irqrestore(&ec->lock, flags); |
| 1024 | } |
| 1025 | |
| 1026 | static void acpi_ec_leave_noirq(struct acpi_ec *ec) |
| 1027 | { |
| 1028 | unsigned long flags; |
| 1029 | |
| 1030 | spin_lock_irqsave(&ec->lock, flags); |
| 1031 | ec->busy_polling = ec_busy_polling; |
| 1032 | ec->polling_guard = ec_polling_guard; |
| 1033 | ec_log_drv("interrupt unblocked"); |
| 1034 | spin_unlock_irqrestore(&ec->lock, flags); |
| 1035 | } |
| 1036 | |
| 1037 | void acpi_ec_block_transactions(void) |
| 1038 | { |
| 1039 | struct acpi_ec *ec = first_ec; |
| 1040 | |
| 1041 | if (!ec) |
| 1042 | return; |
| 1043 | |
| 1044 | mutex_lock(&ec->mutex); |
| 1045 | /* Prevent transactions from being carried out */ |
| 1046 | acpi_ec_stop(ec, true); |
| 1047 | mutex_unlock(&ec->mutex); |
| 1048 | } |
| 1049 | |
| 1050 | void acpi_ec_unblock_transactions(void) |
| 1051 | { |
| 1052 | /* |
| 1053 | * Allow transactions to happen again (this function is called from |
| 1054 | * atomic context during wakeup, so we don't need to acquire the mutex). |
| 1055 | */ |
| 1056 | if (first_ec) |
| 1057 | acpi_ec_start(first_ec, true); |
| 1058 | } |
| 1059 | |
| 1060 | /* -------------------------------------------------------------------------- |
| 1061 | Event Management |
| 1062 | -------------------------------------------------------------------------- */ |
| 1063 | static struct acpi_ec_query_handler * |
| 1064 | acpi_ec_get_query_handler_by_value(struct acpi_ec *ec, u8 value) |
| 1065 | { |
| 1066 | struct acpi_ec_query_handler *handler; |
| 1067 | |
| 1068 | mutex_lock(&ec->mutex); |
| 1069 | list_for_each_entry(handler, &ec->list, node) { |
| 1070 | if (value == handler->query_bit) { |
| 1071 | kref_get(&handler->kref); |
| 1072 | mutex_unlock(&ec->mutex); |
| 1073 | return handler; |
| 1074 | } |
| 1075 | } |
| 1076 | mutex_unlock(&ec->mutex); |
| 1077 | return NULL; |
| 1078 | } |
| 1079 | |
| 1080 | static void acpi_ec_query_handler_release(struct kref *kref) |
| 1081 | { |
| 1082 | struct acpi_ec_query_handler *handler = |
| 1083 | container_of(kref, struct acpi_ec_query_handler, kref); |
| 1084 | |
| 1085 | kfree(handler); |
| 1086 | } |
| 1087 | |
| 1088 | static void acpi_ec_put_query_handler(struct acpi_ec_query_handler *handler) |
| 1089 | { |
| 1090 | kref_put(&handler->kref, acpi_ec_query_handler_release); |
| 1091 | } |
| 1092 | |
| 1093 | int acpi_ec_add_query_handler(struct acpi_ec *ec, u8 query_bit, |
| 1094 | acpi_handle handle, acpi_ec_query_func func, |
| 1095 | void *data) |
| 1096 | { |
| 1097 | struct acpi_ec_query_handler *handler; |
| 1098 | |
| 1099 | if (!handle && !func) |
| 1100 | return -EINVAL; |
| 1101 | |
| 1102 | handler = kzalloc(sizeof(*handler), GFP_KERNEL); |
| 1103 | if (!handler) |
| 1104 | return -ENOMEM; |
| 1105 | |
| 1106 | handler->query_bit = query_bit; |
| 1107 | handler->handle = handle; |
| 1108 | handler->func = func; |
| 1109 | handler->data = data; |
| 1110 | mutex_lock(&ec->mutex); |
| 1111 | kref_init(&handler->kref); |
| 1112 | list_add(&handler->node, &ec->list); |
| 1113 | mutex_unlock(&ec->mutex); |
| 1114 | |
| 1115 | return 0; |
| 1116 | } |
| 1117 | EXPORT_SYMBOL_GPL(acpi_ec_add_query_handler); |
| 1118 | |
| 1119 | static void acpi_ec_remove_query_handlers(struct acpi_ec *ec, |
| 1120 | bool remove_all, u8 query_bit) |
| 1121 | { |
| 1122 | struct acpi_ec_query_handler *handler, *tmp; |
| 1123 | LIST_HEAD(free_list); |
| 1124 | |
| 1125 | mutex_lock(&ec->mutex); |
| 1126 | list_for_each_entry_safe(handler, tmp, &ec->list, node) { |
| 1127 | /* |
| 1128 | * When remove_all is false, only remove custom query handlers |
| 1129 | * which have handler->func set. This is done to preserve query |
| 1130 | * handlers discovered thru ACPI, as they should continue handling |
| 1131 | * EC queries. |
| 1132 | */ |
| 1133 | if (remove_all || (handler->func && handler->query_bit == query_bit)) { |
| 1134 | list_del_init(&handler->node); |
| 1135 | list_add(&handler->node, &free_list); |
| 1136 | |
| 1137 | } |
| 1138 | } |
| 1139 | mutex_unlock(&ec->mutex); |
| 1140 | list_for_each_entry_safe(handler, tmp, &free_list, node) |
| 1141 | acpi_ec_put_query_handler(handler); |
| 1142 | } |
| 1143 | |
| 1144 | void acpi_ec_remove_query_handler(struct acpi_ec *ec, u8 query_bit) |
| 1145 | { |
| 1146 | acpi_ec_remove_query_handlers(ec, false, query_bit); |
| 1147 | flush_workqueue(ec_query_wq); |
| 1148 | } |
| 1149 | EXPORT_SYMBOL_GPL(acpi_ec_remove_query_handler); |
| 1150 | |
| 1151 | static void acpi_ec_event_processor(struct work_struct *work) |
| 1152 | { |
| 1153 | struct acpi_ec_query *q = container_of(work, struct acpi_ec_query, work); |
| 1154 | struct acpi_ec_query_handler *handler = q->handler; |
| 1155 | struct acpi_ec *ec = q->ec; |
| 1156 | |
| 1157 | ec_dbg_evt("Query(0x%02x) started", handler->query_bit); |
| 1158 | |
| 1159 | if (handler->func) |
| 1160 | handler->func(handler->data); |
| 1161 | else if (handler->handle) |
| 1162 | acpi_evaluate_object(handler->handle, NULL, NULL, NULL); |
| 1163 | |
| 1164 | ec_dbg_evt("Query(0x%02x) stopped", handler->query_bit); |
| 1165 | |
| 1166 | spin_lock_irq(&ec->lock); |
| 1167 | ec->queries_in_progress--; |
| 1168 | spin_unlock_irq(&ec->lock); |
| 1169 | |
| 1170 | acpi_ec_put_query_handler(handler); |
| 1171 | kfree(q); |
| 1172 | } |
| 1173 | |
| 1174 | static struct acpi_ec_query *acpi_ec_create_query(struct acpi_ec *ec, u8 *pval) |
| 1175 | { |
| 1176 | struct acpi_ec_query *q; |
| 1177 | struct transaction *t; |
| 1178 | |
| 1179 | q = kzalloc(sizeof (struct acpi_ec_query), GFP_KERNEL); |
| 1180 | if (!q) |
| 1181 | return NULL; |
| 1182 | |
| 1183 | INIT_WORK(&q->work, acpi_ec_event_processor); |
| 1184 | t = &q->transaction; |
| 1185 | t->command = ACPI_EC_COMMAND_QUERY; |
| 1186 | t->rdata = pval; |
| 1187 | t->rlen = 1; |
| 1188 | q->ec = ec; |
| 1189 | return q; |
| 1190 | } |
| 1191 | |
| 1192 | static int acpi_ec_submit_query(struct acpi_ec *ec) |
| 1193 | { |
| 1194 | struct acpi_ec_query *q; |
| 1195 | u8 value = 0; |
| 1196 | int result; |
| 1197 | |
| 1198 | q = acpi_ec_create_query(ec, &value); |
| 1199 | if (!q) |
| 1200 | return -ENOMEM; |
| 1201 | |
| 1202 | /* |
| 1203 | * Query the EC to find out which _Qxx method we need to evaluate. |
| 1204 | * Note that successful completion of the query causes the ACPI_EC_SCI |
| 1205 | * bit to be cleared (and thus clearing the interrupt source). |
| 1206 | */ |
| 1207 | result = acpi_ec_transaction(ec, &q->transaction); |
| 1208 | if (result) |
| 1209 | goto err_exit; |
| 1210 | |
| 1211 | if (!value) { |
| 1212 | result = -ENODATA; |
| 1213 | goto err_exit; |
| 1214 | } |
| 1215 | |
| 1216 | q->handler = acpi_ec_get_query_handler_by_value(ec, value); |
| 1217 | if (!q->handler) { |
| 1218 | result = -ENODATA; |
| 1219 | goto err_exit; |
| 1220 | } |
| 1221 | |
| 1222 | /* |
| 1223 | * It is reported that _Qxx are evaluated in a parallel way on Windows: |
| 1224 | * https://bugzilla.kernel.org/show_bug.cgi?id=94411 |
| 1225 | * |
| 1226 | * Put this log entry before queue_work() to make it appear in the log |
| 1227 | * before any other messages emitted during workqueue handling. |
| 1228 | */ |
| 1229 | ec_dbg_evt("Query(0x%02x) scheduled", value); |
| 1230 | |
| 1231 | spin_lock_irq(&ec->lock); |
| 1232 | |
| 1233 | ec->queries_in_progress++; |
| 1234 | queue_work(ec_query_wq, &q->work); |
| 1235 | |
| 1236 | spin_unlock_irq(&ec->lock); |
| 1237 | |
| 1238 | return 0; |
| 1239 | |
| 1240 | err_exit: |
| 1241 | kfree(q); |
| 1242 | |
| 1243 | return result; |
| 1244 | } |
| 1245 | |
| 1246 | static void acpi_ec_event_handler(struct work_struct *work) |
| 1247 | { |
| 1248 | struct acpi_ec *ec = container_of(work, struct acpi_ec, work); |
| 1249 | |
| 1250 | ec_dbg_evt("Event started"); |
| 1251 | |
| 1252 | spin_lock_irq(&ec->lock); |
| 1253 | |
| 1254 | while (ec->events_to_process) { |
| 1255 | spin_unlock_irq(&ec->lock); |
| 1256 | |
| 1257 | acpi_ec_submit_query(ec); |
| 1258 | |
| 1259 | spin_lock_irq(&ec->lock); |
| 1260 | |
| 1261 | ec->events_to_process--; |
| 1262 | } |
| 1263 | |
| 1264 | /* |
| 1265 | * Before exit, make sure that the it will be possible to queue up the |
| 1266 | * event handling work again regardless of whether or not the query |
| 1267 | * queued up above is processed successfully. |
| 1268 | */ |
| 1269 | if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT) { |
| 1270 | bool guard_timeout; |
| 1271 | |
| 1272 | acpi_ec_complete_event(ec); |
| 1273 | |
| 1274 | ec_dbg_evt("Event stopped"); |
| 1275 | |
| 1276 | spin_unlock_irq(&ec->lock); |
| 1277 | |
| 1278 | guard_timeout = !!ec_guard(ec); |
| 1279 | |
| 1280 | spin_lock_irq(&ec->lock); |
| 1281 | |
| 1282 | /* Take care of SCI_EVT unless someone else is doing that. */ |
| 1283 | if (guard_timeout && !ec->curr) |
| 1284 | advance_transaction(ec, false); |
| 1285 | } else { |
| 1286 | acpi_ec_close_event(ec); |
| 1287 | |
| 1288 | ec_dbg_evt("Event stopped"); |
| 1289 | } |
| 1290 | |
| 1291 | ec->events_in_progress--; |
| 1292 | |
| 1293 | spin_unlock_irq(&ec->lock); |
| 1294 | } |
| 1295 | |
| 1296 | static void clear_gpe_and_advance_transaction(struct acpi_ec *ec, bool interrupt) |
| 1297 | { |
| 1298 | /* |
| 1299 | * Clear GPE_STS upfront to allow subsequent hardware GPE_STS 0->1 |
| 1300 | * changes to always trigger a GPE interrupt. |
| 1301 | * |
| 1302 | * GPE STS is a W1C register, which means: |
| 1303 | * |
| 1304 | * 1. Software can clear it without worrying about clearing the other |
| 1305 | * GPEs' STS bits when the hardware sets them in parallel. |
| 1306 | * |
| 1307 | * 2. As long as software can ensure only clearing it when it is set, |
| 1308 | * hardware won't set it in parallel. |
| 1309 | */ |
| 1310 | if (ec->gpe >= 0 && acpi_ec_gpe_status_set(ec)) |
| 1311 | acpi_clear_gpe(NULL, ec->gpe); |
| 1312 | |
| 1313 | advance_transaction(ec, true); |
| 1314 | } |
| 1315 | |
| 1316 | static void acpi_ec_handle_interrupt(struct acpi_ec *ec) |
| 1317 | { |
| 1318 | unsigned long flags; |
| 1319 | |
| 1320 | spin_lock_irqsave(&ec->lock, flags); |
| 1321 | |
| 1322 | clear_gpe_and_advance_transaction(ec, true); |
| 1323 | |
| 1324 | spin_unlock_irqrestore(&ec->lock, flags); |
| 1325 | } |
| 1326 | |
| 1327 | static u32 acpi_ec_gpe_handler(acpi_handle gpe_device, |
| 1328 | u32 gpe_number, void *data) |
| 1329 | { |
| 1330 | acpi_ec_handle_interrupt(data); |
| 1331 | return ACPI_INTERRUPT_HANDLED; |
| 1332 | } |
| 1333 | |
| 1334 | static irqreturn_t acpi_ec_irq_handler(int irq, void *data) |
| 1335 | { |
| 1336 | acpi_ec_handle_interrupt(data); |
| 1337 | return IRQ_HANDLED; |
| 1338 | } |
| 1339 | |
| 1340 | /* -------------------------------------------------------------------------- |
| 1341 | * Address Space Management |
| 1342 | * -------------------------------------------------------------------------- */ |
| 1343 | |
| 1344 | static acpi_status |
| 1345 | acpi_ec_space_handler(u32 function, acpi_physical_address address, |
| 1346 | u32 bits, u64 *value64, |
| 1347 | void *handler_context, void *region_context) |
| 1348 | { |
| 1349 | struct acpi_ec *ec = handler_context; |
| 1350 | int result = 0, i, bytes = bits / 8; |
| 1351 | u8 *value = (u8 *)value64; |
| 1352 | u32 glk; |
| 1353 | |
| 1354 | if ((address > 0xFF) || !value || !handler_context) |
| 1355 | return AE_BAD_PARAMETER; |
| 1356 | |
| 1357 | if (function != ACPI_READ && function != ACPI_WRITE) |
| 1358 | return AE_BAD_PARAMETER; |
| 1359 | |
| 1360 | mutex_lock(&ec->mutex); |
| 1361 | |
| 1362 | if (ec->global_lock) { |
| 1363 | acpi_status status; |
| 1364 | |
| 1365 | status = acpi_acquire_global_lock(ACPI_EC_UDELAY_GLK, &glk); |
| 1366 | if (ACPI_FAILURE(status)) { |
| 1367 | result = -ENODEV; |
| 1368 | goto unlock; |
| 1369 | } |
| 1370 | } |
| 1371 | |
| 1372 | if (ec->busy_polling || bits > 8) |
| 1373 | acpi_ec_burst_enable(ec); |
| 1374 | |
| 1375 | for (i = 0; i < bytes; ++i, ++address, ++value) { |
| 1376 | result = (function == ACPI_READ) ? |
| 1377 | acpi_ec_read_unlocked(ec, address, value) : |
| 1378 | acpi_ec_write_unlocked(ec, address, *value); |
| 1379 | if (result < 0) |
| 1380 | break; |
| 1381 | } |
| 1382 | |
| 1383 | if (ec->busy_polling || bits > 8) |
| 1384 | acpi_ec_burst_disable(ec); |
| 1385 | |
| 1386 | if (ec->global_lock) |
| 1387 | acpi_release_global_lock(glk); |
| 1388 | |
| 1389 | unlock: |
| 1390 | mutex_unlock(&ec->mutex); |
| 1391 | |
| 1392 | switch (result) { |
| 1393 | case -EINVAL: |
| 1394 | return AE_BAD_PARAMETER; |
| 1395 | case -ENODEV: |
| 1396 | return AE_NOT_FOUND; |
| 1397 | case -ETIME: |
| 1398 | return AE_TIME; |
| 1399 | case 0: |
| 1400 | return AE_OK; |
| 1401 | default: |
| 1402 | return AE_ERROR; |
| 1403 | } |
| 1404 | } |
| 1405 | |
| 1406 | /* -------------------------------------------------------------------------- |
| 1407 | * Driver Interface |
| 1408 | * -------------------------------------------------------------------------- */ |
| 1409 | |
| 1410 | static acpi_status |
| 1411 | ec_parse_io_ports(struct acpi_resource *resource, void *context); |
| 1412 | |
| 1413 | static void acpi_ec_free(struct acpi_ec *ec) |
| 1414 | { |
| 1415 | if (first_ec == ec) |
| 1416 | first_ec = NULL; |
| 1417 | if (boot_ec == ec) |
| 1418 | boot_ec = NULL; |
| 1419 | kfree(ec); |
| 1420 | } |
| 1421 | |
| 1422 | static struct acpi_ec *acpi_ec_alloc(void) |
| 1423 | { |
| 1424 | struct acpi_ec *ec = kzalloc(sizeof(struct acpi_ec), GFP_KERNEL); |
| 1425 | |
| 1426 | if (!ec) |
| 1427 | return NULL; |
| 1428 | mutex_init(&ec->mutex); |
| 1429 | init_waitqueue_head(&ec->wait); |
| 1430 | INIT_LIST_HEAD(&ec->list); |
| 1431 | spin_lock_init(&ec->lock); |
| 1432 | INIT_WORK(&ec->work, acpi_ec_event_handler); |
| 1433 | ec->timestamp = jiffies; |
| 1434 | ec->busy_polling = true; |
| 1435 | ec->polling_guard = 0; |
| 1436 | ec->gpe = -1; |
| 1437 | ec->irq = -1; |
| 1438 | return ec; |
| 1439 | } |
| 1440 | |
| 1441 | static acpi_status |
| 1442 | acpi_ec_register_query_methods(acpi_handle handle, u32 level, |
| 1443 | void *context, void **return_value) |
| 1444 | { |
| 1445 | char node_name[5]; |
| 1446 | struct acpi_buffer buffer = { sizeof(node_name), node_name }; |
| 1447 | struct acpi_ec *ec = context; |
| 1448 | int value = 0; |
| 1449 | acpi_status status; |
| 1450 | |
| 1451 | status = acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer); |
| 1452 | |
| 1453 | if (ACPI_SUCCESS(status) && sscanf(node_name, "_Q%x", &value) == 1) |
| 1454 | acpi_ec_add_query_handler(ec, value, handle, NULL, NULL); |
| 1455 | return AE_OK; |
| 1456 | } |
| 1457 | |
| 1458 | static acpi_status |
| 1459 | ec_parse_device(acpi_handle handle, u32 Level, void *context, void **retval) |
| 1460 | { |
| 1461 | acpi_status status; |
| 1462 | unsigned long long tmp = 0; |
| 1463 | struct acpi_ec *ec = context; |
| 1464 | |
| 1465 | /* clear addr values, ec_parse_io_ports depend on it */ |
| 1466 | ec->command_addr = ec->data_addr = 0; |
| 1467 | |
| 1468 | status = acpi_walk_resources(handle, METHOD_NAME__CRS, |
| 1469 | ec_parse_io_ports, ec); |
| 1470 | if (ACPI_FAILURE(status)) |
| 1471 | return status; |
| 1472 | if (ec->data_addr == 0 || ec->command_addr == 0) |
| 1473 | return AE_OK; |
| 1474 | |
| 1475 | /* Get GPE bit assignment (EC events). */ |
| 1476 | /* TODO: Add support for _GPE returning a package */ |
| 1477 | status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp); |
| 1478 | if (ACPI_SUCCESS(status)) |
| 1479 | ec->gpe = tmp; |
| 1480 | /* |
| 1481 | * Errors are non-fatal, allowing for ACPI Reduced Hardware |
| 1482 | * platforms which use GpioInt instead of GPE. |
| 1483 | */ |
| 1484 | |
| 1485 | /* Use the global lock for all EC transactions? */ |
| 1486 | tmp = 0; |
| 1487 | acpi_evaluate_integer(handle, "_GLK", NULL, &tmp); |
| 1488 | ec->global_lock = tmp; |
| 1489 | ec->handle = handle; |
| 1490 | return AE_CTRL_TERMINATE; |
| 1491 | } |
| 1492 | |
| 1493 | static bool install_gpe_event_handler(struct acpi_ec *ec) |
| 1494 | { |
| 1495 | acpi_status status; |
| 1496 | |
| 1497 | status = acpi_install_gpe_raw_handler(NULL, ec->gpe, |
| 1498 | ACPI_GPE_EDGE_TRIGGERED, |
| 1499 | &acpi_ec_gpe_handler, ec); |
| 1500 | if (ACPI_FAILURE(status)) |
| 1501 | return false; |
| 1502 | |
| 1503 | if (test_bit(EC_FLAGS_STARTED, &ec->flags) && ec->reference_count >= 1) |
| 1504 | acpi_ec_enable_gpe(ec, true); |
| 1505 | |
| 1506 | return true; |
| 1507 | } |
| 1508 | |
| 1509 | static bool install_gpio_irq_event_handler(struct acpi_ec *ec) |
| 1510 | { |
| 1511 | return request_threaded_irq(ec->irq, NULL, acpi_ec_irq_handler, |
| 1512 | IRQF_SHARED | IRQF_ONESHOT, "ACPI EC", ec) >= 0; |
| 1513 | } |
| 1514 | |
| 1515 | /** |
| 1516 | * ec_install_handlers - Install service callbacks and register query methods. |
| 1517 | * @ec: Target EC. |
| 1518 | * @device: ACPI device object corresponding to @ec. |
| 1519 | * @call_reg: If _REG should be called to notify OpRegion availability |
| 1520 | * |
| 1521 | * Install a handler for the EC address space type unless it has been installed |
| 1522 | * already. If @device is not NULL, also look for EC query methods in the |
| 1523 | * namespace and register them, and install an event (either GPE or GPIO IRQ) |
| 1524 | * handler for the EC, if possible. |
| 1525 | * |
| 1526 | * Return: |
| 1527 | * -ENODEV if the address space handler cannot be installed, which means |
| 1528 | * "unable to handle transactions", |
| 1529 | * -EPROBE_DEFER if GPIO IRQ acquisition needs to be deferred, |
| 1530 | * or 0 (success) otherwise. |
| 1531 | */ |
| 1532 | static int ec_install_handlers(struct acpi_ec *ec, struct acpi_device *device, |
| 1533 | bool call_reg) |
| 1534 | { |
| 1535 | acpi_status status; |
| 1536 | |
| 1537 | acpi_ec_start(ec, false); |
| 1538 | |
| 1539 | if (!test_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags)) { |
| 1540 | acpi_handle scope_handle = ec == first_ec ? ACPI_ROOT_OBJECT : ec->handle; |
| 1541 | |
| 1542 | acpi_ec_enter_noirq(ec); |
| 1543 | status = acpi_install_address_space_handler_no_reg(scope_handle, |
| 1544 | ACPI_ADR_SPACE_EC, |
| 1545 | &acpi_ec_space_handler, |
| 1546 | NULL, ec); |
| 1547 | if (ACPI_FAILURE(status)) { |
| 1548 | acpi_ec_stop(ec, false); |
| 1549 | return -ENODEV; |
| 1550 | } |
| 1551 | set_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags); |
| 1552 | } |
| 1553 | |
| 1554 | if (call_reg && !test_bit(EC_FLAGS_EC_REG_CALLED, &ec->flags)) { |
| 1555 | acpi_execute_reg_methods(ec->handle, ACPI_UINT32_MAX, ACPI_ADR_SPACE_EC); |
| 1556 | set_bit(EC_FLAGS_EC_REG_CALLED, &ec->flags); |
| 1557 | } |
| 1558 | |
| 1559 | if (!device) |
| 1560 | return 0; |
| 1561 | |
| 1562 | if (ec->gpe < 0) { |
| 1563 | /* ACPI reduced hardware platforms use a GpioInt from _CRS. */ |
| 1564 | int irq = acpi_dev_gpio_irq_get(device, 0); |
| 1565 | /* |
| 1566 | * Bail out right away for deferred probing or complete the |
| 1567 | * initialization regardless of any other errors. |
| 1568 | */ |
| 1569 | if (irq == -EPROBE_DEFER) |
| 1570 | return -EPROBE_DEFER; |
| 1571 | else if (irq >= 0) |
| 1572 | ec->irq = irq; |
| 1573 | } |
| 1574 | |
| 1575 | if (!test_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags)) { |
| 1576 | /* Find and register all query methods */ |
| 1577 | acpi_walk_namespace(ACPI_TYPE_METHOD, ec->handle, 1, |
| 1578 | acpi_ec_register_query_methods, |
| 1579 | NULL, ec, NULL); |
| 1580 | set_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags); |
| 1581 | } |
| 1582 | if (!test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) { |
| 1583 | bool ready = false; |
| 1584 | |
| 1585 | if (ec->gpe >= 0) |
| 1586 | ready = install_gpe_event_handler(ec); |
| 1587 | else if (ec->irq >= 0) |
| 1588 | ready = install_gpio_irq_event_handler(ec); |
| 1589 | |
| 1590 | if (ready) { |
| 1591 | set_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags); |
| 1592 | acpi_ec_leave_noirq(ec); |
| 1593 | } |
| 1594 | /* |
| 1595 | * Failures to install an event handler are not fatal, because |
| 1596 | * the EC can be polled for events. |
| 1597 | */ |
| 1598 | } |
| 1599 | /* EC is fully operational, allow queries */ |
| 1600 | acpi_ec_enable_event(ec); |
| 1601 | |
| 1602 | return 0; |
| 1603 | } |
| 1604 | |
| 1605 | static void ec_remove_handlers(struct acpi_ec *ec) |
| 1606 | { |
| 1607 | acpi_handle scope_handle = ec == first_ec ? ACPI_ROOT_OBJECT : ec->handle; |
| 1608 | |
| 1609 | if (test_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags)) { |
| 1610 | if (ACPI_FAILURE(acpi_remove_address_space_handler( |
| 1611 | scope_handle, |
| 1612 | ACPI_ADR_SPACE_EC, |
| 1613 | &acpi_ec_space_handler))) |
| 1614 | pr_err("failed to remove space handler\n"); |
| 1615 | clear_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags); |
| 1616 | } |
| 1617 | |
| 1618 | /* |
| 1619 | * Stops handling the EC transactions after removing the operation |
| 1620 | * region handler. This is required because _REG(DISCONNECT) |
| 1621 | * invoked during the removal can result in new EC transactions. |
| 1622 | * |
| 1623 | * Flushes the EC requests and thus disables the GPE before |
| 1624 | * removing the GPE handler. This is required by the current ACPICA |
| 1625 | * GPE core. ACPICA GPE core will automatically disable a GPE when |
| 1626 | * it is indicated but there is no way to handle it. So the drivers |
| 1627 | * must disable the GPEs prior to removing the GPE handlers. |
| 1628 | */ |
| 1629 | acpi_ec_stop(ec, false); |
| 1630 | |
| 1631 | if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) { |
| 1632 | if (ec->gpe >= 0 && |
| 1633 | ACPI_FAILURE(acpi_remove_gpe_handler(NULL, ec->gpe, |
| 1634 | &acpi_ec_gpe_handler))) |
| 1635 | pr_err("failed to remove gpe handler\n"); |
| 1636 | |
| 1637 | if (ec->irq >= 0) |
| 1638 | free_irq(ec->irq, ec); |
| 1639 | |
| 1640 | clear_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags); |
| 1641 | } |
| 1642 | if (test_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags)) { |
| 1643 | acpi_ec_remove_query_handlers(ec, true, 0); |
| 1644 | clear_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags); |
| 1645 | } |
| 1646 | } |
| 1647 | |
| 1648 | static int acpi_ec_setup(struct acpi_ec *ec, struct acpi_device *device, bool call_reg) |
| 1649 | { |
| 1650 | int ret; |
| 1651 | |
| 1652 | /* First EC capable of handling transactions */ |
| 1653 | if (!first_ec) |
| 1654 | first_ec = ec; |
| 1655 | |
| 1656 | ret = ec_install_handlers(ec, device, call_reg); |
| 1657 | if (ret) { |
| 1658 | if (ec == first_ec) |
| 1659 | first_ec = NULL; |
| 1660 | |
| 1661 | return ret; |
| 1662 | } |
| 1663 | |
| 1664 | pr_info("EC_CMD/EC_SC=0x%lx, EC_DATA=0x%lx\n", ec->command_addr, |
| 1665 | ec->data_addr); |
| 1666 | |
| 1667 | if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) { |
| 1668 | if (ec->gpe >= 0) |
| 1669 | pr_info("GPE=0x%x\n", ec->gpe); |
| 1670 | else |
| 1671 | pr_info("IRQ=%d\n", ec->irq); |
| 1672 | } |
| 1673 | |
| 1674 | return ret; |
| 1675 | } |
| 1676 | |
| 1677 | static int acpi_ec_add(struct acpi_device *device) |
| 1678 | { |
| 1679 | struct acpi_ec *ec; |
| 1680 | int ret; |
| 1681 | |
| 1682 | strscpy(acpi_device_name(device), ACPI_EC_DEVICE_NAME); |
| 1683 | strscpy(acpi_device_class(device), ACPI_EC_CLASS); |
| 1684 | |
| 1685 | if (boot_ec && (boot_ec->handle == device->handle || |
| 1686 | !strcmp(acpi_device_hid(device), ACPI_ECDT_HID))) { |
| 1687 | /* Fast path: this device corresponds to the boot EC. */ |
| 1688 | ec = boot_ec; |
| 1689 | } else { |
| 1690 | acpi_status status; |
| 1691 | |
| 1692 | ec = acpi_ec_alloc(); |
| 1693 | if (!ec) |
| 1694 | return -ENOMEM; |
| 1695 | |
| 1696 | status = ec_parse_device(device->handle, 0, ec, NULL); |
| 1697 | if (status != AE_CTRL_TERMINATE) { |
| 1698 | ret = -EINVAL; |
| 1699 | goto err; |
| 1700 | } |
| 1701 | |
| 1702 | if (boot_ec && ec->command_addr == boot_ec->command_addr && |
| 1703 | ec->data_addr == boot_ec->data_addr) { |
| 1704 | /* |
| 1705 | * Trust PNP0C09 namespace location rather than ECDT ID. |
| 1706 | * But trust ECDT GPE rather than _GPE because of ASUS |
| 1707 | * quirks. So do not change boot_ec->gpe to ec->gpe, |
| 1708 | * except when the TRUST_DSDT_GPE quirk is set. |
| 1709 | */ |
| 1710 | boot_ec->handle = ec->handle; |
| 1711 | |
| 1712 | if (EC_FLAGS_TRUST_DSDT_GPE) |
| 1713 | boot_ec->gpe = ec->gpe; |
| 1714 | |
| 1715 | acpi_handle_debug(ec->handle, "duplicated.\n"); |
| 1716 | acpi_ec_free(ec); |
| 1717 | ec = boot_ec; |
| 1718 | } |
| 1719 | } |
| 1720 | |
| 1721 | ret = acpi_ec_setup(ec, device, true); |
| 1722 | if (ret) |
| 1723 | goto err; |
| 1724 | |
| 1725 | if (ec == boot_ec) |
| 1726 | acpi_handle_info(boot_ec->handle, |
| 1727 | "Boot %s EC initialization complete\n", |
| 1728 | boot_ec_is_ecdt ? "ECDT" : "DSDT"); |
| 1729 | |
| 1730 | acpi_handle_info(ec->handle, |
| 1731 | "EC: Used to handle transactions and events\n"); |
| 1732 | |
| 1733 | device->driver_data = ec; |
| 1734 | |
| 1735 | ret = !!request_region(ec->data_addr, 1, "EC data"); |
| 1736 | WARN(!ret, "Could not request EC data io port 0x%lx", ec->data_addr); |
| 1737 | ret = !!request_region(ec->command_addr, 1, "EC cmd"); |
| 1738 | WARN(!ret, "Could not request EC cmd io port 0x%lx", ec->command_addr); |
| 1739 | |
| 1740 | /* Reprobe devices depending on the EC */ |
| 1741 | acpi_dev_clear_dependencies(device); |
| 1742 | |
| 1743 | acpi_handle_debug(ec->handle, "enumerated.\n"); |
| 1744 | return 0; |
| 1745 | |
| 1746 | err: |
| 1747 | if (ec != boot_ec) |
| 1748 | acpi_ec_free(ec); |
| 1749 | |
| 1750 | return ret; |
| 1751 | } |
| 1752 | |
| 1753 | static void acpi_ec_remove(struct acpi_device *device) |
| 1754 | { |
| 1755 | struct acpi_ec *ec; |
| 1756 | |
| 1757 | if (!device) |
| 1758 | return; |
| 1759 | |
| 1760 | ec = acpi_driver_data(device); |
| 1761 | release_region(ec->data_addr, 1); |
| 1762 | release_region(ec->command_addr, 1); |
| 1763 | device->driver_data = NULL; |
| 1764 | if (ec != boot_ec) { |
| 1765 | ec_remove_handlers(ec); |
| 1766 | acpi_ec_free(ec); |
| 1767 | } |
| 1768 | } |
| 1769 | |
| 1770 | void acpi_ec_register_opregions(struct acpi_device *adev) |
| 1771 | { |
| 1772 | if (first_ec && first_ec->handle != adev->handle) |
| 1773 | acpi_execute_reg_methods(adev->handle, 1, ACPI_ADR_SPACE_EC); |
| 1774 | } |
| 1775 | |
| 1776 | static acpi_status |
| 1777 | ec_parse_io_ports(struct acpi_resource *resource, void *context) |
| 1778 | { |
| 1779 | struct acpi_ec *ec = context; |
| 1780 | |
| 1781 | if (resource->type != ACPI_RESOURCE_TYPE_IO) |
| 1782 | return AE_OK; |
| 1783 | |
| 1784 | /* |
| 1785 | * The first address region returned is the data port, and |
| 1786 | * the second address region returned is the status/command |
| 1787 | * port. |
| 1788 | */ |
| 1789 | if (ec->data_addr == 0) |
| 1790 | ec->data_addr = resource->data.io.minimum; |
| 1791 | else if (ec->command_addr == 0) |
| 1792 | ec->command_addr = resource->data.io.minimum; |
| 1793 | else |
| 1794 | return AE_CTRL_TERMINATE; |
| 1795 | |
| 1796 | return AE_OK; |
| 1797 | } |
| 1798 | |
| 1799 | static const struct acpi_device_id ec_device_ids[] = { |
| 1800 | {"PNP0C09", 0}, |
| 1801 | {ACPI_ECDT_HID, 0}, |
| 1802 | {"", 0}, |
| 1803 | }; |
| 1804 | |
| 1805 | /* |
| 1806 | * This function is not Windows-compatible as Windows never enumerates the |
| 1807 | * namespace EC before the main ACPI device enumeration process. It is |
| 1808 | * retained for historical reason and will be deprecated in the future. |
| 1809 | */ |
| 1810 | void __init acpi_ec_dsdt_probe(void) |
| 1811 | { |
| 1812 | struct acpi_ec *ec; |
| 1813 | acpi_status status; |
| 1814 | int ret; |
| 1815 | |
| 1816 | /* |
| 1817 | * If a platform has ECDT, there is no need to proceed as the |
| 1818 | * following probe is not a part of the ACPI device enumeration, |
| 1819 | * executing _STA is not safe, and thus this probe may risk of |
| 1820 | * picking up an invalid EC device. |
| 1821 | */ |
| 1822 | if (boot_ec) |
| 1823 | return; |
| 1824 | |
| 1825 | ec = acpi_ec_alloc(); |
| 1826 | if (!ec) |
| 1827 | return; |
| 1828 | |
| 1829 | /* |
| 1830 | * At this point, the namespace is initialized, so start to find |
| 1831 | * the namespace objects. |
| 1832 | */ |
| 1833 | status = acpi_get_devices(ec_device_ids[0].id, ec_parse_device, ec, NULL); |
| 1834 | if (ACPI_FAILURE(status) || !ec->handle) { |
| 1835 | acpi_ec_free(ec); |
| 1836 | return; |
| 1837 | } |
| 1838 | |
| 1839 | /* |
| 1840 | * When the DSDT EC is available, always re-configure boot EC to |
| 1841 | * have _REG evaluated. _REG can only be evaluated after the |
| 1842 | * namespace initialization. |
| 1843 | * At this point, the GPE is not fully initialized, so do not to |
| 1844 | * handle the events. |
| 1845 | */ |
| 1846 | ret = acpi_ec_setup(ec, NULL, true); |
| 1847 | if (ret) { |
| 1848 | acpi_ec_free(ec); |
| 1849 | return; |
| 1850 | } |
| 1851 | |
| 1852 | boot_ec = ec; |
| 1853 | |
| 1854 | acpi_handle_info(ec->handle, |
| 1855 | "Boot DSDT EC used to handle transactions\n"); |
| 1856 | } |
| 1857 | |
| 1858 | /* |
| 1859 | * acpi_ec_ecdt_start - Finalize the boot ECDT EC initialization. |
| 1860 | * |
| 1861 | * First, look for an ACPI handle for the boot ECDT EC if acpi_ec_add() has not |
| 1862 | * found a matching object in the namespace. |
| 1863 | * |
| 1864 | * Next, in case the DSDT EC is not functioning, it is still necessary to |
| 1865 | * provide a functional ECDT EC to handle events, so add an extra device object |
| 1866 | * to represent it (see https://bugzilla.kernel.org/show_bug.cgi?id=115021). |
| 1867 | * |
| 1868 | * This is useful on platforms with valid ECDT and invalid DSDT EC settings, |
| 1869 | * like ASUS X550ZE (see https://bugzilla.kernel.org/show_bug.cgi?id=196847). |
| 1870 | */ |
| 1871 | static void __init acpi_ec_ecdt_start(void) |
| 1872 | { |
| 1873 | struct acpi_table_ecdt *ecdt_ptr; |
| 1874 | acpi_handle handle; |
| 1875 | acpi_status status; |
| 1876 | |
| 1877 | /* Bail out if a matching EC has been found in the namespace. */ |
| 1878 | if (!boot_ec || boot_ec->handle != ACPI_ROOT_OBJECT) |
| 1879 | return; |
| 1880 | |
| 1881 | /* Look up the object pointed to from the ECDT in the namespace. */ |
| 1882 | status = acpi_get_table(ACPI_SIG_ECDT, 1, |
| 1883 | (struct acpi_table_header **)&ecdt_ptr); |
| 1884 | if (ACPI_FAILURE(status)) |
| 1885 | return; |
| 1886 | |
| 1887 | status = acpi_get_handle(NULL, ecdt_ptr->id, &handle); |
| 1888 | if (ACPI_SUCCESS(status)) { |
| 1889 | boot_ec->handle = handle; |
| 1890 | |
| 1891 | /* Add a special ACPI device object to represent the boot EC. */ |
| 1892 | acpi_bus_register_early_device(ACPI_BUS_TYPE_ECDT_EC); |
| 1893 | } |
| 1894 | |
| 1895 | acpi_put_table((struct acpi_table_header *)ecdt_ptr); |
| 1896 | } |
| 1897 | |
| 1898 | /* |
| 1899 | * On some hardware it is necessary to clear events accumulated by the EC during |
| 1900 | * sleep. These ECs stop reporting GPEs until they are manually polled, if too |
| 1901 | * many events are accumulated. (e.g. Samsung Series 5/9 notebooks) |
| 1902 | * |
| 1903 | * https://bugzilla.kernel.org/show_bug.cgi?id=44161 |
| 1904 | * |
| 1905 | * Ideally, the EC should also be instructed NOT to accumulate events during |
| 1906 | * sleep (which Windows seems to do somehow), but the interface to control this |
| 1907 | * behaviour is not known at this time. |
| 1908 | * |
| 1909 | * Models known to be affected are Samsung 530Uxx/535Uxx/540Uxx/550Pxx/900Xxx, |
| 1910 | * however it is very likely that other Samsung models are affected. |
| 1911 | * |
| 1912 | * On systems which don't accumulate _Q events during sleep, this extra check |
| 1913 | * should be harmless. |
| 1914 | */ |
| 1915 | static int ec_clear_on_resume(const struct dmi_system_id *id) |
| 1916 | { |
| 1917 | pr_debug("Detected system needing EC poll on resume.\n"); |
| 1918 | EC_FLAGS_CLEAR_ON_RESUME = 1; |
| 1919 | ec_event_clearing = ACPI_EC_EVT_TIMING_STATUS; |
| 1920 | return 0; |
| 1921 | } |
| 1922 | |
| 1923 | /* |
| 1924 | * Some ECDTs contain wrong register addresses. |
| 1925 | * MSI MS-171F |
| 1926 | * https://bugzilla.kernel.org/show_bug.cgi?id=12461 |
| 1927 | */ |
| 1928 | static int ec_correct_ecdt(const struct dmi_system_id *id) |
| 1929 | { |
| 1930 | pr_debug("Detected system needing ECDT address correction.\n"); |
| 1931 | EC_FLAGS_CORRECT_ECDT = 1; |
| 1932 | return 0; |
| 1933 | } |
| 1934 | |
| 1935 | /* |
| 1936 | * Some ECDTs contain wrong GPE setting, but they share the same port addresses |
| 1937 | * with DSDT EC, don't duplicate the DSDT EC with ECDT EC in this case. |
| 1938 | * https://bugzilla.kernel.org/show_bug.cgi?id=209989 |
| 1939 | */ |
| 1940 | static int ec_honor_dsdt_gpe(const struct dmi_system_id *id) |
| 1941 | { |
| 1942 | pr_debug("Detected system needing DSDT GPE setting.\n"); |
| 1943 | EC_FLAGS_TRUST_DSDT_GPE = 1; |
| 1944 | return 0; |
| 1945 | } |
| 1946 | |
| 1947 | static const struct dmi_system_id ec_dmi_table[] __initconst = { |
| 1948 | { |
| 1949 | /* |
| 1950 | * MSI MS-171F |
| 1951 | * https://bugzilla.kernel.org/show_bug.cgi?id=12461 |
| 1952 | */ |
| 1953 | .callback = ec_correct_ecdt, |
| 1954 | .matches = { |
| 1955 | DMI_MATCH(DMI_SYS_VENDOR, "Micro-Star"), |
| 1956 | DMI_MATCH(DMI_PRODUCT_NAME, "MS-171F"), |
| 1957 | }, |
| 1958 | }, |
| 1959 | { |
| 1960 | /* |
| 1961 | * HP Pavilion Gaming Laptop 15-cx0xxx |
| 1962 | * https://bugzilla.kernel.org/show_bug.cgi?id=209989 |
| 1963 | */ |
| 1964 | .callback = ec_honor_dsdt_gpe, |
| 1965 | .matches = { |
| 1966 | DMI_MATCH(DMI_SYS_VENDOR, "HP"), |
| 1967 | DMI_MATCH(DMI_PRODUCT_NAME, "HP Pavilion Gaming Laptop 15-cx0xxx"), |
| 1968 | }, |
| 1969 | }, |
| 1970 | { |
| 1971 | /* |
| 1972 | * HP Pavilion Gaming Laptop 15-cx0041ur |
| 1973 | */ |
| 1974 | .callback = ec_honor_dsdt_gpe, |
| 1975 | .matches = { |
| 1976 | DMI_MATCH(DMI_SYS_VENDOR, "HP"), |
| 1977 | DMI_MATCH(DMI_PRODUCT_NAME, "HP 15-cx0041ur"), |
| 1978 | }, |
| 1979 | }, |
| 1980 | { |
| 1981 | /* |
| 1982 | * HP Pavilion Gaming Laptop 15-dk1xxx |
| 1983 | * https://github.com/systemd/systemd/issues/28942 |
| 1984 | */ |
| 1985 | .callback = ec_honor_dsdt_gpe, |
| 1986 | .matches = { |
| 1987 | DMI_MATCH(DMI_SYS_VENDOR, "HP"), |
| 1988 | DMI_MATCH(DMI_PRODUCT_NAME, "HP Pavilion Gaming Laptop 15-dk1xxx"), |
| 1989 | }, |
| 1990 | }, |
| 1991 | { |
| 1992 | /* |
| 1993 | * HP 250 G7 Notebook PC |
| 1994 | */ |
| 1995 | .callback = ec_honor_dsdt_gpe, |
| 1996 | .matches = { |
| 1997 | DMI_MATCH(DMI_SYS_VENDOR, "HP"), |
| 1998 | DMI_MATCH(DMI_PRODUCT_NAME, "HP 250 G7 Notebook PC"), |
| 1999 | }, |
| 2000 | }, |
| 2001 | { |
| 2002 | /* |
| 2003 | * Samsung hardware |
| 2004 | * https://bugzilla.kernel.org/show_bug.cgi?id=44161 |
| 2005 | */ |
| 2006 | .callback = ec_clear_on_resume, |
| 2007 | .matches = { |
| 2008 | DMI_MATCH(DMI_SYS_VENDOR, "SAMSUNG ELECTRONICS CO., LTD."), |
| 2009 | }, |
| 2010 | }, |
| 2011 | {} |
| 2012 | }; |
| 2013 | |
| 2014 | void __init acpi_ec_ecdt_probe(void) |
| 2015 | { |
| 2016 | struct acpi_table_ecdt *ecdt_ptr; |
| 2017 | struct acpi_ec *ec; |
| 2018 | acpi_status status; |
| 2019 | int ret; |
| 2020 | |
| 2021 | /* Generate a boot ec context. */ |
| 2022 | dmi_check_system(ec_dmi_table); |
| 2023 | status = acpi_get_table(ACPI_SIG_ECDT, 1, |
| 2024 | (struct acpi_table_header **)&ecdt_ptr); |
| 2025 | if (ACPI_FAILURE(status)) |
| 2026 | return; |
| 2027 | |
| 2028 | if (!ecdt_ptr->control.address || !ecdt_ptr->data.address) { |
| 2029 | /* |
| 2030 | * Asus X50GL: |
| 2031 | * https://bugzilla.kernel.org/show_bug.cgi?id=11880 |
| 2032 | */ |
| 2033 | goto out; |
| 2034 | } |
| 2035 | |
| 2036 | if (!strstarts(ecdt_ptr->id, "\\")) { |
| 2037 | /* |
| 2038 | * The ECDT table on some MSI notebooks contains invalid data, together |
| 2039 | * with an empty ID string (""). |
| 2040 | * |
| 2041 | * Section 5.2.15 of the ACPI specification requires the ID string to be |
| 2042 | * a "fully qualified reference to the (...) embedded controller device", |
| 2043 | * so this string always has to start with a backslash. |
| 2044 | * |
| 2045 | * By verifying this we can avoid such faulty ECDT tables in a safe way. |
| 2046 | */ |
| 2047 | pr_err(FW_BUG "Ignoring ECDT due to invalid ID string \"%s\"\n", ecdt_ptr->id); |
| 2048 | goto out; |
| 2049 | } |
| 2050 | |
| 2051 | ec = acpi_ec_alloc(); |
| 2052 | if (!ec) |
| 2053 | goto out; |
| 2054 | |
| 2055 | if (EC_FLAGS_CORRECT_ECDT) { |
| 2056 | ec->command_addr = ecdt_ptr->data.address; |
| 2057 | ec->data_addr = ecdt_ptr->control.address; |
| 2058 | } else { |
| 2059 | ec->command_addr = ecdt_ptr->control.address; |
| 2060 | ec->data_addr = ecdt_ptr->data.address; |
| 2061 | } |
| 2062 | |
| 2063 | /* |
| 2064 | * Ignore the GPE value on Reduced Hardware platforms. |
| 2065 | * Some products have this set to an erroneous value. |
| 2066 | */ |
| 2067 | if (!acpi_gbl_reduced_hardware) |
| 2068 | ec->gpe = ecdt_ptr->gpe; |
| 2069 | |
| 2070 | ec->handle = ACPI_ROOT_OBJECT; |
| 2071 | |
| 2072 | /* |
| 2073 | * At this point, the namespace is not initialized, so do not find |
| 2074 | * the namespace objects, or handle the events. |
| 2075 | */ |
| 2076 | ret = acpi_ec_setup(ec, NULL, false); |
| 2077 | if (ret) { |
| 2078 | acpi_ec_free(ec); |
| 2079 | goto out; |
| 2080 | } |
| 2081 | |
| 2082 | boot_ec = ec; |
| 2083 | boot_ec_is_ecdt = true; |
| 2084 | |
| 2085 | pr_info("Boot ECDT EC used to handle transactions\n"); |
| 2086 | |
| 2087 | out: |
| 2088 | acpi_put_table((struct acpi_table_header *)ecdt_ptr); |
| 2089 | } |
| 2090 | |
| 2091 | #ifdef CONFIG_PM_SLEEP |
| 2092 | static int acpi_ec_suspend(struct device *dev) |
| 2093 | { |
| 2094 | struct acpi_ec *ec = |
| 2095 | acpi_driver_data(to_acpi_device(dev)); |
| 2096 | |
| 2097 | if (!pm_suspend_no_platform() && ec_freeze_events) |
| 2098 | acpi_ec_disable_event(ec); |
| 2099 | return 0; |
| 2100 | } |
| 2101 | |
| 2102 | static int acpi_ec_suspend_noirq(struct device *dev) |
| 2103 | { |
| 2104 | struct acpi_ec *ec = acpi_driver_data(to_acpi_device(dev)); |
| 2105 | |
| 2106 | /* |
| 2107 | * The SCI handler doesn't run at this point, so the GPE can be |
| 2108 | * masked at the low level without side effects. |
| 2109 | */ |
| 2110 | if (ec_no_wakeup && test_bit(EC_FLAGS_STARTED, &ec->flags) && |
| 2111 | ec->gpe >= 0 && ec->reference_count >= 1) |
| 2112 | acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_DISABLE); |
| 2113 | |
| 2114 | acpi_ec_enter_noirq(ec); |
| 2115 | |
| 2116 | return 0; |
| 2117 | } |
| 2118 | |
| 2119 | static int acpi_ec_resume_noirq(struct device *dev) |
| 2120 | { |
| 2121 | struct acpi_ec *ec = acpi_driver_data(to_acpi_device(dev)); |
| 2122 | |
| 2123 | acpi_ec_leave_noirq(ec); |
| 2124 | |
| 2125 | if (ec_no_wakeup && test_bit(EC_FLAGS_STARTED, &ec->flags) && |
| 2126 | ec->gpe >= 0 && ec->reference_count >= 1) |
| 2127 | acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_ENABLE); |
| 2128 | |
| 2129 | return 0; |
| 2130 | } |
| 2131 | |
| 2132 | static int acpi_ec_resume(struct device *dev) |
| 2133 | { |
| 2134 | struct acpi_ec *ec = |
| 2135 | acpi_driver_data(to_acpi_device(dev)); |
| 2136 | |
| 2137 | acpi_ec_enable_event(ec); |
| 2138 | return 0; |
| 2139 | } |
| 2140 | |
| 2141 | void acpi_ec_mark_gpe_for_wake(void) |
| 2142 | { |
| 2143 | if (first_ec && !ec_no_wakeup) |
| 2144 | acpi_mark_gpe_for_wake(NULL, first_ec->gpe); |
| 2145 | } |
| 2146 | EXPORT_SYMBOL_GPL(acpi_ec_mark_gpe_for_wake); |
| 2147 | |
| 2148 | void acpi_ec_set_gpe_wake_mask(u8 action) |
| 2149 | { |
| 2150 | if (pm_suspend_no_platform() && first_ec && !ec_no_wakeup) |
| 2151 | acpi_set_gpe_wake_mask(NULL, first_ec->gpe, action); |
| 2152 | } |
| 2153 | |
| 2154 | static bool acpi_ec_work_in_progress(struct acpi_ec *ec) |
| 2155 | { |
| 2156 | return ec->events_in_progress + ec->queries_in_progress > 0; |
| 2157 | } |
| 2158 | |
| 2159 | bool acpi_ec_dispatch_gpe(void) |
| 2160 | { |
| 2161 | bool work_in_progress = false; |
| 2162 | |
| 2163 | if (!first_ec) |
| 2164 | return acpi_any_gpe_status_set(U32_MAX); |
| 2165 | |
| 2166 | /* |
| 2167 | * Report wakeup if the status bit is set for any enabled GPE other |
| 2168 | * than the EC one. |
| 2169 | */ |
| 2170 | if (acpi_any_gpe_status_set(first_ec->gpe)) |
| 2171 | return true; |
| 2172 | |
| 2173 | /* |
| 2174 | * Cancel the SCI wakeup and process all pending events in case there |
| 2175 | * are any wakeup ones in there. |
| 2176 | * |
| 2177 | * Note that if any non-EC GPEs are active at this point, the SCI will |
| 2178 | * retrigger after the rearming in acpi_s2idle_wake(), so no events |
| 2179 | * should be missed by canceling the wakeup here. |
| 2180 | */ |
| 2181 | pm_system_cancel_wakeup(); |
| 2182 | |
| 2183 | /* |
| 2184 | * Dispatch the EC GPE in-band, but do not report wakeup in any case |
| 2185 | * to allow the caller to process events properly after that. |
| 2186 | */ |
| 2187 | spin_lock_irq(&first_ec->lock); |
| 2188 | |
| 2189 | if (acpi_ec_gpe_status_set(first_ec)) { |
| 2190 | pm_pr_dbg("ACPI EC GPE status set\n"); |
| 2191 | |
| 2192 | clear_gpe_and_advance_transaction(first_ec, false); |
| 2193 | work_in_progress = acpi_ec_work_in_progress(first_ec); |
| 2194 | } |
| 2195 | |
| 2196 | spin_unlock_irq(&first_ec->lock); |
| 2197 | |
| 2198 | if (!work_in_progress) |
| 2199 | return false; |
| 2200 | |
| 2201 | pm_pr_dbg("ACPI EC GPE dispatched\n"); |
| 2202 | |
| 2203 | /* Drain EC work. */ |
| 2204 | do { |
| 2205 | acpi_ec_flush_work(); |
| 2206 | |
| 2207 | pm_pr_dbg("ACPI EC work flushed\n"); |
| 2208 | |
| 2209 | spin_lock_irq(&first_ec->lock); |
| 2210 | |
| 2211 | work_in_progress = acpi_ec_work_in_progress(first_ec); |
| 2212 | |
| 2213 | spin_unlock_irq(&first_ec->lock); |
| 2214 | } while (work_in_progress && !pm_wakeup_pending()); |
| 2215 | |
| 2216 | return false; |
| 2217 | } |
| 2218 | #endif /* CONFIG_PM_SLEEP */ |
| 2219 | |
| 2220 | static const struct dev_pm_ops acpi_ec_pm = { |
| 2221 | SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(acpi_ec_suspend_noirq, acpi_ec_resume_noirq) |
| 2222 | SET_SYSTEM_SLEEP_PM_OPS(acpi_ec_suspend, acpi_ec_resume) |
| 2223 | }; |
| 2224 | |
| 2225 | static int param_set_event_clearing(const char *val, |
| 2226 | const struct kernel_param *kp) |
| 2227 | { |
| 2228 | int result = 0; |
| 2229 | |
| 2230 | if (!strncmp(val, "status", sizeof("status") - 1)) { |
| 2231 | ec_event_clearing = ACPI_EC_EVT_TIMING_STATUS; |
| 2232 | pr_info("Assuming SCI_EVT clearing on EC_SC accesses\n"); |
| 2233 | } else if (!strncmp(val, "query", sizeof("query") - 1)) { |
| 2234 | ec_event_clearing = ACPI_EC_EVT_TIMING_QUERY; |
| 2235 | pr_info("Assuming SCI_EVT clearing on QR_EC writes\n"); |
| 2236 | } else if (!strncmp(val, "event", sizeof("event") - 1)) { |
| 2237 | ec_event_clearing = ACPI_EC_EVT_TIMING_EVENT; |
| 2238 | pr_info("Assuming SCI_EVT clearing on event reads\n"); |
| 2239 | } else |
| 2240 | result = -EINVAL; |
| 2241 | return result; |
| 2242 | } |
| 2243 | |
| 2244 | static int param_get_event_clearing(char *buffer, |
| 2245 | const struct kernel_param *kp) |
| 2246 | { |
| 2247 | switch (ec_event_clearing) { |
| 2248 | case ACPI_EC_EVT_TIMING_STATUS: |
| 2249 | return sprintf(buffer, "status\n"); |
| 2250 | case ACPI_EC_EVT_TIMING_QUERY: |
| 2251 | return sprintf(buffer, "query\n"); |
| 2252 | case ACPI_EC_EVT_TIMING_EVENT: |
| 2253 | return sprintf(buffer, "event\n"); |
| 2254 | default: |
| 2255 | return sprintf(buffer, "invalid\n"); |
| 2256 | } |
| 2257 | return 0; |
| 2258 | } |
| 2259 | |
| 2260 | module_param_call(ec_event_clearing, param_set_event_clearing, param_get_event_clearing, |
| 2261 | NULL, 0644); |
| 2262 | MODULE_PARM_DESC(ec_event_clearing, "Assumed SCI_EVT clearing timing"); |
| 2263 | |
| 2264 | static struct acpi_driver acpi_ec_driver = { |
| 2265 | .name = "ec", |
| 2266 | .class = ACPI_EC_CLASS, |
| 2267 | .ids = ec_device_ids, |
| 2268 | .ops = { |
| 2269 | .add = acpi_ec_add, |
| 2270 | .remove = acpi_ec_remove, |
| 2271 | }, |
| 2272 | .drv.pm = &acpi_ec_pm, |
| 2273 | }; |
| 2274 | |
| 2275 | static void acpi_ec_destroy_workqueues(void) |
| 2276 | { |
| 2277 | if (ec_wq) { |
| 2278 | destroy_workqueue(ec_wq); |
| 2279 | ec_wq = NULL; |
| 2280 | } |
| 2281 | if (ec_query_wq) { |
| 2282 | destroy_workqueue(ec_query_wq); |
| 2283 | ec_query_wq = NULL; |
| 2284 | } |
| 2285 | } |
| 2286 | |
| 2287 | static int acpi_ec_init_workqueues(void) |
| 2288 | { |
| 2289 | if (!ec_wq) |
| 2290 | ec_wq = alloc_ordered_workqueue("kec", 0); |
| 2291 | |
| 2292 | if (!ec_query_wq) |
| 2293 | ec_query_wq = alloc_workqueue("kec_query", 0, ec_max_queries); |
| 2294 | |
| 2295 | if (!ec_wq || !ec_query_wq) { |
| 2296 | acpi_ec_destroy_workqueues(); |
| 2297 | return -ENODEV; |
| 2298 | } |
| 2299 | return 0; |
| 2300 | } |
| 2301 | |
| 2302 | static const struct dmi_system_id acpi_ec_no_wakeup[] = { |
| 2303 | { |
| 2304 | .matches = { |
| 2305 | DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), |
| 2306 | DMI_MATCH(DMI_PRODUCT_FAMILY, "Thinkpad X1 Carbon 6th"), |
| 2307 | }, |
| 2308 | }, |
| 2309 | { |
| 2310 | .matches = { |
| 2311 | DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), |
| 2312 | DMI_MATCH(DMI_PRODUCT_FAMILY, "ThinkPad X1 Yoga 3rd"), |
| 2313 | }, |
| 2314 | }, |
| 2315 | { |
| 2316 | .matches = { |
| 2317 | DMI_MATCH(DMI_SYS_VENDOR, "HP"), |
| 2318 | DMI_MATCH(DMI_PRODUCT_FAMILY, "103C_5336AN HP ZHAN 66 Pro"), |
| 2319 | }, |
| 2320 | }, |
| 2321 | /* |
| 2322 | * Lenovo Legion Go S; touchscreen blocks HW sleep when woken up from EC |
| 2323 | * https://gitlab.freedesktop.org/drm/amd/-/issues/3929 |
| 2324 | */ |
| 2325 | { |
| 2326 | .matches = { |
| 2327 | DMI_MATCH(DMI_BOARD_VENDOR, "LENOVO"), |
| 2328 | DMI_MATCH(DMI_PRODUCT_NAME, "83L3"), |
| 2329 | } |
| 2330 | }, |
| 2331 | { |
| 2332 | .matches = { |
| 2333 | DMI_MATCH(DMI_BOARD_VENDOR, "LENOVO"), |
| 2334 | DMI_MATCH(DMI_PRODUCT_NAME, "83N6"), |
| 2335 | } |
| 2336 | }, |
| 2337 | { |
| 2338 | .matches = { |
| 2339 | DMI_MATCH(DMI_BOARD_VENDOR, "LENOVO"), |
| 2340 | DMI_MATCH(DMI_PRODUCT_NAME, "83Q2"), |
| 2341 | } |
| 2342 | }, |
| 2343 | { |
| 2344 | .matches = { |
| 2345 | DMI_MATCH(DMI_BOARD_VENDOR, "LENOVO"), |
| 2346 | DMI_MATCH(DMI_PRODUCT_NAME, "83Q3"), |
| 2347 | } |
| 2348 | }, |
| 2349 | { |
| 2350 | // TUXEDO InfinityBook Pro AMD Gen9 |
| 2351 | .matches = { |
| 2352 | DMI_MATCH(DMI_BOARD_NAME, "GXxHRXx"), |
| 2353 | }, |
| 2354 | }, |
| 2355 | { }, |
| 2356 | }; |
| 2357 | |
| 2358 | void __init acpi_ec_init(void) |
| 2359 | { |
| 2360 | int result; |
| 2361 | |
| 2362 | result = acpi_ec_init_workqueues(); |
| 2363 | if (result) |
| 2364 | return; |
| 2365 | |
| 2366 | /* |
| 2367 | * Disable EC wakeup on following systems to prevent periodic |
| 2368 | * wakeup from EC GPE. |
| 2369 | */ |
| 2370 | if (dmi_check_system(acpi_ec_no_wakeup)) { |
| 2371 | ec_no_wakeup = true; |
| 2372 | pr_debug("Disabling EC wakeup on suspend-to-idle\n"); |
| 2373 | } |
| 2374 | |
| 2375 | /* Driver must be registered after acpi_ec_init_workqueues(). */ |
| 2376 | acpi_bus_register_driver(&acpi_ec_driver); |
| 2377 | |
| 2378 | acpi_ec_ecdt_start(); |
| 2379 | } |
| 2380 | |
| 2381 | /* EC driver currently not unloadable */ |
| 2382 | #if 0 |
| 2383 | static void __exit acpi_ec_exit(void) |
| 2384 | { |
| 2385 | |
| 2386 | acpi_bus_unregister_driver(&acpi_ec_driver); |
| 2387 | acpi_ec_destroy_workqueues(); |
| 2388 | } |
| 2389 | #endif /* 0 */ |