kernel: add CLONE_IO to specifically request sharing of IO contexts
[linux-2.6-block.git] / block / cfq-iosched.c
... / ...
CommitLineData
1/*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
12#include <linux/rbtree.h>
13#include <linux/ioprio.h>
14
15/*
16 * tunables
17 */
18static const int cfq_quantum = 4; /* max queue in one round of service */
19static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
20static const int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */
21static const int cfq_back_penalty = 2; /* penalty of a backwards seek */
22
23static const int cfq_slice_sync = HZ / 10;
24static int cfq_slice_async = HZ / 25;
25static const int cfq_slice_async_rq = 2;
26static int cfq_slice_idle = HZ / 125;
27
28/*
29 * grace period before allowing idle class to get disk access
30 */
31#define CFQ_IDLE_GRACE (HZ / 10)
32
33/*
34 * below this threshold, we consider thinktime immediate
35 */
36#define CFQ_MIN_TT (2)
37
38#define CFQ_SLICE_SCALE (5)
39
40#define RQ_CIC(rq) ((struct cfq_io_context*)(rq)->elevator_private)
41#define RQ_CFQQ(rq) ((rq)->elevator_private2)
42
43static struct kmem_cache *cfq_pool;
44static struct kmem_cache *cfq_ioc_pool;
45
46static DEFINE_PER_CPU(unsigned long, ioc_count);
47static struct completion *ioc_gone;
48
49#define CFQ_PRIO_LISTS IOPRIO_BE_NR
50#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
51#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
52
53#define ASYNC (0)
54#define SYNC (1)
55
56#define sample_valid(samples) ((samples) > 80)
57
58/*
59 * Most of our rbtree usage is for sorting with min extraction, so
60 * if we cache the leftmost node we don't have to walk down the tree
61 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
62 * move this into the elevator for the rq sorting as well.
63 */
64struct cfq_rb_root {
65 struct rb_root rb;
66 struct rb_node *left;
67};
68#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
69
70/*
71 * Per block device queue structure
72 */
73struct cfq_data {
74 struct request_queue *queue;
75
76 /*
77 * rr list of queues with requests and the count of them
78 */
79 struct cfq_rb_root service_tree;
80 unsigned int busy_queues;
81
82 int rq_in_driver;
83 int sync_flight;
84 int hw_tag;
85
86 /*
87 * idle window management
88 */
89 struct timer_list idle_slice_timer;
90 struct work_struct unplug_work;
91
92 struct cfq_queue *active_queue;
93 struct cfq_io_context *active_cic;
94
95 /*
96 * async queue for each priority case
97 */
98 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
99 struct cfq_queue *async_idle_cfqq;
100
101 struct timer_list idle_class_timer;
102
103 sector_t last_position;
104 unsigned long last_end_request;
105
106 /*
107 * tunables, see top of file
108 */
109 unsigned int cfq_quantum;
110 unsigned int cfq_fifo_expire[2];
111 unsigned int cfq_back_penalty;
112 unsigned int cfq_back_max;
113 unsigned int cfq_slice[2];
114 unsigned int cfq_slice_async_rq;
115 unsigned int cfq_slice_idle;
116
117 struct list_head cic_list;
118};
119
120/*
121 * Per process-grouping structure
122 */
123struct cfq_queue {
124 /* reference count */
125 atomic_t ref;
126 /* parent cfq_data */
127 struct cfq_data *cfqd;
128 /* service_tree member */
129 struct rb_node rb_node;
130 /* service_tree key */
131 unsigned long rb_key;
132 /* sorted list of pending requests */
133 struct rb_root sort_list;
134 /* if fifo isn't expired, next request to serve */
135 struct request *next_rq;
136 /* requests queued in sort_list */
137 int queued[2];
138 /* currently allocated requests */
139 int allocated[2];
140 /* pending metadata requests */
141 int meta_pending;
142 /* fifo list of requests in sort_list */
143 struct list_head fifo;
144
145 unsigned long slice_end;
146 long slice_resid;
147
148 /* number of requests that are on the dispatch list or inside driver */
149 int dispatched;
150
151 /* io prio of this group */
152 unsigned short ioprio, org_ioprio;
153 unsigned short ioprio_class, org_ioprio_class;
154
155 /* various state flags, see below */
156 unsigned int flags;
157};
158
159enum cfqq_state_flags {
160 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
161 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
162 CFQ_CFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
163 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
164 CFQ_CFQQ_FLAG_must_dispatch, /* must dispatch, even if expired */
165 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
166 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
167 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
168 CFQ_CFQQ_FLAG_queue_new, /* queue never been serviced */
169 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
170 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
171};
172
173#define CFQ_CFQQ_FNS(name) \
174static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
175{ \
176 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
177} \
178static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
179{ \
180 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
181} \
182static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
183{ \
184 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
185}
186
187CFQ_CFQQ_FNS(on_rr);
188CFQ_CFQQ_FNS(wait_request);
189CFQ_CFQQ_FNS(must_alloc);
190CFQ_CFQQ_FNS(must_alloc_slice);
191CFQ_CFQQ_FNS(must_dispatch);
192CFQ_CFQQ_FNS(fifo_expire);
193CFQ_CFQQ_FNS(idle_window);
194CFQ_CFQQ_FNS(prio_changed);
195CFQ_CFQQ_FNS(queue_new);
196CFQ_CFQQ_FNS(slice_new);
197CFQ_CFQQ_FNS(sync);
198#undef CFQ_CFQQ_FNS
199
200static void cfq_dispatch_insert(struct request_queue *, struct request *);
201static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
202 struct io_context *, gfp_t);
203static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
204 struct io_context *);
205
206static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
207 int is_sync)
208{
209 return cic->cfqq[!!is_sync];
210}
211
212static inline void cic_set_cfqq(struct cfq_io_context *cic,
213 struct cfq_queue *cfqq, int is_sync)
214{
215 cic->cfqq[!!is_sync] = cfqq;
216}
217
218/*
219 * We regard a request as SYNC, if it's either a read or has the SYNC bit
220 * set (in which case it could also be direct WRITE).
221 */
222static inline int cfq_bio_sync(struct bio *bio)
223{
224 if (bio_data_dir(bio) == READ || bio_sync(bio))
225 return 1;
226
227 return 0;
228}
229
230/*
231 * scheduler run of queue, if there are requests pending and no one in the
232 * driver that will restart queueing
233 */
234static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
235{
236 if (cfqd->busy_queues)
237 kblockd_schedule_work(&cfqd->unplug_work);
238}
239
240static int cfq_queue_empty(struct request_queue *q)
241{
242 struct cfq_data *cfqd = q->elevator->elevator_data;
243
244 return !cfqd->busy_queues;
245}
246
247/*
248 * Scale schedule slice based on io priority. Use the sync time slice only
249 * if a queue is marked sync and has sync io queued. A sync queue with async
250 * io only, should not get full sync slice length.
251 */
252static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
253 unsigned short prio)
254{
255 const int base_slice = cfqd->cfq_slice[sync];
256
257 WARN_ON(prio >= IOPRIO_BE_NR);
258
259 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
260}
261
262static inline int
263cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
264{
265 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
266}
267
268static inline void
269cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
270{
271 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
272}
273
274/*
275 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
276 * isn't valid until the first request from the dispatch is activated
277 * and the slice time set.
278 */
279static inline int cfq_slice_used(struct cfq_queue *cfqq)
280{
281 if (cfq_cfqq_slice_new(cfqq))
282 return 0;
283 if (time_before(jiffies, cfqq->slice_end))
284 return 0;
285
286 return 1;
287}
288
289/*
290 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
291 * We choose the request that is closest to the head right now. Distance
292 * behind the head is penalized and only allowed to a certain extent.
293 */
294static struct request *
295cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
296{
297 sector_t last, s1, s2, d1 = 0, d2 = 0;
298 unsigned long back_max;
299#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
300#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
301 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
302
303 if (rq1 == NULL || rq1 == rq2)
304 return rq2;
305 if (rq2 == NULL)
306 return rq1;
307
308 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
309 return rq1;
310 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
311 return rq2;
312 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
313 return rq1;
314 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
315 return rq2;
316
317 s1 = rq1->sector;
318 s2 = rq2->sector;
319
320 last = cfqd->last_position;
321
322 /*
323 * by definition, 1KiB is 2 sectors
324 */
325 back_max = cfqd->cfq_back_max * 2;
326
327 /*
328 * Strict one way elevator _except_ in the case where we allow
329 * short backward seeks which are biased as twice the cost of a
330 * similar forward seek.
331 */
332 if (s1 >= last)
333 d1 = s1 - last;
334 else if (s1 + back_max >= last)
335 d1 = (last - s1) * cfqd->cfq_back_penalty;
336 else
337 wrap |= CFQ_RQ1_WRAP;
338
339 if (s2 >= last)
340 d2 = s2 - last;
341 else if (s2 + back_max >= last)
342 d2 = (last - s2) * cfqd->cfq_back_penalty;
343 else
344 wrap |= CFQ_RQ2_WRAP;
345
346 /* Found required data */
347
348 /*
349 * By doing switch() on the bit mask "wrap" we avoid having to
350 * check two variables for all permutations: --> faster!
351 */
352 switch (wrap) {
353 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
354 if (d1 < d2)
355 return rq1;
356 else if (d2 < d1)
357 return rq2;
358 else {
359 if (s1 >= s2)
360 return rq1;
361 else
362 return rq2;
363 }
364
365 case CFQ_RQ2_WRAP:
366 return rq1;
367 case CFQ_RQ1_WRAP:
368 return rq2;
369 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
370 default:
371 /*
372 * Since both rqs are wrapped,
373 * start with the one that's further behind head
374 * (--> only *one* back seek required),
375 * since back seek takes more time than forward.
376 */
377 if (s1 <= s2)
378 return rq1;
379 else
380 return rq2;
381 }
382}
383
384/*
385 * The below is leftmost cache rbtree addon
386 */
387static struct rb_node *cfq_rb_first(struct cfq_rb_root *root)
388{
389 if (!root->left)
390 root->left = rb_first(&root->rb);
391
392 return root->left;
393}
394
395static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
396{
397 if (root->left == n)
398 root->left = NULL;
399
400 rb_erase(n, &root->rb);
401 RB_CLEAR_NODE(n);
402}
403
404/*
405 * would be nice to take fifo expire time into account as well
406 */
407static struct request *
408cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
409 struct request *last)
410{
411 struct rb_node *rbnext = rb_next(&last->rb_node);
412 struct rb_node *rbprev = rb_prev(&last->rb_node);
413 struct request *next = NULL, *prev = NULL;
414
415 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
416
417 if (rbprev)
418 prev = rb_entry_rq(rbprev);
419
420 if (rbnext)
421 next = rb_entry_rq(rbnext);
422 else {
423 rbnext = rb_first(&cfqq->sort_list);
424 if (rbnext && rbnext != &last->rb_node)
425 next = rb_entry_rq(rbnext);
426 }
427
428 return cfq_choose_req(cfqd, next, prev);
429}
430
431static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
432 struct cfq_queue *cfqq)
433{
434 /*
435 * just an approximation, should be ok.
436 */
437 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
438 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
439}
440
441/*
442 * The cfqd->service_tree holds all pending cfq_queue's that have
443 * requests waiting to be processed. It is sorted in the order that
444 * we will service the queues.
445 */
446static void cfq_service_tree_add(struct cfq_data *cfqd,
447 struct cfq_queue *cfqq, int add_front)
448{
449 struct rb_node **p = &cfqd->service_tree.rb.rb_node;
450 struct rb_node *parent = NULL;
451 unsigned long rb_key;
452 int left;
453
454 if (!add_front) {
455 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
456 rb_key += cfqq->slice_resid;
457 cfqq->slice_resid = 0;
458 } else
459 rb_key = 0;
460
461 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
462 /*
463 * same position, nothing more to do
464 */
465 if (rb_key == cfqq->rb_key)
466 return;
467
468 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
469 }
470
471 left = 1;
472 while (*p) {
473 struct cfq_queue *__cfqq;
474 struct rb_node **n;
475
476 parent = *p;
477 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
478
479 /*
480 * sort RT queues first, we always want to give
481 * preference to them. IDLE queues goes to the back.
482 * after that, sort on the next service time.
483 */
484 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
485 n = &(*p)->rb_left;
486 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
487 n = &(*p)->rb_right;
488 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
489 n = &(*p)->rb_left;
490 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
491 n = &(*p)->rb_right;
492 else if (rb_key < __cfqq->rb_key)
493 n = &(*p)->rb_left;
494 else
495 n = &(*p)->rb_right;
496
497 if (n == &(*p)->rb_right)
498 left = 0;
499
500 p = n;
501 }
502
503 if (left)
504 cfqd->service_tree.left = &cfqq->rb_node;
505
506 cfqq->rb_key = rb_key;
507 rb_link_node(&cfqq->rb_node, parent, p);
508 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
509}
510
511/*
512 * Update cfqq's position in the service tree.
513 */
514static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
515{
516 /*
517 * Resorting requires the cfqq to be on the RR list already.
518 */
519 if (cfq_cfqq_on_rr(cfqq))
520 cfq_service_tree_add(cfqd, cfqq, 0);
521}
522
523/*
524 * add to busy list of queues for service, trying to be fair in ordering
525 * the pending list according to last request service
526 */
527static inline void
528cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
529{
530 BUG_ON(cfq_cfqq_on_rr(cfqq));
531 cfq_mark_cfqq_on_rr(cfqq);
532 cfqd->busy_queues++;
533
534 cfq_resort_rr_list(cfqd, cfqq);
535}
536
537/*
538 * Called when the cfqq no longer has requests pending, remove it from
539 * the service tree.
540 */
541static inline void
542cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
543{
544 BUG_ON(!cfq_cfqq_on_rr(cfqq));
545 cfq_clear_cfqq_on_rr(cfqq);
546
547 if (!RB_EMPTY_NODE(&cfqq->rb_node))
548 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
549
550 BUG_ON(!cfqd->busy_queues);
551 cfqd->busy_queues--;
552}
553
554/*
555 * rb tree support functions
556 */
557static inline void cfq_del_rq_rb(struct request *rq)
558{
559 struct cfq_queue *cfqq = RQ_CFQQ(rq);
560 struct cfq_data *cfqd = cfqq->cfqd;
561 const int sync = rq_is_sync(rq);
562
563 BUG_ON(!cfqq->queued[sync]);
564 cfqq->queued[sync]--;
565
566 elv_rb_del(&cfqq->sort_list, rq);
567
568 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
569 cfq_del_cfqq_rr(cfqd, cfqq);
570}
571
572static void cfq_add_rq_rb(struct request *rq)
573{
574 struct cfq_queue *cfqq = RQ_CFQQ(rq);
575 struct cfq_data *cfqd = cfqq->cfqd;
576 struct request *__alias;
577
578 cfqq->queued[rq_is_sync(rq)]++;
579
580 /*
581 * looks a little odd, but the first insert might return an alias.
582 * if that happens, put the alias on the dispatch list
583 */
584 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
585 cfq_dispatch_insert(cfqd->queue, __alias);
586
587 if (!cfq_cfqq_on_rr(cfqq))
588 cfq_add_cfqq_rr(cfqd, cfqq);
589
590 /*
591 * check if this request is a better next-serve candidate
592 */
593 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
594 BUG_ON(!cfqq->next_rq);
595}
596
597static inline void
598cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
599{
600 elv_rb_del(&cfqq->sort_list, rq);
601 cfqq->queued[rq_is_sync(rq)]--;
602 cfq_add_rq_rb(rq);
603}
604
605static struct request *
606cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
607{
608 struct task_struct *tsk = current;
609 struct cfq_io_context *cic;
610 struct cfq_queue *cfqq;
611
612 cic = cfq_cic_lookup(cfqd, tsk->io_context);
613 if (!cic)
614 return NULL;
615
616 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
617 if (cfqq) {
618 sector_t sector = bio->bi_sector + bio_sectors(bio);
619
620 return elv_rb_find(&cfqq->sort_list, sector);
621 }
622
623 return NULL;
624}
625
626static void cfq_activate_request(struct request_queue *q, struct request *rq)
627{
628 struct cfq_data *cfqd = q->elevator->elevator_data;
629
630 cfqd->rq_in_driver++;
631
632 /*
633 * If the depth is larger 1, it really could be queueing. But lets
634 * make the mark a little higher - idling could still be good for
635 * low queueing, and a low queueing number could also just indicate
636 * a SCSI mid layer like behaviour where limit+1 is often seen.
637 */
638 if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
639 cfqd->hw_tag = 1;
640
641 cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
642}
643
644static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
645{
646 struct cfq_data *cfqd = q->elevator->elevator_data;
647
648 WARN_ON(!cfqd->rq_in_driver);
649 cfqd->rq_in_driver--;
650}
651
652static void cfq_remove_request(struct request *rq)
653{
654 struct cfq_queue *cfqq = RQ_CFQQ(rq);
655
656 if (cfqq->next_rq == rq)
657 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
658
659 list_del_init(&rq->queuelist);
660 cfq_del_rq_rb(rq);
661
662 if (rq_is_meta(rq)) {
663 WARN_ON(!cfqq->meta_pending);
664 cfqq->meta_pending--;
665 }
666}
667
668static int cfq_merge(struct request_queue *q, struct request **req,
669 struct bio *bio)
670{
671 struct cfq_data *cfqd = q->elevator->elevator_data;
672 struct request *__rq;
673
674 __rq = cfq_find_rq_fmerge(cfqd, bio);
675 if (__rq && elv_rq_merge_ok(__rq, bio)) {
676 *req = __rq;
677 return ELEVATOR_FRONT_MERGE;
678 }
679
680 return ELEVATOR_NO_MERGE;
681}
682
683static void cfq_merged_request(struct request_queue *q, struct request *req,
684 int type)
685{
686 if (type == ELEVATOR_FRONT_MERGE) {
687 struct cfq_queue *cfqq = RQ_CFQQ(req);
688
689 cfq_reposition_rq_rb(cfqq, req);
690 }
691}
692
693static void
694cfq_merged_requests(struct request_queue *q, struct request *rq,
695 struct request *next)
696{
697 /*
698 * reposition in fifo if next is older than rq
699 */
700 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
701 time_before(next->start_time, rq->start_time))
702 list_move(&rq->queuelist, &next->queuelist);
703
704 cfq_remove_request(next);
705}
706
707static int cfq_allow_merge(struct request_queue *q, struct request *rq,
708 struct bio *bio)
709{
710 struct cfq_data *cfqd = q->elevator->elevator_data;
711 struct cfq_io_context *cic;
712 struct cfq_queue *cfqq;
713
714 /*
715 * Disallow merge of a sync bio into an async request.
716 */
717 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
718 return 0;
719
720 /*
721 * Lookup the cfqq that this bio will be queued with. Allow
722 * merge only if rq is queued there.
723 */
724 cic = cfq_cic_lookup(cfqd, current->io_context);
725 if (!cic)
726 return 0;
727
728 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
729 if (cfqq == RQ_CFQQ(rq))
730 return 1;
731
732 return 0;
733}
734
735static inline void
736__cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
737{
738 if (cfqq) {
739 /*
740 * stop potential idle class queues waiting service
741 */
742 del_timer(&cfqd->idle_class_timer);
743
744 cfqq->slice_end = 0;
745 cfq_clear_cfqq_must_alloc_slice(cfqq);
746 cfq_clear_cfqq_fifo_expire(cfqq);
747 cfq_mark_cfqq_slice_new(cfqq);
748 cfq_clear_cfqq_queue_new(cfqq);
749 }
750
751 cfqd->active_queue = cfqq;
752}
753
754/*
755 * current cfqq expired its slice (or was too idle), select new one
756 */
757static void
758__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
759 int timed_out)
760{
761 if (cfq_cfqq_wait_request(cfqq))
762 del_timer(&cfqd->idle_slice_timer);
763
764 cfq_clear_cfqq_must_dispatch(cfqq);
765 cfq_clear_cfqq_wait_request(cfqq);
766
767 /*
768 * store what was left of this slice, if the queue idled/timed out
769 */
770 if (timed_out && !cfq_cfqq_slice_new(cfqq))
771 cfqq->slice_resid = cfqq->slice_end - jiffies;
772
773 cfq_resort_rr_list(cfqd, cfqq);
774
775 if (cfqq == cfqd->active_queue)
776 cfqd->active_queue = NULL;
777
778 if (cfqd->active_cic) {
779 put_io_context(cfqd->active_cic->ioc);
780 cfqd->active_cic = NULL;
781 }
782}
783
784static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
785{
786 struct cfq_queue *cfqq = cfqd->active_queue;
787
788 if (cfqq)
789 __cfq_slice_expired(cfqd, cfqq, timed_out);
790}
791
792static int start_idle_class_timer(struct cfq_data *cfqd)
793{
794 unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
795 unsigned long now = jiffies;
796
797 if (time_before(now, end) &&
798 time_after_eq(now, cfqd->last_end_request)) {
799 mod_timer(&cfqd->idle_class_timer, end);
800 return 1;
801 }
802
803 return 0;
804}
805
806/*
807 * Get next queue for service. Unless we have a queue preemption,
808 * we'll simply select the first cfqq in the service tree.
809 */
810static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
811{
812 struct cfq_queue *cfqq;
813 struct rb_node *n;
814
815 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
816 return NULL;
817
818 n = cfq_rb_first(&cfqd->service_tree);
819 cfqq = rb_entry(n, struct cfq_queue, rb_node);
820
821 if (cfq_class_idle(cfqq)) {
822 /*
823 * if we have idle queues and no rt or be queues had
824 * pending requests, either allow immediate service if
825 * the grace period has passed or arm the idle grace
826 * timer
827 */
828 if (start_idle_class_timer(cfqd))
829 cfqq = NULL;
830 }
831
832 return cfqq;
833}
834
835/*
836 * Get and set a new active queue for service.
837 */
838static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
839{
840 struct cfq_queue *cfqq;
841
842 cfqq = cfq_get_next_queue(cfqd);
843 __cfq_set_active_queue(cfqd, cfqq);
844 return cfqq;
845}
846
847static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
848 struct request *rq)
849{
850 if (rq->sector >= cfqd->last_position)
851 return rq->sector - cfqd->last_position;
852 else
853 return cfqd->last_position - rq->sector;
854}
855
856static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
857{
858 struct cfq_io_context *cic = cfqd->active_cic;
859
860 if (!sample_valid(cic->seek_samples))
861 return 0;
862
863 return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
864}
865
866static int cfq_close_cooperator(struct cfq_data *cfq_data,
867 struct cfq_queue *cfqq)
868{
869 /*
870 * We should notice if some of the queues are cooperating, eg
871 * working closely on the same area of the disk. In that case,
872 * we can group them together and don't waste time idling.
873 */
874 return 0;
875}
876
877#define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
878
879static void cfq_arm_slice_timer(struct cfq_data *cfqd)
880{
881 struct cfq_queue *cfqq = cfqd->active_queue;
882 struct cfq_io_context *cic;
883 unsigned long sl;
884
885 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
886 WARN_ON(cfq_cfqq_slice_new(cfqq));
887
888 /*
889 * idle is disabled, either manually or by past process history
890 */
891 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
892 return;
893
894 /*
895 * task has exited, don't wait
896 */
897 cic = cfqd->active_cic;
898 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
899 return;
900
901 /*
902 * See if this prio level has a good candidate
903 */
904 if (cfq_close_cooperator(cfqd, cfqq) &&
905 (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
906 return;
907
908 cfq_mark_cfqq_must_dispatch(cfqq);
909 cfq_mark_cfqq_wait_request(cfqq);
910
911 /*
912 * we don't want to idle for seeks, but we do want to allow
913 * fair distribution of slice time for a process doing back-to-back
914 * seeks. so allow a little bit of time for him to submit a new rq
915 */
916 sl = cfqd->cfq_slice_idle;
917 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
918 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
919
920 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
921}
922
923/*
924 * Move request from internal lists to the request queue dispatch list.
925 */
926static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
927{
928 struct cfq_data *cfqd = q->elevator->elevator_data;
929 struct cfq_queue *cfqq = RQ_CFQQ(rq);
930
931 cfq_remove_request(rq);
932 cfqq->dispatched++;
933 elv_dispatch_sort(q, rq);
934
935 if (cfq_cfqq_sync(cfqq))
936 cfqd->sync_flight++;
937}
938
939/*
940 * return expired entry, or NULL to just start from scratch in rbtree
941 */
942static inline struct request *cfq_check_fifo(struct cfq_queue *cfqq)
943{
944 struct cfq_data *cfqd = cfqq->cfqd;
945 struct request *rq;
946 int fifo;
947
948 if (cfq_cfqq_fifo_expire(cfqq))
949 return NULL;
950
951 cfq_mark_cfqq_fifo_expire(cfqq);
952
953 if (list_empty(&cfqq->fifo))
954 return NULL;
955
956 fifo = cfq_cfqq_sync(cfqq);
957 rq = rq_entry_fifo(cfqq->fifo.next);
958
959 if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
960 return NULL;
961
962 return rq;
963}
964
965static inline int
966cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
967{
968 const int base_rq = cfqd->cfq_slice_async_rq;
969
970 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
971
972 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
973}
974
975/*
976 * Select a queue for service. If we have a current active queue,
977 * check whether to continue servicing it, or retrieve and set a new one.
978 */
979static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
980{
981 struct cfq_queue *cfqq;
982
983 cfqq = cfqd->active_queue;
984 if (!cfqq)
985 goto new_queue;
986
987 /*
988 * The active queue has run out of time, expire it and select new.
989 */
990 if (cfq_slice_used(cfqq))
991 goto expire;
992
993 /*
994 * The active queue has requests and isn't expired, allow it to
995 * dispatch.
996 */
997 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
998 goto keep_queue;
999
1000 /*
1001 * No requests pending. If the active queue still has requests in
1002 * flight or is idling for a new request, allow either of these
1003 * conditions to happen (or time out) before selecting a new queue.
1004 */
1005 if (timer_pending(&cfqd->idle_slice_timer) ||
1006 (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1007 cfqq = NULL;
1008 goto keep_queue;
1009 }
1010
1011expire:
1012 cfq_slice_expired(cfqd, 0);
1013new_queue:
1014 cfqq = cfq_set_active_queue(cfqd);
1015keep_queue:
1016 return cfqq;
1017}
1018
1019/*
1020 * Dispatch some requests from cfqq, moving them to the request queue
1021 * dispatch list.
1022 */
1023static int
1024__cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1025 int max_dispatch)
1026{
1027 int dispatched = 0;
1028
1029 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1030
1031 do {
1032 struct request *rq;
1033
1034 /*
1035 * follow expired path, else get first next available
1036 */
1037 if ((rq = cfq_check_fifo(cfqq)) == NULL)
1038 rq = cfqq->next_rq;
1039
1040 /*
1041 * finally, insert request into driver dispatch list
1042 */
1043 cfq_dispatch_insert(cfqd->queue, rq);
1044
1045 dispatched++;
1046
1047 if (!cfqd->active_cic) {
1048 atomic_inc(&RQ_CIC(rq)->ioc->refcount);
1049 cfqd->active_cic = RQ_CIC(rq);
1050 }
1051
1052 if (RB_EMPTY_ROOT(&cfqq->sort_list))
1053 break;
1054
1055 } while (dispatched < max_dispatch);
1056
1057 /*
1058 * expire an async queue immediately if it has used up its slice. idle
1059 * queue always expire after 1 dispatch round.
1060 */
1061 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1062 dispatched >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1063 cfq_class_idle(cfqq))) {
1064 cfqq->slice_end = jiffies + 1;
1065 cfq_slice_expired(cfqd, 0);
1066 }
1067
1068 return dispatched;
1069}
1070
1071static inline int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1072{
1073 int dispatched = 0;
1074
1075 while (cfqq->next_rq) {
1076 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1077 dispatched++;
1078 }
1079
1080 BUG_ON(!list_empty(&cfqq->fifo));
1081 return dispatched;
1082}
1083
1084/*
1085 * Drain our current requests. Used for barriers and when switching
1086 * io schedulers on-the-fly.
1087 */
1088static int cfq_forced_dispatch(struct cfq_data *cfqd)
1089{
1090 int dispatched = 0;
1091 struct rb_node *n;
1092
1093 while ((n = cfq_rb_first(&cfqd->service_tree)) != NULL) {
1094 struct cfq_queue *cfqq = rb_entry(n, struct cfq_queue, rb_node);
1095
1096 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1097 }
1098
1099 cfq_slice_expired(cfqd, 0);
1100
1101 BUG_ON(cfqd->busy_queues);
1102
1103 return dispatched;
1104}
1105
1106static int cfq_dispatch_requests(struct request_queue *q, int force)
1107{
1108 struct cfq_data *cfqd = q->elevator->elevator_data;
1109 struct cfq_queue *cfqq;
1110 int dispatched;
1111
1112 if (!cfqd->busy_queues)
1113 return 0;
1114
1115 if (unlikely(force))
1116 return cfq_forced_dispatch(cfqd);
1117
1118 dispatched = 0;
1119 while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1120 int max_dispatch;
1121
1122 max_dispatch = cfqd->cfq_quantum;
1123 if (cfq_class_idle(cfqq))
1124 max_dispatch = 1;
1125
1126 if (cfqq->dispatched >= max_dispatch) {
1127 if (cfqd->busy_queues > 1)
1128 break;
1129 if (cfqq->dispatched >= 4 * max_dispatch)
1130 break;
1131 }
1132
1133 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1134 break;
1135
1136 cfq_clear_cfqq_must_dispatch(cfqq);
1137 cfq_clear_cfqq_wait_request(cfqq);
1138 del_timer(&cfqd->idle_slice_timer);
1139
1140 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1141 }
1142
1143 return dispatched;
1144}
1145
1146/*
1147 * task holds one reference to the queue, dropped when task exits. each rq
1148 * in-flight on this queue also holds a reference, dropped when rq is freed.
1149 *
1150 * queue lock must be held here.
1151 */
1152static void cfq_put_queue(struct cfq_queue *cfqq)
1153{
1154 struct cfq_data *cfqd = cfqq->cfqd;
1155
1156 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1157
1158 if (!atomic_dec_and_test(&cfqq->ref))
1159 return;
1160
1161 BUG_ON(rb_first(&cfqq->sort_list));
1162 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1163 BUG_ON(cfq_cfqq_on_rr(cfqq));
1164
1165 if (unlikely(cfqd->active_queue == cfqq)) {
1166 __cfq_slice_expired(cfqd, cfqq, 0);
1167 cfq_schedule_dispatch(cfqd);
1168 }
1169
1170 kmem_cache_free(cfq_pool, cfqq);
1171}
1172
1173/*
1174 * Call func for each cic attached to this ioc. Returns number of cic's seen.
1175 */
1176#define CIC_GANG_NR 16
1177static unsigned int
1178call_for_each_cic(struct io_context *ioc,
1179 void (*func)(struct io_context *, struct cfq_io_context *))
1180{
1181 struct cfq_io_context *cics[CIC_GANG_NR];
1182 unsigned long index = 0;
1183 unsigned int called = 0;
1184 int nr;
1185
1186 rcu_read_lock();
1187
1188 do {
1189 int i;
1190
1191 /*
1192 * Perhaps there's a better way - this just gang lookups from
1193 * 0 to the end, restarting after each CIC_GANG_NR from the
1194 * last key + 1.
1195 */
1196 nr = radix_tree_gang_lookup(&ioc->radix_root, (void **) cics,
1197 index, CIC_GANG_NR);
1198 if (!nr)
1199 break;
1200
1201 called += nr;
1202 index = 1 + (unsigned long) cics[nr - 1]->key;
1203
1204 for (i = 0; i < nr; i++)
1205 func(ioc, cics[i]);
1206 } while (nr == CIC_GANG_NR);
1207
1208 rcu_read_unlock();
1209
1210 return called;
1211}
1212
1213static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1214{
1215 unsigned long flags;
1216
1217 BUG_ON(!cic->dead_key);
1218
1219 spin_lock_irqsave(&ioc->lock, flags);
1220 radix_tree_delete(&ioc->radix_root, cic->dead_key);
1221 spin_unlock_irqrestore(&ioc->lock, flags);
1222
1223 kmem_cache_free(cfq_ioc_pool, cic);
1224}
1225
1226static void cfq_free_io_context(struct io_context *ioc)
1227{
1228 int freed;
1229
1230 /*
1231 * ioc->refcount is zero here, so no more cic's are allowed to be
1232 * linked into this ioc. So it should be ok to iterate over the known
1233 * list, we will see all cic's since no new ones are added.
1234 */
1235 freed = call_for_each_cic(ioc, cic_free_func);
1236
1237 elv_ioc_count_mod(ioc_count, -freed);
1238
1239 if (ioc_gone && !elv_ioc_count_read(ioc_count))
1240 complete(ioc_gone);
1241}
1242
1243static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1244{
1245 if (unlikely(cfqq == cfqd->active_queue)) {
1246 __cfq_slice_expired(cfqd, cfqq, 0);
1247 cfq_schedule_dispatch(cfqd);
1248 }
1249
1250 cfq_put_queue(cfqq);
1251}
1252
1253static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1254 struct cfq_io_context *cic)
1255{
1256 list_del_init(&cic->queue_list);
1257
1258 /*
1259 * Make sure key == NULL is seen for dead queues
1260 */
1261 smp_wmb();
1262 cic->dead_key = (unsigned long) cic->key;
1263 cic->key = NULL;
1264
1265 if (cic->cfqq[ASYNC]) {
1266 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1267 cic->cfqq[ASYNC] = NULL;
1268 }
1269
1270 if (cic->cfqq[SYNC]) {
1271 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1272 cic->cfqq[SYNC] = NULL;
1273 }
1274}
1275
1276static void cfq_exit_single_io_context(struct io_context *ioc,
1277 struct cfq_io_context *cic)
1278{
1279 struct cfq_data *cfqd = cic->key;
1280
1281 if (cfqd) {
1282 struct request_queue *q = cfqd->queue;
1283 unsigned long flags;
1284
1285 spin_lock_irqsave(q->queue_lock, flags);
1286 __cfq_exit_single_io_context(cfqd, cic);
1287 spin_unlock_irqrestore(q->queue_lock, flags);
1288 }
1289}
1290
1291/*
1292 * The process that ioc belongs to has exited, we need to clean up
1293 * and put the internal structures we have that belongs to that process.
1294 */
1295static void cfq_exit_io_context(struct io_context *ioc)
1296{
1297 rcu_assign_pointer(ioc->ioc_data, NULL);
1298 call_for_each_cic(ioc, cfq_exit_single_io_context);
1299}
1300
1301static struct cfq_io_context *
1302cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1303{
1304 struct cfq_io_context *cic;
1305
1306 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1307 cfqd->queue->node);
1308 if (cic) {
1309 cic->last_end_request = jiffies;
1310 INIT_LIST_HEAD(&cic->queue_list);
1311 cic->dtor = cfq_free_io_context;
1312 cic->exit = cfq_exit_io_context;
1313 elv_ioc_count_inc(ioc_count);
1314 }
1315
1316 return cic;
1317}
1318
1319static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1320{
1321 struct task_struct *tsk = current;
1322 int ioprio_class;
1323
1324 if (!cfq_cfqq_prio_changed(cfqq))
1325 return;
1326
1327 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1328 switch (ioprio_class) {
1329 default:
1330 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1331 case IOPRIO_CLASS_NONE:
1332 /*
1333 * no prio set, place us in the middle of the BE classes
1334 */
1335 cfqq->ioprio = task_nice_ioprio(tsk);
1336 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1337 break;
1338 case IOPRIO_CLASS_RT:
1339 cfqq->ioprio = task_ioprio(ioc);
1340 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1341 break;
1342 case IOPRIO_CLASS_BE:
1343 cfqq->ioprio = task_ioprio(ioc);
1344 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1345 break;
1346 case IOPRIO_CLASS_IDLE:
1347 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1348 cfqq->ioprio = 7;
1349 cfq_clear_cfqq_idle_window(cfqq);
1350 break;
1351 }
1352
1353 /*
1354 * keep track of original prio settings in case we have to temporarily
1355 * elevate the priority of this queue
1356 */
1357 cfqq->org_ioprio = cfqq->ioprio;
1358 cfqq->org_ioprio_class = cfqq->ioprio_class;
1359 cfq_clear_cfqq_prio_changed(cfqq);
1360}
1361
1362static inline void changed_ioprio(struct io_context *ioc,
1363 struct cfq_io_context *cic)
1364{
1365 struct cfq_data *cfqd = cic->key;
1366 struct cfq_queue *cfqq;
1367 unsigned long flags;
1368
1369 if (unlikely(!cfqd))
1370 return;
1371
1372 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1373
1374 cfqq = cic->cfqq[ASYNC];
1375 if (cfqq) {
1376 struct cfq_queue *new_cfqq;
1377 new_cfqq = cfq_get_queue(cfqd, ASYNC, cic->ioc, GFP_ATOMIC);
1378 if (new_cfqq) {
1379 cic->cfqq[ASYNC] = new_cfqq;
1380 cfq_put_queue(cfqq);
1381 }
1382 }
1383
1384 cfqq = cic->cfqq[SYNC];
1385 if (cfqq)
1386 cfq_mark_cfqq_prio_changed(cfqq);
1387
1388 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1389}
1390
1391static void cfq_ioc_set_ioprio(struct io_context *ioc)
1392{
1393 call_for_each_cic(ioc, changed_ioprio);
1394 ioc->ioprio_changed = 0;
1395}
1396
1397static struct cfq_queue *
1398cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
1399 struct io_context *ioc, gfp_t gfp_mask)
1400{
1401 struct cfq_queue *cfqq, *new_cfqq = NULL;
1402 struct cfq_io_context *cic;
1403
1404retry:
1405 cic = cfq_cic_lookup(cfqd, ioc);
1406 /* cic always exists here */
1407 cfqq = cic_to_cfqq(cic, is_sync);
1408
1409 if (!cfqq) {
1410 if (new_cfqq) {
1411 cfqq = new_cfqq;
1412 new_cfqq = NULL;
1413 } else if (gfp_mask & __GFP_WAIT) {
1414 /*
1415 * Inform the allocator of the fact that we will
1416 * just repeat this allocation if it fails, to allow
1417 * the allocator to do whatever it needs to attempt to
1418 * free memory.
1419 */
1420 spin_unlock_irq(cfqd->queue->queue_lock);
1421 new_cfqq = kmem_cache_alloc_node(cfq_pool,
1422 gfp_mask | __GFP_NOFAIL | __GFP_ZERO,
1423 cfqd->queue->node);
1424 spin_lock_irq(cfqd->queue->queue_lock);
1425 goto retry;
1426 } else {
1427 cfqq = kmem_cache_alloc_node(cfq_pool,
1428 gfp_mask | __GFP_ZERO,
1429 cfqd->queue->node);
1430 if (!cfqq)
1431 goto out;
1432 }
1433
1434 RB_CLEAR_NODE(&cfqq->rb_node);
1435 INIT_LIST_HEAD(&cfqq->fifo);
1436
1437 atomic_set(&cfqq->ref, 0);
1438 cfqq->cfqd = cfqd;
1439
1440 if (is_sync) {
1441 cfq_mark_cfqq_idle_window(cfqq);
1442 cfq_mark_cfqq_sync(cfqq);
1443 }
1444
1445 cfq_mark_cfqq_prio_changed(cfqq);
1446 cfq_mark_cfqq_queue_new(cfqq);
1447
1448 cfq_init_prio_data(cfqq, ioc);
1449 }
1450
1451 if (new_cfqq)
1452 kmem_cache_free(cfq_pool, new_cfqq);
1453
1454out:
1455 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1456 return cfqq;
1457}
1458
1459static struct cfq_queue **
1460cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1461{
1462 switch(ioprio_class) {
1463 case IOPRIO_CLASS_RT:
1464 return &cfqd->async_cfqq[0][ioprio];
1465 case IOPRIO_CLASS_BE:
1466 return &cfqd->async_cfqq[1][ioprio];
1467 case IOPRIO_CLASS_IDLE:
1468 return &cfqd->async_idle_cfqq;
1469 default:
1470 BUG();
1471 }
1472}
1473
1474static struct cfq_queue *
1475cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
1476 gfp_t gfp_mask)
1477{
1478 const int ioprio = task_ioprio(ioc);
1479 const int ioprio_class = task_ioprio_class(ioc);
1480 struct cfq_queue **async_cfqq = NULL;
1481 struct cfq_queue *cfqq = NULL;
1482
1483 if (!is_sync) {
1484 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1485 cfqq = *async_cfqq;
1486 }
1487
1488 if (!cfqq) {
1489 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1490 if (!cfqq)
1491 return NULL;
1492 }
1493
1494 /*
1495 * pin the queue now that it's allocated, scheduler exit will prune it
1496 */
1497 if (!is_sync && !(*async_cfqq)) {
1498 atomic_inc(&cfqq->ref);
1499 *async_cfqq = cfqq;
1500 }
1501
1502 atomic_inc(&cfqq->ref);
1503 return cfqq;
1504}
1505
1506static void cfq_cic_free(struct cfq_io_context *cic)
1507{
1508 kmem_cache_free(cfq_ioc_pool, cic);
1509 elv_ioc_count_dec(ioc_count);
1510
1511 if (ioc_gone && !elv_ioc_count_read(ioc_count))
1512 complete(ioc_gone);
1513}
1514
1515/*
1516 * We drop cfq io contexts lazily, so we may find a dead one.
1517 */
1518static void
1519cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1520 struct cfq_io_context *cic)
1521{
1522 unsigned long flags;
1523
1524 WARN_ON(!list_empty(&cic->queue_list));
1525
1526 spin_lock_irqsave(&ioc->lock, flags);
1527
1528 if (ioc->ioc_data == cic)
1529 rcu_assign_pointer(ioc->ioc_data, NULL);
1530
1531 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1532 spin_unlock_irqrestore(&ioc->lock, flags);
1533
1534 cfq_cic_free(cic);
1535}
1536
1537static struct cfq_io_context *
1538cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1539{
1540 struct cfq_io_context *cic;
1541 void *k;
1542
1543 if (unlikely(!ioc))
1544 return NULL;
1545
1546 /*
1547 * we maintain a last-hit cache, to avoid browsing over the tree
1548 */
1549 cic = rcu_dereference(ioc->ioc_data);
1550 if (cic && cic->key == cfqd)
1551 return cic;
1552
1553 do {
1554 rcu_read_lock();
1555 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1556 rcu_read_unlock();
1557 if (!cic)
1558 break;
1559 /* ->key must be copied to avoid race with cfq_exit_queue() */
1560 k = cic->key;
1561 if (unlikely(!k)) {
1562 cfq_drop_dead_cic(cfqd, ioc, cic);
1563 continue;
1564 }
1565
1566 rcu_assign_pointer(ioc->ioc_data, cic);
1567 break;
1568 } while (1);
1569
1570 return cic;
1571}
1572
1573/*
1574 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1575 * the process specific cfq io context when entered from the block layer.
1576 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1577 */
1578static inline int
1579cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1580 struct cfq_io_context *cic, gfp_t gfp_mask)
1581{
1582 unsigned long flags;
1583 int ret;
1584
1585 ret = radix_tree_preload(gfp_mask);
1586 if (!ret) {
1587 cic->ioc = ioc;
1588 cic->key = cfqd;
1589
1590 spin_lock_irqsave(&ioc->lock, flags);
1591 ret = radix_tree_insert(&ioc->radix_root,
1592 (unsigned long) cfqd, cic);
1593 spin_unlock_irqrestore(&ioc->lock, flags);
1594
1595 radix_tree_preload_end();
1596
1597 if (!ret) {
1598 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1599 list_add(&cic->queue_list, &cfqd->cic_list);
1600 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1601 }
1602 }
1603
1604 if (ret)
1605 printk(KERN_ERR "cfq: cic link failed!\n");
1606
1607 return ret;
1608}
1609
1610/*
1611 * Setup general io context and cfq io context. There can be several cfq
1612 * io contexts per general io context, if this process is doing io to more
1613 * than one device managed by cfq.
1614 */
1615static struct cfq_io_context *
1616cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1617{
1618 struct io_context *ioc = NULL;
1619 struct cfq_io_context *cic;
1620
1621 might_sleep_if(gfp_mask & __GFP_WAIT);
1622
1623 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1624 if (!ioc)
1625 return NULL;
1626
1627 cic = cfq_cic_lookup(cfqd, ioc);
1628 if (cic)
1629 goto out;
1630
1631 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1632 if (cic == NULL)
1633 goto err;
1634
1635 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1636 goto err_free;
1637
1638out:
1639 smp_read_barrier_depends();
1640 if (unlikely(ioc->ioprio_changed))
1641 cfq_ioc_set_ioprio(ioc);
1642
1643 return cic;
1644err_free:
1645 cfq_cic_free(cic);
1646err:
1647 put_io_context(ioc);
1648 return NULL;
1649}
1650
1651static void
1652cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1653{
1654 unsigned long elapsed = jiffies - cic->last_end_request;
1655 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1656
1657 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1658 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1659 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1660}
1661
1662static void
1663cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1664 struct request *rq)
1665{
1666 sector_t sdist;
1667 u64 total;
1668
1669 if (cic->last_request_pos < rq->sector)
1670 sdist = rq->sector - cic->last_request_pos;
1671 else
1672 sdist = cic->last_request_pos - rq->sector;
1673
1674 /*
1675 * Don't allow the seek distance to get too large from the
1676 * odd fragment, pagein, etc
1677 */
1678 if (cic->seek_samples <= 60) /* second&third seek */
1679 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1680 else
1681 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1682
1683 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1684 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1685 total = cic->seek_total + (cic->seek_samples/2);
1686 do_div(total, cic->seek_samples);
1687 cic->seek_mean = (sector_t)total;
1688}
1689
1690/*
1691 * Disable idle window if the process thinks too long or seeks so much that
1692 * it doesn't matter
1693 */
1694static void
1695cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1696 struct cfq_io_context *cic)
1697{
1698 int enable_idle;
1699
1700 if (!cfq_cfqq_sync(cfqq))
1701 return;
1702
1703 enable_idle = cfq_cfqq_idle_window(cfqq);
1704
1705 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
1706 (cfqd->hw_tag && CIC_SEEKY(cic)))
1707 enable_idle = 0;
1708 else if (sample_valid(cic->ttime_samples)) {
1709 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1710 enable_idle = 0;
1711 else
1712 enable_idle = 1;
1713 }
1714
1715 if (enable_idle)
1716 cfq_mark_cfqq_idle_window(cfqq);
1717 else
1718 cfq_clear_cfqq_idle_window(cfqq);
1719}
1720
1721/*
1722 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1723 * no or if we aren't sure, a 1 will cause a preempt.
1724 */
1725static int
1726cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1727 struct request *rq)
1728{
1729 struct cfq_queue *cfqq;
1730
1731 cfqq = cfqd->active_queue;
1732 if (!cfqq)
1733 return 0;
1734
1735 if (cfq_slice_used(cfqq))
1736 return 1;
1737
1738 if (cfq_class_idle(new_cfqq))
1739 return 0;
1740
1741 if (cfq_class_idle(cfqq))
1742 return 1;
1743
1744 /*
1745 * if the new request is sync, but the currently running queue is
1746 * not, let the sync request have priority.
1747 */
1748 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1749 return 1;
1750
1751 /*
1752 * So both queues are sync. Let the new request get disk time if
1753 * it's a metadata request and the current queue is doing regular IO.
1754 */
1755 if (rq_is_meta(rq) && !cfqq->meta_pending)
1756 return 1;
1757
1758 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
1759 return 0;
1760
1761 /*
1762 * if this request is as-good as one we would expect from the
1763 * current cfqq, let it preempt
1764 */
1765 if (cfq_rq_close(cfqd, rq))
1766 return 1;
1767
1768 return 0;
1769}
1770
1771/*
1772 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1773 * let it have half of its nominal slice.
1774 */
1775static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1776{
1777 cfq_slice_expired(cfqd, 1);
1778
1779 /*
1780 * Put the new queue at the front of the of the current list,
1781 * so we know that it will be selected next.
1782 */
1783 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1784
1785 cfq_service_tree_add(cfqd, cfqq, 1);
1786
1787 cfqq->slice_end = 0;
1788 cfq_mark_cfqq_slice_new(cfqq);
1789}
1790
1791/*
1792 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1793 * something we should do about it
1794 */
1795static void
1796cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1797 struct request *rq)
1798{
1799 struct cfq_io_context *cic = RQ_CIC(rq);
1800
1801 if (rq_is_meta(rq))
1802 cfqq->meta_pending++;
1803
1804 cfq_update_io_thinktime(cfqd, cic);
1805 cfq_update_io_seektime(cfqd, cic, rq);
1806 cfq_update_idle_window(cfqd, cfqq, cic);
1807
1808 cic->last_request_pos = rq->sector + rq->nr_sectors;
1809
1810 if (cfqq == cfqd->active_queue) {
1811 /*
1812 * if we are waiting for a request for this queue, let it rip
1813 * immediately and flag that we must not expire this queue
1814 * just now
1815 */
1816 if (cfq_cfqq_wait_request(cfqq)) {
1817 cfq_mark_cfqq_must_dispatch(cfqq);
1818 del_timer(&cfqd->idle_slice_timer);
1819 blk_start_queueing(cfqd->queue);
1820 }
1821 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1822 /*
1823 * not the active queue - expire current slice if it is
1824 * idle and has expired it's mean thinktime or this new queue
1825 * has some old slice time left and is of higher priority
1826 */
1827 cfq_preempt_queue(cfqd, cfqq);
1828 cfq_mark_cfqq_must_dispatch(cfqq);
1829 blk_start_queueing(cfqd->queue);
1830 }
1831}
1832
1833static void cfq_insert_request(struct request_queue *q, struct request *rq)
1834{
1835 struct cfq_data *cfqd = q->elevator->elevator_data;
1836 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1837
1838 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1839
1840 cfq_add_rq_rb(rq);
1841
1842 list_add_tail(&rq->queuelist, &cfqq->fifo);
1843
1844 cfq_rq_enqueued(cfqd, cfqq, rq);
1845}
1846
1847static void cfq_completed_request(struct request_queue *q, struct request *rq)
1848{
1849 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1850 struct cfq_data *cfqd = cfqq->cfqd;
1851 const int sync = rq_is_sync(rq);
1852 unsigned long now;
1853
1854 now = jiffies;
1855
1856 WARN_ON(!cfqd->rq_in_driver);
1857 WARN_ON(!cfqq->dispatched);
1858 cfqd->rq_in_driver--;
1859 cfqq->dispatched--;
1860
1861 if (cfq_cfqq_sync(cfqq))
1862 cfqd->sync_flight--;
1863
1864 if (!cfq_class_idle(cfqq))
1865 cfqd->last_end_request = now;
1866
1867 if (sync)
1868 RQ_CIC(rq)->last_end_request = now;
1869
1870 /*
1871 * If this is the active queue, check if it needs to be expired,
1872 * or if we want to idle in case it has no pending requests.
1873 */
1874 if (cfqd->active_queue == cfqq) {
1875 if (cfq_cfqq_slice_new(cfqq)) {
1876 cfq_set_prio_slice(cfqd, cfqq);
1877 cfq_clear_cfqq_slice_new(cfqq);
1878 }
1879 if (cfq_slice_used(cfqq))
1880 cfq_slice_expired(cfqd, 1);
1881 else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list))
1882 cfq_arm_slice_timer(cfqd);
1883 }
1884
1885 if (!cfqd->rq_in_driver)
1886 cfq_schedule_dispatch(cfqd);
1887}
1888
1889/*
1890 * we temporarily boost lower priority queues if they are holding fs exclusive
1891 * resources. they are boosted to normal prio (CLASS_BE/4)
1892 */
1893static void cfq_prio_boost(struct cfq_queue *cfqq)
1894{
1895 if (has_fs_excl()) {
1896 /*
1897 * boost idle prio on transactions that would lock out other
1898 * users of the filesystem
1899 */
1900 if (cfq_class_idle(cfqq))
1901 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1902 if (cfqq->ioprio > IOPRIO_NORM)
1903 cfqq->ioprio = IOPRIO_NORM;
1904 } else {
1905 /*
1906 * check if we need to unboost the queue
1907 */
1908 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1909 cfqq->ioprio_class = cfqq->org_ioprio_class;
1910 if (cfqq->ioprio != cfqq->org_ioprio)
1911 cfqq->ioprio = cfqq->org_ioprio;
1912 }
1913}
1914
1915static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1916{
1917 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1918 !cfq_cfqq_must_alloc_slice(cfqq)) {
1919 cfq_mark_cfqq_must_alloc_slice(cfqq);
1920 return ELV_MQUEUE_MUST;
1921 }
1922
1923 return ELV_MQUEUE_MAY;
1924}
1925
1926static int cfq_may_queue(struct request_queue *q, int rw)
1927{
1928 struct cfq_data *cfqd = q->elevator->elevator_data;
1929 struct task_struct *tsk = current;
1930 struct cfq_io_context *cic;
1931 struct cfq_queue *cfqq;
1932
1933 /*
1934 * don't force setup of a queue from here, as a call to may_queue
1935 * does not necessarily imply that a request actually will be queued.
1936 * so just lookup a possibly existing queue, or return 'may queue'
1937 * if that fails
1938 */
1939 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1940 if (!cic)
1941 return ELV_MQUEUE_MAY;
1942
1943 cfqq = cic_to_cfqq(cic, rw & REQ_RW_SYNC);
1944 if (cfqq) {
1945 cfq_init_prio_data(cfqq, cic->ioc);
1946 cfq_prio_boost(cfqq);
1947
1948 return __cfq_may_queue(cfqq);
1949 }
1950
1951 return ELV_MQUEUE_MAY;
1952}
1953
1954/*
1955 * queue lock held here
1956 */
1957static void cfq_put_request(struct request *rq)
1958{
1959 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1960
1961 if (cfqq) {
1962 const int rw = rq_data_dir(rq);
1963
1964 BUG_ON(!cfqq->allocated[rw]);
1965 cfqq->allocated[rw]--;
1966
1967 put_io_context(RQ_CIC(rq)->ioc);
1968
1969 rq->elevator_private = NULL;
1970 rq->elevator_private2 = NULL;
1971
1972 cfq_put_queue(cfqq);
1973 }
1974}
1975
1976/*
1977 * Allocate cfq data structures associated with this request.
1978 */
1979static int
1980cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1981{
1982 struct cfq_data *cfqd = q->elevator->elevator_data;
1983 struct cfq_io_context *cic;
1984 const int rw = rq_data_dir(rq);
1985 const int is_sync = rq_is_sync(rq);
1986 struct cfq_queue *cfqq;
1987 unsigned long flags;
1988
1989 might_sleep_if(gfp_mask & __GFP_WAIT);
1990
1991 cic = cfq_get_io_context(cfqd, gfp_mask);
1992
1993 spin_lock_irqsave(q->queue_lock, flags);
1994
1995 if (!cic)
1996 goto queue_fail;
1997
1998 cfqq = cic_to_cfqq(cic, is_sync);
1999 if (!cfqq) {
2000 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2001
2002 if (!cfqq)
2003 goto queue_fail;
2004
2005 cic_set_cfqq(cic, cfqq, is_sync);
2006 }
2007
2008 cfqq->allocated[rw]++;
2009 cfq_clear_cfqq_must_alloc(cfqq);
2010 atomic_inc(&cfqq->ref);
2011
2012 spin_unlock_irqrestore(q->queue_lock, flags);
2013
2014 rq->elevator_private = cic;
2015 rq->elevator_private2 = cfqq;
2016 return 0;
2017
2018queue_fail:
2019 if (cic)
2020 put_io_context(cic->ioc);
2021
2022 cfq_schedule_dispatch(cfqd);
2023 spin_unlock_irqrestore(q->queue_lock, flags);
2024 return 1;
2025}
2026
2027static void cfq_kick_queue(struct work_struct *work)
2028{
2029 struct cfq_data *cfqd =
2030 container_of(work, struct cfq_data, unplug_work);
2031 struct request_queue *q = cfqd->queue;
2032 unsigned long flags;
2033
2034 spin_lock_irqsave(q->queue_lock, flags);
2035 blk_start_queueing(q);
2036 spin_unlock_irqrestore(q->queue_lock, flags);
2037}
2038
2039/*
2040 * Timer running if the active_queue is currently idling inside its time slice
2041 */
2042static void cfq_idle_slice_timer(unsigned long data)
2043{
2044 struct cfq_data *cfqd = (struct cfq_data *) data;
2045 struct cfq_queue *cfqq;
2046 unsigned long flags;
2047 int timed_out = 1;
2048
2049 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2050
2051 if ((cfqq = cfqd->active_queue) != NULL) {
2052 timed_out = 0;
2053
2054 /*
2055 * expired
2056 */
2057 if (cfq_slice_used(cfqq))
2058 goto expire;
2059
2060 /*
2061 * only expire and reinvoke request handler, if there are
2062 * other queues with pending requests
2063 */
2064 if (!cfqd->busy_queues)
2065 goto out_cont;
2066
2067 /*
2068 * not expired and it has a request pending, let it dispatch
2069 */
2070 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
2071 cfq_mark_cfqq_must_dispatch(cfqq);
2072 goto out_kick;
2073 }
2074 }
2075expire:
2076 cfq_slice_expired(cfqd, timed_out);
2077out_kick:
2078 cfq_schedule_dispatch(cfqd);
2079out_cont:
2080 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2081}
2082
2083/*
2084 * Timer running if an idle class queue is waiting for service
2085 */
2086static void cfq_idle_class_timer(unsigned long data)
2087{
2088 struct cfq_data *cfqd = (struct cfq_data *) data;
2089 unsigned long flags;
2090
2091 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2092
2093 /*
2094 * race with a non-idle queue, reset timer
2095 */
2096 if (!start_idle_class_timer(cfqd))
2097 cfq_schedule_dispatch(cfqd);
2098
2099 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2100}
2101
2102static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2103{
2104 del_timer_sync(&cfqd->idle_slice_timer);
2105 del_timer_sync(&cfqd->idle_class_timer);
2106 kblockd_flush_work(&cfqd->unplug_work);
2107}
2108
2109static void cfq_put_async_queues(struct cfq_data *cfqd)
2110{
2111 int i;
2112
2113 for (i = 0; i < IOPRIO_BE_NR; i++) {
2114 if (cfqd->async_cfqq[0][i])
2115 cfq_put_queue(cfqd->async_cfqq[0][i]);
2116 if (cfqd->async_cfqq[1][i])
2117 cfq_put_queue(cfqd->async_cfqq[1][i]);
2118 }
2119
2120 if (cfqd->async_idle_cfqq)
2121 cfq_put_queue(cfqd->async_idle_cfqq);
2122}
2123
2124static void cfq_exit_queue(elevator_t *e)
2125{
2126 struct cfq_data *cfqd = e->elevator_data;
2127 struct request_queue *q = cfqd->queue;
2128
2129 cfq_shutdown_timer_wq(cfqd);
2130
2131 spin_lock_irq(q->queue_lock);
2132
2133 if (cfqd->active_queue)
2134 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2135
2136 while (!list_empty(&cfqd->cic_list)) {
2137 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2138 struct cfq_io_context,
2139 queue_list);
2140
2141 __cfq_exit_single_io_context(cfqd, cic);
2142 }
2143
2144 cfq_put_async_queues(cfqd);
2145
2146 spin_unlock_irq(q->queue_lock);
2147
2148 cfq_shutdown_timer_wq(cfqd);
2149
2150 kfree(cfqd);
2151}
2152
2153static void *cfq_init_queue(struct request_queue *q)
2154{
2155 struct cfq_data *cfqd;
2156
2157 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2158 if (!cfqd)
2159 return NULL;
2160
2161 cfqd->service_tree = CFQ_RB_ROOT;
2162 INIT_LIST_HEAD(&cfqd->cic_list);
2163
2164 cfqd->queue = q;
2165
2166 init_timer(&cfqd->idle_slice_timer);
2167 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2168 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2169
2170 init_timer(&cfqd->idle_class_timer);
2171 cfqd->idle_class_timer.function = cfq_idle_class_timer;
2172 cfqd->idle_class_timer.data = (unsigned long) cfqd;
2173
2174 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2175
2176 cfqd->last_end_request = jiffies;
2177 cfqd->cfq_quantum = cfq_quantum;
2178 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2179 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2180 cfqd->cfq_back_max = cfq_back_max;
2181 cfqd->cfq_back_penalty = cfq_back_penalty;
2182 cfqd->cfq_slice[0] = cfq_slice_async;
2183 cfqd->cfq_slice[1] = cfq_slice_sync;
2184 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2185 cfqd->cfq_slice_idle = cfq_slice_idle;
2186
2187 return cfqd;
2188}
2189
2190static void cfq_slab_kill(void)
2191{
2192 if (cfq_pool)
2193 kmem_cache_destroy(cfq_pool);
2194 if (cfq_ioc_pool)
2195 kmem_cache_destroy(cfq_ioc_pool);
2196}
2197
2198static int __init cfq_slab_setup(void)
2199{
2200 cfq_pool = KMEM_CACHE(cfq_queue, 0);
2201 if (!cfq_pool)
2202 goto fail;
2203
2204 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, SLAB_DESTROY_BY_RCU);
2205 if (!cfq_ioc_pool)
2206 goto fail;
2207
2208 return 0;
2209fail:
2210 cfq_slab_kill();
2211 return -ENOMEM;
2212}
2213
2214/*
2215 * sysfs parts below -->
2216 */
2217static ssize_t
2218cfq_var_show(unsigned int var, char *page)
2219{
2220 return sprintf(page, "%d\n", var);
2221}
2222
2223static ssize_t
2224cfq_var_store(unsigned int *var, const char *page, size_t count)
2225{
2226 char *p = (char *) page;
2227
2228 *var = simple_strtoul(p, &p, 10);
2229 return count;
2230}
2231
2232#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2233static ssize_t __FUNC(elevator_t *e, char *page) \
2234{ \
2235 struct cfq_data *cfqd = e->elevator_data; \
2236 unsigned int __data = __VAR; \
2237 if (__CONV) \
2238 __data = jiffies_to_msecs(__data); \
2239 return cfq_var_show(__data, (page)); \
2240}
2241SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2242SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2243SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2244SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2245SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2246SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2247SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2248SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2249SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2250#undef SHOW_FUNCTION
2251
2252#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2253static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2254{ \
2255 struct cfq_data *cfqd = e->elevator_data; \
2256 unsigned int __data; \
2257 int ret = cfq_var_store(&__data, (page), count); \
2258 if (__data < (MIN)) \
2259 __data = (MIN); \
2260 else if (__data > (MAX)) \
2261 __data = (MAX); \
2262 if (__CONV) \
2263 *(__PTR) = msecs_to_jiffies(__data); \
2264 else \
2265 *(__PTR) = __data; \
2266 return ret; \
2267}
2268STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2269STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2270STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2271STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2272STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2273STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2274STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2275STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2276STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2277#undef STORE_FUNCTION
2278
2279#define CFQ_ATTR(name) \
2280 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2281
2282static struct elv_fs_entry cfq_attrs[] = {
2283 CFQ_ATTR(quantum),
2284 CFQ_ATTR(fifo_expire_sync),
2285 CFQ_ATTR(fifo_expire_async),
2286 CFQ_ATTR(back_seek_max),
2287 CFQ_ATTR(back_seek_penalty),
2288 CFQ_ATTR(slice_sync),
2289 CFQ_ATTR(slice_async),
2290 CFQ_ATTR(slice_async_rq),
2291 CFQ_ATTR(slice_idle),
2292 __ATTR_NULL
2293};
2294
2295static struct elevator_type iosched_cfq = {
2296 .ops = {
2297 .elevator_merge_fn = cfq_merge,
2298 .elevator_merged_fn = cfq_merged_request,
2299 .elevator_merge_req_fn = cfq_merged_requests,
2300 .elevator_allow_merge_fn = cfq_allow_merge,
2301 .elevator_dispatch_fn = cfq_dispatch_requests,
2302 .elevator_add_req_fn = cfq_insert_request,
2303 .elevator_activate_req_fn = cfq_activate_request,
2304 .elevator_deactivate_req_fn = cfq_deactivate_request,
2305 .elevator_queue_empty_fn = cfq_queue_empty,
2306 .elevator_completed_req_fn = cfq_completed_request,
2307 .elevator_former_req_fn = elv_rb_former_request,
2308 .elevator_latter_req_fn = elv_rb_latter_request,
2309 .elevator_set_req_fn = cfq_set_request,
2310 .elevator_put_req_fn = cfq_put_request,
2311 .elevator_may_queue_fn = cfq_may_queue,
2312 .elevator_init_fn = cfq_init_queue,
2313 .elevator_exit_fn = cfq_exit_queue,
2314 .trim = cfq_free_io_context,
2315 },
2316 .elevator_attrs = cfq_attrs,
2317 .elevator_name = "cfq",
2318 .elevator_owner = THIS_MODULE,
2319};
2320
2321static int __init cfq_init(void)
2322{
2323 /*
2324 * could be 0 on HZ < 1000 setups
2325 */
2326 if (!cfq_slice_async)
2327 cfq_slice_async = 1;
2328 if (!cfq_slice_idle)
2329 cfq_slice_idle = 1;
2330
2331 if (cfq_slab_setup())
2332 return -ENOMEM;
2333
2334 elv_register(&iosched_cfq);
2335
2336 return 0;
2337}
2338
2339static void __exit cfq_exit(void)
2340{
2341 DECLARE_COMPLETION_ONSTACK(all_gone);
2342 elv_unregister(&iosched_cfq);
2343 ioc_gone = &all_gone;
2344 /* ioc_gone's update must be visible before reading ioc_count */
2345 smp_wmb();
2346 if (elv_ioc_count_read(ioc_count))
2347 wait_for_completion(ioc_gone);
2348 synchronize_rcu();
2349 cfq_slab_kill();
2350}
2351
2352module_init(cfq_init);
2353module_exit(cfq_exit);
2354
2355MODULE_AUTHOR("Jens Axboe");
2356MODULE_LICENSE("GPL");
2357MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");