block cfq: make queue preempt work for queues from different workload
[linux-2.6-block.git] / block / cfq-iosched.c
... / ...
CommitLineData
1/*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/slab.h>
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
13#include <linux/jiffies.h>
14#include <linux/rbtree.h>
15#include <linux/ioprio.h>
16#include <linux/blktrace_api.h>
17#include "cfq.h"
18
19/*
20 * tunables
21 */
22/* max queue in one round of service */
23static const int cfq_quantum = 8;
24static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
25/* maximum backwards seek, in KiB */
26static const int cfq_back_max = 16 * 1024;
27/* penalty of a backwards seek */
28static const int cfq_back_penalty = 2;
29static const int cfq_slice_sync = HZ / 10;
30static int cfq_slice_async = HZ / 25;
31static const int cfq_slice_async_rq = 2;
32static int cfq_slice_idle = HZ / 125;
33static int cfq_group_idle = HZ / 125;
34static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
35static const int cfq_hist_divisor = 4;
36
37/*
38 * offset from end of service tree
39 */
40#define CFQ_IDLE_DELAY (HZ / 5)
41
42/*
43 * below this threshold, we consider thinktime immediate
44 */
45#define CFQ_MIN_TT (2)
46
47#define CFQ_SLICE_SCALE (5)
48#define CFQ_HW_QUEUE_MIN (5)
49#define CFQ_SERVICE_SHIFT 12
50
51#define CFQQ_SEEK_THR (sector_t)(8 * 100)
52#define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
53#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
54#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
55
56#define RQ_CIC(rq) \
57 ((struct cfq_io_context *) (rq)->elevator_private)
58#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
59#define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private3)
60
61static struct kmem_cache *cfq_pool;
62static struct kmem_cache *cfq_ioc_pool;
63
64static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
65static struct completion *ioc_gone;
66static DEFINE_SPINLOCK(ioc_gone_lock);
67
68static DEFINE_SPINLOCK(cic_index_lock);
69static DEFINE_IDA(cic_index_ida);
70
71#define CFQ_PRIO_LISTS IOPRIO_BE_NR
72#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
73#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
74
75#define sample_valid(samples) ((samples) > 80)
76#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
77
78/*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84struct cfq_rb_root {
85 struct rb_root rb;
86 struct rb_node *left;
87 unsigned count;
88 unsigned total_weight;
89 u64 min_vdisktime;
90};
91#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
92 .count = 0, .min_vdisktime = 0, }
93
94/*
95 * Per process-grouping structure
96 */
97struct cfq_queue {
98 /* reference count */
99 int ref;
100 /* various state flags, see below */
101 unsigned int flags;
102 /* parent cfq_data */
103 struct cfq_data *cfqd;
104 /* service_tree member */
105 struct rb_node rb_node;
106 /* service_tree key */
107 unsigned long rb_key;
108 /* prio tree member */
109 struct rb_node p_node;
110 /* prio tree root we belong to, if any */
111 struct rb_root *p_root;
112 /* sorted list of pending requests */
113 struct rb_root sort_list;
114 /* if fifo isn't expired, next request to serve */
115 struct request *next_rq;
116 /* requests queued in sort_list */
117 int queued[2];
118 /* currently allocated requests */
119 int allocated[2];
120 /* fifo list of requests in sort_list */
121 struct list_head fifo;
122
123 /* time when queue got scheduled in to dispatch first request. */
124 unsigned long dispatch_start;
125 unsigned int allocated_slice;
126 unsigned int slice_dispatch;
127 /* time when first request from queue completed and slice started. */
128 unsigned long slice_start;
129 unsigned long slice_end;
130 long slice_resid;
131
132 /* pending metadata requests */
133 int meta_pending;
134 /* number of requests that are on the dispatch list or inside driver */
135 int dispatched;
136
137 /* io prio of this group */
138 unsigned short ioprio, org_ioprio;
139 unsigned short ioprio_class, org_ioprio_class;
140
141 pid_t pid;
142
143 u32 seek_history;
144 sector_t last_request_pos;
145
146 struct cfq_rb_root *service_tree;
147 struct cfq_queue *new_cfqq;
148 struct cfq_group *cfqg;
149 struct cfq_group *orig_cfqg;
150 /* Number of sectors dispatched from queue in single dispatch round */
151 unsigned long nr_sectors;
152};
153
154/*
155 * First index in the service_trees.
156 * IDLE is handled separately, so it has negative index
157 */
158enum wl_prio_t {
159 BE_WORKLOAD = 0,
160 RT_WORKLOAD = 1,
161 IDLE_WORKLOAD = 2,
162 CFQ_PRIO_NR,
163};
164
165/*
166 * Second index in the service_trees.
167 */
168enum wl_type_t {
169 ASYNC_WORKLOAD = 0,
170 SYNC_NOIDLE_WORKLOAD = 1,
171 SYNC_WORKLOAD = 2
172};
173
174/* This is per cgroup per device grouping structure */
175struct cfq_group {
176 /* group service_tree member */
177 struct rb_node rb_node;
178
179 /* group service_tree key */
180 u64 vdisktime;
181 unsigned int weight;
182
183 /* number of cfqq currently on this group */
184 int nr_cfqq;
185
186 /*
187 * Per group busy queus average. Useful for workload slice calc. We
188 * create the array for each prio class but at run time it is used
189 * only for RT and BE class and slot for IDLE class remains unused.
190 * This is primarily done to avoid confusion and a gcc warning.
191 */
192 unsigned int busy_queues_avg[CFQ_PRIO_NR];
193 /*
194 * rr lists of queues with requests. We maintain service trees for
195 * RT and BE classes. These trees are subdivided in subclasses
196 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
197 * class there is no subclassification and all the cfq queues go on
198 * a single tree service_tree_idle.
199 * Counts are embedded in the cfq_rb_root
200 */
201 struct cfq_rb_root service_trees[2][3];
202 struct cfq_rb_root service_tree_idle;
203
204 unsigned long saved_workload_slice;
205 enum wl_type_t saved_workload;
206 enum wl_prio_t saved_serving_prio;
207 struct blkio_group blkg;
208#ifdef CONFIG_CFQ_GROUP_IOSCHED
209 struct hlist_node cfqd_node;
210 int ref;
211#endif
212 /* number of requests that are on the dispatch list or inside driver */
213 int dispatched;
214};
215
216/*
217 * Per block device queue structure
218 */
219struct cfq_data {
220 struct request_queue *queue;
221 /* Root service tree for cfq_groups */
222 struct cfq_rb_root grp_service_tree;
223 struct cfq_group root_group;
224
225 /*
226 * The priority currently being served
227 */
228 enum wl_prio_t serving_prio;
229 enum wl_type_t serving_type;
230 unsigned long workload_expires;
231 struct cfq_group *serving_group;
232
233 /*
234 * Each priority tree is sorted by next_request position. These
235 * trees are used when determining if two or more queues are
236 * interleaving requests (see cfq_close_cooperator).
237 */
238 struct rb_root prio_trees[CFQ_PRIO_LISTS];
239
240 unsigned int busy_queues;
241
242 int rq_in_driver;
243 int rq_in_flight[2];
244
245 /*
246 * queue-depth detection
247 */
248 int rq_queued;
249 int hw_tag;
250 /*
251 * hw_tag can be
252 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
253 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
254 * 0 => no NCQ
255 */
256 int hw_tag_est_depth;
257 unsigned int hw_tag_samples;
258
259 /*
260 * idle window management
261 */
262 struct timer_list idle_slice_timer;
263 struct work_struct unplug_work;
264
265 struct cfq_queue *active_queue;
266 struct cfq_io_context *active_cic;
267
268 /*
269 * async queue for each priority case
270 */
271 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
272 struct cfq_queue *async_idle_cfqq;
273
274 sector_t last_position;
275
276 /*
277 * tunables, see top of file
278 */
279 unsigned int cfq_quantum;
280 unsigned int cfq_fifo_expire[2];
281 unsigned int cfq_back_penalty;
282 unsigned int cfq_back_max;
283 unsigned int cfq_slice[2];
284 unsigned int cfq_slice_async_rq;
285 unsigned int cfq_slice_idle;
286 unsigned int cfq_group_idle;
287 unsigned int cfq_latency;
288 unsigned int cfq_group_isolation;
289
290 unsigned int cic_index;
291 struct list_head cic_list;
292
293 /*
294 * Fallback dummy cfqq for extreme OOM conditions
295 */
296 struct cfq_queue oom_cfqq;
297
298 unsigned long last_delayed_sync;
299
300 /* List of cfq groups being managed on this device*/
301 struct hlist_head cfqg_list;
302 struct rcu_head rcu;
303};
304
305static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
306
307static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
308 enum wl_prio_t prio,
309 enum wl_type_t type)
310{
311 if (!cfqg)
312 return NULL;
313
314 if (prio == IDLE_WORKLOAD)
315 return &cfqg->service_tree_idle;
316
317 return &cfqg->service_trees[prio][type];
318}
319
320enum cfqq_state_flags {
321 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
322 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
323 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
324 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
325 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
326 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
327 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
328 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
329 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
330 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
331 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
332 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
333 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
334};
335
336#define CFQ_CFQQ_FNS(name) \
337static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
338{ \
339 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
340} \
341static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
342{ \
343 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
344} \
345static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
346{ \
347 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
348}
349
350CFQ_CFQQ_FNS(on_rr);
351CFQ_CFQQ_FNS(wait_request);
352CFQ_CFQQ_FNS(must_dispatch);
353CFQ_CFQQ_FNS(must_alloc_slice);
354CFQ_CFQQ_FNS(fifo_expire);
355CFQ_CFQQ_FNS(idle_window);
356CFQ_CFQQ_FNS(prio_changed);
357CFQ_CFQQ_FNS(slice_new);
358CFQ_CFQQ_FNS(sync);
359CFQ_CFQQ_FNS(coop);
360CFQ_CFQQ_FNS(split_coop);
361CFQ_CFQQ_FNS(deep);
362CFQ_CFQQ_FNS(wait_busy);
363#undef CFQ_CFQQ_FNS
364
365#ifdef CONFIG_CFQ_GROUP_IOSCHED
366#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
367 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
368 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
369 blkg_path(&(cfqq)->cfqg->blkg), ##args);
370
371#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
372 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
373 blkg_path(&(cfqg)->blkg), ##args); \
374
375#else
376#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
377 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
378#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
379#endif
380#define cfq_log(cfqd, fmt, args...) \
381 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
382
383/* Traverses through cfq group service trees */
384#define for_each_cfqg_st(cfqg, i, j, st) \
385 for (i = 0; i <= IDLE_WORKLOAD; i++) \
386 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
387 : &cfqg->service_tree_idle; \
388 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
389 (i == IDLE_WORKLOAD && j == 0); \
390 j++, st = i < IDLE_WORKLOAD ? \
391 &cfqg->service_trees[i][j]: NULL) \
392
393
394static inline bool iops_mode(struct cfq_data *cfqd)
395{
396 /*
397 * If we are not idling on queues and it is a NCQ drive, parallel
398 * execution of requests is on and measuring time is not possible
399 * in most of the cases until and unless we drive shallower queue
400 * depths and that becomes a performance bottleneck. In such cases
401 * switch to start providing fairness in terms of number of IOs.
402 */
403 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
404 return true;
405 else
406 return false;
407}
408
409static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
410{
411 if (cfq_class_idle(cfqq))
412 return IDLE_WORKLOAD;
413 if (cfq_class_rt(cfqq))
414 return RT_WORKLOAD;
415 return BE_WORKLOAD;
416}
417
418
419static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
420{
421 if (!cfq_cfqq_sync(cfqq))
422 return ASYNC_WORKLOAD;
423 if (!cfq_cfqq_idle_window(cfqq))
424 return SYNC_NOIDLE_WORKLOAD;
425 return SYNC_WORKLOAD;
426}
427
428static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
429 struct cfq_data *cfqd,
430 struct cfq_group *cfqg)
431{
432 if (wl == IDLE_WORKLOAD)
433 return cfqg->service_tree_idle.count;
434
435 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
436 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
437 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
438}
439
440static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
441 struct cfq_group *cfqg)
442{
443 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
444 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
445}
446
447static void cfq_dispatch_insert(struct request_queue *, struct request *);
448static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
449 struct io_context *, gfp_t);
450static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
451 struct io_context *);
452
453static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
454 bool is_sync)
455{
456 return cic->cfqq[is_sync];
457}
458
459static inline void cic_set_cfqq(struct cfq_io_context *cic,
460 struct cfq_queue *cfqq, bool is_sync)
461{
462 cic->cfqq[is_sync] = cfqq;
463}
464
465#define CIC_DEAD_KEY 1ul
466#define CIC_DEAD_INDEX_SHIFT 1
467
468static inline void *cfqd_dead_key(struct cfq_data *cfqd)
469{
470 return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
471}
472
473static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
474{
475 struct cfq_data *cfqd = cic->key;
476
477 if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
478 return NULL;
479
480 return cfqd;
481}
482
483/*
484 * We regard a request as SYNC, if it's either a read or has the SYNC bit
485 * set (in which case it could also be direct WRITE).
486 */
487static inline bool cfq_bio_sync(struct bio *bio)
488{
489 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
490}
491
492/*
493 * scheduler run of queue, if there are requests pending and no one in the
494 * driver that will restart queueing
495 */
496static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
497{
498 if (cfqd->busy_queues) {
499 cfq_log(cfqd, "schedule dispatch");
500 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
501 }
502}
503
504static int cfq_queue_empty(struct request_queue *q)
505{
506 struct cfq_data *cfqd = q->elevator->elevator_data;
507
508 return !cfqd->rq_queued;
509}
510
511/*
512 * Scale schedule slice based on io priority. Use the sync time slice only
513 * if a queue is marked sync and has sync io queued. A sync queue with async
514 * io only, should not get full sync slice length.
515 */
516static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
517 unsigned short prio)
518{
519 const int base_slice = cfqd->cfq_slice[sync];
520
521 WARN_ON(prio >= IOPRIO_BE_NR);
522
523 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
524}
525
526static inline int
527cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
528{
529 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
530}
531
532static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
533{
534 u64 d = delta << CFQ_SERVICE_SHIFT;
535
536 d = d * BLKIO_WEIGHT_DEFAULT;
537 do_div(d, cfqg->weight);
538 return d;
539}
540
541static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
542{
543 s64 delta = (s64)(vdisktime - min_vdisktime);
544 if (delta > 0)
545 min_vdisktime = vdisktime;
546
547 return min_vdisktime;
548}
549
550static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
551{
552 s64 delta = (s64)(vdisktime - min_vdisktime);
553 if (delta < 0)
554 min_vdisktime = vdisktime;
555
556 return min_vdisktime;
557}
558
559static void update_min_vdisktime(struct cfq_rb_root *st)
560{
561 u64 vdisktime = st->min_vdisktime;
562 struct cfq_group *cfqg;
563
564 if (st->left) {
565 cfqg = rb_entry_cfqg(st->left);
566 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
567 }
568
569 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
570}
571
572/*
573 * get averaged number of queues of RT/BE priority.
574 * average is updated, with a formula that gives more weight to higher numbers,
575 * to quickly follows sudden increases and decrease slowly
576 */
577
578static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
579 struct cfq_group *cfqg, bool rt)
580{
581 unsigned min_q, max_q;
582 unsigned mult = cfq_hist_divisor - 1;
583 unsigned round = cfq_hist_divisor / 2;
584 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
585
586 min_q = min(cfqg->busy_queues_avg[rt], busy);
587 max_q = max(cfqg->busy_queues_avg[rt], busy);
588 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
589 cfq_hist_divisor;
590 return cfqg->busy_queues_avg[rt];
591}
592
593static inline unsigned
594cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
595{
596 struct cfq_rb_root *st = &cfqd->grp_service_tree;
597
598 return cfq_target_latency * cfqg->weight / st->total_weight;
599}
600
601static inline void
602cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
603{
604 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
605 if (cfqd->cfq_latency) {
606 /*
607 * interested queues (we consider only the ones with the same
608 * priority class in the cfq group)
609 */
610 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
611 cfq_class_rt(cfqq));
612 unsigned sync_slice = cfqd->cfq_slice[1];
613 unsigned expect_latency = sync_slice * iq;
614 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
615
616 if (expect_latency > group_slice) {
617 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
618 /* scale low_slice according to IO priority
619 * and sync vs async */
620 unsigned low_slice =
621 min(slice, base_low_slice * slice / sync_slice);
622 /* the adapted slice value is scaled to fit all iqs
623 * into the target latency */
624 slice = max(slice * group_slice / expect_latency,
625 low_slice);
626 }
627 }
628 cfqq->slice_start = jiffies;
629 cfqq->slice_end = jiffies + slice;
630 cfqq->allocated_slice = slice;
631 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
632}
633
634/*
635 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
636 * isn't valid until the first request from the dispatch is activated
637 * and the slice time set.
638 */
639static inline bool cfq_slice_used(struct cfq_queue *cfqq)
640{
641 if (cfq_cfqq_slice_new(cfqq))
642 return false;
643 if (time_before(jiffies, cfqq->slice_end))
644 return false;
645
646 return true;
647}
648
649/*
650 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
651 * We choose the request that is closest to the head right now. Distance
652 * behind the head is penalized and only allowed to a certain extent.
653 */
654static struct request *
655cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
656{
657 sector_t s1, s2, d1 = 0, d2 = 0;
658 unsigned long back_max;
659#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
660#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
661 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
662
663 if (rq1 == NULL || rq1 == rq2)
664 return rq2;
665 if (rq2 == NULL)
666 return rq1;
667
668 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
669 return rq1;
670 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
671 return rq2;
672 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
673 return rq1;
674 else if ((rq2->cmd_flags & REQ_META) &&
675 !(rq1->cmd_flags & REQ_META))
676 return rq2;
677
678 s1 = blk_rq_pos(rq1);
679 s2 = blk_rq_pos(rq2);
680
681 /*
682 * by definition, 1KiB is 2 sectors
683 */
684 back_max = cfqd->cfq_back_max * 2;
685
686 /*
687 * Strict one way elevator _except_ in the case where we allow
688 * short backward seeks which are biased as twice the cost of a
689 * similar forward seek.
690 */
691 if (s1 >= last)
692 d1 = s1 - last;
693 else if (s1 + back_max >= last)
694 d1 = (last - s1) * cfqd->cfq_back_penalty;
695 else
696 wrap |= CFQ_RQ1_WRAP;
697
698 if (s2 >= last)
699 d2 = s2 - last;
700 else if (s2 + back_max >= last)
701 d2 = (last - s2) * cfqd->cfq_back_penalty;
702 else
703 wrap |= CFQ_RQ2_WRAP;
704
705 /* Found required data */
706
707 /*
708 * By doing switch() on the bit mask "wrap" we avoid having to
709 * check two variables for all permutations: --> faster!
710 */
711 switch (wrap) {
712 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
713 if (d1 < d2)
714 return rq1;
715 else if (d2 < d1)
716 return rq2;
717 else {
718 if (s1 >= s2)
719 return rq1;
720 else
721 return rq2;
722 }
723
724 case CFQ_RQ2_WRAP:
725 return rq1;
726 case CFQ_RQ1_WRAP:
727 return rq2;
728 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
729 default:
730 /*
731 * Since both rqs are wrapped,
732 * start with the one that's further behind head
733 * (--> only *one* back seek required),
734 * since back seek takes more time than forward.
735 */
736 if (s1 <= s2)
737 return rq1;
738 else
739 return rq2;
740 }
741}
742
743/*
744 * The below is leftmost cache rbtree addon
745 */
746static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
747{
748 /* Service tree is empty */
749 if (!root->count)
750 return NULL;
751
752 if (!root->left)
753 root->left = rb_first(&root->rb);
754
755 if (root->left)
756 return rb_entry(root->left, struct cfq_queue, rb_node);
757
758 return NULL;
759}
760
761static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
762{
763 if (!root->left)
764 root->left = rb_first(&root->rb);
765
766 if (root->left)
767 return rb_entry_cfqg(root->left);
768
769 return NULL;
770}
771
772static void rb_erase_init(struct rb_node *n, struct rb_root *root)
773{
774 rb_erase(n, root);
775 RB_CLEAR_NODE(n);
776}
777
778static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
779{
780 if (root->left == n)
781 root->left = NULL;
782 rb_erase_init(n, &root->rb);
783 --root->count;
784}
785
786/*
787 * would be nice to take fifo expire time into account as well
788 */
789static struct request *
790cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
791 struct request *last)
792{
793 struct rb_node *rbnext = rb_next(&last->rb_node);
794 struct rb_node *rbprev = rb_prev(&last->rb_node);
795 struct request *next = NULL, *prev = NULL;
796
797 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
798
799 if (rbprev)
800 prev = rb_entry_rq(rbprev);
801
802 if (rbnext)
803 next = rb_entry_rq(rbnext);
804 else {
805 rbnext = rb_first(&cfqq->sort_list);
806 if (rbnext && rbnext != &last->rb_node)
807 next = rb_entry_rq(rbnext);
808 }
809
810 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
811}
812
813static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
814 struct cfq_queue *cfqq)
815{
816 /*
817 * just an approximation, should be ok.
818 */
819 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
820 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
821}
822
823static inline s64
824cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
825{
826 return cfqg->vdisktime - st->min_vdisktime;
827}
828
829static void
830__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
831{
832 struct rb_node **node = &st->rb.rb_node;
833 struct rb_node *parent = NULL;
834 struct cfq_group *__cfqg;
835 s64 key = cfqg_key(st, cfqg);
836 int left = 1;
837
838 while (*node != NULL) {
839 parent = *node;
840 __cfqg = rb_entry_cfqg(parent);
841
842 if (key < cfqg_key(st, __cfqg))
843 node = &parent->rb_left;
844 else {
845 node = &parent->rb_right;
846 left = 0;
847 }
848 }
849
850 if (left)
851 st->left = &cfqg->rb_node;
852
853 rb_link_node(&cfqg->rb_node, parent, node);
854 rb_insert_color(&cfqg->rb_node, &st->rb);
855}
856
857static void
858cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
859{
860 struct cfq_rb_root *st = &cfqd->grp_service_tree;
861 struct cfq_group *__cfqg;
862 struct rb_node *n;
863
864 cfqg->nr_cfqq++;
865 if (!RB_EMPTY_NODE(&cfqg->rb_node))
866 return;
867
868 /*
869 * Currently put the group at the end. Later implement something
870 * so that groups get lesser vtime based on their weights, so that
871 * if group does not loose all if it was not continously backlogged.
872 */
873 n = rb_last(&st->rb);
874 if (n) {
875 __cfqg = rb_entry_cfqg(n);
876 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
877 } else
878 cfqg->vdisktime = st->min_vdisktime;
879
880 __cfq_group_service_tree_add(st, cfqg);
881 st->total_weight += cfqg->weight;
882}
883
884static void
885cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
886{
887 struct cfq_rb_root *st = &cfqd->grp_service_tree;
888
889 BUG_ON(cfqg->nr_cfqq < 1);
890 cfqg->nr_cfqq--;
891
892 /* If there are other cfq queues under this group, don't delete it */
893 if (cfqg->nr_cfqq)
894 return;
895
896 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
897 st->total_weight -= cfqg->weight;
898 if (!RB_EMPTY_NODE(&cfqg->rb_node))
899 cfq_rb_erase(&cfqg->rb_node, st);
900 cfqg->saved_workload_slice = 0;
901 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
902}
903
904static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
905{
906 unsigned int slice_used;
907
908 /*
909 * Queue got expired before even a single request completed or
910 * got expired immediately after first request completion.
911 */
912 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
913 /*
914 * Also charge the seek time incurred to the group, otherwise
915 * if there are mutiple queues in the group, each can dispatch
916 * a single request on seeky media and cause lots of seek time
917 * and group will never know it.
918 */
919 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
920 1);
921 } else {
922 slice_used = jiffies - cfqq->slice_start;
923 if (slice_used > cfqq->allocated_slice)
924 slice_used = cfqq->allocated_slice;
925 }
926
927 return slice_used;
928}
929
930static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
931 struct cfq_queue *cfqq)
932{
933 struct cfq_rb_root *st = &cfqd->grp_service_tree;
934 unsigned int used_sl, charge;
935 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
936 - cfqg->service_tree_idle.count;
937
938 BUG_ON(nr_sync < 0);
939 used_sl = charge = cfq_cfqq_slice_usage(cfqq);
940
941 if (iops_mode(cfqd))
942 charge = cfqq->slice_dispatch;
943 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
944 charge = cfqq->allocated_slice;
945
946 /* Can't update vdisktime while group is on service tree */
947 cfq_rb_erase(&cfqg->rb_node, st);
948 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
949 __cfq_group_service_tree_add(st, cfqg);
950
951 /* This group is being expired. Save the context */
952 if (time_after(cfqd->workload_expires, jiffies)) {
953 cfqg->saved_workload_slice = cfqd->workload_expires
954 - jiffies;
955 cfqg->saved_workload = cfqd->serving_type;
956 cfqg->saved_serving_prio = cfqd->serving_prio;
957 } else
958 cfqg->saved_workload_slice = 0;
959
960 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
961 st->min_vdisktime);
962 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u disp=%u charge=%u iops=%u"
963 " sect=%u", used_sl, cfqq->slice_dispatch, charge,
964 iops_mode(cfqd), cfqq->nr_sectors);
965 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
966 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
967}
968
969#ifdef CONFIG_CFQ_GROUP_IOSCHED
970static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
971{
972 if (blkg)
973 return container_of(blkg, struct cfq_group, blkg);
974 return NULL;
975}
976
977void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
978 unsigned int weight)
979{
980 cfqg_of_blkg(blkg)->weight = weight;
981}
982
983static struct cfq_group *
984cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
985{
986 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
987 struct cfq_group *cfqg = NULL;
988 void *key = cfqd;
989 int i, j;
990 struct cfq_rb_root *st;
991 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
992 unsigned int major, minor;
993
994 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
995 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
996 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
997 cfqg->blkg.dev = MKDEV(major, minor);
998 goto done;
999 }
1000 if (cfqg || !create)
1001 goto done;
1002
1003 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1004 if (!cfqg)
1005 goto done;
1006
1007 for_each_cfqg_st(cfqg, i, j, st)
1008 *st = CFQ_RB_ROOT;
1009 RB_CLEAR_NODE(&cfqg->rb_node);
1010
1011 /*
1012 * Take the initial reference that will be released on destroy
1013 * This can be thought of a joint reference by cgroup and
1014 * elevator which will be dropped by either elevator exit
1015 * or cgroup deletion path depending on who is exiting first.
1016 */
1017 cfqg->ref = 1;
1018
1019 /*
1020 * Add group onto cgroup list. It might happen that bdi->dev is
1021 * not initialized yet. Initialize this new group without major
1022 * and minor info and this info will be filled in once a new thread
1023 * comes for IO. See code above.
1024 */
1025 if (bdi->dev) {
1026 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1027 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
1028 MKDEV(major, minor));
1029 } else
1030 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
1031 0);
1032
1033 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1034
1035 /* Add group on cfqd list */
1036 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1037
1038done:
1039 return cfqg;
1040}
1041
1042/*
1043 * Search for the cfq group current task belongs to. If create = 1, then also
1044 * create the cfq group if it does not exist. request_queue lock must be held.
1045 */
1046static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1047{
1048 struct cgroup *cgroup;
1049 struct cfq_group *cfqg = NULL;
1050
1051 rcu_read_lock();
1052 cgroup = task_cgroup(current, blkio_subsys_id);
1053 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1054 if (!cfqg && create)
1055 cfqg = &cfqd->root_group;
1056 rcu_read_unlock();
1057 return cfqg;
1058}
1059
1060static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1061{
1062 cfqg->ref++;
1063 return cfqg;
1064}
1065
1066static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1067{
1068 /* Currently, all async queues are mapped to root group */
1069 if (!cfq_cfqq_sync(cfqq))
1070 cfqg = &cfqq->cfqd->root_group;
1071
1072 cfqq->cfqg = cfqg;
1073 /* cfqq reference on cfqg */
1074 cfqq->cfqg->ref++;
1075}
1076
1077static void cfq_put_cfqg(struct cfq_group *cfqg)
1078{
1079 struct cfq_rb_root *st;
1080 int i, j;
1081
1082 BUG_ON(cfqg->ref <= 0);
1083 cfqg->ref--;
1084 if (cfqg->ref)
1085 return;
1086 for_each_cfqg_st(cfqg, i, j, st)
1087 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
1088 kfree(cfqg);
1089}
1090
1091static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1092{
1093 /* Something wrong if we are trying to remove same group twice */
1094 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1095
1096 hlist_del_init(&cfqg->cfqd_node);
1097
1098 /*
1099 * Put the reference taken at the time of creation so that when all
1100 * queues are gone, group can be destroyed.
1101 */
1102 cfq_put_cfqg(cfqg);
1103}
1104
1105static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1106{
1107 struct hlist_node *pos, *n;
1108 struct cfq_group *cfqg;
1109
1110 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1111 /*
1112 * If cgroup removal path got to blk_group first and removed
1113 * it from cgroup list, then it will take care of destroying
1114 * cfqg also.
1115 */
1116 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1117 cfq_destroy_cfqg(cfqd, cfqg);
1118 }
1119}
1120
1121/*
1122 * Blk cgroup controller notification saying that blkio_group object is being
1123 * delinked as associated cgroup object is going away. That also means that
1124 * no new IO will come in this group. So get rid of this group as soon as
1125 * any pending IO in the group is finished.
1126 *
1127 * This function is called under rcu_read_lock(). key is the rcu protected
1128 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1129 * read lock.
1130 *
1131 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1132 * it should not be NULL as even if elevator was exiting, cgroup deltion
1133 * path got to it first.
1134 */
1135void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1136{
1137 unsigned long flags;
1138 struct cfq_data *cfqd = key;
1139
1140 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1141 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1142 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1143}
1144
1145#else /* GROUP_IOSCHED */
1146static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1147{
1148 return &cfqd->root_group;
1149}
1150
1151static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1152{
1153 return cfqg;
1154}
1155
1156static inline void
1157cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1158 cfqq->cfqg = cfqg;
1159}
1160
1161static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1162static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1163
1164#endif /* GROUP_IOSCHED */
1165
1166/*
1167 * The cfqd->service_trees holds all pending cfq_queue's that have
1168 * requests waiting to be processed. It is sorted in the order that
1169 * we will service the queues.
1170 */
1171static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1172 bool add_front)
1173{
1174 struct rb_node **p, *parent;
1175 struct cfq_queue *__cfqq;
1176 unsigned long rb_key;
1177 struct cfq_rb_root *service_tree;
1178 int left;
1179 int new_cfqq = 1;
1180 int group_changed = 0;
1181
1182#ifdef CONFIG_CFQ_GROUP_IOSCHED
1183 if (!cfqd->cfq_group_isolation
1184 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1185 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1186 /* Move this cfq to root group */
1187 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1188 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1189 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1190 cfqq->orig_cfqg = cfqq->cfqg;
1191 cfqq->cfqg = &cfqd->root_group;
1192 cfqd->root_group.ref++;
1193 group_changed = 1;
1194 } else if (!cfqd->cfq_group_isolation
1195 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1196 /* cfqq is sequential now needs to go to its original group */
1197 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1198 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1199 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1200 cfq_put_cfqg(cfqq->cfqg);
1201 cfqq->cfqg = cfqq->orig_cfqg;
1202 cfqq->orig_cfqg = NULL;
1203 group_changed = 1;
1204 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1205 }
1206#endif
1207
1208 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1209 cfqq_type(cfqq));
1210 if (cfq_class_idle(cfqq)) {
1211 rb_key = CFQ_IDLE_DELAY;
1212 parent = rb_last(&service_tree->rb);
1213 if (parent && parent != &cfqq->rb_node) {
1214 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1215 rb_key += __cfqq->rb_key;
1216 } else
1217 rb_key += jiffies;
1218 } else if (!add_front) {
1219 /*
1220 * Get our rb key offset. Subtract any residual slice
1221 * value carried from last service. A negative resid
1222 * count indicates slice overrun, and this should position
1223 * the next service time further away in the tree.
1224 */
1225 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1226 rb_key -= cfqq->slice_resid;
1227 cfqq->slice_resid = 0;
1228 } else {
1229 rb_key = -HZ;
1230 __cfqq = cfq_rb_first(service_tree);
1231 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1232 }
1233
1234 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1235 new_cfqq = 0;
1236 /*
1237 * same position, nothing more to do
1238 */
1239 if (rb_key == cfqq->rb_key &&
1240 cfqq->service_tree == service_tree)
1241 return;
1242
1243 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1244 cfqq->service_tree = NULL;
1245 }
1246
1247 left = 1;
1248 parent = NULL;
1249 cfqq->service_tree = service_tree;
1250 p = &service_tree->rb.rb_node;
1251 while (*p) {
1252 struct rb_node **n;
1253
1254 parent = *p;
1255 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1256
1257 /*
1258 * sort by key, that represents service time.
1259 */
1260 if (time_before(rb_key, __cfqq->rb_key))
1261 n = &(*p)->rb_left;
1262 else {
1263 n = &(*p)->rb_right;
1264 left = 0;
1265 }
1266
1267 p = n;
1268 }
1269
1270 if (left)
1271 service_tree->left = &cfqq->rb_node;
1272
1273 cfqq->rb_key = rb_key;
1274 rb_link_node(&cfqq->rb_node, parent, p);
1275 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1276 service_tree->count++;
1277 if ((add_front || !new_cfqq) && !group_changed)
1278 return;
1279 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1280}
1281
1282static struct cfq_queue *
1283cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1284 sector_t sector, struct rb_node **ret_parent,
1285 struct rb_node ***rb_link)
1286{
1287 struct rb_node **p, *parent;
1288 struct cfq_queue *cfqq = NULL;
1289
1290 parent = NULL;
1291 p = &root->rb_node;
1292 while (*p) {
1293 struct rb_node **n;
1294
1295 parent = *p;
1296 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1297
1298 /*
1299 * Sort strictly based on sector. Smallest to the left,
1300 * largest to the right.
1301 */
1302 if (sector > blk_rq_pos(cfqq->next_rq))
1303 n = &(*p)->rb_right;
1304 else if (sector < blk_rq_pos(cfqq->next_rq))
1305 n = &(*p)->rb_left;
1306 else
1307 break;
1308 p = n;
1309 cfqq = NULL;
1310 }
1311
1312 *ret_parent = parent;
1313 if (rb_link)
1314 *rb_link = p;
1315 return cfqq;
1316}
1317
1318static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1319{
1320 struct rb_node **p, *parent;
1321 struct cfq_queue *__cfqq;
1322
1323 if (cfqq->p_root) {
1324 rb_erase(&cfqq->p_node, cfqq->p_root);
1325 cfqq->p_root = NULL;
1326 }
1327
1328 if (cfq_class_idle(cfqq))
1329 return;
1330 if (!cfqq->next_rq)
1331 return;
1332
1333 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1334 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1335 blk_rq_pos(cfqq->next_rq), &parent, &p);
1336 if (!__cfqq) {
1337 rb_link_node(&cfqq->p_node, parent, p);
1338 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1339 } else
1340 cfqq->p_root = NULL;
1341}
1342
1343/*
1344 * Update cfqq's position in the service tree.
1345 */
1346static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1347{
1348 /*
1349 * Resorting requires the cfqq to be on the RR list already.
1350 */
1351 if (cfq_cfqq_on_rr(cfqq)) {
1352 cfq_service_tree_add(cfqd, cfqq, 0);
1353 cfq_prio_tree_add(cfqd, cfqq);
1354 }
1355}
1356
1357/*
1358 * add to busy list of queues for service, trying to be fair in ordering
1359 * the pending list according to last request service
1360 */
1361static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1362{
1363 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1364 BUG_ON(cfq_cfqq_on_rr(cfqq));
1365 cfq_mark_cfqq_on_rr(cfqq);
1366 cfqd->busy_queues++;
1367
1368 cfq_resort_rr_list(cfqd, cfqq);
1369}
1370
1371/*
1372 * Called when the cfqq no longer has requests pending, remove it from
1373 * the service tree.
1374 */
1375static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1376{
1377 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1378 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1379 cfq_clear_cfqq_on_rr(cfqq);
1380
1381 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1382 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1383 cfqq->service_tree = NULL;
1384 }
1385 if (cfqq->p_root) {
1386 rb_erase(&cfqq->p_node, cfqq->p_root);
1387 cfqq->p_root = NULL;
1388 }
1389
1390 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1391 BUG_ON(!cfqd->busy_queues);
1392 cfqd->busy_queues--;
1393}
1394
1395/*
1396 * rb tree support functions
1397 */
1398static void cfq_del_rq_rb(struct request *rq)
1399{
1400 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1401 const int sync = rq_is_sync(rq);
1402
1403 BUG_ON(!cfqq->queued[sync]);
1404 cfqq->queued[sync]--;
1405
1406 elv_rb_del(&cfqq->sort_list, rq);
1407
1408 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1409 /*
1410 * Queue will be deleted from service tree when we actually
1411 * expire it later. Right now just remove it from prio tree
1412 * as it is empty.
1413 */
1414 if (cfqq->p_root) {
1415 rb_erase(&cfqq->p_node, cfqq->p_root);
1416 cfqq->p_root = NULL;
1417 }
1418 }
1419}
1420
1421static void cfq_add_rq_rb(struct request *rq)
1422{
1423 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1424 struct cfq_data *cfqd = cfqq->cfqd;
1425 struct request *__alias, *prev;
1426
1427 cfqq->queued[rq_is_sync(rq)]++;
1428
1429 /*
1430 * looks a little odd, but the first insert might return an alias.
1431 * if that happens, put the alias on the dispatch list
1432 */
1433 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1434 cfq_dispatch_insert(cfqd->queue, __alias);
1435
1436 if (!cfq_cfqq_on_rr(cfqq))
1437 cfq_add_cfqq_rr(cfqd, cfqq);
1438
1439 /*
1440 * check if this request is a better next-serve candidate
1441 */
1442 prev = cfqq->next_rq;
1443 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1444
1445 /*
1446 * adjust priority tree position, if ->next_rq changes
1447 */
1448 if (prev != cfqq->next_rq)
1449 cfq_prio_tree_add(cfqd, cfqq);
1450
1451 BUG_ON(!cfqq->next_rq);
1452}
1453
1454static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1455{
1456 elv_rb_del(&cfqq->sort_list, rq);
1457 cfqq->queued[rq_is_sync(rq)]--;
1458 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1459 rq_data_dir(rq), rq_is_sync(rq));
1460 cfq_add_rq_rb(rq);
1461 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1462 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1463 rq_is_sync(rq));
1464}
1465
1466static struct request *
1467cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1468{
1469 struct task_struct *tsk = current;
1470 struct cfq_io_context *cic;
1471 struct cfq_queue *cfqq;
1472
1473 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1474 if (!cic)
1475 return NULL;
1476
1477 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1478 if (cfqq) {
1479 sector_t sector = bio->bi_sector + bio_sectors(bio);
1480
1481 return elv_rb_find(&cfqq->sort_list, sector);
1482 }
1483
1484 return NULL;
1485}
1486
1487static void cfq_activate_request(struct request_queue *q, struct request *rq)
1488{
1489 struct cfq_data *cfqd = q->elevator->elevator_data;
1490
1491 cfqd->rq_in_driver++;
1492 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1493 cfqd->rq_in_driver);
1494
1495 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1496}
1497
1498static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1499{
1500 struct cfq_data *cfqd = q->elevator->elevator_data;
1501
1502 WARN_ON(!cfqd->rq_in_driver);
1503 cfqd->rq_in_driver--;
1504 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1505 cfqd->rq_in_driver);
1506}
1507
1508static void cfq_remove_request(struct request *rq)
1509{
1510 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1511
1512 if (cfqq->next_rq == rq)
1513 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1514
1515 list_del_init(&rq->queuelist);
1516 cfq_del_rq_rb(rq);
1517
1518 cfqq->cfqd->rq_queued--;
1519 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1520 rq_data_dir(rq), rq_is_sync(rq));
1521 if (rq->cmd_flags & REQ_META) {
1522 WARN_ON(!cfqq->meta_pending);
1523 cfqq->meta_pending--;
1524 }
1525}
1526
1527static int cfq_merge(struct request_queue *q, struct request **req,
1528 struct bio *bio)
1529{
1530 struct cfq_data *cfqd = q->elevator->elevator_data;
1531 struct request *__rq;
1532
1533 __rq = cfq_find_rq_fmerge(cfqd, bio);
1534 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1535 *req = __rq;
1536 return ELEVATOR_FRONT_MERGE;
1537 }
1538
1539 return ELEVATOR_NO_MERGE;
1540}
1541
1542static void cfq_merged_request(struct request_queue *q, struct request *req,
1543 int type)
1544{
1545 if (type == ELEVATOR_FRONT_MERGE) {
1546 struct cfq_queue *cfqq = RQ_CFQQ(req);
1547
1548 cfq_reposition_rq_rb(cfqq, req);
1549 }
1550}
1551
1552static void cfq_bio_merged(struct request_queue *q, struct request *req,
1553 struct bio *bio)
1554{
1555 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1556 bio_data_dir(bio), cfq_bio_sync(bio));
1557}
1558
1559static void
1560cfq_merged_requests(struct request_queue *q, struct request *rq,
1561 struct request *next)
1562{
1563 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1564 /*
1565 * reposition in fifo if next is older than rq
1566 */
1567 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1568 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1569 list_move(&rq->queuelist, &next->queuelist);
1570 rq_set_fifo_time(rq, rq_fifo_time(next));
1571 }
1572
1573 if (cfqq->next_rq == next)
1574 cfqq->next_rq = rq;
1575 cfq_remove_request(next);
1576 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1577 rq_data_dir(next), rq_is_sync(next));
1578}
1579
1580static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1581 struct bio *bio)
1582{
1583 struct cfq_data *cfqd = q->elevator->elevator_data;
1584 struct cfq_io_context *cic;
1585 struct cfq_queue *cfqq;
1586
1587 /*
1588 * Disallow merge of a sync bio into an async request.
1589 */
1590 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1591 return false;
1592
1593 /*
1594 * Lookup the cfqq that this bio will be queued with. Allow
1595 * merge only if rq is queued there.
1596 */
1597 cic = cfq_cic_lookup(cfqd, current->io_context);
1598 if (!cic)
1599 return false;
1600
1601 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1602 return cfqq == RQ_CFQQ(rq);
1603}
1604
1605static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1606{
1607 del_timer(&cfqd->idle_slice_timer);
1608 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1609}
1610
1611static void __cfq_set_active_queue(struct cfq_data *cfqd,
1612 struct cfq_queue *cfqq)
1613{
1614 if (cfqq) {
1615 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1616 cfqd->serving_prio, cfqd->serving_type);
1617 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1618 cfqq->slice_start = 0;
1619 cfqq->dispatch_start = jiffies;
1620 cfqq->allocated_slice = 0;
1621 cfqq->slice_end = 0;
1622 cfqq->slice_dispatch = 0;
1623 cfqq->nr_sectors = 0;
1624
1625 cfq_clear_cfqq_wait_request(cfqq);
1626 cfq_clear_cfqq_must_dispatch(cfqq);
1627 cfq_clear_cfqq_must_alloc_slice(cfqq);
1628 cfq_clear_cfqq_fifo_expire(cfqq);
1629 cfq_mark_cfqq_slice_new(cfqq);
1630
1631 cfq_del_timer(cfqd, cfqq);
1632 }
1633
1634 cfqd->active_queue = cfqq;
1635}
1636
1637/*
1638 * current cfqq expired its slice (or was too idle), select new one
1639 */
1640static void
1641__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1642 bool timed_out)
1643{
1644 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1645
1646 if (cfq_cfqq_wait_request(cfqq))
1647 cfq_del_timer(cfqd, cfqq);
1648
1649 cfq_clear_cfqq_wait_request(cfqq);
1650 cfq_clear_cfqq_wait_busy(cfqq);
1651
1652 /*
1653 * If this cfqq is shared between multiple processes, check to
1654 * make sure that those processes are still issuing I/Os within
1655 * the mean seek distance. If not, it may be time to break the
1656 * queues apart again.
1657 */
1658 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1659 cfq_mark_cfqq_split_coop(cfqq);
1660
1661 /*
1662 * store what was left of this slice, if the queue idled/timed out
1663 */
1664 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1665 cfqq->slice_resid = cfqq->slice_end - jiffies;
1666 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1667 }
1668
1669 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1670
1671 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1672 cfq_del_cfqq_rr(cfqd, cfqq);
1673
1674 cfq_resort_rr_list(cfqd, cfqq);
1675
1676 if (cfqq == cfqd->active_queue)
1677 cfqd->active_queue = NULL;
1678
1679 if (cfqd->active_cic) {
1680 put_io_context(cfqd->active_cic->ioc);
1681 cfqd->active_cic = NULL;
1682 }
1683}
1684
1685static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1686{
1687 struct cfq_queue *cfqq = cfqd->active_queue;
1688
1689 if (cfqq)
1690 __cfq_slice_expired(cfqd, cfqq, timed_out);
1691}
1692
1693/*
1694 * Get next queue for service. Unless we have a queue preemption,
1695 * we'll simply select the first cfqq in the service tree.
1696 */
1697static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1698{
1699 struct cfq_rb_root *service_tree =
1700 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1701 cfqd->serving_type);
1702
1703 if (!cfqd->rq_queued)
1704 return NULL;
1705
1706 /* There is nothing to dispatch */
1707 if (!service_tree)
1708 return NULL;
1709 if (RB_EMPTY_ROOT(&service_tree->rb))
1710 return NULL;
1711 return cfq_rb_first(service_tree);
1712}
1713
1714static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1715{
1716 struct cfq_group *cfqg;
1717 struct cfq_queue *cfqq;
1718 int i, j;
1719 struct cfq_rb_root *st;
1720
1721 if (!cfqd->rq_queued)
1722 return NULL;
1723
1724 cfqg = cfq_get_next_cfqg(cfqd);
1725 if (!cfqg)
1726 return NULL;
1727
1728 for_each_cfqg_st(cfqg, i, j, st)
1729 if ((cfqq = cfq_rb_first(st)) != NULL)
1730 return cfqq;
1731 return NULL;
1732}
1733
1734/*
1735 * Get and set a new active queue for service.
1736 */
1737static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1738 struct cfq_queue *cfqq)
1739{
1740 if (!cfqq)
1741 cfqq = cfq_get_next_queue(cfqd);
1742
1743 __cfq_set_active_queue(cfqd, cfqq);
1744 return cfqq;
1745}
1746
1747static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1748 struct request *rq)
1749{
1750 if (blk_rq_pos(rq) >= cfqd->last_position)
1751 return blk_rq_pos(rq) - cfqd->last_position;
1752 else
1753 return cfqd->last_position - blk_rq_pos(rq);
1754}
1755
1756static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1757 struct request *rq)
1758{
1759 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1760}
1761
1762static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1763 struct cfq_queue *cur_cfqq)
1764{
1765 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1766 struct rb_node *parent, *node;
1767 struct cfq_queue *__cfqq;
1768 sector_t sector = cfqd->last_position;
1769
1770 if (RB_EMPTY_ROOT(root))
1771 return NULL;
1772
1773 /*
1774 * First, if we find a request starting at the end of the last
1775 * request, choose it.
1776 */
1777 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1778 if (__cfqq)
1779 return __cfqq;
1780
1781 /*
1782 * If the exact sector wasn't found, the parent of the NULL leaf
1783 * will contain the closest sector.
1784 */
1785 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1786 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1787 return __cfqq;
1788
1789 if (blk_rq_pos(__cfqq->next_rq) < sector)
1790 node = rb_next(&__cfqq->p_node);
1791 else
1792 node = rb_prev(&__cfqq->p_node);
1793 if (!node)
1794 return NULL;
1795
1796 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1797 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1798 return __cfqq;
1799
1800 return NULL;
1801}
1802
1803/*
1804 * cfqd - obvious
1805 * cur_cfqq - passed in so that we don't decide that the current queue is
1806 * closely cooperating with itself.
1807 *
1808 * So, basically we're assuming that that cur_cfqq has dispatched at least
1809 * one request, and that cfqd->last_position reflects a position on the disk
1810 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1811 * assumption.
1812 */
1813static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1814 struct cfq_queue *cur_cfqq)
1815{
1816 struct cfq_queue *cfqq;
1817
1818 if (cfq_class_idle(cur_cfqq))
1819 return NULL;
1820 if (!cfq_cfqq_sync(cur_cfqq))
1821 return NULL;
1822 if (CFQQ_SEEKY(cur_cfqq))
1823 return NULL;
1824
1825 /*
1826 * Don't search priority tree if it's the only queue in the group.
1827 */
1828 if (cur_cfqq->cfqg->nr_cfqq == 1)
1829 return NULL;
1830
1831 /*
1832 * We should notice if some of the queues are cooperating, eg
1833 * working closely on the same area of the disk. In that case,
1834 * we can group them together and don't waste time idling.
1835 */
1836 cfqq = cfqq_close(cfqd, cur_cfqq);
1837 if (!cfqq)
1838 return NULL;
1839
1840 /* If new queue belongs to different cfq_group, don't choose it */
1841 if (cur_cfqq->cfqg != cfqq->cfqg)
1842 return NULL;
1843
1844 /*
1845 * It only makes sense to merge sync queues.
1846 */
1847 if (!cfq_cfqq_sync(cfqq))
1848 return NULL;
1849 if (CFQQ_SEEKY(cfqq))
1850 return NULL;
1851
1852 /*
1853 * Do not merge queues of different priority classes
1854 */
1855 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1856 return NULL;
1857
1858 return cfqq;
1859}
1860
1861/*
1862 * Determine whether we should enforce idle window for this queue.
1863 */
1864
1865static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1866{
1867 enum wl_prio_t prio = cfqq_prio(cfqq);
1868 struct cfq_rb_root *service_tree = cfqq->service_tree;
1869
1870 BUG_ON(!service_tree);
1871 BUG_ON(!service_tree->count);
1872
1873 if (!cfqd->cfq_slice_idle)
1874 return false;
1875
1876 /* We never do for idle class queues. */
1877 if (prio == IDLE_WORKLOAD)
1878 return false;
1879
1880 /* We do for queues that were marked with idle window flag. */
1881 if (cfq_cfqq_idle_window(cfqq) &&
1882 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1883 return true;
1884
1885 /*
1886 * Otherwise, we do only if they are the last ones
1887 * in their service tree.
1888 */
1889 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1890 return true;
1891 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1892 service_tree->count);
1893 return false;
1894}
1895
1896static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1897{
1898 struct cfq_queue *cfqq = cfqd->active_queue;
1899 struct cfq_io_context *cic;
1900 unsigned long sl, group_idle = 0;
1901
1902 /*
1903 * SSD device without seek penalty, disable idling. But only do so
1904 * for devices that support queuing, otherwise we still have a problem
1905 * with sync vs async workloads.
1906 */
1907 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1908 return;
1909
1910 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1911 WARN_ON(cfq_cfqq_slice_new(cfqq));
1912
1913 /*
1914 * idle is disabled, either manually or by past process history
1915 */
1916 if (!cfq_should_idle(cfqd, cfqq)) {
1917 /* no queue idling. Check for group idling */
1918 if (cfqd->cfq_group_idle)
1919 group_idle = cfqd->cfq_group_idle;
1920 else
1921 return;
1922 }
1923
1924 /*
1925 * still active requests from this queue, don't idle
1926 */
1927 if (cfqq->dispatched)
1928 return;
1929
1930 /*
1931 * task has exited, don't wait
1932 */
1933 cic = cfqd->active_cic;
1934 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1935 return;
1936
1937 /*
1938 * If our average think time is larger than the remaining time
1939 * slice, then don't idle. This avoids overrunning the allotted
1940 * time slice.
1941 */
1942 if (sample_valid(cic->ttime_samples) &&
1943 (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1944 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1945 cic->ttime_mean);
1946 return;
1947 }
1948
1949 /* There are other queues in the group, don't do group idle */
1950 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
1951 return;
1952
1953 cfq_mark_cfqq_wait_request(cfqq);
1954
1955 if (group_idle)
1956 sl = cfqd->cfq_group_idle;
1957 else
1958 sl = cfqd->cfq_slice_idle;
1959
1960 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1961 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
1962 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
1963 group_idle ? 1 : 0);
1964}
1965
1966/*
1967 * Move request from internal lists to the request queue dispatch list.
1968 */
1969static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1970{
1971 struct cfq_data *cfqd = q->elevator->elevator_data;
1972 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1973
1974 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1975
1976 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1977 cfq_remove_request(rq);
1978 cfqq->dispatched++;
1979 (RQ_CFQG(rq))->dispatched++;
1980 elv_dispatch_sort(q, rq);
1981
1982 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
1983 cfqq->nr_sectors += blk_rq_sectors(rq);
1984 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
1985 rq_data_dir(rq), rq_is_sync(rq));
1986}
1987
1988/*
1989 * return expired entry, or NULL to just start from scratch in rbtree
1990 */
1991static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1992{
1993 struct request *rq = NULL;
1994
1995 if (cfq_cfqq_fifo_expire(cfqq))
1996 return NULL;
1997
1998 cfq_mark_cfqq_fifo_expire(cfqq);
1999
2000 if (list_empty(&cfqq->fifo))
2001 return NULL;
2002
2003 rq = rq_entry_fifo(cfqq->fifo.next);
2004 if (time_before(jiffies, rq_fifo_time(rq)))
2005 rq = NULL;
2006
2007 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2008 return rq;
2009}
2010
2011static inline int
2012cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2013{
2014 const int base_rq = cfqd->cfq_slice_async_rq;
2015
2016 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2017
2018 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
2019}
2020
2021/*
2022 * Must be called with the queue_lock held.
2023 */
2024static int cfqq_process_refs(struct cfq_queue *cfqq)
2025{
2026 int process_refs, io_refs;
2027
2028 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2029 process_refs = cfqq->ref - io_refs;
2030 BUG_ON(process_refs < 0);
2031 return process_refs;
2032}
2033
2034static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2035{
2036 int process_refs, new_process_refs;
2037 struct cfq_queue *__cfqq;
2038
2039 /*
2040 * If there are no process references on the new_cfqq, then it is
2041 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2042 * chain may have dropped their last reference (not just their
2043 * last process reference).
2044 */
2045 if (!cfqq_process_refs(new_cfqq))
2046 return;
2047
2048 /* Avoid a circular list and skip interim queue merges */
2049 while ((__cfqq = new_cfqq->new_cfqq)) {
2050 if (__cfqq == cfqq)
2051 return;
2052 new_cfqq = __cfqq;
2053 }
2054
2055 process_refs = cfqq_process_refs(cfqq);
2056 new_process_refs = cfqq_process_refs(new_cfqq);
2057 /*
2058 * If the process for the cfqq has gone away, there is no
2059 * sense in merging the queues.
2060 */
2061 if (process_refs == 0 || new_process_refs == 0)
2062 return;
2063
2064 /*
2065 * Merge in the direction of the lesser amount of work.
2066 */
2067 if (new_process_refs >= process_refs) {
2068 cfqq->new_cfqq = new_cfqq;
2069 new_cfqq->ref += process_refs;
2070 } else {
2071 new_cfqq->new_cfqq = cfqq;
2072 cfqq->ref += new_process_refs;
2073 }
2074}
2075
2076static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2077 struct cfq_group *cfqg, enum wl_prio_t prio)
2078{
2079 struct cfq_queue *queue;
2080 int i;
2081 bool key_valid = false;
2082 unsigned long lowest_key = 0;
2083 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2084
2085 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2086 /* select the one with lowest rb_key */
2087 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2088 if (queue &&
2089 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2090 lowest_key = queue->rb_key;
2091 cur_best = i;
2092 key_valid = true;
2093 }
2094 }
2095
2096 return cur_best;
2097}
2098
2099static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2100{
2101 unsigned slice;
2102 unsigned count;
2103 struct cfq_rb_root *st;
2104 unsigned group_slice;
2105 enum wl_prio_t original_prio = cfqd->serving_prio;
2106
2107 /* Choose next priority. RT > BE > IDLE */
2108 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2109 cfqd->serving_prio = RT_WORKLOAD;
2110 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2111 cfqd->serving_prio = BE_WORKLOAD;
2112 else {
2113 cfqd->serving_prio = IDLE_WORKLOAD;
2114 cfqd->workload_expires = jiffies + 1;
2115 return;
2116 }
2117
2118 if (original_prio != cfqd->serving_prio)
2119 goto new_workload;
2120
2121 /*
2122 * For RT and BE, we have to choose also the type
2123 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2124 * expiration time
2125 */
2126 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2127 count = st->count;
2128
2129 /*
2130 * check workload expiration, and that we still have other queues ready
2131 */
2132 if (count && !time_after(jiffies, cfqd->workload_expires))
2133 return;
2134
2135new_workload:
2136 /* otherwise select new workload type */
2137 cfqd->serving_type =
2138 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2139 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2140 count = st->count;
2141
2142 /*
2143 * the workload slice is computed as a fraction of target latency
2144 * proportional to the number of queues in that workload, over
2145 * all the queues in the same priority class
2146 */
2147 group_slice = cfq_group_slice(cfqd, cfqg);
2148
2149 slice = group_slice * count /
2150 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2151 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2152
2153 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2154 unsigned int tmp;
2155
2156 /*
2157 * Async queues are currently system wide. Just taking
2158 * proportion of queues with-in same group will lead to higher
2159 * async ratio system wide as generally root group is going
2160 * to have higher weight. A more accurate thing would be to
2161 * calculate system wide asnc/sync ratio.
2162 */
2163 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2164 tmp = tmp/cfqd->busy_queues;
2165 slice = min_t(unsigned, slice, tmp);
2166
2167 /* async workload slice is scaled down according to
2168 * the sync/async slice ratio. */
2169 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2170 } else
2171 /* sync workload slice is at least 2 * cfq_slice_idle */
2172 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2173
2174 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2175 cfq_log(cfqd, "workload slice:%d", slice);
2176 cfqd->workload_expires = jiffies + slice;
2177}
2178
2179static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2180{
2181 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2182 struct cfq_group *cfqg;
2183
2184 if (RB_EMPTY_ROOT(&st->rb))
2185 return NULL;
2186 cfqg = cfq_rb_first_group(st);
2187 update_min_vdisktime(st);
2188 return cfqg;
2189}
2190
2191static void cfq_choose_cfqg(struct cfq_data *cfqd)
2192{
2193 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2194
2195 cfqd->serving_group = cfqg;
2196
2197 /* Restore the workload type data */
2198 if (cfqg->saved_workload_slice) {
2199 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2200 cfqd->serving_type = cfqg->saved_workload;
2201 cfqd->serving_prio = cfqg->saved_serving_prio;
2202 } else
2203 cfqd->workload_expires = jiffies - 1;
2204
2205 choose_service_tree(cfqd, cfqg);
2206}
2207
2208/*
2209 * Select a queue for service. If we have a current active queue,
2210 * check whether to continue servicing it, or retrieve and set a new one.
2211 */
2212static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2213{
2214 struct cfq_queue *cfqq, *new_cfqq = NULL;
2215
2216 cfqq = cfqd->active_queue;
2217 if (!cfqq)
2218 goto new_queue;
2219
2220 if (!cfqd->rq_queued)
2221 return NULL;
2222
2223 /*
2224 * We were waiting for group to get backlogged. Expire the queue
2225 */
2226 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2227 goto expire;
2228
2229 /*
2230 * The active queue has run out of time, expire it and select new.
2231 */
2232 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2233 /*
2234 * If slice had not expired at the completion of last request
2235 * we might not have turned on wait_busy flag. Don't expire
2236 * the queue yet. Allow the group to get backlogged.
2237 *
2238 * The very fact that we have used the slice, that means we
2239 * have been idling all along on this queue and it should be
2240 * ok to wait for this request to complete.
2241 */
2242 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2243 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2244 cfqq = NULL;
2245 goto keep_queue;
2246 } else
2247 goto check_group_idle;
2248 }
2249
2250 /*
2251 * The active queue has requests and isn't expired, allow it to
2252 * dispatch.
2253 */
2254 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2255 goto keep_queue;
2256
2257 /*
2258 * If another queue has a request waiting within our mean seek
2259 * distance, let it run. The expire code will check for close
2260 * cooperators and put the close queue at the front of the service
2261 * tree. If possible, merge the expiring queue with the new cfqq.
2262 */
2263 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2264 if (new_cfqq) {
2265 if (!cfqq->new_cfqq)
2266 cfq_setup_merge(cfqq, new_cfqq);
2267 goto expire;
2268 }
2269
2270 /*
2271 * No requests pending. If the active queue still has requests in
2272 * flight or is idling for a new request, allow either of these
2273 * conditions to happen (or time out) before selecting a new queue.
2274 */
2275 if (timer_pending(&cfqd->idle_slice_timer)) {
2276 cfqq = NULL;
2277 goto keep_queue;
2278 }
2279
2280 /*
2281 * This is a deep seek queue, but the device is much faster than
2282 * the queue can deliver, don't idle
2283 **/
2284 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2285 (cfq_cfqq_slice_new(cfqq) ||
2286 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2287 cfq_clear_cfqq_deep(cfqq);
2288 cfq_clear_cfqq_idle_window(cfqq);
2289 }
2290
2291 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2292 cfqq = NULL;
2293 goto keep_queue;
2294 }
2295
2296 /*
2297 * If group idle is enabled and there are requests dispatched from
2298 * this group, wait for requests to complete.
2299 */
2300check_group_idle:
2301 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
2302 && cfqq->cfqg->dispatched) {
2303 cfqq = NULL;
2304 goto keep_queue;
2305 }
2306
2307expire:
2308 cfq_slice_expired(cfqd, 0);
2309new_queue:
2310 /*
2311 * Current queue expired. Check if we have to switch to a new
2312 * service tree
2313 */
2314 if (!new_cfqq)
2315 cfq_choose_cfqg(cfqd);
2316
2317 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2318keep_queue:
2319 return cfqq;
2320}
2321
2322static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2323{
2324 int dispatched = 0;
2325
2326 while (cfqq->next_rq) {
2327 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2328 dispatched++;
2329 }
2330
2331 BUG_ON(!list_empty(&cfqq->fifo));
2332
2333 /* By default cfqq is not expired if it is empty. Do it explicitly */
2334 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2335 return dispatched;
2336}
2337
2338/*
2339 * Drain our current requests. Used for barriers and when switching
2340 * io schedulers on-the-fly.
2341 */
2342static int cfq_forced_dispatch(struct cfq_data *cfqd)
2343{
2344 struct cfq_queue *cfqq;
2345 int dispatched = 0;
2346
2347 /* Expire the timeslice of the current active queue first */
2348 cfq_slice_expired(cfqd, 0);
2349 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2350 __cfq_set_active_queue(cfqd, cfqq);
2351 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2352 }
2353
2354 BUG_ON(cfqd->busy_queues);
2355
2356 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2357 return dispatched;
2358}
2359
2360static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2361 struct cfq_queue *cfqq)
2362{
2363 /* the queue hasn't finished any request, can't estimate */
2364 if (cfq_cfqq_slice_new(cfqq))
2365 return true;
2366 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2367 cfqq->slice_end))
2368 return true;
2369
2370 return false;
2371}
2372
2373static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2374{
2375 unsigned int max_dispatch;
2376
2377 /*
2378 * Drain async requests before we start sync IO
2379 */
2380 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2381 return false;
2382
2383 /*
2384 * If this is an async queue and we have sync IO in flight, let it wait
2385 */
2386 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2387 return false;
2388
2389 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2390 if (cfq_class_idle(cfqq))
2391 max_dispatch = 1;
2392
2393 /*
2394 * Does this cfqq already have too much IO in flight?
2395 */
2396 if (cfqq->dispatched >= max_dispatch) {
2397 /*
2398 * idle queue must always only have a single IO in flight
2399 */
2400 if (cfq_class_idle(cfqq))
2401 return false;
2402
2403 /*
2404 * We have other queues, don't allow more IO from this one
2405 */
2406 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
2407 return false;
2408
2409 /*
2410 * Sole queue user, no limit
2411 */
2412 if (cfqd->busy_queues == 1)
2413 max_dispatch = -1;
2414 else
2415 /*
2416 * Normally we start throttling cfqq when cfq_quantum/2
2417 * requests have been dispatched. But we can drive
2418 * deeper queue depths at the beginning of slice
2419 * subjected to upper limit of cfq_quantum.
2420 * */
2421 max_dispatch = cfqd->cfq_quantum;
2422 }
2423
2424 /*
2425 * Async queues must wait a bit before being allowed dispatch.
2426 * We also ramp up the dispatch depth gradually for async IO,
2427 * based on the last sync IO we serviced
2428 */
2429 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2430 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2431 unsigned int depth;
2432
2433 depth = last_sync / cfqd->cfq_slice[1];
2434 if (!depth && !cfqq->dispatched)
2435 depth = 1;
2436 if (depth < max_dispatch)
2437 max_dispatch = depth;
2438 }
2439
2440 /*
2441 * If we're below the current max, allow a dispatch
2442 */
2443 return cfqq->dispatched < max_dispatch;
2444}
2445
2446/*
2447 * Dispatch a request from cfqq, moving them to the request queue
2448 * dispatch list.
2449 */
2450static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2451{
2452 struct request *rq;
2453
2454 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2455
2456 if (!cfq_may_dispatch(cfqd, cfqq))
2457 return false;
2458
2459 /*
2460 * follow expired path, else get first next available
2461 */
2462 rq = cfq_check_fifo(cfqq);
2463 if (!rq)
2464 rq = cfqq->next_rq;
2465
2466 /*
2467 * insert request into driver dispatch list
2468 */
2469 cfq_dispatch_insert(cfqd->queue, rq);
2470
2471 if (!cfqd->active_cic) {
2472 struct cfq_io_context *cic = RQ_CIC(rq);
2473
2474 atomic_long_inc(&cic->ioc->refcount);
2475 cfqd->active_cic = cic;
2476 }
2477
2478 return true;
2479}
2480
2481/*
2482 * Find the cfqq that we need to service and move a request from that to the
2483 * dispatch list
2484 */
2485static int cfq_dispatch_requests(struct request_queue *q, int force)
2486{
2487 struct cfq_data *cfqd = q->elevator->elevator_data;
2488 struct cfq_queue *cfqq;
2489
2490 if (!cfqd->busy_queues)
2491 return 0;
2492
2493 if (unlikely(force))
2494 return cfq_forced_dispatch(cfqd);
2495
2496 cfqq = cfq_select_queue(cfqd);
2497 if (!cfqq)
2498 return 0;
2499
2500 /*
2501 * Dispatch a request from this cfqq, if it is allowed
2502 */
2503 if (!cfq_dispatch_request(cfqd, cfqq))
2504 return 0;
2505
2506 cfqq->slice_dispatch++;
2507 cfq_clear_cfqq_must_dispatch(cfqq);
2508
2509 /*
2510 * expire an async queue immediately if it has used up its slice. idle
2511 * queue always expire after 1 dispatch round.
2512 */
2513 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2514 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2515 cfq_class_idle(cfqq))) {
2516 cfqq->slice_end = jiffies + 1;
2517 cfq_slice_expired(cfqd, 0);
2518 }
2519
2520 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2521 return 1;
2522}
2523
2524/*
2525 * task holds one reference to the queue, dropped when task exits. each rq
2526 * in-flight on this queue also holds a reference, dropped when rq is freed.
2527 *
2528 * Each cfq queue took a reference on the parent group. Drop it now.
2529 * queue lock must be held here.
2530 */
2531static void cfq_put_queue(struct cfq_queue *cfqq)
2532{
2533 struct cfq_data *cfqd = cfqq->cfqd;
2534 struct cfq_group *cfqg, *orig_cfqg;
2535
2536 BUG_ON(cfqq->ref <= 0);
2537
2538 cfqq->ref--;
2539 if (cfqq->ref)
2540 return;
2541
2542 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2543 BUG_ON(rb_first(&cfqq->sort_list));
2544 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2545 cfqg = cfqq->cfqg;
2546 orig_cfqg = cfqq->orig_cfqg;
2547
2548 if (unlikely(cfqd->active_queue == cfqq)) {
2549 __cfq_slice_expired(cfqd, cfqq, 0);
2550 cfq_schedule_dispatch(cfqd);
2551 }
2552
2553 BUG_ON(cfq_cfqq_on_rr(cfqq));
2554 kmem_cache_free(cfq_pool, cfqq);
2555 cfq_put_cfqg(cfqg);
2556 if (orig_cfqg)
2557 cfq_put_cfqg(orig_cfqg);
2558}
2559
2560/*
2561 * Must always be called with the rcu_read_lock() held
2562 */
2563static void
2564__call_for_each_cic(struct io_context *ioc,
2565 void (*func)(struct io_context *, struct cfq_io_context *))
2566{
2567 struct cfq_io_context *cic;
2568 struct hlist_node *n;
2569
2570 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2571 func(ioc, cic);
2572}
2573
2574/*
2575 * Call func for each cic attached to this ioc.
2576 */
2577static void
2578call_for_each_cic(struct io_context *ioc,
2579 void (*func)(struct io_context *, struct cfq_io_context *))
2580{
2581 rcu_read_lock();
2582 __call_for_each_cic(ioc, func);
2583 rcu_read_unlock();
2584}
2585
2586static void cfq_cic_free_rcu(struct rcu_head *head)
2587{
2588 struct cfq_io_context *cic;
2589
2590 cic = container_of(head, struct cfq_io_context, rcu_head);
2591
2592 kmem_cache_free(cfq_ioc_pool, cic);
2593 elv_ioc_count_dec(cfq_ioc_count);
2594
2595 if (ioc_gone) {
2596 /*
2597 * CFQ scheduler is exiting, grab exit lock and check
2598 * the pending io context count. If it hits zero,
2599 * complete ioc_gone and set it back to NULL
2600 */
2601 spin_lock(&ioc_gone_lock);
2602 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2603 complete(ioc_gone);
2604 ioc_gone = NULL;
2605 }
2606 spin_unlock(&ioc_gone_lock);
2607 }
2608}
2609
2610static void cfq_cic_free(struct cfq_io_context *cic)
2611{
2612 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2613}
2614
2615static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2616{
2617 unsigned long flags;
2618 unsigned long dead_key = (unsigned long) cic->key;
2619
2620 BUG_ON(!(dead_key & CIC_DEAD_KEY));
2621
2622 spin_lock_irqsave(&ioc->lock, flags);
2623 radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
2624 hlist_del_rcu(&cic->cic_list);
2625 spin_unlock_irqrestore(&ioc->lock, flags);
2626
2627 cfq_cic_free(cic);
2628}
2629
2630/*
2631 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2632 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2633 * and ->trim() which is called with the task lock held
2634 */
2635static void cfq_free_io_context(struct io_context *ioc)
2636{
2637 /*
2638 * ioc->refcount is zero here, or we are called from elv_unregister(),
2639 * so no more cic's are allowed to be linked into this ioc. So it
2640 * should be ok to iterate over the known list, we will see all cic's
2641 * since no new ones are added.
2642 */
2643 __call_for_each_cic(ioc, cic_free_func);
2644}
2645
2646static void cfq_put_cooperator(struct cfq_queue *cfqq)
2647{
2648 struct cfq_queue *__cfqq, *next;
2649
2650 /*
2651 * If this queue was scheduled to merge with another queue, be
2652 * sure to drop the reference taken on that queue (and others in
2653 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2654 */
2655 __cfqq = cfqq->new_cfqq;
2656 while (__cfqq) {
2657 if (__cfqq == cfqq) {
2658 WARN(1, "cfqq->new_cfqq loop detected\n");
2659 break;
2660 }
2661 next = __cfqq->new_cfqq;
2662 cfq_put_queue(__cfqq);
2663 __cfqq = next;
2664 }
2665}
2666
2667static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2668{
2669 if (unlikely(cfqq == cfqd->active_queue)) {
2670 __cfq_slice_expired(cfqd, cfqq, 0);
2671 cfq_schedule_dispatch(cfqd);
2672 }
2673
2674 cfq_put_cooperator(cfqq);
2675
2676 cfq_put_queue(cfqq);
2677}
2678
2679static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2680 struct cfq_io_context *cic)
2681{
2682 struct io_context *ioc = cic->ioc;
2683
2684 list_del_init(&cic->queue_list);
2685
2686 /*
2687 * Make sure dead mark is seen for dead queues
2688 */
2689 smp_wmb();
2690 cic->key = cfqd_dead_key(cfqd);
2691
2692 if (ioc->ioc_data == cic)
2693 rcu_assign_pointer(ioc->ioc_data, NULL);
2694
2695 if (cic->cfqq[BLK_RW_ASYNC]) {
2696 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2697 cic->cfqq[BLK_RW_ASYNC] = NULL;
2698 }
2699
2700 if (cic->cfqq[BLK_RW_SYNC]) {
2701 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2702 cic->cfqq[BLK_RW_SYNC] = NULL;
2703 }
2704}
2705
2706static void cfq_exit_single_io_context(struct io_context *ioc,
2707 struct cfq_io_context *cic)
2708{
2709 struct cfq_data *cfqd = cic_to_cfqd(cic);
2710
2711 if (cfqd) {
2712 struct request_queue *q = cfqd->queue;
2713 unsigned long flags;
2714
2715 spin_lock_irqsave(q->queue_lock, flags);
2716
2717 /*
2718 * Ensure we get a fresh copy of the ->key to prevent
2719 * race between exiting task and queue
2720 */
2721 smp_read_barrier_depends();
2722 if (cic->key == cfqd)
2723 __cfq_exit_single_io_context(cfqd, cic);
2724
2725 spin_unlock_irqrestore(q->queue_lock, flags);
2726 }
2727}
2728
2729/*
2730 * The process that ioc belongs to has exited, we need to clean up
2731 * and put the internal structures we have that belongs to that process.
2732 */
2733static void cfq_exit_io_context(struct io_context *ioc)
2734{
2735 call_for_each_cic(ioc, cfq_exit_single_io_context);
2736}
2737
2738static struct cfq_io_context *
2739cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2740{
2741 struct cfq_io_context *cic;
2742
2743 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2744 cfqd->queue->node);
2745 if (cic) {
2746 cic->last_end_request = jiffies;
2747 INIT_LIST_HEAD(&cic->queue_list);
2748 INIT_HLIST_NODE(&cic->cic_list);
2749 cic->dtor = cfq_free_io_context;
2750 cic->exit = cfq_exit_io_context;
2751 elv_ioc_count_inc(cfq_ioc_count);
2752 }
2753
2754 return cic;
2755}
2756
2757static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2758{
2759 struct task_struct *tsk = current;
2760 int ioprio_class;
2761
2762 if (!cfq_cfqq_prio_changed(cfqq))
2763 return;
2764
2765 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2766 switch (ioprio_class) {
2767 default:
2768 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2769 case IOPRIO_CLASS_NONE:
2770 /*
2771 * no prio set, inherit CPU scheduling settings
2772 */
2773 cfqq->ioprio = task_nice_ioprio(tsk);
2774 cfqq->ioprio_class = task_nice_ioclass(tsk);
2775 break;
2776 case IOPRIO_CLASS_RT:
2777 cfqq->ioprio = task_ioprio(ioc);
2778 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2779 break;
2780 case IOPRIO_CLASS_BE:
2781 cfqq->ioprio = task_ioprio(ioc);
2782 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2783 break;
2784 case IOPRIO_CLASS_IDLE:
2785 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2786 cfqq->ioprio = 7;
2787 cfq_clear_cfqq_idle_window(cfqq);
2788 break;
2789 }
2790
2791 /*
2792 * keep track of original prio settings in case we have to temporarily
2793 * elevate the priority of this queue
2794 */
2795 cfqq->org_ioprio = cfqq->ioprio;
2796 cfqq->org_ioprio_class = cfqq->ioprio_class;
2797 cfq_clear_cfqq_prio_changed(cfqq);
2798}
2799
2800static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2801{
2802 struct cfq_data *cfqd = cic_to_cfqd(cic);
2803 struct cfq_queue *cfqq;
2804 unsigned long flags;
2805
2806 if (unlikely(!cfqd))
2807 return;
2808
2809 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2810
2811 cfqq = cic->cfqq[BLK_RW_ASYNC];
2812 if (cfqq) {
2813 struct cfq_queue *new_cfqq;
2814 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2815 GFP_ATOMIC);
2816 if (new_cfqq) {
2817 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2818 cfq_put_queue(cfqq);
2819 }
2820 }
2821
2822 cfqq = cic->cfqq[BLK_RW_SYNC];
2823 if (cfqq)
2824 cfq_mark_cfqq_prio_changed(cfqq);
2825
2826 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2827}
2828
2829static void cfq_ioc_set_ioprio(struct io_context *ioc)
2830{
2831 call_for_each_cic(ioc, changed_ioprio);
2832 ioc->ioprio_changed = 0;
2833}
2834
2835static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2836 pid_t pid, bool is_sync)
2837{
2838 RB_CLEAR_NODE(&cfqq->rb_node);
2839 RB_CLEAR_NODE(&cfqq->p_node);
2840 INIT_LIST_HEAD(&cfqq->fifo);
2841
2842 cfqq->ref = 0;
2843 cfqq->cfqd = cfqd;
2844
2845 cfq_mark_cfqq_prio_changed(cfqq);
2846
2847 if (is_sync) {
2848 if (!cfq_class_idle(cfqq))
2849 cfq_mark_cfqq_idle_window(cfqq);
2850 cfq_mark_cfqq_sync(cfqq);
2851 }
2852 cfqq->pid = pid;
2853}
2854
2855#ifdef CONFIG_CFQ_GROUP_IOSCHED
2856static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2857{
2858 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2859 struct cfq_data *cfqd = cic_to_cfqd(cic);
2860 unsigned long flags;
2861 struct request_queue *q;
2862
2863 if (unlikely(!cfqd))
2864 return;
2865
2866 q = cfqd->queue;
2867
2868 spin_lock_irqsave(q->queue_lock, flags);
2869
2870 if (sync_cfqq) {
2871 /*
2872 * Drop reference to sync queue. A new sync queue will be
2873 * assigned in new group upon arrival of a fresh request.
2874 */
2875 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2876 cic_set_cfqq(cic, NULL, 1);
2877 cfq_put_queue(sync_cfqq);
2878 }
2879
2880 spin_unlock_irqrestore(q->queue_lock, flags);
2881}
2882
2883static void cfq_ioc_set_cgroup(struct io_context *ioc)
2884{
2885 call_for_each_cic(ioc, changed_cgroup);
2886 ioc->cgroup_changed = 0;
2887}
2888#endif /* CONFIG_CFQ_GROUP_IOSCHED */
2889
2890static struct cfq_queue *
2891cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2892 struct io_context *ioc, gfp_t gfp_mask)
2893{
2894 struct cfq_queue *cfqq, *new_cfqq = NULL;
2895 struct cfq_io_context *cic;
2896 struct cfq_group *cfqg;
2897
2898retry:
2899 cfqg = cfq_get_cfqg(cfqd, 1);
2900 cic = cfq_cic_lookup(cfqd, ioc);
2901 /* cic always exists here */
2902 cfqq = cic_to_cfqq(cic, is_sync);
2903
2904 /*
2905 * Always try a new alloc if we fell back to the OOM cfqq
2906 * originally, since it should just be a temporary situation.
2907 */
2908 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2909 cfqq = NULL;
2910 if (new_cfqq) {
2911 cfqq = new_cfqq;
2912 new_cfqq = NULL;
2913 } else if (gfp_mask & __GFP_WAIT) {
2914 spin_unlock_irq(cfqd->queue->queue_lock);
2915 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2916 gfp_mask | __GFP_ZERO,
2917 cfqd->queue->node);
2918 spin_lock_irq(cfqd->queue->queue_lock);
2919 if (new_cfqq)
2920 goto retry;
2921 } else {
2922 cfqq = kmem_cache_alloc_node(cfq_pool,
2923 gfp_mask | __GFP_ZERO,
2924 cfqd->queue->node);
2925 }
2926
2927 if (cfqq) {
2928 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2929 cfq_init_prio_data(cfqq, ioc);
2930 cfq_link_cfqq_cfqg(cfqq, cfqg);
2931 cfq_log_cfqq(cfqd, cfqq, "alloced");
2932 } else
2933 cfqq = &cfqd->oom_cfqq;
2934 }
2935
2936 if (new_cfqq)
2937 kmem_cache_free(cfq_pool, new_cfqq);
2938
2939 return cfqq;
2940}
2941
2942static struct cfq_queue **
2943cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2944{
2945 switch (ioprio_class) {
2946 case IOPRIO_CLASS_RT:
2947 return &cfqd->async_cfqq[0][ioprio];
2948 case IOPRIO_CLASS_BE:
2949 return &cfqd->async_cfqq[1][ioprio];
2950 case IOPRIO_CLASS_IDLE:
2951 return &cfqd->async_idle_cfqq;
2952 default:
2953 BUG();
2954 }
2955}
2956
2957static struct cfq_queue *
2958cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2959 gfp_t gfp_mask)
2960{
2961 const int ioprio = task_ioprio(ioc);
2962 const int ioprio_class = task_ioprio_class(ioc);
2963 struct cfq_queue **async_cfqq = NULL;
2964 struct cfq_queue *cfqq = NULL;
2965
2966 if (!is_sync) {
2967 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2968 cfqq = *async_cfqq;
2969 }
2970
2971 if (!cfqq)
2972 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2973
2974 /*
2975 * pin the queue now that it's allocated, scheduler exit will prune it
2976 */
2977 if (!is_sync && !(*async_cfqq)) {
2978 cfqq->ref++;
2979 *async_cfqq = cfqq;
2980 }
2981
2982 cfqq->ref++;
2983 return cfqq;
2984}
2985
2986/*
2987 * We drop cfq io contexts lazily, so we may find a dead one.
2988 */
2989static void
2990cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2991 struct cfq_io_context *cic)
2992{
2993 unsigned long flags;
2994
2995 WARN_ON(!list_empty(&cic->queue_list));
2996 BUG_ON(cic->key != cfqd_dead_key(cfqd));
2997
2998 spin_lock_irqsave(&ioc->lock, flags);
2999
3000 BUG_ON(ioc->ioc_data == cic);
3001
3002 radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
3003 hlist_del_rcu(&cic->cic_list);
3004 spin_unlock_irqrestore(&ioc->lock, flags);
3005
3006 cfq_cic_free(cic);
3007}
3008
3009static struct cfq_io_context *
3010cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
3011{
3012 struct cfq_io_context *cic;
3013 unsigned long flags;
3014
3015 if (unlikely(!ioc))
3016 return NULL;
3017
3018 rcu_read_lock();
3019
3020 /*
3021 * we maintain a last-hit cache, to avoid browsing over the tree
3022 */
3023 cic = rcu_dereference(ioc->ioc_data);
3024 if (cic && cic->key == cfqd) {
3025 rcu_read_unlock();
3026 return cic;
3027 }
3028
3029 do {
3030 cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
3031 rcu_read_unlock();
3032 if (!cic)
3033 break;
3034 if (unlikely(cic->key != cfqd)) {
3035 cfq_drop_dead_cic(cfqd, ioc, cic);
3036 rcu_read_lock();
3037 continue;
3038 }
3039
3040 spin_lock_irqsave(&ioc->lock, flags);
3041 rcu_assign_pointer(ioc->ioc_data, cic);
3042 spin_unlock_irqrestore(&ioc->lock, flags);
3043 break;
3044 } while (1);
3045
3046 return cic;
3047}
3048
3049/*
3050 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3051 * the process specific cfq io context when entered from the block layer.
3052 * Also adds the cic to a per-cfqd list, used when this queue is removed.
3053 */
3054static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
3055 struct cfq_io_context *cic, gfp_t gfp_mask)
3056{
3057 unsigned long flags;
3058 int ret;
3059
3060 ret = radix_tree_preload(gfp_mask);
3061 if (!ret) {
3062 cic->ioc = ioc;
3063 cic->key = cfqd;
3064
3065 spin_lock_irqsave(&ioc->lock, flags);
3066 ret = radix_tree_insert(&ioc->radix_root,
3067 cfqd->cic_index, cic);
3068 if (!ret)
3069 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
3070 spin_unlock_irqrestore(&ioc->lock, flags);
3071
3072 radix_tree_preload_end();
3073
3074 if (!ret) {
3075 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3076 list_add(&cic->queue_list, &cfqd->cic_list);
3077 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3078 }
3079 }
3080
3081 if (ret)
3082 printk(KERN_ERR "cfq: cic link failed!\n");
3083
3084 return ret;
3085}
3086
3087/*
3088 * Setup general io context and cfq io context. There can be several cfq
3089 * io contexts per general io context, if this process is doing io to more
3090 * than one device managed by cfq.
3091 */
3092static struct cfq_io_context *
3093cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
3094{
3095 struct io_context *ioc = NULL;
3096 struct cfq_io_context *cic;
3097
3098 might_sleep_if(gfp_mask & __GFP_WAIT);
3099
3100 ioc = get_io_context(gfp_mask, cfqd->queue->node);
3101 if (!ioc)
3102 return NULL;
3103
3104 cic = cfq_cic_lookup(cfqd, ioc);
3105 if (cic)
3106 goto out;
3107
3108 cic = cfq_alloc_io_context(cfqd, gfp_mask);
3109 if (cic == NULL)
3110 goto err;
3111
3112 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3113 goto err_free;
3114
3115out:
3116 smp_read_barrier_depends();
3117 if (unlikely(ioc->ioprio_changed))
3118 cfq_ioc_set_ioprio(ioc);
3119
3120#ifdef CONFIG_CFQ_GROUP_IOSCHED
3121 if (unlikely(ioc->cgroup_changed))
3122 cfq_ioc_set_cgroup(ioc);
3123#endif
3124 return cic;
3125err_free:
3126 cfq_cic_free(cic);
3127err:
3128 put_io_context(ioc);
3129 return NULL;
3130}
3131
3132static void
3133cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
3134{
3135 unsigned long elapsed = jiffies - cic->last_end_request;
3136 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
3137
3138 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3139 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3140 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3141}
3142
3143static void
3144cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3145 struct request *rq)
3146{
3147 sector_t sdist = 0;
3148 sector_t n_sec = blk_rq_sectors(rq);
3149 if (cfqq->last_request_pos) {
3150 if (cfqq->last_request_pos < blk_rq_pos(rq))
3151 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3152 else
3153 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3154 }
3155
3156 cfqq->seek_history <<= 1;
3157 if (blk_queue_nonrot(cfqd->queue))
3158 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3159 else
3160 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3161}
3162
3163/*
3164 * Disable idle window if the process thinks too long or seeks so much that
3165 * it doesn't matter
3166 */
3167static void
3168cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3169 struct cfq_io_context *cic)
3170{
3171 int old_idle, enable_idle;
3172
3173 /*
3174 * Don't idle for async or idle io prio class
3175 */
3176 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3177 return;
3178
3179 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3180
3181 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3182 cfq_mark_cfqq_deep(cfqq);
3183
3184 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3185 enable_idle = 0;
3186 else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3187 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3188 enable_idle = 0;
3189 else if (sample_valid(cic->ttime_samples)) {
3190 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3191 enable_idle = 0;
3192 else
3193 enable_idle = 1;
3194 }
3195
3196 if (old_idle != enable_idle) {
3197 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3198 if (enable_idle)
3199 cfq_mark_cfqq_idle_window(cfqq);
3200 else
3201 cfq_clear_cfqq_idle_window(cfqq);
3202 }
3203}
3204
3205/*
3206 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3207 * no or if we aren't sure, a 1 will cause a preempt.
3208 */
3209static bool
3210cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3211 struct request *rq)
3212{
3213 struct cfq_queue *cfqq;
3214
3215 cfqq = cfqd->active_queue;
3216 if (!cfqq)
3217 return false;
3218
3219 if (cfq_class_idle(new_cfqq))
3220 return false;
3221
3222 if (cfq_class_idle(cfqq))
3223 return true;
3224
3225 /*
3226 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3227 */
3228 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3229 return false;
3230
3231 /*
3232 * if the new request is sync, but the currently running queue is
3233 * not, let the sync request have priority.
3234 */
3235 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3236 return true;
3237
3238 if (new_cfqq->cfqg != cfqq->cfqg)
3239 return false;
3240
3241 if (cfq_slice_used(cfqq))
3242 return true;
3243
3244 /* Allow preemption only if we are idling on sync-noidle tree */
3245 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3246 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3247 new_cfqq->service_tree->count == 2 &&
3248 RB_EMPTY_ROOT(&cfqq->sort_list))
3249 return true;
3250
3251 /*
3252 * So both queues are sync. Let the new request get disk time if
3253 * it's a metadata request and the current queue is doing regular IO.
3254 */
3255 if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
3256 return true;
3257
3258 /*
3259 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3260 */
3261 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3262 return true;
3263
3264 /* An idle queue should not be idle now for some reason */
3265 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3266 return true;
3267
3268 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3269 return false;
3270
3271 /*
3272 * if this request is as-good as one we would expect from the
3273 * current cfqq, let it preempt
3274 */
3275 if (cfq_rq_close(cfqd, cfqq, rq))
3276 return true;
3277
3278 return false;
3279}
3280
3281/*
3282 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3283 * let it have half of its nominal slice.
3284 */
3285static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3286{
3287 struct cfq_queue *old_cfqq = cfqd->active_queue;
3288
3289 cfq_log_cfqq(cfqd, cfqq, "preempt");
3290 cfq_slice_expired(cfqd, 1);
3291
3292 /*
3293 * workload type is changed, don't save slice, otherwise preempt
3294 * doesn't happen
3295 */
3296 if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
3297 cfqq->cfqg->saved_workload_slice = 0;
3298
3299 /*
3300 * Put the new queue at the front of the of the current list,
3301 * so we know that it will be selected next.
3302 */
3303 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3304
3305 cfq_service_tree_add(cfqd, cfqq, 1);
3306
3307 cfqq->slice_end = 0;
3308 cfq_mark_cfqq_slice_new(cfqq);
3309}
3310
3311/*
3312 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3313 * something we should do about it
3314 */
3315static void
3316cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3317 struct request *rq)
3318{
3319 struct cfq_io_context *cic = RQ_CIC(rq);
3320
3321 cfqd->rq_queued++;
3322 if (rq->cmd_flags & REQ_META)
3323 cfqq->meta_pending++;
3324
3325 cfq_update_io_thinktime(cfqd, cic);
3326 cfq_update_io_seektime(cfqd, cfqq, rq);
3327 cfq_update_idle_window(cfqd, cfqq, cic);
3328
3329 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3330
3331 if (cfqq == cfqd->active_queue) {
3332 /*
3333 * Remember that we saw a request from this process, but
3334 * don't start queuing just yet. Otherwise we risk seeing lots
3335 * of tiny requests, because we disrupt the normal plugging
3336 * and merging. If the request is already larger than a single
3337 * page, let it rip immediately. For that case we assume that
3338 * merging is already done. Ditto for a busy system that
3339 * has other work pending, don't risk delaying until the
3340 * idle timer unplug to continue working.
3341 */
3342 if (cfq_cfqq_wait_request(cfqq)) {
3343 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3344 cfqd->busy_queues > 1) {
3345 cfq_del_timer(cfqd, cfqq);
3346 cfq_clear_cfqq_wait_request(cfqq);
3347 __blk_run_queue(cfqd->queue);
3348 } else {
3349 cfq_blkiocg_update_idle_time_stats(
3350 &cfqq->cfqg->blkg);
3351 cfq_mark_cfqq_must_dispatch(cfqq);
3352 }
3353 }
3354 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3355 /*
3356 * not the active queue - expire current slice if it is
3357 * idle and has expired it's mean thinktime or this new queue
3358 * has some old slice time left and is of higher priority or
3359 * this new queue is RT and the current one is BE
3360 */
3361 cfq_preempt_queue(cfqd, cfqq);
3362 __blk_run_queue(cfqd->queue);
3363 }
3364}
3365
3366static void cfq_insert_request(struct request_queue *q, struct request *rq)
3367{
3368 struct cfq_data *cfqd = q->elevator->elevator_data;
3369 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3370
3371 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3372 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3373
3374 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3375 list_add_tail(&rq->queuelist, &cfqq->fifo);
3376 cfq_add_rq_rb(rq);
3377 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3378 &cfqd->serving_group->blkg, rq_data_dir(rq),
3379 rq_is_sync(rq));
3380 cfq_rq_enqueued(cfqd, cfqq, rq);
3381}
3382
3383/*
3384 * Update hw_tag based on peak queue depth over 50 samples under
3385 * sufficient load.
3386 */
3387static void cfq_update_hw_tag(struct cfq_data *cfqd)
3388{
3389 struct cfq_queue *cfqq = cfqd->active_queue;
3390
3391 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3392 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3393
3394 if (cfqd->hw_tag == 1)
3395 return;
3396
3397 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3398 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3399 return;
3400
3401 /*
3402 * If active queue hasn't enough requests and can idle, cfq might not
3403 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3404 * case
3405 */
3406 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3407 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3408 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3409 return;
3410
3411 if (cfqd->hw_tag_samples++ < 50)
3412 return;
3413
3414 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3415 cfqd->hw_tag = 1;
3416 else
3417 cfqd->hw_tag = 0;
3418}
3419
3420static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3421{
3422 struct cfq_io_context *cic = cfqd->active_cic;
3423
3424 /* If there are other queues in the group, don't wait */
3425 if (cfqq->cfqg->nr_cfqq > 1)
3426 return false;
3427
3428 if (cfq_slice_used(cfqq))
3429 return true;
3430
3431 /* if slice left is less than think time, wait busy */
3432 if (cic && sample_valid(cic->ttime_samples)
3433 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3434 return true;
3435
3436 /*
3437 * If think times is less than a jiffy than ttime_mean=0 and above
3438 * will not be true. It might happen that slice has not expired yet
3439 * but will expire soon (4-5 ns) during select_queue(). To cover the
3440 * case where think time is less than a jiffy, mark the queue wait
3441 * busy if only 1 jiffy is left in the slice.
3442 */
3443 if (cfqq->slice_end - jiffies == 1)
3444 return true;
3445
3446 return false;
3447}
3448
3449static void cfq_completed_request(struct request_queue *q, struct request *rq)
3450{
3451 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3452 struct cfq_data *cfqd = cfqq->cfqd;
3453 const int sync = rq_is_sync(rq);
3454 unsigned long now;
3455
3456 now = jiffies;
3457 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3458 !!(rq->cmd_flags & REQ_NOIDLE));
3459
3460 cfq_update_hw_tag(cfqd);
3461
3462 WARN_ON(!cfqd->rq_in_driver);
3463 WARN_ON(!cfqq->dispatched);
3464 cfqd->rq_in_driver--;
3465 cfqq->dispatched--;
3466 (RQ_CFQG(rq))->dispatched--;
3467 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3468 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3469 rq_data_dir(rq), rq_is_sync(rq));
3470
3471 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3472
3473 if (sync) {
3474 RQ_CIC(rq)->last_end_request = now;
3475 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3476 cfqd->last_delayed_sync = now;
3477 }
3478
3479 /*
3480 * If this is the active queue, check if it needs to be expired,
3481 * or if we want to idle in case it has no pending requests.
3482 */
3483 if (cfqd->active_queue == cfqq) {
3484 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3485
3486 if (cfq_cfqq_slice_new(cfqq)) {
3487 cfq_set_prio_slice(cfqd, cfqq);
3488 cfq_clear_cfqq_slice_new(cfqq);
3489 }
3490
3491 /*
3492 * Should we wait for next request to come in before we expire
3493 * the queue.
3494 */
3495 if (cfq_should_wait_busy(cfqd, cfqq)) {
3496 unsigned long extend_sl = cfqd->cfq_slice_idle;
3497 if (!cfqd->cfq_slice_idle)
3498 extend_sl = cfqd->cfq_group_idle;
3499 cfqq->slice_end = jiffies + extend_sl;
3500 cfq_mark_cfqq_wait_busy(cfqq);
3501 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3502 }
3503
3504 /*
3505 * Idling is not enabled on:
3506 * - expired queues
3507 * - idle-priority queues
3508 * - async queues
3509 * - queues with still some requests queued
3510 * - when there is a close cooperator
3511 */
3512 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3513 cfq_slice_expired(cfqd, 1);
3514 else if (sync && cfqq_empty &&
3515 !cfq_close_cooperator(cfqd, cfqq)) {
3516 cfq_arm_slice_timer(cfqd);
3517 }
3518 }
3519
3520 if (!cfqd->rq_in_driver)
3521 cfq_schedule_dispatch(cfqd);
3522}
3523
3524/*
3525 * we temporarily boost lower priority queues if they are holding fs exclusive
3526 * resources. they are boosted to normal prio (CLASS_BE/4)
3527 */
3528static void cfq_prio_boost(struct cfq_queue *cfqq)
3529{
3530 if (has_fs_excl()) {
3531 /*
3532 * boost idle prio on transactions that would lock out other
3533 * users of the filesystem
3534 */
3535 if (cfq_class_idle(cfqq))
3536 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3537 if (cfqq->ioprio > IOPRIO_NORM)
3538 cfqq->ioprio = IOPRIO_NORM;
3539 } else {
3540 /*
3541 * unboost the queue (if needed)
3542 */
3543 cfqq->ioprio_class = cfqq->org_ioprio_class;
3544 cfqq->ioprio = cfqq->org_ioprio;
3545 }
3546}
3547
3548static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3549{
3550 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3551 cfq_mark_cfqq_must_alloc_slice(cfqq);
3552 return ELV_MQUEUE_MUST;
3553 }
3554
3555 return ELV_MQUEUE_MAY;
3556}
3557
3558static int cfq_may_queue(struct request_queue *q, int rw)
3559{
3560 struct cfq_data *cfqd = q->elevator->elevator_data;
3561 struct task_struct *tsk = current;
3562 struct cfq_io_context *cic;
3563 struct cfq_queue *cfqq;
3564
3565 /*
3566 * don't force setup of a queue from here, as a call to may_queue
3567 * does not necessarily imply that a request actually will be queued.
3568 * so just lookup a possibly existing queue, or return 'may queue'
3569 * if that fails
3570 */
3571 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3572 if (!cic)
3573 return ELV_MQUEUE_MAY;
3574
3575 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3576 if (cfqq) {
3577 cfq_init_prio_data(cfqq, cic->ioc);
3578 cfq_prio_boost(cfqq);
3579
3580 return __cfq_may_queue(cfqq);
3581 }
3582
3583 return ELV_MQUEUE_MAY;
3584}
3585
3586/*
3587 * queue lock held here
3588 */
3589static void cfq_put_request(struct request *rq)
3590{
3591 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3592
3593 if (cfqq) {
3594 const int rw = rq_data_dir(rq);
3595
3596 BUG_ON(!cfqq->allocated[rw]);
3597 cfqq->allocated[rw]--;
3598
3599 put_io_context(RQ_CIC(rq)->ioc);
3600
3601 rq->elevator_private = NULL;
3602 rq->elevator_private2 = NULL;
3603
3604 /* Put down rq reference on cfqg */
3605 cfq_put_cfqg(RQ_CFQG(rq));
3606 rq->elevator_private3 = NULL;
3607
3608 cfq_put_queue(cfqq);
3609 }
3610}
3611
3612static struct cfq_queue *
3613cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3614 struct cfq_queue *cfqq)
3615{
3616 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3617 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3618 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3619 cfq_put_queue(cfqq);
3620 return cic_to_cfqq(cic, 1);
3621}
3622
3623/*
3624 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3625 * was the last process referring to said cfqq.
3626 */
3627static struct cfq_queue *
3628split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3629{
3630 if (cfqq_process_refs(cfqq) == 1) {
3631 cfqq->pid = current->pid;
3632 cfq_clear_cfqq_coop(cfqq);
3633 cfq_clear_cfqq_split_coop(cfqq);
3634 return cfqq;
3635 }
3636
3637 cic_set_cfqq(cic, NULL, 1);
3638
3639 cfq_put_cooperator(cfqq);
3640
3641 cfq_put_queue(cfqq);
3642 return NULL;
3643}
3644/*
3645 * Allocate cfq data structures associated with this request.
3646 */
3647static int
3648cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3649{
3650 struct cfq_data *cfqd = q->elevator->elevator_data;
3651 struct cfq_io_context *cic;
3652 const int rw = rq_data_dir(rq);
3653 const bool is_sync = rq_is_sync(rq);
3654 struct cfq_queue *cfqq;
3655 unsigned long flags;
3656
3657 might_sleep_if(gfp_mask & __GFP_WAIT);
3658
3659 cic = cfq_get_io_context(cfqd, gfp_mask);
3660
3661 spin_lock_irqsave(q->queue_lock, flags);
3662
3663 if (!cic)
3664 goto queue_fail;
3665
3666new_queue:
3667 cfqq = cic_to_cfqq(cic, is_sync);
3668 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3669 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3670 cic_set_cfqq(cic, cfqq, is_sync);
3671 } else {
3672 /*
3673 * If the queue was seeky for too long, break it apart.
3674 */
3675 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3676 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3677 cfqq = split_cfqq(cic, cfqq);
3678 if (!cfqq)
3679 goto new_queue;
3680 }
3681
3682 /*
3683 * Check to see if this queue is scheduled to merge with
3684 * another, closely cooperating queue. The merging of
3685 * queues happens here as it must be done in process context.
3686 * The reference on new_cfqq was taken in merge_cfqqs.
3687 */
3688 if (cfqq->new_cfqq)
3689 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3690 }
3691
3692 cfqq->allocated[rw]++;
3693 cfqq->ref++;
3694 rq->elevator_private = cic;
3695 rq->elevator_private2 = cfqq;
3696 rq->elevator_private3 = cfq_ref_get_cfqg(cfqq->cfqg);
3697
3698 spin_unlock_irqrestore(q->queue_lock, flags);
3699
3700 return 0;
3701
3702queue_fail:
3703 if (cic)
3704 put_io_context(cic->ioc);
3705
3706 cfq_schedule_dispatch(cfqd);
3707 spin_unlock_irqrestore(q->queue_lock, flags);
3708 cfq_log(cfqd, "set_request fail");
3709 return 1;
3710}
3711
3712static void cfq_kick_queue(struct work_struct *work)
3713{
3714 struct cfq_data *cfqd =
3715 container_of(work, struct cfq_data, unplug_work);
3716 struct request_queue *q = cfqd->queue;
3717
3718 spin_lock_irq(q->queue_lock);
3719 __blk_run_queue(cfqd->queue);
3720 spin_unlock_irq(q->queue_lock);
3721}
3722
3723/*
3724 * Timer running if the active_queue is currently idling inside its time slice
3725 */
3726static void cfq_idle_slice_timer(unsigned long data)
3727{
3728 struct cfq_data *cfqd = (struct cfq_data *) data;
3729 struct cfq_queue *cfqq;
3730 unsigned long flags;
3731 int timed_out = 1;
3732
3733 cfq_log(cfqd, "idle timer fired");
3734
3735 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3736
3737 cfqq = cfqd->active_queue;
3738 if (cfqq) {
3739 timed_out = 0;
3740
3741 /*
3742 * We saw a request before the queue expired, let it through
3743 */
3744 if (cfq_cfqq_must_dispatch(cfqq))
3745 goto out_kick;
3746
3747 /*
3748 * expired
3749 */
3750 if (cfq_slice_used(cfqq))
3751 goto expire;
3752
3753 /*
3754 * only expire and reinvoke request handler, if there are
3755 * other queues with pending requests
3756 */
3757 if (!cfqd->busy_queues)
3758 goto out_cont;
3759
3760 /*
3761 * not expired and it has a request pending, let it dispatch
3762 */
3763 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3764 goto out_kick;
3765
3766 /*
3767 * Queue depth flag is reset only when the idle didn't succeed
3768 */
3769 cfq_clear_cfqq_deep(cfqq);
3770 }
3771expire:
3772 cfq_slice_expired(cfqd, timed_out);
3773out_kick:
3774 cfq_schedule_dispatch(cfqd);
3775out_cont:
3776 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3777}
3778
3779static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3780{
3781 del_timer_sync(&cfqd->idle_slice_timer);
3782 cancel_work_sync(&cfqd->unplug_work);
3783}
3784
3785static void cfq_put_async_queues(struct cfq_data *cfqd)
3786{
3787 int i;
3788
3789 for (i = 0; i < IOPRIO_BE_NR; i++) {
3790 if (cfqd->async_cfqq[0][i])
3791 cfq_put_queue(cfqd->async_cfqq[0][i]);
3792 if (cfqd->async_cfqq[1][i])
3793 cfq_put_queue(cfqd->async_cfqq[1][i]);
3794 }
3795
3796 if (cfqd->async_idle_cfqq)
3797 cfq_put_queue(cfqd->async_idle_cfqq);
3798}
3799
3800static void cfq_cfqd_free(struct rcu_head *head)
3801{
3802 kfree(container_of(head, struct cfq_data, rcu));
3803}
3804
3805static void cfq_exit_queue(struct elevator_queue *e)
3806{
3807 struct cfq_data *cfqd = e->elevator_data;
3808 struct request_queue *q = cfqd->queue;
3809
3810 cfq_shutdown_timer_wq(cfqd);
3811
3812 spin_lock_irq(q->queue_lock);
3813
3814 if (cfqd->active_queue)
3815 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3816
3817 while (!list_empty(&cfqd->cic_list)) {
3818 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3819 struct cfq_io_context,
3820 queue_list);
3821
3822 __cfq_exit_single_io_context(cfqd, cic);
3823 }
3824
3825 cfq_put_async_queues(cfqd);
3826 cfq_release_cfq_groups(cfqd);
3827 cfq_blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3828
3829 spin_unlock_irq(q->queue_lock);
3830
3831 cfq_shutdown_timer_wq(cfqd);
3832
3833 spin_lock(&cic_index_lock);
3834 ida_remove(&cic_index_ida, cfqd->cic_index);
3835 spin_unlock(&cic_index_lock);
3836
3837 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3838 call_rcu(&cfqd->rcu, cfq_cfqd_free);
3839}
3840
3841static int cfq_alloc_cic_index(void)
3842{
3843 int index, error;
3844
3845 do {
3846 if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3847 return -ENOMEM;
3848
3849 spin_lock(&cic_index_lock);
3850 error = ida_get_new(&cic_index_ida, &index);
3851 spin_unlock(&cic_index_lock);
3852 if (error && error != -EAGAIN)
3853 return error;
3854 } while (error);
3855
3856 return index;
3857}
3858
3859static void *cfq_init_queue(struct request_queue *q)
3860{
3861 struct cfq_data *cfqd;
3862 int i, j;
3863 struct cfq_group *cfqg;
3864 struct cfq_rb_root *st;
3865
3866 i = cfq_alloc_cic_index();
3867 if (i < 0)
3868 return NULL;
3869
3870 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3871 if (!cfqd)
3872 return NULL;
3873
3874 /*
3875 * Don't need take queue_lock in the routine, since we are
3876 * initializing the ioscheduler, and nobody is using cfqd
3877 */
3878 cfqd->cic_index = i;
3879
3880 /* Init root service tree */
3881 cfqd->grp_service_tree = CFQ_RB_ROOT;
3882
3883 /* Init root group */
3884 cfqg = &cfqd->root_group;
3885 for_each_cfqg_st(cfqg, i, j, st)
3886 *st = CFQ_RB_ROOT;
3887 RB_CLEAR_NODE(&cfqg->rb_node);
3888
3889 /* Give preference to root group over other groups */
3890 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3891
3892#ifdef CONFIG_CFQ_GROUP_IOSCHED
3893 /*
3894 * Take a reference to root group which we never drop. This is just
3895 * to make sure that cfq_put_cfqg() does not try to kfree root group
3896 */
3897 cfqg->ref = 1;
3898 rcu_read_lock();
3899 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
3900 (void *)cfqd, 0);
3901 rcu_read_unlock();
3902#endif
3903 /*
3904 * Not strictly needed (since RB_ROOT just clears the node and we
3905 * zeroed cfqd on alloc), but better be safe in case someone decides
3906 * to add magic to the rb code
3907 */
3908 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3909 cfqd->prio_trees[i] = RB_ROOT;
3910
3911 /*
3912 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3913 * Grab a permanent reference to it, so that the normal code flow
3914 * will not attempt to free it.
3915 */
3916 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3917 cfqd->oom_cfqq.ref++;
3918 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3919
3920 INIT_LIST_HEAD(&cfqd->cic_list);
3921
3922 cfqd->queue = q;
3923
3924 init_timer(&cfqd->idle_slice_timer);
3925 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3926 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3927
3928 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3929
3930 cfqd->cfq_quantum = cfq_quantum;
3931 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3932 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3933 cfqd->cfq_back_max = cfq_back_max;
3934 cfqd->cfq_back_penalty = cfq_back_penalty;
3935 cfqd->cfq_slice[0] = cfq_slice_async;
3936 cfqd->cfq_slice[1] = cfq_slice_sync;
3937 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3938 cfqd->cfq_slice_idle = cfq_slice_idle;
3939 cfqd->cfq_group_idle = cfq_group_idle;
3940 cfqd->cfq_latency = 1;
3941 cfqd->cfq_group_isolation = 0;
3942 cfqd->hw_tag = -1;
3943 /*
3944 * we optimistically start assuming sync ops weren't delayed in last
3945 * second, in order to have larger depth for async operations.
3946 */
3947 cfqd->last_delayed_sync = jiffies - HZ;
3948 return cfqd;
3949}
3950
3951static void cfq_slab_kill(void)
3952{
3953 /*
3954 * Caller already ensured that pending RCU callbacks are completed,
3955 * so we should have no busy allocations at this point.
3956 */
3957 if (cfq_pool)
3958 kmem_cache_destroy(cfq_pool);
3959 if (cfq_ioc_pool)
3960 kmem_cache_destroy(cfq_ioc_pool);
3961}
3962
3963static int __init cfq_slab_setup(void)
3964{
3965 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3966 if (!cfq_pool)
3967 goto fail;
3968
3969 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3970 if (!cfq_ioc_pool)
3971 goto fail;
3972
3973 return 0;
3974fail:
3975 cfq_slab_kill();
3976 return -ENOMEM;
3977}
3978
3979/*
3980 * sysfs parts below -->
3981 */
3982static ssize_t
3983cfq_var_show(unsigned int var, char *page)
3984{
3985 return sprintf(page, "%d\n", var);
3986}
3987
3988static ssize_t
3989cfq_var_store(unsigned int *var, const char *page, size_t count)
3990{
3991 char *p = (char *) page;
3992
3993 *var = simple_strtoul(p, &p, 10);
3994 return count;
3995}
3996
3997#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3998static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3999{ \
4000 struct cfq_data *cfqd = e->elevator_data; \
4001 unsigned int __data = __VAR; \
4002 if (__CONV) \
4003 __data = jiffies_to_msecs(__data); \
4004 return cfq_var_show(__data, (page)); \
4005}
4006SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4007SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4008SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4009SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4010SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4011SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4012SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4013SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4014SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4015SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4016SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4017SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
4018#undef SHOW_FUNCTION
4019
4020#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4021static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4022{ \
4023 struct cfq_data *cfqd = e->elevator_data; \
4024 unsigned int __data; \
4025 int ret = cfq_var_store(&__data, (page), count); \
4026 if (__data < (MIN)) \
4027 __data = (MIN); \
4028 else if (__data > (MAX)) \
4029 __data = (MAX); \
4030 if (__CONV) \
4031 *(__PTR) = msecs_to_jiffies(__data); \
4032 else \
4033 *(__PTR) = __data; \
4034 return ret; \
4035}
4036STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4037STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4038 UINT_MAX, 1);
4039STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4040 UINT_MAX, 1);
4041STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4042STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4043 UINT_MAX, 0);
4044STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4045STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4046STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4047STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4048STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4049 UINT_MAX, 0);
4050STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4051STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
4052#undef STORE_FUNCTION
4053
4054#define CFQ_ATTR(name) \
4055 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4056
4057static struct elv_fs_entry cfq_attrs[] = {
4058 CFQ_ATTR(quantum),
4059 CFQ_ATTR(fifo_expire_sync),
4060 CFQ_ATTR(fifo_expire_async),
4061 CFQ_ATTR(back_seek_max),
4062 CFQ_ATTR(back_seek_penalty),
4063 CFQ_ATTR(slice_sync),
4064 CFQ_ATTR(slice_async),
4065 CFQ_ATTR(slice_async_rq),
4066 CFQ_ATTR(slice_idle),
4067 CFQ_ATTR(group_idle),
4068 CFQ_ATTR(low_latency),
4069 CFQ_ATTR(group_isolation),
4070 __ATTR_NULL
4071};
4072
4073static struct elevator_type iosched_cfq = {
4074 .ops = {
4075 .elevator_merge_fn = cfq_merge,
4076 .elevator_merged_fn = cfq_merged_request,
4077 .elevator_merge_req_fn = cfq_merged_requests,
4078 .elevator_allow_merge_fn = cfq_allow_merge,
4079 .elevator_bio_merged_fn = cfq_bio_merged,
4080 .elevator_dispatch_fn = cfq_dispatch_requests,
4081 .elevator_add_req_fn = cfq_insert_request,
4082 .elevator_activate_req_fn = cfq_activate_request,
4083 .elevator_deactivate_req_fn = cfq_deactivate_request,
4084 .elevator_queue_empty_fn = cfq_queue_empty,
4085 .elevator_completed_req_fn = cfq_completed_request,
4086 .elevator_former_req_fn = elv_rb_former_request,
4087 .elevator_latter_req_fn = elv_rb_latter_request,
4088 .elevator_set_req_fn = cfq_set_request,
4089 .elevator_put_req_fn = cfq_put_request,
4090 .elevator_may_queue_fn = cfq_may_queue,
4091 .elevator_init_fn = cfq_init_queue,
4092 .elevator_exit_fn = cfq_exit_queue,
4093 .trim = cfq_free_io_context,
4094 },
4095 .elevator_attrs = cfq_attrs,
4096 .elevator_name = "cfq",
4097 .elevator_owner = THIS_MODULE,
4098};
4099
4100#ifdef CONFIG_CFQ_GROUP_IOSCHED
4101static struct blkio_policy_type blkio_policy_cfq = {
4102 .ops = {
4103 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
4104 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4105 },
4106 .plid = BLKIO_POLICY_PROP,
4107};
4108#else
4109static struct blkio_policy_type blkio_policy_cfq;
4110#endif
4111
4112static int __init cfq_init(void)
4113{
4114 /*
4115 * could be 0 on HZ < 1000 setups
4116 */
4117 if (!cfq_slice_async)
4118 cfq_slice_async = 1;
4119 if (!cfq_slice_idle)
4120 cfq_slice_idle = 1;
4121
4122#ifdef CONFIG_CFQ_GROUP_IOSCHED
4123 if (!cfq_group_idle)
4124 cfq_group_idle = 1;
4125#else
4126 cfq_group_idle = 0;
4127#endif
4128 if (cfq_slab_setup())
4129 return -ENOMEM;
4130
4131 elv_register(&iosched_cfq);
4132 blkio_policy_register(&blkio_policy_cfq);
4133
4134 return 0;
4135}
4136
4137static void __exit cfq_exit(void)
4138{
4139 DECLARE_COMPLETION_ONSTACK(all_gone);
4140 blkio_policy_unregister(&blkio_policy_cfq);
4141 elv_unregister(&iosched_cfq);
4142 ioc_gone = &all_gone;
4143 /* ioc_gone's update must be visible before reading ioc_count */
4144 smp_wmb();
4145
4146 /*
4147 * this also protects us from entering cfq_slab_kill() with
4148 * pending RCU callbacks
4149 */
4150 if (elv_ioc_count_read(cfq_ioc_count))
4151 wait_for_completion(&all_gone);
4152 ida_destroy(&cic_index_ida);
4153 cfq_slab_kill();
4154}
4155
4156module_init(cfq_init);
4157module_exit(cfq_exit);
4158
4159MODULE_AUTHOR("Jens Axboe");
4160MODULE_LICENSE("GPL");
4161MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");