blkio: Take care of cgroup deletion and cfq group reference counting
[linux-2.6-block.git] / block / cfq-iosched.c
... / ...
CommitLineData
1/*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
12#include <linux/jiffies.h>
13#include <linux/rbtree.h>
14#include <linux/ioprio.h>
15#include <linux/blktrace_api.h>
16#include "blk-cgroup.h"
17
18/*
19 * tunables
20 */
21/* max queue in one round of service */
22static const int cfq_quantum = 4;
23static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24/* maximum backwards seek, in KiB */
25static const int cfq_back_max = 16 * 1024;
26/* penalty of a backwards seek */
27static const int cfq_back_penalty = 2;
28static const int cfq_slice_sync = HZ / 10;
29static int cfq_slice_async = HZ / 25;
30static const int cfq_slice_async_rq = 2;
31static int cfq_slice_idle = HZ / 125;
32static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33static const int cfq_hist_divisor = 4;
34
35/*
36 * offset from end of service tree
37 */
38#define CFQ_IDLE_DELAY (HZ / 5)
39
40/*
41 * below this threshold, we consider thinktime immediate
42 */
43#define CFQ_MIN_TT (2)
44
45/*
46 * Allow merged cfqqs to perform this amount of seeky I/O before
47 * deciding to break the queues up again.
48 */
49#define CFQQ_COOP_TOUT (HZ)
50
51#define CFQ_SLICE_SCALE (5)
52#define CFQ_HW_QUEUE_MIN (5)
53#define CFQ_SERVICE_SHIFT 12
54
55#define RQ_CIC(rq) \
56 ((struct cfq_io_context *) (rq)->elevator_private)
57#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
58
59static struct kmem_cache *cfq_pool;
60static struct kmem_cache *cfq_ioc_pool;
61
62static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
63static struct completion *ioc_gone;
64static DEFINE_SPINLOCK(ioc_gone_lock);
65
66#define CFQ_PRIO_LISTS IOPRIO_BE_NR
67#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
68#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
69
70#define sample_valid(samples) ((samples) > 80)
71#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
72
73/*
74 * Most of our rbtree usage is for sorting with min extraction, so
75 * if we cache the leftmost node we don't have to walk down the tree
76 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
77 * move this into the elevator for the rq sorting as well.
78 */
79struct cfq_rb_root {
80 struct rb_root rb;
81 struct rb_node *left;
82 unsigned count;
83 u64 min_vdisktime;
84 struct rb_node *active;
85 unsigned total_weight;
86};
87#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
88
89/*
90 * Per process-grouping structure
91 */
92struct cfq_queue {
93 /* reference count */
94 atomic_t ref;
95 /* various state flags, see below */
96 unsigned int flags;
97 /* parent cfq_data */
98 struct cfq_data *cfqd;
99 /* service_tree member */
100 struct rb_node rb_node;
101 /* service_tree key */
102 unsigned long rb_key;
103 /* prio tree member */
104 struct rb_node p_node;
105 /* prio tree root we belong to, if any */
106 struct rb_root *p_root;
107 /* sorted list of pending requests */
108 struct rb_root sort_list;
109 /* if fifo isn't expired, next request to serve */
110 struct request *next_rq;
111 /* requests queued in sort_list */
112 int queued[2];
113 /* currently allocated requests */
114 int allocated[2];
115 /* fifo list of requests in sort_list */
116 struct list_head fifo;
117
118 /* time when queue got scheduled in to dispatch first request. */
119 unsigned long dispatch_start;
120 /* time when first request from queue completed and slice started. */
121 unsigned long slice_start;
122 unsigned long slice_end;
123 long slice_resid;
124 unsigned int slice_dispatch;
125
126 /* pending metadata requests */
127 int meta_pending;
128 /* number of requests that are on the dispatch list or inside driver */
129 int dispatched;
130
131 /* io prio of this group */
132 unsigned short ioprio, org_ioprio;
133 unsigned short ioprio_class, org_ioprio_class;
134
135 unsigned int seek_samples;
136 u64 seek_total;
137 sector_t seek_mean;
138 sector_t last_request_pos;
139 unsigned long seeky_start;
140
141 pid_t pid;
142
143 struct cfq_rb_root *service_tree;
144 struct cfq_queue *new_cfqq;
145 struct cfq_group *cfqg;
146};
147
148/*
149 * First index in the service_trees.
150 * IDLE is handled separately, so it has negative index
151 */
152enum wl_prio_t {
153 BE_WORKLOAD = 0,
154 RT_WORKLOAD = 1,
155 IDLE_WORKLOAD = 2,
156};
157
158/*
159 * Second index in the service_trees.
160 */
161enum wl_type_t {
162 ASYNC_WORKLOAD = 0,
163 SYNC_NOIDLE_WORKLOAD = 1,
164 SYNC_WORKLOAD = 2
165};
166
167/* This is per cgroup per device grouping structure */
168struct cfq_group {
169 /* group service_tree member */
170 struct rb_node rb_node;
171
172 /* group service_tree key */
173 u64 vdisktime;
174 unsigned int weight;
175 bool on_st;
176
177 /* number of cfqq currently on this group */
178 int nr_cfqq;
179
180 /* Per group busy queus average. Useful for workload slice calc. */
181 unsigned int busy_queues_avg[2];
182 /*
183 * rr lists of queues with requests, onle rr for each priority class.
184 * Counts are embedded in the cfq_rb_root
185 */
186 struct cfq_rb_root service_trees[2][3];
187 struct cfq_rb_root service_tree_idle;
188
189 unsigned long saved_workload_slice;
190 enum wl_type_t saved_workload;
191 enum wl_prio_t saved_serving_prio;
192 struct blkio_group blkg;
193#ifdef CONFIG_CFQ_GROUP_IOSCHED
194 struct hlist_node cfqd_node;
195 atomic_t ref;
196#endif
197};
198
199/*
200 * Per block device queue structure
201 */
202struct cfq_data {
203 struct request_queue *queue;
204 /* Root service tree for cfq_groups */
205 struct cfq_rb_root grp_service_tree;
206 struct cfq_group root_group;
207 /* Number of active cfq groups on group service tree */
208 int nr_groups;
209
210 /*
211 * The priority currently being served
212 */
213 enum wl_prio_t serving_prio;
214 enum wl_type_t serving_type;
215 unsigned long workload_expires;
216 struct cfq_group *serving_group;
217 bool noidle_tree_requires_idle;
218
219 /*
220 * Each priority tree is sorted by next_request position. These
221 * trees are used when determining if two or more queues are
222 * interleaving requests (see cfq_close_cooperator).
223 */
224 struct rb_root prio_trees[CFQ_PRIO_LISTS];
225
226 unsigned int busy_queues;
227
228 int rq_in_driver[2];
229 int sync_flight;
230
231 /*
232 * queue-depth detection
233 */
234 int rq_queued;
235 int hw_tag;
236 /*
237 * hw_tag can be
238 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
239 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
240 * 0 => no NCQ
241 */
242 int hw_tag_est_depth;
243 unsigned int hw_tag_samples;
244
245 /*
246 * idle window management
247 */
248 struct timer_list idle_slice_timer;
249 struct work_struct unplug_work;
250
251 struct cfq_queue *active_queue;
252 struct cfq_io_context *active_cic;
253
254 /*
255 * async queue for each priority case
256 */
257 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
258 struct cfq_queue *async_idle_cfqq;
259
260 sector_t last_position;
261
262 /*
263 * tunables, see top of file
264 */
265 unsigned int cfq_quantum;
266 unsigned int cfq_fifo_expire[2];
267 unsigned int cfq_back_penalty;
268 unsigned int cfq_back_max;
269 unsigned int cfq_slice[2];
270 unsigned int cfq_slice_async_rq;
271 unsigned int cfq_slice_idle;
272 unsigned int cfq_latency;
273
274 struct list_head cic_list;
275
276 /*
277 * Fallback dummy cfqq for extreme OOM conditions
278 */
279 struct cfq_queue oom_cfqq;
280
281 unsigned long last_end_sync_rq;
282
283 /* List of cfq groups being managed on this device*/
284 struct hlist_head cfqg_list;
285};
286
287static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
288
289static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
290 enum wl_prio_t prio,
291 enum wl_type_t type,
292 struct cfq_data *cfqd)
293{
294 if (!cfqg)
295 return NULL;
296
297 if (prio == IDLE_WORKLOAD)
298 return &cfqg->service_tree_idle;
299
300 return &cfqg->service_trees[prio][type];
301}
302
303enum cfqq_state_flags {
304 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
305 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
306 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
307 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
308 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
309 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
310 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
311 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
312 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
313 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
314 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
315};
316
317#define CFQ_CFQQ_FNS(name) \
318static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
319{ \
320 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
321} \
322static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
323{ \
324 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
325} \
326static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
327{ \
328 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
329}
330
331CFQ_CFQQ_FNS(on_rr);
332CFQ_CFQQ_FNS(wait_request);
333CFQ_CFQQ_FNS(must_dispatch);
334CFQ_CFQQ_FNS(must_alloc_slice);
335CFQ_CFQQ_FNS(fifo_expire);
336CFQ_CFQQ_FNS(idle_window);
337CFQ_CFQQ_FNS(prio_changed);
338CFQ_CFQQ_FNS(slice_new);
339CFQ_CFQQ_FNS(sync);
340CFQ_CFQQ_FNS(coop);
341CFQ_CFQQ_FNS(deep);
342#undef CFQ_CFQQ_FNS
343
344#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
345 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
346#define cfq_log(cfqd, fmt, args...) \
347 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
348
349/* Traverses through cfq group service trees */
350#define for_each_cfqg_st(cfqg, i, j, st) \
351 for (i = 0; i <= IDLE_WORKLOAD; i++) \
352 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
353 : &cfqg->service_tree_idle; \
354 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
355 (i == IDLE_WORKLOAD && j == 0); \
356 j++, st = i < IDLE_WORKLOAD ? \
357 &cfqg->service_trees[i][j]: NULL) \
358
359
360static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
361{
362 if (cfq_class_idle(cfqq))
363 return IDLE_WORKLOAD;
364 if (cfq_class_rt(cfqq))
365 return RT_WORKLOAD;
366 return BE_WORKLOAD;
367}
368
369
370static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
371{
372 if (!cfq_cfqq_sync(cfqq))
373 return ASYNC_WORKLOAD;
374 if (!cfq_cfqq_idle_window(cfqq))
375 return SYNC_NOIDLE_WORKLOAD;
376 return SYNC_WORKLOAD;
377}
378
379static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
380 struct cfq_data *cfqd,
381 struct cfq_group *cfqg)
382{
383 if (wl == IDLE_WORKLOAD)
384 return cfqg->service_tree_idle.count;
385
386 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
387 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
388 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
389}
390
391static void cfq_dispatch_insert(struct request_queue *, struct request *);
392static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
393 struct io_context *, gfp_t);
394static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
395 struct io_context *);
396
397static inline int rq_in_driver(struct cfq_data *cfqd)
398{
399 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
400}
401
402static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
403 bool is_sync)
404{
405 return cic->cfqq[is_sync];
406}
407
408static inline void cic_set_cfqq(struct cfq_io_context *cic,
409 struct cfq_queue *cfqq, bool is_sync)
410{
411 cic->cfqq[is_sync] = cfqq;
412}
413
414/*
415 * We regard a request as SYNC, if it's either a read or has the SYNC bit
416 * set (in which case it could also be direct WRITE).
417 */
418static inline bool cfq_bio_sync(struct bio *bio)
419{
420 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
421}
422
423/*
424 * scheduler run of queue, if there are requests pending and no one in the
425 * driver that will restart queueing
426 */
427static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
428{
429 if (cfqd->busy_queues) {
430 cfq_log(cfqd, "schedule dispatch");
431 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
432 }
433}
434
435static int cfq_queue_empty(struct request_queue *q)
436{
437 struct cfq_data *cfqd = q->elevator->elevator_data;
438
439 return !cfqd->rq_queued;
440}
441
442/*
443 * Scale schedule slice based on io priority. Use the sync time slice only
444 * if a queue is marked sync and has sync io queued. A sync queue with async
445 * io only, should not get full sync slice length.
446 */
447static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
448 unsigned short prio)
449{
450 const int base_slice = cfqd->cfq_slice[sync];
451
452 WARN_ON(prio >= IOPRIO_BE_NR);
453
454 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
455}
456
457static inline int
458cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
459{
460 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
461}
462
463static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
464{
465 u64 d = delta << CFQ_SERVICE_SHIFT;
466
467 d = d * BLKIO_WEIGHT_DEFAULT;
468 do_div(d, cfqg->weight);
469 return d;
470}
471
472static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
473{
474 s64 delta = (s64)(vdisktime - min_vdisktime);
475 if (delta > 0)
476 min_vdisktime = vdisktime;
477
478 return min_vdisktime;
479}
480
481static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
482{
483 s64 delta = (s64)(vdisktime - min_vdisktime);
484 if (delta < 0)
485 min_vdisktime = vdisktime;
486
487 return min_vdisktime;
488}
489
490static void update_min_vdisktime(struct cfq_rb_root *st)
491{
492 u64 vdisktime = st->min_vdisktime;
493 struct cfq_group *cfqg;
494
495 if (st->active) {
496 cfqg = rb_entry_cfqg(st->active);
497 vdisktime = cfqg->vdisktime;
498 }
499
500 if (st->left) {
501 cfqg = rb_entry_cfqg(st->left);
502 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
503 }
504
505 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
506}
507
508/*
509 * get averaged number of queues of RT/BE priority.
510 * average is updated, with a formula that gives more weight to higher numbers,
511 * to quickly follows sudden increases and decrease slowly
512 */
513
514static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
515 struct cfq_group *cfqg, bool rt)
516{
517 unsigned min_q, max_q;
518 unsigned mult = cfq_hist_divisor - 1;
519 unsigned round = cfq_hist_divisor / 2;
520 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
521
522 min_q = min(cfqg->busy_queues_avg[rt], busy);
523 max_q = max(cfqg->busy_queues_avg[rt], busy);
524 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
525 cfq_hist_divisor;
526 return cfqg->busy_queues_avg[rt];
527}
528
529static inline unsigned
530cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
531{
532 struct cfq_rb_root *st = &cfqd->grp_service_tree;
533
534 return cfq_target_latency * cfqg->weight / st->total_weight;
535}
536
537static inline void
538cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
539{
540 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
541 if (cfqd->cfq_latency) {
542 /*
543 * interested queues (we consider only the ones with the same
544 * priority class in the cfq group)
545 */
546 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
547 cfq_class_rt(cfqq));
548 unsigned sync_slice = cfqd->cfq_slice[1];
549 unsigned expect_latency = sync_slice * iq;
550 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
551
552 if (expect_latency > group_slice) {
553 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
554 /* scale low_slice according to IO priority
555 * and sync vs async */
556 unsigned low_slice =
557 min(slice, base_low_slice * slice / sync_slice);
558 /* the adapted slice value is scaled to fit all iqs
559 * into the target latency */
560 slice = max(slice * group_slice / expect_latency,
561 low_slice);
562 }
563 }
564 cfqq->slice_start = jiffies;
565 cfqq->slice_end = jiffies + slice;
566 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
567}
568
569/*
570 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
571 * isn't valid until the first request from the dispatch is activated
572 * and the slice time set.
573 */
574static inline bool cfq_slice_used(struct cfq_queue *cfqq)
575{
576 if (cfq_cfqq_slice_new(cfqq))
577 return 0;
578 if (time_before(jiffies, cfqq->slice_end))
579 return 0;
580
581 return 1;
582}
583
584/*
585 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
586 * We choose the request that is closest to the head right now. Distance
587 * behind the head is penalized and only allowed to a certain extent.
588 */
589static struct request *
590cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
591{
592 sector_t s1, s2, d1 = 0, d2 = 0;
593 unsigned long back_max;
594#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
595#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
596 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
597
598 if (rq1 == NULL || rq1 == rq2)
599 return rq2;
600 if (rq2 == NULL)
601 return rq1;
602
603 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
604 return rq1;
605 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
606 return rq2;
607 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
608 return rq1;
609 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
610 return rq2;
611
612 s1 = blk_rq_pos(rq1);
613 s2 = blk_rq_pos(rq2);
614
615 /*
616 * by definition, 1KiB is 2 sectors
617 */
618 back_max = cfqd->cfq_back_max * 2;
619
620 /*
621 * Strict one way elevator _except_ in the case where we allow
622 * short backward seeks which are biased as twice the cost of a
623 * similar forward seek.
624 */
625 if (s1 >= last)
626 d1 = s1 - last;
627 else if (s1 + back_max >= last)
628 d1 = (last - s1) * cfqd->cfq_back_penalty;
629 else
630 wrap |= CFQ_RQ1_WRAP;
631
632 if (s2 >= last)
633 d2 = s2 - last;
634 else if (s2 + back_max >= last)
635 d2 = (last - s2) * cfqd->cfq_back_penalty;
636 else
637 wrap |= CFQ_RQ2_WRAP;
638
639 /* Found required data */
640
641 /*
642 * By doing switch() on the bit mask "wrap" we avoid having to
643 * check two variables for all permutations: --> faster!
644 */
645 switch (wrap) {
646 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
647 if (d1 < d2)
648 return rq1;
649 else if (d2 < d1)
650 return rq2;
651 else {
652 if (s1 >= s2)
653 return rq1;
654 else
655 return rq2;
656 }
657
658 case CFQ_RQ2_WRAP:
659 return rq1;
660 case CFQ_RQ1_WRAP:
661 return rq2;
662 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
663 default:
664 /*
665 * Since both rqs are wrapped,
666 * start with the one that's further behind head
667 * (--> only *one* back seek required),
668 * since back seek takes more time than forward.
669 */
670 if (s1 <= s2)
671 return rq1;
672 else
673 return rq2;
674 }
675}
676
677/*
678 * The below is leftmost cache rbtree addon
679 */
680static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
681{
682 /* Service tree is empty */
683 if (!root->count)
684 return NULL;
685
686 if (!root->left)
687 root->left = rb_first(&root->rb);
688
689 if (root->left)
690 return rb_entry(root->left, struct cfq_queue, rb_node);
691
692 return NULL;
693}
694
695static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
696{
697 if (!root->left)
698 root->left = rb_first(&root->rb);
699
700 if (root->left)
701 return rb_entry_cfqg(root->left);
702
703 return NULL;
704}
705
706static void rb_erase_init(struct rb_node *n, struct rb_root *root)
707{
708 rb_erase(n, root);
709 RB_CLEAR_NODE(n);
710}
711
712static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
713{
714 if (root->left == n)
715 root->left = NULL;
716 rb_erase_init(n, &root->rb);
717 --root->count;
718}
719
720/*
721 * would be nice to take fifo expire time into account as well
722 */
723static struct request *
724cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
725 struct request *last)
726{
727 struct rb_node *rbnext = rb_next(&last->rb_node);
728 struct rb_node *rbprev = rb_prev(&last->rb_node);
729 struct request *next = NULL, *prev = NULL;
730
731 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
732
733 if (rbprev)
734 prev = rb_entry_rq(rbprev);
735
736 if (rbnext)
737 next = rb_entry_rq(rbnext);
738 else {
739 rbnext = rb_first(&cfqq->sort_list);
740 if (rbnext && rbnext != &last->rb_node)
741 next = rb_entry_rq(rbnext);
742 }
743
744 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
745}
746
747static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
748 struct cfq_queue *cfqq)
749{
750 /*
751 * just an approximation, should be ok.
752 */
753 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
754 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
755}
756
757static inline s64
758cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
759{
760 return cfqg->vdisktime - st->min_vdisktime;
761}
762
763static void
764__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
765{
766 struct rb_node **node = &st->rb.rb_node;
767 struct rb_node *parent = NULL;
768 struct cfq_group *__cfqg;
769 s64 key = cfqg_key(st, cfqg);
770 int left = 1;
771
772 while (*node != NULL) {
773 parent = *node;
774 __cfqg = rb_entry_cfqg(parent);
775
776 if (key < cfqg_key(st, __cfqg))
777 node = &parent->rb_left;
778 else {
779 node = &parent->rb_right;
780 left = 0;
781 }
782 }
783
784 if (left)
785 st->left = &cfqg->rb_node;
786
787 rb_link_node(&cfqg->rb_node, parent, node);
788 rb_insert_color(&cfqg->rb_node, &st->rb);
789}
790
791static void
792cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
793{
794 struct cfq_rb_root *st = &cfqd->grp_service_tree;
795 struct cfq_group *__cfqg;
796 struct rb_node *n;
797
798 cfqg->nr_cfqq++;
799 if (cfqg->on_st)
800 return;
801
802 /*
803 * Currently put the group at the end. Later implement something
804 * so that groups get lesser vtime based on their weights, so that
805 * if group does not loose all if it was not continously backlogged.
806 */
807 n = rb_last(&st->rb);
808 if (n) {
809 __cfqg = rb_entry_cfqg(n);
810 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
811 } else
812 cfqg->vdisktime = st->min_vdisktime;
813
814 __cfq_group_service_tree_add(st, cfqg);
815 cfqg->on_st = true;
816 cfqd->nr_groups++;
817 st->total_weight += cfqg->weight;
818}
819
820static void
821cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
822{
823 struct cfq_rb_root *st = &cfqd->grp_service_tree;
824
825 if (st->active == &cfqg->rb_node)
826 st->active = NULL;
827
828 BUG_ON(cfqg->nr_cfqq < 1);
829 cfqg->nr_cfqq--;
830
831 /* If there are other cfq queues under this group, don't delete it */
832 if (cfqg->nr_cfqq)
833 return;
834
835 cfqg->on_st = false;
836 cfqd->nr_groups--;
837 st->total_weight -= cfqg->weight;
838 if (!RB_EMPTY_NODE(&cfqg->rb_node))
839 cfq_rb_erase(&cfqg->rb_node, st);
840 cfqg->saved_workload_slice = 0;
841}
842
843static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
844{
845 unsigned int slice_used, allocated_slice;
846
847 /*
848 * Queue got expired before even a single request completed or
849 * got expired immediately after first request completion.
850 */
851 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
852 /*
853 * Also charge the seek time incurred to the group, otherwise
854 * if there are mutiple queues in the group, each can dispatch
855 * a single request on seeky media and cause lots of seek time
856 * and group will never know it.
857 */
858 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
859 1);
860 } else {
861 slice_used = jiffies - cfqq->slice_start;
862 allocated_slice = cfqq->slice_end - cfqq->slice_start;
863 if (slice_used > allocated_slice)
864 slice_used = allocated_slice;
865 }
866
867 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u", slice_used);
868 return slice_used;
869}
870
871static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
872 struct cfq_queue *cfqq)
873{
874 struct cfq_rb_root *st = &cfqd->grp_service_tree;
875 unsigned int used_sl;
876
877 used_sl = cfq_cfqq_slice_usage(cfqq);
878
879 /* Can't update vdisktime while group is on service tree */
880 cfq_rb_erase(&cfqg->rb_node, st);
881 cfqg->vdisktime += cfq_scale_slice(used_sl, cfqg);
882 __cfq_group_service_tree_add(st, cfqg);
883
884 /* This group is being expired. Save the context */
885 if (time_after(cfqd->workload_expires, jiffies)) {
886 cfqg->saved_workload_slice = cfqd->workload_expires
887 - jiffies;
888 cfqg->saved_workload = cfqd->serving_type;
889 cfqg->saved_serving_prio = cfqd->serving_prio;
890 } else
891 cfqg->saved_workload_slice = 0;
892}
893
894#ifdef CONFIG_CFQ_GROUP_IOSCHED
895static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
896{
897 if (blkg)
898 return container_of(blkg, struct cfq_group, blkg);
899 return NULL;
900}
901
902static struct cfq_group *
903cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
904{
905 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
906 struct cfq_group *cfqg = NULL;
907 void *key = cfqd;
908 int i, j;
909 struct cfq_rb_root *st;
910
911 /* Do we need to take this reference */
912 if (!css_tryget(&blkcg->css))
913 return NULL;;
914
915 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
916 if (cfqg || !create)
917 goto done;
918
919 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
920 if (!cfqg)
921 goto done;
922
923 cfqg->weight = blkcg->weight;
924 for_each_cfqg_st(cfqg, i, j, st)
925 *st = CFQ_RB_ROOT;
926 RB_CLEAR_NODE(&cfqg->rb_node);
927
928 /*
929 * Take the initial reference that will be released on destroy
930 * This can be thought of a joint reference by cgroup and
931 * elevator which will be dropped by either elevator exit
932 * or cgroup deletion path depending on who is exiting first.
933 */
934 atomic_set(&cfqg->ref, 1);
935
936 /* Add group onto cgroup list */
937 blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd);
938
939 /* Add group on cfqd list */
940 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
941
942done:
943 css_put(&blkcg->css);
944 return cfqg;
945}
946
947/*
948 * Search for the cfq group current task belongs to. If create = 1, then also
949 * create the cfq group if it does not exist. request_queue lock must be held.
950 */
951static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
952{
953 struct cgroup *cgroup;
954 struct cfq_group *cfqg = NULL;
955
956 rcu_read_lock();
957 cgroup = task_cgroup(current, blkio_subsys_id);
958 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
959 if (!cfqg && create)
960 cfqg = &cfqd->root_group;
961 rcu_read_unlock();
962 return cfqg;
963}
964
965static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
966{
967 /* Currently, all async queues are mapped to root group */
968 if (!cfq_cfqq_sync(cfqq))
969 cfqg = &cfqq->cfqd->root_group;
970
971 cfqq->cfqg = cfqg;
972 /* cfqq reference on cfqg */
973 atomic_inc(&cfqq->cfqg->ref);
974}
975
976static void cfq_put_cfqg(struct cfq_group *cfqg)
977{
978 struct cfq_rb_root *st;
979 int i, j;
980
981 BUG_ON(atomic_read(&cfqg->ref) <= 0);
982 if (!atomic_dec_and_test(&cfqg->ref))
983 return;
984 for_each_cfqg_st(cfqg, i, j, st)
985 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
986 kfree(cfqg);
987}
988
989static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
990{
991 /* Something wrong if we are trying to remove same group twice */
992 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
993
994 hlist_del_init(&cfqg->cfqd_node);
995
996 /*
997 * Put the reference taken at the time of creation so that when all
998 * queues are gone, group can be destroyed.
999 */
1000 cfq_put_cfqg(cfqg);
1001}
1002
1003static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1004{
1005 struct hlist_node *pos, *n;
1006 struct cfq_group *cfqg;
1007
1008 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1009 /*
1010 * If cgroup removal path got to blk_group first and removed
1011 * it from cgroup list, then it will take care of destroying
1012 * cfqg also.
1013 */
1014 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1015 cfq_destroy_cfqg(cfqd, cfqg);
1016 }
1017}
1018
1019/*
1020 * Blk cgroup controller notification saying that blkio_group object is being
1021 * delinked as associated cgroup object is going away. That also means that
1022 * no new IO will come in this group. So get rid of this group as soon as
1023 * any pending IO in the group is finished.
1024 *
1025 * This function is called under rcu_read_lock(). key is the rcu protected
1026 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1027 * read lock.
1028 *
1029 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1030 * it should not be NULL as even if elevator was exiting, cgroup deltion
1031 * path got to it first.
1032 */
1033void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1034{
1035 unsigned long flags;
1036 struct cfq_data *cfqd = key;
1037
1038 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1039 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1040 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1041}
1042
1043#else /* GROUP_IOSCHED */
1044static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1045{
1046 return &cfqd->root_group;
1047}
1048static inline void
1049cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1050 cfqq->cfqg = cfqg;
1051}
1052
1053static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1054static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1055
1056#endif /* GROUP_IOSCHED */
1057
1058/*
1059 * The cfqd->service_trees holds all pending cfq_queue's that have
1060 * requests waiting to be processed. It is sorted in the order that
1061 * we will service the queues.
1062 */
1063static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1064 bool add_front)
1065{
1066 struct rb_node **p, *parent;
1067 struct cfq_queue *__cfqq;
1068 unsigned long rb_key;
1069 struct cfq_rb_root *service_tree;
1070 int left;
1071 int new_cfqq = 1;
1072
1073 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1074 cfqq_type(cfqq), cfqd);
1075 if (cfq_class_idle(cfqq)) {
1076 rb_key = CFQ_IDLE_DELAY;
1077 parent = rb_last(&service_tree->rb);
1078 if (parent && parent != &cfqq->rb_node) {
1079 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1080 rb_key += __cfqq->rb_key;
1081 } else
1082 rb_key += jiffies;
1083 } else if (!add_front) {
1084 /*
1085 * Get our rb key offset. Subtract any residual slice
1086 * value carried from last service. A negative resid
1087 * count indicates slice overrun, and this should position
1088 * the next service time further away in the tree.
1089 */
1090 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1091 rb_key -= cfqq->slice_resid;
1092 cfqq->slice_resid = 0;
1093 } else {
1094 rb_key = -HZ;
1095 __cfqq = cfq_rb_first(service_tree);
1096 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1097 }
1098
1099 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1100 new_cfqq = 0;
1101 /*
1102 * same position, nothing more to do
1103 */
1104 if (rb_key == cfqq->rb_key &&
1105 cfqq->service_tree == service_tree)
1106 return;
1107
1108 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1109 cfqq->service_tree = NULL;
1110 }
1111
1112 left = 1;
1113 parent = NULL;
1114 cfqq->service_tree = service_tree;
1115 p = &service_tree->rb.rb_node;
1116 while (*p) {
1117 struct rb_node **n;
1118
1119 parent = *p;
1120 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1121
1122 /*
1123 * sort by key, that represents service time.
1124 */
1125 if (time_before(rb_key, __cfqq->rb_key))
1126 n = &(*p)->rb_left;
1127 else {
1128 n = &(*p)->rb_right;
1129 left = 0;
1130 }
1131
1132 p = n;
1133 }
1134
1135 if (left)
1136 service_tree->left = &cfqq->rb_node;
1137
1138 cfqq->rb_key = rb_key;
1139 rb_link_node(&cfqq->rb_node, parent, p);
1140 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1141 service_tree->count++;
1142 if (add_front || !new_cfqq)
1143 return;
1144 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1145}
1146
1147static struct cfq_queue *
1148cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1149 sector_t sector, struct rb_node **ret_parent,
1150 struct rb_node ***rb_link)
1151{
1152 struct rb_node **p, *parent;
1153 struct cfq_queue *cfqq = NULL;
1154
1155 parent = NULL;
1156 p = &root->rb_node;
1157 while (*p) {
1158 struct rb_node **n;
1159
1160 parent = *p;
1161 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1162
1163 /*
1164 * Sort strictly based on sector. Smallest to the left,
1165 * largest to the right.
1166 */
1167 if (sector > blk_rq_pos(cfqq->next_rq))
1168 n = &(*p)->rb_right;
1169 else if (sector < blk_rq_pos(cfqq->next_rq))
1170 n = &(*p)->rb_left;
1171 else
1172 break;
1173 p = n;
1174 cfqq = NULL;
1175 }
1176
1177 *ret_parent = parent;
1178 if (rb_link)
1179 *rb_link = p;
1180 return cfqq;
1181}
1182
1183static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1184{
1185 struct rb_node **p, *parent;
1186 struct cfq_queue *__cfqq;
1187
1188 if (cfqq->p_root) {
1189 rb_erase(&cfqq->p_node, cfqq->p_root);
1190 cfqq->p_root = NULL;
1191 }
1192
1193 if (cfq_class_idle(cfqq))
1194 return;
1195 if (!cfqq->next_rq)
1196 return;
1197
1198 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1199 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1200 blk_rq_pos(cfqq->next_rq), &parent, &p);
1201 if (!__cfqq) {
1202 rb_link_node(&cfqq->p_node, parent, p);
1203 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1204 } else
1205 cfqq->p_root = NULL;
1206}
1207
1208/*
1209 * Update cfqq's position in the service tree.
1210 */
1211static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1212{
1213 /*
1214 * Resorting requires the cfqq to be on the RR list already.
1215 */
1216 if (cfq_cfqq_on_rr(cfqq)) {
1217 cfq_service_tree_add(cfqd, cfqq, 0);
1218 cfq_prio_tree_add(cfqd, cfqq);
1219 }
1220}
1221
1222/*
1223 * add to busy list of queues for service, trying to be fair in ordering
1224 * the pending list according to last request service
1225 */
1226static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1227{
1228 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1229 BUG_ON(cfq_cfqq_on_rr(cfqq));
1230 cfq_mark_cfqq_on_rr(cfqq);
1231 cfqd->busy_queues++;
1232
1233 cfq_resort_rr_list(cfqd, cfqq);
1234}
1235
1236/*
1237 * Called when the cfqq no longer has requests pending, remove it from
1238 * the service tree.
1239 */
1240static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1241{
1242 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1243 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1244 cfq_clear_cfqq_on_rr(cfqq);
1245
1246 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1247 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1248 cfqq->service_tree = NULL;
1249 }
1250 if (cfqq->p_root) {
1251 rb_erase(&cfqq->p_node, cfqq->p_root);
1252 cfqq->p_root = NULL;
1253 }
1254
1255 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1256 BUG_ON(!cfqd->busy_queues);
1257 cfqd->busy_queues--;
1258}
1259
1260/*
1261 * rb tree support functions
1262 */
1263static void cfq_del_rq_rb(struct request *rq)
1264{
1265 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1266 const int sync = rq_is_sync(rq);
1267
1268 BUG_ON(!cfqq->queued[sync]);
1269 cfqq->queued[sync]--;
1270
1271 elv_rb_del(&cfqq->sort_list, rq);
1272
1273 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1274 /*
1275 * Queue will be deleted from service tree when we actually
1276 * expire it later. Right now just remove it from prio tree
1277 * as it is empty.
1278 */
1279 if (cfqq->p_root) {
1280 rb_erase(&cfqq->p_node, cfqq->p_root);
1281 cfqq->p_root = NULL;
1282 }
1283 }
1284}
1285
1286static void cfq_add_rq_rb(struct request *rq)
1287{
1288 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1289 struct cfq_data *cfqd = cfqq->cfqd;
1290 struct request *__alias, *prev;
1291
1292 cfqq->queued[rq_is_sync(rq)]++;
1293
1294 /*
1295 * looks a little odd, but the first insert might return an alias.
1296 * if that happens, put the alias on the dispatch list
1297 */
1298 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1299 cfq_dispatch_insert(cfqd->queue, __alias);
1300
1301 if (!cfq_cfqq_on_rr(cfqq))
1302 cfq_add_cfqq_rr(cfqd, cfqq);
1303
1304 /*
1305 * check if this request is a better next-serve candidate
1306 */
1307 prev = cfqq->next_rq;
1308 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1309
1310 /*
1311 * adjust priority tree position, if ->next_rq changes
1312 */
1313 if (prev != cfqq->next_rq)
1314 cfq_prio_tree_add(cfqd, cfqq);
1315
1316 BUG_ON(!cfqq->next_rq);
1317}
1318
1319static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1320{
1321 elv_rb_del(&cfqq->sort_list, rq);
1322 cfqq->queued[rq_is_sync(rq)]--;
1323 cfq_add_rq_rb(rq);
1324}
1325
1326static struct request *
1327cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1328{
1329 struct task_struct *tsk = current;
1330 struct cfq_io_context *cic;
1331 struct cfq_queue *cfqq;
1332
1333 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1334 if (!cic)
1335 return NULL;
1336
1337 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1338 if (cfqq) {
1339 sector_t sector = bio->bi_sector + bio_sectors(bio);
1340
1341 return elv_rb_find(&cfqq->sort_list, sector);
1342 }
1343
1344 return NULL;
1345}
1346
1347static void cfq_activate_request(struct request_queue *q, struct request *rq)
1348{
1349 struct cfq_data *cfqd = q->elevator->elevator_data;
1350
1351 cfqd->rq_in_driver[rq_is_sync(rq)]++;
1352 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1353 rq_in_driver(cfqd));
1354
1355 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1356}
1357
1358static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1359{
1360 struct cfq_data *cfqd = q->elevator->elevator_data;
1361 const int sync = rq_is_sync(rq);
1362
1363 WARN_ON(!cfqd->rq_in_driver[sync]);
1364 cfqd->rq_in_driver[sync]--;
1365 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1366 rq_in_driver(cfqd));
1367}
1368
1369static void cfq_remove_request(struct request *rq)
1370{
1371 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1372
1373 if (cfqq->next_rq == rq)
1374 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1375
1376 list_del_init(&rq->queuelist);
1377 cfq_del_rq_rb(rq);
1378
1379 cfqq->cfqd->rq_queued--;
1380 if (rq_is_meta(rq)) {
1381 WARN_ON(!cfqq->meta_pending);
1382 cfqq->meta_pending--;
1383 }
1384}
1385
1386static int cfq_merge(struct request_queue *q, struct request **req,
1387 struct bio *bio)
1388{
1389 struct cfq_data *cfqd = q->elevator->elevator_data;
1390 struct request *__rq;
1391
1392 __rq = cfq_find_rq_fmerge(cfqd, bio);
1393 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1394 *req = __rq;
1395 return ELEVATOR_FRONT_MERGE;
1396 }
1397
1398 return ELEVATOR_NO_MERGE;
1399}
1400
1401static void cfq_merged_request(struct request_queue *q, struct request *req,
1402 int type)
1403{
1404 if (type == ELEVATOR_FRONT_MERGE) {
1405 struct cfq_queue *cfqq = RQ_CFQQ(req);
1406
1407 cfq_reposition_rq_rb(cfqq, req);
1408 }
1409}
1410
1411static void
1412cfq_merged_requests(struct request_queue *q, struct request *rq,
1413 struct request *next)
1414{
1415 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1416 /*
1417 * reposition in fifo if next is older than rq
1418 */
1419 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1420 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1421 list_move(&rq->queuelist, &next->queuelist);
1422 rq_set_fifo_time(rq, rq_fifo_time(next));
1423 }
1424
1425 if (cfqq->next_rq == next)
1426 cfqq->next_rq = rq;
1427 cfq_remove_request(next);
1428}
1429
1430static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1431 struct bio *bio)
1432{
1433 struct cfq_data *cfqd = q->elevator->elevator_data;
1434 struct cfq_io_context *cic;
1435 struct cfq_queue *cfqq;
1436
1437 /*
1438 * Disallow merge of a sync bio into an async request.
1439 */
1440 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1441 return false;
1442
1443 /*
1444 * Lookup the cfqq that this bio will be queued with. Allow
1445 * merge only if rq is queued there.
1446 */
1447 cic = cfq_cic_lookup(cfqd, current->io_context);
1448 if (!cic)
1449 return false;
1450
1451 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1452 return cfqq == RQ_CFQQ(rq);
1453}
1454
1455static void __cfq_set_active_queue(struct cfq_data *cfqd,
1456 struct cfq_queue *cfqq)
1457{
1458 if (cfqq) {
1459 cfq_log_cfqq(cfqd, cfqq, "set_active");
1460 cfqq->slice_start = 0;
1461 cfqq->dispatch_start = jiffies;
1462 cfqq->slice_end = 0;
1463 cfqq->slice_dispatch = 0;
1464
1465 cfq_clear_cfqq_wait_request(cfqq);
1466 cfq_clear_cfqq_must_dispatch(cfqq);
1467 cfq_clear_cfqq_must_alloc_slice(cfqq);
1468 cfq_clear_cfqq_fifo_expire(cfqq);
1469 cfq_mark_cfqq_slice_new(cfqq);
1470
1471 del_timer(&cfqd->idle_slice_timer);
1472 }
1473
1474 cfqd->active_queue = cfqq;
1475}
1476
1477/*
1478 * current cfqq expired its slice (or was too idle), select new one
1479 */
1480static void
1481__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1482 bool timed_out)
1483{
1484 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1485
1486 if (cfq_cfqq_wait_request(cfqq))
1487 del_timer(&cfqd->idle_slice_timer);
1488
1489 cfq_clear_cfqq_wait_request(cfqq);
1490
1491 /*
1492 * store what was left of this slice, if the queue idled/timed out
1493 */
1494 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1495 cfqq->slice_resid = cfqq->slice_end - jiffies;
1496 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1497 }
1498
1499 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1500
1501 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1502 cfq_del_cfqq_rr(cfqd, cfqq);
1503
1504 cfq_resort_rr_list(cfqd, cfqq);
1505
1506 if (cfqq == cfqd->active_queue)
1507 cfqd->active_queue = NULL;
1508
1509 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1510 cfqd->grp_service_tree.active = NULL;
1511
1512 if (cfqd->active_cic) {
1513 put_io_context(cfqd->active_cic->ioc);
1514 cfqd->active_cic = NULL;
1515 }
1516}
1517
1518static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1519{
1520 struct cfq_queue *cfqq = cfqd->active_queue;
1521
1522 if (cfqq)
1523 __cfq_slice_expired(cfqd, cfqq, timed_out);
1524}
1525
1526/*
1527 * Get next queue for service. Unless we have a queue preemption,
1528 * we'll simply select the first cfqq in the service tree.
1529 */
1530static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1531{
1532 struct cfq_rb_root *service_tree =
1533 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1534 cfqd->serving_type, cfqd);
1535
1536 if (!cfqd->rq_queued)
1537 return NULL;
1538
1539 /* There is nothing to dispatch */
1540 if (!service_tree)
1541 return NULL;
1542 if (RB_EMPTY_ROOT(&service_tree->rb))
1543 return NULL;
1544 return cfq_rb_first(service_tree);
1545}
1546
1547static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1548{
1549 struct cfq_group *cfqg;
1550 struct cfq_queue *cfqq;
1551 int i, j;
1552 struct cfq_rb_root *st;
1553
1554 if (!cfqd->rq_queued)
1555 return NULL;
1556
1557 cfqg = cfq_get_next_cfqg(cfqd);
1558 if (!cfqg)
1559 return NULL;
1560
1561 for_each_cfqg_st(cfqg, i, j, st)
1562 if ((cfqq = cfq_rb_first(st)) != NULL)
1563 return cfqq;
1564 return NULL;
1565}
1566
1567/*
1568 * Get and set a new active queue for service.
1569 */
1570static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1571 struct cfq_queue *cfqq)
1572{
1573 if (!cfqq)
1574 cfqq = cfq_get_next_queue(cfqd);
1575
1576 __cfq_set_active_queue(cfqd, cfqq);
1577 return cfqq;
1578}
1579
1580static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1581 struct request *rq)
1582{
1583 if (blk_rq_pos(rq) >= cfqd->last_position)
1584 return blk_rq_pos(rq) - cfqd->last_position;
1585 else
1586 return cfqd->last_position - blk_rq_pos(rq);
1587}
1588
1589#define CFQQ_SEEK_THR 8 * 1024
1590#define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
1591
1592static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1593 struct request *rq)
1594{
1595 sector_t sdist = cfqq->seek_mean;
1596
1597 if (!sample_valid(cfqq->seek_samples))
1598 sdist = CFQQ_SEEK_THR;
1599
1600 return cfq_dist_from_last(cfqd, rq) <= sdist;
1601}
1602
1603static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1604 struct cfq_queue *cur_cfqq)
1605{
1606 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1607 struct rb_node *parent, *node;
1608 struct cfq_queue *__cfqq;
1609 sector_t sector = cfqd->last_position;
1610
1611 if (RB_EMPTY_ROOT(root))
1612 return NULL;
1613
1614 /*
1615 * First, if we find a request starting at the end of the last
1616 * request, choose it.
1617 */
1618 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1619 if (__cfqq)
1620 return __cfqq;
1621
1622 /*
1623 * If the exact sector wasn't found, the parent of the NULL leaf
1624 * will contain the closest sector.
1625 */
1626 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1627 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1628 return __cfqq;
1629
1630 if (blk_rq_pos(__cfqq->next_rq) < sector)
1631 node = rb_next(&__cfqq->p_node);
1632 else
1633 node = rb_prev(&__cfqq->p_node);
1634 if (!node)
1635 return NULL;
1636
1637 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1638 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1639 return __cfqq;
1640
1641 return NULL;
1642}
1643
1644/*
1645 * cfqd - obvious
1646 * cur_cfqq - passed in so that we don't decide that the current queue is
1647 * closely cooperating with itself.
1648 *
1649 * So, basically we're assuming that that cur_cfqq has dispatched at least
1650 * one request, and that cfqd->last_position reflects a position on the disk
1651 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1652 * assumption.
1653 */
1654static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1655 struct cfq_queue *cur_cfqq)
1656{
1657 struct cfq_queue *cfqq;
1658
1659 if (!cfq_cfqq_sync(cur_cfqq))
1660 return NULL;
1661 if (CFQQ_SEEKY(cur_cfqq))
1662 return NULL;
1663
1664 /*
1665 * We should notice if some of the queues are cooperating, eg
1666 * working closely on the same area of the disk. In that case,
1667 * we can group them together and don't waste time idling.
1668 */
1669 cfqq = cfqq_close(cfqd, cur_cfqq);
1670 if (!cfqq)
1671 return NULL;
1672
1673 /*
1674 * It only makes sense to merge sync queues.
1675 */
1676 if (!cfq_cfqq_sync(cfqq))
1677 return NULL;
1678 if (CFQQ_SEEKY(cfqq))
1679 return NULL;
1680
1681 /*
1682 * Do not merge queues of different priority classes
1683 */
1684 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1685 return NULL;
1686
1687 return cfqq;
1688}
1689
1690/*
1691 * Determine whether we should enforce idle window for this queue.
1692 */
1693
1694static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1695{
1696 enum wl_prio_t prio = cfqq_prio(cfqq);
1697 struct cfq_rb_root *service_tree = cfqq->service_tree;
1698
1699 BUG_ON(!service_tree);
1700 BUG_ON(!service_tree->count);
1701
1702 /* We never do for idle class queues. */
1703 if (prio == IDLE_WORKLOAD)
1704 return false;
1705
1706 /* We do for queues that were marked with idle window flag. */
1707 if (cfq_cfqq_idle_window(cfqq))
1708 return true;
1709
1710 /*
1711 * Otherwise, we do only if they are the last ones
1712 * in their service tree.
1713 */
1714 return service_tree->count == 1;
1715}
1716
1717static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1718{
1719 struct cfq_queue *cfqq = cfqd->active_queue;
1720 struct cfq_io_context *cic;
1721 unsigned long sl;
1722
1723 /*
1724 * SSD device without seek penalty, disable idling. But only do so
1725 * for devices that support queuing, otherwise we still have a problem
1726 * with sync vs async workloads.
1727 */
1728 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1729 return;
1730
1731 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1732 WARN_ON(cfq_cfqq_slice_new(cfqq));
1733
1734 /*
1735 * idle is disabled, either manually or by past process history
1736 */
1737 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1738 return;
1739
1740 /*
1741 * still active requests from this queue, don't idle
1742 */
1743 if (cfqq->dispatched)
1744 return;
1745
1746 /*
1747 * task has exited, don't wait
1748 */
1749 cic = cfqd->active_cic;
1750 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1751 return;
1752
1753 /*
1754 * If our average think time is larger than the remaining time
1755 * slice, then don't idle. This avoids overrunning the allotted
1756 * time slice.
1757 */
1758 if (sample_valid(cic->ttime_samples) &&
1759 (cfqq->slice_end - jiffies < cic->ttime_mean))
1760 return;
1761
1762 cfq_mark_cfqq_wait_request(cfqq);
1763
1764 sl = cfqd->cfq_slice_idle;
1765
1766 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1767 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1768}
1769
1770/*
1771 * Move request from internal lists to the request queue dispatch list.
1772 */
1773static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1774{
1775 struct cfq_data *cfqd = q->elevator->elevator_data;
1776 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1777
1778 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1779
1780 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1781 cfq_remove_request(rq);
1782 cfqq->dispatched++;
1783 elv_dispatch_sort(q, rq);
1784
1785 if (cfq_cfqq_sync(cfqq))
1786 cfqd->sync_flight++;
1787}
1788
1789/*
1790 * return expired entry, or NULL to just start from scratch in rbtree
1791 */
1792static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1793{
1794 struct request *rq = NULL;
1795
1796 if (cfq_cfqq_fifo_expire(cfqq))
1797 return NULL;
1798
1799 cfq_mark_cfqq_fifo_expire(cfqq);
1800
1801 if (list_empty(&cfqq->fifo))
1802 return NULL;
1803
1804 rq = rq_entry_fifo(cfqq->fifo.next);
1805 if (time_before(jiffies, rq_fifo_time(rq)))
1806 rq = NULL;
1807
1808 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1809 return rq;
1810}
1811
1812static inline int
1813cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1814{
1815 const int base_rq = cfqd->cfq_slice_async_rq;
1816
1817 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1818
1819 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1820}
1821
1822/*
1823 * Must be called with the queue_lock held.
1824 */
1825static int cfqq_process_refs(struct cfq_queue *cfqq)
1826{
1827 int process_refs, io_refs;
1828
1829 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1830 process_refs = atomic_read(&cfqq->ref) - io_refs;
1831 BUG_ON(process_refs < 0);
1832 return process_refs;
1833}
1834
1835static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1836{
1837 int process_refs, new_process_refs;
1838 struct cfq_queue *__cfqq;
1839
1840 /* Avoid a circular list and skip interim queue merges */
1841 while ((__cfqq = new_cfqq->new_cfqq)) {
1842 if (__cfqq == cfqq)
1843 return;
1844 new_cfqq = __cfqq;
1845 }
1846
1847 process_refs = cfqq_process_refs(cfqq);
1848 /*
1849 * If the process for the cfqq has gone away, there is no
1850 * sense in merging the queues.
1851 */
1852 if (process_refs == 0)
1853 return;
1854
1855 /*
1856 * Merge in the direction of the lesser amount of work.
1857 */
1858 new_process_refs = cfqq_process_refs(new_cfqq);
1859 if (new_process_refs >= process_refs) {
1860 cfqq->new_cfqq = new_cfqq;
1861 atomic_add(process_refs, &new_cfqq->ref);
1862 } else {
1863 new_cfqq->new_cfqq = cfqq;
1864 atomic_add(new_process_refs, &cfqq->ref);
1865 }
1866}
1867
1868static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1869 struct cfq_group *cfqg, enum wl_prio_t prio,
1870 bool prio_changed)
1871{
1872 struct cfq_queue *queue;
1873 int i;
1874 bool key_valid = false;
1875 unsigned long lowest_key = 0;
1876 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1877
1878 if (prio_changed) {
1879 /*
1880 * When priorities switched, we prefer starting
1881 * from SYNC_NOIDLE (first choice), or just SYNC
1882 * over ASYNC
1883 */
1884 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1885 return cur_best;
1886 cur_best = SYNC_WORKLOAD;
1887 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1888 return cur_best;
1889
1890 return ASYNC_WORKLOAD;
1891 }
1892
1893 for (i = 0; i < 3; ++i) {
1894 /* otherwise, select the one with lowest rb_key */
1895 queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
1896 if (queue &&
1897 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1898 lowest_key = queue->rb_key;
1899 cur_best = i;
1900 key_valid = true;
1901 }
1902 }
1903
1904 return cur_best;
1905}
1906
1907static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
1908{
1909 enum wl_prio_t previous_prio = cfqd->serving_prio;
1910 bool prio_changed;
1911 unsigned slice;
1912 unsigned count;
1913 struct cfq_rb_root *st;
1914 unsigned group_slice;
1915
1916 if (!cfqg) {
1917 cfqd->serving_prio = IDLE_WORKLOAD;
1918 cfqd->workload_expires = jiffies + 1;
1919 return;
1920 }
1921
1922 /* Choose next priority. RT > BE > IDLE */
1923 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
1924 cfqd->serving_prio = RT_WORKLOAD;
1925 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
1926 cfqd->serving_prio = BE_WORKLOAD;
1927 else {
1928 cfqd->serving_prio = IDLE_WORKLOAD;
1929 cfqd->workload_expires = jiffies + 1;
1930 return;
1931 }
1932
1933 /*
1934 * For RT and BE, we have to choose also the type
1935 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1936 * expiration time
1937 */
1938 prio_changed = (cfqd->serving_prio != previous_prio);
1939 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
1940 cfqd);
1941 count = st->count;
1942
1943 /*
1944 * If priority didn't change, check workload expiration,
1945 * and that we still have other queues ready
1946 */
1947 if (!prio_changed && count &&
1948 !time_after(jiffies, cfqd->workload_expires))
1949 return;
1950
1951 /* otherwise select new workload type */
1952 cfqd->serving_type =
1953 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
1954 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
1955 cfqd);
1956 count = st->count;
1957
1958 /*
1959 * the workload slice is computed as a fraction of target latency
1960 * proportional to the number of queues in that workload, over
1961 * all the queues in the same priority class
1962 */
1963 group_slice = cfq_group_slice(cfqd, cfqg);
1964
1965 slice = group_slice * count /
1966 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
1967 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
1968
1969 if (cfqd->serving_type == ASYNC_WORKLOAD)
1970 /* async workload slice is scaled down according to
1971 * the sync/async slice ratio. */
1972 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
1973 else
1974 /* sync workload slice is at least 2 * cfq_slice_idle */
1975 slice = max(slice, 2 * cfqd->cfq_slice_idle);
1976
1977 slice = max_t(unsigned, slice, CFQ_MIN_TT);
1978 cfqd->workload_expires = jiffies + slice;
1979 cfqd->noidle_tree_requires_idle = false;
1980}
1981
1982static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
1983{
1984 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1985 struct cfq_group *cfqg;
1986
1987 if (RB_EMPTY_ROOT(&st->rb))
1988 return NULL;
1989 cfqg = cfq_rb_first_group(st);
1990 st->active = &cfqg->rb_node;
1991 update_min_vdisktime(st);
1992 return cfqg;
1993}
1994
1995static void cfq_choose_cfqg(struct cfq_data *cfqd)
1996{
1997 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
1998
1999 cfqd->serving_group = cfqg;
2000
2001 /* Restore the workload type data */
2002 if (cfqg->saved_workload_slice) {
2003 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2004 cfqd->serving_type = cfqg->saved_workload;
2005 cfqd->serving_prio = cfqg->saved_serving_prio;
2006 }
2007 choose_service_tree(cfqd, cfqg);
2008}
2009
2010/*
2011 * Select a queue for service. If we have a current active queue,
2012 * check whether to continue servicing it, or retrieve and set a new one.
2013 */
2014static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2015{
2016 struct cfq_queue *cfqq, *new_cfqq = NULL;
2017
2018 cfqq = cfqd->active_queue;
2019 if (!cfqq)
2020 goto new_queue;
2021
2022 if (!cfqd->rq_queued)
2023 return NULL;
2024 /*
2025 * The active queue has run out of time, expire it and select new.
2026 */
2027 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
2028 goto expire;
2029
2030 /*
2031 * The active queue has requests and isn't expired, allow it to
2032 * dispatch.
2033 */
2034 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2035 goto keep_queue;
2036
2037 /*
2038 * If another queue has a request waiting within our mean seek
2039 * distance, let it run. The expire code will check for close
2040 * cooperators and put the close queue at the front of the service
2041 * tree. If possible, merge the expiring queue with the new cfqq.
2042 */
2043 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2044 if (new_cfqq) {
2045 if (!cfqq->new_cfqq)
2046 cfq_setup_merge(cfqq, new_cfqq);
2047 goto expire;
2048 }
2049
2050 /*
2051 * No requests pending. If the active queue still has requests in
2052 * flight or is idling for a new request, allow either of these
2053 * conditions to happen (or time out) before selecting a new queue.
2054 */
2055 if (timer_pending(&cfqd->idle_slice_timer) ||
2056 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2057 cfqq = NULL;
2058 goto keep_queue;
2059 }
2060
2061expire:
2062 cfq_slice_expired(cfqd, 0);
2063new_queue:
2064 /*
2065 * Current queue expired. Check if we have to switch to a new
2066 * service tree
2067 */
2068 if (!new_cfqq)
2069 cfq_choose_cfqg(cfqd);
2070
2071 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2072keep_queue:
2073 return cfqq;
2074}
2075
2076static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2077{
2078 int dispatched = 0;
2079
2080 while (cfqq->next_rq) {
2081 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2082 dispatched++;
2083 }
2084
2085 BUG_ON(!list_empty(&cfqq->fifo));
2086
2087 /* By default cfqq is not expired if it is empty. Do it explicitly */
2088 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2089 return dispatched;
2090}
2091
2092/*
2093 * Drain our current requests. Used for barriers and when switching
2094 * io schedulers on-the-fly.
2095 */
2096static int cfq_forced_dispatch(struct cfq_data *cfqd)
2097{
2098 struct cfq_queue *cfqq;
2099 int dispatched = 0;
2100
2101 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2102 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2103
2104 cfq_slice_expired(cfqd, 0);
2105 BUG_ON(cfqd->busy_queues);
2106
2107 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2108 return dispatched;
2109}
2110
2111static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2112{
2113 unsigned int max_dispatch;
2114
2115 /*
2116 * Drain async requests before we start sync IO
2117 */
2118 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
2119 return false;
2120
2121 /*
2122 * If this is an async queue and we have sync IO in flight, let it wait
2123 */
2124 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
2125 return false;
2126
2127 max_dispatch = cfqd->cfq_quantum;
2128 if (cfq_class_idle(cfqq))
2129 max_dispatch = 1;
2130
2131 /*
2132 * Does this cfqq already have too much IO in flight?
2133 */
2134 if (cfqq->dispatched >= max_dispatch) {
2135 /*
2136 * idle queue must always only have a single IO in flight
2137 */
2138 if (cfq_class_idle(cfqq))
2139 return false;
2140
2141 /*
2142 * We have other queues, don't allow more IO from this one
2143 */
2144 if (cfqd->busy_queues > 1)
2145 return false;
2146
2147 /*
2148 * Sole queue user, no limit
2149 */
2150 max_dispatch = -1;
2151 }
2152
2153 /*
2154 * Async queues must wait a bit before being allowed dispatch.
2155 * We also ramp up the dispatch depth gradually for async IO,
2156 * based on the last sync IO we serviced
2157 */
2158 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2159 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
2160 unsigned int depth;
2161
2162 depth = last_sync / cfqd->cfq_slice[1];
2163 if (!depth && !cfqq->dispatched)
2164 depth = 1;
2165 if (depth < max_dispatch)
2166 max_dispatch = depth;
2167 }
2168
2169 /*
2170 * If we're below the current max, allow a dispatch
2171 */
2172 return cfqq->dispatched < max_dispatch;
2173}
2174
2175/*
2176 * Dispatch a request from cfqq, moving them to the request queue
2177 * dispatch list.
2178 */
2179static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2180{
2181 struct request *rq;
2182
2183 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2184
2185 if (!cfq_may_dispatch(cfqd, cfqq))
2186 return false;
2187
2188 /*
2189 * follow expired path, else get first next available
2190 */
2191 rq = cfq_check_fifo(cfqq);
2192 if (!rq)
2193 rq = cfqq->next_rq;
2194
2195 /*
2196 * insert request into driver dispatch list
2197 */
2198 cfq_dispatch_insert(cfqd->queue, rq);
2199
2200 if (!cfqd->active_cic) {
2201 struct cfq_io_context *cic = RQ_CIC(rq);
2202
2203 atomic_long_inc(&cic->ioc->refcount);
2204 cfqd->active_cic = cic;
2205 }
2206
2207 return true;
2208}
2209
2210/*
2211 * Find the cfqq that we need to service and move a request from that to the
2212 * dispatch list
2213 */
2214static int cfq_dispatch_requests(struct request_queue *q, int force)
2215{
2216 struct cfq_data *cfqd = q->elevator->elevator_data;
2217 struct cfq_queue *cfqq;
2218
2219 if (!cfqd->busy_queues)
2220 return 0;
2221
2222 if (unlikely(force))
2223 return cfq_forced_dispatch(cfqd);
2224
2225 cfqq = cfq_select_queue(cfqd);
2226 if (!cfqq)
2227 return 0;
2228
2229 /*
2230 * Dispatch a request from this cfqq, if it is allowed
2231 */
2232 if (!cfq_dispatch_request(cfqd, cfqq))
2233 return 0;
2234
2235 cfqq->slice_dispatch++;
2236 cfq_clear_cfqq_must_dispatch(cfqq);
2237
2238 /*
2239 * expire an async queue immediately if it has used up its slice. idle
2240 * queue always expire after 1 dispatch round.
2241 */
2242 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2243 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2244 cfq_class_idle(cfqq))) {
2245 cfqq->slice_end = jiffies + 1;
2246 cfq_slice_expired(cfqd, 0);
2247 }
2248
2249 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2250 return 1;
2251}
2252
2253/*
2254 * task holds one reference to the queue, dropped when task exits. each rq
2255 * in-flight on this queue also holds a reference, dropped when rq is freed.
2256 *
2257 * Each cfq queue took a reference on the parent group. Drop it now.
2258 * queue lock must be held here.
2259 */
2260static void cfq_put_queue(struct cfq_queue *cfqq)
2261{
2262 struct cfq_data *cfqd = cfqq->cfqd;
2263 struct cfq_group *cfqg;
2264
2265 BUG_ON(atomic_read(&cfqq->ref) <= 0);
2266
2267 if (!atomic_dec_and_test(&cfqq->ref))
2268 return;
2269
2270 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2271 BUG_ON(rb_first(&cfqq->sort_list));
2272 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2273 cfqg = cfqq->cfqg;
2274
2275 if (unlikely(cfqd->active_queue == cfqq)) {
2276 __cfq_slice_expired(cfqd, cfqq, 0);
2277 cfq_schedule_dispatch(cfqd);
2278 }
2279
2280 BUG_ON(cfq_cfqq_on_rr(cfqq));
2281 kmem_cache_free(cfq_pool, cfqq);
2282 cfq_put_cfqg(cfqg);
2283}
2284
2285/*
2286 * Must always be called with the rcu_read_lock() held
2287 */
2288static void
2289__call_for_each_cic(struct io_context *ioc,
2290 void (*func)(struct io_context *, struct cfq_io_context *))
2291{
2292 struct cfq_io_context *cic;
2293 struct hlist_node *n;
2294
2295 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2296 func(ioc, cic);
2297}
2298
2299/*
2300 * Call func for each cic attached to this ioc.
2301 */
2302static void
2303call_for_each_cic(struct io_context *ioc,
2304 void (*func)(struct io_context *, struct cfq_io_context *))
2305{
2306 rcu_read_lock();
2307 __call_for_each_cic(ioc, func);
2308 rcu_read_unlock();
2309}
2310
2311static void cfq_cic_free_rcu(struct rcu_head *head)
2312{
2313 struct cfq_io_context *cic;
2314
2315 cic = container_of(head, struct cfq_io_context, rcu_head);
2316
2317 kmem_cache_free(cfq_ioc_pool, cic);
2318 elv_ioc_count_dec(cfq_ioc_count);
2319
2320 if (ioc_gone) {
2321 /*
2322 * CFQ scheduler is exiting, grab exit lock and check
2323 * the pending io context count. If it hits zero,
2324 * complete ioc_gone and set it back to NULL
2325 */
2326 spin_lock(&ioc_gone_lock);
2327 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2328 complete(ioc_gone);
2329 ioc_gone = NULL;
2330 }
2331 spin_unlock(&ioc_gone_lock);
2332 }
2333}
2334
2335static void cfq_cic_free(struct cfq_io_context *cic)
2336{
2337 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2338}
2339
2340static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2341{
2342 unsigned long flags;
2343
2344 BUG_ON(!cic->dead_key);
2345
2346 spin_lock_irqsave(&ioc->lock, flags);
2347 radix_tree_delete(&ioc->radix_root, cic->dead_key);
2348 hlist_del_rcu(&cic->cic_list);
2349 spin_unlock_irqrestore(&ioc->lock, flags);
2350
2351 cfq_cic_free(cic);
2352}
2353
2354/*
2355 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2356 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2357 * and ->trim() which is called with the task lock held
2358 */
2359static void cfq_free_io_context(struct io_context *ioc)
2360{
2361 /*
2362 * ioc->refcount is zero here, or we are called from elv_unregister(),
2363 * so no more cic's are allowed to be linked into this ioc. So it
2364 * should be ok to iterate over the known list, we will see all cic's
2365 * since no new ones are added.
2366 */
2367 __call_for_each_cic(ioc, cic_free_func);
2368}
2369
2370static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2371{
2372 struct cfq_queue *__cfqq, *next;
2373
2374 if (unlikely(cfqq == cfqd->active_queue)) {
2375 __cfq_slice_expired(cfqd, cfqq, 0);
2376 cfq_schedule_dispatch(cfqd);
2377 }
2378
2379 /*
2380 * If this queue was scheduled to merge with another queue, be
2381 * sure to drop the reference taken on that queue (and others in
2382 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2383 */
2384 __cfqq = cfqq->new_cfqq;
2385 while (__cfqq) {
2386 if (__cfqq == cfqq) {
2387 WARN(1, "cfqq->new_cfqq loop detected\n");
2388 break;
2389 }
2390 next = __cfqq->new_cfqq;
2391 cfq_put_queue(__cfqq);
2392 __cfqq = next;
2393 }
2394
2395 cfq_put_queue(cfqq);
2396}
2397
2398static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2399 struct cfq_io_context *cic)
2400{
2401 struct io_context *ioc = cic->ioc;
2402
2403 list_del_init(&cic->queue_list);
2404
2405 /*
2406 * Make sure key == NULL is seen for dead queues
2407 */
2408 smp_wmb();
2409 cic->dead_key = (unsigned long) cic->key;
2410 cic->key = NULL;
2411
2412 if (ioc->ioc_data == cic)
2413 rcu_assign_pointer(ioc->ioc_data, NULL);
2414
2415 if (cic->cfqq[BLK_RW_ASYNC]) {
2416 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2417 cic->cfqq[BLK_RW_ASYNC] = NULL;
2418 }
2419
2420 if (cic->cfqq[BLK_RW_SYNC]) {
2421 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2422 cic->cfqq[BLK_RW_SYNC] = NULL;
2423 }
2424}
2425
2426static void cfq_exit_single_io_context(struct io_context *ioc,
2427 struct cfq_io_context *cic)
2428{
2429 struct cfq_data *cfqd = cic->key;
2430
2431 if (cfqd) {
2432 struct request_queue *q = cfqd->queue;
2433 unsigned long flags;
2434
2435 spin_lock_irqsave(q->queue_lock, flags);
2436
2437 /*
2438 * Ensure we get a fresh copy of the ->key to prevent
2439 * race between exiting task and queue
2440 */
2441 smp_read_barrier_depends();
2442 if (cic->key)
2443 __cfq_exit_single_io_context(cfqd, cic);
2444
2445 spin_unlock_irqrestore(q->queue_lock, flags);
2446 }
2447}
2448
2449/*
2450 * The process that ioc belongs to has exited, we need to clean up
2451 * and put the internal structures we have that belongs to that process.
2452 */
2453static void cfq_exit_io_context(struct io_context *ioc)
2454{
2455 call_for_each_cic(ioc, cfq_exit_single_io_context);
2456}
2457
2458static struct cfq_io_context *
2459cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2460{
2461 struct cfq_io_context *cic;
2462
2463 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2464 cfqd->queue->node);
2465 if (cic) {
2466 cic->last_end_request = jiffies;
2467 INIT_LIST_HEAD(&cic->queue_list);
2468 INIT_HLIST_NODE(&cic->cic_list);
2469 cic->dtor = cfq_free_io_context;
2470 cic->exit = cfq_exit_io_context;
2471 elv_ioc_count_inc(cfq_ioc_count);
2472 }
2473
2474 return cic;
2475}
2476
2477static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2478{
2479 struct task_struct *tsk = current;
2480 int ioprio_class;
2481
2482 if (!cfq_cfqq_prio_changed(cfqq))
2483 return;
2484
2485 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2486 switch (ioprio_class) {
2487 default:
2488 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2489 case IOPRIO_CLASS_NONE:
2490 /*
2491 * no prio set, inherit CPU scheduling settings
2492 */
2493 cfqq->ioprio = task_nice_ioprio(tsk);
2494 cfqq->ioprio_class = task_nice_ioclass(tsk);
2495 break;
2496 case IOPRIO_CLASS_RT:
2497 cfqq->ioprio = task_ioprio(ioc);
2498 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2499 break;
2500 case IOPRIO_CLASS_BE:
2501 cfqq->ioprio = task_ioprio(ioc);
2502 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2503 break;
2504 case IOPRIO_CLASS_IDLE:
2505 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2506 cfqq->ioprio = 7;
2507 cfq_clear_cfqq_idle_window(cfqq);
2508 break;
2509 }
2510
2511 /*
2512 * keep track of original prio settings in case we have to temporarily
2513 * elevate the priority of this queue
2514 */
2515 cfqq->org_ioprio = cfqq->ioprio;
2516 cfqq->org_ioprio_class = cfqq->ioprio_class;
2517 cfq_clear_cfqq_prio_changed(cfqq);
2518}
2519
2520static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2521{
2522 struct cfq_data *cfqd = cic->key;
2523 struct cfq_queue *cfqq;
2524 unsigned long flags;
2525
2526 if (unlikely(!cfqd))
2527 return;
2528
2529 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2530
2531 cfqq = cic->cfqq[BLK_RW_ASYNC];
2532 if (cfqq) {
2533 struct cfq_queue *new_cfqq;
2534 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2535 GFP_ATOMIC);
2536 if (new_cfqq) {
2537 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2538 cfq_put_queue(cfqq);
2539 }
2540 }
2541
2542 cfqq = cic->cfqq[BLK_RW_SYNC];
2543 if (cfqq)
2544 cfq_mark_cfqq_prio_changed(cfqq);
2545
2546 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2547}
2548
2549static void cfq_ioc_set_ioprio(struct io_context *ioc)
2550{
2551 call_for_each_cic(ioc, changed_ioprio);
2552 ioc->ioprio_changed = 0;
2553}
2554
2555static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2556 pid_t pid, bool is_sync)
2557{
2558 RB_CLEAR_NODE(&cfqq->rb_node);
2559 RB_CLEAR_NODE(&cfqq->p_node);
2560 INIT_LIST_HEAD(&cfqq->fifo);
2561
2562 atomic_set(&cfqq->ref, 0);
2563 cfqq->cfqd = cfqd;
2564
2565 cfq_mark_cfqq_prio_changed(cfqq);
2566
2567 if (is_sync) {
2568 if (!cfq_class_idle(cfqq))
2569 cfq_mark_cfqq_idle_window(cfqq);
2570 cfq_mark_cfqq_sync(cfqq);
2571 }
2572 cfqq->pid = pid;
2573}
2574
2575static struct cfq_queue *
2576cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2577 struct io_context *ioc, gfp_t gfp_mask)
2578{
2579 struct cfq_queue *cfqq, *new_cfqq = NULL;
2580 struct cfq_io_context *cic;
2581 struct cfq_group *cfqg;
2582
2583retry:
2584 cfqg = cfq_get_cfqg(cfqd, 1);
2585 cic = cfq_cic_lookup(cfqd, ioc);
2586 /* cic always exists here */
2587 cfqq = cic_to_cfqq(cic, is_sync);
2588
2589 /*
2590 * Always try a new alloc if we fell back to the OOM cfqq
2591 * originally, since it should just be a temporary situation.
2592 */
2593 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2594 cfqq = NULL;
2595 if (new_cfqq) {
2596 cfqq = new_cfqq;
2597 new_cfqq = NULL;
2598 } else if (gfp_mask & __GFP_WAIT) {
2599 spin_unlock_irq(cfqd->queue->queue_lock);
2600 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2601 gfp_mask | __GFP_ZERO,
2602 cfqd->queue->node);
2603 spin_lock_irq(cfqd->queue->queue_lock);
2604 if (new_cfqq)
2605 goto retry;
2606 } else {
2607 cfqq = kmem_cache_alloc_node(cfq_pool,
2608 gfp_mask | __GFP_ZERO,
2609 cfqd->queue->node);
2610 }
2611
2612 if (cfqq) {
2613 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2614 cfq_init_prio_data(cfqq, ioc);
2615 cfq_link_cfqq_cfqg(cfqq, cfqg);
2616 cfq_log_cfqq(cfqd, cfqq, "alloced");
2617 } else
2618 cfqq = &cfqd->oom_cfqq;
2619 }
2620
2621 if (new_cfqq)
2622 kmem_cache_free(cfq_pool, new_cfqq);
2623
2624 return cfqq;
2625}
2626
2627static struct cfq_queue **
2628cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2629{
2630 switch (ioprio_class) {
2631 case IOPRIO_CLASS_RT:
2632 return &cfqd->async_cfqq[0][ioprio];
2633 case IOPRIO_CLASS_BE:
2634 return &cfqd->async_cfqq[1][ioprio];
2635 case IOPRIO_CLASS_IDLE:
2636 return &cfqd->async_idle_cfqq;
2637 default:
2638 BUG();
2639 }
2640}
2641
2642static struct cfq_queue *
2643cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2644 gfp_t gfp_mask)
2645{
2646 const int ioprio = task_ioprio(ioc);
2647 const int ioprio_class = task_ioprio_class(ioc);
2648 struct cfq_queue **async_cfqq = NULL;
2649 struct cfq_queue *cfqq = NULL;
2650
2651 if (!is_sync) {
2652 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2653 cfqq = *async_cfqq;
2654 }
2655
2656 if (!cfqq)
2657 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2658
2659 /*
2660 * pin the queue now that it's allocated, scheduler exit will prune it
2661 */
2662 if (!is_sync && !(*async_cfqq)) {
2663 atomic_inc(&cfqq->ref);
2664 *async_cfqq = cfqq;
2665 }
2666
2667 atomic_inc(&cfqq->ref);
2668 return cfqq;
2669}
2670
2671/*
2672 * We drop cfq io contexts lazily, so we may find a dead one.
2673 */
2674static void
2675cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2676 struct cfq_io_context *cic)
2677{
2678 unsigned long flags;
2679
2680 WARN_ON(!list_empty(&cic->queue_list));
2681
2682 spin_lock_irqsave(&ioc->lock, flags);
2683
2684 BUG_ON(ioc->ioc_data == cic);
2685
2686 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2687 hlist_del_rcu(&cic->cic_list);
2688 spin_unlock_irqrestore(&ioc->lock, flags);
2689
2690 cfq_cic_free(cic);
2691}
2692
2693static struct cfq_io_context *
2694cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2695{
2696 struct cfq_io_context *cic;
2697 unsigned long flags;
2698 void *k;
2699
2700 if (unlikely(!ioc))
2701 return NULL;
2702
2703 rcu_read_lock();
2704
2705 /*
2706 * we maintain a last-hit cache, to avoid browsing over the tree
2707 */
2708 cic = rcu_dereference(ioc->ioc_data);
2709 if (cic && cic->key == cfqd) {
2710 rcu_read_unlock();
2711 return cic;
2712 }
2713
2714 do {
2715 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2716 rcu_read_unlock();
2717 if (!cic)
2718 break;
2719 /* ->key must be copied to avoid race with cfq_exit_queue() */
2720 k = cic->key;
2721 if (unlikely(!k)) {
2722 cfq_drop_dead_cic(cfqd, ioc, cic);
2723 rcu_read_lock();
2724 continue;
2725 }
2726
2727 spin_lock_irqsave(&ioc->lock, flags);
2728 rcu_assign_pointer(ioc->ioc_data, cic);
2729 spin_unlock_irqrestore(&ioc->lock, flags);
2730 break;
2731 } while (1);
2732
2733 return cic;
2734}
2735
2736/*
2737 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2738 * the process specific cfq io context when entered from the block layer.
2739 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2740 */
2741static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2742 struct cfq_io_context *cic, gfp_t gfp_mask)
2743{
2744 unsigned long flags;
2745 int ret;
2746
2747 ret = radix_tree_preload(gfp_mask);
2748 if (!ret) {
2749 cic->ioc = ioc;
2750 cic->key = cfqd;
2751
2752 spin_lock_irqsave(&ioc->lock, flags);
2753 ret = radix_tree_insert(&ioc->radix_root,
2754 (unsigned long) cfqd, cic);
2755 if (!ret)
2756 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2757 spin_unlock_irqrestore(&ioc->lock, flags);
2758
2759 radix_tree_preload_end();
2760
2761 if (!ret) {
2762 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2763 list_add(&cic->queue_list, &cfqd->cic_list);
2764 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2765 }
2766 }
2767
2768 if (ret)
2769 printk(KERN_ERR "cfq: cic link failed!\n");
2770
2771 return ret;
2772}
2773
2774/*
2775 * Setup general io context and cfq io context. There can be several cfq
2776 * io contexts per general io context, if this process is doing io to more
2777 * than one device managed by cfq.
2778 */
2779static struct cfq_io_context *
2780cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2781{
2782 struct io_context *ioc = NULL;
2783 struct cfq_io_context *cic;
2784
2785 might_sleep_if(gfp_mask & __GFP_WAIT);
2786
2787 ioc = get_io_context(gfp_mask, cfqd->queue->node);
2788 if (!ioc)
2789 return NULL;
2790
2791 cic = cfq_cic_lookup(cfqd, ioc);
2792 if (cic)
2793 goto out;
2794
2795 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2796 if (cic == NULL)
2797 goto err;
2798
2799 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2800 goto err_free;
2801
2802out:
2803 smp_read_barrier_depends();
2804 if (unlikely(ioc->ioprio_changed))
2805 cfq_ioc_set_ioprio(ioc);
2806
2807 return cic;
2808err_free:
2809 cfq_cic_free(cic);
2810err:
2811 put_io_context(ioc);
2812 return NULL;
2813}
2814
2815static void
2816cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2817{
2818 unsigned long elapsed = jiffies - cic->last_end_request;
2819 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2820
2821 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2822 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2823 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2824}
2825
2826static void
2827cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2828 struct request *rq)
2829{
2830 sector_t sdist;
2831 u64 total;
2832
2833 if (!cfqq->last_request_pos)
2834 sdist = 0;
2835 else if (cfqq->last_request_pos < blk_rq_pos(rq))
2836 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2837 else
2838 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2839
2840 /*
2841 * Don't allow the seek distance to get too large from the
2842 * odd fragment, pagein, etc
2843 */
2844 if (cfqq->seek_samples <= 60) /* second&third seek */
2845 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2846 else
2847 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2848
2849 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2850 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2851 total = cfqq->seek_total + (cfqq->seek_samples/2);
2852 do_div(total, cfqq->seek_samples);
2853 cfqq->seek_mean = (sector_t)total;
2854
2855 /*
2856 * If this cfqq is shared between multiple processes, check to
2857 * make sure that those processes are still issuing I/Os within
2858 * the mean seek distance. If not, it may be time to break the
2859 * queues apart again.
2860 */
2861 if (cfq_cfqq_coop(cfqq)) {
2862 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2863 cfqq->seeky_start = jiffies;
2864 else if (!CFQQ_SEEKY(cfqq))
2865 cfqq->seeky_start = 0;
2866 }
2867}
2868
2869/*
2870 * Disable idle window if the process thinks too long or seeks so much that
2871 * it doesn't matter
2872 */
2873static void
2874cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2875 struct cfq_io_context *cic)
2876{
2877 int old_idle, enable_idle;
2878
2879 /*
2880 * Don't idle for async or idle io prio class
2881 */
2882 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2883 return;
2884
2885 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
2886
2887 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
2888 cfq_mark_cfqq_deep(cfqq);
2889
2890 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2891 (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
2892 && CFQQ_SEEKY(cfqq)))
2893 enable_idle = 0;
2894 else if (sample_valid(cic->ttime_samples)) {
2895 if (cic->ttime_mean > cfqd->cfq_slice_idle)
2896 enable_idle = 0;
2897 else
2898 enable_idle = 1;
2899 }
2900
2901 if (old_idle != enable_idle) {
2902 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2903 if (enable_idle)
2904 cfq_mark_cfqq_idle_window(cfqq);
2905 else
2906 cfq_clear_cfqq_idle_window(cfqq);
2907 }
2908}
2909
2910/*
2911 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2912 * no or if we aren't sure, a 1 will cause a preempt.
2913 */
2914static bool
2915cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
2916 struct request *rq)
2917{
2918 struct cfq_queue *cfqq;
2919
2920 cfqq = cfqd->active_queue;
2921 if (!cfqq)
2922 return false;
2923
2924 if (cfq_slice_used(cfqq))
2925 return true;
2926
2927 if (cfq_class_idle(new_cfqq))
2928 return false;
2929
2930 if (cfq_class_idle(cfqq))
2931 return true;
2932
2933 /* Allow preemption only if we are idling on sync-noidle tree */
2934 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
2935 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
2936 new_cfqq->service_tree->count == 2 &&
2937 RB_EMPTY_ROOT(&cfqq->sort_list))
2938 return true;
2939
2940 /*
2941 * if the new request is sync, but the currently running queue is
2942 * not, let the sync request have priority.
2943 */
2944 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2945 return true;
2946
2947 /*
2948 * So both queues are sync. Let the new request get disk time if
2949 * it's a metadata request and the current queue is doing regular IO.
2950 */
2951 if (rq_is_meta(rq) && !cfqq->meta_pending)
2952 return true;
2953
2954 /*
2955 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2956 */
2957 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2958 return true;
2959
2960 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2961 return false;
2962
2963 /*
2964 * if this request is as-good as one we would expect from the
2965 * current cfqq, let it preempt
2966 */
2967 if (cfq_rq_close(cfqd, cfqq, rq))
2968 return true;
2969
2970 return false;
2971}
2972
2973/*
2974 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2975 * let it have half of its nominal slice.
2976 */
2977static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2978{
2979 cfq_log_cfqq(cfqd, cfqq, "preempt");
2980 cfq_slice_expired(cfqd, 1);
2981
2982 /*
2983 * Put the new queue at the front of the of the current list,
2984 * so we know that it will be selected next.
2985 */
2986 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2987
2988 cfq_service_tree_add(cfqd, cfqq, 1);
2989
2990 cfqq->slice_end = 0;
2991 cfq_mark_cfqq_slice_new(cfqq);
2992}
2993
2994/*
2995 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2996 * something we should do about it
2997 */
2998static void
2999cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3000 struct request *rq)
3001{
3002 struct cfq_io_context *cic = RQ_CIC(rq);
3003
3004 cfqd->rq_queued++;
3005 if (rq_is_meta(rq))
3006 cfqq->meta_pending++;
3007
3008 cfq_update_io_thinktime(cfqd, cic);
3009 cfq_update_io_seektime(cfqd, cfqq, rq);
3010 cfq_update_idle_window(cfqd, cfqq, cic);
3011
3012 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3013
3014 if (cfqq == cfqd->active_queue) {
3015 /*
3016 * Remember that we saw a request from this process, but
3017 * don't start queuing just yet. Otherwise we risk seeing lots
3018 * of tiny requests, because we disrupt the normal plugging
3019 * and merging. If the request is already larger than a single
3020 * page, let it rip immediately. For that case we assume that
3021 * merging is already done. Ditto for a busy system that
3022 * has other work pending, don't risk delaying until the
3023 * idle timer unplug to continue working.
3024 */
3025 if (cfq_cfqq_wait_request(cfqq)) {
3026 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3027 cfqd->busy_queues > 1) {
3028 del_timer(&cfqd->idle_slice_timer);
3029 __blk_run_queue(cfqd->queue);
3030 } else
3031 cfq_mark_cfqq_must_dispatch(cfqq);
3032 }
3033 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3034 /*
3035 * not the active queue - expire current slice if it is
3036 * idle and has expired it's mean thinktime or this new queue
3037 * has some old slice time left and is of higher priority or
3038 * this new queue is RT and the current one is BE
3039 */
3040 cfq_preempt_queue(cfqd, cfqq);
3041 __blk_run_queue(cfqd->queue);
3042 }
3043}
3044
3045static void cfq_insert_request(struct request_queue *q, struct request *rq)
3046{
3047 struct cfq_data *cfqd = q->elevator->elevator_data;
3048 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3049
3050 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3051 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3052
3053 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3054 list_add_tail(&rq->queuelist, &cfqq->fifo);
3055 cfq_add_rq_rb(rq);
3056
3057 cfq_rq_enqueued(cfqd, cfqq, rq);
3058}
3059
3060/*
3061 * Update hw_tag based on peak queue depth over 50 samples under
3062 * sufficient load.
3063 */
3064static void cfq_update_hw_tag(struct cfq_data *cfqd)
3065{
3066 struct cfq_queue *cfqq = cfqd->active_queue;
3067
3068 if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
3069 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
3070
3071 if (cfqd->hw_tag == 1)
3072 return;
3073
3074 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3075 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
3076 return;
3077
3078 /*
3079 * If active queue hasn't enough requests and can idle, cfq might not
3080 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3081 * case
3082 */
3083 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3084 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3085 CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
3086 return;
3087
3088 if (cfqd->hw_tag_samples++ < 50)
3089 return;
3090
3091 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3092 cfqd->hw_tag = 1;
3093 else
3094 cfqd->hw_tag = 0;
3095}
3096
3097static void cfq_completed_request(struct request_queue *q, struct request *rq)
3098{
3099 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3100 struct cfq_data *cfqd = cfqq->cfqd;
3101 const int sync = rq_is_sync(rq);
3102 unsigned long now;
3103
3104 now = jiffies;
3105 cfq_log_cfqq(cfqd, cfqq, "complete");
3106
3107 cfq_update_hw_tag(cfqd);
3108
3109 WARN_ON(!cfqd->rq_in_driver[sync]);
3110 WARN_ON(!cfqq->dispatched);
3111 cfqd->rq_in_driver[sync]--;
3112 cfqq->dispatched--;
3113
3114 if (cfq_cfqq_sync(cfqq))
3115 cfqd->sync_flight--;
3116
3117 if (sync) {
3118 RQ_CIC(rq)->last_end_request = now;
3119 cfqd->last_end_sync_rq = now;
3120 }
3121
3122 /*
3123 * If this is the active queue, check if it needs to be expired,
3124 * or if we want to idle in case it has no pending requests.
3125 */
3126 if (cfqd->active_queue == cfqq) {
3127 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3128
3129 if (cfq_cfqq_slice_new(cfqq)) {
3130 cfq_set_prio_slice(cfqd, cfqq);
3131 cfq_clear_cfqq_slice_new(cfqq);
3132 }
3133 /*
3134 * Idling is not enabled on:
3135 * - expired queues
3136 * - idle-priority queues
3137 * - async queues
3138 * - queues with still some requests queued
3139 * - when there is a close cooperator
3140 */
3141 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3142 cfq_slice_expired(cfqd, 1);
3143 else if (sync && cfqq_empty &&
3144 !cfq_close_cooperator(cfqd, cfqq)) {
3145 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3146 /*
3147 * Idling is enabled for SYNC_WORKLOAD.
3148 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3149 * only if we processed at least one !rq_noidle request
3150 */
3151 if (cfqd->serving_type == SYNC_WORKLOAD
3152 || cfqd->noidle_tree_requires_idle)
3153 cfq_arm_slice_timer(cfqd);
3154 }
3155 }
3156
3157 if (!rq_in_driver(cfqd))
3158 cfq_schedule_dispatch(cfqd);
3159}
3160
3161/*
3162 * we temporarily boost lower priority queues if they are holding fs exclusive
3163 * resources. they are boosted to normal prio (CLASS_BE/4)
3164 */
3165static void cfq_prio_boost(struct cfq_queue *cfqq)
3166{
3167 if (has_fs_excl()) {
3168 /*
3169 * boost idle prio on transactions that would lock out other
3170 * users of the filesystem
3171 */
3172 if (cfq_class_idle(cfqq))
3173 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3174 if (cfqq->ioprio > IOPRIO_NORM)
3175 cfqq->ioprio = IOPRIO_NORM;
3176 } else {
3177 /*
3178 * unboost the queue (if needed)
3179 */
3180 cfqq->ioprio_class = cfqq->org_ioprio_class;
3181 cfqq->ioprio = cfqq->org_ioprio;
3182 }
3183}
3184
3185static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3186{
3187 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3188 cfq_mark_cfqq_must_alloc_slice(cfqq);
3189 return ELV_MQUEUE_MUST;
3190 }
3191
3192 return ELV_MQUEUE_MAY;
3193}
3194
3195static int cfq_may_queue(struct request_queue *q, int rw)
3196{
3197 struct cfq_data *cfqd = q->elevator->elevator_data;
3198 struct task_struct *tsk = current;
3199 struct cfq_io_context *cic;
3200 struct cfq_queue *cfqq;
3201
3202 /*
3203 * don't force setup of a queue from here, as a call to may_queue
3204 * does not necessarily imply that a request actually will be queued.
3205 * so just lookup a possibly existing queue, or return 'may queue'
3206 * if that fails
3207 */
3208 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3209 if (!cic)
3210 return ELV_MQUEUE_MAY;
3211
3212 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3213 if (cfqq) {
3214 cfq_init_prio_data(cfqq, cic->ioc);
3215 cfq_prio_boost(cfqq);
3216
3217 return __cfq_may_queue(cfqq);
3218 }
3219
3220 return ELV_MQUEUE_MAY;
3221}
3222
3223/*
3224 * queue lock held here
3225 */
3226static void cfq_put_request(struct request *rq)
3227{
3228 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3229
3230 if (cfqq) {
3231 const int rw = rq_data_dir(rq);
3232
3233 BUG_ON(!cfqq->allocated[rw]);
3234 cfqq->allocated[rw]--;
3235
3236 put_io_context(RQ_CIC(rq)->ioc);
3237
3238 rq->elevator_private = NULL;
3239 rq->elevator_private2 = NULL;
3240
3241 cfq_put_queue(cfqq);
3242 }
3243}
3244
3245static struct cfq_queue *
3246cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3247 struct cfq_queue *cfqq)
3248{
3249 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3250 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3251 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3252 cfq_put_queue(cfqq);
3253 return cic_to_cfqq(cic, 1);
3254}
3255
3256static int should_split_cfqq(struct cfq_queue *cfqq)
3257{
3258 if (cfqq->seeky_start &&
3259 time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
3260 return 1;
3261 return 0;
3262}
3263
3264/*
3265 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3266 * was the last process referring to said cfqq.
3267 */
3268static struct cfq_queue *
3269split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3270{
3271 if (cfqq_process_refs(cfqq) == 1) {
3272 cfqq->seeky_start = 0;
3273 cfqq->pid = current->pid;
3274 cfq_clear_cfqq_coop(cfqq);
3275 return cfqq;
3276 }
3277
3278 cic_set_cfqq(cic, NULL, 1);
3279 cfq_put_queue(cfqq);
3280 return NULL;
3281}
3282/*
3283 * Allocate cfq data structures associated with this request.
3284 */
3285static int
3286cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3287{
3288 struct cfq_data *cfqd = q->elevator->elevator_data;
3289 struct cfq_io_context *cic;
3290 const int rw = rq_data_dir(rq);
3291 const bool is_sync = rq_is_sync(rq);
3292 struct cfq_queue *cfqq;
3293 unsigned long flags;
3294
3295 might_sleep_if(gfp_mask & __GFP_WAIT);
3296
3297 cic = cfq_get_io_context(cfqd, gfp_mask);
3298
3299 spin_lock_irqsave(q->queue_lock, flags);
3300
3301 if (!cic)
3302 goto queue_fail;
3303
3304new_queue:
3305 cfqq = cic_to_cfqq(cic, is_sync);
3306 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3307 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3308 cic_set_cfqq(cic, cfqq, is_sync);
3309 } else {
3310 /*
3311 * If the queue was seeky for too long, break it apart.
3312 */
3313 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
3314 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3315 cfqq = split_cfqq(cic, cfqq);
3316 if (!cfqq)
3317 goto new_queue;
3318 }
3319
3320 /*
3321 * Check to see if this queue is scheduled to merge with
3322 * another, closely cooperating queue. The merging of
3323 * queues happens here as it must be done in process context.
3324 * The reference on new_cfqq was taken in merge_cfqqs.
3325 */
3326 if (cfqq->new_cfqq)
3327 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3328 }
3329
3330 cfqq->allocated[rw]++;
3331 atomic_inc(&cfqq->ref);
3332
3333 spin_unlock_irqrestore(q->queue_lock, flags);
3334
3335 rq->elevator_private = cic;
3336 rq->elevator_private2 = cfqq;
3337 return 0;
3338
3339queue_fail:
3340 if (cic)
3341 put_io_context(cic->ioc);
3342
3343 cfq_schedule_dispatch(cfqd);
3344 spin_unlock_irqrestore(q->queue_lock, flags);
3345 cfq_log(cfqd, "set_request fail");
3346 return 1;
3347}
3348
3349static void cfq_kick_queue(struct work_struct *work)
3350{
3351 struct cfq_data *cfqd =
3352 container_of(work, struct cfq_data, unplug_work);
3353 struct request_queue *q = cfqd->queue;
3354
3355 spin_lock_irq(q->queue_lock);
3356 __blk_run_queue(cfqd->queue);
3357 spin_unlock_irq(q->queue_lock);
3358}
3359
3360/*
3361 * Timer running if the active_queue is currently idling inside its time slice
3362 */
3363static void cfq_idle_slice_timer(unsigned long data)
3364{
3365 struct cfq_data *cfqd = (struct cfq_data *) data;
3366 struct cfq_queue *cfqq;
3367 unsigned long flags;
3368 int timed_out = 1;
3369
3370 cfq_log(cfqd, "idle timer fired");
3371
3372 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3373
3374 cfqq = cfqd->active_queue;
3375 if (cfqq) {
3376 timed_out = 0;
3377
3378 /*
3379 * We saw a request before the queue expired, let it through
3380 */
3381 if (cfq_cfqq_must_dispatch(cfqq))
3382 goto out_kick;
3383
3384 /*
3385 * expired
3386 */
3387 if (cfq_slice_used(cfqq))
3388 goto expire;
3389
3390 /*
3391 * only expire and reinvoke request handler, if there are
3392 * other queues with pending requests
3393 */
3394 if (!cfqd->busy_queues)
3395 goto out_cont;
3396
3397 /*
3398 * not expired and it has a request pending, let it dispatch
3399 */
3400 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3401 goto out_kick;
3402
3403 /*
3404 * Queue depth flag is reset only when the idle didn't succeed
3405 */
3406 cfq_clear_cfqq_deep(cfqq);
3407 }
3408expire:
3409 cfq_slice_expired(cfqd, timed_out);
3410out_kick:
3411 cfq_schedule_dispatch(cfqd);
3412out_cont:
3413 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3414}
3415
3416static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3417{
3418 del_timer_sync(&cfqd->idle_slice_timer);
3419 cancel_work_sync(&cfqd->unplug_work);
3420}
3421
3422static void cfq_put_async_queues(struct cfq_data *cfqd)
3423{
3424 int i;
3425
3426 for (i = 0; i < IOPRIO_BE_NR; i++) {
3427 if (cfqd->async_cfqq[0][i])
3428 cfq_put_queue(cfqd->async_cfqq[0][i]);
3429 if (cfqd->async_cfqq[1][i])
3430 cfq_put_queue(cfqd->async_cfqq[1][i]);
3431 }
3432
3433 if (cfqd->async_idle_cfqq)
3434 cfq_put_queue(cfqd->async_idle_cfqq);
3435}
3436
3437static void cfq_exit_queue(struct elevator_queue *e)
3438{
3439 struct cfq_data *cfqd = e->elevator_data;
3440 struct request_queue *q = cfqd->queue;
3441
3442 cfq_shutdown_timer_wq(cfqd);
3443
3444 spin_lock_irq(q->queue_lock);
3445
3446 if (cfqd->active_queue)
3447 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3448
3449 while (!list_empty(&cfqd->cic_list)) {
3450 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3451 struct cfq_io_context,
3452 queue_list);
3453
3454 __cfq_exit_single_io_context(cfqd, cic);
3455 }
3456
3457 cfq_put_async_queues(cfqd);
3458 cfq_release_cfq_groups(cfqd);
3459 blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3460
3461 spin_unlock_irq(q->queue_lock);
3462
3463 cfq_shutdown_timer_wq(cfqd);
3464
3465 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3466 synchronize_rcu();
3467 kfree(cfqd);
3468}
3469
3470static void *cfq_init_queue(struct request_queue *q)
3471{
3472 struct cfq_data *cfqd;
3473 int i, j;
3474 struct cfq_group *cfqg;
3475 struct cfq_rb_root *st;
3476
3477 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3478 if (!cfqd)
3479 return NULL;
3480
3481 /* Init root service tree */
3482 cfqd->grp_service_tree = CFQ_RB_ROOT;
3483
3484 /* Init root group */
3485 cfqg = &cfqd->root_group;
3486 for_each_cfqg_st(cfqg, i, j, st)
3487 *st = CFQ_RB_ROOT;
3488 RB_CLEAR_NODE(&cfqg->rb_node);
3489
3490 /* Give preference to root group over other groups */
3491 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3492
3493#ifdef CONFIG_CFQ_GROUP_IOSCHED
3494 /*
3495 * Take a reference to root group which we never drop. This is just
3496 * to make sure that cfq_put_cfqg() does not try to kfree root group
3497 */
3498 atomic_set(&cfqg->ref, 1);
3499 blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd);
3500#endif
3501 /*
3502 * Not strictly needed (since RB_ROOT just clears the node and we
3503 * zeroed cfqd on alloc), but better be safe in case someone decides
3504 * to add magic to the rb code
3505 */
3506 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3507 cfqd->prio_trees[i] = RB_ROOT;
3508
3509 /*
3510 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3511 * Grab a permanent reference to it, so that the normal code flow
3512 * will not attempt to free it.
3513 */
3514 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3515 atomic_inc(&cfqd->oom_cfqq.ref);
3516 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3517
3518 INIT_LIST_HEAD(&cfqd->cic_list);
3519
3520 cfqd->queue = q;
3521
3522 init_timer(&cfqd->idle_slice_timer);
3523 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3524 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3525
3526 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3527
3528 cfqd->cfq_quantum = cfq_quantum;
3529 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3530 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3531 cfqd->cfq_back_max = cfq_back_max;
3532 cfqd->cfq_back_penalty = cfq_back_penalty;
3533 cfqd->cfq_slice[0] = cfq_slice_async;
3534 cfqd->cfq_slice[1] = cfq_slice_sync;
3535 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3536 cfqd->cfq_slice_idle = cfq_slice_idle;
3537 cfqd->cfq_latency = 1;
3538 cfqd->hw_tag = -1;
3539 cfqd->last_end_sync_rq = jiffies;
3540 return cfqd;
3541}
3542
3543static void cfq_slab_kill(void)
3544{
3545 /*
3546 * Caller already ensured that pending RCU callbacks are completed,
3547 * so we should have no busy allocations at this point.
3548 */
3549 if (cfq_pool)
3550 kmem_cache_destroy(cfq_pool);
3551 if (cfq_ioc_pool)
3552 kmem_cache_destroy(cfq_ioc_pool);
3553}
3554
3555static int __init cfq_slab_setup(void)
3556{
3557 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3558 if (!cfq_pool)
3559 goto fail;
3560
3561 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3562 if (!cfq_ioc_pool)
3563 goto fail;
3564
3565 return 0;
3566fail:
3567 cfq_slab_kill();
3568 return -ENOMEM;
3569}
3570
3571/*
3572 * sysfs parts below -->
3573 */
3574static ssize_t
3575cfq_var_show(unsigned int var, char *page)
3576{
3577 return sprintf(page, "%d\n", var);
3578}
3579
3580static ssize_t
3581cfq_var_store(unsigned int *var, const char *page, size_t count)
3582{
3583 char *p = (char *) page;
3584
3585 *var = simple_strtoul(p, &p, 10);
3586 return count;
3587}
3588
3589#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3590static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3591{ \
3592 struct cfq_data *cfqd = e->elevator_data; \
3593 unsigned int __data = __VAR; \
3594 if (__CONV) \
3595 __data = jiffies_to_msecs(__data); \
3596 return cfq_var_show(__data, (page)); \
3597}
3598SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3599SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3600SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3601SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3602SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3603SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3604SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3605SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3606SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3607SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3608#undef SHOW_FUNCTION
3609
3610#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3611static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3612{ \
3613 struct cfq_data *cfqd = e->elevator_data; \
3614 unsigned int __data; \
3615 int ret = cfq_var_store(&__data, (page), count); \
3616 if (__data < (MIN)) \
3617 __data = (MIN); \
3618 else if (__data > (MAX)) \
3619 __data = (MAX); \
3620 if (__CONV) \
3621 *(__PTR) = msecs_to_jiffies(__data); \
3622 else \
3623 *(__PTR) = __data; \
3624 return ret; \
3625}
3626STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3627STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3628 UINT_MAX, 1);
3629STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3630 UINT_MAX, 1);
3631STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3632STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3633 UINT_MAX, 0);
3634STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3635STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3636STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3637STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3638 UINT_MAX, 0);
3639STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3640#undef STORE_FUNCTION
3641
3642#define CFQ_ATTR(name) \
3643 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3644
3645static struct elv_fs_entry cfq_attrs[] = {
3646 CFQ_ATTR(quantum),
3647 CFQ_ATTR(fifo_expire_sync),
3648 CFQ_ATTR(fifo_expire_async),
3649 CFQ_ATTR(back_seek_max),
3650 CFQ_ATTR(back_seek_penalty),
3651 CFQ_ATTR(slice_sync),
3652 CFQ_ATTR(slice_async),
3653 CFQ_ATTR(slice_async_rq),
3654 CFQ_ATTR(slice_idle),
3655 CFQ_ATTR(low_latency),
3656 __ATTR_NULL
3657};
3658
3659static struct elevator_type iosched_cfq = {
3660 .ops = {
3661 .elevator_merge_fn = cfq_merge,
3662 .elevator_merged_fn = cfq_merged_request,
3663 .elevator_merge_req_fn = cfq_merged_requests,
3664 .elevator_allow_merge_fn = cfq_allow_merge,
3665 .elevator_dispatch_fn = cfq_dispatch_requests,
3666 .elevator_add_req_fn = cfq_insert_request,
3667 .elevator_activate_req_fn = cfq_activate_request,
3668 .elevator_deactivate_req_fn = cfq_deactivate_request,
3669 .elevator_queue_empty_fn = cfq_queue_empty,
3670 .elevator_completed_req_fn = cfq_completed_request,
3671 .elevator_former_req_fn = elv_rb_former_request,
3672 .elevator_latter_req_fn = elv_rb_latter_request,
3673 .elevator_set_req_fn = cfq_set_request,
3674 .elevator_put_req_fn = cfq_put_request,
3675 .elevator_may_queue_fn = cfq_may_queue,
3676 .elevator_init_fn = cfq_init_queue,
3677 .elevator_exit_fn = cfq_exit_queue,
3678 .trim = cfq_free_io_context,
3679 },
3680 .elevator_attrs = cfq_attrs,
3681 .elevator_name = "cfq",
3682 .elevator_owner = THIS_MODULE,
3683};
3684
3685static int __init cfq_init(void)
3686{
3687 /*
3688 * could be 0 on HZ < 1000 setups
3689 */
3690 if (!cfq_slice_async)
3691 cfq_slice_async = 1;
3692 if (!cfq_slice_idle)
3693 cfq_slice_idle = 1;
3694
3695 if (cfq_slab_setup())
3696 return -ENOMEM;
3697
3698 elv_register(&iosched_cfq);
3699
3700 return 0;
3701}
3702
3703static void __exit cfq_exit(void)
3704{
3705 DECLARE_COMPLETION_ONSTACK(all_gone);
3706 elv_unregister(&iosched_cfq);
3707 ioc_gone = &all_gone;
3708 /* ioc_gone's update must be visible before reading ioc_count */
3709 smp_wmb();
3710
3711 /*
3712 * this also protects us from entering cfq_slab_kill() with
3713 * pending RCU callbacks
3714 */
3715 if (elv_ioc_count_read(cfq_ioc_count))
3716 wait_for_completion(&all_gone);
3717 cfq_slab_kill();
3718}
3719
3720module_init(cfq_init);
3721module_exit(cfq_exit);
3722
3723MODULE_AUTHOR("Jens Axboe");
3724MODULE_LICENSE("GPL");
3725MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");