block, cfq: restructure io_cq creation path for io_context interface cleanup
[linux-2.6-block.git] / block / cfq-iosched.c
... / ...
CommitLineData
1/*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/slab.h>
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
13#include <linux/jiffies.h>
14#include <linux/rbtree.h>
15#include <linux/ioprio.h>
16#include <linux/blktrace_api.h>
17#include "blk.h"
18#include "cfq.h"
19
20/*
21 * tunables
22 */
23/* max queue in one round of service */
24static const int cfq_quantum = 8;
25static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
26/* maximum backwards seek, in KiB */
27static const int cfq_back_max = 16 * 1024;
28/* penalty of a backwards seek */
29static const int cfq_back_penalty = 2;
30static const int cfq_slice_sync = HZ / 10;
31static int cfq_slice_async = HZ / 25;
32static const int cfq_slice_async_rq = 2;
33static int cfq_slice_idle = HZ / 125;
34static int cfq_group_idle = HZ / 125;
35static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36static const int cfq_hist_divisor = 4;
37
38/*
39 * offset from end of service tree
40 */
41#define CFQ_IDLE_DELAY (HZ / 5)
42
43/*
44 * below this threshold, we consider thinktime immediate
45 */
46#define CFQ_MIN_TT (2)
47
48#define CFQ_SLICE_SCALE (5)
49#define CFQ_HW_QUEUE_MIN (5)
50#define CFQ_SERVICE_SHIFT 12
51
52#define CFQQ_SEEK_THR (sector_t)(8 * 100)
53#define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
54#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
55#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
56
57#define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
58#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
59#define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
60
61static struct kmem_cache *cfq_pool;
62
63#define CFQ_PRIO_LISTS IOPRIO_BE_NR
64#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66
67#define sample_valid(samples) ((samples) > 80)
68#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
69
70struct cfq_ttime {
71 unsigned long last_end_request;
72
73 unsigned long ttime_total;
74 unsigned long ttime_samples;
75 unsigned long ttime_mean;
76};
77
78/*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84struct cfq_rb_root {
85 struct rb_root rb;
86 struct rb_node *left;
87 unsigned count;
88 unsigned total_weight;
89 u64 min_vdisktime;
90 struct cfq_ttime ttime;
91};
92#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
93 .ttime = {.last_end_request = jiffies,},}
94
95/*
96 * Per process-grouping structure
97 */
98struct cfq_queue {
99 /* reference count */
100 int ref;
101 /* various state flags, see below */
102 unsigned int flags;
103 /* parent cfq_data */
104 struct cfq_data *cfqd;
105 /* service_tree member */
106 struct rb_node rb_node;
107 /* service_tree key */
108 unsigned long rb_key;
109 /* prio tree member */
110 struct rb_node p_node;
111 /* prio tree root we belong to, if any */
112 struct rb_root *p_root;
113 /* sorted list of pending requests */
114 struct rb_root sort_list;
115 /* if fifo isn't expired, next request to serve */
116 struct request *next_rq;
117 /* requests queued in sort_list */
118 int queued[2];
119 /* currently allocated requests */
120 int allocated[2];
121 /* fifo list of requests in sort_list */
122 struct list_head fifo;
123
124 /* time when queue got scheduled in to dispatch first request. */
125 unsigned long dispatch_start;
126 unsigned int allocated_slice;
127 unsigned int slice_dispatch;
128 /* time when first request from queue completed and slice started. */
129 unsigned long slice_start;
130 unsigned long slice_end;
131 long slice_resid;
132
133 /* pending priority requests */
134 int prio_pending;
135 /* number of requests that are on the dispatch list or inside driver */
136 int dispatched;
137
138 /* io prio of this group */
139 unsigned short ioprio, org_ioprio;
140 unsigned short ioprio_class;
141
142 pid_t pid;
143
144 u32 seek_history;
145 sector_t last_request_pos;
146
147 struct cfq_rb_root *service_tree;
148 struct cfq_queue *new_cfqq;
149 struct cfq_group *cfqg;
150 /* Number of sectors dispatched from queue in single dispatch round */
151 unsigned long nr_sectors;
152};
153
154/*
155 * First index in the service_trees.
156 * IDLE is handled separately, so it has negative index
157 */
158enum wl_prio_t {
159 BE_WORKLOAD = 0,
160 RT_WORKLOAD = 1,
161 IDLE_WORKLOAD = 2,
162 CFQ_PRIO_NR,
163};
164
165/*
166 * Second index in the service_trees.
167 */
168enum wl_type_t {
169 ASYNC_WORKLOAD = 0,
170 SYNC_NOIDLE_WORKLOAD = 1,
171 SYNC_WORKLOAD = 2
172};
173
174/* This is per cgroup per device grouping structure */
175struct cfq_group {
176 /* group service_tree member */
177 struct rb_node rb_node;
178
179 /* group service_tree key */
180 u64 vdisktime;
181 unsigned int weight;
182 unsigned int new_weight;
183 bool needs_update;
184
185 /* number of cfqq currently on this group */
186 int nr_cfqq;
187
188 /*
189 * Per group busy queues average. Useful for workload slice calc. We
190 * create the array for each prio class but at run time it is used
191 * only for RT and BE class and slot for IDLE class remains unused.
192 * This is primarily done to avoid confusion and a gcc warning.
193 */
194 unsigned int busy_queues_avg[CFQ_PRIO_NR];
195 /*
196 * rr lists of queues with requests. We maintain service trees for
197 * RT and BE classes. These trees are subdivided in subclasses
198 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
199 * class there is no subclassification and all the cfq queues go on
200 * a single tree service_tree_idle.
201 * Counts are embedded in the cfq_rb_root
202 */
203 struct cfq_rb_root service_trees[2][3];
204 struct cfq_rb_root service_tree_idle;
205
206 unsigned long saved_workload_slice;
207 enum wl_type_t saved_workload;
208 enum wl_prio_t saved_serving_prio;
209 struct blkio_group blkg;
210#ifdef CONFIG_CFQ_GROUP_IOSCHED
211 struct hlist_node cfqd_node;
212 int ref;
213#endif
214 /* number of requests that are on the dispatch list or inside driver */
215 int dispatched;
216 struct cfq_ttime ttime;
217};
218
219struct cfq_io_cq {
220 struct io_cq icq; /* must be the first member */
221 struct cfq_queue *cfqq[2];
222 struct cfq_ttime ttime;
223};
224
225/*
226 * Per block device queue structure
227 */
228struct cfq_data {
229 struct request_queue *queue;
230 /* Root service tree for cfq_groups */
231 struct cfq_rb_root grp_service_tree;
232 struct cfq_group root_group;
233
234 /*
235 * The priority currently being served
236 */
237 enum wl_prio_t serving_prio;
238 enum wl_type_t serving_type;
239 unsigned long workload_expires;
240 struct cfq_group *serving_group;
241
242 /*
243 * Each priority tree is sorted by next_request position. These
244 * trees are used when determining if two or more queues are
245 * interleaving requests (see cfq_close_cooperator).
246 */
247 struct rb_root prio_trees[CFQ_PRIO_LISTS];
248
249 unsigned int busy_queues;
250 unsigned int busy_sync_queues;
251
252 int rq_in_driver;
253 int rq_in_flight[2];
254
255 /*
256 * queue-depth detection
257 */
258 int rq_queued;
259 int hw_tag;
260 /*
261 * hw_tag can be
262 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
263 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
264 * 0 => no NCQ
265 */
266 int hw_tag_est_depth;
267 unsigned int hw_tag_samples;
268
269 /*
270 * idle window management
271 */
272 struct timer_list idle_slice_timer;
273 struct work_struct unplug_work;
274
275 struct cfq_queue *active_queue;
276 struct cfq_io_cq *active_cic;
277
278 /*
279 * async queue for each priority case
280 */
281 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
282 struct cfq_queue *async_idle_cfqq;
283
284 sector_t last_position;
285
286 /*
287 * tunables, see top of file
288 */
289 unsigned int cfq_quantum;
290 unsigned int cfq_fifo_expire[2];
291 unsigned int cfq_back_penalty;
292 unsigned int cfq_back_max;
293 unsigned int cfq_slice[2];
294 unsigned int cfq_slice_async_rq;
295 unsigned int cfq_slice_idle;
296 unsigned int cfq_group_idle;
297 unsigned int cfq_latency;
298
299 /*
300 * Fallback dummy cfqq for extreme OOM conditions
301 */
302 struct cfq_queue oom_cfqq;
303
304 unsigned long last_delayed_sync;
305
306 /* List of cfq groups being managed on this device*/
307 struct hlist_head cfqg_list;
308
309 /* Number of groups which are on blkcg->blkg_list */
310 unsigned int nr_blkcg_linked_grps;
311};
312
313static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
314
315static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
316 enum wl_prio_t prio,
317 enum wl_type_t type)
318{
319 if (!cfqg)
320 return NULL;
321
322 if (prio == IDLE_WORKLOAD)
323 return &cfqg->service_tree_idle;
324
325 return &cfqg->service_trees[prio][type];
326}
327
328enum cfqq_state_flags {
329 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
330 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
331 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
332 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
333 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
334 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
335 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
336 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
337 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
338 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
339 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
340 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
341 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
342};
343
344#define CFQ_CFQQ_FNS(name) \
345static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
346{ \
347 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
348} \
349static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
350{ \
351 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
352} \
353static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
354{ \
355 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
356}
357
358CFQ_CFQQ_FNS(on_rr);
359CFQ_CFQQ_FNS(wait_request);
360CFQ_CFQQ_FNS(must_dispatch);
361CFQ_CFQQ_FNS(must_alloc_slice);
362CFQ_CFQQ_FNS(fifo_expire);
363CFQ_CFQQ_FNS(idle_window);
364CFQ_CFQQ_FNS(prio_changed);
365CFQ_CFQQ_FNS(slice_new);
366CFQ_CFQQ_FNS(sync);
367CFQ_CFQQ_FNS(coop);
368CFQ_CFQQ_FNS(split_coop);
369CFQ_CFQQ_FNS(deep);
370CFQ_CFQQ_FNS(wait_busy);
371#undef CFQ_CFQQ_FNS
372
373#ifdef CONFIG_CFQ_GROUP_IOSCHED
374#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
375 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
376 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
377 blkg_path(&(cfqq)->cfqg->blkg), ##args)
378
379#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
380 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
381 blkg_path(&(cfqg)->blkg), ##args) \
382
383#else
384#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
385 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
386#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
387#endif
388#define cfq_log(cfqd, fmt, args...) \
389 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
390
391/* Traverses through cfq group service trees */
392#define for_each_cfqg_st(cfqg, i, j, st) \
393 for (i = 0; i <= IDLE_WORKLOAD; i++) \
394 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
395 : &cfqg->service_tree_idle; \
396 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
397 (i == IDLE_WORKLOAD && j == 0); \
398 j++, st = i < IDLE_WORKLOAD ? \
399 &cfqg->service_trees[i][j]: NULL) \
400
401static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
402 struct cfq_ttime *ttime, bool group_idle)
403{
404 unsigned long slice;
405 if (!sample_valid(ttime->ttime_samples))
406 return false;
407 if (group_idle)
408 slice = cfqd->cfq_group_idle;
409 else
410 slice = cfqd->cfq_slice_idle;
411 return ttime->ttime_mean > slice;
412}
413
414static inline bool iops_mode(struct cfq_data *cfqd)
415{
416 /*
417 * If we are not idling on queues and it is a NCQ drive, parallel
418 * execution of requests is on and measuring time is not possible
419 * in most of the cases until and unless we drive shallower queue
420 * depths and that becomes a performance bottleneck. In such cases
421 * switch to start providing fairness in terms of number of IOs.
422 */
423 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
424 return true;
425 else
426 return false;
427}
428
429static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
430{
431 if (cfq_class_idle(cfqq))
432 return IDLE_WORKLOAD;
433 if (cfq_class_rt(cfqq))
434 return RT_WORKLOAD;
435 return BE_WORKLOAD;
436}
437
438
439static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
440{
441 if (!cfq_cfqq_sync(cfqq))
442 return ASYNC_WORKLOAD;
443 if (!cfq_cfqq_idle_window(cfqq))
444 return SYNC_NOIDLE_WORKLOAD;
445 return SYNC_WORKLOAD;
446}
447
448static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
449 struct cfq_data *cfqd,
450 struct cfq_group *cfqg)
451{
452 if (wl == IDLE_WORKLOAD)
453 return cfqg->service_tree_idle.count;
454
455 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
456 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
457 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
458}
459
460static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
461 struct cfq_group *cfqg)
462{
463 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
464 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
465}
466
467static void cfq_dispatch_insert(struct request_queue *, struct request *);
468static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
469 struct io_context *, gfp_t);
470
471static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
472{
473 /* cic->icq is the first member, %NULL will convert to %NULL */
474 return container_of(icq, struct cfq_io_cq, icq);
475}
476
477static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
478 struct io_context *ioc)
479{
480 if (ioc)
481 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
482 return NULL;
483}
484
485static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
486{
487 return cic->cfqq[is_sync];
488}
489
490static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
491 bool is_sync)
492{
493 cic->cfqq[is_sync] = cfqq;
494}
495
496static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
497{
498 return cic->icq.q->elevator->elevator_data;
499}
500
501/*
502 * We regard a request as SYNC, if it's either a read or has the SYNC bit
503 * set (in which case it could also be direct WRITE).
504 */
505static inline bool cfq_bio_sync(struct bio *bio)
506{
507 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
508}
509
510/*
511 * scheduler run of queue, if there are requests pending and no one in the
512 * driver that will restart queueing
513 */
514static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
515{
516 if (cfqd->busy_queues) {
517 cfq_log(cfqd, "schedule dispatch");
518 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
519 }
520}
521
522/*
523 * Scale schedule slice based on io priority. Use the sync time slice only
524 * if a queue is marked sync and has sync io queued. A sync queue with async
525 * io only, should not get full sync slice length.
526 */
527static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
528 unsigned short prio)
529{
530 const int base_slice = cfqd->cfq_slice[sync];
531
532 WARN_ON(prio >= IOPRIO_BE_NR);
533
534 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
535}
536
537static inline int
538cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
539{
540 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
541}
542
543static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
544{
545 u64 d = delta << CFQ_SERVICE_SHIFT;
546
547 d = d * BLKIO_WEIGHT_DEFAULT;
548 do_div(d, cfqg->weight);
549 return d;
550}
551
552static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
553{
554 s64 delta = (s64)(vdisktime - min_vdisktime);
555 if (delta > 0)
556 min_vdisktime = vdisktime;
557
558 return min_vdisktime;
559}
560
561static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
562{
563 s64 delta = (s64)(vdisktime - min_vdisktime);
564 if (delta < 0)
565 min_vdisktime = vdisktime;
566
567 return min_vdisktime;
568}
569
570static void update_min_vdisktime(struct cfq_rb_root *st)
571{
572 struct cfq_group *cfqg;
573
574 if (st->left) {
575 cfqg = rb_entry_cfqg(st->left);
576 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
577 cfqg->vdisktime);
578 }
579}
580
581/*
582 * get averaged number of queues of RT/BE priority.
583 * average is updated, with a formula that gives more weight to higher numbers,
584 * to quickly follows sudden increases and decrease slowly
585 */
586
587static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
588 struct cfq_group *cfqg, bool rt)
589{
590 unsigned min_q, max_q;
591 unsigned mult = cfq_hist_divisor - 1;
592 unsigned round = cfq_hist_divisor / 2;
593 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
594
595 min_q = min(cfqg->busy_queues_avg[rt], busy);
596 max_q = max(cfqg->busy_queues_avg[rt], busy);
597 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
598 cfq_hist_divisor;
599 return cfqg->busy_queues_avg[rt];
600}
601
602static inline unsigned
603cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
604{
605 struct cfq_rb_root *st = &cfqd->grp_service_tree;
606
607 return cfq_target_latency * cfqg->weight / st->total_weight;
608}
609
610static inline unsigned
611cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
612{
613 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
614 if (cfqd->cfq_latency) {
615 /*
616 * interested queues (we consider only the ones with the same
617 * priority class in the cfq group)
618 */
619 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
620 cfq_class_rt(cfqq));
621 unsigned sync_slice = cfqd->cfq_slice[1];
622 unsigned expect_latency = sync_slice * iq;
623 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
624
625 if (expect_latency > group_slice) {
626 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
627 /* scale low_slice according to IO priority
628 * and sync vs async */
629 unsigned low_slice =
630 min(slice, base_low_slice * slice / sync_slice);
631 /* the adapted slice value is scaled to fit all iqs
632 * into the target latency */
633 slice = max(slice * group_slice / expect_latency,
634 low_slice);
635 }
636 }
637 return slice;
638}
639
640static inline void
641cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
642{
643 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
644
645 cfqq->slice_start = jiffies;
646 cfqq->slice_end = jiffies + slice;
647 cfqq->allocated_slice = slice;
648 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
649}
650
651/*
652 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
653 * isn't valid until the first request from the dispatch is activated
654 * and the slice time set.
655 */
656static inline bool cfq_slice_used(struct cfq_queue *cfqq)
657{
658 if (cfq_cfqq_slice_new(cfqq))
659 return false;
660 if (time_before(jiffies, cfqq->slice_end))
661 return false;
662
663 return true;
664}
665
666/*
667 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
668 * We choose the request that is closest to the head right now. Distance
669 * behind the head is penalized and only allowed to a certain extent.
670 */
671static struct request *
672cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
673{
674 sector_t s1, s2, d1 = 0, d2 = 0;
675 unsigned long back_max;
676#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
677#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
678 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
679
680 if (rq1 == NULL || rq1 == rq2)
681 return rq2;
682 if (rq2 == NULL)
683 return rq1;
684
685 if (rq_is_sync(rq1) != rq_is_sync(rq2))
686 return rq_is_sync(rq1) ? rq1 : rq2;
687
688 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
689 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
690
691 s1 = blk_rq_pos(rq1);
692 s2 = blk_rq_pos(rq2);
693
694 /*
695 * by definition, 1KiB is 2 sectors
696 */
697 back_max = cfqd->cfq_back_max * 2;
698
699 /*
700 * Strict one way elevator _except_ in the case where we allow
701 * short backward seeks which are biased as twice the cost of a
702 * similar forward seek.
703 */
704 if (s1 >= last)
705 d1 = s1 - last;
706 else if (s1 + back_max >= last)
707 d1 = (last - s1) * cfqd->cfq_back_penalty;
708 else
709 wrap |= CFQ_RQ1_WRAP;
710
711 if (s2 >= last)
712 d2 = s2 - last;
713 else if (s2 + back_max >= last)
714 d2 = (last - s2) * cfqd->cfq_back_penalty;
715 else
716 wrap |= CFQ_RQ2_WRAP;
717
718 /* Found required data */
719
720 /*
721 * By doing switch() on the bit mask "wrap" we avoid having to
722 * check two variables for all permutations: --> faster!
723 */
724 switch (wrap) {
725 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
726 if (d1 < d2)
727 return rq1;
728 else if (d2 < d1)
729 return rq2;
730 else {
731 if (s1 >= s2)
732 return rq1;
733 else
734 return rq2;
735 }
736
737 case CFQ_RQ2_WRAP:
738 return rq1;
739 case CFQ_RQ1_WRAP:
740 return rq2;
741 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
742 default:
743 /*
744 * Since both rqs are wrapped,
745 * start with the one that's further behind head
746 * (--> only *one* back seek required),
747 * since back seek takes more time than forward.
748 */
749 if (s1 <= s2)
750 return rq1;
751 else
752 return rq2;
753 }
754}
755
756/*
757 * The below is leftmost cache rbtree addon
758 */
759static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
760{
761 /* Service tree is empty */
762 if (!root->count)
763 return NULL;
764
765 if (!root->left)
766 root->left = rb_first(&root->rb);
767
768 if (root->left)
769 return rb_entry(root->left, struct cfq_queue, rb_node);
770
771 return NULL;
772}
773
774static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
775{
776 if (!root->left)
777 root->left = rb_first(&root->rb);
778
779 if (root->left)
780 return rb_entry_cfqg(root->left);
781
782 return NULL;
783}
784
785static void rb_erase_init(struct rb_node *n, struct rb_root *root)
786{
787 rb_erase(n, root);
788 RB_CLEAR_NODE(n);
789}
790
791static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
792{
793 if (root->left == n)
794 root->left = NULL;
795 rb_erase_init(n, &root->rb);
796 --root->count;
797}
798
799/*
800 * would be nice to take fifo expire time into account as well
801 */
802static struct request *
803cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
804 struct request *last)
805{
806 struct rb_node *rbnext = rb_next(&last->rb_node);
807 struct rb_node *rbprev = rb_prev(&last->rb_node);
808 struct request *next = NULL, *prev = NULL;
809
810 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
811
812 if (rbprev)
813 prev = rb_entry_rq(rbprev);
814
815 if (rbnext)
816 next = rb_entry_rq(rbnext);
817 else {
818 rbnext = rb_first(&cfqq->sort_list);
819 if (rbnext && rbnext != &last->rb_node)
820 next = rb_entry_rq(rbnext);
821 }
822
823 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
824}
825
826static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
827 struct cfq_queue *cfqq)
828{
829 /*
830 * just an approximation, should be ok.
831 */
832 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
833 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
834}
835
836static inline s64
837cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
838{
839 return cfqg->vdisktime - st->min_vdisktime;
840}
841
842static void
843__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
844{
845 struct rb_node **node = &st->rb.rb_node;
846 struct rb_node *parent = NULL;
847 struct cfq_group *__cfqg;
848 s64 key = cfqg_key(st, cfqg);
849 int left = 1;
850
851 while (*node != NULL) {
852 parent = *node;
853 __cfqg = rb_entry_cfqg(parent);
854
855 if (key < cfqg_key(st, __cfqg))
856 node = &parent->rb_left;
857 else {
858 node = &parent->rb_right;
859 left = 0;
860 }
861 }
862
863 if (left)
864 st->left = &cfqg->rb_node;
865
866 rb_link_node(&cfqg->rb_node, parent, node);
867 rb_insert_color(&cfqg->rb_node, &st->rb);
868}
869
870static void
871cfq_update_group_weight(struct cfq_group *cfqg)
872{
873 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
874 if (cfqg->needs_update) {
875 cfqg->weight = cfqg->new_weight;
876 cfqg->needs_update = false;
877 }
878}
879
880static void
881cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
882{
883 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
884
885 cfq_update_group_weight(cfqg);
886 __cfq_group_service_tree_add(st, cfqg);
887 st->total_weight += cfqg->weight;
888}
889
890static void
891cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
892{
893 struct cfq_rb_root *st = &cfqd->grp_service_tree;
894 struct cfq_group *__cfqg;
895 struct rb_node *n;
896
897 cfqg->nr_cfqq++;
898 if (!RB_EMPTY_NODE(&cfqg->rb_node))
899 return;
900
901 /*
902 * Currently put the group at the end. Later implement something
903 * so that groups get lesser vtime based on their weights, so that
904 * if group does not loose all if it was not continuously backlogged.
905 */
906 n = rb_last(&st->rb);
907 if (n) {
908 __cfqg = rb_entry_cfqg(n);
909 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
910 } else
911 cfqg->vdisktime = st->min_vdisktime;
912 cfq_group_service_tree_add(st, cfqg);
913}
914
915static void
916cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
917{
918 st->total_weight -= cfqg->weight;
919 if (!RB_EMPTY_NODE(&cfqg->rb_node))
920 cfq_rb_erase(&cfqg->rb_node, st);
921}
922
923static void
924cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
925{
926 struct cfq_rb_root *st = &cfqd->grp_service_tree;
927
928 BUG_ON(cfqg->nr_cfqq < 1);
929 cfqg->nr_cfqq--;
930
931 /* If there are other cfq queues under this group, don't delete it */
932 if (cfqg->nr_cfqq)
933 return;
934
935 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
936 cfq_group_service_tree_del(st, cfqg);
937 cfqg->saved_workload_slice = 0;
938 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
939}
940
941static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
942 unsigned int *unaccounted_time)
943{
944 unsigned int slice_used;
945
946 /*
947 * Queue got expired before even a single request completed or
948 * got expired immediately after first request completion.
949 */
950 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
951 /*
952 * Also charge the seek time incurred to the group, otherwise
953 * if there are mutiple queues in the group, each can dispatch
954 * a single request on seeky media and cause lots of seek time
955 * and group will never know it.
956 */
957 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
958 1);
959 } else {
960 slice_used = jiffies - cfqq->slice_start;
961 if (slice_used > cfqq->allocated_slice) {
962 *unaccounted_time = slice_used - cfqq->allocated_slice;
963 slice_used = cfqq->allocated_slice;
964 }
965 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
966 *unaccounted_time += cfqq->slice_start -
967 cfqq->dispatch_start;
968 }
969
970 return slice_used;
971}
972
973static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
974 struct cfq_queue *cfqq)
975{
976 struct cfq_rb_root *st = &cfqd->grp_service_tree;
977 unsigned int used_sl, charge, unaccounted_sl = 0;
978 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
979 - cfqg->service_tree_idle.count;
980
981 BUG_ON(nr_sync < 0);
982 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
983
984 if (iops_mode(cfqd))
985 charge = cfqq->slice_dispatch;
986 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
987 charge = cfqq->allocated_slice;
988
989 /* Can't update vdisktime while group is on service tree */
990 cfq_group_service_tree_del(st, cfqg);
991 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
992 /* If a new weight was requested, update now, off tree */
993 cfq_group_service_tree_add(st, cfqg);
994
995 /* This group is being expired. Save the context */
996 if (time_after(cfqd->workload_expires, jiffies)) {
997 cfqg->saved_workload_slice = cfqd->workload_expires
998 - jiffies;
999 cfqg->saved_workload = cfqd->serving_type;
1000 cfqg->saved_serving_prio = cfqd->serving_prio;
1001 } else
1002 cfqg->saved_workload_slice = 0;
1003
1004 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1005 st->min_vdisktime);
1006 cfq_log_cfqq(cfqq->cfqd, cfqq,
1007 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1008 used_sl, cfqq->slice_dispatch, charge,
1009 iops_mode(cfqd), cfqq->nr_sectors);
1010 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
1011 unaccounted_sl);
1012 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1013}
1014
1015#ifdef CONFIG_CFQ_GROUP_IOSCHED
1016static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
1017{
1018 if (blkg)
1019 return container_of(blkg, struct cfq_group, blkg);
1020 return NULL;
1021}
1022
1023static void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
1024 unsigned int weight)
1025{
1026 struct cfq_group *cfqg = cfqg_of_blkg(blkg);
1027 cfqg->new_weight = weight;
1028 cfqg->needs_update = true;
1029}
1030
1031static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
1032 struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
1033{
1034 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1035 unsigned int major, minor;
1036
1037 /*
1038 * Add group onto cgroup list. It might happen that bdi->dev is
1039 * not initialized yet. Initialize this new group without major
1040 * and minor info and this info will be filled in once a new thread
1041 * comes for IO.
1042 */
1043 if (bdi->dev) {
1044 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1045 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1046 (void *)cfqd, MKDEV(major, minor));
1047 } else
1048 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1049 (void *)cfqd, 0);
1050
1051 cfqd->nr_blkcg_linked_grps++;
1052 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1053
1054 /* Add group on cfqd list */
1055 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1056}
1057
1058/*
1059 * Should be called from sleepable context. No request queue lock as per
1060 * cpu stats are allocated dynamically and alloc_percpu needs to be called
1061 * from sleepable context.
1062 */
1063static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
1064{
1065 struct cfq_group *cfqg = NULL;
1066 int i, j, ret;
1067 struct cfq_rb_root *st;
1068
1069 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1070 if (!cfqg)
1071 return NULL;
1072
1073 for_each_cfqg_st(cfqg, i, j, st)
1074 *st = CFQ_RB_ROOT;
1075 RB_CLEAR_NODE(&cfqg->rb_node);
1076
1077 cfqg->ttime.last_end_request = jiffies;
1078
1079 /*
1080 * Take the initial reference that will be released on destroy
1081 * This can be thought of a joint reference by cgroup and
1082 * elevator which will be dropped by either elevator exit
1083 * or cgroup deletion path depending on who is exiting first.
1084 */
1085 cfqg->ref = 1;
1086
1087 ret = blkio_alloc_blkg_stats(&cfqg->blkg);
1088 if (ret) {
1089 kfree(cfqg);
1090 return NULL;
1091 }
1092
1093 return cfqg;
1094}
1095
1096static struct cfq_group *
1097cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
1098{
1099 struct cfq_group *cfqg = NULL;
1100 void *key = cfqd;
1101 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1102 unsigned int major, minor;
1103
1104 /*
1105 * This is the common case when there are no blkio cgroups.
1106 * Avoid lookup in this case
1107 */
1108 if (blkcg == &blkio_root_cgroup)
1109 cfqg = &cfqd->root_group;
1110 else
1111 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
1112
1113 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1114 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1115 cfqg->blkg.dev = MKDEV(major, minor);
1116 }
1117
1118 return cfqg;
1119}
1120
1121/*
1122 * Search for the cfq group current task belongs to. request_queue lock must
1123 * be held.
1124 */
1125static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1126{
1127 struct blkio_cgroup *blkcg;
1128 struct cfq_group *cfqg = NULL, *__cfqg = NULL;
1129 struct request_queue *q = cfqd->queue;
1130
1131 rcu_read_lock();
1132 blkcg = task_blkio_cgroup(current);
1133 cfqg = cfq_find_cfqg(cfqd, blkcg);
1134 if (cfqg) {
1135 rcu_read_unlock();
1136 return cfqg;
1137 }
1138
1139 /*
1140 * Need to allocate a group. Allocation of group also needs allocation
1141 * of per cpu stats which in-turn takes a mutex() and can block. Hence
1142 * we need to drop rcu lock and queue_lock before we call alloc.
1143 *
1144 * Not taking any queue reference here and assuming that queue is
1145 * around by the time we return. CFQ queue allocation code does
1146 * the same. It might be racy though.
1147 */
1148
1149 rcu_read_unlock();
1150 spin_unlock_irq(q->queue_lock);
1151
1152 cfqg = cfq_alloc_cfqg(cfqd);
1153
1154 spin_lock_irq(q->queue_lock);
1155
1156 rcu_read_lock();
1157 blkcg = task_blkio_cgroup(current);
1158
1159 /*
1160 * If some other thread already allocated the group while we were
1161 * not holding queue lock, free up the group
1162 */
1163 __cfqg = cfq_find_cfqg(cfqd, blkcg);
1164
1165 if (__cfqg) {
1166 kfree(cfqg);
1167 rcu_read_unlock();
1168 return __cfqg;
1169 }
1170
1171 if (!cfqg)
1172 cfqg = &cfqd->root_group;
1173
1174 cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
1175 rcu_read_unlock();
1176 return cfqg;
1177}
1178
1179static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1180{
1181 cfqg->ref++;
1182 return cfqg;
1183}
1184
1185static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1186{
1187 /* Currently, all async queues are mapped to root group */
1188 if (!cfq_cfqq_sync(cfqq))
1189 cfqg = &cfqq->cfqd->root_group;
1190
1191 cfqq->cfqg = cfqg;
1192 /* cfqq reference on cfqg */
1193 cfqq->cfqg->ref++;
1194}
1195
1196static void cfq_put_cfqg(struct cfq_group *cfqg)
1197{
1198 struct cfq_rb_root *st;
1199 int i, j;
1200
1201 BUG_ON(cfqg->ref <= 0);
1202 cfqg->ref--;
1203 if (cfqg->ref)
1204 return;
1205 for_each_cfqg_st(cfqg, i, j, st)
1206 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
1207 free_percpu(cfqg->blkg.stats_cpu);
1208 kfree(cfqg);
1209}
1210
1211static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1212{
1213 /* Something wrong if we are trying to remove same group twice */
1214 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1215
1216 hlist_del_init(&cfqg->cfqd_node);
1217
1218 BUG_ON(cfqd->nr_blkcg_linked_grps <= 0);
1219 cfqd->nr_blkcg_linked_grps--;
1220
1221 /*
1222 * Put the reference taken at the time of creation so that when all
1223 * queues are gone, group can be destroyed.
1224 */
1225 cfq_put_cfqg(cfqg);
1226}
1227
1228static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1229{
1230 struct hlist_node *pos, *n;
1231 struct cfq_group *cfqg;
1232
1233 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1234 /*
1235 * If cgroup removal path got to blk_group first and removed
1236 * it from cgroup list, then it will take care of destroying
1237 * cfqg also.
1238 */
1239 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1240 cfq_destroy_cfqg(cfqd, cfqg);
1241 }
1242}
1243
1244/*
1245 * Blk cgroup controller notification saying that blkio_group object is being
1246 * delinked as associated cgroup object is going away. That also means that
1247 * no new IO will come in this group. So get rid of this group as soon as
1248 * any pending IO in the group is finished.
1249 *
1250 * This function is called under rcu_read_lock(). key is the rcu protected
1251 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1252 * read lock.
1253 *
1254 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1255 * it should not be NULL as even if elevator was exiting, cgroup deltion
1256 * path got to it first.
1257 */
1258static void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1259{
1260 unsigned long flags;
1261 struct cfq_data *cfqd = key;
1262
1263 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1264 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1265 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1266}
1267
1268#else /* GROUP_IOSCHED */
1269static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1270{
1271 return &cfqd->root_group;
1272}
1273
1274static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1275{
1276 return cfqg;
1277}
1278
1279static inline void
1280cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1281 cfqq->cfqg = cfqg;
1282}
1283
1284static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1285static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1286
1287#endif /* GROUP_IOSCHED */
1288
1289/*
1290 * The cfqd->service_trees holds all pending cfq_queue's that have
1291 * requests waiting to be processed. It is sorted in the order that
1292 * we will service the queues.
1293 */
1294static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1295 bool add_front)
1296{
1297 struct rb_node **p, *parent;
1298 struct cfq_queue *__cfqq;
1299 unsigned long rb_key;
1300 struct cfq_rb_root *service_tree;
1301 int left;
1302 int new_cfqq = 1;
1303
1304 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1305 cfqq_type(cfqq));
1306 if (cfq_class_idle(cfqq)) {
1307 rb_key = CFQ_IDLE_DELAY;
1308 parent = rb_last(&service_tree->rb);
1309 if (parent && parent != &cfqq->rb_node) {
1310 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1311 rb_key += __cfqq->rb_key;
1312 } else
1313 rb_key += jiffies;
1314 } else if (!add_front) {
1315 /*
1316 * Get our rb key offset. Subtract any residual slice
1317 * value carried from last service. A negative resid
1318 * count indicates slice overrun, and this should position
1319 * the next service time further away in the tree.
1320 */
1321 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1322 rb_key -= cfqq->slice_resid;
1323 cfqq->slice_resid = 0;
1324 } else {
1325 rb_key = -HZ;
1326 __cfqq = cfq_rb_first(service_tree);
1327 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1328 }
1329
1330 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1331 new_cfqq = 0;
1332 /*
1333 * same position, nothing more to do
1334 */
1335 if (rb_key == cfqq->rb_key &&
1336 cfqq->service_tree == service_tree)
1337 return;
1338
1339 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1340 cfqq->service_tree = NULL;
1341 }
1342
1343 left = 1;
1344 parent = NULL;
1345 cfqq->service_tree = service_tree;
1346 p = &service_tree->rb.rb_node;
1347 while (*p) {
1348 struct rb_node **n;
1349
1350 parent = *p;
1351 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1352
1353 /*
1354 * sort by key, that represents service time.
1355 */
1356 if (time_before(rb_key, __cfqq->rb_key))
1357 n = &(*p)->rb_left;
1358 else {
1359 n = &(*p)->rb_right;
1360 left = 0;
1361 }
1362
1363 p = n;
1364 }
1365
1366 if (left)
1367 service_tree->left = &cfqq->rb_node;
1368
1369 cfqq->rb_key = rb_key;
1370 rb_link_node(&cfqq->rb_node, parent, p);
1371 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1372 service_tree->count++;
1373 if (add_front || !new_cfqq)
1374 return;
1375 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1376}
1377
1378static struct cfq_queue *
1379cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1380 sector_t sector, struct rb_node **ret_parent,
1381 struct rb_node ***rb_link)
1382{
1383 struct rb_node **p, *parent;
1384 struct cfq_queue *cfqq = NULL;
1385
1386 parent = NULL;
1387 p = &root->rb_node;
1388 while (*p) {
1389 struct rb_node **n;
1390
1391 parent = *p;
1392 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1393
1394 /*
1395 * Sort strictly based on sector. Smallest to the left,
1396 * largest to the right.
1397 */
1398 if (sector > blk_rq_pos(cfqq->next_rq))
1399 n = &(*p)->rb_right;
1400 else if (sector < blk_rq_pos(cfqq->next_rq))
1401 n = &(*p)->rb_left;
1402 else
1403 break;
1404 p = n;
1405 cfqq = NULL;
1406 }
1407
1408 *ret_parent = parent;
1409 if (rb_link)
1410 *rb_link = p;
1411 return cfqq;
1412}
1413
1414static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1415{
1416 struct rb_node **p, *parent;
1417 struct cfq_queue *__cfqq;
1418
1419 if (cfqq->p_root) {
1420 rb_erase(&cfqq->p_node, cfqq->p_root);
1421 cfqq->p_root = NULL;
1422 }
1423
1424 if (cfq_class_idle(cfqq))
1425 return;
1426 if (!cfqq->next_rq)
1427 return;
1428
1429 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1430 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1431 blk_rq_pos(cfqq->next_rq), &parent, &p);
1432 if (!__cfqq) {
1433 rb_link_node(&cfqq->p_node, parent, p);
1434 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1435 } else
1436 cfqq->p_root = NULL;
1437}
1438
1439/*
1440 * Update cfqq's position in the service tree.
1441 */
1442static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1443{
1444 /*
1445 * Resorting requires the cfqq to be on the RR list already.
1446 */
1447 if (cfq_cfqq_on_rr(cfqq)) {
1448 cfq_service_tree_add(cfqd, cfqq, 0);
1449 cfq_prio_tree_add(cfqd, cfqq);
1450 }
1451}
1452
1453/*
1454 * add to busy list of queues for service, trying to be fair in ordering
1455 * the pending list according to last request service
1456 */
1457static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1458{
1459 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1460 BUG_ON(cfq_cfqq_on_rr(cfqq));
1461 cfq_mark_cfqq_on_rr(cfqq);
1462 cfqd->busy_queues++;
1463 if (cfq_cfqq_sync(cfqq))
1464 cfqd->busy_sync_queues++;
1465
1466 cfq_resort_rr_list(cfqd, cfqq);
1467}
1468
1469/*
1470 * Called when the cfqq no longer has requests pending, remove it from
1471 * the service tree.
1472 */
1473static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1474{
1475 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1476 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1477 cfq_clear_cfqq_on_rr(cfqq);
1478
1479 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1480 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1481 cfqq->service_tree = NULL;
1482 }
1483 if (cfqq->p_root) {
1484 rb_erase(&cfqq->p_node, cfqq->p_root);
1485 cfqq->p_root = NULL;
1486 }
1487
1488 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1489 BUG_ON(!cfqd->busy_queues);
1490 cfqd->busy_queues--;
1491 if (cfq_cfqq_sync(cfqq))
1492 cfqd->busy_sync_queues--;
1493}
1494
1495/*
1496 * rb tree support functions
1497 */
1498static void cfq_del_rq_rb(struct request *rq)
1499{
1500 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1501 const int sync = rq_is_sync(rq);
1502
1503 BUG_ON(!cfqq->queued[sync]);
1504 cfqq->queued[sync]--;
1505
1506 elv_rb_del(&cfqq->sort_list, rq);
1507
1508 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1509 /*
1510 * Queue will be deleted from service tree when we actually
1511 * expire it later. Right now just remove it from prio tree
1512 * as it is empty.
1513 */
1514 if (cfqq->p_root) {
1515 rb_erase(&cfqq->p_node, cfqq->p_root);
1516 cfqq->p_root = NULL;
1517 }
1518 }
1519}
1520
1521static void cfq_add_rq_rb(struct request *rq)
1522{
1523 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1524 struct cfq_data *cfqd = cfqq->cfqd;
1525 struct request *prev;
1526
1527 cfqq->queued[rq_is_sync(rq)]++;
1528
1529 elv_rb_add(&cfqq->sort_list, rq);
1530
1531 if (!cfq_cfqq_on_rr(cfqq))
1532 cfq_add_cfqq_rr(cfqd, cfqq);
1533
1534 /*
1535 * check if this request is a better next-serve candidate
1536 */
1537 prev = cfqq->next_rq;
1538 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1539
1540 /*
1541 * adjust priority tree position, if ->next_rq changes
1542 */
1543 if (prev != cfqq->next_rq)
1544 cfq_prio_tree_add(cfqd, cfqq);
1545
1546 BUG_ON(!cfqq->next_rq);
1547}
1548
1549static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1550{
1551 elv_rb_del(&cfqq->sort_list, rq);
1552 cfqq->queued[rq_is_sync(rq)]--;
1553 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1554 rq_data_dir(rq), rq_is_sync(rq));
1555 cfq_add_rq_rb(rq);
1556 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1557 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1558 rq_is_sync(rq));
1559}
1560
1561static struct request *
1562cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1563{
1564 struct task_struct *tsk = current;
1565 struct cfq_io_cq *cic;
1566 struct cfq_queue *cfqq;
1567
1568 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1569 if (!cic)
1570 return NULL;
1571
1572 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1573 if (cfqq) {
1574 sector_t sector = bio->bi_sector + bio_sectors(bio);
1575
1576 return elv_rb_find(&cfqq->sort_list, sector);
1577 }
1578
1579 return NULL;
1580}
1581
1582static void cfq_activate_request(struct request_queue *q, struct request *rq)
1583{
1584 struct cfq_data *cfqd = q->elevator->elevator_data;
1585
1586 cfqd->rq_in_driver++;
1587 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1588 cfqd->rq_in_driver);
1589
1590 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1591}
1592
1593static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1594{
1595 struct cfq_data *cfqd = q->elevator->elevator_data;
1596
1597 WARN_ON(!cfqd->rq_in_driver);
1598 cfqd->rq_in_driver--;
1599 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1600 cfqd->rq_in_driver);
1601}
1602
1603static void cfq_remove_request(struct request *rq)
1604{
1605 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1606
1607 if (cfqq->next_rq == rq)
1608 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1609
1610 list_del_init(&rq->queuelist);
1611 cfq_del_rq_rb(rq);
1612
1613 cfqq->cfqd->rq_queued--;
1614 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1615 rq_data_dir(rq), rq_is_sync(rq));
1616 if (rq->cmd_flags & REQ_PRIO) {
1617 WARN_ON(!cfqq->prio_pending);
1618 cfqq->prio_pending--;
1619 }
1620}
1621
1622static int cfq_merge(struct request_queue *q, struct request **req,
1623 struct bio *bio)
1624{
1625 struct cfq_data *cfqd = q->elevator->elevator_data;
1626 struct request *__rq;
1627
1628 __rq = cfq_find_rq_fmerge(cfqd, bio);
1629 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1630 *req = __rq;
1631 return ELEVATOR_FRONT_MERGE;
1632 }
1633
1634 return ELEVATOR_NO_MERGE;
1635}
1636
1637static void cfq_merged_request(struct request_queue *q, struct request *req,
1638 int type)
1639{
1640 if (type == ELEVATOR_FRONT_MERGE) {
1641 struct cfq_queue *cfqq = RQ_CFQQ(req);
1642
1643 cfq_reposition_rq_rb(cfqq, req);
1644 }
1645}
1646
1647static void cfq_bio_merged(struct request_queue *q, struct request *req,
1648 struct bio *bio)
1649{
1650 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1651 bio_data_dir(bio), cfq_bio_sync(bio));
1652}
1653
1654static void
1655cfq_merged_requests(struct request_queue *q, struct request *rq,
1656 struct request *next)
1657{
1658 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1659 /*
1660 * reposition in fifo if next is older than rq
1661 */
1662 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1663 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1664 list_move(&rq->queuelist, &next->queuelist);
1665 rq_set_fifo_time(rq, rq_fifo_time(next));
1666 }
1667
1668 if (cfqq->next_rq == next)
1669 cfqq->next_rq = rq;
1670 cfq_remove_request(next);
1671 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1672 rq_data_dir(next), rq_is_sync(next));
1673}
1674
1675static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1676 struct bio *bio)
1677{
1678 struct cfq_data *cfqd = q->elevator->elevator_data;
1679 struct cfq_io_cq *cic;
1680 struct cfq_queue *cfqq;
1681
1682 /*
1683 * Disallow merge of a sync bio into an async request.
1684 */
1685 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1686 return false;
1687
1688 /*
1689 * Lookup the cfqq that this bio will be queued with and allow
1690 * merge only if rq is queued there. This function can be called
1691 * from plug merge without queue_lock. In such cases, ioc of @rq
1692 * and %current are guaranteed to be equal. Avoid lookup which
1693 * requires queue_lock by using @rq's cic.
1694 */
1695 if (current->io_context == RQ_CIC(rq)->icq.ioc) {
1696 cic = RQ_CIC(rq);
1697 } else {
1698 cic = cfq_cic_lookup(cfqd, current->io_context);
1699 if (!cic)
1700 return false;
1701 }
1702
1703 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1704 return cfqq == RQ_CFQQ(rq);
1705}
1706
1707static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1708{
1709 del_timer(&cfqd->idle_slice_timer);
1710 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1711}
1712
1713static void __cfq_set_active_queue(struct cfq_data *cfqd,
1714 struct cfq_queue *cfqq)
1715{
1716 if (cfqq) {
1717 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1718 cfqd->serving_prio, cfqd->serving_type);
1719 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1720 cfqq->slice_start = 0;
1721 cfqq->dispatch_start = jiffies;
1722 cfqq->allocated_slice = 0;
1723 cfqq->slice_end = 0;
1724 cfqq->slice_dispatch = 0;
1725 cfqq->nr_sectors = 0;
1726
1727 cfq_clear_cfqq_wait_request(cfqq);
1728 cfq_clear_cfqq_must_dispatch(cfqq);
1729 cfq_clear_cfqq_must_alloc_slice(cfqq);
1730 cfq_clear_cfqq_fifo_expire(cfqq);
1731 cfq_mark_cfqq_slice_new(cfqq);
1732
1733 cfq_del_timer(cfqd, cfqq);
1734 }
1735
1736 cfqd->active_queue = cfqq;
1737}
1738
1739/*
1740 * current cfqq expired its slice (or was too idle), select new one
1741 */
1742static void
1743__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1744 bool timed_out)
1745{
1746 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1747
1748 if (cfq_cfqq_wait_request(cfqq))
1749 cfq_del_timer(cfqd, cfqq);
1750
1751 cfq_clear_cfqq_wait_request(cfqq);
1752 cfq_clear_cfqq_wait_busy(cfqq);
1753
1754 /*
1755 * If this cfqq is shared between multiple processes, check to
1756 * make sure that those processes are still issuing I/Os within
1757 * the mean seek distance. If not, it may be time to break the
1758 * queues apart again.
1759 */
1760 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1761 cfq_mark_cfqq_split_coop(cfqq);
1762
1763 /*
1764 * store what was left of this slice, if the queue idled/timed out
1765 */
1766 if (timed_out) {
1767 if (cfq_cfqq_slice_new(cfqq))
1768 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
1769 else
1770 cfqq->slice_resid = cfqq->slice_end - jiffies;
1771 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1772 }
1773
1774 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1775
1776 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1777 cfq_del_cfqq_rr(cfqd, cfqq);
1778
1779 cfq_resort_rr_list(cfqd, cfqq);
1780
1781 if (cfqq == cfqd->active_queue)
1782 cfqd->active_queue = NULL;
1783
1784 if (cfqd->active_cic) {
1785 put_io_context(cfqd->active_cic->icq.ioc, cfqd->queue);
1786 cfqd->active_cic = NULL;
1787 }
1788}
1789
1790static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1791{
1792 struct cfq_queue *cfqq = cfqd->active_queue;
1793
1794 if (cfqq)
1795 __cfq_slice_expired(cfqd, cfqq, timed_out);
1796}
1797
1798/*
1799 * Get next queue for service. Unless we have a queue preemption,
1800 * we'll simply select the first cfqq in the service tree.
1801 */
1802static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1803{
1804 struct cfq_rb_root *service_tree =
1805 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1806 cfqd->serving_type);
1807
1808 if (!cfqd->rq_queued)
1809 return NULL;
1810
1811 /* There is nothing to dispatch */
1812 if (!service_tree)
1813 return NULL;
1814 if (RB_EMPTY_ROOT(&service_tree->rb))
1815 return NULL;
1816 return cfq_rb_first(service_tree);
1817}
1818
1819static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1820{
1821 struct cfq_group *cfqg;
1822 struct cfq_queue *cfqq;
1823 int i, j;
1824 struct cfq_rb_root *st;
1825
1826 if (!cfqd->rq_queued)
1827 return NULL;
1828
1829 cfqg = cfq_get_next_cfqg(cfqd);
1830 if (!cfqg)
1831 return NULL;
1832
1833 for_each_cfqg_st(cfqg, i, j, st)
1834 if ((cfqq = cfq_rb_first(st)) != NULL)
1835 return cfqq;
1836 return NULL;
1837}
1838
1839/*
1840 * Get and set a new active queue for service.
1841 */
1842static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1843 struct cfq_queue *cfqq)
1844{
1845 if (!cfqq)
1846 cfqq = cfq_get_next_queue(cfqd);
1847
1848 __cfq_set_active_queue(cfqd, cfqq);
1849 return cfqq;
1850}
1851
1852static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1853 struct request *rq)
1854{
1855 if (blk_rq_pos(rq) >= cfqd->last_position)
1856 return blk_rq_pos(rq) - cfqd->last_position;
1857 else
1858 return cfqd->last_position - blk_rq_pos(rq);
1859}
1860
1861static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1862 struct request *rq)
1863{
1864 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1865}
1866
1867static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1868 struct cfq_queue *cur_cfqq)
1869{
1870 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1871 struct rb_node *parent, *node;
1872 struct cfq_queue *__cfqq;
1873 sector_t sector = cfqd->last_position;
1874
1875 if (RB_EMPTY_ROOT(root))
1876 return NULL;
1877
1878 /*
1879 * First, if we find a request starting at the end of the last
1880 * request, choose it.
1881 */
1882 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1883 if (__cfqq)
1884 return __cfqq;
1885
1886 /*
1887 * If the exact sector wasn't found, the parent of the NULL leaf
1888 * will contain the closest sector.
1889 */
1890 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1891 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1892 return __cfqq;
1893
1894 if (blk_rq_pos(__cfqq->next_rq) < sector)
1895 node = rb_next(&__cfqq->p_node);
1896 else
1897 node = rb_prev(&__cfqq->p_node);
1898 if (!node)
1899 return NULL;
1900
1901 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1902 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1903 return __cfqq;
1904
1905 return NULL;
1906}
1907
1908/*
1909 * cfqd - obvious
1910 * cur_cfqq - passed in so that we don't decide that the current queue is
1911 * closely cooperating with itself.
1912 *
1913 * So, basically we're assuming that that cur_cfqq has dispatched at least
1914 * one request, and that cfqd->last_position reflects a position on the disk
1915 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1916 * assumption.
1917 */
1918static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1919 struct cfq_queue *cur_cfqq)
1920{
1921 struct cfq_queue *cfqq;
1922
1923 if (cfq_class_idle(cur_cfqq))
1924 return NULL;
1925 if (!cfq_cfqq_sync(cur_cfqq))
1926 return NULL;
1927 if (CFQQ_SEEKY(cur_cfqq))
1928 return NULL;
1929
1930 /*
1931 * Don't search priority tree if it's the only queue in the group.
1932 */
1933 if (cur_cfqq->cfqg->nr_cfqq == 1)
1934 return NULL;
1935
1936 /*
1937 * We should notice if some of the queues are cooperating, eg
1938 * working closely on the same area of the disk. In that case,
1939 * we can group them together and don't waste time idling.
1940 */
1941 cfqq = cfqq_close(cfqd, cur_cfqq);
1942 if (!cfqq)
1943 return NULL;
1944
1945 /* If new queue belongs to different cfq_group, don't choose it */
1946 if (cur_cfqq->cfqg != cfqq->cfqg)
1947 return NULL;
1948
1949 /*
1950 * It only makes sense to merge sync queues.
1951 */
1952 if (!cfq_cfqq_sync(cfqq))
1953 return NULL;
1954 if (CFQQ_SEEKY(cfqq))
1955 return NULL;
1956
1957 /*
1958 * Do not merge queues of different priority classes
1959 */
1960 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1961 return NULL;
1962
1963 return cfqq;
1964}
1965
1966/*
1967 * Determine whether we should enforce idle window for this queue.
1968 */
1969
1970static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1971{
1972 enum wl_prio_t prio = cfqq_prio(cfqq);
1973 struct cfq_rb_root *service_tree = cfqq->service_tree;
1974
1975 BUG_ON(!service_tree);
1976 BUG_ON(!service_tree->count);
1977
1978 if (!cfqd->cfq_slice_idle)
1979 return false;
1980
1981 /* We never do for idle class queues. */
1982 if (prio == IDLE_WORKLOAD)
1983 return false;
1984
1985 /* We do for queues that were marked with idle window flag. */
1986 if (cfq_cfqq_idle_window(cfqq) &&
1987 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1988 return true;
1989
1990 /*
1991 * Otherwise, we do only if they are the last ones
1992 * in their service tree.
1993 */
1994 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
1995 !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
1996 return true;
1997 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1998 service_tree->count);
1999 return false;
2000}
2001
2002static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2003{
2004 struct cfq_queue *cfqq = cfqd->active_queue;
2005 struct cfq_io_cq *cic;
2006 unsigned long sl, group_idle = 0;
2007
2008 /*
2009 * SSD device without seek penalty, disable idling. But only do so
2010 * for devices that support queuing, otherwise we still have a problem
2011 * with sync vs async workloads.
2012 */
2013 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2014 return;
2015
2016 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2017 WARN_ON(cfq_cfqq_slice_new(cfqq));
2018
2019 /*
2020 * idle is disabled, either manually or by past process history
2021 */
2022 if (!cfq_should_idle(cfqd, cfqq)) {
2023 /* no queue idling. Check for group idling */
2024 if (cfqd->cfq_group_idle)
2025 group_idle = cfqd->cfq_group_idle;
2026 else
2027 return;
2028 }
2029
2030 /*
2031 * still active requests from this queue, don't idle
2032 */
2033 if (cfqq->dispatched)
2034 return;
2035
2036 /*
2037 * task has exited, don't wait
2038 */
2039 cic = cfqd->active_cic;
2040 if (!cic || !atomic_read(&cic->icq.ioc->nr_tasks))
2041 return;
2042
2043 /*
2044 * If our average think time is larger than the remaining time
2045 * slice, then don't idle. This avoids overrunning the allotted
2046 * time slice.
2047 */
2048 if (sample_valid(cic->ttime.ttime_samples) &&
2049 (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2050 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2051 cic->ttime.ttime_mean);
2052 return;
2053 }
2054
2055 /* There are other queues in the group, don't do group idle */
2056 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2057 return;
2058
2059 cfq_mark_cfqq_wait_request(cfqq);
2060
2061 if (group_idle)
2062 sl = cfqd->cfq_group_idle;
2063 else
2064 sl = cfqd->cfq_slice_idle;
2065
2066 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2067 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
2068 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2069 group_idle ? 1 : 0);
2070}
2071
2072/*
2073 * Move request from internal lists to the request queue dispatch list.
2074 */
2075static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2076{
2077 struct cfq_data *cfqd = q->elevator->elevator_data;
2078 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2079
2080 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2081
2082 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2083 cfq_remove_request(rq);
2084 cfqq->dispatched++;
2085 (RQ_CFQG(rq))->dispatched++;
2086 elv_dispatch_sort(q, rq);
2087
2088 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2089 cfqq->nr_sectors += blk_rq_sectors(rq);
2090 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
2091 rq_data_dir(rq), rq_is_sync(rq));
2092}
2093
2094/*
2095 * return expired entry, or NULL to just start from scratch in rbtree
2096 */
2097static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2098{
2099 struct request *rq = NULL;
2100
2101 if (cfq_cfqq_fifo_expire(cfqq))
2102 return NULL;
2103
2104 cfq_mark_cfqq_fifo_expire(cfqq);
2105
2106 if (list_empty(&cfqq->fifo))
2107 return NULL;
2108
2109 rq = rq_entry_fifo(cfqq->fifo.next);
2110 if (time_before(jiffies, rq_fifo_time(rq)))
2111 rq = NULL;
2112
2113 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2114 return rq;
2115}
2116
2117static inline int
2118cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2119{
2120 const int base_rq = cfqd->cfq_slice_async_rq;
2121
2122 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2123
2124 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2125}
2126
2127/*
2128 * Must be called with the queue_lock held.
2129 */
2130static int cfqq_process_refs(struct cfq_queue *cfqq)
2131{
2132 int process_refs, io_refs;
2133
2134 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2135 process_refs = cfqq->ref - io_refs;
2136 BUG_ON(process_refs < 0);
2137 return process_refs;
2138}
2139
2140static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2141{
2142 int process_refs, new_process_refs;
2143 struct cfq_queue *__cfqq;
2144
2145 /*
2146 * If there are no process references on the new_cfqq, then it is
2147 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2148 * chain may have dropped their last reference (not just their
2149 * last process reference).
2150 */
2151 if (!cfqq_process_refs(new_cfqq))
2152 return;
2153
2154 /* Avoid a circular list and skip interim queue merges */
2155 while ((__cfqq = new_cfqq->new_cfqq)) {
2156 if (__cfqq == cfqq)
2157 return;
2158 new_cfqq = __cfqq;
2159 }
2160
2161 process_refs = cfqq_process_refs(cfqq);
2162 new_process_refs = cfqq_process_refs(new_cfqq);
2163 /*
2164 * If the process for the cfqq has gone away, there is no
2165 * sense in merging the queues.
2166 */
2167 if (process_refs == 0 || new_process_refs == 0)
2168 return;
2169
2170 /*
2171 * Merge in the direction of the lesser amount of work.
2172 */
2173 if (new_process_refs >= process_refs) {
2174 cfqq->new_cfqq = new_cfqq;
2175 new_cfqq->ref += process_refs;
2176 } else {
2177 new_cfqq->new_cfqq = cfqq;
2178 cfqq->ref += new_process_refs;
2179 }
2180}
2181
2182static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2183 struct cfq_group *cfqg, enum wl_prio_t prio)
2184{
2185 struct cfq_queue *queue;
2186 int i;
2187 bool key_valid = false;
2188 unsigned long lowest_key = 0;
2189 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2190
2191 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2192 /* select the one with lowest rb_key */
2193 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2194 if (queue &&
2195 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2196 lowest_key = queue->rb_key;
2197 cur_best = i;
2198 key_valid = true;
2199 }
2200 }
2201
2202 return cur_best;
2203}
2204
2205static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2206{
2207 unsigned slice;
2208 unsigned count;
2209 struct cfq_rb_root *st;
2210 unsigned group_slice;
2211 enum wl_prio_t original_prio = cfqd->serving_prio;
2212
2213 /* Choose next priority. RT > BE > IDLE */
2214 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2215 cfqd->serving_prio = RT_WORKLOAD;
2216 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2217 cfqd->serving_prio = BE_WORKLOAD;
2218 else {
2219 cfqd->serving_prio = IDLE_WORKLOAD;
2220 cfqd->workload_expires = jiffies + 1;
2221 return;
2222 }
2223
2224 if (original_prio != cfqd->serving_prio)
2225 goto new_workload;
2226
2227 /*
2228 * For RT and BE, we have to choose also the type
2229 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2230 * expiration time
2231 */
2232 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2233 count = st->count;
2234
2235 /*
2236 * check workload expiration, and that we still have other queues ready
2237 */
2238 if (count && !time_after(jiffies, cfqd->workload_expires))
2239 return;
2240
2241new_workload:
2242 /* otherwise select new workload type */
2243 cfqd->serving_type =
2244 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2245 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2246 count = st->count;
2247
2248 /*
2249 * the workload slice is computed as a fraction of target latency
2250 * proportional to the number of queues in that workload, over
2251 * all the queues in the same priority class
2252 */
2253 group_slice = cfq_group_slice(cfqd, cfqg);
2254
2255 slice = group_slice * count /
2256 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2257 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2258
2259 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2260 unsigned int tmp;
2261
2262 /*
2263 * Async queues are currently system wide. Just taking
2264 * proportion of queues with-in same group will lead to higher
2265 * async ratio system wide as generally root group is going
2266 * to have higher weight. A more accurate thing would be to
2267 * calculate system wide asnc/sync ratio.
2268 */
2269 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2270 tmp = tmp/cfqd->busy_queues;
2271 slice = min_t(unsigned, slice, tmp);
2272
2273 /* async workload slice is scaled down according to
2274 * the sync/async slice ratio. */
2275 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2276 } else
2277 /* sync workload slice is at least 2 * cfq_slice_idle */
2278 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2279
2280 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2281 cfq_log(cfqd, "workload slice:%d", slice);
2282 cfqd->workload_expires = jiffies + slice;
2283}
2284
2285static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2286{
2287 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2288 struct cfq_group *cfqg;
2289
2290 if (RB_EMPTY_ROOT(&st->rb))
2291 return NULL;
2292 cfqg = cfq_rb_first_group(st);
2293 update_min_vdisktime(st);
2294 return cfqg;
2295}
2296
2297static void cfq_choose_cfqg(struct cfq_data *cfqd)
2298{
2299 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2300
2301 cfqd->serving_group = cfqg;
2302
2303 /* Restore the workload type data */
2304 if (cfqg->saved_workload_slice) {
2305 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2306 cfqd->serving_type = cfqg->saved_workload;
2307 cfqd->serving_prio = cfqg->saved_serving_prio;
2308 } else
2309 cfqd->workload_expires = jiffies - 1;
2310
2311 choose_service_tree(cfqd, cfqg);
2312}
2313
2314/*
2315 * Select a queue for service. If we have a current active queue,
2316 * check whether to continue servicing it, or retrieve and set a new one.
2317 */
2318static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2319{
2320 struct cfq_queue *cfqq, *new_cfqq = NULL;
2321
2322 cfqq = cfqd->active_queue;
2323 if (!cfqq)
2324 goto new_queue;
2325
2326 if (!cfqd->rq_queued)
2327 return NULL;
2328
2329 /*
2330 * We were waiting for group to get backlogged. Expire the queue
2331 */
2332 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2333 goto expire;
2334
2335 /*
2336 * The active queue has run out of time, expire it and select new.
2337 */
2338 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2339 /*
2340 * If slice had not expired at the completion of last request
2341 * we might not have turned on wait_busy flag. Don't expire
2342 * the queue yet. Allow the group to get backlogged.
2343 *
2344 * The very fact that we have used the slice, that means we
2345 * have been idling all along on this queue and it should be
2346 * ok to wait for this request to complete.
2347 */
2348 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2349 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2350 cfqq = NULL;
2351 goto keep_queue;
2352 } else
2353 goto check_group_idle;
2354 }
2355
2356 /*
2357 * The active queue has requests and isn't expired, allow it to
2358 * dispatch.
2359 */
2360 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2361 goto keep_queue;
2362
2363 /*
2364 * If another queue has a request waiting within our mean seek
2365 * distance, let it run. The expire code will check for close
2366 * cooperators and put the close queue at the front of the service
2367 * tree. If possible, merge the expiring queue with the new cfqq.
2368 */
2369 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2370 if (new_cfqq) {
2371 if (!cfqq->new_cfqq)
2372 cfq_setup_merge(cfqq, new_cfqq);
2373 goto expire;
2374 }
2375
2376 /*
2377 * No requests pending. If the active queue still has requests in
2378 * flight or is idling for a new request, allow either of these
2379 * conditions to happen (or time out) before selecting a new queue.
2380 */
2381 if (timer_pending(&cfqd->idle_slice_timer)) {
2382 cfqq = NULL;
2383 goto keep_queue;
2384 }
2385
2386 /*
2387 * This is a deep seek queue, but the device is much faster than
2388 * the queue can deliver, don't idle
2389 **/
2390 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2391 (cfq_cfqq_slice_new(cfqq) ||
2392 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2393 cfq_clear_cfqq_deep(cfqq);
2394 cfq_clear_cfqq_idle_window(cfqq);
2395 }
2396
2397 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2398 cfqq = NULL;
2399 goto keep_queue;
2400 }
2401
2402 /*
2403 * If group idle is enabled and there are requests dispatched from
2404 * this group, wait for requests to complete.
2405 */
2406check_group_idle:
2407 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
2408 cfqq->cfqg->dispatched &&
2409 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
2410 cfqq = NULL;
2411 goto keep_queue;
2412 }
2413
2414expire:
2415 cfq_slice_expired(cfqd, 0);
2416new_queue:
2417 /*
2418 * Current queue expired. Check if we have to switch to a new
2419 * service tree
2420 */
2421 if (!new_cfqq)
2422 cfq_choose_cfqg(cfqd);
2423
2424 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2425keep_queue:
2426 return cfqq;
2427}
2428
2429static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2430{
2431 int dispatched = 0;
2432
2433 while (cfqq->next_rq) {
2434 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2435 dispatched++;
2436 }
2437
2438 BUG_ON(!list_empty(&cfqq->fifo));
2439
2440 /* By default cfqq is not expired if it is empty. Do it explicitly */
2441 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2442 return dispatched;
2443}
2444
2445/*
2446 * Drain our current requests. Used for barriers and when switching
2447 * io schedulers on-the-fly.
2448 */
2449static int cfq_forced_dispatch(struct cfq_data *cfqd)
2450{
2451 struct cfq_queue *cfqq;
2452 int dispatched = 0;
2453
2454 /* Expire the timeslice of the current active queue first */
2455 cfq_slice_expired(cfqd, 0);
2456 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2457 __cfq_set_active_queue(cfqd, cfqq);
2458 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2459 }
2460
2461 BUG_ON(cfqd->busy_queues);
2462
2463 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2464 return dispatched;
2465}
2466
2467static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2468 struct cfq_queue *cfqq)
2469{
2470 /* the queue hasn't finished any request, can't estimate */
2471 if (cfq_cfqq_slice_new(cfqq))
2472 return true;
2473 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2474 cfqq->slice_end))
2475 return true;
2476
2477 return false;
2478}
2479
2480static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2481{
2482 unsigned int max_dispatch;
2483
2484 /*
2485 * Drain async requests before we start sync IO
2486 */
2487 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2488 return false;
2489
2490 /*
2491 * If this is an async queue and we have sync IO in flight, let it wait
2492 */
2493 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2494 return false;
2495
2496 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2497 if (cfq_class_idle(cfqq))
2498 max_dispatch = 1;
2499
2500 /*
2501 * Does this cfqq already have too much IO in flight?
2502 */
2503 if (cfqq->dispatched >= max_dispatch) {
2504 bool promote_sync = false;
2505 /*
2506 * idle queue must always only have a single IO in flight
2507 */
2508 if (cfq_class_idle(cfqq))
2509 return false;
2510
2511 /*
2512 * If there is only one sync queue
2513 * we can ignore async queue here and give the sync
2514 * queue no dispatch limit. The reason is a sync queue can
2515 * preempt async queue, limiting the sync queue doesn't make
2516 * sense. This is useful for aiostress test.
2517 */
2518 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2519 promote_sync = true;
2520
2521 /*
2522 * We have other queues, don't allow more IO from this one
2523 */
2524 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2525 !promote_sync)
2526 return false;
2527
2528 /*
2529 * Sole queue user, no limit
2530 */
2531 if (cfqd->busy_queues == 1 || promote_sync)
2532 max_dispatch = -1;
2533 else
2534 /*
2535 * Normally we start throttling cfqq when cfq_quantum/2
2536 * requests have been dispatched. But we can drive
2537 * deeper queue depths at the beginning of slice
2538 * subjected to upper limit of cfq_quantum.
2539 * */
2540 max_dispatch = cfqd->cfq_quantum;
2541 }
2542
2543 /*
2544 * Async queues must wait a bit before being allowed dispatch.
2545 * We also ramp up the dispatch depth gradually for async IO,
2546 * based on the last sync IO we serviced
2547 */
2548 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2549 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2550 unsigned int depth;
2551
2552 depth = last_sync / cfqd->cfq_slice[1];
2553 if (!depth && !cfqq->dispatched)
2554 depth = 1;
2555 if (depth < max_dispatch)
2556 max_dispatch = depth;
2557 }
2558
2559 /*
2560 * If we're below the current max, allow a dispatch
2561 */
2562 return cfqq->dispatched < max_dispatch;
2563}
2564
2565/*
2566 * Dispatch a request from cfqq, moving them to the request queue
2567 * dispatch list.
2568 */
2569static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2570{
2571 struct request *rq;
2572
2573 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2574
2575 if (!cfq_may_dispatch(cfqd, cfqq))
2576 return false;
2577
2578 /*
2579 * follow expired path, else get first next available
2580 */
2581 rq = cfq_check_fifo(cfqq);
2582 if (!rq)
2583 rq = cfqq->next_rq;
2584
2585 /*
2586 * insert request into driver dispatch list
2587 */
2588 cfq_dispatch_insert(cfqd->queue, rq);
2589
2590 if (!cfqd->active_cic) {
2591 struct cfq_io_cq *cic = RQ_CIC(rq);
2592
2593 atomic_long_inc(&cic->icq.ioc->refcount);
2594 cfqd->active_cic = cic;
2595 }
2596
2597 return true;
2598}
2599
2600/*
2601 * Find the cfqq that we need to service and move a request from that to the
2602 * dispatch list
2603 */
2604static int cfq_dispatch_requests(struct request_queue *q, int force)
2605{
2606 struct cfq_data *cfqd = q->elevator->elevator_data;
2607 struct cfq_queue *cfqq;
2608
2609 if (!cfqd->busy_queues)
2610 return 0;
2611
2612 if (unlikely(force))
2613 return cfq_forced_dispatch(cfqd);
2614
2615 cfqq = cfq_select_queue(cfqd);
2616 if (!cfqq)
2617 return 0;
2618
2619 /*
2620 * Dispatch a request from this cfqq, if it is allowed
2621 */
2622 if (!cfq_dispatch_request(cfqd, cfqq))
2623 return 0;
2624
2625 cfqq->slice_dispatch++;
2626 cfq_clear_cfqq_must_dispatch(cfqq);
2627
2628 /*
2629 * expire an async queue immediately if it has used up its slice. idle
2630 * queue always expire after 1 dispatch round.
2631 */
2632 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2633 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2634 cfq_class_idle(cfqq))) {
2635 cfqq->slice_end = jiffies + 1;
2636 cfq_slice_expired(cfqd, 0);
2637 }
2638
2639 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2640 return 1;
2641}
2642
2643/*
2644 * task holds one reference to the queue, dropped when task exits. each rq
2645 * in-flight on this queue also holds a reference, dropped when rq is freed.
2646 *
2647 * Each cfq queue took a reference on the parent group. Drop it now.
2648 * queue lock must be held here.
2649 */
2650static void cfq_put_queue(struct cfq_queue *cfqq)
2651{
2652 struct cfq_data *cfqd = cfqq->cfqd;
2653 struct cfq_group *cfqg;
2654
2655 BUG_ON(cfqq->ref <= 0);
2656
2657 cfqq->ref--;
2658 if (cfqq->ref)
2659 return;
2660
2661 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2662 BUG_ON(rb_first(&cfqq->sort_list));
2663 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2664 cfqg = cfqq->cfqg;
2665
2666 if (unlikely(cfqd->active_queue == cfqq)) {
2667 __cfq_slice_expired(cfqd, cfqq, 0);
2668 cfq_schedule_dispatch(cfqd);
2669 }
2670
2671 BUG_ON(cfq_cfqq_on_rr(cfqq));
2672 kmem_cache_free(cfq_pool, cfqq);
2673 cfq_put_cfqg(cfqg);
2674}
2675
2676static void cfq_put_cooperator(struct cfq_queue *cfqq)
2677{
2678 struct cfq_queue *__cfqq, *next;
2679
2680 /*
2681 * If this queue was scheduled to merge with another queue, be
2682 * sure to drop the reference taken on that queue (and others in
2683 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2684 */
2685 __cfqq = cfqq->new_cfqq;
2686 while (__cfqq) {
2687 if (__cfqq == cfqq) {
2688 WARN(1, "cfqq->new_cfqq loop detected\n");
2689 break;
2690 }
2691 next = __cfqq->new_cfqq;
2692 cfq_put_queue(__cfqq);
2693 __cfqq = next;
2694 }
2695}
2696
2697static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2698{
2699 if (unlikely(cfqq == cfqd->active_queue)) {
2700 __cfq_slice_expired(cfqd, cfqq, 0);
2701 cfq_schedule_dispatch(cfqd);
2702 }
2703
2704 cfq_put_cooperator(cfqq);
2705
2706 cfq_put_queue(cfqq);
2707}
2708
2709static void cfq_init_icq(struct io_cq *icq)
2710{
2711 struct cfq_io_cq *cic = icq_to_cic(icq);
2712
2713 cic->ttime.last_end_request = jiffies;
2714}
2715
2716static void cfq_exit_icq(struct io_cq *icq)
2717{
2718 struct cfq_io_cq *cic = icq_to_cic(icq);
2719 struct cfq_data *cfqd = cic_to_cfqd(cic);
2720
2721 if (cic->cfqq[BLK_RW_ASYNC]) {
2722 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2723 cic->cfqq[BLK_RW_ASYNC] = NULL;
2724 }
2725
2726 if (cic->cfqq[BLK_RW_SYNC]) {
2727 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2728 cic->cfqq[BLK_RW_SYNC] = NULL;
2729 }
2730}
2731
2732static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2733{
2734 struct task_struct *tsk = current;
2735 int ioprio_class;
2736
2737 if (!cfq_cfqq_prio_changed(cfqq))
2738 return;
2739
2740 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2741 switch (ioprio_class) {
2742 default:
2743 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2744 case IOPRIO_CLASS_NONE:
2745 /*
2746 * no prio set, inherit CPU scheduling settings
2747 */
2748 cfqq->ioprio = task_nice_ioprio(tsk);
2749 cfqq->ioprio_class = task_nice_ioclass(tsk);
2750 break;
2751 case IOPRIO_CLASS_RT:
2752 cfqq->ioprio = task_ioprio(ioc);
2753 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2754 break;
2755 case IOPRIO_CLASS_BE:
2756 cfqq->ioprio = task_ioprio(ioc);
2757 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2758 break;
2759 case IOPRIO_CLASS_IDLE:
2760 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2761 cfqq->ioprio = 7;
2762 cfq_clear_cfqq_idle_window(cfqq);
2763 break;
2764 }
2765
2766 /*
2767 * keep track of original prio settings in case we have to temporarily
2768 * elevate the priority of this queue
2769 */
2770 cfqq->org_ioprio = cfqq->ioprio;
2771 cfq_clear_cfqq_prio_changed(cfqq);
2772}
2773
2774static void changed_ioprio(struct cfq_io_cq *cic)
2775{
2776 struct cfq_data *cfqd = cic_to_cfqd(cic);
2777 struct cfq_queue *cfqq;
2778
2779 if (unlikely(!cfqd))
2780 return;
2781
2782 cfqq = cic->cfqq[BLK_RW_ASYNC];
2783 if (cfqq) {
2784 struct cfq_queue *new_cfqq;
2785 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->icq.ioc,
2786 GFP_ATOMIC);
2787 if (new_cfqq) {
2788 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2789 cfq_put_queue(cfqq);
2790 }
2791 }
2792
2793 cfqq = cic->cfqq[BLK_RW_SYNC];
2794 if (cfqq)
2795 cfq_mark_cfqq_prio_changed(cfqq);
2796}
2797
2798static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2799 pid_t pid, bool is_sync)
2800{
2801 RB_CLEAR_NODE(&cfqq->rb_node);
2802 RB_CLEAR_NODE(&cfqq->p_node);
2803 INIT_LIST_HEAD(&cfqq->fifo);
2804
2805 cfqq->ref = 0;
2806 cfqq->cfqd = cfqd;
2807
2808 cfq_mark_cfqq_prio_changed(cfqq);
2809
2810 if (is_sync) {
2811 if (!cfq_class_idle(cfqq))
2812 cfq_mark_cfqq_idle_window(cfqq);
2813 cfq_mark_cfqq_sync(cfqq);
2814 }
2815 cfqq->pid = pid;
2816}
2817
2818#ifdef CONFIG_CFQ_GROUP_IOSCHED
2819static void changed_cgroup(struct cfq_io_cq *cic)
2820{
2821 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2822 struct cfq_data *cfqd = cic_to_cfqd(cic);
2823 struct request_queue *q;
2824
2825 if (unlikely(!cfqd))
2826 return;
2827
2828 q = cfqd->queue;
2829
2830 if (sync_cfqq) {
2831 /*
2832 * Drop reference to sync queue. A new sync queue will be
2833 * assigned in new group upon arrival of a fresh request.
2834 */
2835 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2836 cic_set_cfqq(cic, NULL, 1);
2837 cfq_put_queue(sync_cfqq);
2838 }
2839}
2840#endif /* CONFIG_CFQ_GROUP_IOSCHED */
2841
2842static struct cfq_queue *
2843cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2844 struct io_context *ioc, gfp_t gfp_mask)
2845{
2846 struct cfq_queue *cfqq, *new_cfqq = NULL;
2847 struct cfq_io_cq *cic;
2848 struct cfq_group *cfqg;
2849
2850retry:
2851 cfqg = cfq_get_cfqg(cfqd);
2852 cic = cfq_cic_lookup(cfqd, ioc);
2853 /* cic always exists here */
2854 cfqq = cic_to_cfqq(cic, is_sync);
2855
2856 /*
2857 * Always try a new alloc if we fell back to the OOM cfqq
2858 * originally, since it should just be a temporary situation.
2859 */
2860 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2861 cfqq = NULL;
2862 if (new_cfqq) {
2863 cfqq = new_cfqq;
2864 new_cfqq = NULL;
2865 } else if (gfp_mask & __GFP_WAIT) {
2866 spin_unlock_irq(cfqd->queue->queue_lock);
2867 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2868 gfp_mask | __GFP_ZERO,
2869 cfqd->queue->node);
2870 spin_lock_irq(cfqd->queue->queue_lock);
2871 if (new_cfqq)
2872 goto retry;
2873 } else {
2874 cfqq = kmem_cache_alloc_node(cfq_pool,
2875 gfp_mask | __GFP_ZERO,
2876 cfqd->queue->node);
2877 }
2878
2879 if (cfqq) {
2880 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2881 cfq_init_prio_data(cfqq, ioc);
2882 cfq_link_cfqq_cfqg(cfqq, cfqg);
2883 cfq_log_cfqq(cfqd, cfqq, "alloced");
2884 } else
2885 cfqq = &cfqd->oom_cfqq;
2886 }
2887
2888 if (new_cfqq)
2889 kmem_cache_free(cfq_pool, new_cfqq);
2890
2891 return cfqq;
2892}
2893
2894static struct cfq_queue **
2895cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2896{
2897 switch (ioprio_class) {
2898 case IOPRIO_CLASS_RT:
2899 return &cfqd->async_cfqq[0][ioprio];
2900 case IOPRIO_CLASS_BE:
2901 return &cfqd->async_cfqq[1][ioprio];
2902 case IOPRIO_CLASS_IDLE:
2903 return &cfqd->async_idle_cfqq;
2904 default:
2905 BUG();
2906 }
2907}
2908
2909static struct cfq_queue *
2910cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2911 gfp_t gfp_mask)
2912{
2913 const int ioprio = task_ioprio(ioc);
2914 const int ioprio_class = task_ioprio_class(ioc);
2915 struct cfq_queue **async_cfqq = NULL;
2916 struct cfq_queue *cfqq = NULL;
2917
2918 if (!is_sync) {
2919 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2920 cfqq = *async_cfqq;
2921 }
2922
2923 if (!cfqq)
2924 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2925
2926 /*
2927 * pin the queue now that it's allocated, scheduler exit will prune it
2928 */
2929 if (!is_sync && !(*async_cfqq)) {
2930 cfqq->ref++;
2931 *async_cfqq = cfqq;
2932 }
2933
2934 cfqq->ref++;
2935 return cfqq;
2936}
2937
2938/**
2939 * ioc_create_icq - create and link io_cq
2940 * @q: request_queue of interest
2941 * @gfp_mask: allocation mask
2942 *
2943 * Make sure io_cq linking %current->io_context and @q exists. If either
2944 * io_context and/or icq don't exist, they will be created using @gfp_mask.
2945 *
2946 * The caller is responsible for ensuring @ioc won't go away and @q is
2947 * alive and will stay alive until this function returns.
2948 */
2949static struct io_cq *ioc_create_icq(struct request_queue *q, gfp_t gfp_mask)
2950{
2951 struct elevator_type *et = q->elevator->type;
2952 struct io_context *ioc;
2953 struct io_cq *icq;
2954
2955 /* allocate stuff */
2956 ioc = create_io_context(current, gfp_mask, q->node);
2957 if (!ioc)
2958 return NULL;
2959
2960 icq = kmem_cache_alloc_node(et->icq_cache, gfp_mask | __GFP_ZERO,
2961 q->node);
2962 if (!icq)
2963 return NULL;
2964
2965 if (radix_tree_preload(gfp_mask) < 0) {
2966 kmem_cache_free(et->icq_cache, icq);
2967 return NULL;
2968 }
2969
2970 icq->ioc = ioc;
2971 icq->q = q;
2972 INIT_LIST_HEAD(&icq->q_node);
2973 INIT_HLIST_NODE(&icq->ioc_node);
2974
2975 /* lock both q and ioc and try to link @icq */
2976 spin_lock_irq(q->queue_lock);
2977 spin_lock(&ioc->lock);
2978
2979 if (likely(!radix_tree_insert(&ioc->icq_tree, q->id, icq))) {
2980 hlist_add_head(&icq->ioc_node, &ioc->icq_list);
2981 list_add(&icq->q_node, &q->icq_list);
2982 if (et->ops.elevator_init_icq_fn)
2983 et->ops.elevator_init_icq_fn(icq);
2984 } else {
2985 kmem_cache_free(et->icq_cache, icq);
2986 icq = ioc_lookup_icq(ioc, q);
2987 if (!icq)
2988 printk(KERN_ERR "cfq: icq link failed!\n");
2989 }
2990
2991 spin_unlock(&ioc->lock);
2992 spin_unlock_irq(q->queue_lock);
2993 radix_tree_preload_end();
2994 return icq;
2995}
2996
2997/**
2998 * cfq_get_cic - acquire cfq_io_cq and bump refcnt on io_context
2999 * @cfqd: cfqd to setup cic for
3000 * @gfp_mask: allocation mask
3001 *
3002 * Return cfq_io_cq associating @cfqd and %current->io_context and
3003 * bump refcnt on io_context. If ioc or cic doesn't exist, they're created
3004 * using @gfp_mask.
3005 *
3006 * Must be called under queue_lock which may be released and re-acquired.
3007 * This function also may sleep depending on @gfp_mask.
3008 */
3009static struct cfq_io_cq *cfq_get_cic(struct cfq_data *cfqd, gfp_t gfp_mask)
3010{
3011 struct request_queue *q = cfqd->queue;
3012 struct cfq_io_cq *cic = NULL;
3013 struct io_context *ioc;
3014
3015 lockdep_assert_held(q->queue_lock);
3016
3017 while (true) {
3018 /* fast path */
3019 ioc = current->io_context;
3020 if (likely(ioc)) {
3021 cic = cfq_cic_lookup(cfqd, ioc);
3022 if (likely(cic))
3023 break;
3024 }
3025
3026 /* slow path - unlock, create missing ones and retry */
3027 spin_unlock_irq(q->queue_lock);
3028 cic = icq_to_cic(ioc_create_icq(q, gfp_mask));
3029 spin_lock_irq(q->queue_lock);
3030 if (!cic)
3031 return NULL;
3032 }
3033
3034 /* bump @ioc's refcnt and handle changed notifications */
3035 get_io_context(ioc);
3036
3037 if (unlikely(cic->icq.changed)) {
3038 if (test_and_clear_bit(ICQ_IOPRIO_CHANGED, &cic->icq.changed))
3039 changed_ioprio(cic);
3040#ifdef CONFIG_CFQ_GROUP_IOSCHED
3041 if (test_and_clear_bit(ICQ_CGROUP_CHANGED, &cic->icq.changed))
3042 changed_cgroup(cic);
3043#endif
3044 }
3045
3046 return cic;
3047}
3048
3049static void
3050__cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3051{
3052 unsigned long elapsed = jiffies - ttime->last_end_request;
3053 elapsed = min(elapsed, 2UL * slice_idle);
3054
3055 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3056 ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3057 ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3058}
3059
3060static void
3061cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3062 struct cfq_io_cq *cic)
3063{
3064 if (cfq_cfqq_sync(cfqq)) {
3065 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3066 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3067 cfqd->cfq_slice_idle);
3068 }
3069#ifdef CONFIG_CFQ_GROUP_IOSCHED
3070 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3071#endif
3072}
3073
3074static void
3075cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3076 struct request *rq)
3077{
3078 sector_t sdist = 0;
3079 sector_t n_sec = blk_rq_sectors(rq);
3080 if (cfqq->last_request_pos) {
3081 if (cfqq->last_request_pos < blk_rq_pos(rq))
3082 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3083 else
3084 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3085 }
3086
3087 cfqq->seek_history <<= 1;
3088 if (blk_queue_nonrot(cfqd->queue))
3089 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3090 else
3091 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3092}
3093
3094/*
3095 * Disable idle window if the process thinks too long or seeks so much that
3096 * it doesn't matter
3097 */
3098static void
3099cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3100 struct cfq_io_cq *cic)
3101{
3102 int old_idle, enable_idle;
3103
3104 /*
3105 * Don't idle for async or idle io prio class
3106 */
3107 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3108 return;
3109
3110 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3111
3112 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3113 cfq_mark_cfqq_deep(cfqq);
3114
3115 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3116 enable_idle = 0;
3117 else if (!atomic_read(&cic->icq.ioc->nr_tasks) ||
3118 !cfqd->cfq_slice_idle ||
3119 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3120 enable_idle = 0;
3121 else if (sample_valid(cic->ttime.ttime_samples)) {
3122 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3123 enable_idle = 0;
3124 else
3125 enable_idle = 1;
3126 }
3127
3128 if (old_idle != enable_idle) {
3129 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3130 if (enable_idle)
3131 cfq_mark_cfqq_idle_window(cfqq);
3132 else
3133 cfq_clear_cfqq_idle_window(cfqq);
3134 }
3135}
3136
3137/*
3138 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3139 * no or if we aren't sure, a 1 will cause a preempt.
3140 */
3141static bool
3142cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3143 struct request *rq)
3144{
3145 struct cfq_queue *cfqq;
3146
3147 cfqq = cfqd->active_queue;
3148 if (!cfqq)
3149 return false;
3150
3151 if (cfq_class_idle(new_cfqq))
3152 return false;
3153
3154 if (cfq_class_idle(cfqq))
3155 return true;
3156
3157 /*
3158 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3159 */
3160 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3161 return false;
3162
3163 /*
3164 * if the new request is sync, but the currently running queue is
3165 * not, let the sync request have priority.
3166 */
3167 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3168 return true;
3169
3170 if (new_cfqq->cfqg != cfqq->cfqg)
3171 return false;
3172
3173 if (cfq_slice_used(cfqq))
3174 return true;
3175
3176 /* Allow preemption only if we are idling on sync-noidle tree */
3177 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3178 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3179 new_cfqq->service_tree->count == 2 &&
3180 RB_EMPTY_ROOT(&cfqq->sort_list))
3181 return true;
3182
3183 /*
3184 * So both queues are sync. Let the new request get disk time if
3185 * it's a metadata request and the current queue is doing regular IO.
3186 */
3187 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3188 return true;
3189
3190 /*
3191 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3192 */
3193 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3194 return true;
3195
3196 /* An idle queue should not be idle now for some reason */
3197 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3198 return true;
3199
3200 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3201 return false;
3202
3203 /*
3204 * if this request is as-good as one we would expect from the
3205 * current cfqq, let it preempt
3206 */
3207 if (cfq_rq_close(cfqd, cfqq, rq))
3208 return true;
3209
3210 return false;
3211}
3212
3213/*
3214 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3215 * let it have half of its nominal slice.
3216 */
3217static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3218{
3219 struct cfq_queue *old_cfqq = cfqd->active_queue;
3220
3221 cfq_log_cfqq(cfqd, cfqq, "preempt");
3222 cfq_slice_expired(cfqd, 1);
3223
3224 /*
3225 * workload type is changed, don't save slice, otherwise preempt
3226 * doesn't happen
3227 */
3228 if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
3229 cfqq->cfqg->saved_workload_slice = 0;
3230
3231 /*
3232 * Put the new queue at the front of the of the current list,
3233 * so we know that it will be selected next.
3234 */
3235 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3236
3237 cfq_service_tree_add(cfqd, cfqq, 1);
3238
3239 cfqq->slice_end = 0;
3240 cfq_mark_cfqq_slice_new(cfqq);
3241}
3242
3243/*
3244 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3245 * something we should do about it
3246 */
3247static void
3248cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3249 struct request *rq)
3250{
3251 struct cfq_io_cq *cic = RQ_CIC(rq);
3252
3253 cfqd->rq_queued++;
3254 if (rq->cmd_flags & REQ_PRIO)
3255 cfqq->prio_pending++;
3256
3257 cfq_update_io_thinktime(cfqd, cfqq, cic);
3258 cfq_update_io_seektime(cfqd, cfqq, rq);
3259 cfq_update_idle_window(cfqd, cfqq, cic);
3260
3261 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3262
3263 if (cfqq == cfqd->active_queue) {
3264 /*
3265 * Remember that we saw a request from this process, but
3266 * don't start queuing just yet. Otherwise we risk seeing lots
3267 * of tiny requests, because we disrupt the normal plugging
3268 * and merging. If the request is already larger than a single
3269 * page, let it rip immediately. For that case we assume that
3270 * merging is already done. Ditto for a busy system that
3271 * has other work pending, don't risk delaying until the
3272 * idle timer unplug to continue working.
3273 */
3274 if (cfq_cfqq_wait_request(cfqq)) {
3275 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3276 cfqd->busy_queues > 1) {
3277 cfq_del_timer(cfqd, cfqq);
3278 cfq_clear_cfqq_wait_request(cfqq);
3279 __blk_run_queue(cfqd->queue);
3280 } else {
3281 cfq_blkiocg_update_idle_time_stats(
3282 &cfqq->cfqg->blkg);
3283 cfq_mark_cfqq_must_dispatch(cfqq);
3284 }
3285 }
3286 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3287 /*
3288 * not the active queue - expire current slice if it is
3289 * idle and has expired it's mean thinktime or this new queue
3290 * has some old slice time left and is of higher priority or
3291 * this new queue is RT and the current one is BE
3292 */
3293 cfq_preempt_queue(cfqd, cfqq);
3294 __blk_run_queue(cfqd->queue);
3295 }
3296}
3297
3298static void cfq_insert_request(struct request_queue *q, struct request *rq)
3299{
3300 struct cfq_data *cfqd = q->elevator->elevator_data;
3301 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3302
3303 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3304 cfq_init_prio_data(cfqq, RQ_CIC(rq)->icq.ioc);
3305
3306 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3307 list_add_tail(&rq->queuelist, &cfqq->fifo);
3308 cfq_add_rq_rb(rq);
3309 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3310 &cfqd->serving_group->blkg, rq_data_dir(rq),
3311 rq_is_sync(rq));
3312 cfq_rq_enqueued(cfqd, cfqq, rq);
3313}
3314
3315/*
3316 * Update hw_tag based on peak queue depth over 50 samples under
3317 * sufficient load.
3318 */
3319static void cfq_update_hw_tag(struct cfq_data *cfqd)
3320{
3321 struct cfq_queue *cfqq = cfqd->active_queue;
3322
3323 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3324 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3325
3326 if (cfqd->hw_tag == 1)
3327 return;
3328
3329 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3330 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3331 return;
3332
3333 /*
3334 * If active queue hasn't enough requests and can idle, cfq might not
3335 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3336 * case
3337 */
3338 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3339 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3340 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3341 return;
3342
3343 if (cfqd->hw_tag_samples++ < 50)
3344 return;
3345
3346 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3347 cfqd->hw_tag = 1;
3348 else
3349 cfqd->hw_tag = 0;
3350}
3351
3352static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3353{
3354 struct cfq_io_cq *cic = cfqd->active_cic;
3355
3356 /* If the queue already has requests, don't wait */
3357 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3358 return false;
3359
3360 /* If there are other queues in the group, don't wait */
3361 if (cfqq->cfqg->nr_cfqq > 1)
3362 return false;
3363
3364 /* the only queue in the group, but think time is big */
3365 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3366 return false;
3367
3368 if (cfq_slice_used(cfqq))
3369 return true;
3370
3371 /* if slice left is less than think time, wait busy */
3372 if (cic && sample_valid(cic->ttime.ttime_samples)
3373 && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
3374 return true;
3375
3376 /*
3377 * If think times is less than a jiffy than ttime_mean=0 and above
3378 * will not be true. It might happen that slice has not expired yet
3379 * but will expire soon (4-5 ns) during select_queue(). To cover the
3380 * case where think time is less than a jiffy, mark the queue wait
3381 * busy if only 1 jiffy is left in the slice.
3382 */
3383 if (cfqq->slice_end - jiffies == 1)
3384 return true;
3385
3386 return false;
3387}
3388
3389static void cfq_completed_request(struct request_queue *q, struct request *rq)
3390{
3391 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3392 struct cfq_data *cfqd = cfqq->cfqd;
3393 const int sync = rq_is_sync(rq);
3394 unsigned long now;
3395
3396 now = jiffies;
3397 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3398 !!(rq->cmd_flags & REQ_NOIDLE));
3399
3400 cfq_update_hw_tag(cfqd);
3401
3402 WARN_ON(!cfqd->rq_in_driver);
3403 WARN_ON(!cfqq->dispatched);
3404 cfqd->rq_in_driver--;
3405 cfqq->dispatched--;
3406 (RQ_CFQG(rq))->dispatched--;
3407 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3408 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3409 rq_data_dir(rq), rq_is_sync(rq));
3410
3411 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3412
3413 if (sync) {
3414 struct cfq_rb_root *service_tree;
3415
3416 RQ_CIC(rq)->ttime.last_end_request = now;
3417
3418 if (cfq_cfqq_on_rr(cfqq))
3419 service_tree = cfqq->service_tree;
3420 else
3421 service_tree = service_tree_for(cfqq->cfqg,
3422 cfqq_prio(cfqq), cfqq_type(cfqq));
3423 service_tree->ttime.last_end_request = now;
3424 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3425 cfqd->last_delayed_sync = now;
3426 }
3427
3428#ifdef CONFIG_CFQ_GROUP_IOSCHED
3429 cfqq->cfqg->ttime.last_end_request = now;
3430#endif
3431
3432 /*
3433 * If this is the active queue, check if it needs to be expired,
3434 * or if we want to idle in case it has no pending requests.
3435 */
3436 if (cfqd->active_queue == cfqq) {
3437 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3438
3439 if (cfq_cfqq_slice_new(cfqq)) {
3440 cfq_set_prio_slice(cfqd, cfqq);
3441 cfq_clear_cfqq_slice_new(cfqq);
3442 }
3443
3444 /*
3445 * Should we wait for next request to come in before we expire
3446 * the queue.
3447 */
3448 if (cfq_should_wait_busy(cfqd, cfqq)) {
3449 unsigned long extend_sl = cfqd->cfq_slice_idle;
3450 if (!cfqd->cfq_slice_idle)
3451 extend_sl = cfqd->cfq_group_idle;
3452 cfqq->slice_end = jiffies + extend_sl;
3453 cfq_mark_cfqq_wait_busy(cfqq);
3454 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3455 }
3456
3457 /*
3458 * Idling is not enabled on:
3459 * - expired queues
3460 * - idle-priority queues
3461 * - async queues
3462 * - queues with still some requests queued
3463 * - when there is a close cooperator
3464 */
3465 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3466 cfq_slice_expired(cfqd, 1);
3467 else if (sync && cfqq_empty &&
3468 !cfq_close_cooperator(cfqd, cfqq)) {
3469 cfq_arm_slice_timer(cfqd);
3470 }
3471 }
3472
3473 if (!cfqd->rq_in_driver)
3474 cfq_schedule_dispatch(cfqd);
3475}
3476
3477static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3478{
3479 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3480 cfq_mark_cfqq_must_alloc_slice(cfqq);
3481 return ELV_MQUEUE_MUST;
3482 }
3483
3484 return ELV_MQUEUE_MAY;
3485}
3486
3487static int cfq_may_queue(struct request_queue *q, int rw)
3488{
3489 struct cfq_data *cfqd = q->elevator->elevator_data;
3490 struct task_struct *tsk = current;
3491 struct cfq_io_cq *cic;
3492 struct cfq_queue *cfqq;
3493
3494 /*
3495 * don't force setup of a queue from here, as a call to may_queue
3496 * does not necessarily imply that a request actually will be queued.
3497 * so just lookup a possibly existing queue, or return 'may queue'
3498 * if that fails
3499 */
3500 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3501 if (!cic)
3502 return ELV_MQUEUE_MAY;
3503
3504 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3505 if (cfqq) {
3506 cfq_init_prio_data(cfqq, cic->icq.ioc);
3507
3508 return __cfq_may_queue(cfqq);
3509 }
3510
3511 return ELV_MQUEUE_MAY;
3512}
3513
3514/*
3515 * queue lock held here
3516 */
3517static void cfq_put_request(struct request *rq)
3518{
3519 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3520
3521 if (cfqq) {
3522 const int rw = rq_data_dir(rq);
3523
3524 BUG_ON(!cfqq->allocated[rw]);
3525 cfqq->allocated[rw]--;
3526
3527 put_io_context(RQ_CIC(rq)->icq.ioc, cfqq->cfqd->queue);
3528
3529 /* Put down rq reference on cfqg */
3530 cfq_put_cfqg(RQ_CFQG(rq));
3531 rq->elv.priv[0] = NULL;
3532 rq->elv.priv[1] = NULL;
3533
3534 cfq_put_queue(cfqq);
3535 }
3536}
3537
3538static struct cfq_queue *
3539cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
3540 struct cfq_queue *cfqq)
3541{
3542 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3543 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3544 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3545 cfq_put_queue(cfqq);
3546 return cic_to_cfqq(cic, 1);
3547}
3548
3549/*
3550 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3551 * was the last process referring to said cfqq.
3552 */
3553static struct cfq_queue *
3554split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
3555{
3556 if (cfqq_process_refs(cfqq) == 1) {
3557 cfqq->pid = current->pid;
3558 cfq_clear_cfqq_coop(cfqq);
3559 cfq_clear_cfqq_split_coop(cfqq);
3560 return cfqq;
3561 }
3562
3563 cic_set_cfqq(cic, NULL, 1);
3564
3565 cfq_put_cooperator(cfqq);
3566
3567 cfq_put_queue(cfqq);
3568 return NULL;
3569}
3570/*
3571 * Allocate cfq data structures associated with this request.
3572 */
3573static int
3574cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3575{
3576 struct cfq_data *cfqd = q->elevator->elevator_data;
3577 struct cfq_io_cq *cic;
3578 const int rw = rq_data_dir(rq);
3579 const bool is_sync = rq_is_sync(rq);
3580 struct cfq_queue *cfqq;
3581
3582 might_sleep_if(gfp_mask & __GFP_WAIT);
3583
3584 spin_lock_irq(q->queue_lock);
3585 cic = cfq_get_cic(cfqd, gfp_mask);
3586 if (!cic)
3587 goto queue_fail;
3588
3589new_queue:
3590 cfqq = cic_to_cfqq(cic, is_sync);
3591 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3592 cfqq = cfq_get_queue(cfqd, is_sync, cic->icq.ioc, gfp_mask);
3593 cic_set_cfqq(cic, cfqq, is_sync);
3594 } else {
3595 /*
3596 * If the queue was seeky for too long, break it apart.
3597 */
3598 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3599 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3600 cfqq = split_cfqq(cic, cfqq);
3601 if (!cfqq)
3602 goto new_queue;
3603 }
3604
3605 /*
3606 * Check to see if this queue is scheduled to merge with
3607 * another, closely cooperating queue. The merging of
3608 * queues happens here as it must be done in process context.
3609 * The reference on new_cfqq was taken in merge_cfqqs.
3610 */
3611 if (cfqq->new_cfqq)
3612 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3613 }
3614
3615 cfqq->allocated[rw]++;
3616
3617 cfqq->ref++;
3618 rq->elv.icq = &cic->icq;
3619 rq->elv.priv[0] = cfqq;
3620 rq->elv.priv[1] = cfq_ref_get_cfqg(cfqq->cfqg);
3621 spin_unlock_irq(q->queue_lock);
3622 return 0;
3623
3624queue_fail:
3625 cfq_schedule_dispatch(cfqd);
3626 spin_unlock_irq(q->queue_lock);
3627 cfq_log(cfqd, "set_request fail");
3628 return 1;
3629}
3630
3631static void cfq_kick_queue(struct work_struct *work)
3632{
3633 struct cfq_data *cfqd =
3634 container_of(work, struct cfq_data, unplug_work);
3635 struct request_queue *q = cfqd->queue;
3636
3637 spin_lock_irq(q->queue_lock);
3638 __blk_run_queue(cfqd->queue);
3639 spin_unlock_irq(q->queue_lock);
3640}
3641
3642/*
3643 * Timer running if the active_queue is currently idling inside its time slice
3644 */
3645static void cfq_idle_slice_timer(unsigned long data)
3646{
3647 struct cfq_data *cfqd = (struct cfq_data *) data;
3648 struct cfq_queue *cfqq;
3649 unsigned long flags;
3650 int timed_out = 1;
3651
3652 cfq_log(cfqd, "idle timer fired");
3653
3654 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3655
3656 cfqq = cfqd->active_queue;
3657 if (cfqq) {
3658 timed_out = 0;
3659
3660 /*
3661 * We saw a request before the queue expired, let it through
3662 */
3663 if (cfq_cfqq_must_dispatch(cfqq))
3664 goto out_kick;
3665
3666 /*
3667 * expired
3668 */
3669 if (cfq_slice_used(cfqq))
3670 goto expire;
3671
3672 /*
3673 * only expire and reinvoke request handler, if there are
3674 * other queues with pending requests
3675 */
3676 if (!cfqd->busy_queues)
3677 goto out_cont;
3678
3679 /*
3680 * not expired and it has a request pending, let it dispatch
3681 */
3682 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3683 goto out_kick;
3684
3685 /*
3686 * Queue depth flag is reset only when the idle didn't succeed
3687 */
3688 cfq_clear_cfqq_deep(cfqq);
3689 }
3690expire:
3691 cfq_slice_expired(cfqd, timed_out);
3692out_kick:
3693 cfq_schedule_dispatch(cfqd);
3694out_cont:
3695 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3696}
3697
3698static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3699{
3700 del_timer_sync(&cfqd->idle_slice_timer);
3701 cancel_work_sync(&cfqd->unplug_work);
3702}
3703
3704static void cfq_put_async_queues(struct cfq_data *cfqd)
3705{
3706 int i;
3707
3708 for (i = 0; i < IOPRIO_BE_NR; i++) {
3709 if (cfqd->async_cfqq[0][i])
3710 cfq_put_queue(cfqd->async_cfqq[0][i]);
3711 if (cfqd->async_cfqq[1][i])
3712 cfq_put_queue(cfqd->async_cfqq[1][i]);
3713 }
3714
3715 if (cfqd->async_idle_cfqq)
3716 cfq_put_queue(cfqd->async_idle_cfqq);
3717}
3718
3719static void cfq_exit_queue(struct elevator_queue *e)
3720{
3721 struct cfq_data *cfqd = e->elevator_data;
3722 struct request_queue *q = cfqd->queue;
3723 bool wait = false;
3724
3725 cfq_shutdown_timer_wq(cfqd);
3726
3727 spin_lock_irq(q->queue_lock);
3728
3729 if (cfqd->active_queue)
3730 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3731
3732 cfq_put_async_queues(cfqd);
3733 cfq_release_cfq_groups(cfqd);
3734
3735 /*
3736 * If there are groups which we could not unlink from blkcg list,
3737 * wait for a rcu period for them to be freed.
3738 */
3739 if (cfqd->nr_blkcg_linked_grps)
3740 wait = true;
3741
3742 spin_unlock_irq(q->queue_lock);
3743
3744 cfq_shutdown_timer_wq(cfqd);
3745
3746 /*
3747 * Wait for cfqg->blkg->key accessors to exit their grace periods.
3748 * Do this wait only if there are other unlinked groups out
3749 * there. This can happen if cgroup deletion path claimed the
3750 * responsibility of cleaning up a group before queue cleanup code
3751 * get to the group.
3752 *
3753 * Do not call synchronize_rcu() unconditionally as there are drivers
3754 * which create/delete request queue hundreds of times during scan/boot
3755 * and synchronize_rcu() can take significant time and slow down boot.
3756 */
3757 if (wait)
3758 synchronize_rcu();
3759
3760#ifdef CONFIG_CFQ_GROUP_IOSCHED
3761 /* Free up per cpu stats for root group */
3762 free_percpu(cfqd->root_group.blkg.stats_cpu);
3763#endif
3764 kfree(cfqd);
3765}
3766
3767static void *cfq_init_queue(struct request_queue *q)
3768{
3769 struct cfq_data *cfqd;
3770 int i, j;
3771 struct cfq_group *cfqg;
3772 struct cfq_rb_root *st;
3773
3774 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3775 if (!cfqd)
3776 return NULL;
3777
3778 /* Init root service tree */
3779 cfqd->grp_service_tree = CFQ_RB_ROOT;
3780
3781 /* Init root group */
3782 cfqg = &cfqd->root_group;
3783 for_each_cfqg_st(cfqg, i, j, st)
3784 *st = CFQ_RB_ROOT;
3785 RB_CLEAR_NODE(&cfqg->rb_node);
3786
3787 /* Give preference to root group over other groups */
3788 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3789
3790#ifdef CONFIG_CFQ_GROUP_IOSCHED
3791 /*
3792 * Set root group reference to 2. One reference will be dropped when
3793 * all groups on cfqd->cfqg_list are being deleted during queue exit.
3794 * Other reference will remain there as we don't want to delete this
3795 * group as it is statically allocated and gets destroyed when
3796 * throtl_data goes away.
3797 */
3798 cfqg->ref = 2;
3799
3800 if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
3801 kfree(cfqg);
3802 kfree(cfqd);
3803 return NULL;
3804 }
3805
3806 rcu_read_lock();
3807
3808 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
3809 (void *)cfqd, 0);
3810 rcu_read_unlock();
3811 cfqd->nr_blkcg_linked_grps++;
3812
3813 /* Add group on cfqd->cfqg_list */
3814 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
3815#endif
3816 /*
3817 * Not strictly needed (since RB_ROOT just clears the node and we
3818 * zeroed cfqd on alloc), but better be safe in case someone decides
3819 * to add magic to the rb code
3820 */
3821 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3822 cfqd->prio_trees[i] = RB_ROOT;
3823
3824 /*
3825 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3826 * Grab a permanent reference to it, so that the normal code flow
3827 * will not attempt to free it.
3828 */
3829 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3830 cfqd->oom_cfqq.ref++;
3831 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3832
3833 cfqd->queue = q;
3834
3835 init_timer(&cfqd->idle_slice_timer);
3836 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3837 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3838
3839 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3840
3841 cfqd->cfq_quantum = cfq_quantum;
3842 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3843 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3844 cfqd->cfq_back_max = cfq_back_max;
3845 cfqd->cfq_back_penalty = cfq_back_penalty;
3846 cfqd->cfq_slice[0] = cfq_slice_async;
3847 cfqd->cfq_slice[1] = cfq_slice_sync;
3848 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3849 cfqd->cfq_slice_idle = cfq_slice_idle;
3850 cfqd->cfq_group_idle = cfq_group_idle;
3851 cfqd->cfq_latency = 1;
3852 cfqd->hw_tag = -1;
3853 /*
3854 * we optimistically start assuming sync ops weren't delayed in last
3855 * second, in order to have larger depth for async operations.
3856 */
3857 cfqd->last_delayed_sync = jiffies - HZ;
3858 return cfqd;
3859}
3860
3861/*
3862 * sysfs parts below -->
3863 */
3864static ssize_t
3865cfq_var_show(unsigned int var, char *page)
3866{
3867 return sprintf(page, "%d\n", var);
3868}
3869
3870static ssize_t
3871cfq_var_store(unsigned int *var, const char *page, size_t count)
3872{
3873 char *p = (char *) page;
3874
3875 *var = simple_strtoul(p, &p, 10);
3876 return count;
3877}
3878
3879#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3880static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3881{ \
3882 struct cfq_data *cfqd = e->elevator_data; \
3883 unsigned int __data = __VAR; \
3884 if (__CONV) \
3885 __data = jiffies_to_msecs(__data); \
3886 return cfq_var_show(__data, (page)); \
3887}
3888SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3889SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3890SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3891SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3892SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3893SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3894SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
3895SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3896SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3897SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3898SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3899#undef SHOW_FUNCTION
3900
3901#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3902static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3903{ \
3904 struct cfq_data *cfqd = e->elevator_data; \
3905 unsigned int __data; \
3906 int ret = cfq_var_store(&__data, (page), count); \
3907 if (__data < (MIN)) \
3908 __data = (MIN); \
3909 else if (__data > (MAX)) \
3910 __data = (MAX); \
3911 if (__CONV) \
3912 *(__PTR) = msecs_to_jiffies(__data); \
3913 else \
3914 *(__PTR) = __data; \
3915 return ret; \
3916}
3917STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3918STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3919 UINT_MAX, 1);
3920STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3921 UINT_MAX, 1);
3922STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3923STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3924 UINT_MAX, 0);
3925STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3926STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
3927STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3928STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3929STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3930 UINT_MAX, 0);
3931STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3932#undef STORE_FUNCTION
3933
3934#define CFQ_ATTR(name) \
3935 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3936
3937static struct elv_fs_entry cfq_attrs[] = {
3938 CFQ_ATTR(quantum),
3939 CFQ_ATTR(fifo_expire_sync),
3940 CFQ_ATTR(fifo_expire_async),
3941 CFQ_ATTR(back_seek_max),
3942 CFQ_ATTR(back_seek_penalty),
3943 CFQ_ATTR(slice_sync),
3944 CFQ_ATTR(slice_async),
3945 CFQ_ATTR(slice_async_rq),
3946 CFQ_ATTR(slice_idle),
3947 CFQ_ATTR(group_idle),
3948 CFQ_ATTR(low_latency),
3949 __ATTR_NULL
3950};
3951
3952static struct elevator_type iosched_cfq = {
3953 .ops = {
3954 .elevator_merge_fn = cfq_merge,
3955 .elevator_merged_fn = cfq_merged_request,
3956 .elevator_merge_req_fn = cfq_merged_requests,
3957 .elevator_allow_merge_fn = cfq_allow_merge,
3958 .elevator_bio_merged_fn = cfq_bio_merged,
3959 .elevator_dispatch_fn = cfq_dispatch_requests,
3960 .elevator_add_req_fn = cfq_insert_request,
3961 .elevator_activate_req_fn = cfq_activate_request,
3962 .elevator_deactivate_req_fn = cfq_deactivate_request,
3963 .elevator_completed_req_fn = cfq_completed_request,
3964 .elevator_former_req_fn = elv_rb_former_request,
3965 .elevator_latter_req_fn = elv_rb_latter_request,
3966 .elevator_init_icq_fn = cfq_init_icq,
3967 .elevator_exit_icq_fn = cfq_exit_icq,
3968 .elevator_set_req_fn = cfq_set_request,
3969 .elevator_put_req_fn = cfq_put_request,
3970 .elevator_may_queue_fn = cfq_may_queue,
3971 .elevator_init_fn = cfq_init_queue,
3972 .elevator_exit_fn = cfq_exit_queue,
3973 },
3974 .icq_size = sizeof(struct cfq_io_cq),
3975 .icq_align = __alignof__(struct cfq_io_cq),
3976 .elevator_attrs = cfq_attrs,
3977 .elevator_name = "cfq",
3978 .elevator_owner = THIS_MODULE,
3979};
3980
3981#ifdef CONFIG_CFQ_GROUP_IOSCHED
3982static struct blkio_policy_type blkio_policy_cfq = {
3983 .ops = {
3984 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
3985 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3986 },
3987 .plid = BLKIO_POLICY_PROP,
3988};
3989#else
3990static struct blkio_policy_type blkio_policy_cfq;
3991#endif
3992
3993static int __init cfq_init(void)
3994{
3995 int ret;
3996
3997 /*
3998 * could be 0 on HZ < 1000 setups
3999 */
4000 if (!cfq_slice_async)
4001 cfq_slice_async = 1;
4002 if (!cfq_slice_idle)
4003 cfq_slice_idle = 1;
4004
4005#ifdef CONFIG_CFQ_GROUP_IOSCHED
4006 if (!cfq_group_idle)
4007 cfq_group_idle = 1;
4008#else
4009 cfq_group_idle = 0;
4010#endif
4011 cfq_pool = KMEM_CACHE(cfq_queue, 0);
4012 if (!cfq_pool)
4013 return -ENOMEM;
4014
4015 ret = elv_register(&iosched_cfq);
4016 if (ret) {
4017 kmem_cache_destroy(cfq_pool);
4018 return ret;
4019 }
4020
4021 blkio_policy_register(&blkio_policy_cfq);
4022
4023 return 0;
4024}
4025
4026static void __exit cfq_exit(void)
4027{
4028 blkio_policy_unregister(&blkio_policy_cfq);
4029 elv_unregister(&iosched_cfq);
4030 kmem_cache_destroy(cfq_pool);
4031}
4032
4033module_init(cfq_init);
4034module_exit(cfq_exit);
4035
4036MODULE_AUTHOR("Jens Axboe");
4037MODULE_LICENSE("GPL");
4038MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");