blkio: Implement macro to traverse each service tree in group
[linux-2.6-block.git] / block / cfq-iosched.c
... / ...
CommitLineData
1/*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
12#include <linux/jiffies.h>
13#include <linux/rbtree.h>
14#include <linux/ioprio.h>
15#include <linux/blktrace_api.h>
16
17/*
18 * tunables
19 */
20/* max queue in one round of service */
21static const int cfq_quantum = 4;
22static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
23/* maximum backwards seek, in KiB */
24static const int cfq_back_max = 16 * 1024;
25/* penalty of a backwards seek */
26static const int cfq_back_penalty = 2;
27static const int cfq_slice_sync = HZ / 10;
28static int cfq_slice_async = HZ / 25;
29static const int cfq_slice_async_rq = 2;
30static int cfq_slice_idle = HZ / 125;
31static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
32static const int cfq_hist_divisor = 4;
33
34/*
35 * offset from end of service tree
36 */
37#define CFQ_IDLE_DELAY (HZ / 5)
38
39/*
40 * below this threshold, we consider thinktime immediate
41 */
42#define CFQ_MIN_TT (2)
43
44/*
45 * Allow merged cfqqs to perform this amount of seeky I/O before
46 * deciding to break the queues up again.
47 */
48#define CFQQ_COOP_TOUT (HZ)
49
50#define CFQ_SLICE_SCALE (5)
51#define CFQ_HW_QUEUE_MIN (5)
52
53#define RQ_CIC(rq) \
54 ((struct cfq_io_context *) (rq)->elevator_private)
55#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
56
57static struct kmem_cache *cfq_pool;
58static struct kmem_cache *cfq_ioc_pool;
59
60static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
61static struct completion *ioc_gone;
62static DEFINE_SPINLOCK(ioc_gone_lock);
63
64#define CFQ_PRIO_LISTS IOPRIO_BE_NR
65#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
66#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
67
68#define sample_valid(samples) ((samples) > 80)
69
70/*
71 * Most of our rbtree usage is for sorting with min extraction, so
72 * if we cache the leftmost node we don't have to walk down the tree
73 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
74 * move this into the elevator for the rq sorting as well.
75 */
76struct cfq_rb_root {
77 struct rb_root rb;
78 struct rb_node *left;
79 unsigned count;
80};
81#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, }
82
83/*
84 * Per process-grouping structure
85 */
86struct cfq_queue {
87 /* reference count */
88 atomic_t ref;
89 /* various state flags, see below */
90 unsigned int flags;
91 /* parent cfq_data */
92 struct cfq_data *cfqd;
93 /* service_tree member */
94 struct rb_node rb_node;
95 /* service_tree key */
96 unsigned long rb_key;
97 /* prio tree member */
98 struct rb_node p_node;
99 /* prio tree root we belong to, if any */
100 struct rb_root *p_root;
101 /* sorted list of pending requests */
102 struct rb_root sort_list;
103 /* if fifo isn't expired, next request to serve */
104 struct request *next_rq;
105 /* requests queued in sort_list */
106 int queued[2];
107 /* currently allocated requests */
108 int allocated[2];
109 /* fifo list of requests in sort_list */
110 struct list_head fifo;
111
112 unsigned long slice_end;
113 long slice_resid;
114 unsigned int slice_dispatch;
115
116 /* pending metadata requests */
117 int meta_pending;
118 /* number of requests that are on the dispatch list or inside driver */
119 int dispatched;
120
121 /* io prio of this group */
122 unsigned short ioprio, org_ioprio;
123 unsigned short ioprio_class, org_ioprio_class;
124
125 unsigned int seek_samples;
126 u64 seek_total;
127 sector_t seek_mean;
128 sector_t last_request_pos;
129 unsigned long seeky_start;
130
131 pid_t pid;
132
133 struct cfq_rb_root *service_tree;
134 struct cfq_queue *new_cfqq;
135 struct cfq_group *cfqg;
136};
137
138/*
139 * First index in the service_trees.
140 * IDLE is handled separately, so it has negative index
141 */
142enum wl_prio_t {
143 BE_WORKLOAD = 0,
144 RT_WORKLOAD = 1,
145 IDLE_WORKLOAD = 2,
146};
147
148/*
149 * Second index in the service_trees.
150 */
151enum wl_type_t {
152 ASYNC_WORKLOAD = 0,
153 SYNC_NOIDLE_WORKLOAD = 1,
154 SYNC_WORKLOAD = 2
155};
156
157/* This is per cgroup per device grouping structure */
158struct cfq_group {
159 /*
160 * rr lists of queues with requests, onle rr for each priority class.
161 * Counts are embedded in the cfq_rb_root
162 */
163 struct cfq_rb_root service_trees[2][3];
164 struct cfq_rb_root service_tree_idle;
165};
166
167/*
168 * Per block device queue structure
169 */
170struct cfq_data {
171 struct request_queue *queue;
172 struct cfq_group root_group;
173
174 /*
175 * The priority currently being served
176 */
177 enum wl_prio_t serving_prio;
178 enum wl_type_t serving_type;
179 unsigned long workload_expires;
180 struct cfq_group *serving_group;
181 bool noidle_tree_requires_idle;
182
183 /*
184 * Each priority tree is sorted by next_request position. These
185 * trees are used when determining if two or more queues are
186 * interleaving requests (see cfq_close_cooperator).
187 */
188 struct rb_root prio_trees[CFQ_PRIO_LISTS];
189
190 unsigned int busy_queues;
191 unsigned int busy_queues_avg[2];
192
193 int rq_in_driver[2];
194 int sync_flight;
195
196 /*
197 * queue-depth detection
198 */
199 int rq_queued;
200 int hw_tag;
201 /*
202 * hw_tag can be
203 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
204 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
205 * 0 => no NCQ
206 */
207 int hw_tag_est_depth;
208 unsigned int hw_tag_samples;
209
210 /*
211 * idle window management
212 */
213 struct timer_list idle_slice_timer;
214 struct work_struct unplug_work;
215
216 struct cfq_queue *active_queue;
217 struct cfq_io_context *active_cic;
218
219 /*
220 * async queue for each priority case
221 */
222 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
223 struct cfq_queue *async_idle_cfqq;
224
225 sector_t last_position;
226
227 /*
228 * tunables, see top of file
229 */
230 unsigned int cfq_quantum;
231 unsigned int cfq_fifo_expire[2];
232 unsigned int cfq_back_penalty;
233 unsigned int cfq_back_max;
234 unsigned int cfq_slice[2];
235 unsigned int cfq_slice_async_rq;
236 unsigned int cfq_slice_idle;
237 unsigned int cfq_latency;
238
239 struct list_head cic_list;
240
241 /*
242 * Fallback dummy cfqq for extreme OOM conditions
243 */
244 struct cfq_queue oom_cfqq;
245
246 unsigned long last_end_sync_rq;
247};
248
249static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
250 enum wl_prio_t prio,
251 enum wl_type_t type,
252 struct cfq_data *cfqd)
253{
254 if (prio == IDLE_WORKLOAD)
255 return &cfqg->service_tree_idle;
256
257 return &cfqg->service_trees[prio][type];
258}
259
260enum cfqq_state_flags {
261 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
262 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
263 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
264 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
265 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
266 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
267 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
268 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
269 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
270 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
271 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
272};
273
274#define CFQ_CFQQ_FNS(name) \
275static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
276{ \
277 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
278} \
279static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
280{ \
281 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
282} \
283static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
284{ \
285 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
286}
287
288CFQ_CFQQ_FNS(on_rr);
289CFQ_CFQQ_FNS(wait_request);
290CFQ_CFQQ_FNS(must_dispatch);
291CFQ_CFQQ_FNS(must_alloc_slice);
292CFQ_CFQQ_FNS(fifo_expire);
293CFQ_CFQQ_FNS(idle_window);
294CFQ_CFQQ_FNS(prio_changed);
295CFQ_CFQQ_FNS(slice_new);
296CFQ_CFQQ_FNS(sync);
297CFQ_CFQQ_FNS(coop);
298CFQ_CFQQ_FNS(deep);
299#undef CFQ_CFQQ_FNS
300
301#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
302 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
303#define cfq_log(cfqd, fmt, args...) \
304 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
305
306/* Traverses through cfq group service trees */
307#define for_each_cfqg_st(cfqg, i, j, st) \
308 for (i = 0; i <= IDLE_WORKLOAD; i++) \
309 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
310 : &cfqg->service_tree_idle; \
311 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
312 (i == IDLE_WORKLOAD && j == 0); \
313 j++, st = i < IDLE_WORKLOAD ? \
314 &cfqg->service_trees[i][j]: NULL) \
315
316
317static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
318{
319 if (cfq_class_idle(cfqq))
320 return IDLE_WORKLOAD;
321 if (cfq_class_rt(cfqq))
322 return RT_WORKLOAD;
323 return BE_WORKLOAD;
324}
325
326
327static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
328{
329 if (!cfq_cfqq_sync(cfqq))
330 return ASYNC_WORKLOAD;
331 if (!cfq_cfqq_idle_window(cfqq))
332 return SYNC_NOIDLE_WORKLOAD;
333 return SYNC_WORKLOAD;
334}
335
336static inline int cfq_busy_queues_wl(enum wl_prio_t wl, struct cfq_data *cfqd)
337{
338 struct cfq_group *cfqg = &cfqd->root_group;
339
340 if (wl == IDLE_WORKLOAD)
341 return cfqg->service_tree_idle.count;
342
343 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
344 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
345 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
346}
347
348static void cfq_dispatch_insert(struct request_queue *, struct request *);
349static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
350 struct io_context *, gfp_t);
351static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
352 struct io_context *);
353
354static inline int rq_in_driver(struct cfq_data *cfqd)
355{
356 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
357}
358
359static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
360 bool is_sync)
361{
362 return cic->cfqq[is_sync];
363}
364
365static inline void cic_set_cfqq(struct cfq_io_context *cic,
366 struct cfq_queue *cfqq, bool is_sync)
367{
368 cic->cfqq[is_sync] = cfqq;
369}
370
371/*
372 * We regard a request as SYNC, if it's either a read or has the SYNC bit
373 * set (in which case it could also be direct WRITE).
374 */
375static inline bool cfq_bio_sync(struct bio *bio)
376{
377 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
378}
379
380/*
381 * scheduler run of queue, if there are requests pending and no one in the
382 * driver that will restart queueing
383 */
384static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
385{
386 if (cfqd->busy_queues) {
387 cfq_log(cfqd, "schedule dispatch");
388 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
389 }
390}
391
392static int cfq_queue_empty(struct request_queue *q)
393{
394 struct cfq_data *cfqd = q->elevator->elevator_data;
395
396 return !cfqd->busy_queues;
397}
398
399/*
400 * Scale schedule slice based on io priority. Use the sync time slice only
401 * if a queue is marked sync and has sync io queued. A sync queue with async
402 * io only, should not get full sync slice length.
403 */
404static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
405 unsigned short prio)
406{
407 const int base_slice = cfqd->cfq_slice[sync];
408
409 WARN_ON(prio >= IOPRIO_BE_NR);
410
411 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
412}
413
414static inline int
415cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
416{
417 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
418}
419
420/*
421 * get averaged number of queues of RT/BE priority.
422 * average is updated, with a formula that gives more weight to higher numbers,
423 * to quickly follows sudden increases and decrease slowly
424 */
425
426static inline unsigned cfq_get_avg_queues(struct cfq_data *cfqd, bool rt)
427{
428 unsigned min_q, max_q;
429 unsigned mult = cfq_hist_divisor - 1;
430 unsigned round = cfq_hist_divisor / 2;
431 unsigned busy = cfq_busy_queues_wl(rt, cfqd);
432
433 min_q = min(cfqd->busy_queues_avg[rt], busy);
434 max_q = max(cfqd->busy_queues_avg[rt], busy);
435 cfqd->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
436 cfq_hist_divisor;
437 return cfqd->busy_queues_avg[rt];
438}
439
440static inline void
441cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
442{
443 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
444 if (cfqd->cfq_latency) {
445 /* interested queues (we consider only the ones with the same
446 * priority class) */
447 unsigned iq = cfq_get_avg_queues(cfqd, cfq_class_rt(cfqq));
448 unsigned sync_slice = cfqd->cfq_slice[1];
449 unsigned expect_latency = sync_slice * iq;
450 if (expect_latency > cfq_target_latency) {
451 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
452 /* scale low_slice according to IO priority
453 * and sync vs async */
454 unsigned low_slice =
455 min(slice, base_low_slice * slice / sync_slice);
456 /* the adapted slice value is scaled to fit all iqs
457 * into the target latency */
458 slice = max(slice * cfq_target_latency / expect_latency,
459 low_slice);
460 }
461 }
462 cfqq->slice_end = jiffies + slice;
463 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
464}
465
466/*
467 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
468 * isn't valid until the first request from the dispatch is activated
469 * and the slice time set.
470 */
471static inline bool cfq_slice_used(struct cfq_queue *cfqq)
472{
473 if (cfq_cfqq_slice_new(cfqq))
474 return 0;
475 if (time_before(jiffies, cfqq->slice_end))
476 return 0;
477
478 return 1;
479}
480
481/*
482 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
483 * We choose the request that is closest to the head right now. Distance
484 * behind the head is penalized and only allowed to a certain extent.
485 */
486static struct request *
487cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
488{
489 sector_t s1, s2, d1 = 0, d2 = 0;
490 unsigned long back_max;
491#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
492#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
493 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
494
495 if (rq1 == NULL || rq1 == rq2)
496 return rq2;
497 if (rq2 == NULL)
498 return rq1;
499
500 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
501 return rq1;
502 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
503 return rq2;
504 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
505 return rq1;
506 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
507 return rq2;
508
509 s1 = blk_rq_pos(rq1);
510 s2 = blk_rq_pos(rq2);
511
512 /*
513 * by definition, 1KiB is 2 sectors
514 */
515 back_max = cfqd->cfq_back_max * 2;
516
517 /*
518 * Strict one way elevator _except_ in the case where we allow
519 * short backward seeks which are biased as twice the cost of a
520 * similar forward seek.
521 */
522 if (s1 >= last)
523 d1 = s1 - last;
524 else if (s1 + back_max >= last)
525 d1 = (last - s1) * cfqd->cfq_back_penalty;
526 else
527 wrap |= CFQ_RQ1_WRAP;
528
529 if (s2 >= last)
530 d2 = s2 - last;
531 else if (s2 + back_max >= last)
532 d2 = (last - s2) * cfqd->cfq_back_penalty;
533 else
534 wrap |= CFQ_RQ2_WRAP;
535
536 /* Found required data */
537
538 /*
539 * By doing switch() on the bit mask "wrap" we avoid having to
540 * check two variables for all permutations: --> faster!
541 */
542 switch (wrap) {
543 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
544 if (d1 < d2)
545 return rq1;
546 else if (d2 < d1)
547 return rq2;
548 else {
549 if (s1 >= s2)
550 return rq1;
551 else
552 return rq2;
553 }
554
555 case CFQ_RQ2_WRAP:
556 return rq1;
557 case CFQ_RQ1_WRAP:
558 return rq2;
559 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
560 default:
561 /*
562 * Since both rqs are wrapped,
563 * start with the one that's further behind head
564 * (--> only *one* back seek required),
565 * since back seek takes more time than forward.
566 */
567 if (s1 <= s2)
568 return rq1;
569 else
570 return rq2;
571 }
572}
573
574/*
575 * The below is leftmost cache rbtree addon
576 */
577static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
578{
579 /* Service tree is empty */
580 if (!root->count)
581 return NULL;
582
583 if (!root->left)
584 root->left = rb_first(&root->rb);
585
586 if (root->left)
587 return rb_entry(root->left, struct cfq_queue, rb_node);
588
589 return NULL;
590}
591
592static void rb_erase_init(struct rb_node *n, struct rb_root *root)
593{
594 rb_erase(n, root);
595 RB_CLEAR_NODE(n);
596}
597
598static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
599{
600 if (root->left == n)
601 root->left = NULL;
602 rb_erase_init(n, &root->rb);
603 --root->count;
604}
605
606/*
607 * would be nice to take fifo expire time into account as well
608 */
609static struct request *
610cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
611 struct request *last)
612{
613 struct rb_node *rbnext = rb_next(&last->rb_node);
614 struct rb_node *rbprev = rb_prev(&last->rb_node);
615 struct request *next = NULL, *prev = NULL;
616
617 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
618
619 if (rbprev)
620 prev = rb_entry_rq(rbprev);
621
622 if (rbnext)
623 next = rb_entry_rq(rbnext);
624 else {
625 rbnext = rb_first(&cfqq->sort_list);
626 if (rbnext && rbnext != &last->rb_node)
627 next = rb_entry_rq(rbnext);
628 }
629
630 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
631}
632
633static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
634 struct cfq_queue *cfqq)
635{
636 /*
637 * just an approximation, should be ok.
638 */
639 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
640 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
641}
642
643/*
644 * The cfqd->service_trees holds all pending cfq_queue's that have
645 * requests waiting to be processed. It is sorted in the order that
646 * we will service the queues.
647 */
648static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
649 bool add_front)
650{
651 struct rb_node **p, *parent;
652 struct cfq_queue *__cfqq;
653 unsigned long rb_key;
654 struct cfq_rb_root *service_tree;
655 int left;
656
657 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
658 cfqq_type(cfqq), cfqd);
659 if (cfq_class_idle(cfqq)) {
660 rb_key = CFQ_IDLE_DELAY;
661 parent = rb_last(&service_tree->rb);
662 if (parent && parent != &cfqq->rb_node) {
663 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
664 rb_key += __cfqq->rb_key;
665 } else
666 rb_key += jiffies;
667 } else if (!add_front) {
668 /*
669 * Get our rb key offset. Subtract any residual slice
670 * value carried from last service. A negative resid
671 * count indicates slice overrun, and this should position
672 * the next service time further away in the tree.
673 */
674 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
675 rb_key -= cfqq->slice_resid;
676 cfqq->slice_resid = 0;
677 } else {
678 rb_key = -HZ;
679 __cfqq = cfq_rb_first(service_tree);
680 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
681 }
682
683 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
684 /*
685 * same position, nothing more to do
686 */
687 if (rb_key == cfqq->rb_key &&
688 cfqq->service_tree == service_tree)
689 return;
690
691 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
692 cfqq->service_tree = NULL;
693 }
694
695 left = 1;
696 parent = NULL;
697 cfqq->service_tree = service_tree;
698 p = &service_tree->rb.rb_node;
699 while (*p) {
700 struct rb_node **n;
701
702 parent = *p;
703 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
704
705 /*
706 * sort by key, that represents service time.
707 */
708 if (time_before(rb_key, __cfqq->rb_key))
709 n = &(*p)->rb_left;
710 else {
711 n = &(*p)->rb_right;
712 left = 0;
713 }
714
715 p = n;
716 }
717
718 if (left)
719 service_tree->left = &cfqq->rb_node;
720
721 cfqq->rb_key = rb_key;
722 rb_link_node(&cfqq->rb_node, parent, p);
723 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
724 service_tree->count++;
725}
726
727static struct cfq_queue *
728cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
729 sector_t sector, struct rb_node **ret_parent,
730 struct rb_node ***rb_link)
731{
732 struct rb_node **p, *parent;
733 struct cfq_queue *cfqq = NULL;
734
735 parent = NULL;
736 p = &root->rb_node;
737 while (*p) {
738 struct rb_node **n;
739
740 parent = *p;
741 cfqq = rb_entry(parent, struct cfq_queue, p_node);
742
743 /*
744 * Sort strictly based on sector. Smallest to the left,
745 * largest to the right.
746 */
747 if (sector > blk_rq_pos(cfqq->next_rq))
748 n = &(*p)->rb_right;
749 else if (sector < blk_rq_pos(cfqq->next_rq))
750 n = &(*p)->rb_left;
751 else
752 break;
753 p = n;
754 cfqq = NULL;
755 }
756
757 *ret_parent = parent;
758 if (rb_link)
759 *rb_link = p;
760 return cfqq;
761}
762
763static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
764{
765 struct rb_node **p, *parent;
766 struct cfq_queue *__cfqq;
767
768 if (cfqq->p_root) {
769 rb_erase(&cfqq->p_node, cfqq->p_root);
770 cfqq->p_root = NULL;
771 }
772
773 if (cfq_class_idle(cfqq))
774 return;
775 if (!cfqq->next_rq)
776 return;
777
778 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
779 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
780 blk_rq_pos(cfqq->next_rq), &parent, &p);
781 if (!__cfqq) {
782 rb_link_node(&cfqq->p_node, parent, p);
783 rb_insert_color(&cfqq->p_node, cfqq->p_root);
784 } else
785 cfqq->p_root = NULL;
786}
787
788/*
789 * Update cfqq's position in the service tree.
790 */
791static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
792{
793 /*
794 * Resorting requires the cfqq to be on the RR list already.
795 */
796 if (cfq_cfqq_on_rr(cfqq)) {
797 cfq_service_tree_add(cfqd, cfqq, 0);
798 cfq_prio_tree_add(cfqd, cfqq);
799 }
800}
801
802/*
803 * add to busy list of queues for service, trying to be fair in ordering
804 * the pending list according to last request service
805 */
806static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
807{
808 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
809 BUG_ON(cfq_cfqq_on_rr(cfqq));
810 cfq_mark_cfqq_on_rr(cfqq);
811 cfqd->busy_queues++;
812
813 cfq_resort_rr_list(cfqd, cfqq);
814}
815
816/*
817 * Called when the cfqq no longer has requests pending, remove it from
818 * the service tree.
819 */
820static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
821{
822 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
823 BUG_ON(!cfq_cfqq_on_rr(cfqq));
824 cfq_clear_cfqq_on_rr(cfqq);
825
826 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
827 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
828 cfqq->service_tree = NULL;
829 }
830 if (cfqq->p_root) {
831 rb_erase(&cfqq->p_node, cfqq->p_root);
832 cfqq->p_root = NULL;
833 }
834
835 BUG_ON(!cfqd->busy_queues);
836 cfqd->busy_queues--;
837}
838
839/*
840 * rb tree support functions
841 */
842static void cfq_del_rq_rb(struct request *rq)
843{
844 struct cfq_queue *cfqq = RQ_CFQQ(rq);
845 struct cfq_data *cfqd = cfqq->cfqd;
846 const int sync = rq_is_sync(rq);
847
848 BUG_ON(!cfqq->queued[sync]);
849 cfqq->queued[sync]--;
850
851 elv_rb_del(&cfqq->sort_list, rq);
852
853 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
854 cfq_del_cfqq_rr(cfqd, cfqq);
855}
856
857static void cfq_add_rq_rb(struct request *rq)
858{
859 struct cfq_queue *cfqq = RQ_CFQQ(rq);
860 struct cfq_data *cfqd = cfqq->cfqd;
861 struct request *__alias, *prev;
862
863 cfqq->queued[rq_is_sync(rq)]++;
864
865 /*
866 * looks a little odd, but the first insert might return an alias.
867 * if that happens, put the alias on the dispatch list
868 */
869 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
870 cfq_dispatch_insert(cfqd->queue, __alias);
871
872 if (!cfq_cfqq_on_rr(cfqq))
873 cfq_add_cfqq_rr(cfqd, cfqq);
874
875 /*
876 * check if this request is a better next-serve candidate
877 */
878 prev = cfqq->next_rq;
879 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
880
881 /*
882 * adjust priority tree position, if ->next_rq changes
883 */
884 if (prev != cfqq->next_rq)
885 cfq_prio_tree_add(cfqd, cfqq);
886
887 BUG_ON(!cfqq->next_rq);
888}
889
890static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
891{
892 elv_rb_del(&cfqq->sort_list, rq);
893 cfqq->queued[rq_is_sync(rq)]--;
894 cfq_add_rq_rb(rq);
895}
896
897static struct request *
898cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
899{
900 struct task_struct *tsk = current;
901 struct cfq_io_context *cic;
902 struct cfq_queue *cfqq;
903
904 cic = cfq_cic_lookup(cfqd, tsk->io_context);
905 if (!cic)
906 return NULL;
907
908 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
909 if (cfqq) {
910 sector_t sector = bio->bi_sector + bio_sectors(bio);
911
912 return elv_rb_find(&cfqq->sort_list, sector);
913 }
914
915 return NULL;
916}
917
918static void cfq_activate_request(struct request_queue *q, struct request *rq)
919{
920 struct cfq_data *cfqd = q->elevator->elevator_data;
921
922 cfqd->rq_in_driver[rq_is_sync(rq)]++;
923 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
924 rq_in_driver(cfqd));
925
926 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
927}
928
929static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
930{
931 struct cfq_data *cfqd = q->elevator->elevator_data;
932 const int sync = rq_is_sync(rq);
933
934 WARN_ON(!cfqd->rq_in_driver[sync]);
935 cfqd->rq_in_driver[sync]--;
936 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
937 rq_in_driver(cfqd));
938}
939
940static void cfq_remove_request(struct request *rq)
941{
942 struct cfq_queue *cfqq = RQ_CFQQ(rq);
943
944 if (cfqq->next_rq == rq)
945 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
946
947 list_del_init(&rq->queuelist);
948 cfq_del_rq_rb(rq);
949
950 cfqq->cfqd->rq_queued--;
951 if (rq_is_meta(rq)) {
952 WARN_ON(!cfqq->meta_pending);
953 cfqq->meta_pending--;
954 }
955}
956
957static int cfq_merge(struct request_queue *q, struct request **req,
958 struct bio *bio)
959{
960 struct cfq_data *cfqd = q->elevator->elevator_data;
961 struct request *__rq;
962
963 __rq = cfq_find_rq_fmerge(cfqd, bio);
964 if (__rq && elv_rq_merge_ok(__rq, bio)) {
965 *req = __rq;
966 return ELEVATOR_FRONT_MERGE;
967 }
968
969 return ELEVATOR_NO_MERGE;
970}
971
972static void cfq_merged_request(struct request_queue *q, struct request *req,
973 int type)
974{
975 if (type == ELEVATOR_FRONT_MERGE) {
976 struct cfq_queue *cfqq = RQ_CFQQ(req);
977
978 cfq_reposition_rq_rb(cfqq, req);
979 }
980}
981
982static void
983cfq_merged_requests(struct request_queue *q, struct request *rq,
984 struct request *next)
985{
986 struct cfq_queue *cfqq = RQ_CFQQ(rq);
987 /*
988 * reposition in fifo if next is older than rq
989 */
990 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
991 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
992 list_move(&rq->queuelist, &next->queuelist);
993 rq_set_fifo_time(rq, rq_fifo_time(next));
994 }
995
996 if (cfqq->next_rq == next)
997 cfqq->next_rq = rq;
998 cfq_remove_request(next);
999}
1000
1001static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1002 struct bio *bio)
1003{
1004 struct cfq_data *cfqd = q->elevator->elevator_data;
1005 struct cfq_io_context *cic;
1006 struct cfq_queue *cfqq;
1007
1008 /*
1009 * Disallow merge of a sync bio into an async request.
1010 */
1011 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1012 return false;
1013
1014 /*
1015 * Lookup the cfqq that this bio will be queued with. Allow
1016 * merge only if rq is queued there.
1017 */
1018 cic = cfq_cic_lookup(cfqd, current->io_context);
1019 if (!cic)
1020 return false;
1021
1022 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1023 return cfqq == RQ_CFQQ(rq);
1024}
1025
1026static void __cfq_set_active_queue(struct cfq_data *cfqd,
1027 struct cfq_queue *cfqq)
1028{
1029 if (cfqq) {
1030 cfq_log_cfqq(cfqd, cfqq, "set_active");
1031 cfqq->slice_end = 0;
1032 cfqq->slice_dispatch = 0;
1033
1034 cfq_clear_cfqq_wait_request(cfqq);
1035 cfq_clear_cfqq_must_dispatch(cfqq);
1036 cfq_clear_cfqq_must_alloc_slice(cfqq);
1037 cfq_clear_cfqq_fifo_expire(cfqq);
1038 cfq_mark_cfqq_slice_new(cfqq);
1039
1040 del_timer(&cfqd->idle_slice_timer);
1041 }
1042
1043 cfqd->active_queue = cfqq;
1044}
1045
1046/*
1047 * current cfqq expired its slice (or was too idle), select new one
1048 */
1049static void
1050__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1051 bool timed_out)
1052{
1053 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1054
1055 if (cfq_cfqq_wait_request(cfqq))
1056 del_timer(&cfqd->idle_slice_timer);
1057
1058 cfq_clear_cfqq_wait_request(cfqq);
1059
1060 /*
1061 * store what was left of this slice, if the queue idled/timed out
1062 */
1063 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1064 cfqq->slice_resid = cfqq->slice_end - jiffies;
1065 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1066 }
1067
1068 cfq_resort_rr_list(cfqd, cfqq);
1069
1070 if (cfqq == cfqd->active_queue)
1071 cfqd->active_queue = NULL;
1072
1073 if (cfqd->active_cic) {
1074 put_io_context(cfqd->active_cic->ioc);
1075 cfqd->active_cic = NULL;
1076 }
1077}
1078
1079static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1080{
1081 struct cfq_queue *cfqq = cfqd->active_queue;
1082
1083 if (cfqq)
1084 __cfq_slice_expired(cfqd, cfqq, timed_out);
1085}
1086
1087/*
1088 * Get next queue for service. Unless we have a queue preemption,
1089 * we'll simply select the first cfqq in the service tree.
1090 */
1091static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1092{
1093 struct cfq_rb_root *service_tree =
1094 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1095 cfqd->serving_type, cfqd);
1096
1097 if (RB_EMPTY_ROOT(&service_tree->rb))
1098 return NULL;
1099 return cfq_rb_first(service_tree);
1100}
1101
1102/*
1103 * Get and set a new active queue for service.
1104 */
1105static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1106 struct cfq_queue *cfqq)
1107{
1108 if (!cfqq)
1109 cfqq = cfq_get_next_queue(cfqd);
1110
1111 __cfq_set_active_queue(cfqd, cfqq);
1112 return cfqq;
1113}
1114
1115static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1116 struct request *rq)
1117{
1118 if (blk_rq_pos(rq) >= cfqd->last_position)
1119 return blk_rq_pos(rq) - cfqd->last_position;
1120 else
1121 return cfqd->last_position - blk_rq_pos(rq);
1122}
1123
1124#define CFQQ_SEEK_THR 8 * 1024
1125#define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
1126
1127static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1128 struct request *rq)
1129{
1130 sector_t sdist = cfqq->seek_mean;
1131
1132 if (!sample_valid(cfqq->seek_samples))
1133 sdist = CFQQ_SEEK_THR;
1134
1135 return cfq_dist_from_last(cfqd, rq) <= sdist;
1136}
1137
1138static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1139 struct cfq_queue *cur_cfqq)
1140{
1141 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1142 struct rb_node *parent, *node;
1143 struct cfq_queue *__cfqq;
1144 sector_t sector = cfqd->last_position;
1145
1146 if (RB_EMPTY_ROOT(root))
1147 return NULL;
1148
1149 /*
1150 * First, if we find a request starting at the end of the last
1151 * request, choose it.
1152 */
1153 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1154 if (__cfqq)
1155 return __cfqq;
1156
1157 /*
1158 * If the exact sector wasn't found, the parent of the NULL leaf
1159 * will contain the closest sector.
1160 */
1161 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1162 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1163 return __cfqq;
1164
1165 if (blk_rq_pos(__cfqq->next_rq) < sector)
1166 node = rb_next(&__cfqq->p_node);
1167 else
1168 node = rb_prev(&__cfqq->p_node);
1169 if (!node)
1170 return NULL;
1171
1172 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1173 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1174 return __cfqq;
1175
1176 return NULL;
1177}
1178
1179/*
1180 * cfqd - obvious
1181 * cur_cfqq - passed in so that we don't decide that the current queue is
1182 * closely cooperating with itself.
1183 *
1184 * So, basically we're assuming that that cur_cfqq has dispatched at least
1185 * one request, and that cfqd->last_position reflects a position on the disk
1186 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1187 * assumption.
1188 */
1189static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1190 struct cfq_queue *cur_cfqq)
1191{
1192 struct cfq_queue *cfqq;
1193
1194 if (!cfq_cfqq_sync(cur_cfqq))
1195 return NULL;
1196 if (CFQQ_SEEKY(cur_cfqq))
1197 return NULL;
1198
1199 /*
1200 * We should notice if some of the queues are cooperating, eg
1201 * working closely on the same area of the disk. In that case,
1202 * we can group them together and don't waste time idling.
1203 */
1204 cfqq = cfqq_close(cfqd, cur_cfqq);
1205 if (!cfqq)
1206 return NULL;
1207
1208 /*
1209 * It only makes sense to merge sync queues.
1210 */
1211 if (!cfq_cfqq_sync(cfqq))
1212 return NULL;
1213 if (CFQQ_SEEKY(cfqq))
1214 return NULL;
1215
1216 /*
1217 * Do not merge queues of different priority classes
1218 */
1219 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1220 return NULL;
1221
1222 return cfqq;
1223}
1224
1225/*
1226 * Determine whether we should enforce idle window for this queue.
1227 */
1228
1229static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1230{
1231 enum wl_prio_t prio = cfqq_prio(cfqq);
1232 struct cfq_rb_root *service_tree = cfqq->service_tree;
1233
1234 /* We never do for idle class queues. */
1235 if (prio == IDLE_WORKLOAD)
1236 return false;
1237
1238 /* We do for queues that were marked with idle window flag. */
1239 if (cfq_cfqq_idle_window(cfqq))
1240 return true;
1241
1242 /*
1243 * Otherwise, we do only if they are the last ones
1244 * in their service tree.
1245 */
1246 if (!service_tree)
1247 service_tree = service_tree_for(cfqq->cfqg, prio,
1248 cfqq_type(cfqq), cfqd);
1249
1250 if (service_tree->count == 0)
1251 return true;
1252
1253 return (service_tree->count == 1 && cfq_rb_first(service_tree) == cfqq);
1254}
1255
1256static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1257{
1258 struct cfq_queue *cfqq = cfqd->active_queue;
1259 struct cfq_io_context *cic;
1260 unsigned long sl;
1261
1262 /*
1263 * SSD device without seek penalty, disable idling. But only do so
1264 * for devices that support queuing, otherwise we still have a problem
1265 * with sync vs async workloads.
1266 */
1267 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1268 return;
1269
1270 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1271 WARN_ON(cfq_cfqq_slice_new(cfqq));
1272
1273 /*
1274 * idle is disabled, either manually or by past process history
1275 */
1276 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1277 return;
1278
1279 /*
1280 * still active requests from this queue, don't idle
1281 */
1282 if (cfqq->dispatched)
1283 return;
1284
1285 /*
1286 * task has exited, don't wait
1287 */
1288 cic = cfqd->active_cic;
1289 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1290 return;
1291
1292 /*
1293 * If our average think time is larger than the remaining time
1294 * slice, then don't idle. This avoids overrunning the allotted
1295 * time slice.
1296 */
1297 if (sample_valid(cic->ttime_samples) &&
1298 (cfqq->slice_end - jiffies < cic->ttime_mean))
1299 return;
1300
1301 cfq_mark_cfqq_wait_request(cfqq);
1302
1303 sl = cfqd->cfq_slice_idle;
1304
1305 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1306 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1307}
1308
1309/*
1310 * Move request from internal lists to the request queue dispatch list.
1311 */
1312static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1313{
1314 struct cfq_data *cfqd = q->elevator->elevator_data;
1315 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1316
1317 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1318
1319 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1320 cfq_remove_request(rq);
1321 cfqq->dispatched++;
1322 elv_dispatch_sort(q, rq);
1323
1324 if (cfq_cfqq_sync(cfqq))
1325 cfqd->sync_flight++;
1326}
1327
1328/*
1329 * return expired entry, or NULL to just start from scratch in rbtree
1330 */
1331static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1332{
1333 struct request *rq = NULL;
1334
1335 if (cfq_cfqq_fifo_expire(cfqq))
1336 return NULL;
1337
1338 cfq_mark_cfqq_fifo_expire(cfqq);
1339
1340 if (list_empty(&cfqq->fifo))
1341 return NULL;
1342
1343 rq = rq_entry_fifo(cfqq->fifo.next);
1344 if (time_before(jiffies, rq_fifo_time(rq)))
1345 rq = NULL;
1346
1347 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1348 return rq;
1349}
1350
1351static inline int
1352cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1353{
1354 const int base_rq = cfqd->cfq_slice_async_rq;
1355
1356 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1357
1358 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1359}
1360
1361/*
1362 * Must be called with the queue_lock held.
1363 */
1364static int cfqq_process_refs(struct cfq_queue *cfqq)
1365{
1366 int process_refs, io_refs;
1367
1368 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1369 process_refs = atomic_read(&cfqq->ref) - io_refs;
1370 BUG_ON(process_refs < 0);
1371 return process_refs;
1372}
1373
1374static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1375{
1376 int process_refs, new_process_refs;
1377 struct cfq_queue *__cfqq;
1378
1379 /* Avoid a circular list and skip interim queue merges */
1380 while ((__cfqq = new_cfqq->new_cfqq)) {
1381 if (__cfqq == cfqq)
1382 return;
1383 new_cfqq = __cfqq;
1384 }
1385
1386 process_refs = cfqq_process_refs(cfqq);
1387 /*
1388 * If the process for the cfqq has gone away, there is no
1389 * sense in merging the queues.
1390 */
1391 if (process_refs == 0)
1392 return;
1393
1394 /*
1395 * Merge in the direction of the lesser amount of work.
1396 */
1397 new_process_refs = cfqq_process_refs(new_cfqq);
1398 if (new_process_refs >= process_refs) {
1399 cfqq->new_cfqq = new_cfqq;
1400 atomic_add(process_refs, &new_cfqq->ref);
1401 } else {
1402 new_cfqq->new_cfqq = cfqq;
1403 atomic_add(new_process_refs, &cfqq->ref);
1404 }
1405}
1406
1407static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1408 struct cfq_group *cfqg, enum wl_prio_t prio,
1409 bool prio_changed)
1410{
1411 struct cfq_queue *queue;
1412 int i;
1413 bool key_valid = false;
1414 unsigned long lowest_key = 0;
1415 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1416
1417 if (prio_changed) {
1418 /*
1419 * When priorities switched, we prefer starting
1420 * from SYNC_NOIDLE (first choice), or just SYNC
1421 * over ASYNC
1422 */
1423 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1424 return cur_best;
1425 cur_best = SYNC_WORKLOAD;
1426 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1427 return cur_best;
1428
1429 return ASYNC_WORKLOAD;
1430 }
1431
1432 for (i = 0; i < 3; ++i) {
1433 /* otherwise, select the one with lowest rb_key */
1434 queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
1435 if (queue &&
1436 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1437 lowest_key = queue->rb_key;
1438 cur_best = i;
1439 key_valid = true;
1440 }
1441 }
1442
1443 return cur_best;
1444}
1445
1446static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
1447{
1448 enum wl_prio_t previous_prio = cfqd->serving_prio;
1449 bool prio_changed;
1450 unsigned slice;
1451 unsigned count;
1452 struct cfq_rb_root *st;
1453
1454 /* Choose next priority. RT > BE > IDLE */
1455 if (cfq_busy_queues_wl(RT_WORKLOAD, cfqd))
1456 cfqd->serving_prio = RT_WORKLOAD;
1457 else if (cfq_busy_queues_wl(BE_WORKLOAD, cfqd))
1458 cfqd->serving_prio = BE_WORKLOAD;
1459 else {
1460 cfqd->serving_prio = IDLE_WORKLOAD;
1461 cfqd->workload_expires = jiffies + 1;
1462 return;
1463 }
1464
1465 /*
1466 * For RT and BE, we have to choose also the type
1467 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1468 * expiration time
1469 */
1470 prio_changed = (cfqd->serving_prio != previous_prio);
1471 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
1472 cfqd);
1473 count = st->count;
1474
1475 /*
1476 * If priority didn't change, check workload expiration,
1477 * and that we still have other queues ready
1478 */
1479 if (!prio_changed && count &&
1480 !time_after(jiffies, cfqd->workload_expires))
1481 return;
1482
1483 /* otherwise select new workload type */
1484 cfqd->serving_type =
1485 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
1486 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
1487 cfqd);
1488 count = st->count;
1489
1490 /*
1491 * the workload slice is computed as a fraction of target latency
1492 * proportional to the number of queues in that workload, over
1493 * all the queues in the same priority class
1494 */
1495 slice = cfq_target_latency * count /
1496 max_t(unsigned, cfqd->busy_queues_avg[cfqd->serving_prio],
1497 cfq_busy_queues_wl(cfqd->serving_prio, cfqd));
1498
1499 if (cfqd->serving_type == ASYNC_WORKLOAD)
1500 /* async workload slice is scaled down according to
1501 * the sync/async slice ratio. */
1502 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
1503 else
1504 /* sync workload slice is at least 2 * cfq_slice_idle */
1505 slice = max(slice, 2 * cfqd->cfq_slice_idle);
1506
1507 slice = max_t(unsigned, slice, CFQ_MIN_TT);
1508 cfqd->workload_expires = jiffies + slice;
1509 cfqd->noidle_tree_requires_idle = false;
1510}
1511
1512static void cfq_choose_cfqg(struct cfq_data *cfqd)
1513{
1514 cfqd->serving_group = &cfqd->root_group;
1515 choose_service_tree(cfqd, &cfqd->root_group);
1516}
1517
1518/*
1519 * Select a queue for service. If we have a current active queue,
1520 * check whether to continue servicing it, or retrieve and set a new one.
1521 */
1522static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1523{
1524 struct cfq_queue *cfqq, *new_cfqq = NULL;
1525
1526 cfqq = cfqd->active_queue;
1527 if (!cfqq)
1528 goto new_queue;
1529
1530 /*
1531 * The active queue has run out of time, expire it and select new.
1532 */
1533 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
1534 goto expire;
1535
1536 /*
1537 * The active queue has requests and isn't expired, allow it to
1538 * dispatch.
1539 */
1540 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1541 goto keep_queue;
1542
1543 /*
1544 * If another queue has a request waiting within our mean seek
1545 * distance, let it run. The expire code will check for close
1546 * cooperators and put the close queue at the front of the service
1547 * tree. If possible, merge the expiring queue with the new cfqq.
1548 */
1549 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
1550 if (new_cfqq) {
1551 if (!cfqq->new_cfqq)
1552 cfq_setup_merge(cfqq, new_cfqq);
1553 goto expire;
1554 }
1555
1556 /*
1557 * No requests pending. If the active queue still has requests in
1558 * flight or is idling for a new request, allow either of these
1559 * conditions to happen (or time out) before selecting a new queue.
1560 */
1561 if (timer_pending(&cfqd->idle_slice_timer) ||
1562 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
1563 cfqq = NULL;
1564 goto keep_queue;
1565 }
1566
1567expire:
1568 cfq_slice_expired(cfqd, 0);
1569new_queue:
1570 /*
1571 * Current queue expired. Check if we have to switch to a new
1572 * service tree
1573 */
1574 if (!new_cfqq)
1575 cfq_choose_cfqg(cfqd);
1576
1577 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1578keep_queue:
1579 return cfqq;
1580}
1581
1582static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1583{
1584 int dispatched = 0;
1585
1586 while (cfqq->next_rq) {
1587 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1588 dispatched++;
1589 }
1590
1591 BUG_ON(!list_empty(&cfqq->fifo));
1592 return dispatched;
1593}
1594
1595/*
1596 * Drain our current requests. Used for barriers and when switching
1597 * io schedulers on-the-fly.
1598 */
1599static int cfq_forced_dispatch(struct cfq_data *cfqd)
1600{
1601 struct cfq_queue *cfqq;
1602 int dispatched = 0;
1603 int i, j;
1604 struct cfq_group *cfqg = &cfqd->root_group;
1605 struct cfq_rb_root *st;
1606
1607 for_each_cfqg_st(cfqg, i, j, st) {
1608 while ((cfqq = cfq_rb_first(st)) != NULL)
1609 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1610 }
1611
1612 cfq_slice_expired(cfqd, 0);
1613 BUG_ON(cfqd->busy_queues);
1614
1615 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1616 return dispatched;
1617}
1618
1619static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1620{
1621 unsigned int max_dispatch;
1622
1623 /*
1624 * Drain async requests before we start sync IO
1625 */
1626 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1627 return false;
1628
1629 /*
1630 * If this is an async queue and we have sync IO in flight, let it wait
1631 */
1632 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1633 return false;
1634
1635 max_dispatch = cfqd->cfq_quantum;
1636 if (cfq_class_idle(cfqq))
1637 max_dispatch = 1;
1638
1639 /*
1640 * Does this cfqq already have too much IO in flight?
1641 */
1642 if (cfqq->dispatched >= max_dispatch) {
1643 /*
1644 * idle queue must always only have a single IO in flight
1645 */
1646 if (cfq_class_idle(cfqq))
1647 return false;
1648
1649 /*
1650 * We have other queues, don't allow more IO from this one
1651 */
1652 if (cfqd->busy_queues > 1)
1653 return false;
1654
1655 /*
1656 * Sole queue user, no limit
1657 */
1658 max_dispatch = -1;
1659 }
1660
1661 /*
1662 * Async queues must wait a bit before being allowed dispatch.
1663 * We also ramp up the dispatch depth gradually for async IO,
1664 * based on the last sync IO we serviced
1665 */
1666 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
1667 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1668 unsigned int depth;
1669
1670 depth = last_sync / cfqd->cfq_slice[1];
1671 if (!depth && !cfqq->dispatched)
1672 depth = 1;
1673 if (depth < max_dispatch)
1674 max_dispatch = depth;
1675 }
1676
1677 /*
1678 * If we're below the current max, allow a dispatch
1679 */
1680 return cfqq->dispatched < max_dispatch;
1681}
1682
1683/*
1684 * Dispatch a request from cfqq, moving them to the request queue
1685 * dispatch list.
1686 */
1687static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1688{
1689 struct request *rq;
1690
1691 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1692
1693 if (!cfq_may_dispatch(cfqd, cfqq))
1694 return false;
1695
1696 /*
1697 * follow expired path, else get first next available
1698 */
1699 rq = cfq_check_fifo(cfqq);
1700 if (!rq)
1701 rq = cfqq->next_rq;
1702
1703 /*
1704 * insert request into driver dispatch list
1705 */
1706 cfq_dispatch_insert(cfqd->queue, rq);
1707
1708 if (!cfqd->active_cic) {
1709 struct cfq_io_context *cic = RQ_CIC(rq);
1710
1711 atomic_long_inc(&cic->ioc->refcount);
1712 cfqd->active_cic = cic;
1713 }
1714
1715 return true;
1716}
1717
1718/*
1719 * Find the cfqq that we need to service and move a request from that to the
1720 * dispatch list
1721 */
1722static int cfq_dispatch_requests(struct request_queue *q, int force)
1723{
1724 struct cfq_data *cfqd = q->elevator->elevator_data;
1725 struct cfq_queue *cfqq;
1726
1727 if (!cfqd->busy_queues)
1728 return 0;
1729
1730 if (unlikely(force))
1731 return cfq_forced_dispatch(cfqd);
1732
1733 cfqq = cfq_select_queue(cfqd);
1734 if (!cfqq)
1735 return 0;
1736
1737 /*
1738 * Dispatch a request from this cfqq, if it is allowed
1739 */
1740 if (!cfq_dispatch_request(cfqd, cfqq))
1741 return 0;
1742
1743 cfqq->slice_dispatch++;
1744 cfq_clear_cfqq_must_dispatch(cfqq);
1745
1746 /*
1747 * expire an async queue immediately if it has used up its slice. idle
1748 * queue always expire after 1 dispatch round.
1749 */
1750 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1751 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1752 cfq_class_idle(cfqq))) {
1753 cfqq->slice_end = jiffies + 1;
1754 cfq_slice_expired(cfqd, 0);
1755 }
1756
1757 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
1758 return 1;
1759}
1760
1761/*
1762 * task holds one reference to the queue, dropped when task exits. each rq
1763 * in-flight on this queue also holds a reference, dropped when rq is freed.
1764 *
1765 * queue lock must be held here.
1766 */
1767static void cfq_put_queue(struct cfq_queue *cfqq)
1768{
1769 struct cfq_data *cfqd = cfqq->cfqd;
1770
1771 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1772
1773 if (!atomic_dec_and_test(&cfqq->ref))
1774 return;
1775
1776 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1777 BUG_ON(rb_first(&cfqq->sort_list));
1778 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1779 BUG_ON(cfq_cfqq_on_rr(cfqq));
1780
1781 if (unlikely(cfqd->active_queue == cfqq)) {
1782 __cfq_slice_expired(cfqd, cfqq, 0);
1783 cfq_schedule_dispatch(cfqd);
1784 }
1785
1786 kmem_cache_free(cfq_pool, cfqq);
1787}
1788
1789/*
1790 * Must always be called with the rcu_read_lock() held
1791 */
1792static void
1793__call_for_each_cic(struct io_context *ioc,
1794 void (*func)(struct io_context *, struct cfq_io_context *))
1795{
1796 struct cfq_io_context *cic;
1797 struct hlist_node *n;
1798
1799 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1800 func(ioc, cic);
1801}
1802
1803/*
1804 * Call func for each cic attached to this ioc.
1805 */
1806static void
1807call_for_each_cic(struct io_context *ioc,
1808 void (*func)(struct io_context *, struct cfq_io_context *))
1809{
1810 rcu_read_lock();
1811 __call_for_each_cic(ioc, func);
1812 rcu_read_unlock();
1813}
1814
1815static void cfq_cic_free_rcu(struct rcu_head *head)
1816{
1817 struct cfq_io_context *cic;
1818
1819 cic = container_of(head, struct cfq_io_context, rcu_head);
1820
1821 kmem_cache_free(cfq_ioc_pool, cic);
1822 elv_ioc_count_dec(cfq_ioc_count);
1823
1824 if (ioc_gone) {
1825 /*
1826 * CFQ scheduler is exiting, grab exit lock and check
1827 * the pending io context count. If it hits zero,
1828 * complete ioc_gone and set it back to NULL
1829 */
1830 spin_lock(&ioc_gone_lock);
1831 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
1832 complete(ioc_gone);
1833 ioc_gone = NULL;
1834 }
1835 spin_unlock(&ioc_gone_lock);
1836 }
1837}
1838
1839static void cfq_cic_free(struct cfq_io_context *cic)
1840{
1841 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1842}
1843
1844static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1845{
1846 unsigned long flags;
1847
1848 BUG_ON(!cic->dead_key);
1849
1850 spin_lock_irqsave(&ioc->lock, flags);
1851 radix_tree_delete(&ioc->radix_root, cic->dead_key);
1852 hlist_del_rcu(&cic->cic_list);
1853 spin_unlock_irqrestore(&ioc->lock, flags);
1854
1855 cfq_cic_free(cic);
1856}
1857
1858/*
1859 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1860 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1861 * and ->trim() which is called with the task lock held
1862 */
1863static void cfq_free_io_context(struct io_context *ioc)
1864{
1865 /*
1866 * ioc->refcount is zero here, or we are called from elv_unregister(),
1867 * so no more cic's are allowed to be linked into this ioc. So it
1868 * should be ok to iterate over the known list, we will see all cic's
1869 * since no new ones are added.
1870 */
1871 __call_for_each_cic(ioc, cic_free_func);
1872}
1873
1874static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1875{
1876 struct cfq_queue *__cfqq, *next;
1877
1878 if (unlikely(cfqq == cfqd->active_queue)) {
1879 __cfq_slice_expired(cfqd, cfqq, 0);
1880 cfq_schedule_dispatch(cfqd);
1881 }
1882
1883 /*
1884 * If this queue was scheduled to merge with another queue, be
1885 * sure to drop the reference taken on that queue (and others in
1886 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
1887 */
1888 __cfqq = cfqq->new_cfqq;
1889 while (__cfqq) {
1890 if (__cfqq == cfqq) {
1891 WARN(1, "cfqq->new_cfqq loop detected\n");
1892 break;
1893 }
1894 next = __cfqq->new_cfqq;
1895 cfq_put_queue(__cfqq);
1896 __cfqq = next;
1897 }
1898
1899 cfq_put_queue(cfqq);
1900}
1901
1902static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1903 struct cfq_io_context *cic)
1904{
1905 struct io_context *ioc = cic->ioc;
1906
1907 list_del_init(&cic->queue_list);
1908
1909 /*
1910 * Make sure key == NULL is seen for dead queues
1911 */
1912 smp_wmb();
1913 cic->dead_key = (unsigned long) cic->key;
1914 cic->key = NULL;
1915
1916 if (ioc->ioc_data == cic)
1917 rcu_assign_pointer(ioc->ioc_data, NULL);
1918
1919 if (cic->cfqq[BLK_RW_ASYNC]) {
1920 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1921 cic->cfqq[BLK_RW_ASYNC] = NULL;
1922 }
1923
1924 if (cic->cfqq[BLK_RW_SYNC]) {
1925 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1926 cic->cfqq[BLK_RW_SYNC] = NULL;
1927 }
1928}
1929
1930static void cfq_exit_single_io_context(struct io_context *ioc,
1931 struct cfq_io_context *cic)
1932{
1933 struct cfq_data *cfqd = cic->key;
1934
1935 if (cfqd) {
1936 struct request_queue *q = cfqd->queue;
1937 unsigned long flags;
1938
1939 spin_lock_irqsave(q->queue_lock, flags);
1940
1941 /*
1942 * Ensure we get a fresh copy of the ->key to prevent
1943 * race between exiting task and queue
1944 */
1945 smp_read_barrier_depends();
1946 if (cic->key)
1947 __cfq_exit_single_io_context(cfqd, cic);
1948
1949 spin_unlock_irqrestore(q->queue_lock, flags);
1950 }
1951}
1952
1953/*
1954 * The process that ioc belongs to has exited, we need to clean up
1955 * and put the internal structures we have that belongs to that process.
1956 */
1957static void cfq_exit_io_context(struct io_context *ioc)
1958{
1959 call_for_each_cic(ioc, cfq_exit_single_io_context);
1960}
1961
1962static struct cfq_io_context *
1963cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1964{
1965 struct cfq_io_context *cic;
1966
1967 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1968 cfqd->queue->node);
1969 if (cic) {
1970 cic->last_end_request = jiffies;
1971 INIT_LIST_HEAD(&cic->queue_list);
1972 INIT_HLIST_NODE(&cic->cic_list);
1973 cic->dtor = cfq_free_io_context;
1974 cic->exit = cfq_exit_io_context;
1975 elv_ioc_count_inc(cfq_ioc_count);
1976 }
1977
1978 return cic;
1979}
1980
1981static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1982{
1983 struct task_struct *tsk = current;
1984 int ioprio_class;
1985
1986 if (!cfq_cfqq_prio_changed(cfqq))
1987 return;
1988
1989 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1990 switch (ioprio_class) {
1991 default:
1992 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1993 case IOPRIO_CLASS_NONE:
1994 /*
1995 * no prio set, inherit CPU scheduling settings
1996 */
1997 cfqq->ioprio = task_nice_ioprio(tsk);
1998 cfqq->ioprio_class = task_nice_ioclass(tsk);
1999 break;
2000 case IOPRIO_CLASS_RT:
2001 cfqq->ioprio = task_ioprio(ioc);
2002 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2003 break;
2004 case IOPRIO_CLASS_BE:
2005 cfqq->ioprio = task_ioprio(ioc);
2006 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2007 break;
2008 case IOPRIO_CLASS_IDLE:
2009 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2010 cfqq->ioprio = 7;
2011 cfq_clear_cfqq_idle_window(cfqq);
2012 break;
2013 }
2014
2015 /*
2016 * keep track of original prio settings in case we have to temporarily
2017 * elevate the priority of this queue
2018 */
2019 cfqq->org_ioprio = cfqq->ioprio;
2020 cfqq->org_ioprio_class = cfqq->ioprio_class;
2021 cfq_clear_cfqq_prio_changed(cfqq);
2022}
2023
2024static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2025{
2026 struct cfq_data *cfqd = cic->key;
2027 struct cfq_queue *cfqq;
2028 unsigned long flags;
2029
2030 if (unlikely(!cfqd))
2031 return;
2032
2033 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2034
2035 cfqq = cic->cfqq[BLK_RW_ASYNC];
2036 if (cfqq) {
2037 struct cfq_queue *new_cfqq;
2038 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2039 GFP_ATOMIC);
2040 if (new_cfqq) {
2041 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2042 cfq_put_queue(cfqq);
2043 }
2044 }
2045
2046 cfqq = cic->cfqq[BLK_RW_SYNC];
2047 if (cfqq)
2048 cfq_mark_cfqq_prio_changed(cfqq);
2049
2050 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2051}
2052
2053static void cfq_ioc_set_ioprio(struct io_context *ioc)
2054{
2055 call_for_each_cic(ioc, changed_ioprio);
2056 ioc->ioprio_changed = 0;
2057}
2058
2059static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2060 pid_t pid, bool is_sync)
2061{
2062 RB_CLEAR_NODE(&cfqq->rb_node);
2063 RB_CLEAR_NODE(&cfqq->p_node);
2064 INIT_LIST_HEAD(&cfqq->fifo);
2065
2066 atomic_set(&cfqq->ref, 0);
2067 cfqq->cfqd = cfqd;
2068
2069 cfq_mark_cfqq_prio_changed(cfqq);
2070
2071 if (is_sync) {
2072 if (!cfq_class_idle(cfqq))
2073 cfq_mark_cfqq_idle_window(cfqq);
2074 cfq_mark_cfqq_sync(cfqq);
2075 }
2076 cfqq->pid = pid;
2077}
2078
2079static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
2080{
2081 cfqq->cfqg = cfqg;
2082}
2083
2084static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
2085{
2086 return &cfqd->root_group;
2087}
2088
2089static struct cfq_queue *
2090cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2091 struct io_context *ioc, gfp_t gfp_mask)
2092{
2093 struct cfq_queue *cfqq, *new_cfqq = NULL;
2094 struct cfq_io_context *cic;
2095 struct cfq_group *cfqg;
2096
2097retry:
2098 cfqg = cfq_get_cfqg(cfqd, 1);
2099 cic = cfq_cic_lookup(cfqd, ioc);
2100 /* cic always exists here */
2101 cfqq = cic_to_cfqq(cic, is_sync);
2102
2103 /*
2104 * Always try a new alloc if we fell back to the OOM cfqq
2105 * originally, since it should just be a temporary situation.
2106 */
2107 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2108 cfqq = NULL;
2109 if (new_cfqq) {
2110 cfqq = new_cfqq;
2111 new_cfqq = NULL;
2112 } else if (gfp_mask & __GFP_WAIT) {
2113 spin_unlock_irq(cfqd->queue->queue_lock);
2114 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2115 gfp_mask | __GFP_ZERO,
2116 cfqd->queue->node);
2117 spin_lock_irq(cfqd->queue->queue_lock);
2118 if (new_cfqq)
2119 goto retry;
2120 } else {
2121 cfqq = kmem_cache_alloc_node(cfq_pool,
2122 gfp_mask | __GFP_ZERO,
2123 cfqd->queue->node);
2124 }
2125
2126 if (cfqq) {
2127 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2128 cfq_init_prio_data(cfqq, ioc);
2129 cfq_link_cfqq_cfqg(cfqq, cfqg);
2130 cfq_log_cfqq(cfqd, cfqq, "alloced");
2131 } else
2132 cfqq = &cfqd->oom_cfqq;
2133 }
2134
2135 if (new_cfqq)
2136 kmem_cache_free(cfq_pool, new_cfqq);
2137
2138 return cfqq;
2139}
2140
2141static struct cfq_queue **
2142cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2143{
2144 switch (ioprio_class) {
2145 case IOPRIO_CLASS_RT:
2146 return &cfqd->async_cfqq[0][ioprio];
2147 case IOPRIO_CLASS_BE:
2148 return &cfqd->async_cfqq[1][ioprio];
2149 case IOPRIO_CLASS_IDLE:
2150 return &cfqd->async_idle_cfqq;
2151 default:
2152 BUG();
2153 }
2154}
2155
2156static struct cfq_queue *
2157cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2158 gfp_t gfp_mask)
2159{
2160 const int ioprio = task_ioprio(ioc);
2161 const int ioprio_class = task_ioprio_class(ioc);
2162 struct cfq_queue **async_cfqq = NULL;
2163 struct cfq_queue *cfqq = NULL;
2164
2165 if (!is_sync) {
2166 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2167 cfqq = *async_cfqq;
2168 }
2169
2170 if (!cfqq)
2171 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2172
2173 /*
2174 * pin the queue now that it's allocated, scheduler exit will prune it
2175 */
2176 if (!is_sync && !(*async_cfqq)) {
2177 atomic_inc(&cfqq->ref);
2178 *async_cfqq = cfqq;
2179 }
2180
2181 atomic_inc(&cfqq->ref);
2182 return cfqq;
2183}
2184
2185/*
2186 * We drop cfq io contexts lazily, so we may find a dead one.
2187 */
2188static void
2189cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2190 struct cfq_io_context *cic)
2191{
2192 unsigned long flags;
2193
2194 WARN_ON(!list_empty(&cic->queue_list));
2195
2196 spin_lock_irqsave(&ioc->lock, flags);
2197
2198 BUG_ON(ioc->ioc_data == cic);
2199
2200 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2201 hlist_del_rcu(&cic->cic_list);
2202 spin_unlock_irqrestore(&ioc->lock, flags);
2203
2204 cfq_cic_free(cic);
2205}
2206
2207static struct cfq_io_context *
2208cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2209{
2210 struct cfq_io_context *cic;
2211 unsigned long flags;
2212 void *k;
2213
2214 if (unlikely(!ioc))
2215 return NULL;
2216
2217 rcu_read_lock();
2218
2219 /*
2220 * we maintain a last-hit cache, to avoid browsing over the tree
2221 */
2222 cic = rcu_dereference(ioc->ioc_data);
2223 if (cic && cic->key == cfqd) {
2224 rcu_read_unlock();
2225 return cic;
2226 }
2227
2228 do {
2229 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2230 rcu_read_unlock();
2231 if (!cic)
2232 break;
2233 /* ->key must be copied to avoid race with cfq_exit_queue() */
2234 k = cic->key;
2235 if (unlikely(!k)) {
2236 cfq_drop_dead_cic(cfqd, ioc, cic);
2237 rcu_read_lock();
2238 continue;
2239 }
2240
2241 spin_lock_irqsave(&ioc->lock, flags);
2242 rcu_assign_pointer(ioc->ioc_data, cic);
2243 spin_unlock_irqrestore(&ioc->lock, flags);
2244 break;
2245 } while (1);
2246
2247 return cic;
2248}
2249
2250/*
2251 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2252 * the process specific cfq io context when entered from the block layer.
2253 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2254 */
2255static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2256 struct cfq_io_context *cic, gfp_t gfp_mask)
2257{
2258 unsigned long flags;
2259 int ret;
2260
2261 ret = radix_tree_preload(gfp_mask);
2262 if (!ret) {
2263 cic->ioc = ioc;
2264 cic->key = cfqd;
2265
2266 spin_lock_irqsave(&ioc->lock, flags);
2267 ret = radix_tree_insert(&ioc->radix_root,
2268 (unsigned long) cfqd, cic);
2269 if (!ret)
2270 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2271 spin_unlock_irqrestore(&ioc->lock, flags);
2272
2273 radix_tree_preload_end();
2274
2275 if (!ret) {
2276 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2277 list_add(&cic->queue_list, &cfqd->cic_list);
2278 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2279 }
2280 }
2281
2282 if (ret)
2283 printk(KERN_ERR "cfq: cic link failed!\n");
2284
2285 return ret;
2286}
2287
2288/*
2289 * Setup general io context and cfq io context. There can be several cfq
2290 * io contexts per general io context, if this process is doing io to more
2291 * than one device managed by cfq.
2292 */
2293static struct cfq_io_context *
2294cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2295{
2296 struct io_context *ioc = NULL;
2297 struct cfq_io_context *cic;
2298
2299 might_sleep_if(gfp_mask & __GFP_WAIT);
2300
2301 ioc = get_io_context(gfp_mask, cfqd->queue->node);
2302 if (!ioc)
2303 return NULL;
2304
2305 cic = cfq_cic_lookup(cfqd, ioc);
2306 if (cic)
2307 goto out;
2308
2309 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2310 if (cic == NULL)
2311 goto err;
2312
2313 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2314 goto err_free;
2315
2316out:
2317 smp_read_barrier_depends();
2318 if (unlikely(ioc->ioprio_changed))
2319 cfq_ioc_set_ioprio(ioc);
2320
2321 return cic;
2322err_free:
2323 cfq_cic_free(cic);
2324err:
2325 put_io_context(ioc);
2326 return NULL;
2327}
2328
2329static void
2330cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2331{
2332 unsigned long elapsed = jiffies - cic->last_end_request;
2333 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2334
2335 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2336 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2337 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2338}
2339
2340static void
2341cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2342 struct request *rq)
2343{
2344 sector_t sdist;
2345 u64 total;
2346
2347 if (!cfqq->last_request_pos)
2348 sdist = 0;
2349 else if (cfqq->last_request_pos < blk_rq_pos(rq))
2350 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2351 else
2352 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2353
2354 /*
2355 * Don't allow the seek distance to get too large from the
2356 * odd fragment, pagein, etc
2357 */
2358 if (cfqq->seek_samples <= 60) /* second&third seek */
2359 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2360 else
2361 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2362
2363 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2364 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2365 total = cfqq->seek_total + (cfqq->seek_samples/2);
2366 do_div(total, cfqq->seek_samples);
2367 cfqq->seek_mean = (sector_t)total;
2368
2369 /*
2370 * If this cfqq is shared between multiple processes, check to
2371 * make sure that those processes are still issuing I/Os within
2372 * the mean seek distance. If not, it may be time to break the
2373 * queues apart again.
2374 */
2375 if (cfq_cfqq_coop(cfqq)) {
2376 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2377 cfqq->seeky_start = jiffies;
2378 else if (!CFQQ_SEEKY(cfqq))
2379 cfqq->seeky_start = 0;
2380 }
2381}
2382
2383/*
2384 * Disable idle window if the process thinks too long or seeks so much that
2385 * it doesn't matter
2386 */
2387static void
2388cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2389 struct cfq_io_context *cic)
2390{
2391 int old_idle, enable_idle;
2392
2393 /*
2394 * Don't idle for async or idle io prio class
2395 */
2396 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2397 return;
2398
2399 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
2400
2401 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
2402 cfq_mark_cfqq_deep(cfqq);
2403
2404 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2405 (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
2406 && CFQQ_SEEKY(cfqq)))
2407 enable_idle = 0;
2408 else if (sample_valid(cic->ttime_samples)) {
2409 if (cic->ttime_mean > cfqd->cfq_slice_idle)
2410 enable_idle = 0;
2411 else
2412 enable_idle = 1;
2413 }
2414
2415 if (old_idle != enable_idle) {
2416 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2417 if (enable_idle)
2418 cfq_mark_cfqq_idle_window(cfqq);
2419 else
2420 cfq_clear_cfqq_idle_window(cfqq);
2421 }
2422}
2423
2424/*
2425 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2426 * no or if we aren't sure, a 1 will cause a preempt.
2427 */
2428static bool
2429cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
2430 struct request *rq)
2431{
2432 struct cfq_queue *cfqq;
2433
2434 cfqq = cfqd->active_queue;
2435 if (!cfqq)
2436 return false;
2437
2438 if (cfq_slice_used(cfqq))
2439 return true;
2440
2441 if (cfq_class_idle(new_cfqq))
2442 return false;
2443
2444 if (cfq_class_idle(cfqq))
2445 return true;
2446
2447 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
2448 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
2449 new_cfqq->service_tree->count == 1)
2450 return true;
2451
2452 /*
2453 * if the new request is sync, but the currently running queue is
2454 * not, let the sync request have priority.
2455 */
2456 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2457 return true;
2458
2459 /*
2460 * So both queues are sync. Let the new request get disk time if
2461 * it's a metadata request and the current queue is doing regular IO.
2462 */
2463 if (rq_is_meta(rq) && !cfqq->meta_pending)
2464 return true;
2465
2466 /*
2467 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2468 */
2469 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2470 return true;
2471
2472 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2473 return false;
2474
2475 /*
2476 * if this request is as-good as one we would expect from the
2477 * current cfqq, let it preempt
2478 */
2479 if (cfq_rq_close(cfqd, cfqq, rq))
2480 return true;
2481
2482 return false;
2483}
2484
2485/*
2486 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2487 * let it have half of its nominal slice.
2488 */
2489static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2490{
2491 cfq_log_cfqq(cfqd, cfqq, "preempt");
2492 cfq_slice_expired(cfqd, 1);
2493
2494 /*
2495 * Put the new queue at the front of the of the current list,
2496 * so we know that it will be selected next.
2497 */
2498 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2499
2500 cfq_service_tree_add(cfqd, cfqq, 1);
2501
2502 cfqq->slice_end = 0;
2503 cfq_mark_cfqq_slice_new(cfqq);
2504}
2505
2506/*
2507 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2508 * something we should do about it
2509 */
2510static void
2511cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2512 struct request *rq)
2513{
2514 struct cfq_io_context *cic = RQ_CIC(rq);
2515
2516 cfqd->rq_queued++;
2517 if (rq_is_meta(rq))
2518 cfqq->meta_pending++;
2519
2520 cfq_update_io_thinktime(cfqd, cic);
2521 cfq_update_io_seektime(cfqd, cfqq, rq);
2522 cfq_update_idle_window(cfqd, cfqq, cic);
2523
2524 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2525
2526 if (cfqq == cfqd->active_queue) {
2527 /*
2528 * Remember that we saw a request from this process, but
2529 * don't start queuing just yet. Otherwise we risk seeing lots
2530 * of tiny requests, because we disrupt the normal plugging
2531 * and merging. If the request is already larger than a single
2532 * page, let it rip immediately. For that case we assume that
2533 * merging is already done. Ditto for a busy system that
2534 * has other work pending, don't risk delaying until the
2535 * idle timer unplug to continue working.
2536 */
2537 if (cfq_cfqq_wait_request(cfqq)) {
2538 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2539 cfqd->busy_queues > 1) {
2540 del_timer(&cfqd->idle_slice_timer);
2541 __blk_run_queue(cfqd->queue);
2542 } else
2543 cfq_mark_cfqq_must_dispatch(cfqq);
2544 }
2545 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2546 /*
2547 * not the active queue - expire current slice if it is
2548 * idle and has expired it's mean thinktime or this new queue
2549 * has some old slice time left and is of higher priority or
2550 * this new queue is RT and the current one is BE
2551 */
2552 cfq_preempt_queue(cfqd, cfqq);
2553 __blk_run_queue(cfqd->queue);
2554 }
2555}
2556
2557static void cfq_insert_request(struct request_queue *q, struct request *rq)
2558{
2559 struct cfq_data *cfqd = q->elevator->elevator_data;
2560 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2561
2562 cfq_log_cfqq(cfqd, cfqq, "insert_request");
2563 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
2564
2565 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
2566 list_add_tail(&rq->queuelist, &cfqq->fifo);
2567 cfq_add_rq_rb(rq);
2568
2569 cfq_rq_enqueued(cfqd, cfqq, rq);
2570}
2571
2572/*
2573 * Update hw_tag based on peak queue depth over 50 samples under
2574 * sufficient load.
2575 */
2576static void cfq_update_hw_tag(struct cfq_data *cfqd)
2577{
2578 struct cfq_queue *cfqq = cfqd->active_queue;
2579
2580 if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
2581 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
2582
2583 if (cfqd->hw_tag == 1)
2584 return;
2585
2586 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2587 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2588 return;
2589
2590 /*
2591 * If active queue hasn't enough requests and can idle, cfq might not
2592 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
2593 * case
2594 */
2595 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
2596 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
2597 CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
2598 return;
2599
2600 if (cfqd->hw_tag_samples++ < 50)
2601 return;
2602
2603 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
2604 cfqd->hw_tag = 1;
2605 else
2606 cfqd->hw_tag = 0;
2607}
2608
2609static void cfq_completed_request(struct request_queue *q, struct request *rq)
2610{
2611 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2612 struct cfq_data *cfqd = cfqq->cfqd;
2613 const int sync = rq_is_sync(rq);
2614 unsigned long now;
2615
2616 now = jiffies;
2617 cfq_log_cfqq(cfqd, cfqq, "complete");
2618
2619 cfq_update_hw_tag(cfqd);
2620
2621 WARN_ON(!cfqd->rq_in_driver[sync]);
2622 WARN_ON(!cfqq->dispatched);
2623 cfqd->rq_in_driver[sync]--;
2624 cfqq->dispatched--;
2625
2626 if (cfq_cfqq_sync(cfqq))
2627 cfqd->sync_flight--;
2628
2629 if (sync) {
2630 RQ_CIC(rq)->last_end_request = now;
2631 cfqd->last_end_sync_rq = now;
2632 }
2633
2634 /*
2635 * If this is the active queue, check if it needs to be expired,
2636 * or if we want to idle in case it has no pending requests.
2637 */
2638 if (cfqd->active_queue == cfqq) {
2639 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2640
2641 if (cfq_cfqq_slice_new(cfqq)) {
2642 cfq_set_prio_slice(cfqd, cfqq);
2643 cfq_clear_cfqq_slice_new(cfqq);
2644 }
2645 /*
2646 * Idling is not enabled on:
2647 * - expired queues
2648 * - idle-priority queues
2649 * - async queues
2650 * - queues with still some requests queued
2651 * - when there is a close cooperator
2652 */
2653 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2654 cfq_slice_expired(cfqd, 1);
2655 else if (sync && cfqq_empty &&
2656 !cfq_close_cooperator(cfqd, cfqq)) {
2657 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
2658 /*
2659 * Idling is enabled for SYNC_WORKLOAD.
2660 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
2661 * only if we processed at least one !rq_noidle request
2662 */
2663 if (cfqd->serving_type == SYNC_WORKLOAD
2664 || cfqd->noidle_tree_requires_idle)
2665 cfq_arm_slice_timer(cfqd);
2666 }
2667 }
2668
2669 if (!rq_in_driver(cfqd))
2670 cfq_schedule_dispatch(cfqd);
2671}
2672
2673/*
2674 * we temporarily boost lower priority queues if they are holding fs exclusive
2675 * resources. they are boosted to normal prio (CLASS_BE/4)
2676 */
2677static void cfq_prio_boost(struct cfq_queue *cfqq)
2678{
2679 if (has_fs_excl()) {
2680 /*
2681 * boost idle prio on transactions that would lock out other
2682 * users of the filesystem
2683 */
2684 if (cfq_class_idle(cfqq))
2685 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2686 if (cfqq->ioprio > IOPRIO_NORM)
2687 cfqq->ioprio = IOPRIO_NORM;
2688 } else {
2689 /*
2690 * unboost the queue (if needed)
2691 */
2692 cfqq->ioprio_class = cfqq->org_ioprio_class;
2693 cfqq->ioprio = cfqq->org_ioprio;
2694 }
2695}
2696
2697static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2698{
2699 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
2700 cfq_mark_cfqq_must_alloc_slice(cfqq);
2701 return ELV_MQUEUE_MUST;
2702 }
2703
2704 return ELV_MQUEUE_MAY;
2705}
2706
2707static int cfq_may_queue(struct request_queue *q, int rw)
2708{
2709 struct cfq_data *cfqd = q->elevator->elevator_data;
2710 struct task_struct *tsk = current;
2711 struct cfq_io_context *cic;
2712 struct cfq_queue *cfqq;
2713
2714 /*
2715 * don't force setup of a queue from here, as a call to may_queue
2716 * does not necessarily imply that a request actually will be queued.
2717 * so just lookup a possibly existing queue, or return 'may queue'
2718 * if that fails
2719 */
2720 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2721 if (!cic)
2722 return ELV_MQUEUE_MAY;
2723
2724 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2725 if (cfqq) {
2726 cfq_init_prio_data(cfqq, cic->ioc);
2727 cfq_prio_boost(cfqq);
2728
2729 return __cfq_may_queue(cfqq);
2730 }
2731
2732 return ELV_MQUEUE_MAY;
2733}
2734
2735/*
2736 * queue lock held here
2737 */
2738static void cfq_put_request(struct request *rq)
2739{
2740 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2741
2742 if (cfqq) {
2743 const int rw = rq_data_dir(rq);
2744
2745 BUG_ON(!cfqq->allocated[rw]);
2746 cfqq->allocated[rw]--;
2747
2748 put_io_context(RQ_CIC(rq)->ioc);
2749
2750 rq->elevator_private = NULL;
2751 rq->elevator_private2 = NULL;
2752
2753 cfq_put_queue(cfqq);
2754 }
2755}
2756
2757static struct cfq_queue *
2758cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
2759 struct cfq_queue *cfqq)
2760{
2761 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
2762 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
2763 cfq_mark_cfqq_coop(cfqq->new_cfqq);
2764 cfq_put_queue(cfqq);
2765 return cic_to_cfqq(cic, 1);
2766}
2767
2768static int should_split_cfqq(struct cfq_queue *cfqq)
2769{
2770 if (cfqq->seeky_start &&
2771 time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
2772 return 1;
2773 return 0;
2774}
2775
2776/*
2777 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
2778 * was the last process referring to said cfqq.
2779 */
2780static struct cfq_queue *
2781split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
2782{
2783 if (cfqq_process_refs(cfqq) == 1) {
2784 cfqq->seeky_start = 0;
2785 cfqq->pid = current->pid;
2786 cfq_clear_cfqq_coop(cfqq);
2787 return cfqq;
2788 }
2789
2790 cic_set_cfqq(cic, NULL, 1);
2791 cfq_put_queue(cfqq);
2792 return NULL;
2793}
2794/*
2795 * Allocate cfq data structures associated with this request.
2796 */
2797static int
2798cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2799{
2800 struct cfq_data *cfqd = q->elevator->elevator_data;
2801 struct cfq_io_context *cic;
2802 const int rw = rq_data_dir(rq);
2803 const bool is_sync = rq_is_sync(rq);
2804 struct cfq_queue *cfqq;
2805 unsigned long flags;
2806
2807 might_sleep_if(gfp_mask & __GFP_WAIT);
2808
2809 cic = cfq_get_io_context(cfqd, gfp_mask);
2810
2811 spin_lock_irqsave(q->queue_lock, flags);
2812
2813 if (!cic)
2814 goto queue_fail;
2815
2816new_queue:
2817 cfqq = cic_to_cfqq(cic, is_sync);
2818 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2819 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2820 cic_set_cfqq(cic, cfqq, is_sync);
2821 } else {
2822 /*
2823 * If the queue was seeky for too long, break it apart.
2824 */
2825 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
2826 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
2827 cfqq = split_cfqq(cic, cfqq);
2828 if (!cfqq)
2829 goto new_queue;
2830 }
2831
2832 /*
2833 * Check to see if this queue is scheduled to merge with
2834 * another, closely cooperating queue. The merging of
2835 * queues happens here as it must be done in process context.
2836 * The reference on new_cfqq was taken in merge_cfqqs.
2837 */
2838 if (cfqq->new_cfqq)
2839 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
2840 }
2841
2842 cfqq->allocated[rw]++;
2843 atomic_inc(&cfqq->ref);
2844
2845 spin_unlock_irqrestore(q->queue_lock, flags);
2846
2847 rq->elevator_private = cic;
2848 rq->elevator_private2 = cfqq;
2849 return 0;
2850
2851queue_fail:
2852 if (cic)
2853 put_io_context(cic->ioc);
2854
2855 cfq_schedule_dispatch(cfqd);
2856 spin_unlock_irqrestore(q->queue_lock, flags);
2857 cfq_log(cfqd, "set_request fail");
2858 return 1;
2859}
2860
2861static void cfq_kick_queue(struct work_struct *work)
2862{
2863 struct cfq_data *cfqd =
2864 container_of(work, struct cfq_data, unplug_work);
2865 struct request_queue *q = cfqd->queue;
2866
2867 spin_lock_irq(q->queue_lock);
2868 __blk_run_queue(cfqd->queue);
2869 spin_unlock_irq(q->queue_lock);
2870}
2871
2872/*
2873 * Timer running if the active_queue is currently idling inside its time slice
2874 */
2875static void cfq_idle_slice_timer(unsigned long data)
2876{
2877 struct cfq_data *cfqd = (struct cfq_data *) data;
2878 struct cfq_queue *cfqq;
2879 unsigned long flags;
2880 int timed_out = 1;
2881
2882 cfq_log(cfqd, "idle timer fired");
2883
2884 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2885
2886 cfqq = cfqd->active_queue;
2887 if (cfqq) {
2888 timed_out = 0;
2889
2890 /*
2891 * We saw a request before the queue expired, let it through
2892 */
2893 if (cfq_cfqq_must_dispatch(cfqq))
2894 goto out_kick;
2895
2896 /*
2897 * expired
2898 */
2899 if (cfq_slice_used(cfqq))
2900 goto expire;
2901
2902 /*
2903 * only expire and reinvoke request handler, if there are
2904 * other queues with pending requests
2905 */
2906 if (!cfqd->busy_queues)
2907 goto out_cont;
2908
2909 /*
2910 * not expired and it has a request pending, let it dispatch
2911 */
2912 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2913 goto out_kick;
2914
2915 /*
2916 * Queue depth flag is reset only when the idle didn't succeed
2917 */
2918 cfq_clear_cfqq_deep(cfqq);
2919 }
2920expire:
2921 cfq_slice_expired(cfqd, timed_out);
2922out_kick:
2923 cfq_schedule_dispatch(cfqd);
2924out_cont:
2925 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2926}
2927
2928static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2929{
2930 del_timer_sync(&cfqd->idle_slice_timer);
2931 cancel_work_sync(&cfqd->unplug_work);
2932}
2933
2934static void cfq_put_async_queues(struct cfq_data *cfqd)
2935{
2936 int i;
2937
2938 for (i = 0; i < IOPRIO_BE_NR; i++) {
2939 if (cfqd->async_cfqq[0][i])
2940 cfq_put_queue(cfqd->async_cfqq[0][i]);
2941 if (cfqd->async_cfqq[1][i])
2942 cfq_put_queue(cfqd->async_cfqq[1][i]);
2943 }
2944
2945 if (cfqd->async_idle_cfqq)
2946 cfq_put_queue(cfqd->async_idle_cfqq);
2947}
2948
2949static void cfq_exit_queue(struct elevator_queue *e)
2950{
2951 struct cfq_data *cfqd = e->elevator_data;
2952 struct request_queue *q = cfqd->queue;
2953
2954 cfq_shutdown_timer_wq(cfqd);
2955
2956 spin_lock_irq(q->queue_lock);
2957
2958 if (cfqd->active_queue)
2959 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2960
2961 while (!list_empty(&cfqd->cic_list)) {
2962 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2963 struct cfq_io_context,
2964 queue_list);
2965
2966 __cfq_exit_single_io_context(cfqd, cic);
2967 }
2968
2969 cfq_put_async_queues(cfqd);
2970
2971 spin_unlock_irq(q->queue_lock);
2972
2973 cfq_shutdown_timer_wq(cfqd);
2974
2975 kfree(cfqd);
2976}
2977
2978static void *cfq_init_queue(struct request_queue *q)
2979{
2980 struct cfq_data *cfqd;
2981 int i, j;
2982 struct cfq_group *cfqg;
2983 struct cfq_rb_root *st;
2984
2985 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2986 if (!cfqd)
2987 return NULL;
2988
2989 /* Init root group */
2990 cfqg = &cfqd->root_group;
2991 for_each_cfqg_st(cfqg, i, j, st)
2992 *st = CFQ_RB_ROOT;
2993
2994 /*
2995 * Not strictly needed (since RB_ROOT just clears the node and we
2996 * zeroed cfqd on alloc), but better be safe in case someone decides
2997 * to add magic to the rb code
2998 */
2999 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3000 cfqd->prio_trees[i] = RB_ROOT;
3001
3002 /*
3003 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3004 * Grab a permanent reference to it, so that the normal code flow
3005 * will not attempt to free it.
3006 */
3007 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3008 atomic_inc(&cfqd->oom_cfqq.ref);
3009 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3010
3011 INIT_LIST_HEAD(&cfqd->cic_list);
3012
3013 cfqd->queue = q;
3014
3015 init_timer(&cfqd->idle_slice_timer);
3016 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3017 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3018
3019 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3020
3021 cfqd->cfq_quantum = cfq_quantum;
3022 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3023 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3024 cfqd->cfq_back_max = cfq_back_max;
3025 cfqd->cfq_back_penalty = cfq_back_penalty;
3026 cfqd->cfq_slice[0] = cfq_slice_async;
3027 cfqd->cfq_slice[1] = cfq_slice_sync;
3028 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3029 cfqd->cfq_slice_idle = cfq_slice_idle;
3030 cfqd->cfq_latency = 1;
3031 cfqd->hw_tag = -1;
3032 cfqd->last_end_sync_rq = jiffies;
3033 return cfqd;
3034}
3035
3036static void cfq_slab_kill(void)
3037{
3038 /*
3039 * Caller already ensured that pending RCU callbacks are completed,
3040 * so we should have no busy allocations at this point.
3041 */
3042 if (cfq_pool)
3043 kmem_cache_destroy(cfq_pool);
3044 if (cfq_ioc_pool)
3045 kmem_cache_destroy(cfq_ioc_pool);
3046}
3047
3048static int __init cfq_slab_setup(void)
3049{
3050 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3051 if (!cfq_pool)
3052 goto fail;
3053
3054 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3055 if (!cfq_ioc_pool)
3056 goto fail;
3057
3058 return 0;
3059fail:
3060 cfq_slab_kill();
3061 return -ENOMEM;
3062}
3063
3064/*
3065 * sysfs parts below -->
3066 */
3067static ssize_t
3068cfq_var_show(unsigned int var, char *page)
3069{
3070 return sprintf(page, "%d\n", var);
3071}
3072
3073static ssize_t
3074cfq_var_store(unsigned int *var, const char *page, size_t count)
3075{
3076 char *p = (char *) page;
3077
3078 *var = simple_strtoul(p, &p, 10);
3079 return count;
3080}
3081
3082#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3083static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3084{ \
3085 struct cfq_data *cfqd = e->elevator_data; \
3086 unsigned int __data = __VAR; \
3087 if (__CONV) \
3088 __data = jiffies_to_msecs(__data); \
3089 return cfq_var_show(__data, (page)); \
3090}
3091SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3092SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3093SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3094SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3095SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3096SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3097SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3098SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3099SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3100SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3101#undef SHOW_FUNCTION
3102
3103#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3104static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3105{ \
3106 struct cfq_data *cfqd = e->elevator_data; \
3107 unsigned int __data; \
3108 int ret = cfq_var_store(&__data, (page), count); \
3109 if (__data < (MIN)) \
3110 __data = (MIN); \
3111 else if (__data > (MAX)) \
3112 __data = (MAX); \
3113 if (__CONV) \
3114 *(__PTR) = msecs_to_jiffies(__data); \
3115 else \
3116 *(__PTR) = __data; \
3117 return ret; \
3118}
3119STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3120STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3121 UINT_MAX, 1);
3122STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3123 UINT_MAX, 1);
3124STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3125STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3126 UINT_MAX, 0);
3127STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3128STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3129STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3130STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3131 UINT_MAX, 0);
3132STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3133#undef STORE_FUNCTION
3134
3135#define CFQ_ATTR(name) \
3136 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3137
3138static struct elv_fs_entry cfq_attrs[] = {
3139 CFQ_ATTR(quantum),
3140 CFQ_ATTR(fifo_expire_sync),
3141 CFQ_ATTR(fifo_expire_async),
3142 CFQ_ATTR(back_seek_max),
3143 CFQ_ATTR(back_seek_penalty),
3144 CFQ_ATTR(slice_sync),
3145 CFQ_ATTR(slice_async),
3146 CFQ_ATTR(slice_async_rq),
3147 CFQ_ATTR(slice_idle),
3148 CFQ_ATTR(low_latency),
3149 __ATTR_NULL
3150};
3151
3152static struct elevator_type iosched_cfq = {
3153 .ops = {
3154 .elevator_merge_fn = cfq_merge,
3155 .elevator_merged_fn = cfq_merged_request,
3156 .elevator_merge_req_fn = cfq_merged_requests,
3157 .elevator_allow_merge_fn = cfq_allow_merge,
3158 .elevator_dispatch_fn = cfq_dispatch_requests,
3159 .elevator_add_req_fn = cfq_insert_request,
3160 .elevator_activate_req_fn = cfq_activate_request,
3161 .elevator_deactivate_req_fn = cfq_deactivate_request,
3162 .elevator_queue_empty_fn = cfq_queue_empty,
3163 .elevator_completed_req_fn = cfq_completed_request,
3164 .elevator_former_req_fn = elv_rb_former_request,
3165 .elevator_latter_req_fn = elv_rb_latter_request,
3166 .elevator_set_req_fn = cfq_set_request,
3167 .elevator_put_req_fn = cfq_put_request,
3168 .elevator_may_queue_fn = cfq_may_queue,
3169 .elevator_init_fn = cfq_init_queue,
3170 .elevator_exit_fn = cfq_exit_queue,
3171 .trim = cfq_free_io_context,
3172 },
3173 .elevator_attrs = cfq_attrs,
3174 .elevator_name = "cfq",
3175 .elevator_owner = THIS_MODULE,
3176};
3177
3178static int __init cfq_init(void)
3179{
3180 /*
3181 * could be 0 on HZ < 1000 setups
3182 */
3183 if (!cfq_slice_async)
3184 cfq_slice_async = 1;
3185 if (!cfq_slice_idle)
3186 cfq_slice_idle = 1;
3187
3188 if (cfq_slab_setup())
3189 return -ENOMEM;
3190
3191 elv_register(&iosched_cfq);
3192
3193 return 0;
3194}
3195
3196static void __exit cfq_exit(void)
3197{
3198 DECLARE_COMPLETION_ONSTACK(all_gone);
3199 elv_unregister(&iosched_cfq);
3200 ioc_gone = &all_gone;
3201 /* ioc_gone's update must be visible before reading ioc_count */
3202 smp_wmb();
3203
3204 /*
3205 * this also protects us from entering cfq_slab_kill() with
3206 * pending RCU callbacks
3207 */
3208 if (elv_ioc_count_read(cfq_ioc_count))
3209 wait_for_completion(&all_gone);
3210 cfq_slab_kill();
3211}
3212
3213module_init(cfq_init);
3214module_exit(cfq_exit);
3215
3216MODULE_AUTHOR("Jens Axboe");
3217MODULE_LICENSE("GPL");
3218MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");