cfq-iosched: fix bug with aliased request and cooperation detection
[linux-2.6-block.git] / block / cfq-iosched.c
... / ...
CommitLineData
1/*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
12#include <linux/rbtree.h>
13#include <linux/ioprio.h>
14#include <linux/blktrace_api.h>
15
16/*
17 * tunables
18 */
19/* max queue in one round of service */
20static const int cfq_quantum = 4;
21static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22/* maximum backwards seek, in KiB */
23static const int cfq_back_max = 16 * 1024;
24/* penalty of a backwards seek */
25static const int cfq_back_penalty = 2;
26static const int cfq_slice_sync = HZ / 10;
27static int cfq_slice_async = HZ / 25;
28static const int cfq_slice_async_rq = 2;
29static int cfq_slice_idle = HZ / 125;
30
31/*
32 * offset from end of service tree
33 */
34#define CFQ_IDLE_DELAY (HZ / 5)
35
36/*
37 * below this threshold, we consider thinktime immediate
38 */
39#define CFQ_MIN_TT (2)
40
41#define CFQ_SLICE_SCALE (5)
42#define CFQ_HW_QUEUE_MIN (5)
43
44#define RQ_CIC(rq) \
45 ((struct cfq_io_context *) (rq)->elevator_private)
46#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
47
48static struct kmem_cache *cfq_pool;
49static struct kmem_cache *cfq_ioc_pool;
50
51static DEFINE_PER_CPU(unsigned long, ioc_count);
52static struct completion *ioc_gone;
53static DEFINE_SPINLOCK(ioc_gone_lock);
54
55#define CFQ_PRIO_LISTS IOPRIO_BE_NR
56#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
58
59#define sample_valid(samples) ((samples) > 80)
60
61/*
62 * Most of our rbtree usage is for sorting with min extraction, so
63 * if we cache the leftmost node we don't have to walk down the tree
64 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65 * move this into the elevator for the rq sorting as well.
66 */
67struct cfq_rb_root {
68 struct rb_root rb;
69 struct rb_node *left;
70};
71#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
72
73/*
74 * Per block device queue structure
75 */
76struct cfq_data {
77 struct request_queue *queue;
78
79 /*
80 * rr list of queues with requests and the count of them
81 */
82 struct cfq_rb_root service_tree;
83
84 /*
85 * Each priority tree is sorted by next_request position. These
86 * trees are used when determining if two or more queues are
87 * interleaving requests (see cfq_close_cooperator).
88 */
89 struct rb_root prio_trees[CFQ_PRIO_LISTS];
90
91 unsigned int busy_queues;
92 /*
93 * Used to track any pending rt requests so we can pre-empt current
94 * non-RT cfqq in service when this value is non-zero.
95 */
96 unsigned int busy_rt_queues;
97
98 int rq_in_driver;
99 int sync_flight;
100
101 /*
102 * queue-depth detection
103 */
104 int rq_queued;
105 int hw_tag;
106 int hw_tag_samples;
107 int rq_in_driver_peak;
108
109 /*
110 * idle window management
111 */
112 struct timer_list idle_slice_timer;
113 struct work_struct unplug_work;
114
115 struct cfq_queue *active_queue;
116 struct cfq_io_context *active_cic;
117
118 /*
119 * async queue for each priority case
120 */
121 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
122 struct cfq_queue *async_idle_cfqq;
123
124 sector_t last_position;
125 unsigned long last_end_request;
126
127 /*
128 * tunables, see top of file
129 */
130 unsigned int cfq_quantum;
131 unsigned int cfq_fifo_expire[2];
132 unsigned int cfq_back_penalty;
133 unsigned int cfq_back_max;
134 unsigned int cfq_slice[2];
135 unsigned int cfq_slice_async_rq;
136 unsigned int cfq_slice_idle;
137
138 struct list_head cic_list;
139};
140
141/*
142 * Per process-grouping structure
143 */
144struct cfq_queue {
145 /* reference count */
146 atomic_t ref;
147 /* various state flags, see below */
148 unsigned int flags;
149 /* parent cfq_data */
150 struct cfq_data *cfqd;
151 /* service_tree member */
152 struct rb_node rb_node;
153 /* service_tree key */
154 unsigned long rb_key;
155 /* prio tree member */
156 struct rb_node p_node;
157 /* sorted list of pending requests */
158 struct rb_root sort_list;
159 /* if fifo isn't expired, next request to serve */
160 struct request *next_rq;
161 /* requests queued in sort_list */
162 int queued[2];
163 /* currently allocated requests */
164 int allocated[2];
165 /* fifo list of requests in sort_list */
166 struct list_head fifo;
167
168 unsigned long slice_end;
169 long slice_resid;
170 unsigned int slice_dispatch;
171
172 /* pending metadata requests */
173 int meta_pending;
174 /* number of requests that are on the dispatch list or inside driver */
175 int dispatched;
176
177 /* io prio of this group */
178 unsigned short ioprio, org_ioprio;
179 unsigned short ioprio_class, org_ioprio_class;
180
181 pid_t pid;
182};
183
184enum cfqq_state_flags {
185 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
186 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
187 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
188 CFQ_CFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
189 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
190 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
191 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
192 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
193 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
194 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
195 CFQ_CFQQ_FLAG_coop, /* has done a coop jump of the queue */
196};
197
198#define CFQ_CFQQ_FNS(name) \
199static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
200{ \
201 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
202} \
203static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
204{ \
205 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
206} \
207static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
208{ \
209 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
210}
211
212CFQ_CFQQ_FNS(on_rr);
213CFQ_CFQQ_FNS(wait_request);
214CFQ_CFQQ_FNS(must_dispatch);
215CFQ_CFQQ_FNS(must_alloc);
216CFQ_CFQQ_FNS(must_alloc_slice);
217CFQ_CFQQ_FNS(fifo_expire);
218CFQ_CFQQ_FNS(idle_window);
219CFQ_CFQQ_FNS(prio_changed);
220CFQ_CFQQ_FNS(slice_new);
221CFQ_CFQQ_FNS(sync);
222CFQ_CFQQ_FNS(coop);
223#undef CFQ_CFQQ_FNS
224
225#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
226 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
227#define cfq_log(cfqd, fmt, args...) \
228 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
229
230static void cfq_dispatch_insert(struct request_queue *, struct request *);
231static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
232 struct io_context *, gfp_t);
233static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
234 struct io_context *);
235
236static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
237 int is_sync)
238{
239 return cic->cfqq[!!is_sync];
240}
241
242static inline void cic_set_cfqq(struct cfq_io_context *cic,
243 struct cfq_queue *cfqq, int is_sync)
244{
245 cic->cfqq[!!is_sync] = cfqq;
246}
247
248/*
249 * We regard a request as SYNC, if it's either a read or has the SYNC bit
250 * set (in which case it could also be direct WRITE).
251 */
252static inline int cfq_bio_sync(struct bio *bio)
253{
254 if (bio_data_dir(bio) == READ || bio_sync(bio))
255 return 1;
256
257 return 0;
258}
259
260/*
261 * scheduler run of queue, if there are requests pending and no one in the
262 * driver that will restart queueing
263 */
264static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
265{
266 if (cfqd->busy_queues) {
267 cfq_log(cfqd, "schedule dispatch");
268 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
269 }
270}
271
272static int cfq_queue_empty(struct request_queue *q)
273{
274 struct cfq_data *cfqd = q->elevator->elevator_data;
275
276 return !cfqd->busy_queues;
277}
278
279/*
280 * Scale schedule slice based on io priority. Use the sync time slice only
281 * if a queue is marked sync and has sync io queued. A sync queue with async
282 * io only, should not get full sync slice length.
283 */
284static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
285 unsigned short prio)
286{
287 const int base_slice = cfqd->cfq_slice[sync];
288
289 WARN_ON(prio >= IOPRIO_BE_NR);
290
291 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
292}
293
294static inline int
295cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
296{
297 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
298}
299
300static inline void
301cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
302{
303 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
304 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
305}
306
307/*
308 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
309 * isn't valid until the first request from the dispatch is activated
310 * and the slice time set.
311 */
312static inline int cfq_slice_used(struct cfq_queue *cfqq)
313{
314 if (cfq_cfqq_slice_new(cfqq))
315 return 0;
316 if (time_before(jiffies, cfqq->slice_end))
317 return 0;
318
319 return 1;
320}
321
322/*
323 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
324 * We choose the request that is closest to the head right now. Distance
325 * behind the head is penalized and only allowed to a certain extent.
326 */
327static struct request *
328cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
329{
330 sector_t last, s1, s2, d1 = 0, d2 = 0;
331 unsigned long back_max;
332#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
333#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
334 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
335
336 if (rq1 == NULL || rq1 == rq2)
337 return rq2;
338 if (rq2 == NULL)
339 return rq1;
340
341 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
342 return rq1;
343 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
344 return rq2;
345 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
346 return rq1;
347 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
348 return rq2;
349
350 s1 = rq1->sector;
351 s2 = rq2->sector;
352
353 last = cfqd->last_position;
354
355 /*
356 * by definition, 1KiB is 2 sectors
357 */
358 back_max = cfqd->cfq_back_max * 2;
359
360 /*
361 * Strict one way elevator _except_ in the case where we allow
362 * short backward seeks which are biased as twice the cost of a
363 * similar forward seek.
364 */
365 if (s1 >= last)
366 d1 = s1 - last;
367 else if (s1 + back_max >= last)
368 d1 = (last - s1) * cfqd->cfq_back_penalty;
369 else
370 wrap |= CFQ_RQ1_WRAP;
371
372 if (s2 >= last)
373 d2 = s2 - last;
374 else if (s2 + back_max >= last)
375 d2 = (last - s2) * cfqd->cfq_back_penalty;
376 else
377 wrap |= CFQ_RQ2_WRAP;
378
379 /* Found required data */
380
381 /*
382 * By doing switch() on the bit mask "wrap" we avoid having to
383 * check two variables for all permutations: --> faster!
384 */
385 switch (wrap) {
386 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
387 if (d1 < d2)
388 return rq1;
389 else if (d2 < d1)
390 return rq2;
391 else {
392 if (s1 >= s2)
393 return rq1;
394 else
395 return rq2;
396 }
397
398 case CFQ_RQ2_WRAP:
399 return rq1;
400 case CFQ_RQ1_WRAP:
401 return rq2;
402 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
403 default:
404 /*
405 * Since both rqs are wrapped,
406 * start with the one that's further behind head
407 * (--> only *one* back seek required),
408 * since back seek takes more time than forward.
409 */
410 if (s1 <= s2)
411 return rq1;
412 else
413 return rq2;
414 }
415}
416
417/*
418 * The below is leftmost cache rbtree addon
419 */
420static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
421{
422 if (!root->left)
423 root->left = rb_first(&root->rb);
424
425 if (root->left)
426 return rb_entry(root->left, struct cfq_queue, rb_node);
427
428 return NULL;
429}
430
431static void rb_erase_init(struct rb_node *n, struct rb_root *root)
432{
433 rb_erase(n, root);
434 RB_CLEAR_NODE(n);
435}
436
437static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
438{
439 if (root->left == n)
440 root->left = NULL;
441 rb_erase_init(n, &root->rb);
442}
443
444/*
445 * would be nice to take fifo expire time into account as well
446 */
447static struct request *
448cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
449 struct request *last)
450{
451 struct rb_node *rbnext = rb_next(&last->rb_node);
452 struct rb_node *rbprev = rb_prev(&last->rb_node);
453 struct request *next = NULL, *prev = NULL;
454
455 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
456
457 if (rbprev)
458 prev = rb_entry_rq(rbprev);
459
460 if (rbnext)
461 next = rb_entry_rq(rbnext);
462 else {
463 rbnext = rb_first(&cfqq->sort_list);
464 if (rbnext && rbnext != &last->rb_node)
465 next = rb_entry_rq(rbnext);
466 }
467
468 return cfq_choose_req(cfqd, next, prev);
469}
470
471static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
472 struct cfq_queue *cfqq)
473{
474 /*
475 * just an approximation, should be ok.
476 */
477 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
478 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
479}
480
481/*
482 * The cfqd->service_tree holds all pending cfq_queue's that have
483 * requests waiting to be processed. It is sorted in the order that
484 * we will service the queues.
485 */
486static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
487 int add_front)
488{
489 struct rb_node **p, *parent;
490 struct cfq_queue *__cfqq;
491 unsigned long rb_key;
492 int left;
493
494 if (cfq_class_idle(cfqq)) {
495 rb_key = CFQ_IDLE_DELAY;
496 parent = rb_last(&cfqd->service_tree.rb);
497 if (parent && parent != &cfqq->rb_node) {
498 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
499 rb_key += __cfqq->rb_key;
500 } else
501 rb_key += jiffies;
502 } else if (!add_front) {
503 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
504 rb_key += cfqq->slice_resid;
505 cfqq->slice_resid = 0;
506 } else
507 rb_key = 0;
508
509 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
510 /*
511 * same position, nothing more to do
512 */
513 if (rb_key == cfqq->rb_key)
514 return;
515
516 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
517 }
518
519 left = 1;
520 parent = NULL;
521 p = &cfqd->service_tree.rb.rb_node;
522 while (*p) {
523 struct rb_node **n;
524
525 parent = *p;
526 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
527
528 /*
529 * sort RT queues first, we always want to give
530 * preference to them. IDLE queues goes to the back.
531 * after that, sort on the next service time.
532 */
533 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
534 n = &(*p)->rb_left;
535 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
536 n = &(*p)->rb_right;
537 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
538 n = &(*p)->rb_left;
539 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
540 n = &(*p)->rb_right;
541 else if (rb_key < __cfqq->rb_key)
542 n = &(*p)->rb_left;
543 else
544 n = &(*p)->rb_right;
545
546 if (n == &(*p)->rb_right)
547 left = 0;
548
549 p = n;
550 }
551
552 if (left)
553 cfqd->service_tree.left = &cfqq->rb_node;
554
555 cfqq->rb_key = rb_key;
556 rb_link_node(&cfqq->rb_node, parent, p);
557 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
558}
559
560static struct cfq_queue *
561cfq_prio_tree_lookup(struct cfq_data *cfqd, int ioprio, sector_t sector,
562 struct rb_node **ret_parent, struct rb_node ***rb_link)
563{
564 struct rb_root *root = &cfqd->prio_trees[ioprio];
565 struct rb_node **p, *parent;
566 struct cfq_queue *cfqq = NULL;
567
568 parent = NULL;
569 p = &root->rb_node;
570 while (*p) {
571 struct rb_node **n;
572
573 parent = *p;
574 cfqq = rb_entry(parent, struct cfq_queue, p_node);
575
576 /*
577 * Sort strictly based on sector. Smallest to the left,
578 * largest to the right.
579 */
580 if (sector > cfqq->next_rq->sector)
581 n = &(*p)->rb_right;
582 else if (sector < cfqq->next_rq->sector)
583 n = &(*p)->rb_left;
584 else
585 break;
586 p = n;
587 cfqq = NULL;
588 }
589
590 *ret_parent = parent;
591 if (rb_link)
592 *rb_link = p;
593 return cfqq;
594}
595
596static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
597{
598 struct rb_root *root = &cfqd->prio_trees[cfqq->ioprio];
599 struct rb_node **p, *parent;
600 struct cfq_queue *__cfqq;
601
602 if (!RB_EMPTY_NODE(&cfqq->p_node))
603 rb_erase_init(&cfqq->p_node, root);
604
605 if (cfq_class_idle(cfqq))
606 return;
607 if (!cfqq->next_rq)
608 return;
609
610 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->ioprio, cfqq->next_rq->sector,
611 &parent, &p);
612 if (!__cfqq) {
613 rb_link_node(&cfqq->p_node, parent, p);
614 rb_insert_color(&cfqq->p_node, root);
615 }
616}
617
618/*
619 * Update cfqq's position in the service tree.
620 */
621static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
622{
623 /*
624 * Resorting requires the cfqq to be on the RR list already.
625 */
626 if (cfq_cfqq_on_rr(cfqq)) {
627 cfq_service_tree_add(cfqd, cfqq, 0);
628 cfq_prio_tree_add(cfqd, cfqq);
629 }
630}
631
632/*
633 * add to busy list of queues for service, trying to be fair in ordering
634 * the pending list according to last request service
635 */
636static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
637{
638 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
639 BUG_ON(cfq_cfqq_on_rr(cfqq));
640 cfq_mark_cfqq_on_rr(cfqq);
641 cfqd->busy_queues++;
642 if (cfq_class_rt(cfqq))
643 cfqd->busy_rt_queues++;
644
645 cfq_resort_rr_list(cfqd, cfqq);
646}
647
648/*
649 * Called when the cfqq no longer has requests pending, remove it from
650 * the service tree.
651 */
652static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
653{
654 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
655 BUG_ON(!cfq_cfqq_on_rr(cfqq));
656 cfq_clear_cfqq_on_rr(cfqq);
657
658 if (!RB_EMPTY_NODE(&cfqq->rb_node))
659 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
660 if (!RB_EMPTY_NODE(&cfqq->p_node))
661 rb_erase_init(&cfqq->p_node, &cfqd->prio_trees[cfqq->ioprio]);
662
663 BUG_ON(!cfqd->busy_queues);
664 cfqd->busy_queues--;
665 if (cfq_class_rt(cfqq))
666 cfqd->busy_rt_queues--;
667}
668
669/*
670 * rb tree support functions
671 */
672static void cfq_del_rq_rb(struct request *rq)
673{
674 struct cfq_queue *cfqq = RQ_CFQQ(rq);
675 struct cfq_data *cfqd = cfqq->cfqd;
676 const int sync = rq_is_sync(rq);
677
678 BUG_ON(!cfqq->queued[sync]);
679 cfqq->queued[sync]--;
680
681 elv_rb_del(&cfqq->sort_list, rq);
682
683 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
684 cfq_del_cfqq_rr(cfqd, cfqq);
685}
686
687static void cfq_add_rq_rb(struct request *rq)
688{
689 struct cfq_queue *cfqq = RQ_CFQQ(rq);
690 struct cfq_data *cfqd = cfqq->cfqd;
691 struct request *__alias, *prev;
692
693 cfqq->queued[rq_is_sync(rq)]++;
694
695 /*
696 * looks a little odd, but the first insert might return an alias.
697 * if that happens, put the alias on the dispatch list
698 */
699 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
700 cfq_dispatch_insert(cfqd->queue, __alias);
701
702 if (!cfq_cfqq_on_rr(cfqq))
703 cfq_add_cfqq_rr(cfqd, cfqq);
704
705 /*
706 * check if this request is a better next-serve candidate
707 */
708 prev = cfqq->next_rq;
709 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
710
711 /*
712 * adjust priority tree position, if ->next_rq changes
713 */
714 if (prev != cfqq->next_rq)
715 cfq_prio_tree_add(cfqd, cfqq);
716
717 BUG_ON(!cfqq->next_rq);
718}
719
720static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
721{
722 elv_rb_del(&cfqq->sort_list, rq);
723 cfqq->queued[rq_is_sync(rq)]--;
724 cfq_add_rq_rb(rq);
725}
726
727static struct request *
728cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
729{
730 struct task_struct *tsk = current;
731 struct cfq_io_context *cic;
732 struct cfq_queue *cfqq;
733
734 cic = cfq_cic_lookup(cfqd, tsk->io_context);
735 if (!cic)
736 return NULL;
737
738 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
739 if (cfqq) {
740 sector_t sector = bio->bi_sector + bio_sectors(bio);
741
742 return elv_rb_find(&cfqq->sort_list, sector);
743 }
744
745 return NULL;
746}
747
748static void cfq_activate_request(struct request_queue *q, struct request *rq)
749{
750 struct cfq_data *cfqd = q->elevator->elevator_data;
751
752 cfqd->rq_in_driver++;
753 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
754 cfqd->rq_in_driver);
755
756 cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
757}
758
759static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
760{
761 struct cfq_data *cfqd = q->elevator->elevator_data;
762
763 WARN_ON(!cfqd->rq_in_driver);
764 cfqd->rq_in_driver--;
765 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
766 cfqd->rq_in_driver);
767}
768
769static void cfq_remove_request(struct request *rq)
770{
771 struct cfq_queue *cfqq = RQ_CFQQ(rq);
772
773 if (cfqq->next_rq == rq)
774 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
775
776 list_del_init(&rq->queuelist);
777 cfq_del_rq_rb(rq);
778
779 cfqq->cfqd->rq_queued--;
780 if (rq_is_meta(rq)) {
781 WARN_ON(!cfqq->meta_pending);
782 cfqq->meta_pending--;
783 }
784}
785
786static int cfq_merge(struct request_queue *q, struct request **req,
787 struct bio *bio)
788{
789 struct cfq_data *cfqd = q->elevator->elevator_data;
790 struct request *__rq;
791
792 __rq = cfq_find_rq_fmerge(cfqd, bio);
793 if (__rq && elv_rq_merge_ok(__rq, bio)) {
794 *req = __rq;
795 return ELEVATOR_FRONT_MERGE;
796 }
797
798 return ELEVATOR_NO_MERGE;
799}
800
801static void cfq_merged_request(struct request_queue *q, struct request *req,
802 int type)
803{
804 if (type == ELEVATOR_FRONT_MERGE) {
805 struct cfq_queue *cfqq = RQ_CFQQ(req);
806
807 cfq_reposition_rq_rb(cfqq, req);
808 }
809}
810
811static void
812cfq_merged_requests(struct request_queue *q, struct request *rq,
813 struct request *next)
814{
815 /*
816 * reposition in fifo if next is older than rq
817 */
818 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
819 time_before(next->start_time, rq->start_time))
820 list_move(&rq->queuelist, &next->queuelist);
821
822 cfq_remove_request(next);
823}
824
825static int cfq_allow_merge(struct request_queue *q, struct request *rq,
826 struct bio *bio)
827{
828 struct cfq_data *cfqd = q->elevator->elevator_data;
829 struct cfq_io_context *cic;
830 struct cfq_queue *cfqq;
831
832 /*
833 * Disallow merge of a sync bio into an async request.
834 */
835 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
836 return 0;
837
838 /*
839 * Lookup the cfqq that this bio will be queued with. Allow
840 * merge only if rq is queued there.
841 */
842 cic = cfq_cic_lookup(cfqd, current->io_context);
843 if (!cic)
844 return 0;
845
846 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
847 if (cfqq == RQ_CFQQ(rq))
848 return 1;
849
850 return 0;
851}
852
853static void __cfq_set_active_queue(struct cfq_data *cfqd,
854 struct cfq_queue *cfqq)
855{
856 if (cfqq) {
857 cfq_log_cfqq(cfqd, cfqq, "set_active");
858 cfqq->slice_end = 0;
859 cfqq->slice_dispatch = 0;
860
861 cfq_clear_cfqq_wait_request(cfqq);
862 cfq_clear_cfqq_must_dispatch(cfqq);
863 cfq_clear_cfqq_must_alloc_slice(cfqq);
864 cfq_clear_cfqq_fifo_expire(cfqq);
865 cfq_mark_cfqq_slice_new(cfqq);
866
867 del_timer(&cfqd->idle_slice_timer);
868 }
869
870 cfqd->active_queue = cfqq;
871}
872
873/*
874 * current cfqq expired its slice (or was too idle), select new one
875 */
876static void
877__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
878 int timed_out)
879{
880 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
881
882 if (cfq_cfqq_wait_request(cfqq))
883 del_timer(&cfqd->idle_slice_timer);
884
885 cfq_clear_cfqq_wait_request(cfqq);
886
887 /*
888 * store what was left of this slice, if the queue idled/timed out
889 */
890 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
891 cfqq->slice_resid = cfqq->slice_end - jiffies;
892 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
893 }
894
895 cfq_resort_rr_list(cfqd, cfqq);
896
897 if (cfqq == cfqd->active_queue)
898 cfqd->active_queue = NULL;
899
900 if (cfqd->active_cic) {
901 put_io_context(cfqd->active_cic->ioc);
902 cfqd->active_cic = NULL;
903 }
904}
905
906static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
907{
908 struct cfq_queue *cfqq = cfqd->active_queue;
909
910 if (cfqq)
911 __cfq_slice_expired(cfqd, cfqq, timed_out);
912}
913
914/*
915 * Get next queue for service. Unless we have a queue preemption,
916 * we'll simply select the first cfqq in the service tree.
917 */
918static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
919{
920 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
921 return NULL;
922
923 return cfq_rb_first(&cfqd->service_tree);
924}
925
926/*
927 * Get and set a new active queue for service.
928 */
929static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
930 struct cfq_queue *cfqq)
931{
932 if (!cfqq) {
933 cfqq = cfq_get_next_queue(cfqd);
934 if (cfqq)
935 cfq_clear_cfqq_coop(cfqq);
936 }
937
938 __cfq_set_active_queue(cfqd, cfqq);
939 return cfqq;
940}
941
942static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
943 struct request *rq)
944{
945 if (rq->sector >= cfqd->last_position)
946 return rq->sector - cfqd->last_position;
947 else
948 return cfqd->last_position - rq->sector;
949}
950
951#define CIC_SEEK_THR 8 * 1024
952#define CIC_SEEKY(cic) ((cic)->seek_mean > CIC_SEEK_THR)
953
954static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
955{
956 struct cfq_io_context *cic = cfqd->active_cic;
957 sector_t sdist = cic->seek_mean;
958
959 if (!sample_valid(cic->seek_samples))
960 sdist = CIC_SEEK_THR;
961
962 return cfq_dist_from_last(cfqd, rq) <= sdist;
963}
964
965static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
966 struct cfq_queue *cur_cfqq)
967{
968 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->ioprio];
969 struct rb_node *parent, *node;
970 struct cfq_queue *__cfqq;
971 sector_t sector = cfqd->last_position;
972
973 if (RB_EMPTY_ROOT(root))
974 return NULL;
975
976 /*
977 * First, if we find a request starting at the end of the last
978 * request, choose it.
979 */
980 __cfqq = cfq_prio_tree_lookup(cfqd, cur_cfqq->ioprio,
981 sector, &parent, NULL);
982 if (__cfqq)
983 return __cfqq;
984
985 /*
986 * If the exact sector wasn't found, the parent of the NULL leaf
987 * will contain the closest sector.
988 */
989 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
990 if (cfq_rq_close(cfqd, __cfqq->next_rq))
991 return __cfqq;
992
993 if (__cfqq->next_rq->sector < sector)
994 node = rb_next(&__cfqq->p_node);
995 else
996 node = rb_prev(&__cfqq->p_node);
997 if (!node)
998 return NULL;
999
1000 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1001 if (cfq_rq_close(cfqd, __cfqq->next_rq))
1002 return __cfqq;
1003
1004 return NULL;
1005}
1006
1007/*
1008 * cfqd - obvious
1009 * cur_cfqq - passed in so that we don't decide that the current queue is
1010 * closely cooperating with itself.
1011 *
1012 * So, basically we're assuming that that cur_cfqq has dispatched at least
1013 * one request, and that cfqd->last_position reflects a position on the disk
1014 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1015 * assumption.
1016 */
1017static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1018 struct cfq_queue *cur_cfqq,
1019 int probe)
1020{
1021 struct cfq_queue *cfqq;
1022
1023 /*
1024 * A valid cfq_io_context is necessary to compare requests against
1025 * the seek_mean of the current cfqq.
1026 */
1027 if (!cfqd->active_cic)
1028 return NULL;
1029
1030 /*
1031 * We should notice if some of the queues are cooperating, eg
1032 * working closely on the same area of the disk. In that case,
1033 * we can group them together and don't waste time idling.
1034 */
1035 cfqq = cfqq_close(cfqd, cur_cfqq);
1036 if (!cfqq)
1037 return NULL;
1038
1039 if (cfq_cfqq_coop(cfqq))
1040 return NULL;
1041
1042 if (!probe)
1043 cfq_mark_cfqq_coop(cfqq);
1044 return cfqq;
1045}
1046
1047static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1048{
1049 struct cfq_queue *cfqq = cfqd->active_queue;
1050 struct cfq_io_context *cic;
1051 unsigned long sl;
1052
1053 /*
1054 * SSD device without seek penalty, disable idling. But only do so
1055 * for devices that support queuing, otherwise we still have a problem
1056 * with sync vs async workloads.
1057 */
1058 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1059 return;
1060
1061 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1062 WARN_ON(cfq_cfqq_slice_new(cfqq));
1063
1064 /*
1065 * idle is disabled, either manually or by past process history
1066 */
1067 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
1068 return;
1069
1070 /*
1071 * still requests with the driver, don't idle
1072 */
1073 if (cfqd->rq_in_driver)
1074 return;
1075
1076 /*
1077 * task has exited, don't wait
1078 */
1079 cic = cfqd->active_cic;
1080 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1081 return;
1082
1083 cfq_mark_cfqq_wait_request(cfqq);
1084
1085 /*
1086 * we don't want to idle for seeks, but we do want to allow
1087 * fair distribution of slice time for a process doing back-to-back
1088 * seeks. so allow a little bit of time for him to submit a new rq
1089 */
1090 sl = cfqd->cfq_slice_idle;
1091 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
1092 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
1093
1094 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1095 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1096}
1097
1098/*
1099 * Move request from internal lists to the request queue dispatch list.
1100 */
1101static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1102{
1103 struct cfq_data *cfqd = q->elevator->elevator_data;
1104 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1105
1106 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1107
1108 cfq_remove_request(rq);
1109 cfqq->dispatched++;
1110 elv_dispatch_sort(q, rq);
1111
1112 if (cfq_cfqq_sync(cfqq))
1113 cfqd->sync_flight++;
1114}
1115
1116/*
1117 * return expired entry, or NULL to just start from scratch in rbtree
1118 */
1119static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1120{
1121 struct cfq_data *cfqd = cfqq->cfqd;
1122 struct request *rq;
1123 int fifo;
1124
1125 if (cfq_cfqq_fifo_expire(cfqq))
1126 return NULL;
1127
1128 cfq_mark_cfqq_fifo_expire(cfqq);
1129
1130 if (list_empty(&cfqq->fifo))
1131 return NULL;
1132
1133 fifo = cfq_cfqq_sync(cfqq);
1134 rq = rq_entry_fifo(cfqq->fifo.next);
1135
1136 if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
1137 rq = NULL;
1138
1139 cfq_log_cfqq(cfqd, cfqq, "fifo=%p", rq);
1140 return rq;
1141}
1142
1143static inline int
1144cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1145{
1146 const int base_rq = cfqd->cfq_slice_async_rq;
1147
1148 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1149
1150 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1151}
1152
1153/*
1154 * Select a queue for service. If we have a current active queue,
1155 * check whether to continue servicing it, or retrieve and set a new one.
1156 */
1157static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1158{
1159 struct cfq_queue *cfqq, *new_cfqq = NULL;
1160
1161 cfqq = cfqd->active_queue;
1162 if (!cfqq)
1163 goto new_queue;
1164
1165 /*
1166 * The active queue has run out of time, expire it and select new.
1167 */
1168 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
1169 goto expire;
1170
1171 /*
1172 * If we have a RT cfqq waiting, then we pre-empt the current non-rt
1173 * cfqq.
1174 */
1175 if (!cfq_class_rt(cfqq) && cfqd->busy_rt_queues) {
1176 /*
1177 * We simulate this as cfqq timed out so that it gets to bank
1178 * the remaining of its time slice.
1179 */
1180 cfq_log_cfqq(cfqd, cfqq, "preempt");
1181 cfq_slice_expired(cfqd, 1);
1182 goto new_queue;
1183 }
1184
1185 /*
1186 * The active queue has requests and isn't expired, allow it to
1187 * dispatch.
1188 */
1189 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1190 goto keep_queue;
1191
1192 /*
1193 * If another queue has a request waiting within our mean seek
1194 * distance, let it run. The expire code will check for close
1195 * cooperators and put the close queue at the front of the service
1196 * tree.
1197 */
1198 new_cfqq = cfq_close_cooperator(cfqd, cfqq, 0);
1199 if (new_cfqq)
1200 goto expire;
1201
1202 /*
1203 * No requests pending. If the active queue still has requests in
1204 * flight or is idling for a new request, allow either of these
1205 * conditions to happen (or time out) before selecting a new queue.
1206 */
1207 if (timer_pending(&cfqd->idle_slice_timer) ||
1208 (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1209 cfqq = NULL;
1210 goto keep_queue;
1211 }
1212
1213expire:
1214 cfq_slice_expired(cfqd, 0);
1215new_queue:
1216 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1217keep_queue:
1218 return cfqq;
1219}
1220
1221static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1222{
1223 int dispatched = 0;
1224
1225 while (cfqq->next_rq) {
1226 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1227 dispatched++;
1228 }
1229
1230 BUG_ON(!list_empty(&cfqq->fifo));
1231 return dispatched;
1232}
1233
1234/*
1235 * Drain our current requests. Used for barriers and when switching
1236 * io schedulers on-the-fly.
1237 */
1238static int cfq_forced_dispatch(struct cfq_data *cfqd)
1239{
1240 struct cfq_queue *cfqq;
1241 int dispatched = 0;
1242
1243 while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1244 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1245
1246 cfq_slice_expired(cfqd, 0);
1247
1248 BUG_ON(cfqd->busy_queues);
1249
1250 cfq_log(cfqd, "forced_dispatch=%d\n", dispatched);
1251 return dispatched;
1252}
1253
1254/*
1255 * Dispatch a request from cfqq, moving them to the request queue
1256 * dispatch list.
1257 */
1258static void cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1259{
1260 struct request *rq;
1261
1262 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1263
1264 /*
1265 * follow expired path, else get first next available
1266 */
1267 rq = cfq_check_fifo(cfqq);
1268 if (!rq)
1269 rq = cfqq->next_rq;
1270
1271 /*
1272 * insert request into driver dispatch list
1273 */
1274 cfq_dispatch_insert(cfqd->queue, rq);
1275
1276 if (!cfqd->active_cic) {
1277 struct cfq_io_context *cic = RQ_CIC(rq);
1278
1279 atomic_inc(&cic->ioc->refcount);
1280 cfqd->active_cic = cic;
1281 }
1282}
1283
1284/*
1285 * Find the cfqq that we need to service and move a request from that to the
1286 * dispatch list
1287 */
1288static int cfq_dispatch_requests(struct request_queue *q, int force)
1289{
1290 struct cfq_data *cfqd = q->elevator->elevator_data;
1291 struct cfq_queue *cfqq;
1292 unsigned int max_dispatch;
1293
1294 if (!cfqd->busy_queues)
1295 return 0;
1296
1297 if (unlikely(force))
1298 return cfq_forced_dispatch(cfqd);
1299
1300 cfqq = cfq_select_queue(cfqd);
1301 if (!cfqq)
1302 return 0;
1303
1304 /*
1305 * If this is an async queue and we have sync IO in flight, let it wait
1306 */
1307 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1308 return 0;
1309
1310 max_dispatch = cfqd->cfq_quantum;
1311 if (cfq_class_idle(cfqq))
1312 max_dispatch = 1;
1313
1314 /*
1315 * Does this cfqq already have too much IO in flight?
1316 */
1317 if (cfqq->dispatched >= max_dispatch) {
1318 /*
1319 * idle queue must always only have a single IO in flight
1320 */
1321 if (cfq_class_idle(cfqq))
1322 return 0;
1323
1324 /*
1325 * We have other queues, don't allow more IO from this one
1326 */
1327 if (cfqd->busy_queues > 1)
1328 return 0;
1329
1330 /*
1331 * we are the only queue, allow up to 4 times of 'quantum'
1332 */
1333 if (cfqq->dispatched >= 4 * max_dispatch)
1334 return 0;
1335 }
1336
1337 /*
1338 * Dispatch a request from this cfqq
1339 */
1340 cfq_dispatch_request(cfqd, cfqq);
1341 cfqq->slice_dispatch++;
1342 cfq_clear_cfqq_must_dispatch(cfqq);
1343
1344 /*
1345 * expire an async queue immediately if it has used up its slice. idle
1346 * queue always expire after 1 dispatch round.
1347 */
1348 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1349 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1350 cfq_class_idle(cfqq))) {
1351 cfqq->slice_end = jiffies + 1;
1352 cfq_slice_expired(cfqd, 0);
1353 }
1354
1355 cfq_log(cfqd, "dispatched a request");
1356 return 1;
1357}
1358
1359/*
1360 * task holds one reference to the queue, dropped when task exits. each rq
1361 * in-flight on this queue also holds a reference, dropped when rq is freed.
1362 *
1363 * queue lock must be held here.
1364 */
1365static void cfq_put_queue(struct cfq_queue *cfqq)
1366{
1367 struct cfq_data *cfqd = cfqq->cfqd;
1368
1369 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1370
1371 if (!atomic_dec_and_test(&cfqq->ref))
1372 return;
1373
1374 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1375 BUG_ON(rb_first(&cfqq->sort_list));
1376 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1377 BUG_ON(cfq_cfqq_on_rr(cfqq));
1378
1379 if (unlikely(cfqd->active_queue == cfqq)) {
1380 __cfq_slice_expired(cfqd, cfqq, 0);
1381 cfq_schedule_dispatch(cfqd);
1382 }
1383
1384 kmem_cache_free(cfq_pool, cfqq);
1385}
1386
1387/*
1388 * Must always be called with the rcu_read_lock() held
1389 */
1390static void
1391__call_for_each_cic(struct io_context *ioc,
1392 void (*func)(struct io_context *, struct cfq_io_context *))
1393{
1394 struct cfq_io_context *cic;
1395 struct hlist_node *n;
1396
1397 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1398 func(ioc, cic);
1399}
1400
1401/*
1402 * Call func for each cic attached to this ioc.
1403 */
1404static void
1405call_for_each_cic(struct io_context *ioc,
1406 void (*func)(struct io_context *, struct cfq_io_context *))
1407{
1408 rcu_read_lock();
1409 __call_for_each_cic(ioc, func);
1410 rcu_read_unlock();
1411}
1412
1413static void cfq_cic_free_rcu(struct rcu_head *head)
1414{
1415 struct cfq_io_context *cic;
1416
1417 cic = container_of(head, struct cfq_io_context, rcu_head);
1418
1419 kmem_cache_free(cfq_ioc_pool, cic);
1420 elv_ioc_count_dec(ioc_count);
1421
1422 if (ioc_gone) {
1423 /*
1424 * CFQ scheduler is exiting, grab exit lock and check
1425 * the pending io context count. If it hits zero,
1426 * complete ioc_gone and set it back to NULL
1427 */
1428 spin_lock(&ioc_gone_lock);
1429 if (ioc_gone && !elv_ioc_count_read(ioc_count)) {
1430 complete(ioc_gone);
1431 ioc_gone = NULL;
1432 }
1433 spin_unlock(&ioc_gone_lock);
1434 }
1435}
1436
1437static void cfq_cic_free(struct cfq_io_context *cic)
1438{
1439 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1440}
1441
1442static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1443{
1444 unsigned long flags;
1445
1446 BUG_ON(!cic->dead_key);
1447
1448 spin_lock_irqsave(&ioc->lock, flags);
1449 radix_tree_delete(&ioc->radix_root, cic->dead_key);
1450 hlist_del_rcu(&cic->cic_list);
1451 spin_unlock_irqrestore(&ioc->lock, flags);
1452
1453 cfq_cic_free(cic);
1454}
1455
1456/*
1457 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1458 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1459 * and ->trim() which is called with the task lock held
1460 */
1461static void cfq_free_io_context(struct io_context *ioc)
1462{
1463 /*
1464 * ioc->refcount is zero here, or we are called from elv_unregister(),
1465 * so no more cic's are allowed to be linked into this ioc. So it
1466 * should be ok to iterate over the known list, we will see all cic's
1467 * since no new ones are added.
1468 */
1469 __call_for_each_cic(ioc, cic_free_func);
1470}
1471
1472static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1473{
1474 if (unlikely(cfqq == cfqd->active_queue)) {
1475 __cfq_slice_expired(cfqd, cfqq, 0);
1476 cfq_schedule_dispatch(cfqd);
1477 }
1478
1479 cfq_put_queue(cfqq);
1480}
1481
1482static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1483 struct cfq_io_context *cic)
1484{
1485 struct io_context *ioc = cic->ioc;
1486
1487 list_del_init(&cic->queue_list);
1488
1489 /*
1490 * Make sure key == NULL is seen for dead queues
1491 */
1492 smp_wmb();
1493 cic->dead_key = (unsigned long) cic->key;
1494 cic->key = NULL;
1495
1496 if (ioc->ioc_data == cic)
1497 rcu_assign_pointer(ioc->ioc_data, NULL);
1498
1499 if (cic->cfqq[BLK_RW_ASYNC]) {
1500 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1501 cic->cfqq[BLK_RW_ASYNC] = NULL;
1502 }
1503
1504 if (cic->cfqq[BLK_RW_SYNC]) {
1505 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1506 cic->cfqq[BLK_RW_SYNC] = NULL;
1507 }
1508}
1509
1510static void cfq_exit_single_io_context(struct io_context *ioc,
1511 struct cfq_io_context *cic)
1512{
1513 struct cfq_data *cfqd = cic->key;
1514
1515 if (cfqd) {
1516 struct request_queue *q = cfqd->queue;
1517 unsigned long flags;
1518
1519 spin_lock_irqsave(q->queue_lock, flags);
1520
1521 /*
1522 * Ensure we get a fresh copy of the ->key to prevent
1523 * race between exiting task and queue
1524 */
1525 smp_read_barrier_depends();
1526 if (cic->key)
1527 __cfq_exit_single_io_context(cfqd, cic);
1528
1529 spin_unlock_irqrestore(q->queue_lock, flags);
1530 }
1531}
1532
1533/*
1534 * The process that ioc belongs to has exited, we need to clean up
1535 * and put the internal structures we have that belongs to that process.
1536 */
1537static void cfq_exit_io_context(struct io_context *ioc)
1538{
1539 call_for_each_cic(ioc, cfq_exit_single_io_context);
1540}
1541
1542static struct cfq_io_context *
1543cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1544{
1545 struct cfq_io_context *cic;
1546
1547 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1548 cfqd->queue->node);
1549 if (cic) {
1550 cic->last_end_request = jiffies;
1551 INIT_LIST_HEAD(&cic->queue_list);
1552 INIT_HLIST_NODE(&cic->cic_list);
1553 cic->dtor = cfq_free_io_context;
1554 cic->exit = cfq_exit_io_context;
1555 elv_ioc_count_inc(ioc_count);
1556 }
1557
1558 return cic;
1559}
1560
1561static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1562{
1563 struct task_struct *tsk = current;
1564 int ioprio_class;
1565
1566 if (!cfq_cfqq_prio_changed(cfqq))
1567 return;
1568
1569 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1570 switch (ioprio_class) {
1571 default:
1572 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1573 case IOPRIO_CLASS_NONE:
1574 /*
1575 * no prio set, inherit CPU scheduling settings
1576 */
1577 cfqq->ioprio = task_nice_ioprio(tsk);
1578 cfqq->ioprio_class = task_nice_ioclass(tsk);
1579 break;
1580 case IOPRIO_CLASS_RT:
1581 cfqq->ioprio = task_ioprio(ioc);
1582 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1583 break;
1584 case IOPRIO_CLASS_BE:
1585 cfqq->ioprio = task_ioprio(ioc);
1586 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1587 break;
1588 case IOPRIO_CLASS_IDLE:
1589 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1590 cfqq->ioprio = 7;
1591 cfq_clear_cfqq_idle_window(cfqq);
1592 break;
1593 }
1594
1595 /*
1596 * keep track of original prio settings in case we have to temporarily
1597 * elevate the priority of this queue
1598 */
1599 cfqq->org_ioprio = cfqq->ioprio;
1600 cfqq->org_ioprio_class = cfqq->ioprio_class;
1601 cfq_clear_cfqq_prio_changed(cfqq);
1602}
1603
1604static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1605{
1606 struct cfq_data *cfqd = cic->key;
1607 struct cfq_queue *cfqq;
1608 unsigned long flags;
1609
1610 if (unlikely(!cfqd))
1611 return;
1612
1613 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1614
1615 cfqq = cic->cfqq[BLK_RW_ASYNC];
1616 if (cfqq) {
1617 struct cfq_queue *new_cfqq;
1618 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1619 GFP_ATOMIC);
1620 if (new_cfqq) {
1621 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
1622 cfq_put_queue(cfqq);
1623 }
1624 }
1625
1626 cfqq = cic->cfqq[BLK_RW_SYNC];
1627 if (cfqq)
1628 cfq_mark_cfqq_prio_changed(cfqq);
1629
1630 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1631}
1632
1633static void cfq_ioc_set_ioprio(struct io_context *ioc)
1634{
1635 call_for_each_cic(ioc, changed_ioprio);
1636 ioc->ioprio_changed = 0;
1637}
1638
1639static struct cfq_queue *
1640cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
1641 struct io_context *ioc, gfp_t gfp_mask)
1642{
1643 struct cfq_queue *cfqq, *new_cfqq = NULL;
1644 struct cfq_io_context *cic;
1645
1646retry:
1647 cic = cfq_cic_lookup(cfqd, ioc);
1648 /* cic always exists here */
1649 cfqq = cic_to_cfqq(cic, is_sync);
1650
1651 if (!cfqq) {
1652 if (new_cfqq) {
1653 cfqq = new_cfqq;
1654 new_cfqq = NULL;
1655 } else if (gfp_mask & __GFP_WAIT) {
1656 /*
1657 * Inform the allocator of the fact that we will
1658 * just repeat this allocation if it fails, to allow
1659 * the allocator to do whatever it needs to attempt to
1660 * free memory.
1661 */
1662 spin_unlock_irq(cfqd->queue->queue_lock);
1663 new_cfqq = kmem_cache_alloc_node(cfq_pool,
1664 gfp_mask | __GFP_NOFAIL | __GFP_ZERO,
1665 cfqd->queue->node);
1666 spin_lock_irq(cfqd->queue->queue_lock);
1667 goto retry;
1668 } else {
1669 cfqq = kmem_cache_alloc_node(cfq_pool,
1670 gfp_mask | __GFP_ZERO,
1671 cfqd->queue->node);
1672 if (!cfqq)
1673 goto out;
1674 }
1675
1676 RB_CLEAR_NODE(&cfqq->rb_node);
1677 RB_CLEAR_NODE(&cfqq->p_node);
1678 INIT_LIST_HEAD(&cfqq->fifo);
1679
1680 atomic_set(&cfqq->ref, 0);
1681 cfqq->cfqd = cfqd;
1682
1683 cfq_mark_cfqq_prio_changed(cfqq);
1684
1685 cfq_init_prio_data(cfqq, ioc);
1686
1687 if (is_sync) {
1688 if (!cfq_class_idle(cfqq))
1689 cfq_mark_cfqq_idle_window(cfqq);
1690 cfq_mark_cfqq_sync(cfqq);
1691 }
1692 cfqq->pid = current->pid;
1693 cfq_log_cfqq(cfqd, cfqq, "alloced");
1694 }
1695
1696 if (new_cfqq)
1697 kmem_cache_free(cfq_pool, new_cfqq);
1698
1699out:
1700 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1701 return cfqq;
1702}
1703
1704static struct cfq_queue **
1705cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1706{
1707 switch (ioprio_class) {
1708 case IOPRIO_CLASS_RT:
1709 return &cfqd->async_cfqq[0][ioprio];
1710 case IOPRIO_CLASS_BE:
1711 return &cfqd->async_cfqq[1][ioprio];
1712 case IOPRIO_CLASS_IDLE:
1713 return &cfqd->async_idle_cfqq;
1714 default:
1715 BUG();
1716 }
1717}
1718
1719static struct cfq_queue *
1720cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
1721 gfp_t gfp_mask)
1722{
1723 const int ioprio = task_ioprio(ioc);
1724 const int ioprio_class = task_ioprio_class(ioc);
1725 struct cfq_queue **async_cfqq = NULL;
1726 struct cfq_queue *cfqq = NULL;
1727
1728 if (!is_sync) {
1729 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1730 cfqq = *async_cfqq;
1731 }
1732
1733 if (!cfqq) {
1734 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1735 if (!cfqq)
1736 return NULL;
1737 }
1738
1739 /*
1740 * pin the queue now that it's allocated, scheduler exit will prune it
1741 */
1742 if (!is_sync && !(*async_cfqq)) {
1743 atomic_inc(&cfqq->ref);
1744 *async_cfqq = cfqq;
1745 }
1746
1747 atomic_inc(&cfqq->ref);
1748 return cfqq;
1749}
1750
1751/*
1752 * We drop cfq io contexts lazily, so we may find a dead one.
1753 */
1754static void
1755cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1756 struct cfq_io_context *cic)
1757{
1758 unsigned long flags;
1759
1760 WARN_ON(!list_empty(&cic->queue_list));
1761
1762 spin_lock_irqsave(&ioc->lock, flags);
1763
1764 BUG_ON(ioc->ioc_data == cic);
1765
1766 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1767 hlist_del_rcu(&cic->cic_list);
1768 spin_unlock_irqrestore(&ioc->lock, flags);
1769
1770 cfq_cic_free(cic);
1771}
1772
1773static struct cfq_io_context *
1774cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1775{
1776 struct cfq_io_context *cic;
1777 unsigned long flags;
1778 void *k;
1779
1780 if (unlikely(!ioc))
1781 return NULL;
1782
1783 rcu_read_lock();
1784
1785 /*
1786 * we maintain a last-hit cache, to avoid browsing over the tree
1787 */
1788 cic = rcu_dereference(ioc->ioc_data);
1789 if (cic && cic->key == cfqd) {
1790 rcu_read_unlock();
1791 return cic;
1792 }
1793
1794 do {
1795 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1796 rcu_read_unlock();
1797 if (!cic)
1798 break;
1799 /* ->key must be copied to avoid race with cfq_exit_queue() */
1800 k = cic->key;
1801 if (unlikely(!k)) {
1802 cfq_drop_dead_cic(cfqd, ioc, cic);
1803 rcu_read_lock();
1804 continue;
1805 }
1806
1807 spin_lock_irqsave(&ioc->lock, flags);
1808 rcu_assign_pointer(ioc->ioc_data, cic);
1809 spin_unlock_irqrestore(&ioc->lock, flags);
1810 break;
1811 } while (1);
1812
1813 return cic;
1814}
1815
1816/*
1817 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1818 * the process specific cfq io context when entered from the block layer.
1819 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1820 */
1821static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1822 struct cfq_io_context *cic, gfp_t gfp_mask)
1823{
1824 unsigned long flags;
1825 int ret;
1826
1827 ret = radix_tree_preload(gfp_mask);
1828 if (!ret) {
1829 cic->ioc = ioc;
1830 cic->key = cfqd;
1831
1832 spin_lock_irqsave(&ioc->lock, flags);
1833 ret = radix_tree_insert(&ioc->radix_root,
1834 (unsigned long) cfqd, cic);
1835 if (!ret)
1836 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
1837 spin_unlock_irqrestore(&ioc->lock, flags);
1838
1839 radix_tree_preload_end();
1840
1841 if (!ret) {
1842 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1843 list_add(&cic->queue_list, &cfqd->cic_list);
1844 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1845 }
1846 }
1847
1848 if (ret)
1849 printk(KERN_ERR "cfq: cic link failed!\n");
1850
1851 return ret;
1852}
1853
1854/*
1855 * Setup general io context and cfq io context. There can be several cfq
1856 * io contexts per general io context, if this process is doing io to more
1857 * than one device managed by cfq.
1858 */
1859static struct cfq_io_context *
1860cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1861{
1862 struct io_context *ioc = NULL;
1863 struct cfq_io_context *cic;
1864
1865 might_sleep_if(gfp_mask & __GFP_WAIT);
1866
1867 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1868 if (!ioc)
1869 return NULL;
1870
1871 cic = cfq_cic_lookup(cfqd, ioc);
1872 if (cic)
1873 goto out;
1874
1875 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1876 if (cic == NULL)
1877 goto err;
1878
1879 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1880 goto err_free;
1881
1882out:
1883 smp_read_barrier_depends();
1884 if (unlikely(ioc->ioprio_changed))
1885 cfq_ioc_set_ioprio(ioc);
1886
1887 return cic;
1888err_free:
1889 cfq_cic_free(cic);
1890err:
1891 put_io_context(ioc);
1892 return NULL;
1893}
1894
1895static void
1896cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1897{
1898 unsigned long elapsed = jiffies - cic->last_end_request;
1899 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1900
1901 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1902 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1903 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1904}
1905
1906static void
1907cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1908 struct request *rq)
1909{
1910 sector_t sdist;
1911 u64 total;
1912
1913 if (!cic->last_request_pos)
1914 sdist = 0;
1915 else if (cic->last_request_pos < rq->sector)
1916 sdist = rq->sector - cic->last_request_pos;
1917 else
1918 sdist = cic->last_request_pos - rq->sector;
1919
1920 /*
1921 * Don't allow the seek distance to get too large from the
1922 * odd fragment, pagein, etc
1923 */
1924 if (cic->seek_samples <= 60) /* second&third seek */
1925 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1926 else
1927 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1928
1929 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1930 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1931 total = cic->seek_total + (cic->seek_samples/2);
1932 do_div(total, cic->seek_samples);
1933 cic->seek_mean = (sector_t)total;
1934}
1935
1936/*
1937 * Disable idle window if the process thinks too long or seeks so much that
1938 * it doesn't matter
1939 */
1940static void
1941cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1942 struct cfq_io_context *cic)
1943{
1944 int old_idle, enable_idle;
1945
1946 /*
1947 * Don't idle for async or idle io prio class
1948 */
1949 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1950 return;
1951
1952 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1953
1954 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
1955 (cfqd->hw_tag && CIC_SEEKY(cic)))
1956 enable_idle = 0;
1957 else if (sample_valid(cic->ttime_samples)) {
1958 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1959 enable_idle = 0;
1960 else
1961 enable_idle = 1;
1962 }
1963
1964 if (old_idle != enable_idle) {
1965 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
1966 if (enable_idle)
1967 cfq_mark_cfqq_idle_window(cfqq);
1968 else
1969 cfq_clear_cfqq_idle_window(cfqq);
1970 }
1971}
1972
1973/*
1974 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1975 * no or if we aren't sure, a 1 will cause a preempt.
1976 */
1977static int
1978cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1979 struct request *rq)
1980{
1981 struct cfq_queue *cfqq;
1982
1983 cfqq = cfqd->active_queue;
1984 if (!cfqq)
1985 return 0;
1986
1987 if (cfq_slice_used(cfqq))
1988 return 1;
1989
1990 if (cfq_class_idle(new_cfqq))
1991 return 0;
1992
1993 if (cfq_class_idle(cfqq))
1994 return 1;
1995
1996 /*
1997 * if the new request is sync, but the currently running queue is
1998 * not, let the sync request have priority.
1999 */
2000 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2001 return 1;
2002
2003 /*
2004 * So both queues are sync. Let the new request get disk time if
2005 * it's a metadata request and the current queue is doing regular IO.
2006 */
2007 if (rq_is_meta(rq) && !cfqq->meta_pending)
2008 return 1;
2009
2010 /*
2011 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2012 */
2013 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2014 return 1;
2015
2016 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2017 return 0;
2018
2019 /*
2020 * if this request is as-good as one we would expect from the
2021 * current cfqq, let it preempt
2022 */
2023 if (cfq_rq_close(cfqd, rq))
2024 return 1;
2025
2026 return 0;
2027}
2028
2029/*
2030 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2031 * let it have half of its nominal slice.
2032 */
2033static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2034{
2035 cfq_log_cfqq(cfqd, cfqq, "preempt");
2036 cfq_slice_expired(cfqd, 1);
2037
2038 /*
2039 * Put the new queue at the front of the of the current list,
2040 * so we know that it will be selected next.
2041 */
2042 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2043
2044 cfq_service_tree_add(cfqd, cfqq, 1);
2045
2046 cfqq->slice_end = 0;
2047 cfq_mark_cfqq_slice_new(cfqq);
2048}
2049
2050/*
2051 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2052 * something we should do about it
2053 */
2054static void
2055cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2056 struct request *rq)
2057{
2058 struct cfq_io_context *cic = RQ_CIC(rq);
2059
2060 cfqd->rq_queued++;
2061 if (rq_is_meta(rq))
2062 cfqq->meta_pending++;
2063
2064 cfq_update_io_thinktime(cfqd, cic);
2065 cfq_update_io_seektime(cfqd, cic, rq);
2066 cfq_update_idle_window(cfqd, cfqq, cic);
2067
2068 cic->last_request_pos = rq->sector + rq->nr_sectors;
2069
2070 if (cfqq == cfqd->active_queue) {
2071 /*
2072 * Remember that we saw a request from this process, but
2073 * don't start queuing just yet. Otherwise we risk seeing lots
2074 * of tiny requests, because we disrupt the normal plugging
2075 * and merging. If the request is already larger than a single
2076 * page, let it rip immediately. For that case we assume that
2077 * merging is already done. Ditto for a busy system that
2078 * has other work pending, don't risk delaying until the
2079 * idle timer unplug to continue working.
2080 */
2081 if (cfq_cfqq_wait_request(cfqq)) {
2082 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2083 cfqd->busy_queues > 1) {
2084 del_timer(&cfqd->idle_slice_timer);
2085 blk_start_queueing(cfqd->queue);
2086 }
2087 cfq_mark_cfqq_must_dispatch(cfqq);
2088 }
2089 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2090 /*
2091 * not the active queue - expire current slice if it is
2092 * idle and has expired it's mean thinktime or this new queue
2093 * has some old slice time left and is of higher priority or
2094 * this new queue is RT and the current one is BE
2095 */
2096 cfq_preempt_queue(cfqd, cfqq);
2097 blk_start_queueing(cfqd->queue);
2098 }
2099}
2100
2101static void cfq_insert_request(struct request_queue *q, struct request *rq)
2102{
2103 struct cfq_data *cfqd = q->elevator->elevator_data;
2104 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2105
2106 cfq_log_cfqq(cfqd, cfqq, "insert_request");
2107 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
2108
2109 cfq_add_rq_rb(rq);
2110
2111 list_add_tail(&rq->queuelist, &cfqq->fifo);
2112
2113 cfq_rq_enqueued(cfqd, cfqq, rq);
2114}
2115
2116/*
2117 * Update hw_tag based on peak queue depth over 50 samples under
2118 * sufficient load.
2119 */
2120static void cfq_update_hw_tag(struct cfq_data *cfqd)
2121{
2122 if (cfqd->rq_in_driver > cfqd->rq_in_driver_peak)
2123 cfqd->rq_in_driver_peak = cfqd->rq_in_driver;
2124
2125 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2126 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
2127 return;
2128
2129 if (cfqd->hw_tag_samples++ < 50)
2130 return;
2131
2132 if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2133 cfqd->hw_tag = 1;
2134 else
2135 cfqd->hw_tag = 0;
2136
2137 cfqd->hw_tag_samples = 0;
2138 cfqd->rq_in_driver_peak = 0;
2139}
2140
2141static void cfq_completed_request(struct request_queue *q, struct request *rq)
2142{
2143 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2144 struct cfq_data *cfqd = cfqq->cfqd;
2145 const int sync = rq_is_sync(rq);
2146 unsigned long now;
2147
2148 now = jiffies;
2149 cfq_log_cfqq(cfqd, cfqq, "complete");
2150
2151 cfq_update_hw_tag(cfqd);
2152
2153 WARN_ON(!cfqd->rq_in_driver);
2154 WARN_ON(!cfqq->dispatched);
2155 cfqd->rq_in_driver--;
2156 cfqq->dispatched--;
2157
2158 if (cfq_cfqq_sync(cfqq))
2159 cfqd->sync_flight--;
2160
2161 if (!cfq_class_idle(cfqq))
2162 cfqd->last_end_request = now;
2163
2164 if (sync)
2165 RQ_CIC(rq)->last_end_request = now;
2166
2167 /*
2168 * If this is the active queue, check if it needs to be expired,
2169 * or if we want to idle in case it has no pending requests.
2170 */
2171 if (cfqd->active_queue == cfqq) {
2172 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2173
2174 if (cfq_cfqq_slice_new(cfqq)) {
2175 cfq_set_prio_slice(cfqd, cfqq);
2176 cfq_clear_cfqq_slice_new(cfqq);
2177 }
2178 /*
2179 * If there are no requests waiting in this queue, and
2180 * there are other queues ready to issue requests, AND
2181 * those other queues are issuing requests within our
2182 * mean seek distance, give them a chance to run instead
2183 * of idling.
2184 */
2185 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2186 cfq_slice_expired(cfqd, 1);
2187 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq, 1) &&
2188 sync && !rq_noidle(rq))
2189 cfq_arm_slice_timer(cfqd);
2190 }
2191
2192 if (!cfqd->rq_in_driver)
2193 cfq_schedule_dispatch(cfqd);
2194}
2195
2196/*
2197 * we temporarily boost lower priority queues if they are holding fs exclusive
2198 * resources. they are boosted to normal prio (CLASS_BE/4)
2199 */
2200static void cfq_prio_boost(struct cfq_queue *cfqq)
2201{
2202 if (has_fs_excl()) {
2203 /*
2204 * boost idle prio on transactions that would lock out other
2205 * users of the filesystem
2206 */
2207 if (cfq_class_idle(cfqq))
2208 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2209 if (cfqq->ioprio > IOPRIO_NORM)
2210 cfqq->ioprio = IOPRIO_NORM;
2211 } else {
2212 /*
2213 * check if we need to unboost the queue
2214 */
2215 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2216 cfqq->ioprio_class = cfqq->org_ioprio_class;
2217 if (cfqq->ioprio != cfqq->org_ioprio)
2218 cfqq->ioprio = cfqq->org_ioprio;
2219 }
2220}
2221
2222static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2223{
2224 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
2225 !cfq_cfqq_must_alloc_slice(cfqq)) {
2226 cfq_mark_cfqq_must_alloc_slice(cfqq);
2227 return ELV_MQUEUE_MUST;
2228 }
2229
2230 return ELV_MQUEUE_MAY;
2231}
2232
2233static int cfq_may_queue(struct request_queue *q, int rw)
2234{
2235 struct cfq_data *cfqd = q->elevator->elevator_data;
2236 struct task_struct *tsk = current;
2237 struct cfq_io_context *cic;
2238 struct cfq_queue *cfqq;
2239
2240 /*
2241 * don't force setup of a queue from here, as a call to may_queue
2242 * does not necessarily imply that a request actually will be queued.
2243 * so just lookup a possibly existing queue, or return 'may queue'
2244 * if that fails
2245 */
2246 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2247 if (!cic)
2248 return ELV_MQUEUE_MAY;
2249
2250 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2251 if (cfqq) {
2252 cfq_init_prio_data(cfqq, cic->ioc);
2253 cfq_prio_boost(cfqq);
2254
2255 return __cfq_may_queue(cfqq);
2256 }
2257
2258 return ELV_MQUEUE_MAY;
2259}
2260
2261/*
2262 * queue lock held here
2263 */
2264static void cfq_put_request(struct request *rq)
2265{
2266 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2267
2268 if (cfqq) {
2269 const int rw = rq_data_dir(rq);
2270
2271 BUG_ON(!cfqq->allocated[rw]);
2272 cfqq->allocated[rw]--;
2273
2274 put_io_context(RQ_CIC(rq)->ioc);
2275
2276 rq->elevator_private = NULL;
2277 rq->elevator_private2 = NULL;
2278
2279 cfq_put_queue(cfqq);
2280 }
2281}
2282
2283/*
2284 * Allocate cfq data structures associated with this request.
2285 */
2286static int
2287cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2288{
2289 struct cfq_data *cfqd = q->elevator->elevator_data;
2290 struct cfq_io_context *cic;
2291 const int rw = rq_data_dir(rq);
2292 const int is_sync = rq_is_sync(rq);
2293 struct cfq_queue *cfqq;
2294 unsigned long flags;
2295
2296 might_sleep_if(gfp_mask & __GFP_WAIT);
2297
2298 cic = cfq_get_io_context(cfqd, gfp_mask);
2299
2300 spin_lock_irqsave(q->queue_lock, flags);
2301
2302 if (!cic)
2303 goto queue_fail;
2304
2305 cfqq = cic_to_cfqq(cic, is_sync);
2306 if (!cfqq) {
2307 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2308
2309 if (!cfqq)
2310 goto queue_fail;
2311
2312 cic_set_cfqq(cic, cfqq, is_sync);
2313 }
2314
2315 cfqq->allocated[rw]++;
2316 cfq_clear_cfqq_must_alloc(cfqq);
2317 atomic_inc(&cfqq->ref);
2318
2319 spin_unlock_irqrestore(q->queue_lock, flags);
2320
2321 rq->elevator_private = cic;
2322 rq->elevator_private2 = cfqq;
2323 return 0;
2324
2325queue_fail:
2326 if (cic)
2327 put_io_context(cic->ioc);
2328
2329 cfq_schedule_dispatch(cfqd);
2330 spin_unlock_irqrestore(q->queue_lock, flags);
2331 cfq_log(cfqd, "set_request fail");
2332 return 1;
2333}
2334
2335static void cfq_kick_queue(struct work_struct *work)
2336{
2337 struct cfq_data *cfqd =
2338 container_of(work, struct cfq_data, unplug_work);
2339 struct request_queue *q = cfqd->queue;
2340
2341 spin_lock_irq(q->queue_lock);
2342 blk_start_queueing(q);
2343 spin_unlock_irq(q->queue_lock);
2344}
2345
2346/*
2347 * Timer running if the active_queue is currently idling inside its time slice
2348 */
2349static void cfq_idle_slice_timer(unsigned long data)
2350{
2351 struct cfq_data *cfqd = (struct cfq_data *) data;
2352 struct cfq_queue *cfqq;
2353 unsigned long flags;
2354 int timed_out = 1;
2355
2356 cfq_log(cfqd, "idle timer fired");
2357
2358 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2359
2360 cfqq = cfqd->active_queue;
2361 if (cfqq) {
2362 timed_out = 0;
2363
2364 /*
2365 * We saw a request before the queue expired, let it through
2366 */
2367 if (cfq_cfqq_must_dispatch(cfqq))
2368 goto out_kick;
2369
2370 /*
2371 * expired
2372 */
2373 if (cfq_slice_used(cfqq))
2374 goto expire;
2375
2376 /*
2377 * only expire and reinvoke request handler, if there are
2378 * other queues with pending requests
2379 */
2380 if (!cfqd->busy_queues)
2381 goto out_cont;
2382
2383 /*
2384 * not expired and it has a request pending, let it dispatch
2385 */
2386 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2387 goto out_kick;
2388 }
2389expire:
2390 cfq_slice_expired(cfqd, timed_out);
2391out_kick:
2392 cfq_schedule_dispatch(cfqd);
2393out_cont:
2394 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2395}
2396
2397static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2398{
2399 del_timer_sync(&cfqd->idle_slice_timer);
2400 cancel_work_sync(&cfqd->unplug_work);
2401}
2402
2403static void cfq_put_async_queues(struct cfq_data *cfqd)
2404{
2405 int i;
2406
2407 for (i = 0; i < IOPRIO_BE_NR; i++) {
2408 if (cfqd->async_cfqq[0][i])
2409 cfq_put_queue(cfqd->async_cfqq[0][i]);
2410 if (cfqd->async_cfqq[1][i])
2411 cfq_put_queue(cfqd->async_cfqq[1][i]);
2412 }
2413
2414 if (cfqd->async_idle_cfqq)
2415 cfq_put_queue(cfqd->async_idle_cfqq);
2416}
2417
2418static void cfq_exit_queue(struct elevator_queue *e)
2419{
2420 struct cfq_data *cfqd = e->elevator_data;
2421 struct request_queue *q = cfqd->queue;
2422
2423 cfq_shutdown_timer_wq(cfqd);
2424
2425 spin_lock_irq(q->queue_lock);
2426
2427 if (cfqd->active_queue)
2428 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2429
2430 while (!list_empty(&cfqd->cic_list)) {
2431 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2432 struct cfq_io_context,
2433 queue_list);
2434
2435 __cfq_exit_single_io_context(cfqd, cic);
2436 }
2437
2438 cfq_put_async_queues(cfqd);
2439
2440 spin_unlock_irq(q->queue_lock);
2441
2442 cfq_shutdown_timer_wq(cfqd);
2443
2444 kfree(cfqd);
2445}
2446
2447static void *cfq_init_queue(struct request_queue *q)
2448{
2449 struct cfq_data *cfqd;
2450 int i;
2451
2452 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2453 if (!cfqd)
2454 return NULL;
2455
2456 cfqd->service_tree = CFQ_RB_ROOT;
2457
2458 /*
2459 * Not strictly needed (since RB_ROOT just clears the node and we
2460 * zeroed cfqd on alloc), but better be safe in case someone decides
2461 * to add magic to the rb code
2462 */
2463 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2464 cfqd->prio_trees[i] = RB_ROOT;
2465
2466 INIT_LIST_HEAD(&cfqd->cic_list);
2467
2468 cfqd->queue = q;
2469
2470 init_timer(&cfqd->idle_slice_timer);
2471 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2472 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2473
2474 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2475
2476 cfqd->last_end_request = jiffies;
2477 cfqd->cfq_quantum = cfq_quantum;
2478 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2479 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2480 cfqd->cfq_back_max = cfq_back_max;
2481 cfqd->cfq_back_penalty = cfq_back_penalty;
2482 cfqd->cfq_slice[0] = cfq_slice_async;
2483 cfqd->cfq_slice[1] = cfq_slice_sync;
2484 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2485 cfqd->cfq_slice_idle = cfq_slice_idle;
2486 cfqd->hw_tag = 1;
2487
2488 return cfqd;
2489}
2490
2491static void cfq_slab_kill(void)
2492{
2493 /*
2494 * Caller already ensured that pending RCU callbacks are completed,
2495 * so we should have no busy allocations at this point.
2496 */
2497 if (cfq_pool)
2498 kmem_cache_destroy(cfq_pool);
2499 if (cfq_ioc_pool)
2500 kmem_cache_destroy(cfq_ioc_pool);
2501}
2502
2503static int __init cfq_slab_setup(void)
2504{
2505 cfq_pool = KMEM_CACHE(cfq_queue, 0);
2506 if (!cfq_pool)
2507 goto fail;
2508
2509 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2510 if (!cfq_ioc_pool)
2511 goto fail;
2512
2513 return 0;
2514fail:
2515 cfq_slab_kill();
2516 return -ENOMEM;
2517}
2518
2519/*
2520 * sysfs parts below -->
2521 */
2522static ssize_t
2523cfq_var_show(unsigned int var, char *page)
2524{
2525 return sprintf(page, "%d\n", var);
2526}
2527
2528static ssize_t
2529cfq_var_store(unsigned int *var, const char *page, size_t count)
2530{
2531 char *p = (char *) page;
2532
2533 *var = simple_strtoul(p, &p, 10);
2534 return count;
2535}
2536
2537#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2538static ssize_t __FUNC(struct elevator_queue *e, char *page) \
2539{ \
2540 struct cfq_data *cfqd = e->elevator_data; \
2541 unsigned int __data = __VAR; \
2542 if (__CONV) \
2543 __data = jiffies_to_msecs(__data); \
2544 return cfq_var_show(__data, (page)); \
2545}
2546SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2547SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2548SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2549SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2550SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2551SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2552SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2553SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2554SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2555#undef SHOW_FUNCTION
2556
2557#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2558static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
2559{ \
2560 struct cfq_data *cfqd = e->elevator_data; \
2561 unsigned int __data; \
2562 int ret = cfq_var_store(&__data, (page), count); \
2563 if (__data < (MIN)) \
2564 __data = (MIN); \
2565 else if (__data > (MAX)) \
2566 __data = (MAX); \
2567 if (__CONV) \
2568 *(__PTR) = msecs_to_jiffies(__data); \
2569 else \
2570 *(__PTR) = __data; \
2571 return ret; \
2572}
2573STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2574STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2575 UINT_MAX, 1);
2576STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2577 UINT_MAX, 1);
2578STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2579STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2580 UINT_MAX, 0);
2581STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2582STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2583STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2584STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2585 UINT_MAX, 0);
2586#undef STORE_FUNCTION
2587
2588#define CFQ_ATTR(name) \
2589 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2590
2591static struct elv_fs_entry cfq_attrs[] = {
2592 CFQ_ATTR(quantum),
2593 CFQ_ATTR(fifo_expire_sync),
2594 CFQ_ATTR(fifo_expire_async),
2595 CFQ_ATTR(back_seek_max),
2596 CFQ_ATTR(back_seek_penalty),
2597 CFQ_ATTR(slice_sync),
2598 CFQ_ATTR(slice_async),
2599 CFQ_ATTR(slice_async_rq),
2600 CFQ_ATTR(slice_idle),
2601 __ATTR_NULL
2602};
2603
2604static struct elevator_type iosched_cfq = {
2605 .ops = {
2606 .elevator_merge_fn = cfq_merge,
2607 .elevator_merged_fn = cfq_merged_request,
2608 .elevator_merge_req_fn = cfq_merged_requests,
2609 .elevator_allow_merge_fn = cfq_allow_merge,
2610 .elevator_dispatch_fn = cfq_dispatch_requests,
2611 .elevator_add_req_fn = cfq_insert_request,
2612 .elevator_activate_req_fn = cfq_activate_request,
2613 .elevator_deactivate_req_fn = cfq_deactivate_request,
2614 .elevator_queue_empty_fn = cfq_queue_empty,
2615 .elevator_completed_req_fn = cfq_completed_request,
2616 .elevator_former_req_fn = elv_rb_former_request,
2617 .elevator_latter_req_fn = elv_rb_latter_request,
2618 .elevator_set_req_fn = cfq_set_request,
2619 .elevator_put_req_fn = cfq_put_request,
2620 .elevator_may_queue_fn = cfq_may_queue,
2621 .elevator_init_fn = cfq_init_queue,
2622 .elevator_exit_fn = cfq_exit_queue,
2623 .trim = cfq_free_io_context,
2624 },
2625 .elevator_attrs = cfq_attrs,
2626 .elevator_name = "cfq",
2627 .elevator_owner = THIS_MODULE,
2628};
2629
2630static int __init cfq_init(void)
2631{
2632 /*
2633 * could be 0 on HZ < 1000 setups
2634 */
2635 if (!cfq_slice_async)
2636 cfq_slice_async = 1;
2637 if (!cfq_slice_idle)
2638 cfq_slice_idle = 1;
2639
2640 if (cfq_slab_setup())
2641 return -ENOMEM;
2642
2643 elv_register(&iosched_cfq);
2644
2645 return 0;
2646}
2647
2648static void __exit cfq_exit(void)
2649{
2650 DECLARE_COMPLETION_ONSTACK(all_gone);
2651 elv_unregister(&iosched_cfq);
2652 ioc_gone = &all_gone;
2653 /* ioc_gone's update must be visible before reading ioc_count */
2654 smp_wmb();
2655
2656 /*
2657 * this also protects us from entering cfq_slab_kill() with
2658 * pending RCU callbacks
2659 */
2660 if (elv_ioc_count_read(ioc_count))
2661 wait_for_completion(&all_gone);
2662 cfq_slab_kill();
2663}
2664
2665module_init(cfq_init);
2666module_exit(cfq_exit);
2667
2668MODULE_AUTHOR("Jens Axboe");
2669MODULE_LICENSE("GPL");
2670MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");