backing-dev: Kill set but not used var in bdi_debug_stats_show()
[linux-2.6-block.git] / block / cfq-iosched.c
... / ...
CommitLineData
1/*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/slab.h>
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
13#include <linux/jiffies.h>
14#include <linux/rbtree.h>
15#include <linux/ioprio.h>
16#include <linux/blktrace_api.h>
17#include "cfq.h"
18
19/*
20 * tunables
21 */
22/* max queue in one round of service */
23static const int cfq_quantum = 8;
24static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
25/* maximum backwards seek, in KiB */
26static const int cfq_back_max = 16 * 1024;
27/* penalty of a backwards seek */
28static const int cfq_back_penalty = 2;
29static const int cfq_slice_sync = HZ / 10;
30static int cfq_slice_async = HZ / 25;
31static const int cfq_slice_async_rq = 2;
32static int cfq_slice_idle = HZ / 125;
33static int cfq_group_idle = HZ / 125;
34static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
35static const int cfq_hist_divisor = 4;
36
37/*
38 * offset from end of service tree
39 */
40#define CFQ_IDLE_DELAY (HZ / 5)
41
42/*
43 * below this threshold, we consider thinktime immediate
44 */
45#define CFQ_MIN_TT (2)
46
47#define CFQ_SLICE_SCALE (5)
48#define CFQ_HW_QUEUE_MIN (5)
49#define CFQ_SERVICE_SHIFT 12
50
51#define CFQQ_SEEK_THR (sector_t)(8 * 100)
52#define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
53#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
54#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
55
56#define RQ_CIC(rq) \
57 ((struct cfq_io_context *) (rq)->elevator_private[0])
58#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private[1])
59#define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private[2])
60
61static struct kmem_cache *cfq_pool;
62static struct kmem_cache *cfq_ioc_pool;
63
64static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
65static struct completion *ioc_gone;
66static DEFINE_SPINLOCK(ioc_gone_lock);
67
68static DEFINE_SPINLOCK(cic_index_lock);
69static DEFINE_IDA(cic_index_ida);
70
71#define CFQ_PRIO_LISTS IOPRIO_BE_NR
72#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
73#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
74
75#define sample_valid(samples) ((samples) > 80)
76#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
77
78/*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84struct cfq_rb_root {
85 struct rb_root rb;
86 struct rb_node *left;
87 unsigned count;
88 unsigned total_weight;
89 u64 min_vdisktime;
90};
91#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
92 .count = 0, .min_vdisktime = 0, }
93
94/*
95 * Per process-grouping structure
96 */
97struct cfq_queue {
98 /* reference count */
99 int ref;
100 /* various state flags, see below */
101 unsigned int flags;
102 /* parent cfq_data */
103 struct cfq_data *cfqd;
104 /* service_tree member */
105 struct rb_node rb_node;
106 /* service_tree key */
107 unsigned long rb_key;
108 /* prio tree member */
109 struct rb_node p_node;
110 /* prio tree root we belong to, if any */
111 struct rb_root *p_root;
112 /* sorted list of pending requests */
113 struct rb_root sort_list;
114 /* if fifo isn't expired, next request to serve */
115 struct request *next_rq;
116 /* requests queued in sort_list */
117 int queued[2];
118 /* currently allocated requests */
119 int allocated[2];
120 /* fifo list of requests in sort_list */
121 struct list_head fifo;
122
123 /* time when queue got scheduled in to dispatch first request. */
124 unsigned long dispatch_start;
125 unsigned int allocated_slice;
126 unsigned int slice_dispatch;
127 /* time when first request from queue completed and slice started. */
128 unsigned long slice_start;
129 unsigned long slice_end;
130 long slice_resid;
131
132 /* pending metadata requests */
133 int meta_pending;
134 /* number of requests that are on the dispatch list or inside driver */
135 int dispatched;
136
137 /* io prio of this group */
138 unsigned short ioprio, org_ioprio;
139 unsigned short ioprio_class, org_ioprio_class;
140
141 pid_t pid;
142
143 u32 seek_history;
144 sector_t last_request_pos;
145
146 struct cfq_rb_root *service_tree;
147 struct cfq_queue *new_cfqq;
148 struct cfq_group *cfqg;
149 /* Number of sectors dispatched from queue in single dispatch round */
150 unsigned long nr_sectors;
151};
152
153/*
154 * First index in the service_trees.
155 * IDLE is handled separately, so it has negative index
156 */
157enum wl_prio_t {
158 BE_WORKLOAD = 0,
159 RT_WORKLOAD = 1,
160 IDLE_WORKLOAD = 2,
161 CFQ_PRIO_NR,
162};
163
164/*
165 * Second index in the service_trees.
166 */
167enum wl_type_t {
168 ASYNC_WORKLOAD = 0,
169 SYNC_NOIDLE_WORKLOAD = 1,
170 SYNC_WORKLOAD = 2
171};
172
173/* This is per cgroup per device grouping structure */
174struct cfq_group {
175 /* group service_tree member */
176 struct rb_node rb_node;
177
178 /* group service_tree key */
179 u64 vdisktime;
180 unsigned int weight;
181 unsigned int new_weight;
182 bool needs_update;
183
184 /* number of cfqq currently on this group */
185 int nr_cfqq;
186
187 /*
188 * Per group busy queus average. Useful for workload slice calc. We
189 * create the array for each prio class but at run time it is used
190 * only for RT and BE class and slot for IDLE class remains unused.
191 * This is primarily done to avoid confusion and a gcc warning.
192 */
193 unsigned int busy_queues_avg[CFQ_PRIO_NR];
194 /*
195 * rr lists of queues with requests. We maintain service trees for
196 * RT and BE classes. These trees are subdivided in subclasses
197 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
198 * class there is no subclassification and all the cfq queues go on
199 * a single tree service_tree_idle.
200 * Counts are embedded in the cfq_rb_root
201 */
202 struct cfq_rb_root service_trees[2][3];
203 struct cfq_rb_root service_tree_idle;
204
205 unsigned long saved_workload_slice;
206 enum wl_type_t saved_workload;
207 enum wl_prio_t saved_serving_prio;
208 struct blkio_group blkg;
209#ifdef CONFIG_CFQ_GROUP_IOSCHED
210 struct hlist_node cfqd_node;
211 int ref;
212#endif
213 /* number of requests that are on the dispatch list or inside driver */
214 int dispatched;
215};
216
217/*
218 * Per block device queue structure
219 */
220struct cfq_data {
221 struct request_queue *queue;
222 /* Root service tree for cfq_groups */
223 struct cfq_rb_root grp_service_tree;
224 struct cfq_group root_group;
225
226 /*
227 * The priority currently being served
228 */
229 enum wl_prio_t serving_prio;
230 enum wl_type_t serving_type;
231 unsigned long workload_expires;
232 struct cfq_group *serving_group;
233
234 /*
235 * Each priority tree is sorted by next_request position. These
236 * trees are used when determining if two or more queues are
237 * interleaving requests (see cfq_close_cooperator).
238 */
239 struct rb_root prio_trees[CFQ_PRIO_LISTS];
240
241 unsigned int busy_queues;
242 unsigned int busy_sync_queues;
243
244 int rq_in_driver;
245 int rq_in_flight[2];
246
247 /*
248 * queue-depth detection
249 */
250 int rq_queued;
251 int hw_tag;
252 /*
253 * hw_tag can be
254 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
255 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
256 * 0 => no NCQ
257 */
258 int hw_tag_est_depth;
259 unsigned int hw_tag_samples;
260
261 /*
262 * idle window management
263 */
264 struct timer_list idle_slice_timer;
265 struct work_struct unplug_work;
266
267 struct cfq_queue *active_queue;
268 struct cfq_io_context *active_cic;
269
270 /*
271 * async queue for each priority case
272 */
273 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
274 struct cfq_queue *async_idle_cfqq;
275
276 sector_t last_position;
277
278 /*
279 * tunables, see top of file
280 */
281 unsigned int cfq_quantum;
282 unsigned int cfq_fifo_expire[2];
283 unsigned int cfq_back_penalty;
284 unsigned int cfq_back_max;
285 unsigned int cfq_slice[2];
286 unsigned int cfq_slice_async_rq;
287 unsigned int cfq_slice_idle;
288 unsigned int cfq_group_idle;
289 unsigned int cfq_latency;
290
291 unsigned int cic_index;
292 struct list_head cic_list;
293
294 /*
295 * Fallback dummy cfqq for extreme OOM conditions
296 */
297 struct cfq_queue oom_cfqq;
298
299 unsigned long last_delayed_sync;
300
301 /* List of cfq groups being managed on this device*/
302 struct hlist_head cfqg_list;
303
304 /* Number of groups which are on blkcg->blkg_list */
305 unsigned int nr_blkcg_linked_grps;
306};
307
308static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
309
310static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
311 enum wl_prio_t prio,
312 enum wl_type_t type)
313{
314 if (!cfqg)
315 return NULL;
316
317 if (prio == IDLE_WORKLOAD)
318 return &cfqg->service_tree_idle;
319
320 return &cfqg->service_trees[prio][type];
321}
322
323enum cfqq_state_flags {
324 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
325 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
326 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
327 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
328 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
329 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
330 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
331 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
332 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
333 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
334 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
335 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
336 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
337};
338
339#define CFQ_CFQQ_FNS(name) \
340static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
341{ \
342 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
343} \
344static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
345{ \
346 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
347} \
348static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
349{ \
350 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
351}
352
353CFQ_CFQQ_FNS(on_rr);
354CFQ_CFQQ_FNS(wait_request);
355CFQ_CFQQ_FNS(must_dispatch);
356CFQ_CFQQ_FNS(must_alloc_slice);
357CFQ_CFQQ_FNS(fifo_expire);
358CFQ_CFQQ_FNS(idle_window);
359CFQ_CFQQ_FNS(prio_changed);
360CFQ_CFQQ_FNS(slice_new);
361CFQ_CFQQ_FNS(sync);
362CFQ_CFQQ_FNS(coop);
363CFQ_CFQQ_FNS(split_coop);
364CFQ_CFQQ_FNS(deep);
365CFQ_CFQQ_FNS(wait_busy);
366#undef CFQ_CFQQ_FNS
367
368#ifdef CONFIG_CFQ_GROUP_IOSCHED
369#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
370 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
371 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
372 blkg_path(&(cfqq)->cfqg->blkg), ##args);
373
374#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
375 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
376 blkg_path(&(cfqg)->blkg), ##args); \
377
378#else
379#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
380 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
381#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
382#endif
383#define cfq_log(cfqd, fmt, args...) \
384 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
385
386/* Traverses through cfq group service trees */
387#define for_each_cfqg_st(cfqg, i, j, st) \
388 for (i = 0; i <= IDLE_WORKLOAD; i++) \
389 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
390 : &cfqg->service_tree_idle; \
391 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
392 (i == IDLE_WORKLOAD && j == 0); \
393 j++, st = i < IDLE_WORKLOAD ? \
394 &cfqg->service_trees[i][j]: NULL) \
395
396
397static inline bool iops_mode(struct cfq_data *cfqd)
398{
399 /*
400 * If we are not idling on queues and it is a NCQ drive, parallel
401 * execution of requests is on and measuring time is not possible
402 * in most of the cases until and unless we drive shallower queue
403 * depths and that becomes a performance bottleneck. In such cases
404 * switch to start providing fairness in terms of number of IOs.
405 */
406 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
407 return true;
408 else
409 return false;
410}
411
412static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
413{
414 if (cfq_class_idle(cfqq))
415 return IDLE_WORKLOAD;
416 if (cfq_class_rt(cfqq))
417 return RT_WORKLOAD;
418 return BE_WORKLOAD;
419}
420
421
422static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
423{
424 if (!cfq_cfqq_sync(cfqq))
425 return ASYNC_WORKLOAD;
426 if (!cfq_cfqq_idle_window(cfqq))
427 return SYNC_NOIDLE_WORKLOAD;
428 return SYNC_WORKLOAD;
429}
430
431static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
432 struct cfq_data *cfqd,
433 struct cfq_group *cfqg)
434{
435 if (wl == IDLE_WORKLOAD)
436 return cfqg->service_tree_idle.count;
437
438 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
439 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
440 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
441}
442
443static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
444 struct cfq_group *cfqg)
445{
446 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
447 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
448}
449
450static void cfq_dispatch_insert(struct request_queue *, struct request *);
451static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
452 struct io_context *, gfp_t);
453static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
454 struct io_context *);
455
456static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
457 bool is_sync)
458{
459 return cic->cfqq[is_sync];
460}
461
462static inline void cic_set_cfqq(struct cfq_io_context *cic,
463 struct cfq_queue *cfqq, bool is_sync)
464{
465 cic->cfqq[is_sync] = cfqq;
466}
467
468#define CIC_DEAD_KEY 1ul
469#define CIC_DEAD_INDEX_SHIFT 1
470
471static inline void *cfqd_dead_key(struct cfq_data *cfqd)
472{
473 return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
474}
475
476static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
477{
478 struct cfq_data *cfqd = cic->key;
479
480 if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
481 return NULL;
482
483 return cfqd;
484}
485
486/*
487 * We regard a request as SYNC, if it's either a read or has the SYNC bit
488 * set (in which case it could also be direct WRITE).
489 */
490static inline bool cfq_bio_sync(struct bio *bio)
491{
492 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
493}
494
495/*
496 * scheduler run of queue, if there are requests pending and no one in the
497 * driver that will restart queueing
498 */
499static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
500{
501 if (cfqd->busy_queues) {
502 cfq_log(cfqd, "schedule dispatch");
503 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
504 }
505}
506
507/*
508 * Scale schedule slice based on io priority. Use the sync time slice only
509 * if a queue is marked sync and has sync io queued. A sync queue with async
510 * io only, should not get full sync slice length.
511 */
512static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
513 unsigned short prio)
514{
515 const int base_slice = cfqd->cfq_slice[sync];
516
517 WARN_ON(prio >= IOPRIO_BE_NR);
518
519 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
520}
521
522static inline int
523cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
524{
525 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
526}
527
528static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
529{
530 u64 d = delta << CFQ_SERVICE_SHIFT;
531
532 d = d * BLKIO_WEIGHT_DEFAULT;
533 do_div(d, cfqg->weight);
534 return d;
535}
536
537static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
538{
539 s64 delta = (s64)(vdisktime - min_vdisktime);
540 if (delta > 0)
541 min_vdisktime = vdisktime;
542
543 return min_vdisktime;
544}
545
546static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
547{
548 s64 delta = (s64)(vdisktime - min_vdisktime);
549 if (delta < 0)
550 min_vdisktime = vdisktime;
551
552 return min_vdisktime;
553}
554
555static void update_min_vdisktime(struct cfq_rb_root *st)
556{
557 struct cfq_group *cfqg;
558
559 if (st->left) {
560 cfqg = rb_entry_cfqg(st->left);
561 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
562 cfqg->vdisktime);
563 }
564}
565
566/*
567 * get averaged number of queues of RT/BE priority.
568 * average is updated, with a formula that gives more weight to higher numbers,
569 * to quickly follows sudden increases and decrease slowly
570 */
571
572static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
573 struct cfq_group *cfqg, bool rt)
574{
575 unsigned min_q, max_q;
576 unsigned mult = cfq_hist_divisor - 1;
577 unsigned round = cfq_hist_divisor / 2;
578 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
579
580 min_q = min(cfqg->busy_queues_avg[rt], busy);
581 max_q = max(cfqg->busy_queues_avg[rt], busy);
582 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
583 cfq_hist_divisor;
584 return cfqg->busy_queues_avg[rt];
585}
586
587static inline unsigned
588cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
589{
590 struct cfq_rb_root *st = &cfqd->grp_service_tree;
591
592 return cfq_target_latency * cfqg->weight / st->total_weight;
593}
594
595static inline unsigned
596cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
597{
598 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
599 if (cfqd->cfq_latency) {
600 /*
601 * interested queues (we consider only the ones with the same
602 * priority class in the cfq group)
603 */
604 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
605 cfq_class_rt(cfqq));
606 unsigned sync_slice = cfqd->cfq_slice[1];
607 unsigned expect_latency = sync_slice * iq;
608 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
609
610 if (expect_latency > group_slice) {
611 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
612 /* scale low_slice according to IO priority
613 * and sync vs async */
614 unsigned low_slice =
615 min(slice, base_low_slice * slice / sync_slice);
616 /* the adapted slice value is scaled to fit all iqs
617 * into the target latency */
618 slice = max(slice * group_slice / expect_latency,
619 low_slice);
620 }
621 }
622 return slice;
623}
624
625static inline void
626cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
627{
628 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
629
630 cfqq->slice_start = jiffies;
631 cfqq->slice_end = jiffies + slice;
632 cfqq->allocated_slice = slice;
633 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
634}
635
636/*
637 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
638 * isn't valid until the first request from the dispatch is activated
639 * and the slice time set.
640 */
641static inline bool cfq_slice_used(struct cfq_queue *cfqq)
642{
643 if (cfq_cfqq_slice_new(cfqq))
644 return false;
645 if (time_before(jiffies, cfqq->slice_end))
646 return false;
647
648 return true;
649}
650
651/*
652 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
653 * We choose the request that is closest to the head right now. Distance
654 * behind the head is penalized and only allowed to a certain extent.
655 */
656static struct request *
657cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
658{
659 sector_t s1, s2, d1 = 0, d2 = 0;
660 unsigned long back_max;
661#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
662#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
663 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
664
665 if (rq1 == NULL || rq1 == rq2)
666 return rq2;
667 if (rq2 == NULL)
668 return rq1;
669
670 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
671 return rq1;
672 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
673 return rq2;
674 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
675 return rq1;
676 else if ((rq2->cmd_flags & REQ_META) &&
677 !(rq1->cmd_flags & REQ_META))
678 return rq2;
679
680 s1 = blk_rq_pos(rq1);
681 s2 = blk_rq_pos(rq2);
682
683 /*
684 * by definition, 1KiB is 2 sectors
685 */
686 back_max = cfqd->cfq_back_max * 2;
687
688 /*
689 * Strict one way elevator _except_ in the case where we allow
690 * short backward seeks which are biased as twice the cost of a
691 * similar forward seek.
692 */
693 if (s1 >= last)
694 d1 = s1 - last;
695 else if (s1 + back_max >= last)
696 d1 = (last - s1) * cfqd->cfq_back_penalty;
697 else
698 wrap |= CFQ_RQ1_WRAP;
699
700 if (s2 >= last)
701 d2 = s2 - last;
702 else if (s2 + back_max >= last)
703 d2 = (last - s2) * cfqd->cfq_back_penalty;
704 else
705 wrap |= CFQ_RQ2_WRAP;
706
707 /* Found required data */
708
709 /*
710 * By doing switch() on the bit mask "wrap" we avoid having to
711 * check two variables for all permutations: --> faster!
712 */
713 switch (wrap) {
714 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
715 if (d1 < d2)
716 return rq1;
717 else if (d2 < d1)
718 return rq2;
719 else {
720 if (s1 >= s2)
721 return rq1;
722 else
723 return rq2;
724 }
725
726 case CFQ_RQ2_WRAP:
727 return rq1;
728 case CFQ_RQ1_WRAP:
729 return rq2;
730 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
731 default:
732 /*
733 * Since both rqs are wrapped,
734 * start with the one that's further behind head
735 * (--> only *one* back seek required),
736 * since back seek takes more time than forward.
737 */
738 if (s1 <= s2)
739 return rq1;
740 else
741 return rq2;
742 }
743}
744
745/*
746 * The below is leftmost cache rbtree addon
747 */
748static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
749{
750 /* Service tree is empty */
751 if (!root->count)
752 return NULL;
753
754 if (!root->left)
755 root->left = rb_first(&root->rb);
756
757 if (root->left)
758 return rb_entry(root->left, struct cfq_queue, rb_node);
759
760 return NULL;
761}
762
763static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
764{
765 if (!root->left)
766 root->left = rb_first(&root->rb);
767
768 if (root->left)
769 return rb_entry_cfqg(root->left);
770
771 return NULL;
772}
773
774static void rb_erase_init(struct rb_node *n, struct rb_root *root)
775{
776 rb_erase(n, root);
777 RB_CLEAR_NODE(n);
778}
779
780static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
781{
782 if (root->left == n)
783 root->left = NULL;
784 rb_erase_init(n, &root->rb);
785 --root->count;
786}
787
788/*
789 * would be nice to take fifo expire time into account as well
790 */
791static struct request *
792cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
793 struct request *last)
794{
795 struct rb_node *rbnext = rb_next(&last->rb_node);
796 struct rb_node *rbprev = rb_prev(&last->rb_node);
797 struct request *next = NULL, *prev = NULL;
798
799 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
800
801 if (rbprev)
802 prev = rb_entry_rq(rbprev);
803
804 if (rbnext)
805 next = rb_entry_rq(rbnext);
806 else {
807 rbnext = rb_first(&cfqq->sort_list);
808 if (rbnext && rbnext != &last->rb_node)
809 next = rb_entry_rq(rbnext);
810 }
811
812 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
813}
814
815static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
816 struct cfq_queue *cfqq)
817{
818 /*
819 * just an approximation, should be ok.
820 */
821 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
822 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
823}
824
825static inline s64
826cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
827{
828 return cfqg->vdisktime - st->min_vdisktime;
829}
830
831static void
832__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
833{
834 struct rb_node **node = &st->rb.rb_node;
835 struct rb_node *parent = NULL;
836 struct cfq_group *__cfqg;
837 s64 key = cfqg_key(st, cfqg);
838 int left = 1;
839
840 while (*node != NULL) {
841 parent = *node;
842 __cfqg = rb_entry_cfqg(parent);
843
844 if (key < cfqg_key(st, __cfqg))
845 node = &parent->rb_left;
846 else {
847 node = &parent->rb_right;
848 left = 0;
849 }
850 }
851
852 if (left)
853 st->left = &cfqg->rb_node;
854
855 rb_link_node(&cfqg->rb_node, parent, node);
856 rb_insert_color(&cfqg->rb_node, &st->rb);
857}
858
859static void
860cfq_update_group_weight(struct cfq_group *cfqg)
861{
862 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
863 if (cfqg->needs_update) {
864 cfqg->weight = cfqg->new_weight;
865 cfqg->needs_update = false;
866 }
867}
868
869static void
870cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
871{
872 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
873
874 cfq_update_group_weight(cfqg);
875 __cfq_group_service_tree_add(st, cfqg);
876 st->total_weight += cfqg->weight;
877}
878
879static void
880cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
881{
882 struct cfq_rb_root *st = &cfqd->grp_service_tree;
883 struct cfq_group *__cfqg;
884 struct rb_node *n;
885
886 cfqg->nr_cfqq++;
887 if (!RB_EMPTY_NODE(&cfqg->rb_node))
888 return;
889
890 /*
891 * Currently put the group at the end. Later implement something
892 * so that groups get lesser vtime based on their weights, so that
893 * if group does not loose all if it was not continuously backlogged.
894 */
895 n = rb_last(&st->rb);
896 if (n) {
897 __cfqg = rb_entry_cfqg(n);
898 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
899 } else
900 cfqg->vdisktime = st->min_vdisktime;
901 cfq_group_service_tree_add(st, cfqg);
902}
903
904static void
905cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
906{
907 st->total_weight -= cfqg->weight;
908 if (!RB_EMPTY_NODE(&cfqg->rb_node))
909 cfq_rb_erase(&cfqg->rb_node, st);
910}
911
912static void
913cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
914{
915 struct cfq_rb_root *st = &cfqd->grp_service_tree;
916
917 BUG_ON(cfqg->nr_cfqq < 1);
918 cfqg->nr_cfqq--;
919
920 /* If there are other cfq queues under this group, don't delete it */
921 if (cfqg->nr_cfqq)
922 return;
923
924 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
925 cfq_group_service_tree_del(st, cfqg);
926 cfqg->saved_workload_slice = 0;
927 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
928}
929
930static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
931 unsigned int *unaccounted_time)
932{
933 unsigned int slice_used;
934
935 /*
936 * Queue got expired before even a single request completed or
937 * got expired immediately after first request completion.
938 */
939 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
940 /*
941 * Also charge the seek time incurred to the group, otherwise
942 * if there are mutiple queues in the group, each can dispatch
943 * a single request on seeky media and cause lots of seek time
944 * and group will never know it.
945 */
946 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
947 1);
948 } else {
949 slice_used = jiffies - cfqq->slice_start;
950 if (slice_used > cfqq->allocated_slice) {
951 *unaccounted_time = slice_used - cfqq->allocated_slice;
952 slice_used = cfqq->allocated_slice;
953 }
954 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
955 *unaccounted_time += cfqq->slice_start -
956 cfqq->dispatch_start;
957 }
958
959 return slice_used;
960}
961
962static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
963 struct cfq_queue *cfqq)
964{
965 struct cfq_rb_root *st = &cfqd->grp_service_tree;
966 unsigned int used_sl, charge, unaccounted_sl = 0;
967 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
968 - cfqg->service_tree_idle.count;
969
970 BUG_ON(nr_sync < 0);
971 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
972
973 if (iops_mode(cfqd))
974 charge = cfqq->slice_dispatch;
975 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
976 charge = cfqq->allocated_slice;
977
978 /* Can't update vdisktime while group is on service tree */
979 cfq_group_service_tree_del(st, cfqg);
980 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
981 /* If a new weight was requested, update now, off tree */
982 cfq_group_service_tree_add(st, cfqg);
983
984 /* This group is being expired. Save the context */
985 if (time_after(cfqd->workload_expires, jiffies)) {
986 cfqg->saved_workload_slice = cfqd->workload_expires
987 - jiffies;
988 cfqg->saved_workload = cfqd->serving_type;
989 cfqg->saved_serving_prio = cfqd->serving_prio;
990 } else
991 cfqg->saved_workload_slice = 0;
992
993 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
994 st->min_vdisktime);
995 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u disp=%u charge=%u iops=%u"
996 " sect=%u", used_sl, cfqq->slice_dispatch, charge,
997 iops_mode(cfqd), cfqq->nr_sectors);
998 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
999 unaccounted_sl);
1000 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1001}
1002
1003#ifdef CONFIG_CFQ_GROUP_IOSCHED
1004static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
1005{
1006 if (blkg)
1007 return container_of(blkg, struct cfq_group, blkg);
1008 return NULL;
1009}
1010
1011void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
1012 unsigned int weight)
1013{
1014 struct cfq_group *cfqg = cfqg_of_blkg(blkg);
1015 cfqg->new_weight = weight;
1016 cfqg->needs_update = true;
1017}
1018
1019static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
1020 struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
1021{
1022 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1023 unsigned int major, minor;
1024
1025 /*
1026 * Add group onto cgroup list. It might happen that bdi->dev is
1027 * not initialized yet. Initialize this new group without major
1028 * and minor info and this info will be filled in once a new thread
1029 * comes for IO.
1030 */
1031 if (bdi->dev) {
1032 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1033 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1034 (void *)cfqd, MKDEV(major, minor));
1035 } else
1036 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1037 (void *)cfqd, 0);
1038
1039 cfqd->nr_blkcg_linked_grps++;
1040 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1041
1042 /* Add group on cfqd list */
1043 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1044}
1045
1046/*
1047 * Should be called from sleepable context. No request queue lock as per
1048 * cpu stats are allocated dynamically and alloc_percpu needs to be called
1049 * from sleepable context.
1050 */
1051static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
1052{
1053 struct cfq_group *cfqg = NULL;
1054 int i, j, ret;
1055 struct cfq_rb_root *st;
1056
1057 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1058 if (!cfqg)
1059 return NULL;
1060
1061 for_each_cfqg_st(cfqg, i, j, st)
1062 *st = CFQ_RB_ROOT;
1063 RB_CLEAR_NODE(&cfqg->rb_node);
1064
1065 /*
1066 * Take the initial reference that will be released on destroy
1067 * This can be thought of a joint reference by cgroup and
1068 * elevator which will be dropped by either elevator exit
1069 * or cgroup deletion path depending on who is exiting first.
1070 */
1071 cfqg->ref = 1;
1072
1073 ret = blkio_alloc_blkg_stats(&cfqg->blkg);
1074 if (ret) {
1075 kfree(cfqg);
1076 return NULL;
1077 }
1078
1079 return cfqg;
1080}
1081
1082static struct cfq_group *
1083cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
1084{
1085 struct cfq_group *cfqg = NULL;
1086 void *key = cfqd;
1087 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1088 unsigned int major, minor;
1089
1090 /*
1091 * This is the common case when there are no blkio cgroups.
1092 * Avoid lookup in this case
1093 */
1094 if (blkcg == &blkio_root_cgroup)
1095 cfqg = &cfqd->root_group;
1096 else
1097 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
1098
1099 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1100 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1101 cfqg->blkg.dev = MKDEV(major, minor);
1102 }
1103
1104 return cfqg;
1105}
1106
1107/*
1108 * Search for the cfq group current task belongs to. request_queue lock must
1109 * be held.
1110 */
1111static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1112{
1113 struct blkio_cgroup *blkcg;
1114 struct cfq_group *cfqg = NULL, *__cfqg = NULL;
1115 struct request_queue *q = cfqd->queue;
1116
1117 rcu_read_lock();
1118 blkcg = task_blkio_cgroup(current);
1119 cfqg = cfq_find_cfqg(cfqd, blkcg);
1120 if (cfqg) {
1121 rcu_read_unlock();
1122 return cfqg;
1123 }
1124
1125 /*
1126 * Need to allocate a group. Allocation of group also needs allocation
1127 * of per cpu stats which in-turn takes a mutex() and can block. Hence
1128 * we need to drop rcu lock and queue_lock before we call alloc.
1129 *
1130 * Not taking any queue reference here and assuming that queue is
1131 * around by the time we return. CFQ queue allocation code does
1132 * the same. It might be racy though.
1133 */
1134
1135 rcu_read_unlock();
1136 spin_unlock_irq(q->queue_lock);
1137
1138 cfqg = cfq_alloc_cfqg(cfqd);
1139
1140 spin_lock_irq(q->queue_lock);
1141
1142 rcu_read_lock();
1143 blkcg = task_blkio_cgroup(current);
1144
1145 /*
1146 * If some other thread already allocated the group while we were
1147 * not holding queue lock, free up the group
1148 */
1149 __cfqg = cfq_find_cfqg(cfqd, blkcg);
1150
1151 if (__cfqg) {
1152 kfree(cfqg);
1153 rcu_read_unlock();
1154 return __cfqg;
1155 }
1156
1157 if (!cfqg)
1158 cfqg = &cfqd->root_group;
1159
1160 cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
1161 rcu_read_unlock();
1162 return cfqg;
1163}
1164
1165static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1166{
1167 cfqg->ref++;
1168 return cfqg;
1169}
1170
1171static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1172{
1173 /* Currently, all async queues are mapped to root group */
1174 if (!cfq_cfqq_sync(cfqq))
1175 cfqg = &cfqq->cfqd->root_group;
1176
1177 cfqq->cfqg = cfqg;
1178 /* cfqq reference on cfqg */
1179 cfqq->cfqg->ref++;
1180}
1181
1182static void cfq_put_cfqg(struct cfq_group *cfqg)
1183{
1184 struct cfq_rb_root *st;
1185 int i, j;
1186
1187 BUG_ON(cfqg->ref <= 0);
1188 cfqg->ref--;
1189 if (cfqg->ref)
1190 return;
1191 for_each_cfqg_st(cfqg, i, j, st)
1192 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
1193 free_percpu(cfqg->blkg.stats_cpu);
1194 kfree(cfqg);
1195}
1196
1197static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1198{
1199 /* Something wrong if we are trying to remove same group twice */
1200 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1201
1202 hlist_del_init(&cfqg->cfqd_node);
1203
1204 /*
1205 * Put the reference taken at the time of creation so that when all
1206 * queues are gone, group can be destroyed.
1207 */
1208 cfq_put_cfqg(cfqg);
1209}
1210
1211static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1212{
1213 struct hlist_node *pos, *n;
1214 struct cfq_group *cfqg;
1215
1216 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1217 /*
1218 * If cgroup removal path got to blk_group first and removed
1219 * it from cgroup list, then it will take care of destroying
1220 * cfqg also.
1221 */
1222 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1223 cfq_destroy_cfqg(cfqd, cfqg);
1224 }
1225}
1226
1227/*
1228 * Blk cgroup controller notification saying that blkio_group object is being
1229 * delinked as associated cgroup object is going away. That also means that
1230 * no new IO will come in this group. So get rid of this group as soon as
1231 * any pending IO in the group is finished.
1232 *
1233 * This function is called under rcu_read_lock(). key is the rcu protected
1234 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1235 * read lock.
1236 *
1237 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1238 * it should not be NULL as even if elevator was exiting, cgroup deltion
1239 * path got to it first.
1240 */
1241void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1242{
1243 unsigned long flags;
1244 struct cfq_data *cfqd = key;
1245
1246 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1247 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1248 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1249}
1250
1251#else /* GROUP_IOSCHED */
1252static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1253{
1254 return &cfqd->root_group;
1255}
1256
1257static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1258{
1259 return cfqg;
1260}
1261
1262static inline void
1263cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1264 cfqq->cfqg = cfqg;
1265}
1266
1267static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1268static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1269
1270#endif /* GROUP_IOSCHED */
1271
1272/*
1273 * The cfqd->service_trees holds all pending cfq_queue's that have
1274 * requests waiting to be processed. It is sorted in the order that
1275 * we will service the queues.
1276 */
1277static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1278 bool add_front)
1279{
1280 struct rb_node **p, *parent;
1281 struct cfq_queue *__cfqq;
1282 unsigned long rb_key;
1283 struct cfq_rb_root *service_tree;
1284 int left;
1285 int new_cfqq = 1;
1286 int group_changed = 0;
1287
1288 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1289 cfqq_type(cfqq));
1290 if (cfq_class_idle(cfqq)) {
1291 rb_key = CFQ_IDLE_DELAY;
1292 parent = rb_last(&service_tree->rb);
1293 if (parent && parent != &cfqq->rb_node) {
1294 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1295 rb_key += __cfqq->rb_key;
1296 } else
1297 rb_key += jiffies;
1298 } else if (!add_front) {
1299 /*
1300 * Get our rb key offset. Subtract any residual slice
1301 * value carried from last service. A negative resid
1302 * count indicates slice overrun, and this should position
1303 * the next service time further away in the tree.
1304 */
1305 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1306 rb_key -= cfqq->slice_resid;
1307 cfqq->slice_resid = 0;
1308 } else {
1309 rb_key = -HZ;
1310 __cfqq = cfq_rb_first(service_tree);
1311 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1312 }
1313
1314 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1315 new_cfqq = 0;
1316 /*
1317 * same position, nothing more to do
1318 */
1319 if (rb_key == cfqq->rb_key &&
1320 cfqq->service_tree == service_tree)
1321 return;
1322
1323 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1324 cfqq->service_tree = NULL;
1325 }
1326
1327 left = 1;
1328 parent = NULL;
1329 cfqq->service_tree = service_tree;
1330 p = &service_tree->rb.rb_node;
1331 while (*p) {
1332 struct rb_node **n;
1333
1334 parent = *p;
1335 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1336
1337 /*
1338 * sort by key, that represents service time.
1339 */
1340 if (time_before(rb_key, __cfqq->rb_key))
1341 n = &(*p)->rb_left;
1342 else {
1343 n = &(*p)->rb_right;
1344 left = 0;
1345 }
1346
1347 p = n;
1348 }
1349
1350 if (left)
1351 service_tree->left = &cfqq->rb_node;
1352
1353 cfqq->rb_key = rb_key;
1354 rb_link_node(&cfqq->rb_node, parent, p);
1355 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1356 service_tree->count++;
1357 if ((add_front || !new_cfqq) && !group_changed)
1358 return;
1359 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1360}
1361
1362static struct cfq_queue *
1363cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1364 sector_t sector, struct rb_node **ret_parent,
1365 struct rb_node ***rb_link)
1366{
1367 struct rb_node **p, *parent;
1368 struct cfq_queue *cfqq = NULL;
1369
1370 parent = NULL;
1371 p = &root->rb_node;
1372 while (*p) {
1373 struct rb_node **n;
1374
1375 parent = *p;
1376 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1377
1378 /*
1379 * Sort strictly based on sector. Smallest to the left,
1380 * largest to the right.
1381 */
1382 if (sector > blk_rq_pos(cfqq->next_rq))
1383 n = &(*p)->rb_right;
1384 else if (sector < blk_rq_pos(cfqq->next_rq))
1385 n = &(*p)->rb_left;
1386 else
1387 break;
1388 p = n;
1389 cfqq = NULL;
1390 }
1391
1392 *ret_parent = parent;
1393 if (rb_link)
1394 *rb_link = p;
1395 return cfqq;
1396}
1397
1398static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1399{
1400 struct rb_node **p, *parent;
1401 struct cfq_queue *__cfqq;
1402
1403 if (cfqq->p_root) {
1404 rb_erase(&cfqq->p_node, cfqq->p_root);
1405 cfqq->p_root = NULL;
1406 }
1407
1408 if (cfq_class_idle(cfqq))
1409 return;
1410 if (!cfqq->next_rq)
1411 return;
1412
1413 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1414 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1415 blk_rq_pos(cfqq->next_rq), &parent, &p);
1416 if (!__cfqq) {
1417 rb_link_node(&cfqq->p_node, parent, p);
1418 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1419 } else
1420 cfqq->p_root = NULL;
1421}
1422
1423/*
1424 * Update cfqq's position in the service tree.
1425 */
1426static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1427{
1428 /*
1429 * Resorting requires the cfqq to be on the RR list already.
1430 */
1431 if (cfq_cfqq_on_rr(cfqq)) {
1432 cfq_service_tree_add(cfqd, cfqq, 0);
1433 cfq_prio_tree_add(cfqd, cfqq);
1434 }
1435}
1436
1437/*
1438 * add to busy list of queues for service, trying to be fair in ordering
1439 * the pending list according to last request service
1440 */
1441static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1442{
1443 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1444 BUG_ON(cfq_cfqq_on_rr(cfqq));
1445 cfq_mark_cfqq_on_rr(cfqq);
1446 cfqd->busy_queues++;
1447 if (cfq_cfqq_sync(cfqq))
1448 cfqd->busy_sync_queues++;
1449
1450 cfq_resort_rr_list(cfqd, cfqq);
1451}
1452
1453/*
1454 * Called when the cfqq no longer has requests pending, remove it from
1455 * the service tree.
1456 */
1457static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1458{
1459 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1460 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1461 cfq_clear_cfqq_on_rr(cfqq);
1462
1463 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1464 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1465 cfqq->service_tree = NULL;
1466 }
1467 if (cfqq->p_root) {
1468 rb_erase(&cfqq->p_node, cfqq->p_root);
1469 cfqq->p_root = NULL;
1470 }
1471
1472 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1473 BUG_ON(!cfqd->busy_queues);
1474 cfqd->busy_queues--;
1475 if (cfq_cfqq_sync(cfqq))
1476 cfqd->busy_sync_queues--;
1477}
1478
1479/*
1480 * rb tree support functions
1481 */
1482static void cfq_del_rq_rb(struct request *rq)
1483{
1484 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1485 const int sync = rq_is_sync(rq);
1486
1487 BUG_ON(!cfqq->queued[sync]);
1488 cfqq->queued[sync]--;
1489
1490 elv_rb_del(&cfqq->sort_list, rq);
1491
1492 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1493 /*
1494 * Queue will be deleted from service tree when we actually
1495 * expire it later. Right now just remove it from prio tree
1496 * as it is empty.
1497 */
1498 if (cfqq->p_root) {
1499 rb_erase(&cfqq->p_node, cfqq->p_root);
1500 cfqq->p_root = NULL;
1501 }
1502 }
1503}
1504
1505static void cfq_add_rq_rb(struct request *rq)
1506{
1507 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1508 struct cfq_data *cfqd = cfqq->cfqd;
1509 struct request *__alias, *prev;
1510
1511 cfqq->queued[rq_is_sync(rq)]++;
1512
1513 /*
1514 * looks a little odd, but the first insert might return an alias.
1515 * if that happens, put the alias on the dispatch list
1516 */
1517 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1518 cfq_dispatch_insert(cfqd->queue, __alias);
1519
1520 if (!cfq_cfqq_on_rr(cfqq))
1521 cfq_add_cfqq_rr(cfqd, cfqq);
1522
1523 /*
1524 * check if this request is a better next-serve candidate
1525 */
1526 prev = cfqq->next_rq;
1527 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1528
1529 /*
1530 * adjust priority tree position, if ->next_rq changes
1531 */
1532 if (prev != cfqq->next_rq)
1533 cfq_prio_tree_add(cfqd, cfqq);
1534
1535 BUG_ON(!cfqq->next_rq);
1536}
1537
1538static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1539{
1540 elv_rb_del(&cfqq->sort_list, rq);
1541 cfqq->queued[rq_is_sync(rq)]--;
1542 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1543 rq_data_dir(rq), rq_is_sync(rq));
1544 cfq_add_rq_rb(rq);
1545 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1546 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1547 rq_is_sync(rq));
1548}
1549
1550static struct request *
1551cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1552{
1553 struct task_struct *tsk = current;
1554 struct cfq_io_context *cic;
1555 struct cfq_queue *cfqq;
1556
1557 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1558 if (!cic)
1559 return NULL;
1560
1561 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1562 if (cfqq) {
1563 sector_t sector = bio->bi_sector + bio_sectors(bio);
1564
1565 return elv_rb_find(&cfqq->sort_list, sector);
1566 }
1567
1568 return NULL;
1569}
1570
1571static void cfq_activate_request(struct request_queue *q, struct request *rq)
1572{
1573 struct cfq_data *cfqd = q->elevator->elevator_data;
1574
1575 cfqd->rq_in_driver++;
1576 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1577 cfqd->rq_in_driver);
1578
1579 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1580}
1581
1582static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1583{
1584 struct cfq_data *cfqd = q->elevator->elevator_data;
1585
1586 WARN_ON(!cfqd->rq_in_driver);
1587 cfqd->rq_in_driver--;
1588 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1589 cfqd->rq_in_driver);
1590}
1591
1592static void cfq_remove_request(struct request *rq)
1593{
1594 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1595
1596 if (cfqq->next_rq == rq)
1597 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1598
1599 list_del_init(&rq->queuelist);
1600 cfq_del_rq_rb(rq);
1601
1602 cfqq->cfqd->rq_queued--;
1603 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1604 rq_data_dir(rq), rq_is_sync(rq));
1605 if (rq->cmd_flags & REQ_META) {
1606 WARN_ON(!cfqq->meta_pending);
1607 cfqq->meta_pending--;
1608 }
1609}
1610
1611static int cfq_merge(struct request_queue *q, struct request **req,
1612 struct bio *bio)
1613{
1614 struct cfq_data *cfqd = q->elevator->elevator_data;
1615 struct request *__rq;
1616
1617 __rq = cfq_find_rq_fmerge(cfqd, bio);
1618 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1619 *req = __rq;
1620 return ELEVATOR_FRONT_MERGE;
1621 }
1622
1623 return ELEVATOR_NO_MERGE;
1624}
1625
1626static void cfq_merged_request(struct request_queue *q, struct request *req,
1627 int type)
1628{
1629 if (type == ELEVATOR_FRONT_MERGE) {
1630 struct cfq_queue *cfqq = RQ_CFQQ(req);
1631
1632 cfq_reposition_rq_rb(cfqq, req);
1633 }
1634}
1635
1636static void cfq_bio_merged(struct request_queue *q, struct request *req,
1637 struct bio *bio)
1638{
1639 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1640 bio_data_dir(bio), cfq_bio_sync(bio));
1641}
1642
1643static void
1644cfq_merged_requests(struct request_queue *q, struct request *rq,
1645 struct request *next)
1646{
1647 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1648 /*
1649 * reposition in fifo if next is older than rq
1650 */
1651 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1652 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1653 list_move(&rq->queuelist, &next->queuelist);
1654 rq_set_fifo_time(rq, rq_fifo_time(next));
1655 }
1656
1657 if (cfqq->next_rq == next)
1658 cfqq->next_rq = rq;
1659 cfq_remove_request(next);
1660 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1661 rq_data_dir(next), rq_is_sync(next));
1662}
1663
1664static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1665 struct bio *bio)
1666{
1667 struct cfq_data *cfqd = q->elevator->elevator_data;
1668 struct cfq_io_context *cic;
1669 struct cfq_queue *cfqq;
1670
1671 /*
1672 * Disallow merge of a sync bio into an async request.
1673 */
1674 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1675 return false;
1676
1677 /*
1678 * Lookup the cfqq that this bio will be queued with. Allow
1679 * merge only if rq is queued there.
1680 */
1681 cic = cfq_cic_lookup(cfqd, current->io_context);
1682 if (!cic)
1683 return false;
1684
1685 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1686 return cfqq == RQ_CFQQ(rq);
1687}
1688
1689static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1690{
1691 del_timer(&cfqd->idle_slice_timer);
1692 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1693}
1694
1695static void __cfq_set_active_queue(struct cfq_data *cfqd,
1696 struct cfq_queue *cfqq)
1697{
1698 if (cfqq) {
1699 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1700 cfqd->serving_prio, cfqd->serving_type);
1701 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1702 cfqq->slice_start = 0;
1703 cfqq->dispatch_start = jiffies;
1704 cfqq->allocated_slice = 0;
1705 cfqq->slice_end = 0;
1706 cfqq->slice_dispatch = 0;
1707 cfqq->nr_sectors = 0;
1708
1709 cfq_clear_cfqq_wait_request(cfqq);
1710 cfq_clear_cfqq_must_dispatch(cfqq);
1711 cfq_clear_cfqq_must_alloc_slice(cfqq);
1712 cfq_clear_cfqq_fifo_expire(cfqq);
1713 cfq_mark_cfqq_slice_new(cfqq);
1714
1715 cfq_del_timer(cfqd, cfqq);
1716 }
1717
1718 cfqd->active_queue = cfqq;
1719}
1720
1721/*
1722 * current cfqq expired its slice (or was too idle), select new one
1723 */
1724static void
1725__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1726 bool timed_out)
1727{
1728 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1729
1730 if (cfq_cfqq_wait_request(cfqq))
1731 cfq_del_timer(cfqd, cfqq);
1732
1733 cfq_clear_cfqq_wait_request(cfqq);
1734 cfq_clear_cfqq_wait_busy(cfqq);
1735
1736 /*
1737 * If this cfqq is shared between multiple processes, check to
1738 * make sure that those processes are still issuing I/Os within
1739 * the mean seek distance. If not, it may be time to break the
1740 * queues apart again.
1741 */
1742 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1743 cfq_mark_cfqq_split_coop(cfqq);
1744
1745 /*
1746 * store what was left of this slice, if the queue idled/timed out
1747 */
1748 if (timed_out) {
1749 if (cfq_cfqq_slice_new(cfqq))
1750 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
1751 else
1752 cfqq->slice_resid = cfqq->slice_end - jiffies;
1753 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1754 }
1755
1756 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1757
1758 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1759 cfq_del_cfqq_rr(cfqd, cfqq);
1760
1761 cfq_resort_rr_list(cfqd, cfqq);
1762
1763 if (cfqq == cfqd->active_queue)
1764 cfqd->active_queue = NULL;
1765
1766 if (cfqd->active_cic) {
1767 put_io_context(cfqd->active_cic->ioc);
1768 cfqd->active_cic = NULL;
1769 }
1770}
1771
1772static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1773{
1774 struct cfq_queue *cfqq = cfqd->active_queue;
1775
1776 if (cfqq)
1777 __cfq_slice_expired(cfqd, cfqq, timed_out);
1778}
1779
1780/*
1781 * Get next queue for service. Unless we have a queue preemption,
1782 * we'll simply select the first cfqq in the service tree.
1783 */
1784static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1785{
1786 struct cfq_rb_root *service_tree =
1787 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1788 cfqd->serving_type);
1789
1790 if (!cfqd->rq_queued)
1791 return NULL;
1792
1793 /* There is nothing to dispatch */
1794 if (!service_tree)
1795 return NULL;
1796 if (RB_EMPTY_ROOT(&service_tree->rb))
1797 return NULL;
1798 return cfq_rb_first(service_tree);
1799}
1800
1801static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1802{
1803 struct cfq_group *cfqg;
1804 struct cfq_queue *cfqq;
1805 int i, j;
1806 struct cfq_rb_root *st;
1807
1808 if (!cfqd->rq_queued)
1809 return NULL;
1810
1811 cfqg = cfq_get_next_cfqg(cfqd);
1812 if (!cfqg)
1813 return NULL;
1814
1815 for_each_cfqg_st(cfqg, i, j, st)
1816 if ((cfqq = cfq_rb_first(st)) != NULL)
1817 return cfqq;
1818 return NULL;
1819}
1820
1821/*
1822 * Get and set a new active queue for service.
1823 */
1824static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1825 struct cfq_queue *cfqq)
1826{
1827 if (!cfqq)
1828 cfqq = cfq_get_next_queue(cfqd);
1829
1830 __cfq_set_active_queue(cfqd, cfqq);
1831 return cfqq;
1832}
1833
1834static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1835 struct request *rq)
1836{
1837 if (blk_rq_pos(rq) >= cfqd->last_position)
1838 return blk_rq_pos(rq) - cfqd->last_position;
1839 else
1840 return cfqd->last_position - blk_rq_pos(rq);
1841}
1842
1843static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1844 struct request *rq)
1845{
1846 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1847}
1848
1849static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1850 struct cfq_queue *cur_cfqq)
1851{
1852 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1853 struct rb_node *parent, *node;
1854 struct cfq_queue *__cfqq;
1855 sector_t sector = cfqd->last_position;
1856
1857 if (RB_EMPTY_ROOT(root))
1858 return NULL;
1859
1860 /*
1861 * First, if we find a request starting at the end of the last
1862 * request, choose it.
1863 */
1864 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1865 if (__cfqq)
1866 return __cfqq;
1867
1868 /*
1869 * If the exact sector wasn't found, the parent of the NULL leaf
1870 * will contain the closest sector.
1871 */
1872 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1873 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1874 return __cfqq;
1875
1876 if (blk_rq_pos(__cfqq->next_rq) < sector)
1877 node = rb_next(&__cfqq->p_node);
1878 else
1879 node = rb_prev(&__cfqq->p_node);
1880 if (!node)
1881 return NULL;
1882
1883 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1884 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1885 return __cfqq;
1886
1887 return NULL;
1888}
1889
1890/*
1891 * cfqd - obvious
1892 * cur_cfqq - passed in so that we don't decide that the current queue is
1893 * closely cooperating with itself.
1894 *
1895 * So, basically we're assuming that that cur_cfqq has dispatched at least
1896 * one request, and that cfqd->last_position reflects a position on the disk
1897 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1898 * assumption.
1899 */
1900static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1901 struct cfq_queue *cur_cfqq)
1902{
1903 struct cfq_queue *cfqq;
1904
1905 if (cfq_class_idle(cur_cfqq))
1906 return NULL;
1907 if (!cfq_cfqq_sync(cur_cfqq))
1908 return NULL;
1909 if (CFQQ_SEEKY(cur_cfqq))
1910 return NULL;
1911
1912 /*
1913 * Don't search priority tree if it's the only queue in the group.
1914 */
1915 if (cur_cfqq->cfqg->nr_cfqq == 1)
1916 return NULL;
1917
1918 /*
1919 * We should notice if some of the queues are cooperating, eg
1920 * working closely on the same area of the disk. In that case,
1921 * we can group them together and don't waste time idling.
1922 */
1923 cfqq = cfqq_close(cfqd, cur_cfqq);
1924 if (!cfqq)
1925 return NULL;
1926
1927 /* If new queue belongs to different cfq_group, don't choose it */
1928 if (cur_cfqq->cfqg != cfqq->cfqg)
1929 return NULL;
1930
1931 /*
1932 * It only makes sense to merge sync queues.
1933 */
1934 if (!cfq_cfqq_sync(cfqq))
1935 return NULL;
1936 if (CFQQ_SEEKY(cfqq))
1937 return NULL;
1938
1939 /*
1940 * Do not merge queues of different priority classes
1941 */
1942 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1943 return NULL;
1944
1945 return cfqq;
1946}
1947
1948/*
1949 * Determine whether we should enforce idle window for this queue.
1950 */
1951
1952static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1953{
1954 enum wl_prio_t prio = cfqq_prio(cfqq);
1955 struct cfq_rb_root *service_tree = cfqq->service_tree;
1956
1957 BUG_ON(!service_tree);
1958 BUG_ON(!service_tree->count);
1959
1960 if (!cfqd->cfq_slice_idle)
1961 return false;
1962
1963 /* We never do for idle class queues. */
1964 if (prio == IDLE_WORKLOAD)
1965 return false;
1966
1967 /* We do for queues that were marked with idle window flag. */
1968 if (cfq_cfqq_idle_window(cfqq) &&
1969 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1970 return true;
1971
1972 /*
1973 * Otherwise, we do only if they are the last ones
1974 * in their service tree.
1975 */
1976 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1977 return true;
1978 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1979 service_tree->count);
1980 return false;
1981}
1982
1983static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1984{
1985 struct cfq_queue *cfqq = cfqd->active_queue;
1986 struct cfq_io_context *cic;
1987 unsigned long sl, group_idle = 0;
1988
1989 /*
1990 * SSD device without seek penalty, disable idling. But only do so
1991 * for devices that support queuing, otherwise we still have a problem
1992 * with sync vs async workloads.
1993 */
1994 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1995 return;
1996
1997 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1998 WARN_ON(cfq_cfqq_slice_new(cfqq));
1999
2000 /*
2001 * idle is disabled, either manually or by past process history
2002 */
2003 if (!cfq_should_idle(cfqd, cfqq)) {
2004 /* no queue idling. Check for group idling */
2005 if (cfqd->cfq_group_idle)
2006 group_idle = cfqd->cfq_group_idle;
2007 else
2008 return;
2009 }
2010
2011 /*
2012 * still active requests from this queue, don't idle
2013 */
2014 if (cfqq->dispatched)
2015 return;
2016
2017 /*
2018 * task has exited, don't wait
2019 */
2020 cic = cfqd->active_cic;
2021 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
2022 return;
2023
2024 /*
2025 * If our average think time is larger than the remaining time
2026 * slice, then don't idle. This avoids overrunning the allotted
2027 * time slice.
2028 */
2029 if (sample_valid(cic->ttime_samples) &&
2030 (cfqq->slice_end - jiffies < cic->ttime_mean)) {
2031 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
2032 cic->ttime_mean);
2033 return;
2034 }
2035
2036 /* There are other queues in the group, don't do group idle */
2037 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2038 return;
2039
2040 cfq_mark_cfqq_wait_request(cfqq);
2041
2042 if (group_idle)
2043 sl = cfqd->cfq_group_idle;
2044 else
2045 sl = cfqd->cfq_slice_idle;
2046
2047 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2048 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
2049 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2050 group_idle ? 1 : 0);
2051}
2052
2053/*
2054 * Move request from internal lists to the request queue dispatch list.
2055 */
2056static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2057{
2058 struct cfq_data *cfqd = q->elevator->elevator_data;
2059 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2060
2061 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2062
2063 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2064 cfq_remove_request(rq);
2065 cfqq->dispatched++;
2066 (RQ_CFQG(rq))->dispatched++;
2067 elv_dispatch_sort(q, rq);
2068
2069 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2070 cfqq->nr_sectors += blk_rq_sectors(rq);
2071 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
2072 rq_data_dir(rq), rq_is_sync(rq));
2073}
2074
2075/*
2076 * return expired entry, or NULL to just start from scratch in rbtree
2077 */
2078static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2079{
2080 struct request *rq = NULL;
2081
2082 if (cfq_cfqq_fifo_expire(cfqq))
2083 return NULL;
2084
2085 cfq_mark_cfqq_fifo_expire(cfqq);
2086
2087 if (list_empty(&cfqq->fifo))
2088 return NULL;
2089
2090 rq = rq_entry_fifo(cfqq->fifo.next);
2091 if (time_before(jiffies, rq_fifo_time(rq)))
2092 rq = NULL;
2093
2094 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2095 return rq;
2096}
2097
2098static inline int
2099cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2100{
2101 const int base_rq = cfqd->cfq_slice_async_rq;
2102
2103 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2104
2105 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
2106}
2107
2108/*
2109 * Must be called with the queue_lock held.
2110 */
2111static int cfqq_process_refs(struct cfq_queue *cfqq)
2112{
2113 int process_refs, io_refs;
2114
2115 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2116 process_refs = cfqq->ref - io_refs;
2117 BUG_ON(process_refs < 0);
2118 return process_refs;
2119}
2120
2121static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2122{
2123 int process_refs, new_process_refs;
2124 struct cfq_queue *__cfqq;
2125
2126 /*
2127 * If there are no process references on the new_cfqq, then it is
2128 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2129 * chain may have dropped their last reference (not just their
2130 * last process reference).
2131 */
2132 if (!cfqq_process_refs(new_cfqq))
2133 return;
2134
2135 /* Avoid a circular list and skip interim queue merges */
2136 while ((__cfqq = new_cfqq->new_cfqq)) {
2137 if (__cfqq == cfqq)
2138 return;
2139 new_cfqq = __cfqq;
2140 }
2141
2142 process_refs = cfqq_process_refs(cfqq);
2143 new_process_refs = cfqq_process_refs(new_cfqq);
2144 /*
2145 * If the process for the cfqq has gone away, there is no
2146 * sense in merging the queues.
2147 */
2148 if (process_refs == 0 || new_process_refs == 0)
2149 return;
2150
2151 /*
2152 * Merge in the direction of the lesser amount of work.
2153 */
2154 if (new_process_refs >= process_refs) {
2155 cfqq->new_cfqq = new_cfqq;
2156 new_cfqq->ref += process_refs;
2157 } else {
2158 new_cfqq->new_cfqq = cfqq;
2159 cfqq->ref += new_process_refs;
2160 }
2161}
2162
2163static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2164 struct cfq_group *cfqg, enum wl_prio_t prio)
2165{
2166 struct cfq_queue *queue;
2167 int i;
2168 bool key_valid = false;
2169 unsigned long lowest_key = 0;
2170 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2171
2172 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2173 /* select the one with lowest rb_key */
2174 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2175 if (queue &&
2176 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2177 lowest_key = queue->rb_key;
2178 cur_best = i;
2179 key_valid = true;
2180 }
2181 }
2182
2183 return cur_best;
2184}
2185
2186static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2187{
2188 unsigned slice;
2189 unsigned count;
2190 struct cfq_rb_root *st;
2191 unsigned group_slice;
2192 enum wl_prio_t original_prio = cfqd->serving_prio;
2193
2194 /* Choose next priority. RT > BE > IDLE */
2195 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2196 cfqd->serving_prio = RT_WORKLOAD;
2197 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2198 cfqd->serving_prio = BE_WORKLOAD;
2199 else {
2200 cfqd->serving_prio = IDLE_WORKLOAD;
2201 cfqd->workload_expires = jiffies + 1;
2202 return;
2203 }
2204
2205 if (original_prio != cfqd->serving_prio)
2206 goto new_workload;
2207
2208 /*
2209 * For RT and BE, we have to choose also the type
2210 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2211 * expiration time
2212 */
2213 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2214 count = st->count;
2215
2216 /*
2217 * check workload expiration, and that we still have other queues ready
2218 */
2219 if (count && !time_after(jiffies, cfqd->workload_expires))
2220 return;
2221
2222new_workload:
2223 /* otherwise select new workload type */
2224 cfqd->serving_type =
2225 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2226 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2227 count = st->count;
2228
2229 /*
2230 * the workload slice is computed as a fraction of target latency
2231 * proportional to the number of queues in that workload, over
2232 * all the queues in the same priority class
2233 */
2234 group_slice = cfq_group_slice(cfqd, cfqg);
2235
2236 slice = group_slice * count /
2237 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2238 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2239
2240 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2241 unsigned int tmp;
2242
2243 /*
2244 * Async queues are currently system wide. Just taking
2245 * proportion of queues with-in same group will lead to higher
2246 * async ratio system wide as generally root group is going
2247 * to have higher weight. A more accurate thing would be to
2248 * calculate system wide asnc/sync ratio.
2249 */
2250 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2251 tmp = tmp/cfqd->busy_queues;
2252 slice = min_t(unsigned, slice, tmp);
2253
2254 /* async workload slice is scaled down according to
2255 * the sync/async slice ratio. */
2256 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2257 } else
2258 /* sync workload slice is at least 2 * cfq_slice_idle */
2259 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2260
2261 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2262 cfq_log(cfqd, "workload slice:%d", slice);
2263 cfqd->workload_expires = jiffies + slice;
2264}
2265
2266static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2267{
2268 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2269 struct cfq_group *cfqg;
2270
2271 if (RB_EMPTY_ROOT(&st->rb))
2272 return NULL;
2273 cfqg = cfq_rb_first_group(st);
2274 update_min_vdisktime(st);
2275 return cfqg;
2276}
2277
2278static void cfq_choose_cfqg(struct cfq_data *cfqd)
2279{
2280 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2281
2282 cfqd->serving_group = cfqg;
2283
2284 /* Restore the workload type data */
2285 if (cfqg->saved_workload_slice) {
2286 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2287 cfqd->serving_type = cfqg->saved_workload;
2288 cfqd->serving_prio = cfqg->saved_serving_prio;
2289 } else
2290 cfqd->workload_expires = jiffies - 1;
2291
2292 choose_service_tree(cfqd, cfqg);
2293}
2294
2295/*
2296 * Select a queue for service. If we have a current active queue,
2297 * check whether to continue servicing it, or retrieve and set a new one.
2298 */
2299static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2300{
2301 struct cfq_queue *cfqq, *new_cfqq = NULL;
2302
2303 cfqq = cfqd->active_queue;
2304 if (!cfqq)
2305 goto new_queue;
2306
2307 if (!cfqd->rq_queued)
2308 return NULL;
2309
2310 /*
2311 * We were waiting for group to get backlogged. Expire the queue
2312 */
2313 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2314 goto expire;
2315
2316 /*
2317 * The active queue has run out of time, expire it and select new.
2318 */
2319 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2320 /*
2321 * If slice had not expired at the completion of last request
2322 * we might not have turned on wait_busy flag. Don't expire
2323 * the queue yet. Allow the group to get backlogged.
2324 *
2325 * The very fact that we have used the slice, that means we
2326 * have been idling all along on this queue and it should be
2327 * ok to wait for this request to complete.
2328 */
2329 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2330 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2331 cfqq = NULL;
2332 goto keep_queue;
2333 } else
2334 goto check_group_idle;
2335 }
2336
2337 /*
2338 * The active queue has requests and isn't expired, allow it to
2339 * dispatch.
2340 */
2341 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2342 goto keep_queue;
2343
2344 /*
2345 * If another queue has a request waiting within our mean seek
2346 * distance, let it run. The expire code will check for close
2347 * cooperators and put the close queue at the front of the service
2348 * tree. If possible, merge the expiring queue with the new cfqq.
2349 */
2350 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2351 if (new_cfqq) {
2352 if (!cfqq->new_cfqq)
2353 cfq_setup_merge(cfqq, new_cfqq);
2354 goto expire;
2355 }
2356
2357 /*
2358 * No requests pending. If the active queue still has requests in
2359 * flight or is idling for a new request, allow either of these
2360 * conditions to happen (or time out) before selecting a new queue.
2361 */
2362 if (timer_pending(&cfqd->idle_slice_timer)) {
2363 cfqq = NULL;
2364 goto keep_queue;
2365 }
2366
2367 /*
2368 * This is a deep seek queue, but the device is much faster than
2369 * the queue can deliver, don't idle
2370 **/
2371 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2372 (cfq_cfqq_slice_new(cfqq) ||
2373 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2374 cfq_clear_cfqq_deep(cfqq);
2375 cfq_clear_cfqq_idle_window(cfqq);
2376 }
2377
2378 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2379 cfqq = NULL;
2380 goto keep_queue;
2381 }
2382
2383 /*
2384 * If group idle is enabled and there are requests dispatched from
2385 * this group, wait for requests to complete.
2386 */
2387check_group_idle:
2388 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
2389 && cfqq->cfqg->dispatched) {
2390 cfqq = NULL;
2391 goto keep_queue;
2392 }
2393
2394expire:
2395 cfq_slice_expired(cfqd, 0);
2396new_queue:
2397 /*
2398 * Current queue expired. Check if we have to switch to a new
2399 * service tree
2400 */
2401 if (!new_cfqq)
2402 cfq_choose_cfqg(cfqd);
2403
2404 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2405keep_queue:
2406 return cfqq;
2407}
2408
2409static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2410{
2411 int dispatched = 0;
2412
2413 while (cfqq->next_rq) {
2414 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2415 dispatched++;
2416 }
2417
2418 BUG_ON(!list_empty(&cfqq->fifo));
2419
2420 /* By default cfqq is not expired if it is empty. Do it explicitly */
2421 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2422 return dispatched;
2423}
2424
2425/*
2426 * Drain our current requests. Used for barriers and when switching
2427 * io schedulers on-the-fly.
2428 */
2429static int cfq_forced_dispatch(struct cfq_data *cfqd)
2430{
2431 struct cfq_queue *cfqq;
2432 int dispatched = 0;
2433
2434 /* Expire the timeslice of the current active queue first */
2435 cfq_slice_expired(cfqd, 0);
2436 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2437 __cfq_set_active_queue(cfqd, cfqq);
2438 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2439 }
2440
2441 BUG_ON(cfqd->busy_queues);
2442
2443 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2444 return dispatched;
2445}
2446
2447static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2448 struct cfq_queue *cfqq)
2449{
2450 /* the queue hasn't finished any request, can't estimate */
2451 if (cfq_cfqq_slice_new(cfqq))
2452 return true;
2453 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2454 cfqq->slice_end))
2455 return true;
2456
2457 return false;
2458}
2459
2460static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2461{
2462 unsigned int max_dispatch;
2463
2464 /*
2465 * Drain async requests before we start sync IO
2466 */
2467 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2468 return false;
2469
2470 /*
2471 * If this is an async queue and we have sync IO in flight, let it wait
2472 */
2473 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2474 return false;
2475
2476 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2477 if (cfq_class_idle(cfqq))
2478 max_dispatch = 1;
2479
2480 /*
2481 * Does this cfqq already have too much IO in flight?
2482 */
2483 if (cfqq->dispatched >= max_dispatch) {
2484 bool promote_sync = false;
2485 /*
2486 * idle queue must always only have a single IO in flight
2487 */
2488 if (cfq_class_idle(cfqq))
2489 return false;
2490
2491 /*
2492 * If there is only one sync queue
2493 * we can ignore async queue here and give the sync
2494 * queue no dispatch limit. The reason is a sync queue can
2495 * preempt async queue, limiting the sync queue doesn't make
2496 * sense. This is useful for aiostress test.
2497 */
2498 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2499 promote_sync = true;
2500
2501 /*
2502 * We have other queues, don't allow more IO from this one
2503 */
2504 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2505 !promote_sync)
2506 return false;
2507
2508 /*
2509 * Sole queue user, no limit
2510 */
2511 if (cfqd->busy_queues == 1 || promote_sync)
2512 max_dispatch = -1;
2513 else
2514 /*
2515 * Normally we start throttling cfqq when cfq_quantum/2
2516 * requests have been dispatched. But we can drive
2517 * deeper queue depths at the beginning of slice
2518 * subjected to upper limit of cfq_quantum.
2519 * */
2520 max_dispatch = cfqd->cfq_quantum;
2521 }
2522
2523 /*
2524 * Async queues must wait a bit before being allowed dispatch.
2525 * We also ramp up the dispatch depth gradually for async IO,
2526 * based on the last sync IO we serviced
2527 */
2528 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2529 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2530 unsigned int depth;
2531
2532 depth = last_sync / cfqd->cfq_slice[1];
2533 if (!depth && !cfqq->dispatched)
2534 depth = 1;
2535 if (depth < max_dispatch)
2536 max_dispatch = depth;
2537 }
2538
2539 /*
2540 * If we're below the current max, allow a dispatch
2541 */
2542 return cfqq->dispatched < max_dispatch;
2543}
2544
2545/*
2546 * Dispatch a request from cfqq, moving them to the request queue
2547 * dispatch list.
2548 */
2549static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2550{
2551 struct request *rq;
2552
2553 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2554
2555 if (!cfq_may_dispatch(cfqd, cfqq))
2556 return false;
2557
2558 /*
2559 * follow expired path, else get first next available
2560 */
2561 rq = cfq_check_fifo(cfqq);
2562 if (!rq)
2563 rq = cfqq->next_rq;
2564
2565 /*
2566 * insert request into driver dispatch list
2567 */
2568 cfq_dispatch_insert(cfqd->queue, rq);
2569
2570 if (!cfqd->active_cic) {
2571 struct cfq_io_context *cic = RQ_CIC(rq);
2572
2573 atomic_long_inc(&cic->ioc->refcount);
2574 cfqd->active_cic = cic;
2575 }
2576
2577 return true;
2578}
2579
2580/*
2581 * Find the cfqq that we need to service and move a request from that to the
2582 * dispatch list
2583 */
2584static int cfq_dispatch_requests(struct request_queue *q, int force)
2585{
2586 struct cfq_data *cfqd = q->elevator->elevator_data;
2587 struct cfq_queue *cfqq;
2588
2589 if (!cfqd->busy_queues)
2590 return 0;
2591
2592 if (unlikely(force))
2593 return cfq_forced_dispatch(cfqd);
2594
2595 cfqq = cfq_select_queue(cfqd);
2596 if (!cfqq)
2597 return 0;
2598
2599 /*
2600 * Dispatch a request from this cfqq, if it is allowed
2601 */
2602 if (!cfq_dispatch_request(cfqd, cfqq))
2603 return 0;
2604
2605 cfqq->slice_dispatch++;
2606 cfq_clear_cfqq_must_dispatch(cfqq);
2607
2608 /*
2609 * expire an async queue immediately if it has used up its slice. idle
2610 * queue always expire after 1 dispatch round.
2611 */
2612 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2613 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2614 cfq_class_idle(cfqq))) {
2615 cfqq->slice_end = jiffies + 1;
2616 cfq_slice_expired(cfqd, 0);
2617 }
2618
2619 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2620 return 1;
2621}
2622
2623/*
2624 * task holds one reference to the queue, dropped when task exits. each rq
2625 * in-flight on this queue also holds a reference, dropped when rq is freed.
2626 *
2627 * Each cfq queue took a reference on the parent group. Drop it now.
2628 * queue lock must be held here.
2629 */
2630static void cfq_put_queue(struct cfq_queue *cfqq)
2631{
2632 struct cfq_data *cfqd = cfqq->cfqd;
2633 struct cfq_group *cfqg;
2634
2635 BUG_ON(cfqq->ref <= 0);
2636
2637 cfqq->ref--;
2638 if (cfqq->ref)
2639 return;
2640
2641 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2642 BUG_ON(rb_first(&cfqq->sort_list));
2643 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2644 cfqg = cfqq->cfqg;
2645
2646 if (unlikely(cfqd->active_queue == cfqq)) {
2647 __cfq_slice_expired(cfqd, cfqq, 0);
2648 cfq_schedule_dispatch(cfqd);
2649 }
2650
2651 BUG_ON(cfq_cfqq_on_rr(cfqq));
2652 kmem_cache_free(cfq_pool, cfqq);
2653 cfq_put_cfqg(cfqg);
2654}
2655
2656/*
2657 * Call func for each cic attached to this ioc.
2658 */
2659static void
2660call_for_each_cic(struct io_context *ioc,
2661 void (*func)(struct io_context *, struct cfq_io_context *))
2662{
2663 struct cfq_io_context *cic;
2664 struct hlist_node *n;
2665
2666 rcu_read_lock();
2667
2668 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2669 func(ioc, cic);
2670
2671 rcu_read_unlock();
2672}
2673
2674static void cfq_cic_free_rcu(struct rcu_head *head)
2675{
2676 struct cfq_io_context *cic;
2677
2678 cic = container_of(head, struct cfq_io_context, rcu_head);
2679
2680 kmem_cache_free(cfq_ioc_pool, cic);
2681 elv_ioc_count_dec(cfq_ioc_count);
2682
2683 if (ioc_gone) {
2684 /*
2685 * CFQ scheduler is exiting, grab exit lock and check
2686 * the pending io context count. If it hits zero,
2687 * complete ioc_gone and set it back to NULL
2688 */
2689 spin_lock(&ioc_gone_lock);
2690 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2691 complete(ioc_gone);
2692 ioc_gone = NULL;
2693 }
2694 spin_unlock(&ioc_gone_lock);
2695 }
2696}
2697
2698static void cfq_cic_free(struct cfq_io_context *cic)
2699{
2700 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2701}
2702
2703static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2704{
2705 unsigned long flags;
2706 unsigned long dead_key = (unsigned long) cic->key;
2707
2708 BUG_ON(!(dead_key & CIC_DEAD_KEY));
2709
2710 spin_lock_irqsave(&ioc->lock, flags);
2711 radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
2712 hlist_del_rcu(&cic->cic_list);
2713 spin_unlock_irqrestore(&ioc->lock, flags);
2714
2715 cfq_cic_free(cic);
2716}
2717
2718/*
2719 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2720 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2721 * and ->trim() which is called with the task lock held
2722 */
2723static void cfq_free_io_context(struct io_context *ioc)
2724{
2725 /*
2726 * ioc->refcount is zero here, or we are called from elv_unregister(),
2727 * so no more cic's are allowed to be linked into this ioc. So it
2728 * should be ok to iterate over the known list, we will see all cic's
2729 * since no new ones are added.
2730 */
2731 call_for_each_cic(ioc, cic_free_func);
2732}
2733
2734static void cfq_put_cooperator(struct cfq_queue *cfqq)
2735{
2736 struct cfq_queue *__cfqq, *next;
2737
2738 /*
2739 * If this queue was scheduled to merge with another queue, be
2740 * sure to drop the reference taken on that queue (and others in
2741 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2742 */
2743 __cfqq = cfqq->new_cfqq;
2744 while (__cfqq) {
2745 if (__cfqq == cfqq) {
2746 WARN(1, "cfqq->new_cfqq loop detected\n");
2747 break;
2748 }
2749 next = __cfqq->new_cfqq;
2750 cfq_put_queue(__cfqq);
2751 __cfqq = next;
2752 }
2753}
2754
2755static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2756{
2757 if (unlikely(cfqq == cfqd->active_queue)) {
2758 __cfq_slice_expired(cfqd, cfqq, 0);
2759 cfq_schedule_dispatch(cfqd);
2760 }
2761
2762 cfq_put_cooperator(cfqq);
2763
2764 cfq_put_queue(cfqq);
2765}
2766
2767static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2768 struct cfq_io_context *cic)
2769{
2770 struct io_context *ioc = cic->ioc;
2771
2772 list_del_init(&cic->queue_list);
2773
2774 /*
2775 * Make sure dead mark is seen for dead queues
2776 */
2777 smp_wmb();
2778 cic->key = cfqd_dead_key(cfqd);
2779
2780 if (ioc->ioc_data == cic)
2781 rcu_assign_pointer(ioc->ioc_data, NULL);
2782
2783 if (cic->cfqq[BLK_RW_ASYNC]) {
2784 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2785 cic->cfqq[BLK_RW_ASYNC] = NULL;
2786 }
2787
2788 if (cic->cfqq[BLK_RW_SYNC]) {
2789 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2790 cic->cfqq[BLK_RW_SYNC] = NULL;
2791 }
2792}
2793
2794static void cfq_exit_single_io_context(struct io_context *ioc,
2795 struct cfq_io_context *cic)
2796{
2797 struct cfq_data *cfqd = cic_to_cfqd(cic);
2798
2799 if (cfqd) {
2800 struct request_queue *q = cfqd->queue;
2801 unsigned long flags;
2802
2803 spin_lock_irqsave(q->queue_lock, flags);
2804
2805 /*
2806 * Ensure we get a fresh copy of the ->key to prevent
2807 * race between exiting task and queue
2808 */
2809 smp_read_barrier_depends();
2810 if (cic->key == cfqd)
2811 __cfq_exit_single_io_context(cfqd, cic);
2812
2813 spin_unlock_irqrestore(q->queue_lock, flags);
2814 }
2815}
2816
2817/*
2818 * The process that ioc belongs to has exited, we need to clean up
2819 * and put the internal structures we have that belongs to that process.
2820 */
2821static void cfq_exit_io_context(struct io_context *ioc)
2822{
2823 call_for_each_cic(ioc, cfq_exit_single_io_context);
2824}
2825
2826static struct cfq_io_context *
2827cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2828{
2829 struct cfq_io_context *cic;
2830
2831 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2832 cfqd->queue->node);
2833 if (cic) {
2834 cic->last_end_request = jiffies;
2835 INIT_LIST_HEAD(&cic->queue_list);
2836 INIT_HLIST_NODE(&cic->cic_list);
2837 cic->dtor = cfq_free_io_context;
2838 cic->exit = cfq_exit_io_context;
2839 elv_ioc_count_inc(cfq_ioc_count);
2840 }
2841
2842 return cic;
2843}
2844
2845static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2846{
2847 struct task_struct *tsk = current;
2848 int ioprio_class;
2849
2850 if (!cfq_cfqq_prio_changed(cfqq))
2851 return;
2852
2853 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2854 switch (ioprio_class) {
2855 default:
2856 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2857 case IOPRIO_CLASS_NONE:
2858 /*
2859 * no prio set, inherit CPU scheduling settings
2860 */
2861 cfqq->ioprio = task_nice_ioprio(tsk);
2862 cfqq->ioprio_class = task_nice_ioclass(tsk);
2863 break;
2864 case IOPRIO_CLASS_RT:
2865 cfqq->ioprio = task_ioprio(ioc);
2866 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2867 break;
2868 case IOPRIO_CLASS_BE:
2869 cfqq->ioprio = task_ioprio(ioc);
2870 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2871 break;
2872 case IOPRIO_CLASS_IDLE:
2873 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2874 cfqq->ioprio = 7;
2875 cfq_clear_cfqq_idle_window(cfqq);
2876 break;
2877 }
2878
2879 /*
2880 * keep track of original prio settings in case we have to temporarily
2881 * elevate the priority of this queue
2882 */
2883 cfqq->org_ioprio = cfqq->ioprio;
2884 cfqq->org_ioprio_class = cfqq->ioprio_class;
2885 cfq_clear_cfqq_prio_changed(cfqq);
2886}
2887
2888static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2889{
2890 struct cfq_data *cfqd = cic_to_cfqd(cic);
2891 struct cfq_queue *cfqq;
2892 unsigned long flags;
2893
2894 if (unlikely(!cfqd))
2895 return;
2896
2897 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2898
2899 cfqq = cic->cfqq[BLK_RW_ASYNC];
2900 if (cfqq) {
2901 struct cfq_queue *new_cfqq;
2902 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2903 GFP_ATOMIC);
2904 if (new_cfqq) {
2905 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2906 cfq_put_queue(cfqq);
2907 }
2908 }
2909
2910 cfqq = cic->cfqq[BLK_RW_SYNC];
2911 if (cfqq)
2912 cfq_mark_cfqq_prio_changed(cfqq);
2913
2914 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2915}
2916
2917static void cfq_ioc_set_ioprio(struct io_context *ioc)
2918{
2919 call_for_each_cic(ioc, changed_ioprio);
2920 ioc->ioprio_changed = 0;
2921}
2922
2923static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2924 pid_t pid, bool is_sync)
2925{
2926 RB_CLEAR_NODE(&cfqq->rb_node);
2927 RB_CLEAR_NODE(&cfqq->p_node);
2928 INIT_LIST_HEAD(&cfqq->fifo);
2929
2930 cfqq->ref = 0;
2931 cfqq->cfqd = cfqd;
2932
2933 cfq_mark_cfqq_prio_changed(cfqq);
2934
2935 if (is_sync) {
2936 if (!cfq_class_idle(cfqq))
2937 cfq_mark_cfqq_idle_window(cfqq);
2938 cfq_mark_cfqq_sync(cfqq);
2939 }
2940 cfqq->pid = pid;
2941}
2942
2943#ifdef CONFIG_CFQ_GROUP_IOSCHED
2944static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2945{
2946 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2947 struct cfq_data *cfqd = cic_to_cfqd(cic);
2948 unsigned long flags;
2949 struct request_queue *q;
2950
2951 if (unlikely(!cfqd))
2952 return;
2953
2954 q = cfqd->queue;
2955
2956 spin_lock_irqsave(q->queue_lock, flags);
2957
2958 if (sync_cfqq) {
2959 /*
2960 * Drop reference to sync queue. A new sync queue will be
2961 * assigned in new group upon arrival of a fresh request.
2962 */
2963 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2964 cic_set_cfqq(cic, NULL, 1);
2965 cfq_put_queue(sync_cfqq);
2966 }
2967
2968 spin_unlock_irqrestore(q->queue_lock, flags);
2969}
2970
2971static void cfq_ioc_set_cgroup(struct io_context *ioc)
2972{
2973 call_for_each_cic(ioc, changed_cgroup);
2974 ioc->cgroup_changed = 0;
2975}
2976#endif /* CONFIG_CFQ_GROUP_IOSCHED */
2977
2978static struct cfq_queue *
2979cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2980 struct io_context *ioc, gfp_t gfp_mask)
2981{
2982 struct cfq_queue *cfqq, *new_cfqq = NULL;
2983 struct cfq_io_context *cic;
2984 struct cfq_group *cfqg;
2985
2986retry:
2987 cfqg = cfq_get_cfqg(cfqd);
2988 cic = cfq_cic_lookup(cfqd, ioc);
2989 /* cic always exists here */
2990 cfqq = cic_to_cfqq(cic, is_sync);
2991
2992 /*
2993 * Always try a new alloc if we fell back to the OOM cfqq
2994 * originally, since it should just be a temporary situation.
2995 */
2996 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2997 cfqq = NULL;
2998 if (new_cfqq) {
2999 cfqq = new_cfqq;
3000 new_cfqq = NULL;
3001 } else if (gfp_mask & __GFP_WAIT) {
3002 spin_unlock_irq(cfqd->queue->queue_lock);
3003 new_cfqq = kmem_cache_alloc_node(cfq_pool,
3004 gfp_mask | __GFP_ZERO,
3005 cfqd->queue->node);
3006 spin_lock_irq(cfqd->queue->queue_lock);
3007 if (new_cfqq)
3008 goto retry;
3009 } else {
3010 cfqq = kmem_cache_alloc_node(cfq_pool,
3011 gfp_mask | __GFP_ZERO,
3012 cfqd->queue->node);
3013 }
3014
3015 if (cfqq) {
3016 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3017 cfq_init_prio_data(cfqq, ioc);
3018 cfq_link_cfqq_cfqg(cfqq, cfqg);
3019 cfq_log_cfqq(cfqd, cfqq, "alloced");
3020 } else
3021 cfqq = &cfqd->oom_cfqq;
3022 }
3023
3024 if (new_cfqq)
3025 kmem_cache_free(cfq_pool, new_cfqq);
3026
3027 return cfqq;
3028}
3029
3030static struct cfq_queue **
3031cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3032{
3033 switch (ioprio_class) {
3034 case IOPRIO_CLASS_RT:
3035 return &cfqd->async_cfqq[0][ioprio];
3036 case IOPRIO_CLASS_BE:
3037 return &cfqd->async_cfqq[1][ioprio];
3038 case IOPRIO_CLASS_IDLE:
3039 return &cfqd->async_idle_cfqq;
3040 default:
3041 BUG();
3042 }
3043}
3044
3045static struct cfq_queue *
3046cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
3047 gfp_t gfp_mask)
3048{
3049 const int ioprio = task_ioprio(ioc);
3050 const int ioprio_class = task_ioprio_class(ioc);
3051 struct cfq_queue **async_cfqq = NULL;
3052 struct cfq_queue *cfqq = NULL;
3053
3054 if (!is_sync) {
3055 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3056 cfqq = *async_cfqq;
3057 }
3058
3059 if (!cfqq)
3060 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
3061
3062 /*
3063 * pin the queue now that it's allocated, scheduler exit will prune it
3064 */
3065 if (!is_sync && !(*async_cfqq)) {
3066 cfqq->ref++;
3067 *async_cfqq = cfqq;
3068 }
3069
3070 cfqq->ref++;
3071 return cfqq;
3072}
3073
3074/*
3075 * We drop cfq io contexts lazily, so we may find a dead one.
3076 */
3077static void
3078cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
3079 struct cfq_io_context *cic)
3080{
3081 unsigned long flags;
3082
3083 WARN_ON(!list_empty(&cic->queue_list));
3084 BUG_ON(cic->key != cfqd_dead_key(cfqd));
3085
3086 spin_lock_irqsave(&ioc->lock, flags);
3087
3088 BUG_ON(ioc->ioc_data == cic);
3089
3090 radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
3091 hlist_del_rcu(&cic->cic_list);
3092 spin_unlock_irqrestore(&ioc->lock, flags);
3093
3094 cfq_cic_free(cic);
3095}
3096
3097static struct cfq_io_context *
3098cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
3099{
3100 struct cfq_io_context *cic;
3101 unsigned long flags;
3102
3103 if (unlikely(!ioc))
3104 return NULL;
3105
3106 rcu_read_lock();
3107
3108 /*
3109 * we maintain a last-hit cache, to avoid browsing over the tree
3110 */
3111 cic = rcu_dereference(ioc->ioc_data);
3112 if (cic && cic->key == cfqd) {
3113 rcu_read_unlock();
3114 return cic;
3115 }
3116
3117 do {
3118 cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
3119 rcu_read_unlock();
3120 if (!cic)
3121 break;
3122 if (unlikely(cic->key != cfqd)) {
3123 cfq_drop_dead_cic(cfqd, ioc, cic);
3124 rcu_read_lock();
3125 continue;
3126 }
3127
3128 spin_lock_irqsave(&ioc->lock, flags);
3129 rcu_assign_pointer(ioc->ioc_data, cic);
3130 spin_unlock_irqrestore(&ioc->lock, flags);
3131 break;
3132 } while (1);
3133
3134 return cic;
3135}
3136
3137/*
3138 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3139 * the process specific cfq io context when entered from the block layer.
3140 * Also adds the cic to a per-cfqd list, used when this queue is removed.
3141 */
3142static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
3143 struct cfq_io_context *cic, gfp_t gfp_mask)
3144{
3145 unsigned long flags;
3146 int ret;
3147
3148 ret = radix_tree_preload(gfp_mask);
3149 if (!ret) {
3150 cic->ioc = ioc;
3151 cic->key = cfqd;
3152
3153 spin_lock_irqsave(&ioc->lock, flags);
3154 ret = radix_tree_insert(&ioc->radix_root,
3155 cfqd->cic_index, cic);
3156 if (!ret)
3157 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
3158 spin_unlock_irqrestore(&ioc->lock, flags);
3159
3160 radix_tree_preload_end();
3161
3162 if (!ret) {
3163 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3164 list_add(&cic->queue_list, &cfqd->cic_list);
3165 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3166 }
3167 }
3168
3169 if (ret)
3170 printk(KERN_ERR "cfq: cic link failed!\n");
3171
3172 return ret;
3173}
3174
3175/*
3176 * Setup general io context and cfq io context. There can be several cfq
3177 * io contexts per general io context, if this process is doing io to more
3178 * than one device managed by cfq.
3179 */
3180static struct cfq_io_context *
3181cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
3182{
3183 struct io_context *ioc = NULL;
3184 struct cfq_io_context *cic;
3185
3186 might_sleep_if(gfp_mask & __GFP_WAIT);
3187
3188 ioc = get_io_context(gfp_mask, cfqd->queue->node);
3189 if (!ioc)
3190 return NULL;
3191
3192 cic = cfq_cic_lookup(cfqd, ioc);
3193 if (cic)
3194 goto out;
3195
3196 cic = cfq_alloc_io_context(cfqd, gfp_mask);
3197 if (cic == NULL)
3198 goto err;
3199
3200 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3201 goto err_free;
3202
3203out:
3204 smp_read_barrier_depends();
3205 if (unlikely(ioc->ioprio_changed))
3206 cfq_ioc_set_ioprio(ioc);
3207
3208#ifdef CONFIG_CFQ_GROUP_IOSCHED
3209 if (unlikely(ioc->cgroup_changed))
3210 cfq_ioc_set_cgroup(ioc);
3211#endif
3212 return cic;
3213err_free:
3214 cfq_cic_free(cic);
3215err:
3216 put_io_context(ioc);
3217 return NULL;
3218}
3219
3220static void
3221cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
3222{
3223 unsigned long elapsed = jiffies - cic->last_end_request;
3224 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
3225
3226 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3227 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3228 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3229}
3230
3231static void
3232cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3233 struct request *rq)
3234{
3235 sector_t sdist = 0;
3236 sector_t n_sec = blk_rq_sectors(rq);
3237 if (cfqq->last_request_pos) {
3238 if (cfqq->last_request_pos < blk_rq_pos(rq))
3239 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3240 else
3241 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3242 }
3243
3244 cfqq->seek_history <<= 1;
3245 if (blk_queue_nonrot(cfqd->queue))
3246 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3247 else
3248 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3249}
3250
3251/*
3252 * Disable idle window if the process thinks too long or seeks so much that
3253 * it doesn't matter
3254 */
3255static void
3256cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3257 struct cfq_io_context *cic)
3258{
3259 int old_idle, enable_idle;
3260
3261 /*
3262 * Don't idle for async or idle io prio class
3263 */
3264 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3265 return;
3266
3267 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3268
3269 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3270 cfq_mark_cfqq_deep(cfqq);
3271
3272 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3273 enable_idle = 0;
3274 else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3275 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3276 enable_idle = 0;
3277 else if (sample_valid(cic->ttime_samples)) {
3278 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3279 enable_idle = 0;
3280 else
3281 enable_idle = 1;
3282 }
3283
3284 if (old_idle != enable_idle) {
3285 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3286 if (enable_idle)
3287 cfq_mark_cfqq_idle_window(cfqq);
3288 else
3289 cfq_clear_cfqq_idle_window(cfqq);
3290 }
3291}
3292
3293/*
3294 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3295 * no or if we aren't sure, a 1 will cause a preempt.
3296 */
3297static bool
3298cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3299 struct request *rq)
3300{
3301 struct cfq_queue *cfqq;
3302
3303 cfqq = cfqd->active_queue;
3304 if (!cfqq)
3305 return false;
3306
3307 if (cfq_class_idle(new_cfqq))
3308 return false;
3309
3310 if (cfq_class_idle(cfqq))
3311 return true;
3312
3313 /*
3314 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3315 */
3316 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3317 return false;
3318
3319 /*
3320 * if the new request is sync, but the currently running queue is
3321 * not, let the sync request have priority.
3322 */
3323 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3324 return true;
3325
3326 if (new_cfqq->cfqg != cfqq->cfqg)
3327 return false;
3328
3329 if (cfq_slice_used(cfqq))
3330 return true;
3331
3332 /* Allow preemption only if we are idling on sync-noidle tree */
3333 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3334 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3335 new_cfqq->service_tree->count == 2 &&
3336 RB_EMPTY_ROOT(&cfqq->sort_list))
3337 return true;
3338
3339 /*
3340 * So both queues are sync. Let the new request get disk time if
3341 * it's a metadata request and the current queue is doing regular IO.
3342 */
3343 if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
3344 return true;
3345
3346 /*
3347 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3348 */
3349 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3350 return true;
3351
3352 /* An idle queue should not be idle now for some reason */
3353 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3354 return true;
3355
3356 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3357 return false;
3358
3359 /*
3360 * if this request is as-good as one we would expect from the
3361 * current cfqq, let it preempt
3362 */
3363 if (cfq_rq_close(cfqd, cfqq, rq))
3364 return true;
3365
3366 return false;
3367}
3368
3369/*
3370 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3371 * let it have half of its nominal slice.
3372 */
3373static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3374{
3375 struct cfq_queue *old_cfqq = cfqd->active_queue;
3376
3377 cfq_log_cfqq(cfqd, cfqq, "preempt");
3378 cfq_slice_expired(cfqd, 1);
3379
3380 /*
3381 * workload type is changed, don't save slice, otherwise preempt
3382 * doesn't happen
3383 */
3384 if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
3385 cfqq->cfqg->saved_workload_slice = 0;
3386
3387 /*
3388 * Put the new queue at the front of the of the current list,
3389 * so we know that it will be selected next.
3390 */
3391 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3392
3393 cfq_service_tree_add(cfqd, cfqq, 1);
3394
3395 cfqq->slice_end = 0;
3396 cfq_mark_cfqq_slice_new(cfqq);
3397}
3398
3399/*
3400 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3401 * something we should do about it
3402 */
3403static void
3404cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3405 struct request *rq)
3406{
3407 struct cfq_io_context *cic = RQ_CIC(rq);
3408
3409 cfqd->rq_queued++;
3410 if (rq->cmd_flags & REQ_META)
3411 cfqq->meta_pending++;
3412
3413 cfq_update_io_thinktime(cfqd, cic);
3414 cfq_update_io_seektime(cfqd, cfqq, rq);
3415 cfq_update_idle_window(cfqd, cfqq, cic);
3416
3417 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3418
3419 if (cfqq == cfqd->active_queue) {
3420 /*
3421 * Remember that we saw a request from this process, but
3422 * don't start queuing just yet. Otherwise we risk seeing lots
3423 * of tiny requests, because we disrupt the normal plugging
3424 * and merging. If the request is already larger than a single
3425 * page, let it rip immediately. For that case we assume that
3426 * merging is already done. Ditto for a busy system that
3427 * has other work pending, don't risk delaying until the
3428 * idle timer unplug to continue working.
3429 */
3430 if (cfq_cfqq_wait_request(cfqq)) {
3431 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3432 cfqd->busy_queues > 1) {
3433 cfq_del_timer(cfqd, cfqq);
3434 cfq_clear_cfqq_wait_request(cfqq);
3435 __blk_run_queue(cfqd->queue);
3436 } else {
3437 cfq_blkiocg_update_idle_time_stats(
3438 &cfqq->cfqg->blkg);
3439 cfq_mark_cfqq_must_dispatch(cfqq);
3440 }
3441 }
3442 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3443 /*
3444 * not the active queue - expire current slice if it is
3445 * idle and has expired it's mean thinktime or this new queue
3446 * has some old slice time left and is of higher priority or
3447 * this new queue is RT and the current one is BE
3448 */
3449 cfq_preempt_queue(cfqd, cfqq);
3450 __blk_run_queue(cfqd->queue);
3451 }
3452}
3453
3454static void cfq_insert_request(struct request_queue *q, struct request *rq)
3455{
3456 struct cfq_data *cfqd = q->elevator->elevator_data;
3457 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3458
3459 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3460 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3461
3462 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3463 list_add_tail(&rq->queuelist, &cfqq->fifo);
3464 cfq_add_rq_rb(rq);
3465 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3466 &cfqd->serving_group->blkg, rq_data_dir(rq),
3467 rq_is_sync(rq));
3468 cfq_rq_enqueued(cfqd, cfqq, rq);
3469}
3470
3471/*
3472 * Update hw_tag based on peak queue depth over 50 samples under
3473 * sufficient load.
3474 */
3475static void cfq_update_hw_tag(struct cfq_data *cfqd)
3476{
3477 struct cfq_queue *cfqq = cfqd->active_queue;
3478
3479 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3480 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3481
3482 if (cfqd->hw_tag == 1)
3483 return;
3484
3485 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3486 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3487 return;
3488
3489 /*
3490 * If active queue hasn't enough requests and can idle, cfq might not
3491 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3492 * case
3493 */
3494 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3495 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3496 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3497 return;
3498
3499 if (cfqd->hw_tag_samples++ < 50)
3500 return;
3501
3502 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3503 cfqd->hw_tag = 1;
3504 else
3505 cfqd->hw_tag = 0;
3506}
3507
3508static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3509{
3510 struct cfq_io_context *cic = cfqd->active_cic;
3511
3512 /* If the queue already has requests, don't wait */
3513 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3514 return false;
3515
3516 /* If there are other queues in the group, don't wait */
3517 if (cfqq->cfqg->nr_cfqq > 1)
3518 return false;
3519
3520 if (cfq_slice_used(cfqq))
3521 return true;
3522
3523 /* if slice left is less than think time, wait busy */
3524 if (cic && sample_valid(cic->ttime_samples)
3525 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3526 return true;
3527
3528 /*
3529 * If think times is less than a jiffy than ttime_mean=0 and above
3530 * will not be true. It might happen that slice has not expired yet
3531 * but will expire soon (4-5 ns) during select_queue(). To cover the
3532 * case where think time is less than a jiffy, mark the queue wait
3533 * busy if only 1 jiffy is left in the slice.
3534 */
3535 if (cfqq->slice_end - jiffies == 1)
3536 return true;
3537
3538 return false;
3539}
3540
3541static void cfq_completed_request(struct request_queue *q, struct request *rq)
3542{
3543 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3544 struct cfq_data *cfqd = cfqq->cfqd;
3545 const int sync = rq_is_sync(rq);
3546 unsigned long now;
3547
3548 now = jiffies;
3549 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3550 !!(rq->cmd_flags & REQ_NOIDLE));
3551
3552 cfq_update_hw_tag(cfqd);
3553
3554 WARN_ON(!cfqd->rq_in_driver);
3555 WARN_ON(!cfqq->dispatched);
3556 cfqd->rq_in_driver--;
3557 cfqq->dispatched--;
3558 (RQ_CFQG(rq))->dispatched--;
3559 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3560 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3561 rq_data_dir(rq), rq_is_sync(rq));
3562
3563 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3564
3565 if (sync) {
3566 RQ_CIC(rq)->last_end_request = now;
3567 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3568 cfqd->last_delayed_sync = now;
3569 }
3570
3571 /*
3572 * If this is the active queue, check if it needs to be expired,
3573 * or if we want to idle in case it has no pending requests.
3574 */
3575 if (cfqd->active_queue == cfqq) {
3576 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3577
3578 if (cfq_cfqq_slice_new(cfqq)) {
3579 cfq_set_prio_slice(cfqd, cfqq);
3580 cfq_clear_cfqq_slice_new(cfqq);
3581 }
3582
3583 /*
3584 * Should we wait for next request to come in before we expire
3585 * the queue.
3586 */
3587 if (cfq_should_wait_busy(cfqd, cfqq)) {
3588 unsigned long extend_sl = cfqd->cfq_slice_idle;
3589 if (!cfqd->cfq_slice_idle)
3590 extend_sl = cfqd->cfq_group_idle;
3591 cfqq->slice_end = jiffies + extend_sl;
3592 cfq_mark_cfqq_wait_busy(cfqq);
3593 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3594 }
3595
3596 /*
3597 * Idling is not enabled on:
3598 * - expired queues
3599 * - idle-priority queues
3600 * - async queues
3601 * - queues with still some requests queued
3602 * - when there is a close cooperator
3603 */
3604 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3605 cfq_slice_expired(cfqd, 1);
3606 else if (sync && cfqq_empty &&
3607 !cfq_close_cooperator(cfqd, cfqq)) {
3608 cfq_arm_slice_timer(cfqd);
3609 }
3610 }
3611
3612 if (!cfqd->rq_in_driver)
3613 cfq_schedule_dispatch(cfqd);
3614}
3615
3616/*
3617 * we temporarily boost lower priority queues if they are holding fs exclusive
3618 * resources. they are boosted to normal prio (CLASS_BE/4)
3619 */
3620static void cfq_prio_boost(struct cfq_queue *cfqq)
3621{
3622 if (has_fs_excl()) {
3623 /*
3624 * boost idle prio on transactions that would lock out other
3625 * users of the filesystem
3626 */
3627 if (cfq_class_idle(cfqq))
3628 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3629 if (cfqq->ioprio > IOPRIO_NORM)
3630 cfqq->ioprio = IOPRIO_NORM;
3631 } else {
3632 /*
3633 * unboost the queue (if needed)
3634 */
3635 cfqq->ioprio_class = cfqq->org_ioprio_class;
3636 cfqq->ioprio = cfqq->org_ioprio;
3637 }
3638}
3639
3640static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3641{
3642 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3643 cfq_mark_cfqq_must_alloc_slice(cfqq);
3644 return ELV_MQUEUE_MUST;
3645 }
3646
3647 return ELV_MQUEUE_MAY;
3648}
3649
3650static int cfq_may_queue(struct request_queue *q, int rw)
3651{
3652 struct cfq_data *cfqd = q->elevator->elevator_data;
3653 struct task_struct *tsk = current;
3654 struct cfq_io_context *cic;
3655 struct cfq_queue *cfqq;
3656
3657 /*
3658 * don't force setup of a queue from here, as a call to may_queue
3659 * does not necessarily imply that a request actually will be queued.
3660 * so just lookup a possibly existing queue, or return 'may queue'
3661 * if that fails
3662 */
3663 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3664 if (!cic)
3665 return ELV_MQUEUE_MAY;
3666
3667 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3668 if (cfqq) {
3669 cfq_init_prio_data(cfqq, cic->ioc);
3670 cfq_prio_boost(cfqq);
3671
3672 return __cfq_may_queue(cfqq);
3673 }
3674
3675 return ELV_MQUEUE_MAY;
3676}
3677
3678/*
3679 * queue lock held here
3680 */
3681static void cfq_put_request(struct request *rq)
3682{
3683 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3684
3685 if (cfqq) {
3686 const int rw = rq_data_dir(rq);
3687
3688 BUG_ON(!cfqq->allocated[rw]);
3689 cfqq->allocated[rw]--;
3690
3691 put_io_context(RQ_CIC(rq)->ioc);
3692
3693 rq->elevator_private[0] = NULL;
3694 rq->elevator_private[1] = NULL;
3695
3696 /* Put down rq reference on cfqg */
3697 cfq_put_cfqg(RQ_CFQG(rq));
3698 rq->elevator_private[2] = NULL;
3699
3700 cfq_put_queue(cfqq);
3701 }
3702}
3703
3704static struct cfq_queue *
3705cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3706 struct cfq_queue *cfqq)
3707{
3708 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3709 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3710 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3711 cfq_put_queue(cfqq);
3712 return cic_to_cfqq(cic, 1);
3713}
3714
3715/*
3716 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3717 * was the last process referring to said cfqq.
3718 */
3719static struct cfq_queue *
3720split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3721{
3722 if (cfqq_process_refs(cfqq) == 1) {
3723 cfqq->pid = current->pid;
3724 cfq_clear_cfqq_coop(cfqq);
3725 cfq_clear_cfqq_split_coop(cfqq);
3726 return cfqq;
3727 }
3728
3729 cic_set_cfqq(cic, NULL, 1);
3730
3731 cfq_put_cooperator(cfqq);
3732
3733 cfq_put_queue(cfqq);
3734 return NULL;
3735}
3736/*
3737 * Allocate cfq data structures associated with this request.
3738 */
3739static int
3740cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3741{
3742 struct cfq_data *cfqd = q->elevator->elevator_data;
3743 struct cfq_io_context *cic;
3744 const int rw = rq_data_dir(rq);
3745 const bool is_sync = rq_is_sync(rq);
3746 struct cfq_queue *cfqq;
3747 unsigned long flags;
3748
3749 might_sleep_if(gfp_mask & __GFP_WAIT);
3750
3751 cic = cfq_get_io_context(cfqd, gfp_mask);
3752
3753 spin_lock_irqsave(q->queue_lock, flags);
3754
3755 if (!cic)
3756 goto queue_fail;
3757
3758new_queue:
3759 cfqq = cic_to_cfqq(cic, is_sync);
3760 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3761 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3762 cic_set_cfqq(cic, cfqq, is_sync);
3763 } else {
3764 /*
3765 * If the queue was seeky for too long, break it apart.
3766 */
3767 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3768 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3769 cfqq = split_cfqq(cic, cfqq);
3770 if (!cfqq)
3771 goto new_queue;
3772 }
3773
3774 /*
3775 * Check to see if this queue is scheduled to merge with
3776 * another, closely cooperating queue. The merging of
3777 * queues happens here as it must be done in process context.
3778 * The reference on new_cfqq was taken in merge_cfqqs.
3779 */
3780 if (cfqq->new_cfqq)
3781 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3782 }
3783
3784 cfqq->allocated[rw]++;
3785
3786 cfqq->ref++;
3787 rq->elevator_private[0] = cic;
3788 rq->elevator_private[1] = cfqq;
3789 rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
3790 spin_unlock_irqrestore(q->queue_lock, flags);
3791 return 0;
3792
3793queue_fail:
3794 if (cic)
3795 put_io_context(cic->ioc);
3796
3797 cfq_schedule_dispatch(cfqd);
3798 spin_unlock_irqrestore(q->queue_lock, flags);
3799 cfq_log(cfqd, "set_request fail");
3800 return 1;
3801}
3802
3803static void cfq_kick_queue(struct work_struct *work)
3804{
3805 struct cfq_data *cfqd =
3806 container_of(work, struct cfq_data, unplug_work);
3807 struct request_queue *q = cfqd->queue;
3808
3809 spin_lock_irq(q->queue_lock);
3810 __blk_run_queue(cfqd->queue);
3811 spin_unlock_irq(q->queue_lock);
3812}
3813
3814/*
3815 * Timer running if the active_queue is currently idling inside its time slice
3816 */
3817static void cfq_idle_slice_timer(unsigned long data)
3818{
3819 struct cfq_data *cfqd = (struct cfq_data *) data;
3820 struct cfq_queue *cfqq;
3821 unsigned long flags;
3822 int timed_out = 1;
3823
3824 cfq_log(cfqd, "idle timer fired");
3825
3826 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3827
3828 cfqq = cfqd->active_queue;
3829 if (cfqq) {
3830 timed_out = 0;
3831
3832 /*
3833 * We saw a request before the queue expired, let it through
3834 */
3835 if (cfq_cfqq_must_dispatch(cfqq))
3836 goto out_kick;
3837
3838 /*
3839 * expired
3840 */
3841 if (cfq_slice_used(cfqq))
3842 goto expire;
3843
3844 /*
3845 * only expire and reinvoke request handler, if there are
3846 * other queues with pending requests
3847 */
3848 if (!cfqd->busy_queues)
3849 goto out_cont;
3850
3851 /*
3852 * not expired and it has a request pending, let it dispatch
3853 */
3854 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3855 goto out_kick;
3856
3857 /*
3858 * Queue depth flag is reset only when the idle didn't succeed
3859 */
3860 cfq_clear_cfqq_deep(cfqq);
3861 }
3862expire:
3863 cfq_slice_expired(cfqd, timed_out);
3864out_kick:
3865 cfq_schedule_dispatch(cfqd);
3866out_cont:
3867 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3868}
3869
3870static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3871{
3872 del_timer_sync(&cfqd->idle_slice_timer);
3873 cancel_work_sync(&cfqd->unplug_work);
3874}
3875
3876static void cfq_put_async_queues(struct cfq_data *cfqd)
3877{
3878 int i;
3879
3880 for (i = 0; i < IOPRIO_BE_NR; i++) {
3881 if (cfqd->async_cfqq[0][i])
3882 cfq_put_queue(cfqd->async_cfqq[0][i]);
3883 if (cfqd->async_cfqq[1][i])
3884 cfq_put_queue(cfqd->async_cfqq[1][i]);
3885 }
3886
3887 if (cfqd->async_idle_cfqq)
3888 cfq_put_queue(cfqd->async_idle_cfqq);
3889}
3890
3891static void cfq_exit_queue(struct elevator_queue *e)
3892{
3893 struct cfq_data *cfqd = e->elevator_data;
3894 struct request_queue *q = cfqd->queue;
3895 bool wait = false;
3896
3897 cfq_shutdown_timer_wq(cfqd);
3898
3899 spin_lock_irq(q->queue_lock);
3900
3901 if (cfqd->active_queue)
3902 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3903
3904 while (!list_empty(&cfqd->cic_list)) {
3905 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3906 struct cfq_io_context,
3907 queue_list);
3908
3909 __cfq_exit_single_io_context(cfqd, cic);
3910 }
3911
3912 cfq_put_async_queues(cfqd);
3913 cfq_release_cfq_groups(cfqd);
3914
3915 /*
3916 * If there are groups which we could not unlink from blkcg list,
3917 * wait for a rcu period for them to be freed.
3918 */
3919 if (cfqd->nr_blkcg_linked_grps)
3920 wait = true;
3921
3922 spin_unlock_irq(q->queue_lock);
3923
3924 cfq_shutdown_timer_wq(cfqd);
3925
3926 spin_lock(&cic_index_lock);
3927 ida_remove(&cic_index_ida, cfqd->cic_index);
3928 spin_unlock(&cic_index_lock);
3929
3930 /*
3931 * Wait for cfqg->blkg->key accessors to exit their grace periods.
3932 * Do this wait only if there are other unlinked groups out
3933 * there. This can happen if cgroup deletion path claimed the
3934 * responsibility of cleaning up a group before queue cleanup code
3935 * get to the group.
3936 *
3937 * Do not call synchronize_rcu() unconditionally as there are drivers
3938 * which create/delete request queue hundreds of times during scan/boot
3939 * and synchronize_rcu() can take significant time and slow down boot.
3940 */
3941 if (wait)
3942 synchronize_rcu();
3943 kfree(cfqd);
3944}
3945
3946static int cfq_alloc_cic_index(void)
3947{
3948 int index, error;
3949
3950 do {
3951 if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3952 return -ENOMEM;
3953
3954 spin_lock(&cic_index_lock);
3955 error = ida_get_new(&cic_index_ida, &index);
3956 spin_unlock(&cic_index_lock);
3957 if (error && error != -EAGAIN)
3958 return error;
3959 } while (error);
3960
3961 return index;
3962}
3963
3964static void *cfq_init_queue(struct request_queue *q)
3965{
3966 struct cfq_data *cfqd;
3967 int i, j;
3968 struct cfq_group *cfqg;
3969 struct cfq_rb_root *st;
3970
3971 i = cfq_alloc_cic_index();
3972 if (i < 0)
3973 return NULL;
3974
3975 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3976 if (!cfqd)
3977 return NULL;
3978
3979 /*
3980 * Don't need take queue_lock in the routine, since we are
3981 * initializing the ioscheduler, and nobody is using cfqd
3982 */
3983 cfqd->cic_index = i;
3984
3985 /* Init root service tree */
3986 cfqd->grp_service_tree = CFQ_RB_ROOT;
3987
3988 /* Init root group */
3989 cfqg = &cfqd->root_group;
3990 for_each_cfqg_st(cfqg, i, j, st)
3991 *st = CFQ_RB_ROOT;
3992 RB_CLEAR_NODE(&cfqg->rb_node);
3993
3994 /* Give preference to root group over other groups */
3995 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3996
3997#ifdef CONFIG_CFQ_GROUP_IOSCHED
3998 /*
3999 * Set root group reference to 2. One reference will be dropped when
4000 * all groups on cfqd->cfqg_list are being deleted during queue exit.
4001 * Other reference will remain there as we don't want to delete this
4002 * group as it is statically allocated and gets destroyed when
4003 * throtl_data goes away.
4004 */
4005 cfqg->ref = 2;
4006
4007 if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
4008 kfree(cfqg);
4009 kfree(cfqd);
4010 return NULL;
4011 }
4012
4013 rcu_read_lock();
4014
4015 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
4016 (void *)cfqd, 0);
4017 rcu_read_unlock();
4018 cfqd->nr_blkcg_linked_grps++;
4019
4020 /* Add group on cfqd->cfqg_list */
4021 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
4022#endif
4023 /*
4024 * Not strictly needed (since RB_ROOT just clears the node and we
4025 * zeroed cfqd on alloc), but better be safe in case someone decides
4026 * to add magic to the rb code
4027 */
4028 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4029 cfqd->prio_trees[i] = RB_ROOT;
4030
4031 /*
4032 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4033 * Grab a permanent reference to it, so that the normal code flow
4034 * will not attempt to free it.
4035 */
4036 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4037 cfqd->oom_cfqq.ref++;
4038 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
4039
4040 INIT_LIST_HEAD(&cfqd->cic_list);
4041
4042 cfqd->queue = q;
4043
4044 init_timer(&cfqd->idle_slice_timer);
4045 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4046 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4047
4048 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4049
4050 cfqd->cfq_quantum = cfq_quantum;
4051 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4052 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4053 cfqd->cfq_back_max = cfq_back_max;
4054 cfqd->cfq_back_penalty = cfq_back_penalty;
4055 cfqd->cfq_slice[0] = cfq_slice_async;
4056 cfqd->cfq_slice[1] = cfq_slice_sync;
4057 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4058 cfqd->cfq_slice_idle = cfq_slice_idle;
4059 cfqd->cfq_group_idle = cfq_group_idle;
4060 cfqd->cfq_latency = 1;
4061 cfqd->hw_tag = -1;
4062 /*
4063 * we optimistically start assuming sync ops weren't delayed in last
4064 * second, in order to have larger depth for async operations.
4065 */
4066 cfqd->last_delayed_sync = jiffies - HZ;
4067 return cfqd;
4068}
4069
4070static void cfq_slab_kill(void)
4071{
4072 /*
4073 * Caller already ensured that pending RCU callbacks are completed,
4074 * so we should have no busy allocations at this point.
4075 */
4076 if (cfq_pool)
4077 kmem_cache_destroy(cfq_pool);
4078 if (cfq_ioc_pool)
4079 kmem_cache_destroy(cfq_ioc_pool);
4080}
4081
4082static int __init cfq_slab_setup(void)
4083{
4084 cfq_pool = KMEM_CACHE(cfq_queue, 0);
4085 if (!cfq_pool)
4086 goto fail;
4087
4088 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
4089 if (!cfq_ioc_pool)
4090 goto fail;
4091
4092 return 0;
4093fail:
4094 cfq_slab_kill();
4095 return -ENOMEM;
4096}
4097
4098/*
4099 * sysfs parts below -->
4100 */
4101static ssize_t
4102cfq_var_show(unsigned int var, char *page)
4103{
4104 return sprintf(page, "%d\n", var);
4105}
4106
4107static ssize_t
4108cfq_var_store(unsigned int *var, const char *page, size_t count)
4109{
4110 char *p = (char *) page;
4111
4112 *var = simple_strtoul(p, &p, 10);
4113 return count;
4114}
4115
4116#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4117static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4118{ \
4119 struct cfq_data *cfqd = e->elevator_data; \
4120 unsigned int __data = __VAR; \
4121 if (__CONV) \
4122 __data = jiffies_to_msecs(__data); \
4123 return cfq_var_show(__data, (page)); \
4124}
4125SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4126SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4127SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4128SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4129SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4130SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4131SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4132SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4133SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4134SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4135SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4136#undef SHOW_FUNCTION
4137
4138#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4139static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4140{ \
4141 struct cfq_data *cfqd = e->elevator_data; \
4142 unsigned int __data; \
4143 int ret = cfq_var_store(&__data, (page), count); \
4144 if (__data < (MIN)) \
4145 __data = (MIN); \
4146 else if (__data > (MAX)) \
4147 __data = (MAX); \
4148 if (__CONV) \
4149 *(__PTR) = msecs_to_jiffies(__data); \
4150 else \
4151 *(__PTR) = __data; \
4152 return ret; \
4153}
4154STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4155STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4156 UINT_MAX, 1);
4157STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4158 UINT_MAX, 1);
4159STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4160STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4161 UINT_MAX, 0);
4162STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4163STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4164STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4165STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4166STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4167 UINT_MAX, 0);
4168STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4169#undef STORE_FUNCTION
4170
4171#define CFQ_ATTR(name) \
4172 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4173
4174static struct elv_fs_entry cfq_attrs[] = {
4175 CFQ_ATTR(quantum),
4176 CFQ_ATTR(fifo_expire_sync),
4177 CFQ_ATTR(fifo_expire_async),
4178 CFQ_ATTR(back_seek_max),
4179 CFQ_ATTR(back_seek_penalty),
4180 CFQ_ATTR(slice_sync),
4181 CFQ_ATTR(slice_async),
4182 CFQ_ATTR(slice_async_rq),
4183 CFQ_ATTR(slice_idle),
4184 CFQ_ATTR(group_idle),
4185 CFQ_ATTR(low_latency),
4186 __ATTR_NULL
4187};
4188
4189static struct elevator_type iosched_cfq = {
4190 .ops = {
4191 .elevator_merge_fn = cfq_merge,
4192 .elevator_merged_fn = cfq_merged_request,
4193 .elevator_merge_req_fn = cfq_merged_requests,
4194 .elevator_allow_merge_fn = cfq_allow_merge,
4195 .elevator_bio_merged_fn = cfq_bio_merged,
4196 .elevator_dispatch_fn = cfq_dispatch_requests,
4197 .elevator_add_req_fn = cfq_insert_request,
4198 .elevator_activate_req_fn = cfq_activate_request,
4199 .elevator_deactivate_req_fn = cfq_deactivate_request,
4200 .elevator_completed_req_fn = cfq_completed_request,
4201 .elevator_former_req_fn = elv_rb_former_request,
4202 .elevator_latter_req_fn = elv_rb_latter_request,
4203 .elevator_set_req_fn = cfq_set_request,
4204 .elevator_put_req_fn = cfq_put_request,
4205 .elevator_may_queue_fn = cfq_may_queue,
4206 .elevator_init_fn = cfq_init_queue,
4207 .elevator_exit_fn = cfq_exit_queue,
4208 .trim = cfq_free_io_context,
4209 },
4210 .elevator_attrs = cfq_attrs,
4211 .elevator_name = "cfq",
4212 .elevator_owner = THIS_MODULE,
4213};
4214
4215#ifdef CONFIG_CFQ_GROUP_IOSCHED
4216static struct blkio_policy_type blkio_policy_cfq = {
4217 .ops = {
4218 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
4219 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4220 },
4221 .plid = BLKIO_POLICY_PROP,
4222};
4223#else
4224static struct blkio_policy_type blkio_policy_cfq;
4225#endif
4226
4227static int __init cfq_init(void)
4228{
4229 /*
4230 * could be 0 on HZ < 1000 setups
4231 */
4232 if (!cfq_slice_async)
4233 cfq_slice_async = 1;
4234 if (!cfq_slice_idle)
4235 cfq_slice_idle = 1;
4236
4237#ifdef CONFIG_CFQ_GROUP_IOSCHED
4238 if (!cfq_group_idle)
4239 cfq_group_idle = 1;
4240#else
4241 cfq_group_idle = 0;
4242#endif
4243 if (cfq_slab_setup())
4244 return -ENOMEM;
4245
4246 elv_register(&iosched_cfq);
4247 blkio_policy_register(&blkio_policy_cfq);
4248
4249 return 0;
4250}
4251
4252static void __exit cfq_exit(void)
4253{
4254 DECLARE_COMPLETION_ONSTACK(all_gone);
4255 blkio_policy_unregister(&blkio_policy_cfq);
4256 elv_unregister(&iosched_cfq);
4257 ioc_gone = &all_gone;
4258 /* ioc_gone's update must be visible before reading ioc_count */
4259 smp_wmb();
4260
4261 /*
4262 * this also protects us from entering cfq_slab_kill() with
4263 * pending RCU callbacks
4264 */
4265 if (elv_ioc_count_read(cfq_ioc_count))
4266 wait_for_completion(&all_gone);
4267 ida_destroy(&cic_index_ida);
4268 cfq_slab_kill();
4269}
4270
4271module_init(cfq_init);
4272module_exit(cfq_exit);
4273
4274MODULE_AUTHOR("Jens Axboe");
4275MODULE_LICENSE("GPL");
4276MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");