cfq-iosched: implement hierarchy-ready cfq_group charge scaling
[linux-2.6-block.git] / block / cfq-iosched.c
... / ...
CommitLineData
1/*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/slab.h>
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
13#include <linux/jiffies.h>
14#include <linux/rbtree.h>
15#include <linux/ioprio.h>
16#include <linux/blktrace_api.h>
17#include "blk.h"
18#include "blk-cgroup.h"
19
20/*
21 * tunables
22 */
23/* max queue in one round of service */
24static const int cfq_quantum = 8;
25static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
26/* maximum backwards seek, in KiB */
27static const int cfq_back_max = 16 * 1024;
28/* penalty of a backwards seek */
29static const int cfq_back_penalty = 2;
30static const int cfq_slice_sync = HZ / 10;
31static int cfq_slice_async = HZ / 25;
32static const int cfq_slice_async_rq = 2;
33static int cfq_slice_idle = HZ / 125;
34static int cfq_group_idle = HZ / 125;
35static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36static const int cfq_hist_divisor = 4;
37
38/*
39 * offset from end of service tree
40 */
41#define CFQ_IDLE_DELAY (HZ / 5)
42
43/*
44 * below this threshold, we consider thinktime immediate
45 */
46#define CFQ_MIN_TT (2)
47
48#define CFQ_SLICE_SCALE (5)
49#define CFQ_HW_QUEUE_MIN (5)
50#define CFQ_SERVICE_SHIFT 12
51
52#define CFQQ_SEEK_THR (sector_t)(8 * 100)
53#define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
54#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
55#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
56
57#define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
58#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
59#define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
60
61static struct kmem_cache *cfq_pool;
62
63#define CFQ_PRIO_LISTS IOPRIO_BE_NR
64#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66
67#define sample_valid(samples) ((samples) > 80)
68#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
69
70struct cfq_ttime {
71 unsigned long last_end_request;
72
73 unsigned long ttime_total;
74 unsigned long ttime_samples;
75 unsigned long ttime_mean;
76};
77
78/*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84struct cfq_rb_root {
85 struct rb_root rb;
86 struct rb_node *left;
87 unsigned count;
88 unsigned total_weight;
89 u64 min_vdisktime;
90 struct cfq_ttime ttime;
91};
92#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
93 .ttime = {.last_end_request = jiffies,},}
94
95/*
96 * Per process-grouping structure
97 */
98struct cfq_queue {
99 /* reference count */
100 int ref;
101 /* various state flags, see below */
102 unsigned int flags;
103 /* parent cfq_data */
104 struct cfq_data *cfqd;
105 /* service_tree member */
106 struct rb_node rb_node;
107 /* service_tree key */
108 unsigned long rb_key;
109 /* prio tree member */
110 struct rb_node p_node;
111 /* prio tree root we belong to, if any */
112 struct rb_root *p_root;
113 /* sorted list of pending requests */
114 struct rb_root sort_list;
115 /* if fifo isn't expired, next request to serve */
116 struct request *next_rq;
117 /* requests queued in sort_list */
118 int queued[2];
119 /* currently allocated requests */
120 int allocated[2];
121 /* fifo list of requests in sort_list */
122 struct list_head fifo;
123
124 /* time when queue got scheduled in to dispatch first request. */
125 unsigned long dispatch_start;
126 unsigned int allocated_slice;
127 unsigned int slice_dispatch;
128 /* time when first request from queue completed and slice started. */
129 unsigned long slice_start;
130 unsigned long slice_end;
131 long slice_resid;
132
133 /* pending priority requests */
134 int prio_pending;
135 /* number of requests that are on the dispatch list or inside driver */
136 int dispatched;
137
138 /* io prio of this group */
139 unsigned short ioprio, org_ioprio;
140 unsigned short ioprio_class;
141
142 pid_t pid;
143
144 u32 seek_history;
145 sector_t last_request_pos;
146
147 struct cfq_rb_root *service_tree;
148 struct cfq_queue *new_cfqq;
149 struct cfq_group *cfqg;
150 /* Number of sectors dispatched from queue in single dispatch round */
151 unsigned long nr_sectors;
152};
153
154/*
155 * First index in the service_trees.
156 * IDLE is handled separately, so it has negative index
157 */
158enum wl_class_t {
159 BE_WORKLOAD = 0,
160 RT_WORKLOAD = 1,
161 IDLE_WORKLOAD = 2,
162 CFQ_PRIO_NR,
163};
164
165/*
166 * Second index in the service_trees.
167 */
168enum wl_type_t {
169 ASYNC_WORKLOAD = 0,
170 SYNC_NOIDLE_WORKLOAD = 1,
171 SYNC_WORKLOAD = 2
172};
173
174struct cfqg_stats {
175#ifdef CONFIG_CFQ_GROUP_IOSCHED
176 /* total bytes transferred */
177 struct blkg_rwstat service_bytes;
178 /* total IOs serviced, post merge */
179 struct blkg_rwstat serviced;
180 /* number of ios merged */
181 struct blkg_rwstat merged;
182 /* total time spent on device in ns, may not be accurate w/ queueing */
183 struct blkg_rwstat service_time;
184 /* total time spent waiting in scheduler queue in ns */
185 struct blkg_rwstat wait_time;
186 /* number of IOs queued up */
187 struct blkg_rwstat queued;
188 /* total sectors transferred */
189 struct blkg_stat sectors;
190 /* total disk time and nr sectors dispatched by this group */
191 struct blkg_stat time;
192#ifdef CONFIG_DEBUG_BLK_CGROUP
193 /* time not charged to this cgroup */
194 struct blkg_stat unaccounted_time;
195 /* sum of number of ios queued across all samples */
196 struct blkg_stat avg_queue_size_sum;
197 /* count of samples taken for average */
198 struct blkg_stat avg_queue_size_samples;
199 /* how many times this group has been removed from service tree */
200 struct blkg_stat dequeue;
201 /* total time spent waiting for it to be assigned a timeslice. */
202 struct blkg_stat group_wait_time;
203 /* time spent idling for this blkcg_gq */
204 struct blkg_stat idle_time;
205 /* total time with empty current active q with other requests queued */
206 struct blkg_stat empty_time;
207 /* fields after this shouldn't be cleared on stat reset */
208 uint64_t start_group_wait_time;
209 uint64_t start_idle_time;
210 uint64_t start_empty_time;
211 uint16_t flags;
212#endif /* CONFIG_DEBUG_BLK_CGROUP */
213#endif /* CONFIG_CFQ_GROUP_IOSCHED */
214};
215
216/* This is per cgroup per device grouping structure */
217struct cfq_group {
218 /* must be the first member */
219 struct blkg_policy_data pd;
220
221 /* group service_tree member */
222 struct rb_node rb_node;
223
224 /* group service_tree key */
225 u64 vdisktime;
226
227 /*
228 * The number of active cfqgs and sum of their weights under this
229 * cfqg. This covers this cfqg's leaf_weight and all children's
230 * weights, but does not cover weights of further descendants.
231 *
232 * If a cfqg is on the service tree, it's active. An active cfqg
233 * also activates its parent and contributes to the children_weight
234 * of the parent.
235 */
236 int nr_active;
237 unsigned int children_weight;
238
239 /*
240 * vfraction is the fraction of vdisktime that the tasks in this
241 * cfqg are entitled to. This is determined by compounding the
242 * ratios walking up from this cfqg to the root.
243 *
244 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
245 * vfractions on a service tree is approximately 1. The sum may
246 * deviate a bit due to rounding errors and fluctuations caused by
247 * cfqgs entering and leaving the service tree.
248 */
249 unsigned int vfraction;
250
251 /*
252 * There are two weights - (internal) weight is the weight of this
253 * cfqg against the sibling cfqgs. leaf_weight is the wight of
254 * this cfqg against the child cfqgs. For the root cfqg, both
255 * weights are kept in sync for backward compatibility.
256 */
257 unsigned int weight;
258 unsigned int new_weight;
259 unsigned int dev_weight;
260
261 unsigned int leaf_weight;
262 unsigned int new_leaf_weight;
263 unsigned int dev_leaf_weight;
264
265 /* number of cfqq currently on this group */
266 int nr_cfqq;
267
268 /*
269 * Per group busy queues average. Useful for workload slice calc. We
270 * create the array for each prio class but at run time it is used
271 * only for RT and BE class and slot for IDLE class remains unused.
272 * This is primarily done to avoid confusion and a gcc warning.
273 */
274 unsigned int busy_queues_avg[CFQ_PRIO_NR];
275 /*
276 * rr lists of queues with requests. We maintain service trees for
277 * RT and BE classes. These trees are subdivided in subclasses
278 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
279 * class there is no subclassification and all the cfq queues go on
280 * a single tree service_tree_idle.
281 * Counts are embedded in the cfq_rb_root
282 */
283 struct cfq_rb_root service_trees[2][3];
284 struct cfq_rb_root service_tree_idle;
285
286 unsigned long saved_wl_slice;
287 enum wl_type_t saved_wl_type;
288 enum wl_class_t saved_wl_class;
289
290 /* number of requests that are on the dispatch list or inside driver */
291 int dispatched;
292 struct cfq_ttime ttime;
293 struct cfqg_stats stats;
294};
295
296struct cfq_io_cq {
297 struct io_cq icq; /* must be the first member */
298 struct cfq_queue *cfqq[2];
299 struct cfq_ttime ttime;
300 int ioprio; /* the current ioprio */
301#ifdef CONFIG_CFQ_GROUP_IOSCHED
302 uint64_t blkcg_id; /* the current blkcg ID */
303#endif
304};
305
306/*
307 * Per block device queue structure
308 */
309struct cfq_data {
310 struct request_queue *queue;
311 /* Root service tree for cfq_groups */
312 struct cfq_rb_root grp_service_tree;
313 struct cfq_group *root_group;
314
315 /*
316 * The priority currently being served
317 */
318 enum wl_class_t serving_wl_class;
319 enum wl_type_t serving_wl_type;
320 unsigned long workload_expires;
321 struct cfq_group *serving_group;
322
323 /*
324 * Each priority tree is sorted by next_request position. These
325 * trees are used when determining if two or more queues are
326 * interleaving requests (see cfq_close_cooperator).
327 */
328 struct rb_root prio_trees[CFQ_PRIO_LISTS];
329
330 unsigned int busy_queues;
331 unsigned int busy_sync_queues;
332
333 int rq_in_driver;
334 int rq_in_flight[2];
335
336 /*
337 * queue-depth detection
338 */
339 int rq_queued;
340 int hw_tag;
341 /*
342 * hw_tag can be
343 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
344 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
345 * 0 => no NCQ
346 */
347 int hw_tag_est_depth;
348 unsigned int hw_tag_samples;
349
350 /*
351 * idle window management
352 */
353 struct timer_list idle_slice_timer;
354 struct work_struct unplug_work;
355
356 struct cfq_queue *active_queue;
357 struct cfq_io_cq *active_cic;
358
359 /*
360 * async queue for each priority case
361 */
362 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
363 struct cfq_queue *async_idle_cfqq;
364
365 sector_t last_position;
366
367 /*
368 * tunables, see top of file
369 */
370 unsigned int cfq_quantum;
371 unsigned int cfq_fifo_expire[2];
372 unsigned int cfq_back_penalty;
373 unsigned int cfq_back_max;
374 unsigned int cfq_slice[2];
375 unsigned int cfq_slice_async_rq;
376 unsigned int cfq_slice_idle;
377 unsigned int cfq_group_idle;
378 unsigned int cfq_latency;
379 unsigned int cfq_target_latency;
380
381 /*
382 * Fallback dummy cfqq for extreme OOM conditions
383 */
384 struct cfq_queue oom_cfqq;
385
386 unsigned long last_delayed_sync;
387};
388
389static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
390
391static struct cfq_rb_root *st_for(struct cfq_group *cfqg,
392 enum wl_class_t class,
393 enum wl_type_t type)
394{
395 if (!cfqg)
396 return NULL;
397
398 if (class == IDLE_WORKLOAD)
399 return &cfqg->service_tree_idle;
400
401 return &cfqg->service_trees[class][type];
402}
403
404enum cfqq_state_flags {
405 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
406 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
407 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
408 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
409 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
410 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
411 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
412 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
413 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
414 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
415 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
416 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
417 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
418};
419
420#define CFQ_CFQQ_FNS(name) \
421static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
422{ \
423 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
424} \
425static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
426{ \
427 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
428} \
429static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
430{ \
431 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
432}
433
434CFQ_CFQQ_FNS(on_rr);
435CFQ_CFQQ_FNS(wait_request);
436CFQ_CFQQ_FNS(must_dispatch);
437CFQ_CFQQ_FNS(must_alloc_slice);
438CFQ_CFQQ_FNS(fifo_expire);
439CFQ_CFQQ_FNS(idle_window);
440CFQ_CFQQ_FNS(prio_changed);
441CFQ_CFQQ_FNS(slice_new);
442CFQ_CFQQ_FNS(sync);
443CFQ_CFQQ_FNS(coop);
444CFQ_CFQQ_FNS(split_coop);
445CFQ_CFQQ_FNS(deep);
446CFQ_CFQQ_FNS(wait_busy);
447#undef CFQ_CFQQ_FNS
448
449static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
450{
451 return pd ? container_of(pd, struct cfq_group, pd) : NULL;
452}
453
454static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
455{
456 return pd_to_blkg(&cfqg->pd);
457}
458
459#if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
460
461/* cfqg stats flags */
462enum cfqg_stats_flags {
463 CFQG_stats_waiting = 0,
464 CFQG_stats_idling,
465 CFQG_stats_empty,
466};
467
468#define CFQG_FLAG_FNS(name) \
469static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
470{ \
471 stats->flags |= (1 << CFQG_stats_##name); \
472} \
473static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
474{ \
475 stats->flags &= ~(1 << CFQG_stats_##name); \
476} \
477static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
478{ \
479 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
480} \
481
482CFQG_FLAG_FNS(waiting)
483CFQG_FLAG_FNS(idling)
484CFQG_FLAG_FNS(empty)
485#undef CFQG_FLAG_FNS
486
487/* This should be called with the queue_lock held. */
488static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
489{
490 unsigned long long now;
491
492 if (!cfqg_stats_waiting(stats))
493 return;
494
495 now = sched_clock();
496 if (time_after64(now, stats->start_group_wait_time))
497 blkg_stat_add(&stats->group_wait_time,
498 now - stats->start_group_wait_time);
499 cfqg_stats_clear_waiting(stats);
500}
501
502/* This should be called with the queue_lock held. */
503static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
504 struct cfq_group *curr_cfqg)
505{
506 struct cfqg_stats *stats = &cfqg->stats;
507
508 if (cfqg_stats_waiting(stats))
509 return;
510 if (cfqg == curr_cfqg)
511 return;
512 stats->start_group_wait_time = sched_clock();
513 cfqg_stats_mark_waiting(stats);
514}
515
516/* This should be called with the queue_lock held. */
517static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
518{
519 unsigned long long now;
520
521 if (!cfqg_stats_empty(stats))
522 return;
523
524 now = sched_clock();
525 if (time_after64(now, stats->start_empty_time))
526 blkg_stat_add(&stats->empty_time,
527 now - stats->start_empty_time);
528 cfqg_stats_clear_empty(stats);
529}
530
531static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
532{
533 blkg_stat_add(&cfqg->stats.dequeue, 1);
534}
535
536static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
537{
538 struct cfqg_stats *stats = &cfqg->stats;
539
540 if (blkg_rwstat_sum(&stats->queued))
541 return;
542
543 /*
544 * group is already marked empty. This can happen if cfqq got new
545 * request in parent group and moved to this group while being added
546 * to service tree. Just ignore the event and move on.
547 */
548 if (cfqg_stats_empty(stats))
549 return;
550
551 stats->start_empty_time = sched_clock();
552 cfqg_stats_mark_empty(stats);
553}
554
555static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
556{
557 struct cfqg_stats *stats = &cfqg->stats;
558
559 if (cfqg_stats_idling(stats)) {
560 unsigned long long now = sched_clock();
561
562 if (time_after64(now, stats->start_idle_time))
563 blkg_stat_add(&stats->idle_time,
564 now - stats->start_idle_time);
565 cfqg_stats_clear_idling(stats);
566 }
567}
568
569static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
570{
571 struct cfqg_stats *stats = &cfqg->stats;
572
573 BUG_ON(cfqg_stats_idling(stats));
574
575 stats->start_idle_time = sched_clock();
576 cfqg_stats_mark_idling(stats);
577}
578
579static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
580{
581 struct cfqg_stats *stats = &cfqg->stats;
582
583 blkg_stat_add(&stats->avg_queue_size_sum,
584 blkg_rwstat_sum(&stats->queued));
585 blkg_stat_add(&stats->avg_queue_size_samples, 1);
586 cfqg_stats_update_group_wait_time(stats);
587}
588
589#else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
590
591static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
592static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
593static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
594static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
595static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
596static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
597static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
598
599#endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
600
601#ifdef CONFIG_CFQ_GROUP_IOSCHED
602
603static struct blkcg_policy blkcg_policy_cfq;
604
605static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
606{
607 return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
608}
609
610/*
611 * Determine the parent cfqg for weight calculation. Currently, cfqg
612 * scheduling is flat and the root is the parent of everyone else.
613 */
614static inline struct cfq_group *cfqg_flat_parent(struct cfq_group *cfqg)
615{
616 struct blkcg_gq *blkg = cfqg_to_blkg(cfqg);
617 struct cfq_group *root;
618
619 while (blkg->parent)
620 blkg = blkg->parent;
621 root = blkg_to_cfqg(blkg);
622
623 return root != cfqg ? root : NULL;
624}
625
626static inline void cfqg_get(struct cfq_group *cfqg)
627{
628 return blkg_get(cfqg_to_blkg(cfqg));
629}
630
631static inline void cfqg_put(struct cfq_group *cfqg)
632{
633 return blkg_put(cfqg_to_blkg(cfqg));
634}
635
636#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
637 char __pbuf[128]; \
638 \
639 blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf)); \
640 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
641 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
642 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
643 __pbuf, ##args); \
644} while (0)
645
646#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
647 char __pbuf[128]; \
648 \
649 blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf)); \
650 blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args); \
651} while (0)
652
653static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
654 struct cfq_group *curr_cfqg, int rw)
655{
656 blkg_rwstat_add(&cfqg->stats.queued, rw, 1);
657 cfqg_stats_end_empty_time(&cfqg->stats);
658 cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
659}
660
661static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
662 unsigned long time, unsigned long unaccounted_time)
663{
664 blkg_stat_add(&cfqg->stats.time, time);
665#ifdef CONFIG_DEBUG_BLK_CGROUP
666 blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
667#endif
668}
669
670static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw)
671{
672 blkg_rwstat_add(&cfqg->stats.queued, rw, -1);
673}
674
675static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw)
676{
677 blkg_rwstat_add(&cfqg->stats.merged, rw, 1);
678}
679
680static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
681 uint64_t bytes, int rw)
682{
683 blkg_stat_add(&cfqg->stats.sectors, bytes >> 9);
684 blkg_rwstat_add(&cfqg->stats.serviced, rw, 1);
685 blkg_rwstat_add(&cfqg->stats.service_bytes, rw, bytes);
686}
687
688static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
689 uint64_t start_time, uint64_t io_start_time, int rw)
690{
691 struct cfqg_stats *stats = &cfqg->stats;
692 unsigned long long now = sched_clock();
693
694 if (time_after64(now, io_start_time))
695 blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);
696 if (time_after64(io_start_time, start_time))
697 blkg_rwstat_add(&stats->wait_time, rw,
698 io_start_time - start_time);
699}
700
701static void cfq_pd_reset_stats(struct blkcg_gq *blkg)
702{
703 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
704 struct cfqg_stats *stats = &cfqg->stats;
705
706 /* queued stats shouldn't be cleared */
707 blkg_rwstat_reset(&stats->service_bytes);
708 blkg_rwstat_reset(&stats->serviced);
709 blkg_rwstat_reset(&stats->merged);
710 blkg_rwstat_reset(&stats->service_time);
711 blkg_rwstat_reset(&stats->wait_time);
712 blkg_stat_reset(&stats->time);
713#ifdef CONFIG_DEBUG_BLK_CGROUP
714 blkg_stat_reset(&stats->unaccounted_time);
715 blkg_stat_reset(&stats->avg_queue_size_sum);
716 blkg_stat_reset(&stats->avg_queue_size_samples);
717 blkg_stat_reset(&stats->dequeue);
718 blkg_stat_reset(&stats->group_wait_time);
719 blkg_stat_reset(&stats->idle_time);
720 blkg_stat_reset(&stats->empty_time);
721#endif
722}
723
724#else /* CONFIG_CFQ_GROUP_IOSCHED */
725
726static inline struct cfq_group *cfqg_flat_parent(struct cfq_group *cfqg) { return NULL; }
727static inline void cfqg_get(struct cfq_group *cfqg) { }
728static inline void cfqg_put(struct cfq_group *cfqg) { }
729
730#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
731 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
732 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
733 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
734 ##args)
735#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
736
737static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
738 struct cfq_group *curr_cfqg, int rw) { }
739static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
740 unsigned long time, unsigned long unaccounted_time) { }
741static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw) { }
742static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw) { }
743static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
744 uint64_t bytes, int rw) { }
745static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
746 uint64_t start_time, uint64_t io_start_time, int rw) { }
747
748#endif /* CONFIG_CFQ_GROUP_IOSCHED */
749
750#define cfq_log(cfqd, fmt, args...) \
751 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
752
753/* Traverses through cfq group service trees */
754#define for_each_cfqg_st(cfqg, i, j, st) \
755 for (i = 0; i <= IDLE_WORKLOAD; i++) \
756 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
757 : &cfqg->service_tree_idle; \
758 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
759 (i == IDLE_WORKLOAD && j == 0); \
760 j++, st = i < IDLE_WORKLOAD ? \
761 &cfqg->service_trees[i][j]: NULL) \
762
763static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
764 struct cfq_ttime *ttime, bool group_idle)
765{
766 unsigned long slice;
767 if (!sample_valid(ttime->ttime_samples))
768 return false;
769 if (group_idle)
770 slice = cfqd->cfq_group_idle;
771 else
772 slice = cfqd->cfq_slice_idle;
773 return ttime->ttime_mean > slice;
774}
775
776static inline bool iops_mode(struct cfq_data *cfqd)
777{
778 /*
779 * If we are not idling on queues and it is a NCQ drive, parallel
780 * execution of requests is on and measuring time is not possible
781 * in most of the cases until and unless we drive shallower queue
782 * depths and that becomes a performance bottleneck. In such cases
783 * switch to start providing fairness in terms of number of IOs.
784 */
785 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
786 return true;
787 else
788 return false;
789}
790
791static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq)
792{
793 if (cfq_class_idle(cfqq))
794 return IDLE_WORKLOAD;
795 if (cfq_class_rt(cfqq))
796 return RT_WORKLOAD;
797 return BE_WORKLOAD;
798}
799
800
801static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
802{
803 if (!cfq_cfqq_sync(cfqq))
804 return ASYNC_WORKLOAD;
805 if (!cfq_cfqq_idle_window(cfqq))
806 return SYNC_NOIDLE_WORKLOAD;
807 return SYNC_WORKLOAD;
808}
809
810static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class,
811 struct cfq_data *cfqd,
812 struct cfq_group *cfqg)
813{
814 if (wl_class == IDLE_WORKLOAD)
815 return cfqg->service_tree_idle.count;
816
817 return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count +
818 cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count +
819 cfqg->service_trees[wl_class][SYNC_WORKLOAD].count;
820}
821
822static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
823 struct cfq_group *cfqg)
824{
825 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count +
826 cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
827}
828
829static void cfq_dispatch_insert(struct request_queue *, struct request *);
830static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
831 struct cfq_io_cq *cic, struct bio *bio,
832 gfp_t gfp_mask);
833
834static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
835{
836 /* cic->icq is the first member, %NULL will convert to %NULL */
837 return container_of(icq, struct cfq_io_cq, icq);
838}
839
840static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
841 struct io_context *ioc)
842{
843 if (ioc)
844 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
845 return NULL;
846}
847
848static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
849{
850 return cic->cfqq[is_sync];
851}
852
853static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
854 bool is_sync)
855{
856 cic->cfqq[is_sync] = cfqq;
857}
858
859static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
860{
861 return cic->icq.q->elevator->elevator_data;
862}
863
864/*
865 * We regard a request as SYNC, if it's either a read or has the SYNC bit
866 * set (in which case it could also be direct WRITE).
867 */
868static inline bool cfq_bio_sync(struct bio *bio)
869{
870 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
871}
872
873/*
874 * scheduler run of queue, if there are requests pending and no one in the
875 * driver that will restart queueing
876 */
877static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
878{
879 if (cfqd->busy_queues) {
880 cfq_log(cfqd, "schedule dispatch");
881 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
882 }
883}
884
885/*
886 * Scale schedule slice based on io priority. Use the sync time slice only
887 * if a queue is marked sync and has sync io queued. A sync queue with async
888 * io only, should not get full sync slice length.
889 */
890static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
891 unsigned short prio)
892{
893 const int base_slice = cfqd->cfq_slice[sync];
894
895 WARN_ON(prio >= IOPRIO_BE_NR);
896
897 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
898}
899
900static inline int
901cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
902{
903 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
904}
905
906/**
907 * cfqg_scale_charge - scale disk time charge according to cfqg weight
908 * @charge: disk time being charged
909 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
910 *
911 * Scale @charge according to @vfraction, which is in range (0, 1]. The
912 * scaling is inversely proportional.
913 *
914 * scaled = charge / vfraction
915 *
916 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
917 */
918static inline u64 cfqg_scale_charge(unsigned long charge,
919 unsigned int vfraction)
920{
921 u64 c = charge << CFQ_SERVICE_SHIFT; /* make it fixed point */
922
923 /* charge / vfraction */
924 c <<= CFQ_SERVICE_SHIFT;
925 do_div(c, vfraction);
926 return c;
927}
928
929static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
930{
931 s64 delta = (s64)(vdisktime - min_vdisktime);
932 if (delta > 0)
933 min_vdisktime = vdisktime;
934
935 return min_vdisktime;
936}
937
938static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
939{
940 s64 delta = (s64)(vdisktime - min_vdisktime);
941 if (delta < 0)
942 min_vdisktime = vdisktime;
943
944 return min_vdisktime;
945}
946
947static void update_min_vdisktime(struct cfq_rb_root *st)
948{
949 struct cfq_group *cfqg;
950
951 if (st->left) {
952 cfqg = rb_entry_cfqg(st->left);
953 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
954 cfqg->vdisktime);
955 }
956}
957
958/*
959 * get averaged number of queues of RT/BE priority.
960 * average is updated, with a formula that gives more weight to higher numbers,
961 * to quickly follows sudden increases and decrease slowly
962 */
963
964static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
965 struct cfq_group *cfqg, bool rt)
966{
967 unsigned min_q, max_q;
968 unsigned mult = cfq_hist_divisor - 1;
969 unsigned round = cfq_hist_divisor / 2;
970 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
971
972 min_q = min(cfqg->busy_queues_avg[rt], busy);
973 max_q = max(cfqg->busy_queues_avg[rt], busy);
974 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
975 cfq_hist_divisor;
976 return cfqg->busy_queues_avg[rt];
977}
978
979static inline unsigned
980cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
981{
982 struct cfq_rb_root *st = &cfqd->grp_service_tree;
983
984 return cfqd->cfq_target_latency * cfqg->weight / st->total_weight;
985}
986
987static inline unsigned
988cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
989{
990 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
991 if (cfqd->cfq_latency) {
992 /*
993 * interested queues (we consider only the ones with the same
994 * priority class in the cfq group)
995 */
996 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
997 cfq_class_rt(cfqq));
998 unsigned sync_slice = cfqd->cfq_slice[1];
999 unsigned expect_latency = sync_slice * iq;
1000 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
1001
1002 if (expect_latency > group_slice) {
1003 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
1004 /* scale low_slice according to IO priority
1005 * and sync vs async */
1006 unsigned low_slice =
1007 min(slice, base_low_slice * slice / sync_slice);
1008 /* the adapted slice value is scaled to fit all iqs
1009 * into the target latency */
1010 slice = max(slice * group_slice / expect_latency,
1011 low_slice);
1012 }
1013 }
1014 return slice;
1015}
1016
1017static inline void
1018cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1019{
1020 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
1021
1022 cfqq->slice_start = jiffies;
1023 cfqq->slice_end = jiffies + slice;
1024 cfqq->allocated_slice = slice;
1025 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
1026}
1027
1028/*
1029 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1030 * isn't valid until the first request from the dispatch is activated
1031 * and the slice time set.
1032 */
1033static inline bool cfq_slice_used(struct cfq_queue *cfqq)
1034{
1035 if (cfq_cfqq_slice_new(cfqq))
1036 return false;
1037 if (time_before(jiffies, cfqq->slice_end))
1038 return false;
1039
1040 return true;
1041}
1042
1043/*
1044 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1045 * We choose the request that is closest to the head right now. Distance
1046 * behind the head is penalized and only allowed to a certain extent.
1047 */
1048static struct request *
1049cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1050{
1051 sector_t s1, s2, d1 = 0, d2 = 0;
1052 unsigned long back_max;
1053#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
1054#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
1055 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1056
1057 if (rq1 == NULL || rq1 == rq2)
1058 return rq2;
1059 if (rq2 == NULL)
1060 return rq1;
1061
1062 if (rq_is_sync(rq1) != rq_is_sync(rq2))
1063 return rq_is_sync(rq1) ? rq1 : rq2;
1064
1065 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
1066 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
1067
1068 s1 = blk_rq_pos(rq1);
1069 s2 = blk_rq_pos(rq2);
1070
1071 /*
1072 * by definition, 1KiB is 2 sectors
1073 */
1074 back_max = cfqd->cfq_back_max * 2;
1075
1076 /*
1077 * Strict one way elevator _except_ in the case where we allow
1078 * short backward seeks which are biased as twice the cost of a
1079 * similar forward seek.
1080 */
1081 if (s1 >= last)
1082 d1 = s1 - last;
1083 else if (s1 + back_max >= last)
1084 d1 = (last - s1) * cfqd->cfq_back_penalty;
1085 else
1086 wrap |= CFQ_RQ1_WRAP;
1087
1088 if (s2 >= last)
1089 d2 = s2 - last;
1090 else if (s2 + back_max >= last)
1091 d2 = (last - s2) * cfqd->cfq_back_penalty;
1092 else
1093 wrap |= CFQ_RQ2_WRAP;
1094
1095 /* Found required data */
1096
1097 /*
1098 * By doing switch() on the bit mask "wrap" we avoid having to
1099 * check two variables for all permutations: --> faster!
1100 */
1101 switch (wrap) {
1102 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1103 if (d1 < d2)
1104 return rq1;
1105 else if (d2 < d1)
1106 return rq2;
1107 else {
1108 if (s1 >= s2)
1109 return rq1;
1110 else
1111 return rq2;
1112 }
1113
1114 case CFQ_RQ2_WRAP:
1115 return rq1;
1116 case CFQ_RQ1_WRAP:
1117 return rq2;
1118 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1119 default:
1120 /*
1121 * Since both rqs are wrapped,
1122 * start with the one that's further behind head
1123 * (--> only *one* back seek required),
1124 * since back seek takes more time than forward.
1125 */
1126 if (s1 <= s2)
1127 return rq1;
1128 else
1129 return rq2;
1130 }
1131}
1132
1133/*
1134 * The below is leftmost cache rbtree addon
1135 */
1136static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1137{
1138 /* Service tree is empty */
1139 if (!root->count)
1140 return NULL;
1141
1142 if (!root->left)
1143 root->left = rb_first(&root->rb);
1144
1145 if (root->left)
1146 return rb_entry(root->left, struct cfq_queue, rb_node);
1147
1148 return NULL;
1149}
1150
1151static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1152{
1153 if (!root->left)
1154 root->left = rb_first(&root->rb);
1155
1156 if (root->left)
1157 return rb_entry_cfqg(root->left);
1158
1159 return NULL;
1160}
1161
1162static void rb_erase_init(struct rb_node *n, struct rb_root *root)
1163{
1164 rb_erase(n, root);
1165 RB_CLEAR_NODE(n);
1166}
1167
1168static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1169{
1170 if (root->left == n)
1171 root->left = NULL;
1172 rb_erase_init(n, &root->rb);
1173 --root->count;
1174}
1175
1176/*
1177 * would be nice to take fifo expire time into account as well
1178 */
1179static struct request *
1180cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1181 struct request *last)
1182{
1183 struct rb_node *rbnext = rb_next(&last->rb_node);
1184 struct rb_node *rbprev = rb_prev(&last->rb_node);
1185 struct request *next = NULL, *prev = NULL;
1186
1187 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1188
1189 if (rbprev)
1190 prev = rb_entry_rq(rbprev);
1191
1192 if (rbnext)
1193 next = rb_entry_rq(rbnext);
1194 else {
1195 rbnext = rb_first(&cfqq->sort_list);
1196 if (rbnext && rbnext != &last->rb_node)
1197 next = rb_entry_rq(rbnext);
1198 }
1199
1200 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1201}
1202
1203static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
1204 struct cfq_queue *cfqq)
1205{
1206 /*
1207 * just an approximation, should be ok.
1208 */
1209 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1210 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1211}
1212
1213static inline s64
1214cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1215{
1216 return cfqg->vdisktime - st->min_vdisktime;
1217}
1218
1219static void
1220__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1221{
1222 struct rb_node **node = &st->rb.rb_node;
1223 struct rb_node *parent = NULL;
1224 struct cfq_group *__cfqg;
1225 s64 key = cfqg_key(st, cfqg);
1226 int left = 1;
1227
1228 while (*node != NULL) {
1229 parent = *node;
1230 __cfqg = rb_entry_cfqg(parent);
1231
1232 if (key < cfqg_key(st, __cfqg))
1233 node = &parent->rb_left;
1234 else {
1235 node = &parent->rb_right;
1236 left = 0;
1237 }
1238 }
1239
1240 if (left)
1241 st->left = &cfqg->rb_node;
1242
1243 rb_link_node(&cfqg->rb_node, parent, node);
1244 rb_insert_color(&cfqg->rb_node, &st->rb);
1245}
1246
1247static void
1248cfq_update_group_weight(struct cfq_group *cfqg)
1249{
1250 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1251
1252 if (cfqg->new_weight) {
1253 cfqg->weight = cfqg->new_weight;
1254 cfqg->new_weight = 0;
1255 }
1256
1257 if (cfqg->new_leaf_weight) {
1258 cfqg->leaf_weight = cfqg->new_leaf_weight;
1259 cfqg->new_leaf_weight = 0;
1260 }
1261}
1262
1263static void
1264cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1265{
1266 unsigned int vfr = 1 << CFQ_SERVICE_SHIFT; /* start with 1 */
1267 struct cfq_group *pos = cfqg;
1268 struct cfq_group *parent;
1269 bool propagate;
1270
1271 /* add to the service tree */
1272 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1273
1274 cfq_update_group_weight(cfqg);
1275 __cfq_group_service_tree_add(st, cfqg);
1276 st->total_weight += cfqg->weight;
1277
1278 /*
1279 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1280 * entitled to. vfraction is calculated by walking the tree
1281 * towards the root calculating the fraction it has at each level.
1282 * The compounded ratio is how much vfraction @cfqg owns.
1283 *
1284 * Start with the proportion tasks in this cfqg has against active
1285 * children cfqgs - its leaf_weight against children_weight.
1286 */
1287 propagate = !pos->nr_active++;
1288 pos->children_weight += pos->leaf_weight;
1289 vfr = vfr * pos->leaf_weight / pos->children_weight;
1290
1291 /*
1292 * Compound ->weight walking up the tree. Both activation and
1293 * vfraction calculation are done in the same loop. Propagation
1294 * stops once an already activated node is met. vfraction
1295 * calculation should always continue to the root.
1296 */
1297 while ((parent = cfqg_flat_parent(pos))) {
1298 if (propagate) {
1299 propagate = !parent->nr_active++;
1300 parent->children_weight += pos->weight;
1301 }
1302 vfr = vfr * pos->weight / parent->children_weight;
1303 pos = parent;
1304 }
1305
1306 cfqg->vfraction = max_t(unsigned, vfr, 1);
1307}
1308
1309static void
1310cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1311{
1312 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1313 struct cfq_group *__cfqg;
1314 struct rb_node *n;
1315
1316 cfqg->nr_cfqq++;
1317 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1318 return;
1319
1320 /*
1321 * Currently put the group at the end. Later implement something
1322 * so that groups get lesser vtime based on their weights, so that
1323 * if group does not loose all if it was not continuously backlogged.
1324 */
1325 n = rb_last(&st->rb);
1326 if (n) {
1327 __cfqg = rb_entry_cfqg(n);
1328 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
1329 } else
1330 cfqg->vdisktime = st->min_vdisktime;
1331 cfq_group_service_tree_add(st, cfqg);
1332}
1333
1334static void
1335cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1336{
1337 struct cfq_group *pos = cfqg;
1338 bool propagate;
1339
1340 /*
1341 * Undo activation from cfq_group_service_tree_add(). Deactivate
1342 * @cfqg and propagate deactivation upwards.
1343 */
1344 propagate = !--pos->nr_active;
1345 pos->children_weight -= pos->leaf_weight;
1346
1347 while (propagate) {
1348 struct cfq_group *parent = cfqg_flat_parent(pos);
1349
1350 /* @pos has 0 nr_active at this point */
1351 WARN_ON_ONCE(pos->children_weight);
1352 pos->vfraction = 0;
1353
1354 if (!parent)
1355 break;
1356
1357 propagate = !--parent->nr_active;
1358 parent->children_weight -= pos->weight;
1359 pos = parent;
1360 }
1361
1362 /* remove from the service tree */
1363 st->total_weight -= cfqg->weight;
1364 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1365 cfq_rb_erase(&cfqg->rb_node, st);
1366}
1367
1368static void
1369cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1370{
1371 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1372
1373 BUG_ON(cfqg->nr_cfqq < 1);
1374 cfqg->nr_cfqq--;
1375
1376 /* If there are other cfq queues under this group, don't delete it */
1377 if (cfqg->nr_cfqq)
1378 return;
1379
1380 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1381 cfq_group_service_tree_del(st, cfqg);
1382 cfqg->saved_wl_slice = 0;
1383 cfqg_stats_update_dequeue(cfqg);
1384}
1385
1386static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1387 unsigned int *unaccounted_time)
1388{
1389 unsigned int slice_used;
1390
1391 /*
1392 * Queue got expired before even a single request completed or
1393 * got expired immediately after first request completion.
1394 */
1395 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
1396 /*
1397 * Also charge the seek time incurred to the group, otherwise
1398 * if there are mutiple queues in the group, each can dispatch
1399 * a single request on seeky media and cause lots of seek time
1400 * and group will never know it.
1401 */
1402 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
1403 1);
1404 } else {
1405 slice_used = jiffies - cfqq->slice_start;
1406 if (slice_used > cfqq->allocated_slice) {
1407 *unaccounted_time = slice_used - cfqq->allocated_slice;
1408 slice_used = cfqq->allocated_slice;
1409 }
1410 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
1411 *unaccounted_time += cfqq->slice_start -
1412 cfqq->dispatch_start;
1413 }
1414
1415 return slice_used;
1416}
1417
1418static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1419 struct cfq_queue *cfqq)
1420{
1421 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1422 unsigned int used_sl, charge, unaccounted_sl = 0;
1423 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1424 - cfqg->service_tree_idle.count;
1425 unsigned int vfr;
1426
1427 BUG_ON(nr_sync < 0);
1428 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1429
1430 if (iops_mode(cfqd))
1431 charge = cfqq->slice_dispatch;
1432 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1433 charge = cfqq->allocated_slice;
1434
1435 /*
1436 * Can't update vdisktime while on service tree and cfqg->vfraction
1437 * is valid only while on it. Cache vfr, leave the service tree,
1438 * update vdisktime and go back on. The re-addition to the tree
1439 * will also update the weights as necessary.
1440 */
1441 vfr = cfqg->vfraction;
1442 cfq_group_service_tree_del(st, cfqg);
1443 cfqg->vdisktime += cfqg_scale_charge(charge, vfr);
1444 cfq_group_service_tree_add(st, cfqg);
1445
1446 /* This group is being expired. Save the context */
1447 if (time_after(cfqd->workload_expires, jiffies)) {
1448 cfqg->saved_wl_slice = cfqd->workload_expires
1449 - jiffies;
1450 cfqg->saved_wl_type = cfqd->serving_wl_type;
1451 cfqg->saved_wl_class = cfqd->serving_wl_class;
1452 } else
1453 cfqg->saved_wl_slice = 0;
1454
1455 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1456 st->min_vdisktime);
1457 cfq_log_cfqq(cfqq->cfqd, cfqq,
1458 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1459 used_sl, cfqq->slice_dispatch, charge,
1460 iops_mode(cfqd), cfqq->nr_sectors);
1461 cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1462 cfqg_stats_set_start_empty_time(cfqg);
1463}
1464
1465/**
1466 * cfq_init_cfqg_base - initialize base part of a cfq_group
1467 * @cfqg: cfq_group to initialize
1468 *
1469 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1470 * is enabled or not.
1471 */
1472static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1473{
1474 struct cfq_rb_root *st;
1475 int i, j;
1476
1477 for_each_cfqg_st(cfqg, i, j, st)
1478 *st = CFQ_RB_ROOT;
1479 RB_CLEAR_NODE(&cfqg->rb_node);
1480
1481 cfqg->ttime.last_end_request = jiffies;
1482}
1483
1484#ifdef CONFIG_CFQ_GROUP_IOSCHED
1485static void cfq_pd_init(struct blkcg_gq *blkg)
1486{
1487 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1488
1489 cfq_init_cfqg_base(cfqg);
1490 cfqg->weight = blkg->blkcg->cfq_weight;
1491 cfqg->leaf_weight = blkg->blkcg->cfq_leaf_weight;
1492}
1493
1494/*
1495 * Search for the cfq group current task belongs to. request_queue lock must
1496 * be held.
1497 */
1498static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1499 struct blkcg *blkcg)
1500{
1501 struct request_queue *q = cfqd->queue;
1502 struct cfq_group *cfqg = NULL;
1503
1504 /* avoid lookup for the common case where there's no blkcg */
1505 if (blkcg == &blkcg_root) {
1506 cfqg = cfqd->root_group;
1507 } else {
1508 struct blkcg_gq *blkg;
1509
1510 blkg = blkg_lookup_create(blkcg, q);
1511 if (!IS_ERR(blkg))
1512 cfqg = blkg_to_cfqg(blkg);
1513 }
1514
1515 return cfqg;
1516}
1517
1518static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1519{
1520 /* Currently, all async queues are mapped to root group */
1521 if (!cfq_cfqq_sync(cfqq))
1522 cfqg = cfqq->cfqd->root_group;
1523
1524 cfqq->cfqg = cfqg;
1525 /* cfqq reference on cfqg */
1526 cfqg_get(cfqg);
1527}
1528
1529static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1530 struct blkg_policy_data *pd, int off)
1531{
1532 struct cfq_group *cfqg = pd_to_cfqg(pd);
1533
1534 if (!cfqg->dev_weight)
1535 return 0;
1536 return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1537}
1538
1539static int cfqg_print_weight_device(struct cgroup *cgrp, struct cftype *cft,
1540 struct seq_file *sf)
1541{
1542 blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp),
1543 cfqg_prfill_weight_device, &blkcg_policy_cfq, 0,
1544 false);
1545 return 0;
1546}
1547
1548static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf,
1549 struct blkg_policy_data *pd, int off)
1550{
1551 struct cfq_group *cfqg = pd_to_cfqg(pd);
1552
1553 if (!cfqg->dev_leaf_weight)
1554 return 0;
1555 return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight);
1556}
1557
1558static int cfqg_print_leaf_weight_device(struct cgroup *cgrp,
1559 struct cftype *cft,
1560 struct seq_file *sf)
1561{
1562 blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp),
1563 cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq, 0,
1564 false);
1565 return 0;
1566}
1567
1568static int cfq_print_weight(struct cgroup *cgrp, struct cftype *cft,
1569 struct seq_file *sf)
1570{
1571 seq_printf(sf, "%u\n", cgroup_to_blkcg(cgrp)->cfq_weight);
1572 return 0;
1573}
1574
1575static int cfq_print_leaf_weight(struct cgroup *cgrp, struct cftype *cft,
1576 struct seq_file *sf)
1577{
1578 seq_printf(sf, "%u\n",
1579 cgroup_to_blkcg(cgrp)->cfq_leaf_weight);
1580 return 0;
1581}
1582
1583static int __cfqg_set_weight_device(struct cgroup *cgrp, struct cftype *cft,
1584 const char *buf, bool is_leaf_weight)
1585{
1586 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1587 struct blkg_conf_ctx ctx;
1588 struct cfq_group *cfqg;
1589 int ret;
1590
1591 ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1592 if (ret)
1593 return ret;
1594
1595 ret = -EINVAL;
1596 cfqg = blkg_to_cfqg(ctx.blkg);
1597 if (!ctx.v || (ctx.v >= CFQ_WEIGHT_MIN && ctx.v <= CFQ_WEIGHT_MAX)) {
1598 if (!is_leaf_weight) {
1599 cfqg->dev_weight = ctx.v;
1600 cfqg->new_weight = ctx.v ?: blkcg->cfq_weight;
1601 } else {
1602 cfqg->dev_leaf_weight = ctx.v;
1603 cfqg->new_leaf_weight = ctx.v ?: blkcg->cfq_leaf_weight;
1604 }
1605 ret = 0;
1606 }
1607
1608 blkg_conf_finish(&ctx);
1609 return ret;
1610}
1611
1612static int cfqg_set_weight_device(struct cgroup *cgrp, struct cftype *cft,
1613 const char *buf)
1614{
1615 return __cfqg_set_weight_device(cgrp, cft, buf, false);
1616}
1617
1618static int cfqg_set_leaf_weight_device(struct cgroup *cgrp, struct cftype *cft,
1619 const char *buf)
1620{
1621 return __cfqg_set_weight_device(cgrp, cft, buf, true);
1622}
1623
1624static int __cfq_set_weight(struct cgroup *cgrp, struct cftype *cft, u64 val,
1625 bool is_leaf_weight)
1626{
1627 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1628 struct blkcg_gq *blkg;
1629 struct hlist_node *n;
1630
1631 if (val < CFQ_WEIGHT_MIN || val > CFQ_WEIGHT_MAX)
1632 return -EINVAL;
1633
1634 spin_lock_irq(&blkcg->lock);
1635
1636 if (!is_leaf_weight)
1637 blkcg->cfq_weight = val;
1638 else
1639 blkcg->cfq_leaf_weight = val;
1640
1641 hlist_for_each_entry(blkg, n, &blkcg->blkg_list, blkcg_node) {
1642 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1643
1644 if (!cfqg)
1645 continue;
1646
1647 if (!is_leaf_weight) {
1648 if (!cfqg->dev_weight)
1649 cfqg->new_weight = blkcg->cfq_weight;
1650 } else {
1651 if (!cfqg->dev_leaf_weight)
1652 cfqg->new_leaf_weight = blkcg->cfq_leaf_weight;
1653 }
1654 }
1655
1656 spin_unlock_irq(&blkcg->lock);
1657 return 0;
1658}
1659
1660static int cfq_set_weight(struct cgroup *cgrp, struct cftype *cft, u64 val)
1661{
1662 return __cfq_set_weight(cgrp, cft, val, false);
1663}
1664
1665static int cfq_set_leaf_weight(struct cgroup *cgrp, struct cftype *cft, u64 val)
1666{
1667 return __cfq_set_weight(cgrp, cft, val, true);
1668}
1669
1670static int cfqg_print_stat(struct cgroup *cgrp, struct cftype *cft,
1671 struct seq_file *sf)
1672{
1673 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1674
1675 blkcg_print_blkgs(sf, blkcg, blkg_prfill_stat, &blkcg_policy_cfq,
1676 cft->private, false);
1677 return 0;
1678}
1679
1680static int cfqg_print_rwstat(struct cgroup *cgrp, struct cftype *cft,
1681 struct seq_file *sf)
1682{
1683 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1684
1685 blkcg_print_blkgs(sf, blkcg, blkg_prfill_rwstat, &blkcg_policy_cfq,
1686 cft->private, true);
1687 return 0;
1688}
1689
1690#ifdef CONFIG_DEBUG_BLK_CGROUP
1691static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1692 struct blkg_policy_data *pd, int off)
1693{
1694 struct cfq_group *cfqg = pd_to_cfqg(pd);
1695 u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1696 u64 v = 0;
1697
1698 if (samples) {
1699 v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1700 do_div(v, samples);
1701 }
1702 __blkg_prfill_u64(sf, pd, v);
1703 return 0;
1704}
1705
1706/* print avg_queue_size */
1707static int cfqg_print_avg_queue_size(struct cgroup *cgrp, struct cftype *cft,
1708 struct seq_file *sf)
1709{
1710 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1711
1712 blkcg_print_blkgs(sf, blkcg, cfqg_prfill_avg_queue_size,
1713 &blkcg_policy_cfq, 0, false);
1714 return 0;
1715}
1716#endif /* CONFIG_DEBUG_BLK_CGROUP */
1717
1718static struct cftype cfq_blkcg_files[] = {
1719 /* on root, weight is mapped to leaf_weight */
1720 {
1721 .name = "weight_device",
1722 .flags = CFTYPE_ONLY_ON_ROOT,
1723 .read_seq_string = cfqg_print_leaf_weight_device,
1724 .write_string = cfqg_set_leaf_weight_device,
1725 .max_write_len = 256,
1726 },
1727 {
1728 .name = "weight",
1729 .flags = CFTYPE_ONLY_ON_ROOT,
1730 .read_seq_string = cfq_print_leaf_weight,
1731 .write_u64 = cfq_set_leaf_weight,
1732 },
1733
1734 /* no such mapping necessary for !roots */
1735 {
1736 .name = "weight_device",
1737 .flags = CFTYPE_NOT_ON_ROOT,
1738 .read_seq_string = cfqg_print_weight_device,
1739 .write_string = cfqg_set_weight_device,
1740 .max_write_len = 256,
1741 },
1742 {
1743 .name = "weight",
1744 .flags = CFTYPE_NOT_ON_ROOT,
1745 .read_seq_string = cfq_print_weight,
1746 .write_u64 = cfq_set_weight,
1747 },
1748
1749 {
1750 .name = "leaf_weight_device",
1751 .read_seq_string = cfqg_print_leaf_weight_device,
1752 .write_string = cfqg_set_leaf_weight_device,
1753 .max_write_len = 256,
1754 },
1755 {
1756 .name = "leaf_weight",
1757 .read_seq_string = cfq_print_leaf_weight,
1758 .write_u64 = cfq_set_leaf_weight,
1759 },
1760
1761 {
1762 .name = "time",
1763 .private = offsetof(struct cfq_group, stats.time),
1764 .read_seq_string = cfqg_print_stat,
1765 },
1766 {
1767 .name = "sectors",
1768 .private = offsetof(struct cfq_group, stats.sectors),
1769 .read_seq_string = cfqg_print_stat,
1770 },
1771 {
1772 .name = "io_service_bytes",
1773 .private = offsetof(struct cfq_group, stats.service_bytes),
1774 .read_seq_string = cfqg_print_rwstat,
1775 },
1776 {
1777 .name = "io_serviced",
1778 .private = offsetof(struct cfq_group, stats.serviced),
1779 .read_seq_string = cfqg_print_rwstat,
1780 },
1781 {
1782 .name = "io_service_time",
1783 .private = offsetof(struct cfq_group, stats.service_time),
1784 .read_seq_string = cfqg_print_rwstat,
1785 },
1786 {
1787 .name = "io_wait_time",
1788 .private = offsetof(struct cfq_group, stats.wait_time),
1789 .read_seq_string = cfqg_print_rwstat,
1790 },
1791 {
1792 .name = "io_merged",
1793 .private = offsetof(struct cfq_group, stats.merged),
1794 .read_seq_string = cfqg_print_rwstat,
1795 },
1796 {
1797 .name = "io_queued",
1798 .private = offsetof(struct cfq_group, stats.queued),
1799 .read_seq_string = cfqg_print_rwstat,
1800 },
1801#ifdef CONFIG_DEBUG_BLK_CGROUP
1802 {
1803 .name = "avg_queue_size",
1804 .read_seq_string = cfqg_print_avg_queue_size,
1805 },
1806 {
1807 .name = "group_wait_time",
1808 .private = offsetof(struct cfq_group, stats.group_wait_time),
1809 .read_seq_string = cfqg_print_stat,
1810 },
1811 {
1812 .name = "idle_time",
1813 .private = offsetof(struct cfq_group, stats.idle_time),
1814 .read_seq_string = cfqg_print_stat,
1815 },
1816 {
1817 .name = "empty_time",
1818 .private = offsetof(struct cfq_group, stats.empty_time),
1819 .read_seq_string = cfqg_print_stat,
1820 },
1821 {
1822 .name = "dequeue",
1823 .private = offsetof(struct cfq_group, stats.dequeue),
1824 .read_seq_string = cfqg_print_stat,
1825 },
1826 {
1827 .name = "unaccounted_time",
1828 .private = offsetof(struct cfq_group, stats.unaccounted_time),
1829 .read_seq_string = cfqg_print_stat,
1830 },
1831#endif /* CONFIG_DEBUG_BLK_CGROUP */
1832 { } /* terminate */
1833};
1834#else /* GROUP_IOSCHED */
1835static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1836 struct blkcg *blkcg)
1837{
1838 return cfqd->root_group;
1839}
1840
1841static inline void
1842cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1843 cfqq->cfqg = cfqg;
1844}
1845
1846#endif /* GROUP_IOSCHED */
1847
1848/*
1849 * The cfqd->service_trees holds all pending cfq_queue's that have
1850 * requests waiting to be processed. It is sorted in the order that
1851 * we will service the queues.
1852 */
1853static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1854 bool add_front)
1855{
1856 struct rb_node **p, *parent;
1857 struct cfq_queue *__cfqq;
1858 unsigned long rb_key;
1859 struct cfq_rb_root *st;
1860 int left;
1861 int new_cfqq = 1;
1862
1863 st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq));
1864 if (cfq_class_idle(cfqq)) {
1865 rb_key = CFQ_IDLE_DELAY;
1866 parent = rb_last(&st->rb);
1867 if (parent && parent != &cfqq->rb_node) {
1868 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1869 rb_key += __cfqq->rb_key;
1870 } else
1871 rb_key += jiffies;
1872 } else if (!add_front) {
1873 /*
1874 * Get our rb key offset. Subtract any residual slice
1875 * value carried from last service. A negative resid
1876 * count indicates slice overrun, and this should position
1877 * the next service time further away in the tree.
1878 */
1879 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1880 rb_key -= cfqq->slice_resid;
1881 cfqq->slice_resid = 0;
1882 } else {
1883 rb_key = -HZ;
1884 __cfqq = cfq_rb_first(st);
1885 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1886 }
1887
1888 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1889 new_cfqq = 0;
1890 /*
1891 * same position, nothing more to do
1892 */
1893 if (rb_key == cfqq->rb_key && cfqq->service_tree == st)
1894 return;
1895
1896 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1897 cfqq->service_tree = NULL;
1898 }
1899
1900 left = 1;
1901 parent = NULL;
1902 cfqq->service_tree = st;
1903 p = &st->rb.rb_node;
1904 while (*p) {
1905 parent = *p;
1906 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1907
1908 /*
1909 * sort by key, that represents service time.
1910 */
1911 if (time_before(rb_key, __cfqq->rb_key))
1912 p = &parent->rb_left;
1913 else {
1914 p = &parent->rb_right;
1915 left = 0;
1916 }
1917 }
1918
1919 if (left)
1920 st->left = &cfqq->rb_node;
1921
1922 cfqq->rb_key = rb_key;
1923 rb_link_node(&cfqq->rb_node, parent, p);
1924 rb_insert_color(&cfqq->rb_node, &st->rb);
1925 st->count++;
1926 if (add_front || !new_cfqq)
1927 return;
1928 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1929}
1930
1931static struct cfq_queue *
1932cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1933 sector_t sector, struct rb_node **ret_parent,
1934 struct rb_node ***rb_link)
1935{
1936 struct rb_node **p, *parent;
1937 struct cfq_queue *cfqq = NULL;
1938
1939 parent = NULL;
1940 p = &root->rb_node;
1941 while (*p) {
1942 struct rb_node **n;
1943
1944 parent = *p;
1945 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1946
1947 /*
1948 * Sort strictly based on sector. Smallest to the left,
1949 * largest to the right.
1950 */
1951 if (sector > blk_rq_pos(cfqq->next_rq))
1952 n = &(*p)->rb_right;
1953 else if (sector < blk_rq_pos(cfqq->next_rq))
1954 n = &(*p)->rb_left;
1955 else
1956 break;
1957 p = n;
1958 cfqq = NULL;
1959 }
1960
1961 *ret_parent = parent;
1962 if (rb_link)
1963 *rb_link = p;
1964 return cfqq;
1965}
1966
1967static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1968{
1969 struct rb_node **p, *parent;
1970 struct cfq_queue *__cfqq;
1971
1972 if (cfqq->p_root) {
1973 rb_erase(&cfqq->p_node, cfqq->p_root);
1974 cfqq->p_root = NULL;
1975 }
1976
1977 if (cfq_class_idle(cfqq))
1978 return;
1979 if (!cfqq->next_rq)
1980 return;
1981
1982 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1983 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1984 blk_rq_pos(cfqq->next_rq), &parent, &p);
1985 if (!__cfqq) {
1986 rb_link_node(&cfqq->p_node, parent, p);
1987 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1988 } else
1989 cfqq->p_root = NULL;
1990}
1991
1992/*
1993 * Update cfqq's position in the service tree.
1994 */
1995static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1996{
1997 /*
1998 * Resorting requires the cfqq to be on the RR list already.
1999 */
2000 if (cfq_cfqq_on_rr(cfqq)) {
2001 cfq_service_tree_add(cfqd, cfqq, 0);
2002 cfq_prio_tree_add(cfqd, cfqq);
2003 }
2004}
2005
2006/*
2007 * add to busy list of queues for service, trying to be fair in ordering
2008 * the pending list according to last request service
2009 */
2010static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2011{
2012 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
2013 BUG_ON(cfq_cfqq_on_rr(cfqq));
2014 cfq_mark_cfqq_on_rr(cfqq);
2015 cfqd->busy_queues++;
2016 if (cfq_cfqq_sync(cfqq))
2017 cfqd->busy_sync_queues++;
2018
2019 cfq_resort_rr_list(cfqd, cfqq);
2020}
2021
2022/*
2023 * Called when the cfqq no longer has requests pending, remove it from
2024 * the service tree.
2025 */
2026static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2027{
2028 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
2029 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2030 cfq_clear_cfqq_on_rr(cfqq);
2031
2032 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2033 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2034 cfqq->service_tree = NULL;
2035 }
2036 if (cfqq->p_root) {
2037 rb_erase(&cfqq->p_node, cfqq->p_root);
2038 cfqq->p_root = NULL;
2039 }
2040
2041 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
2042 BUG_ON(!cfqd->busy_queues);
2043 cfqd->busy_queues--;
2044 if (cfq_cfqq_sync(cfqq))
2045 cfqd->busy_sync_queues--;
2046}
2047
2048/*
2049 * rb tree support functions
2050 */
2051static void cfq_del_rq_rb(struct request *rq)
2052{
2053 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2054 const int sync = rq_is_sync(rq);
2055
2056 BUG_ON(!cfqq->queued[sync]);
2057 cfqq->queued[sync]--;
2058
2059 elv_rb_del(&cfqq->sort_list, rq);
2060
2061 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
2062 /*
2063 * Queue will be deleted from service tree when we actually
2064 * expire it later. Right now just remove it from prio tree
2065 * as it is empty.
2066 */
2067 if (cfqq->p_root) {
2068 rb_erase(&cfqq->p_node, cfqq->p_root);
2069 cfqq->p_root = NULL;
2070 }
2071 }
2072}
2073
2074static void cfq_add_rq_rb(struct request *rq)
2075{
2076 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2077 struct cfq_data *cfqd = cfqq->cfqd;
2078 struct request *prev;
2079
2080 cfqq->queued[rq_is_sync(rq)]++;
2081
2082 elv_rb_add(&cfqq->sort_list, rq);
2083
2084 if (!cfq_cfqq_on_rr(cfqq))
2085 cfq_add_cfqq_rr(cfqd, cfqq);
2086
2087 /*
2088 * check if this request is a better next-serve candidate
2089 */
2090 prev = cfqq->next_rq;
2091 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
2092
2093 /*
2094 * adjust priority tree position, if ->next_rq changes
2095 */
2096 if (prev != cfqq->next_rq)
2097 cfq_prio_tree_add(cfqd, cfqq);
2098
2099 BUG_ON(!cfqq->next_rq);
2100}
2101
2102static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
2103{
2104 elv_rb_del(&cfqq->sort_list, rq);
2105 cfqq->queued[rq_is_sync(rq)]--;
2106 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2107 cfq_add_rq_rb(rq);
2108 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
2109 rq->cmd_flags);
2110}
2111
2112static struct request *
2113cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
2114{
2115 struct task_struct *tsk = current;
2116 struct cfq_io_cq *cic;
2117 struct cfq_queue *cfqq;
2118
2119 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2120 if (!cic)
2121 return NULL;
2122
2123 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2124 if (cfqq) {
2125 sector_t sector = bio->bi_sector + bio_sectors(bio);
2126
2127 return elv_rb_find(&cfqq->sort_list, sector);
2128 }
2129
2130 return NULL;
2131}
2132
2133static void cfq_activate_request(struct request_queue *q, struct request *rq)
2134{
2135 struct cfq_data *cfqd = q->elevator->elevator_data;
2136
2137 cfqd->rq_in_driver++;
2138 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
2139 cfqd->rq_in_driver);
2140
2141 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2142}
2143
2144static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
2145{
2146 struct cfq_data *cfqd = q->elevator->elevator_data;
2147
2148 WARN_ON(!cfqd->rq_in_driver);
2149 cfqd->rq_in_driver--;
2150 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
2151 cfqd->rq_in_driver);
2152}
2153
2154static void cfq_remove_request(struct request *rq)
2155{
2156 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2157
2158 if (cfqq->next_rq == rq)
2159 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
2160
2161 list_del_init(&rq->queuelist);
2162 cfq_del_rq_rb(rq);
2163
2164 cfqq->cfqd->rq_queued--;
2165 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2166 if (rq->cmd_flags & REQ_PRIO) {
2167 WARN_ON(!cfqq->prio_pending);
2168 cfqq->prio_pending--;
2169 }
2170}
2171
2172static int cfq_merge(struct request_queue *q, struct request **req,
2173 struct bio *bio)
2174{
2175 struct cfq_data *cfqd = q->elevator->elevator_data;
2176 struct request *__rq;
2177
2178 __rq = cfq_find_rq_fmerge(cfqd, bio);
2179 if (__rq && elv_rq_merge_ok(__rq, bio)) {
2180 *req = __rq;
2181 return ELEVATOR_FRONT_MERGE;
2182 }
2183
2184 return ELEVATOR_NO_MERGE;
2185}
2186
2187static void cfq_merged_request(struct request_queue *q, struct request *req,
2188 int type)
2189{
2190 if (type == ELEVATOR_FRONT_MERGE) {
2191 struct cfq_queue *cfqq = RQ_CFQQ(req);
2192
2193 cfq_reposition_rq_rb(cfqq, req);
2194 }
2195}
2196
2197static void cfq_bio_merged(struct request_queue *q, struct request *req,
2198 struct bio *bio)
2199{
2200 cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_rw);
2201}
2202
2203static void
2204cfq_merged_requests(struct request_queue *q, struct request *rq,
2205 struct request *next)
2206{
2207 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2208 struct cfq_data *cfqd = q->elevator->elevator_data;
2209
2210 /*
2211 * reposition in fifo if next is older than rq
2212 */
2213 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2214 time_before(rq_fifo_time(next), rq_fifo_time(rq)) &&
2215 cfqq == RQ_CFQQ(next)) {
2216 list_move(&rq->queuelist, &next->queuelist);
2217 rq_set_fifo_time(rq, rq_fifo_time(next));
2218 }
2219
2220 if (cfqq->next_rq == next)
2221 cfqq->next_rq = rq;
2222 cfq_remove_request(next);
2223 cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
2224
2225 cfqq = RQ_CFQQ(next);
2226 /*
2227 * all requests of this queue are merged to other queues, delete it
2228 * from the service tree. If it's the active_queue,
2229 * cfq_dispatch_requests() will choose to expire it or do idle
2230 */
2231 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
2232 cfqq != cfqd->active_queue)
2233 cfq_del_cfqq_rr(cfqd, cfqq);
2234}
2235
2236static int cfq_allow_merge(struct request_queue *q, struct request *rq,
2237 struct bio *bio)
2238{
2239 struct cfq_data *cfqd = q->elevator->elevator_data;
2240 struct cfq_io_cq *cic;
2241 struct cfq_queue *cfqq;
2242
2243 /*
2244 * Disallow merge of a sync bio into an async request.
2245 */
2246 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
2247 return false;
2248
2249 /*
2250 * Lookup the cfqq that this bio will be queued with and allow
2251 * merge only if rq is queued there.
2252 */
2253 cic = cfq_cic_lookup(cfqd, current->io_context);
2254 if (!cic)
2255 return false;
2256
2257 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2258 return cfqq == RQ_CFQQ(rq);
2259}
2260
2261static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2262{
2263 del_timer(&cfqd->idle_slice_timer);
2264 cfqg_stats_update_idle_time(cfqq->cfqg);
2265}
2266
2267static void __cfq_set_active_queue(struct cfq_data *cfqd,
2268 struct cfq_queue *cfqq)
2269{
2270 if (cfqq) {
2271 cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d",
2272 cfqd->serving_wl_class, cfqd->serving_wl_type);
2273 cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2274 cfqq->slice_start = 0;
2275 cfqq->dispatch_start = jiffies;
2276 cfqq->allocated_slice = 0;
2277 cfqq->slice_end = 0;
2278 cfqq->slice_dispatch = 0;
2279 cfqq->nr_sectors = 0;
2280
2281 cfq_clear_cfqq_wait_request(cfqq);
2282 cfq_clear_cfqq_must_dispatch(cfqq);
2283 cfq_clear_cfqq_must_alloc_slice(cfqq);
2284 cfq_clear_cfqq_fifo_expire(cfqq);
2285 cfq_mark_cfqq_slice_new(cfqq);
2286
2287 cfq_del_timer(cfqd, cfqq);
2288 }
2289
2290 cfqd->active_queue = cfqq;
2291}
2292
2293/*
2294 * current cfqq expired its slice (or was too idle), select new one
2295 */
2296static void
2297__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2298 bool timed_out)
2299{
2300 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2301
2302 if (cfq_cfqq_wait_request(cfqq))
2303 cfq_del_timer(cfqd, cfqq);
2304
2305 cfq_clear_cfqq_wait_request(cfqq);
2306 cfq_clear_cfqq_wait_busy(cfqq);
2307
2308 /*
2309 * If this cfqq is shared between multiple processes, check to
2310 * make sure that those processes are still issuing I/Os within
2311 * the mean seek distance. If not, it may be time to break the
2312 * queues apart again.
2313 */
2314 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2315 cfq_mark_cfqq_split_coop(cfqq);
2316
2317 /*
2318 * store what was left of this slice, if the queue idled/timed out
2319 */
2320 if (timed_out) {
2321 if (cfq_cfqq_slice_new(cfqq))
2322 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2323 else
2324 cfqq->slice_resid = cfqq->slice_end - jiffies;
2325 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
2326 }
2327
2328 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2329
2330 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2331 cfq_del_cfqq_rr(cfqd, cfqq);
2332
2333 cfq_resort_rr_list(cfqd, cfqq);
2334
2335 if (cfqq == cfqd->active_queue)
2336 cfqd->active_queue = NULL;
2337
2338 if (cfqd->active_cic) {
2339 put_io_context(cfqd->active_cic->icq.ioc);
2340 cfqd->active_cic = NULL;
2341 }
2342}
2343
2344static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2345{
2346 struct cfq_queue *cfqq = cfqd->active_queue;
2347
2348 if (cfqq)
2349 __cfq_slice_expired(cfqd, cfqq, timed_out);
2350}
2351
2352/*
2353 * Get next queue for service. Unless we have a queue preemption,
2354 * we'll simply select the first cfqq in the service tree.
2355 */
2356static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2357{
2358 struct cfq_rb_root *st = st_for(cfqd->serving_group,
2359 cfqd->serving_wl_class, cfqd->serving_wl_type);
2360
2361 if (!cfqd->rq_queued)
2362 return NULL;
2363
2364 /* There is nothing to dispatch */
2365 if (!st)
2366 return NULL;
2367 if (RB_EMPTY_ROOT(&st->rb))
2368 return NULL;
2369 return cfq_rb_first(st);
2370}
2371
2372static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2373{
2374 struct cfq_group *cfqg;
2375 struct cfq_queue *cfqq;
2376 int i, j;
2377 struct cfq_rb_root *st;
2378
2379 if (!cfqd->rq_queued)
2380 return NULL;
2381
2382 cfqg = cfq_get_next_cfqg(cfqd);
2383 if (!cfqg)
2384 return NULL;
2385
2386 for_each_cfqg_st(cfqg, i, j, st)
2387 if ((cfqq = cfq_rb_first(st)) != NULL)
2388 return cfqq;
2389 return NULL;
2390}
2391
2392/*
2393 * Get and set a new active queue for service.
2394 */
2395static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2396 struct cfq_queue *cfqq)
2397{
2398 if (!cfqq)
2399 cfqq = cfq_get_next_queue(cfqd);
2400
2401 __cfq_set_active_queue(cfqd, cfqq);
2402 return cfqq;
2403}
2404
2405static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2406 struct request *rq)
2407{
2408 if (blk_rq_pos(rq) >= cfqd->last_position)
2409 return blk_rq_pos(rq) - cfqd->last_position;
2410 else
2411 return cfqd->last_position - blk_rq_pos(rq);
2412}
2413
2414static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2415 struct request *rq)
2416{
2417 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2418}
2419
2420static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2421 struct cfq_queue *cur_cfqq)
2422{
2423 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2424 struct rb_node *parent, *node;
2425 struct cfq_queue *__cfqq;
2426 sector_t sector = cfqd->last_position;
2427
2428 if (RB_EMPTY_ROOT(root))
2429 return NULL;
2430
2431 /*
2432 * First, if we find a request starting at the end of the last
2433 * request, choose it.
2434 */
2435 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2436 if (__cfqq)
2437 return __cfqq;
2438
2439 /*
2440 * If the exact sector wasn't found, the parent of the NULL leaf
2441 * will contain the closest sector.
2442 */
2443 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
2444 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2445 return __cfqq;
2446
2447 if (blk_rq_pos(__cfqq->next_rq) < sector)
2448 node = rb_next(&__cfqq->p_node);
2449 else
2450 node = rb_prev(&__cfqq->p_node);
2451 if (!node)
2452 return NULL;
2453
2454 __cfqq = rb_entry(node, struct cfq_queue, p_node);
2455 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2456 return __cfqq;
2457
2458 return NULL;
2459}
2460
2461/*
2462 * cfqd - obvious
2463 * cur_cfqq - passed in so that we don't decide that the current queue is
2464 * closely cooperating with itself.
2465 *
2466 * So, basically we're assuming that that cur_cfqq has dispatched at least
2467 * one request, and that cfqd->last_position reflects a position on the disk
2468 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2469 * assumption.
2470 */
2471static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2472 struct cfq_queue *cur_cfqq)
2473{
2474 struct cfq_queue *cfqq;
2475
2476 if (cfq_class_idle(cur_cfqq))
2477 return NULL;
2478 if (!cfq_cfqq_sync(cur_cfqq))
2479 return NULL;
2480 if (CFQQ_SEEKY(cur_cfqq))
2481 return NULL;
2482
2483 /*
2484 * Don't search priority tree if it's the only queue in the group.
2485 */
2486 if (cur_cfqq->cfqg->nr_cfqq == 1)
2487 return NULL;
2488
2489 /*
2490 * We should notice if some of the queues are cooperating, eg
2491 * working closely on the same area of the disk. In that case,
2492 * we can group them together and don't waste time idling.
2493 */
2494 cfqq = cfqq_close(cfqd, cur_cfqq);
2495 if (!cfqq)
2496 return NULL;
2497
2498 /* If new queue belongs to different cfq_group, don't choose it */
2499 if (cur_cfqq->cfqg != cfqq->cfqg)
2500 return NULL;
2501
2502 /*
2503 * It only makes sense to merge sync queues.
2504 */
2505 if (!cfq_cfqq_sync(cfqq))
2506 return NULL;
2507 if (CFQQ_SEEKY(cfqq))
2508 return NULL;
2509
2510 /*
2511 * Do not merge queues of different priority classes
2512 */
2513 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2514 return NULL;
2515
2516 return cfqq;
2517}
2518
2519/*
2520 * Determine whether we should enforce idle window for this queue.
2521 */
2522
2523static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2524{
2525 enum wl_class_t wl_class = cfqq_class(cfqq);
2526 struct cfq_rb_root *st = cfqq->service_tree;
2527
2528 BUG_ON(!st);
2529 BUG_ON(!st->count);
2530
2531 if (!cfqd->cfq_slice_idle)
2532 return false;
2533
2534 /* We never do for idle class queues. */
2535 if (wl_class == IDLE_WORKLOAD)
2536 return false;
2537
2538 /* We do for queues that were marked with idle window flag. */
2539 if (cfq_cfqq_idle_window(cfqq) &&
2540 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2541 return true;
2542
2543 /*
2544 * Otherwise, we do only if they are the last ones
2545 * in their service tree.
2546 */
2547 if (st->count == 1 && cfq_cfqq_sync(cfqq) &&
2548 !cfq_io_thinktime_big(cfqd, &st->ttime, false))
2549 return true;
2550 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count);
2551 return false;
2552}
2553
2554static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2555{
2556 struct cfq_queue *cfqq = cfqd->active_queue;
2557 struct cfq_io_cq *cic;
2558 unsigned long sl, group_idle = 0;
2559
2560 /*
2561 * SSD device without seek penalty, disable idling. But only do so
2562 * for devices that support queuing, otherwise we still have a problem
2563 * with sync vs async workloads.
2564 */
2565 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2566 return;
2567
2568 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2569 WARN_ON(cfq_cfqq_slice_new(cfqq));
2570
2571 /*
2572 * idle is disabled, either manually or by past process history
2573 */
2574 if (!cfq_should_idle(cfqd, cfqq)) {
2575 /* no queue idling. Check for group idling */
2576 if (cfqd->cfq_group_idle)
2577 group_idle = cfqd->cfq_group_idle;
2578 else
2579 return;
2580 }
2581
2582 /*
2583 * still active requests from this queue, don't idle
2584 */
2585 if (cfqq->dispatched)
2586 return;
2587
2588 /*
2589 * task has exited, don't wait
2590 */
2591 cic = cfqd->active_cic;
2592 if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2593 return;
2594
2595 /*
2596 * If our average think time is larger than the remaining time
2597 * slice, then don't idle. This avoids overrunning the allotted
2598 * time slice.
2599 */
2600 if (sample_valid(cic->ttime.ttime_samples) &&
2601 (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2602 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2603 cic->ttime.ttime_mean);
2604 return;
2605 }
2606
2607 /* There are other queues in the group, don't do group idle */
2608 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2609 return;
2610
2611 cfq_mark_cfqq_wait_request(cfqq);
2612
2613 if (group_idle)
2614 sl = cfqd->cfq_group_idle;
2615 else
2616 sl = cfqd->cfq_slice_idle;
2617
2618 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2619 cfqg_stats_set_start_idle_time(cfqq->cfqg);
2620 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2621 group_idle ? 1 : 0);
2622}
2623
2624/*
2625 * Move request from internal lists to the request queue dispatch list.
2626 */
2627static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2628{
2629 struct cfq_data *cfqd = q->elevator->elevator_data;
2630 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2631
2632 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2633
2634 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2635 cfq_remove_request(rq);
2636 cfqq->dispatched++;
2637 (RQ_CFQG(rq))->dispatched++;
2638 elv_dispatch_sort(q, rq);
2639
2640 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2641 cfqq->nr_sectors += blk_rq_sectors(rq);
2642 cfqg_stats_update_dispatch(cfqq->cfqg, blk_rq_bytes(rq), rq->cmd_flags);
2643}
2644
2645/*
2646 * return expired entry, or NULL to just start from scratch in rbtree
2647 */
2648static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2649{
2650 struct request *rq = NULL;
2651
2652 if (cfq_cfqq_fifo_expire(cfqq))
2653 return NULL;
2654
2655 cfq_mark_cfqq_fifo_expire(cfqq);
2656
2657 if (list_empty(&cfqq->fifo))
2658 return NULL;
2659
2660 rq = rq_entry_fifo(cfqq->fifo.next);
2661 if (time_before(jiffies, rq_fifo_time(rq)))
2662 rq = NULL;
2663
2664 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2665 return rq;
2666}
2667
2668static inline int
2669cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2670{
2671 const int base_rq = cfqd->cfq_slice_async_rq;
2672
2673 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2674
2675 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2676}
2677
2678/*
2679 * Must be called with the queue_lock held.
2680 */
2681static int cfqq_process_refs(struct cfq_queue *cfqq)
2682{
2683 int process_refs, io_refs;
2684
2685 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2686 process_refs = cfqq->ref - io_refs;
2687 BUG_ON(process_refs < 0);
2688 return process_refs;
2689}
2690
2691static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2692{
2693 int process_refs, new_process_refs;
2694 struct cfq_queue *__cfqq;
2695
2696 /*
2697 * If there are no process references on the new_cfqq, then it is
2698 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2699 * chain may have dropped their last reference (not just their
2700 * last process reference).
2701 */
2702 if (!cfqq_process_refs(new_cfqq))
2703 return;
2704
2705 /* Avoid a circular list and skip interim queue merges */
2706 while ((__cfqq = new_cfqq->new_cfqq)) {
2707 if (__cfqq == cfqq)
2708 return;
2709 new_cfqq = __cfqq;
2710 }
2711
2712 process_refs = cfqq_process_refs(cfqq);
2713 new_process_refs = cfqq_process_refs(new_cfqq);
2714 /*
2715 * If the process for the cfqq has gone away, there is no
2716 * sense in merging the queues.
2717 */
2718 if (process_refs == 0 || new_process_refs == 0)
2719 return;
2720
2721 /*
2722 * Merge in the direction of the lesser amount of work.
2723 */
2724 if (new_process_refs >= process_refs) {
2725 cfqq->new_cfqq = new_cfqq;
2726 new_cfqq->ref += process_refs;
2727 } else {
2728 new_cfqq->new_cfqq = cfqq;
2729 cfqq->ref += new_process_refs;
2730 }
2731}
2732
2733static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd,
2734 struct cfq_group *cfqg, enum wl_class_t wl_class)
2735{
2736 struct cfq_queue *queue;
2737 int i;
2738 bool key_valid = false;
2739 unsigned long lowest_key = 0;
2740 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2741
2742 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2743 /* select the one with lowest rb_key */
2744 queue = cfq_rb_first(st_for(cfqg, wl_class, i));
2745 if (queue &&
2746 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2747 lowest_key = queue->rb_key;
2748 cur_best = i;
2749 key_valid = true;
2750 }
2751 }
2752
2753 return cur_best;
2754}
2755
2756static void
2757choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg)
2758{
2759 unsigned slice;
2760 unsigned count;
2761 struct cfq_rb_root *st;
2762 unsigned group_slice;
2763 enum wl_class_t original_class = cfqd->serving_wl_class;
2764
2765 /* Choose next priority. RT > BE > IDLE */
2766 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2767 cfqd->serving_wl_class = RT_WORKLOAD;
2768 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2769 cfqd->serving_wl_class = BE_WORKLOAD;
2770 else {
2771 cfqd->serving_wl_class = IDLE_WORKLOAD;
2772 cfqd->workload_expires = jiffies + 1;
2773 return;
2774 }
2775
2776 if (original_class != cfqd->serving_wl_class)
2777 goto new_workload;
2778
2779 /*
2780 * For RT and BE, we have to choose also the type
2781 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2782 * expiration time
2783 */
2784 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
2785 count = st->count;
2786
2787 /*
2788 * check workload expiration, and that we still have other queues ready
2789 */
2790 if (count && !time_after(jiffies, cfqd->workload_expires))
2791 return;
2792
2793new_workload:
2794 /* otherwise select new workload type */
2795 cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg,
2796 cfqd->serving_wl_class);
2797 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
2798 count = st->count;
2799
2800 /*
2801 * the workload slice is computed as a fraction of target latency
2802 * proportional to the number of queues in that workload, over
2803 * all the queues in the same priority class
2804 */
2805 group_slice = cfq_group_slice(cfqd, cfqg);
2806
2807 slice = group_slice * count /
2808 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class],
2809 cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd,
2810 cfqg));
2811
2812 if (cfqd->serving_wl_type == ASYNC_WORKLOAD) {
2813 unsigned int tmp;
2814
2815 /*
2816 * Async queues are currently system wide. Just taking
2817 * proportion of queues with-in same group will lead to higher
2818 * async ratio system wide as generally root group is going
2819 * to have higher weight. A more accurate thing would be to
2820 * calculate system wide asnc/sync ratio.
2821 */
2822 tmp = cfqd->cfq_target_latency *
2823 cfqg_busy_async_queues(cfqd, cfqg);
2824 tmp = tmp/cfqd->busy_queues;
2825 slice = min_t(unsigned, slice, tmp);
2826
2827 /* async workload slice is scaled down according to
2828 * the sync/async slice ratio. */
2829 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2830 } else
2831 /* sync workload slice is at least 2 * cfq_slice_idle */
2832 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2833
2834 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2835 cfq_log(cfqd, "workload slice:%d", slice);
2836 cfqd->workload_expires = jiffies + slice;
2837}
2838
2839static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2840{
2841 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2842 struct cfq_group *cfqg;
2843
2844 if (RB_EMPTY_ROOT(&st->rb))
2845 return NULL;
2846 cfqg = cfq_rb_first_group(st);
2847 update_min_vdisktime(st);
2848 return cfqg;
2849}
2850
2851static void cfq_choose_cfqg(struct cfq_data *cfqd)
2852{
2853 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2854
2855 cfqd->serving_group = cfqg;
2856
2857 /* Restore the workload type data */
2858 if (cfqg->saved_wl_slice) {
2859 cfqd->workload_expires = jiffies + cfqg->saved_wl_slice;
2860 cfqd->serving_wl_type = cfqg->saved_wl_type;
2861 cfqd->serving_wl_class = cfqg->saved_wl_class;
2862 } else
2863 cfqd->workload_expires = jiffies - 1;
2864
2865 choose_wl_class_and_type(cfqd, cfqg);
2866}
2867
2868/*
2869 * Select a queue for service. If we have a current active queue,
2870 * check whether to continue servicing it, or retrieve and set a new one.
2871 */
2872static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2873{
2874 struct cfq_queue *cfqq, *new_cfqq = NULL;
2875
2876 cfqq = cfqd->active_queue;
2877 if (!cfqq)
2878 goto new_queue;
2879
2880 if (!cfqd->rq_queued)
2881 return NULL;
2882
2883 /*
2884 * We were waiting for group to get backlogged. Expire the queue
2885 */
2886 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2887 goto expire;
2888
2889 /*
2890 * The active queue has run out of time, expire it and select new.
2891 */
2892 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2893 /*
2894 * If slice had not expired at the completion of last request
2895 * we might not have turned on wait_busy flag. Don't expire
2896 * the queue yet. Allow the group to get backlogged.
2897 *
2898 * The very fact that we have used the slice, that means we
2899 * have been idling all along on this queue and it should be
2900 * ok to wait for this request to complete.
2901 */
2902 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2903 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2904 cfqq = NULL;
2905 goto keep_queue;
2906 } else
2907 goto check_group_idle;
2908 }
2909
2910 /*
2911 * The active queue has requests and isn't expired, allow it to
2912 * dispatch.
2913 */
2914 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2915 goto keep_queue;
2916
2917 /*
2918 * If another queue has a request waiting within our mean seek
2919 * distance, let it run. The expire code will check for close
2920 * cooperators and put the close queue at the front of the service
2921 * tree. If possible, merge the expiring queue with the new cfqq.
2922 */
2923 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2924 if (new_cfqq) {
2925 if (!cfqq->new_cfqq)
2926 cfq_setup_merge(cfqq, new_cfqq);
2927 goto expire;
2928 }
2929
2930 /*
2931 * No requests pending. If the active queue still has requests in
2932 * flight or is idling for a new request, allow either of these
2933 * conditions to happen (or time out) before selecting a new queue.
2934 */
2935 if (timer_pending(&cfqd->idle_slice_timer)) {
2936 cfqq = NULL;
2937 goto keep_queue;
2938 }
2939
2940 /*
2941 * This is a deep seek queue, but the device is much faster than
2942 * the queue can deliver, don't idle
2943 **/
2944 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2945 (cfq_cfqq_slice_new(cfqq) ||
2946 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2947 cfq_clear_cfqq_deep(cfqq);
2948 cfq_clear_cfqq_idle_window(cfqq);
2949 }
2950
2951 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2952 cfqq = NULL;
2953 goto keep_queue;
2954 }
2955
2956 /*
2957 * If group idle is enabled and there are requests dispatched from
2958 * this group, wait for requests to complete.
2959 */
2960check_group_idle:
2961 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
2962 cfqq->cfqg->dispatched &&
2963 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
2964 cfqq = NULL;
2965 goto keep_queue;
2966 }
2967
2968expire:
2969 cfq_slice_expired(cfqd, 0);
2970new_queue:
2971 /*
2972 * Current queue expired. Check if we have to switch to a new
2973 * service tree
2974 */
2975 if (!new_cfqq)
2976 cfq_choose_cfqg(cfqd);
2977
2978 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2979keep_queue:
2980 return cfqq;
2981}
2982
2983static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2984{
2985 int dispatched = 0;
2986
2987 while (cfqq->next_rq) {
2988 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2989 dispatched++;
2990 }
2991
2992 BUG_ON(!list_empty(&cfqq->fifo));
2993
2994 /* By default cfqq is not expired if it is empty. Do it explicitly */
2995 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2996 return dispatched;
2997}
2998
2999/*
3000 * Drain our current requests. Used for barriers and when switching
3001 * io schedulers on-the-fly.
3002 */
3003static int cfq_forced_dispatch(struct cfq_data *cfqd)
3004{
3005 struct cfq_queue *cfqq;
3006 int dispatched = 0;
3007
3008 /* Expire the timeslice of the current active queue first */
3009 cfq_slice_expired(cfqd, 0);
3010 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
3011 __cfq_set_active_queue(cfqd, cfqq);
3012 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3013 }
3014
3015 BUG_ON(cfqd->busy_queues);
3016
3017 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
3018 return dispatched;
3019}
3020
3021static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
3022 struct cfq_queue *cfqq)
3023{
3024 /* the queue hasn't finished any request, can't estimate */
3025 if (cfq_cfqq_slice_new(cfqq))
3026 return true;
3027 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
3028 cfqq->slice_end))
3029 return true;
3030
3031 return false;
3032}
3033
3034static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3035{
3036 unsigned int max_dispatch;
3037
3038 /*
3039 * Drain async requests before we start sync IO
3040 */
3041 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
3042 return false;
3043
3044 /*
3045 * If this is an async queue and we have sync IO in flight, let it wait
3046 */
3047 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
3048 return false;
3049
3050 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
3051 if (cfq_class_idle(cfqq))
3052 max_dispatch = 1;
3053
3054 /*
3055 * Does this cfqq already have too much IO in flight?
3056 */
3057 if (cfqq->dispatched >= max_dispatch) {
3058 bool promote_sync = false;
3059 /*
3060 * idle queue must always only have a single IO in flight
3061 */
3062 if (cfq_class_idle(cfqq))
3063 return false;
3064
3065 /*
3066 * If there is only one sync queue
3067 * we can ignore async queue here and give the sync
3068 * queue no dispatch limit. The reason is a sync queue can
3069 * preempt async queue, limiting the sync queue doesn't make
3070 * sense. This is useful for aiostress test.
3071 */
3072 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
3073 promote_sync = true;
3074
3075 /*
3076 * We have other queues, don't allow more IO from this one
3077 */
3078 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
3079 !promote_sync)
3080 return false;
3081
3082 /*
3083 * Sole queue user, no limit
3084 */
3085 if (cfqd->busy_queues == 1 || promote_sync)
3086 max_dispatch = -1;
3087 else
3088 /*
3089 * Normally we start throttling cfqq when cfq_quantum/2
3090 * requests have been dispatched. But we can drive
3091 * deeper queue depths at the beginning of slice
3092 * subjected to upper limit of cfq_quantum.
3093 * */
3094 max_dispatch = cfqd->cfq_quantum;
3095 }
3096
3097 /*
3098 * Async queues must wait a bit before being allowed dispatch.
3099 * We also ramp up the dispatch depth gradually for async IO,
3100 * based on the last sync IO we serviced
3101 */
3102 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
3103 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
3104 unsigned int depth;
3105
3106 depth = last_sync / cfqd->cfq_slice[1];
3107 if (!depth && !cfqq->dispatched)
3108 depth = 1;
3109 if (depth < max_dispatch)
3110 max_dispatch = depth;
3111 }
3112
3113 /*
3114 * If we're below the current max, allow a dispatch
3115 */
3116 return cfqq->dispatched < max_dispatch;
3117}
3118
3119/*
3120 * Dispatch a request from cfqq, moving them to the request queue
3121 * dispatch list.
3122 */
3123static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3124{
3125 struct request *rq;
3126
3127 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
3128
3129 if (!cfq_may_dispatch(cfqd, cfqq))
3130 return false;
3131
3132 /*
3133 * follow expired path, else get first next available
3134 */
3135 rq = cfq_check_fifo(cfqq);
3136 if (!rq)
3137 rq = cfqq->next_rq;
3138
3139 /*
3140 * insert request into driver dispatch list
3141 */
3142 cfq_dispatch_insert(cfqd->queue, rq);
3143
3144 if (!cfqd->active_cic) {
3145 struct cfq_io_cq *cic = RQ_CIC(rq);
3146
3147 atomic_long_inc(&cic->icq.ioc->refcount);
3148 cfqd->active_cic = cic;
3149 }
3150
3151 return true;
3152}
3153
3154/*
3155 * Find the cfqq that we need to service and move a request from that to the
3156 * dispatch list
3157 */
3158static int cfq_dispatch_requests(struct request_queue *q, int force)
3159{
3160 struct cfq_data *cfqd = q->elevator->elevator_data;
3161 struct cfq_queue *cfqq;
3162
3163 if (!cfqd->busy_queues)
3164 return 0;
3165
3166 if (unlikely(force))
3167 return cfq_forced_dispatch(cfqd);
3168
3169 cfqq = cfq_select_queue(cfqd);
3170 if (!cfqq)
3171 return 0;
3172
3173 /*
3174 * Dispatch a request from this cfqq, if it is allowed
3175 */
3176 if (!cfq_dispatch_request(cfqd, cfqq))
3177 return 0;
3178
3179 cfqq->slice_dispatch++;
3180 cfq_clear_cfqq_must_dispatch(cfqq);
3181
3182 /*
3183 * expire an async queue immediately if it has used up its slice. idle
3184 * queue always expire after 1 dispatch round.
3185 */
3186 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
3187 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
3188 cfq_class_idle(cfqq))) {
3189 cfqq->slice_end = jiffies + 1;
3190 cfq_slice_expired(cfqd, 0);
3191 }
3192
3193 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
3194 return 1;
3195}
3196
3197/*
3198 * task holds one reference to the queue, dropped when task exits. each rq
3199 * in-flight on this queue also holds a reference, dropped when rq is freed.
3200 *
3201 * Each cfq queue took a reference on the parent group. Drop it now.
3202 * queue lock must be held here.
3203 */
3204static void cfq_put_queue(struct cfq_queue *cfqq)
3205{
3206 struct cfq_data *cfqd = cfqq->cfqd;
3207 struct cfq_group *cfqg;
3208
3209 BUG_ON(cfqq->ref <= 0);
3210
3211 cfqq->ref--;
3212 if (cfqq->ref)
3213 return;
3214
3215 cfq_log_cfqq(cfqd, cfqq, "put_queue");
3216 BUG_ON(rb_first(&cfqq->sort_list));
3217 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3218 cfqg = cfqq->cfqg;
3219
3220 if (unlikely(cfqd->active_queue == cfqq)) {
3221 __cfq_slice_expired(cfqd, cfqq, 0);
3222 cfq_schedule_dispatch(cfqd);
3223 }
3224
3225 BUG_ON(cfq_cfqq_on_rr(cfqq));
3226 kmem_cache_free(cfq_pool, cfqq);
3227 cfqg_put(cfqg);
3228}
3229
3230static void cfq_put_cooperator(struct cfq_queue *cfqq)
3231{
3232 struct cfq_queue *__cfqq, *next;
3233
3234 /*
3235 * If this queue was scheduled to merge with another queue, be
3236 * sure to drop the reference taken on that queue (and others in
3237 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3238 */
3239 __cfqq = cfqq->new_cfqq;
3240 while (__cfqq) {
3241 if (__cfqq == cfqq) {
3242 WARN(1, "cfqq->new_cfqq loop detected\n");
3243 break;
3244 }
3245 next = __cfqq->new_cfqq;
3246 cfq_put_queue(__cfqq);
3247 __cfqq = next;
3248 }
3249}
3250
3251static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3252{
3253 if (unlikely(cfqq == cfqd->active_queue)) {
3254 __cfq_slice_expired(cfqd, cfqq, 0);
3255 cfq_schedule_dispatch(cfqd);
3256 }
3257
3258 cfq_put_cooperator(cfqq);
3259
3260 cfq_put_queue(cfqq);
3261}
3262
3263static void cfq_init_icq(struct io_cq *icq)
3264{
3265 struct cfq_io_cq *cic = icq_to_cic(icq);
3266
3267 cic->ttime.last_end_request = jiffies;
3268}
3269
3270static void cfq_exit_icq(struct io_cq *icq)
3271{
3272 struct cfq_io_cq *cic = icq_to_cic(icq);
3273 struct cfq_data *cfqd = cic_to_cfqd(cic);
3274
3275 if (cic->cfqq[BLK_RW_ASYNC]) {
3276 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
3277 cic->cfqq[BLK_RW_ASYNC] = NULL;
3278 }
3279
3280 if (cic->cfqq[BLK_RW_SYNC]) {
3281 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
3282 cic->cfqq[BLK_RW_SYNC] = NULL;
3283 }
3284}
3285
3286static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3287{
3288 struct task_struct *tsk = current;
3289 int ioprio_class;
3290
3291 if (!cfq_cfqq_prio_changed(cfqq))
3292 return;
3293
3294 ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3295 switch (ioprio_class) {
3296 default:
3297 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3298 case IOPRIO_CLASS_NONE:
3299 /*
3300 * no prio set, inherit CPU scheduling settings
3301 */
3302 cfqq->ioprio = task_nice_ioprio(tsk);
3303 cfqq->ioprio_class = task_nice_ioclass(tsk);
3304 break;
3305 case IOPRIO_CLASS_RT:
3306 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3307 cfqq->ioprio_class = IOPRIO_CLASS_RT;
3308 break;
3309 case IOPRIO_CLASS_BE:
3310 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3311 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3312 break;
3313 case IOPRIO_CLASS_IDLE:
3314 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3315 cfqq->ioprio = 7;
3316 cfq_clear_cfqq_idle_window(cfqq);
3317 break;
3318 }
3319
3320 /*
3321 * keep track of original prio settings in case we have to temporarily
3322 * elevate the priority of this queue
3323 */
3324 cfqq->org_ioprio = cfqq->ioprio;
3325 cfq_clear_cfqq_prio_changed(cfqq);
3326}
3327
3328static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3329{
3330 int ioprio = cic->icq.ioc->ioprio;
3331 struct cfq_data *cfqd = cic_to_cfqd(cic);
3332 struct cfq_queue *cfqq;
3333
3334 /*
3335 * Check whether ioprio has changed. The condition may trigger
3336 * spuriously on a newly created cic but there's no harm.
3337 */
3338 if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3339 return;
3340
3341 cfqq = cic->cfqq[BLK_RW_ASYNC];
3342 if (cfqq) {
3343 struct cfq_queue *new_cfqq;
3344 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio,
3345 GFP_ATOMIC);
3346 if (new_cfqq) {
3347 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
3348 cfq_put_queue(cfqq);
3349 }
3350 }
3351
3352 cfqq = cic->cfqq[BLK_RW_SYNC];
3353 if (cfqq)
3354 cfq_mark_cfqq_prio_changed(cfqq);
3355
3356 cic->ioprio = ioprio;
3357}
3358
3359static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3360 pid_t pid, bool is_sync)
3361{
3362 RB_CLEAR_NODE(&cfqq->rb_node);
3363 RB_CLEAR_NODE(&cfqq->p_node);
3364 INIT_LIST_HEAD(&cfqq->fifo);
3365
3366 cfqq->ref = 0;
3367 cfqq->cfqd = cfqd;
3368
3369 cfq_mark_cfqq_prio_changed(cfqq);
3370
3371 if (is_sync) {
3372 if (!cfq_class_idle(cfqq))
3373 cfq_mark_cfqq_idle_window(cfqq);
3374 cfq_mark_cfqq_sync(cfqq);
3375 }
3376 cfqq->pid = pid;
3377}
3378
3379#ifdef CONFIG_CFQ_GROUP_IOSCHED
3380static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3381{
3382 struct cfq_data *cfqd = cic_to_cfqd(cic);
3383 struct cfq_queue *sync_cfqq;
3384 uint64_t id;
3385
3386 rcu_read_lock();
3387 id = bio_blkcg(bio)->id;
3388 rcu_read_unlock();
3389
3390 /*
3391 * Check whether blkcg has changed. The condition may trigger
3392 * spuriously on a newly created cic but there's no harm.
3393 */
3394 if (unlikely(!cfqd) || likely(cic->blkcg_id == id))
3395 return;
3396
3397 sync_cfqq = cic_to_cfqq(cic, 1);
3398 if (sync_cfqq) {
3399 /*
3400 * Drop reference to sync queue. A new sync queue will be
3401 * assigned in new group upon arrival of a fresh request.
3402 */
3403 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
3404 cic_set_cfqq(cic, NULL, 1);
3405 cfq_put_queue(sync_cfqq);
3406 }
3407
3408 cic->blkcg_id = id;
3409}
3410#else
3411static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
3412#endif /* CONFIG_CFQ_GROUP_IOSCHED */
3413
3414static struct cfq_queue *
3415cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3416 struct bio *bio, gfp_t gfp_mask)
3417{
3418 struct blkcg *blkcg;
3419 struct cfq_queue *cfqq, *new_cfqq = NULL;
3420 struct cfq_group *cfqg;
3421
3422retry:
3423 rcu_read_lock();
3424
3425 blkcg = bio_blkcg(bio);
3426 cfqg = cfq_lookup_create_cfqg(cfqd, blkcg);
3427 cfqq = cic_to_cfqq(cic, is_sync);
3428
3429 /*
3430 * Always try a new alloc if we fell back to the OOM cfqq
3431 * originally, since it should just be a temporary situation.
3432 */
3433 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3434 cfqq = NULL;
3435 if (new_cfqq) {
3436 cfqq = new_cfqq;
3437 new_cfqq = NULL;
3438 } else if (gfp_mask & __GFP_WAIT) {
3439 rcu_read_unlock();
3440 spin_unlock_irq(cfqd->queue->queue_lock);
3441 new_cfqq = kmem_cache_alloc_node(cfq_pool,
3442 gfp_mask | __GFP_ZERO,
3443 cfqd->queue->node);
3444 spin_lock_irq(cfqd->queue->queue_lock);
3445 if (new_cfqq)
3446 goto retry;
3447 } else {
3448 cfqq = kmem_cache_alloc_node(cfq_pool,
3449 gfp_mask | __GFP_ZERO,
3450 cfqd->queue->node);
3451 }
3452
3453 if (cfqq) {
3454 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3455 cfq_init_prio_data(cfqq, cic);
3456 cfq_link_cfqq_cfqg(cfqq, cfqg);
3457 cfq_log_cfqq(cfqd, cfqq, "alloced");
3458 } else
3459 cfqq = &cfqd->oom_cfqq;
3460 }
3461
3462 if (new_cfqq)
3463 kmem_cache_free(cfq_pool, new_cfqq);
3464
3465 rcu_read_unlock();
3466 return cfqq;
3467}
3468
3469static struct cfq_queue **
3470cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3471{
3472 switch (ioprio_class) {
3473 case IOPRIO_CLASS_RT:
3474 return &cfqd->async_cfqq[0][ioprio];
3475 case IOPRIO_CLASS_NONE:
3476 ioprio = IOPRIO_NORM;
3477 /* fall through */
3478 case IOPRIO_CLASS_BE:
3479 return &cfqd->async_cfqq[1][ioprio];
3480 case IOPRIO_CLASS_IDLE:
3481 return &cfqd->async_idle_cfqq;
3482 default:
3483 BUG();
3484 }
3485}
3486
3487static struct cfq_queue *
3488cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3489 struct bio *bio, gfp_t gfp_mask)
3490{
3491 const int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3492 const int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3493 struct cfq_queue **async_cfqq = NULL;
3494 struct cfq_queue *cfqq = NULL;
3495
3496 if (!is_sync) {
3497 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3498 cfqq = *async_cfqq;
3499 }
3500
3501 if (!cfqq)
3502 cfqq = cfq_find_alloc_queue(cfqd, is_sync, cic, bio, gfp_mask);
3503
3504 /*
3505 * pin the queue now that it's allocated, scheduler exit will prune it
3506 */
3507 if (!is_sync && !(*async_cfqq)) {
3508 cfqq->ref++;
3509 *async_cfqq = cfqq;
3510 }
3511
3512 cfqq->ref++;
3513 return cfqq;
3514}
3515
3516static void
3517__cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3518{
3519 unsigned long elapsed = jiffies - ttime->last_end_request;
3520 elapsed = min(elapsed, 2UL * slice_idle);
3521
3522 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3523 ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3524 ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3525}
3526
3527static void
3528cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3529 struct cfq_io_cq *cic)
3530{
3531 if (cfq_cfqq_sync(cfqq)) {
3532 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3533 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3534 cfqd->cfq_slice_idle);
3535 }
3536#ifdef CONFIG_CFQ_GROUP_IOSCHED
3537 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3538#endif
3539}
3540
3541static void
3542cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3543 struct request *rq)
3544{
3545 sector_t sdist = 0;
3546 sector_t n_sec = blk_rq_sectors(rq);
3547 if (cfqq->last_request_pos) {
3548 if (cfqq->last_request_pos < blk_rq_pos(rq))
3549 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3550 else
3551 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3552 }
3553
3554 cfqq->seek_history <<= 1;
3555 if (blk_queue_nonrot(cfqd->queue))
3556 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3557 else
3558 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3559}
3560
3561/*
3562 * Disable idle window if the process thinks too long or seeks so much that
3563 * it doesn't matter
3564 */
3565static void
3566cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3567 struct cfq_io_cq *cic)
3568{
3569 int old_idle, enable_idle;
3570
3571 /*
3572 * Don't idle for async or idle io prio class
3573 */
3574 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3575 return;
3576
3577 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3578
3579 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3580 cfq_mark_cfqq_deep(cfqq);
3581
3582 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3583 enable_idle = 0;
3584 else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3585 !cfqd->cfq_slice_idle ||
3586 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3587 enable_idle = 0;
3588 else if (sample_valid(cic->ttime.ttime_samples)) {
3589 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3590 enable_idle = 0;
3591 else
3592 enable_idle = 1;
3593 }
3594
3595 if (old_idle != enable_idle) {
3596 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3597 if (enable_idle)
3598 cfq_mark_cfqq_idle_window(cfqq);
3599 else
3600 cfq_clear_cfqq_idle_window(cfqq);
3601 }
3602}
3603
3604/*
3605 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3606 * no or if we aren't sure, a 1 will cause a preempt.
3607 */
3608static bool
3609cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3610 struct request *rq)
3611{
3612 struct cfq_queue *cfqq;
3613
3614 cfqq = cfqd->active_queue;
3615 if (!cfqq)
3616 return false;
3617
3618 if (cfq_class_idle(new_cfqq))
3619 return false;
3620
3621 if (cfq_class_idle(cfqq))
3622 return true;
3623
3624 /*
3625 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3626 */
3627 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3628 return false;
3629
3630 /*
3631 * if the new request is sync, but the currently running queue is
3632 * not, let the sync request have priority.
3633 */
3634 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3635 return true;
3636
3637 if (new_cfqq->cfqg != cfqq->cfqg)
3638 return false;
3639
3640 if (cfq_slice_used(cfqq))
3641 return true;
3642
3643 /* Allow preemption only if we are idling on sync-noidle tree */
3644 if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD &&
3645 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3646 new_cfqq->service_tree->count == 2 &&
3647 RB_EMPTY_ROOT(&cfqq->sort_list))
3648 return true;
3649
3650 /*
3651 * So both queues are sync. Let the new request get disk time if
3652 * it's a metadata request and the current queue is doing regular IO.
3653 */
3654 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3655 return true;
3656
3657 /*
3658 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3659 */
3660 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3661 return true;
3662
3663 /* An idle queue should not be idle now for some reason */
3664 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3665 return true;
3666
3667 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3668 return false;
3669
3670 /*
3671 * if this request is as-good as one we would expect from the
3672 * current cfqq, let it preempt
3673 */
3674 if (cfq_rq_close(cfqd, cfqq, rq))
3675 return true;
3676
3677 return false;
3678}
3679
3680/*
3681 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3682 * let it have half of its nominal slice.
3683 */
3684static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3685{
3686 enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
3687
3688 cfq_log_cfqq(cfqd, cfqq, "preempt");
3689 cfq_slice_expired(cfqd, 1);
3690
3691 /*
3692 * workload type is changed, don't save slice, otherwise preempt
3693 * doesn't happen
3694 */
3695 if (old_type != cfqq_type(cfqq))
3696 cfqq->cfqg->saved_wl_slice = 0;
3697
3698 /*
3699 * Put the new queue at the front of the of the current list,
3700 * so we know that it will be selected next.
3701 */
3702 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3703
3704 cfq_service_tree_add(cfqd, cfqq, 1);
3705
3706 cfqq->slice_end = 0;
3707 cfq_mark_cfqq_slice_new(cfqq);
3708}
3709
3710/*
3711 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3712 * something we should do about it
3713 */
3714static void
3715cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3716 struct request *rq)
3717{
3718 struct cfq_io_cq *cic = RQ_CIC(rq);
3719
3720 cfqd->rq_queued++;
3721 if (rq->cmd_flags & REQ_PRIO)
3722 cfqq->prio_pending++;
3723
3724 cfq_update_io_thinktime(cfqd, cfqq, cic);
3725 cfq_update_io_seektime(cfqd, cfqq, rq);
3726 cfq_update_idle_window(cfqd, cfqq, cic);
3727
3728 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3729
3730 if (cfqq == cfqd->active_queue) {
3731 /*
3732 * Remember that we saw a request from this process, but
3733 * don't start queuing just yet. Otherwise we risk seeing lots
3734 * of tiny requests, because we disrupt the normal plugging
3735 * and merging. If the request is already larger than a single
3736 * page, let it rip immediately. For that case we assume that
3737 * merging is already done. Ditto for a busy system that
3738 * has other work pending, don't risk delaying until the
3739 * idle timer unplug to continue working.
3740 */
3741 if (cfq_cfqq_wait_request(cfqq)) {
3742 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3743 cfqd->busy_queues > 1) {
3744 cfq_del_timer(cfqd, cfqq);
3745 cfq_clear_cfqq_wait_request(cfqq);
3746 __blk_run_queue(cfqd->queue);
3747 } else {
3748 cfqg_stats_update_idle_time(cfqq->cfqg);
3749 cfq_mark_cfqq_must_dispatch(cfqq);
3750 }
3751 }
3752 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3753 /*
3754 * not the active queue - expire current slice if it is
3755 * idle and has expired it's mean thinktime or this new queue
3756 * has some old slice time left and is of higher priority or
3757 * this new queue is RT and the current one is BE
3758 */
3759 cfq_preempt_queue(cfqd, cfqq);
3760 __blk_run_queue(cfqd->queue);
3761 }
3762}
3763
3764static void cfq_insert_request(struct request_queue *q, struct request *rq)
3765{
3766 struct cfq_data *cfqd = q->elevator->elevator_data;
3767 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3768
3769 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3770 cfq_init_prio_data(cfqq, RQ_CIC(rq));
3771
3772 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3773 list_add_tail(&rq->queuelist, &cfqq->fifo);
3774 cfq_add_rq_rb(rq);
3775 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
3776 rq->cmd_flags);
3777 cfq_rq_enqueued(cfqd, cfqq, rq);
3778}
3779
3780/*
3781 * Update hw_tag based on peak queue depth over 50 samples under
3782 * sufficient load.
3783 */
3784static void cfq_update_hw_tag(struct cfq_data *cfqd)
3785{
3786 struct cfq_queue *cfqq = cfqd->active_queue;
3787
3788 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3789 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3790
3791 if (cfqd->hw_tag == 1)
3792 return;
3793
3794 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3795 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3796 return;
3797
3798 /*
3799 * If active queue hasn't enough requests and can idle, cfq might not
3800 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3801 * case
3802 */
3803 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3804 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3805 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3806 return;
3807
3808 if (cfqd->hw_tag_samples++ < 50)
3809 return;
3810
3811 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3812 cfqd->hw_tag = 1;
3813 else
3814 cfqd->hw_tag = 0;
3815}
3816
3817static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3818{
3819 struct cfq_io_cq *cic = cfqd->active_cic;
3820
3821 /* If the queue already has requests, don't wait */
3822 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3823 return false;
3824
3825 /* If there are other queues in the group, don't wait */
3826 if (cfqq->cfqg->nr_cfqq > 1)
3827 return false;
3828
3829 /* the only queue in the group, but think time is big */
3830 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3831 return false;
3832
3833 if (cfq_slice_used(cfqq))
3834 return true;
3835
3836 /* if slice left is less than think time, wait busy */
3837 if (cic && sample_valid(cic->ttime.ttime_samples)
3838 && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
3839 return true;
3840
3841 /*
3842 * If think times is less than a jiffy than ttime_mean=0 and above
3843 * will not be true. It might happen that slice has not expired yet
3844 * but will expire soon (4-5 ns) during select_queue(). To cover the
3845 * case where think time is less than a jiffy, mark the queue wait
3846 * busy if only 1 jiffy is left in the slice.
3847 */
3848 if (cfqq->slice_end - jiffies == 1)
3849 return true;
3850
3851 return false;
3852}
3853
3854static void cfq_completed_request(struct request_queue *q, struct request *rq)
3855{
3856 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3857 struct cfq_data *cfqd = cfqq->cfqd;
3858 const int sync = rq_is_sync(rq);
3859 unsigned long now;
3860
3861 now = jiffies;
3862 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3863 !!(rq->cmd_flags & REQ_NOIDLE));
3864
3865 cfq_update_hw_tag(cfqd);
3866
3867 WARN_ON(!cfqd->rq_in_driver);
3868 WARN_ON(!cfqq->dispatched);
3869 cfqd->rq_in_driver--;
3870 cfqq->dispatched--;
3871 (RQ_CFQG(rq))->dispatched--;
3872 cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
3873 rq_io_start_time_ns(rq), rq->cmd_flags);
3874
3875 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3876
3877 if (sync) {
3878 struct cfq_rb_root *st;
3879
3880 RQ_CIC(rq)->ttime.last_end_request = now;
3881
3882 if (cfq_cfqq_on_rr(cfqq))
3883 st = cfqq->service_tree;
3884 else
3885 st = st_for(cfqq->cfqg, cfqq_class(cfqq),
3886 cfqq_type(cfqq));
3887
3888 st->ttime.last_end_request = now;
3889 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3890 cfqd->last_delayed_sync = now;
3891 }
3892
3893#ifdef CONFIG_CFQ_GROUP_IOSCHED
3894 cfqq->cfqg->ttime.last_end_request = now;
3895#endif
3896
3897 /*
3898 * If this is the active queue, check if it needs to be expired,
3899 * or if we want to idle in case it has no pending requests.
3900 */
3901 if (cfqd->active_queue == cfqq) {
3902 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3903
3904 if (cfq_cfqq_slice_new(cfqq)) {
3905 cfq_set_prio_slice(cfqd, cfqq);
3906 cfq_clear_cfqq_slice_new(cfqq);
3907 }
3908
3909 /*
3910 * Should we wait for next request to come in before we expire
3911 * the queue.
3912 */
3913 if (cfq_should_wait_busy(cfqd, cfqq)) {
3914 unsigned long extend_sl = cfqd->cfq_slice_idle;
3915 if (!cfqd->cfq_slice_idle)
3916 extend_sl = cfqd->cfq_group_idle;
3917 cfqq->slice_end = jiffies + extend_sl;
3918 cfq_mark_cfqq_wait_busy(cfqq);
3919 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3920 }
3921
3922 /*
3923 * Idling is not enabled on:
3924 * - expired queues
3925 * - idle-priority queues
3926 * - async queues
3927 * - queues with still some requests queued
3928 * - when there is a close cooperator
3929 */
3930 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3931 cfq_slice_expired(cfqd, 1);
3932 else if (sync && cfqq_empty &&
3933 !cfq_close_cooperator(cfqd, cfqq)) {
3934 cfq_arm_slice_timer(cfqd);
3935 }
3936 }
3937
3938 if (!cfqd->rq_in_driver)
3939 cfq_schedule_dispatch(cfqd);
3940}
3941
3942static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3943{
3944 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3945 cfq_mark_cfqq_must_alloc_slice(cfqq);
3946 return ELV_MQUEUE_MUST;
3947 }
3948
3949 return ELV_MQUEUE_MAY;
3950}
3951
3952static int cfq_may_queue(struct request_queue *q, int rw)
3953{
3954 struct cfq_data *cfqd = q->elevator->elevator_data;
3955 struct task_struct *tsk = current;
3956 struct cfq_io_cq *cic;
3957 struct cfq_queue *cfqq;
3958
3959 /*
3960 * don't force setup of a queue from here, as a call to may_queue
3961 * does not necessarily imply that a request actually will be queued.
3962 * so just lookup a possibly existing queue, or return 'may queue'
3963 * if that fails
3964 */
3965 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3966 if (!cic)
3967 return ELV_MQUEUE_MAY;
3968
3969 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3970 if (cfqq) {
3971 cfq_init_prio_data(cfqq, cic);
3972
3973 return __cfq_may_queue(cfqq);
3974 }
3975
3976 return ELV_MQUEUE_MAY;
3977}
3978
3979/*
3980 * queue lock held here
3981 */
3982static void cfq_put_request(struct request *rq)
3983{
3984 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3985
3986 if (cfqq) {
3987 const int rw = rq_data_dir(rq);
3988
3989 BUG_ON(!cfqq->allocated[rw]);
3990 cfqq->allocated[rw]--;
3991
3992 /* Put down rq reference on cfqg */
3993 cfqg_put(RQ_CFQG(rq));
3994 rq->elv.priv[0] = NULL;
3995 rq->elv.priv[1] = NULL;
3996
3997 cfq_put_queue(cfqq);
3998 }
3999}
4000
4001static struct cfq_queue *
4002cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
4003 struct cfq_queue *cfqq)
4004{
4005 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
4006 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
4007 cfq_mark_cfqq_coop(cfqq->new_cfqq);
4008 cfq_put_queue(cfqq);
4009 return cic_to_cfqq(cic, 1);
4010}
4011
4012/*
4013 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4014 * was the last process referring to said cfqq.
4015 */
4016static struct cfq_queue *
4017split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
4018{
4019 if (cfqq_process_refs(cfqq) == 1) {
4020 cfqq->pid = current->pid;
4021 cfq_clear_cfqq_coop(cfqq);
4022 cfq_clear_cfqq_split_coop(cfqq);
4023 return cfqq;
4024 }
4025
4026 cic_set_cfqq(cic, NULL, 1);
4027
4028 cfq_put_cooperator(cfqq);
4029
4030 cfq_put_queue(cfqq);
4031 return NULL;
4032}
4033/*
4034 * Allocate cfq data structures associated with this request.
4035 */
4036static int
4037cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
4038 gfp_t gfp_mask)
4039{
4040 struct cfq_data *cfqd = q->elevator->elevator_data;
4041 struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
4042 const int rw = rq_data_dir(rq);
4043 const bool is_sync = rq_is_sync(rq);
4044 struct cfq_queue *cfqq;
4045
4046 might_sleep_if(gfp_mask & __GFP_WAIT);
4047
4048 spin_lock_irq(q->queue_lock);
4049
4050 check_ioprio_changed(cic, bio);
4051 check_blkcg_changed(cic, bio);
4052new_queue:
4053 cfqq = cic_to_cfqq(cic, is_sync);
4054 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
4055 cfqq = cfq_get_queue(cfqd, is_sync, cic, bio, gfp_mask);
4056 cic_set_cfqq(cic, cfqq, is_sync);
4057 } else {
4058 /*
4059 * If the queue was seeky for too long, break it apart.
4060 */
4061 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
4062 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
4063 cfqq = split_cfqq(cic, cfqq);
4064 if (!cfqq)
4065 goto new_queue;
4066 }
4067
4068 /*
4069 * Check to see if this queue is scheduled to merge with
4070 * another, closely cooperating queue. The merging of
4071 * queues happens here as it must be done in process context.
4072 * The reference on new_cfqq was taken in merge_cfqqs.
4073 */
4074 if (cfqq->new_cfqq)
4075 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
4076 }
4077
4078 cfqq->allocated[rw]++;
4079
4080 cfqq->ref++;
4081 cfqg_get(cfqq->cfqg);
4082 rq->elv.priv[0] = cfqq;
4083 rq->elv.priv[1] = cfqq->cfqg;
4084 spin_unlock_irq(q->queue_lock);
4085 return 0;
4086}
4087
4088static void cfq_kick_queue(struct work_struct *work)
4089{
4090 struct cfq_data *cfqd =
4091 container_of(work, struct cfq_data, unplug_work);
4092 struct request_queue *q = cfqd->queue;
4093
4094 spin_lock_irq(q->queue_lock);
4095 __blk_run_queue(cfqd->queue);
4096 spin_unlock_irq(q->queue_lock);
4097}
4098
4099/*
4100 * Timer running if the active_queue is currently idling inside its time slice
4101 */
4102static void cfq_idle_slice_timer(unsigned long data)
4103{
4104 struct cfq_data *cfqd = (struct cfq_data *) data;
4105 struct cfq_queue *cfqq;
4106 unsigned long flags;
4107 int timed_out = 1;
4108
4109 cfq_log(cfqd, "idle timer fired");
4110
4111 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
4112
4113 cfqq = cfqd->active_queue;
4114 if (cfqq) {
4115 timed_out = 0;
4116
4117 /*
4118 * We saw a request before the queue expired, let it through
4119 */
4120 if (cfq_cfqq_must_dispatch(cfqq))
4121 goto out_kick;
4122
4123 /*
4124 * expired
4125 */
4126 if (cfq_slice_used(cfqq))
4127 goto expire;
4128
4129 /*
4130 * only expire and reinvoke request handler, if there are
4131 * other queues with pending requests
4132 */
4133 if (!cfqd->busy_queues)
4134 goto out_cont;
4135
4136 /*
4137 * not expired and it has a request pending, let it dispatch
4138 */
4139 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4140 goto out_kick;
4141
4142 /*
4143 * Queue depth flag is reset only when the idle didn't succeed
4144 */
4145 cfq_clear_cfqq_deep(cfqq);
4146 }
4147expire:
4148 cfq_slice_expired(cfqd, timed_out);
4149out_kick:
4150 cfq_schedule_dispatch(cfqd);
4151out_cont:
4152 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
4153}
4154
4155static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
4156{
4157 del_timer_sync(&cfqd->idle_slice_timer);
4158 cancel_work_sync(&cfqd->unplug_work);
4159}
4160
4161static void cfq_put_async_queues(struct cfq_data *cfqd)
4162{
4163 int i;
4164
4165 for (i = 0; i < IOPRIO_BE_NR; i++) {
4166 if (cfqd->async_cfqq[0][i])
4167 cfq_put_queue(cfqd->async_cfqq[0][i]);
4168 if (cfqd->async_cfqq[1][i])
4169 cfq_put_queue(cfqd->async_cfqq[1][i]);
4170 }
4171
4172 if (cfqd->async_idle_cfqq)
4173 cfq_put_queue(cfqd->async_idle_cfqq);
4174}
4175
4176static void cfq_exit_queue(struct elevator_queue *e)
4177{
4178 struct cfq_data *cfqd = e->elevator_data;
4179 struct request_queue *q = cfqd->queue;
4180
4181 cfq_shutdown_timer_wq(cfqd);
4182
4183 spin_lock_irq(q->queue_lock);
4184
4185 if (cfqd->active_queue)
4186 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
4187
4188 cfq_put_async_queues(cfqd);
4189
4190 spin_unlock_irq(q->queue_lock);
4191
4192 cfq_shutdown_timer_wq(cfqd);
4193
4194#ifdef CONFIG_CFQ_GROUP_IOSCHED
4195 blkcg_deactivate_policy(q, &blkcg_policy_cfq);
4196#else
4197 kfree(cfqd->root_group);
4198#endif
4199 kfree(cfqd);
4200}
4201
4202static int cfq_init_queue(struct request_queue *q)
4203{
4204 struct cfq_data *cfqd;
4205 struct blkcg_gq *blkg __maybe_unused;
4206 int i, ret;
4207
4208 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
4209 if (!cfqd)
4210 return -ENOMEM;
4211
4212 cfqd->queue = q;
4213 q->elevator->elevator_data = cfqd;
4214
4215 /* Init root service tree */
4216 cfqd->grp_service_tree = CFQ_RB_ROOT;
4217
4218 /* Init root group and prefer root group over other groups by default */
4219#ifdef CONFIG_CFQ_GROUP_IOSCHED
4220 ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
4221 if (ret)
4222 goto out_free;
4223
4224 cfqd->root_group = blkg_to_cfqg(q->root_blkg);
4225#else
4226 ret = -ENOMEM;
4227 cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
4228 GFP_KERNEL, cfqd->queue->node);
4229 if (!cfqd->root_group)
4230 goto out_free;
4231
4232 cfq_init_cfqg_base(cfqd->root_group);
4233#endif
4234 cfqd->root_group->weight = 2 * CFQ_WEIGHT_DEFAULT;
4235 cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_DEFAULT;
4236
4237 /*
4238 * Not strictly needed (since RB_ROOT just clears the node and we
4239 * zeroed cfqd on alloc), but better be safe in case someone decides
4240 * to add magic to the rb code
4241 */
4242 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4243 cfqd->prio_trees[i] = RB_ROOT;
4244
4245 /*
4246 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4247 * Grab a permanent reference to it, so that the normal code flow
4248 * will not attempt to free it. oom_cfqq is linked to root_group
4249 * but shouldn't hold a reference as it'll never be unlinked. Lose
4250 * the reference from linking right away.
4251 */
4252 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4253 cfqd->oom_cfqq.ref++;
4254
4255 spin_lock_irq(q->queue_lock);
4256 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4257 cfqg_put(cfqd->root_group);
4258 spin_unlock_irq(q->queue_lock);
4259
4260 init_timer(&cfqd->idle_slice_timer);
4261 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4262 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4263
4264 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4265
4266 cfqd->cfq_quantum = cfq_quantum;
4267 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4268 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4269 cfqd->cfq_back_max = cfq_back_max;
4270 cfqd->cfq_back_penalty = cfq_back_penalty;
4271 cfqd->cfq_slice[0] = cfq_slice_async;
4272 cfqd->cfq_slice[1] = cfq_slice_sync;
4273 cfqd->cfq_target_latency = cfq_target_latency;
4274 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4275 cfqd->cfq_slice_idle = cfq_slice_idle;
4276 cfqd->cfq_group_idle = cfq_group_idle;
4277 cfqd->cfq_latency = 1;
4278 cfqd->hw_tag = -1;
4279 /*
4280 * we optimistically start assuming sync ops weren't delayed in last
4281 * second, in order to have larger depth for async operations.
4282 */
4283 cfqd->last_delayed_sync = jiffies - HZ;
4284 return 0;
4285
4286out_free:
4287 kfree(cfqd);
4288 return ret;
4289}
4290
4291/*
4292 * sysfs parts below -->
4293 */
4294static ssize_t
4295cfq_var_show(unsigned int var, char *page)
4296{
4297 return sprintf(page, "%d\n", var);
4298}
4299
4300static ssize_t
4301cfq_var_store(unsigned int *var, const char *page, size_t count)
4302{
4303 char *p = (char *) page;
4304
4305 *var = simple_strtoul(p, &p, 10);
4306 return count;
4307}
4308
4309#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4310static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4311{ \
4312 struct cfq_data *cfqd = e->elevator_data; \
4313 unsigned int __data = __VAR; \
4314 if (__CONV) \
4315 __data = jiffies_to_msecs(__data); \
4316 return cfq_var_show(__data, (page)); \
4317}
4318SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4319SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4320SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4321SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4322SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4323SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4324SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4325SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4326SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4327SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4328SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4329SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4330#undef SHOW_FUNCTION
4331
4332#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4333static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4334{ \
4335 struct cfq_data *cfqd = e->elevator_data; \
4336 unsigned int __data; \
4337 int ret = cfq_var_store(&__data, (page), count); \
4338 if (__data < (MIN)) \
4339 __data = (MIN); \
4340 else if (__data > (MAX)) \
4341 __data = (MAX); \
4342 if (__CONV) \
4343 *(__PTR) = msecs_to_jiffies(__data); \
4344 else \
4345 *(__PTR) = __data; \
4346 return ret; \
4347}
4348STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4349STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4350 UINT_MAX, 1);
4351STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4352 UINT_MAX, 1);
4353STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4354STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4355 UINT_MAX, 0);
4356STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4357STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4358STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4359STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4360STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4361 UINT_MAX, 0);
4362STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4363STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4364#undef STORE_FUNCTION
4365
4366#define CFQ_ATTR(name) \
4367 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4368
4369static struct elv_fs_entry cfq_attrs[] = {
4370 CFQ_ATTR(quantum),
4371 CFQ_ATTR(fifo_expire_sync),
4372 CFQ_ATTR(fifo_expire_async),
4373 CFQ_ATTR(back_seek_max),
4374 CFQ_ATTR(back_seek_penalty),
4375 CFQ_ATTR(slice_sync),
4376 CFQ_ATTR(slice_async),
4377 CFQ_ATTR(slice_async_rq),
4378 CFQ_ATTR(slice_idle),
4379 CFQ_ATTR(group_idle),
4380 CFQ_ATTR(low_latency),
4381 CFQ_ATTR(target_latency),
4382 __ATTR_NULL
4383};
4384
4385static struct elevator_type iosched_cfq = {
4386 .ops = {
4387 .elevator_merge_fn = cfq_merge,
4388 .elevator_merged_fn = cfq_merged_request,
4389 .elevator_merge_req_fn = cfq_merged_requests,
4390 .elevator_allow_merge_fn = cfq_allow_merge,
4391 .elevator_bio_merged_fn = cfq_bio_merged,
4392 .elevator_dispatch_fn = cfq_dispatch_requests,
4393 .elevator_add_req_fn = cfq_insert_request,
4394 .elevator_activate_req_fn = cfq_activate_request,
4395 .elevator_deactivate_req_fn = cfq_deactivate_request,
4396 .elevator_completed_req_fn = cfq_completed_request,
4397 .elevator_former_req_fn = elv_rb_former_request,
4398 .elevator_latter_req_fn = elv_rb_latter_request,
4399 .elevator_init_icq_fn = cfq_init_icq,
4400 .elevator_exit_icq_fn = cfq_exit_icq,
4401 .elevator_set_req_fn = cfq_set_request,
4402 .elevator_put_req_fn = cfq_put_request,
4403 .elevator_may_queue_fn = cfq_may_queue,
4404 .elevator_init_fn = cfq_init_queue,
4405 .elevator_exit_fn = cfq_exit_queue,
4406 },
4407 .icq_size = sizeof(struct cfq_io_cq),
4408 .icq_align = __alignof__(struct cfq_io_cq),
4409 .elevator_attrs = cfq_attrs,
4410 .elevator_name = "cfq",
4411 .elevator_owner = THIS_MODULE,
4412};
4413
4414#ifdef CONFIG_CFQ_GROUP_IOSCHED
4415static struct blkcg_policy blkcg_policy_cfq = {
4416 .pd_size = sizeof(struct cfq_group),
4417 .cftypes = cfq_blkcg_files,
4418
4419 .pd_init_fn = cfq_pd_init,
4420 .pd_reset_stats_fn = cfq_pd_reset_stats,
4421};
4422#endif
4423
4424static int __init cfq_init(void)
4425{
4426 int ret;
4427
4428 /*
4429 * could be 0 on HZ < 1000 setups
4430 */
4431 if (!cfq_slice_async)
4432 cfq_slice_async = 1;
4433 if (!cfq_slice_idle)
4434 cfq_slice_idle = 1;
4435
4436#ifdef CONFIG_CFQ_GROUP_IOSCHED
4437 if (!cfq_group_idle)
4438 cfq_group_idle = 1;
4439
4440 ret = blkcg_policy_register(&blkcg_policy_cfq);
4441 if (ret)
4442 return ret;
4443#else
4444 cfq_group_idle = 0;
4445#endif
4446
4447 ret = -ENOMEM;
4448 cfq_pool = KMEM_CACHE(cfq_queue, 0);
4449 if (!cfq_pool)
4450 goto err_pol_unreg;
4451
4452 ret = elv_register(&iosched_cfq);
4453 if (ret)
4454 goto err_free_pool;
4455
4456 return 0;
4457
4458err_free_pool:
4459 kmem_cache_destroy(cfq_pool);
4460err_pol_unreg:
4461#ifdef CONFIG_CFQ_GROUP_IOSCHED
4462 blkcg_policy_unregister(&blkcg_policy_cfq);
4463#endif
4464 return ret;
4465}
4466
4467static void __exit cfq_exit(void)
4468{
4469#ifdef CONFIG_CFQ_GROUP_IOSCHED
4470 blkcg_policy_unregister(&blkcg_policy_cfq);
4471#endif
4472 elv_unregister(&iosched_cfq);
4473 kmem_cache_destroy(cfq_pool);
4474}
4475
4476module_init(cfq_init);
4477module_exit(cfq_exit);
4478
4479MODULE_AUTHOR("Jens Axboe");
4480MODULE_LICENSE("GPL");
4481MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");