cfq-iosched: improve hw_tag detection
[linux-2.6-block.git] / block / cfq-iosched.c
... / ...
CommitLineData
1/*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
12#include <linux/rbtree.h>
13#include <linux/ioprio.h>
14#include <linux/blktrace_api.h>
15
16/*
17 * tunables
18 */
19/* max queue in one round of service */
20static const int cfq_quantum = 4;
21static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22/* maximum backwards seek, in KiB */
23static const int cfq_back_max = 16 * 1024;
24/* penalty of a backwards seek */
25static const int cfq_back_penalty = 2;
26static const int cfq_slice_sync = HZ / 10;
27static int cfq_slice_async = HZ / 25;
28static const int cfq_slice_async_rq = 2;
29static int cfq_slice_idle = HZ / 125;
30
31/*
32 * offset from end of service tree
33 */
34#define CFQ_IDLE_DELAY (HZ / 5)
35
36/*
37 * below this threshold, we consider thinktime immediate
38 */
39#define CFQ_MIN_TT (2)
40
41/*
42 * Allow merged cfqqs to perform this amount of seeky I/O before
43 * deciding to break the queues up again.
44 */
45#define CFQQ_COOP_TOUT (HZ)
46
47#define CFQ_SLICE_SCALE (5)
48#define CFQ_HW_QUEUE_MIN (5)
49
50#define RQ_CIC(rq) \
51 ((struct cfq_io_context *) (rq)->elevator_private)
52#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
53
54static struct kmem_cache *cfq_pool;
55static struct kmem_cache *cfq_ioc_pool;
56
57static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
58static struct completion *ioc_gone;
59static DEFINE_SPINLOCK(ioc_gone_lock);
60
61#define CFQ_PRIO_LISTS IOPRIO_BE_NR
62#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
63#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
64
65#define sample_valid(samples) ((samples) > 80)
66
67/*
68 * Most of our rbtree usage is for sorting with min extraction, so
69 * if we cache the leftmost node we don't have to walk down the tree
70 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
71 * move this into the elevator for the rq sorting as well.
72 */
73struct cfq_rb_root {
74 struct rb_root rb;
75 struct rb_node *left;
76};
77#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
78
79/*
80 * Per process-grouping structure
81 */
82struct cfq_queue {
83 /* reference count */
84 atomic_t ref;
85 /* various state flags, see below */
86 unsigned int flags;
87 /* parent cfq_data */
88 struct cfq_data *cfqd;
89 /* service_tree member */
90 struct rb_node rb_node;
91 /* service_tree key */
92 unsigned long rb_key;
93 /* prio tree member */
94 struct rb_node p_node;
95 /* prio tree root we belong to, if any */
96 struct rb_root *p_root;
97 /* sorted list of pending requests */
98 struct rb_root sort_list;
99 /* if fifo isn't expired, next request to serve */
100 struct request *next_rq;
101 /* requests queued in sort_list */
102 int queued[2];
103 /* currently allocated requests */
104 int allocated[2];
105 /* fifo list of requests in sort_list */
106 struct list_head fifo;
107
108 unsigned long slice_end;
109 long slice_resid;
110 unsigned int slice_dispatch;
111
112 /* pending metadata requests */
113 int meta_pending;
114 /* number of requests that are on the dispatch list or inside driver */
115 int dispatched;
116
117 /* io prio of this group */
118 unsigned short ioprio, org_ioprio;
119 unsigned short ioprio_class, org_ioprio_class;
120
121 unsigned int seek_samples;
122 u64 seek_total;
123 sector_t seek_mean;
124 sector_t last_request_pos;
125 unsigned long seeky_start;
126
127 pid_t pid;
128
129 struct cfq_queue *new_cfqq;
130};
131
132/*
133 * Per block device queue structure
134 */
135struct cfq_data {
136 struct request_queue *queue;
137
138 /*
139 * rr list of queues with requests and the count of them
140 */
141 struct cfq_rb_root service_tree;
142
143 /*
144 * Each priority tree is sorted by next_request position. These
145 * trees are used when determining if two or more queues are
146 * interleaving requests (see cfq_close_cooperator).
147 */
148 struct rb_root prio_trees[CFQ_PRIO_LISTS];
149
150 unsigned int busy_queues;
151
152 int rq_in_driver[2];
153 int sync_flight;
154
155 /*
156 * queue-depth detection
157 */
158 int rq_queued;
159 int hw_tag;
160 int hw_tag_samples;
161 int rq_in_driver_peak;
162
163 /*
164 * idle window management
165 */
166 struct timer_list idle_slice_timer;
167 struct work_struct unplug_work;
168
169 struct cfq_queue *active_queue;
170 struct cfq_io_context *active_cic;
171
172 /*
173 * async queue for each priority case
174 */
175 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
176 struct cfq_queue *async_idle_cfqq;
177
178 sector_t last_position;
179
180 /*
181 * tunables, see top of file
182 */
183 unsigned int cfq_quantum;
184 unsigned int cfq_fifo_expire[2];
185 unsigned int cfq_back_penalty;
186 unsigned int cfq_back_max;
187 unsigned int cfq_slice[2];
188 unsigned int cfq_slice_async_rq;
189 unsigned int cfq_slice_idle;
190 unsigned int cfq_latency;
191
192 struct list_head cic_list;
193
194 /*
195 * Fallback dummy cfqq for extreme OOM conditions
196 */
197 struct cfq_queue oom_cfqq;
198
199 unsigned long last_end_sync_rq;
200};
201
202enum cfqq_state_flags {
203 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
204 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
205 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
206 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
207 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
208 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
209 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
210 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
211 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
212 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
213};
214
215#define CFQ_CFQQ_FNS(name) \
216static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
217{ \
218 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
219} \
220static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
221{ \
222 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
223} \
224static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
225{ \
226 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
227}
228
229CFQ_CFQQ_FNS(on_rr);
230CFQ_CFQQ_FNS(wait_request);
231CFQ_CFQQ_FNS(must_dispatch);
232CFQ_CFQQ_FNS(must_alloc_slice);
233CFQ_CFQQ_FNS(fifo_expire);
234CFQ_CFQQ_FNS(idle_window);
235CFQ_CFQQ_FNS(prio_changed);
236CFQ_CFQQ_FNS(slice_new);
237CFQ_CFQQ_FNS(sync);
238CFQ_CFQQ_FNS(coop);
239#undef CFQ_CFQQ_FNS
240
241#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
242 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
243#define cfq_log(cfqd, fmt, args...) \
244 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
245
246static void cfq_dispatch_insert(struct request_queue *, struct request *);
247static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
248 struct io_context *, gfp_t);
249static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
250 struct io_context *);
251
252static inline int rq_in_driver(struct cfq_data *cfqd)
253{
254 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
255}
256
257static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
258 bool is_sync)
259{
260 return cic->cfqq[is_sync];
261}
262
263static inline void cic_set_cfqq(struct cfq_io_context *cic,
264 struct cfq_queue *cfqq, bool is_sync)
265{
266 cic->cfqq[is_sync] = cfqq;
267}
268
269/*
270 * We regard a request as SYNC, if it's either a read or has the SYNC bit
271 * set (in which case it could also be direct WRITE).
272 */
273static inline bool cfq_bio_sync(struct bio *bio)
274{
275 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
276}
277
278/*
279 * scheduler run of queue, if there are requests pending and no one in the
280 * driver that will restart queueing
281 */
282static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
283{
284 if (cfqd->busy_queues) {
285 cfq_log(cfqd, "schedule dispatch");
286 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
287 }
288}
289
290static int cfq_queue_empty(struct request_queue *q)
291{
292 struct cfq_data *cfqd = q->elevator->elevator_data;
293
294 return !cfqd->busy_queues;
295}
296
297/*
298 * Scale schedule slice based on io priority. Use the sync time slice only
299 * if a queue is marked sync and has sync io queued. A sync queue with async
300 * io only, should not get full sync slice length.
301 */
302static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
303 unsigned short prio)
304{
305 const int base_slice = cfqd->cfq_slice[sync];
306
307 WARN_ON(prio >= IOPRIO_BE_NR);
308
309 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
310}
311
312static inline int
313cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
314{
315 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
316}
317
318static inline void
319cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
320{
321 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
322 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
323}
324
325/*
326 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
327 * isn't valid until the first request from the dispatch is activated
328 * and the slice time set.
329 */
330static inline bool cfq_slice_used(struct cfq_queue *cfqq)
331{
332 if (cfq_cfqq_slice_new(cfqq))
333 return 0;
334 if (time_before(jiffies, cfqq->slice_end))
335 return 0;
336
337 return 1;
338}
339
340/*
341 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
342 * We choose the request that is closest to the head right now. Distance
343 * behind the head is penalized and only allowed to a certain extent.
344 */
345static struct request *
346cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
347{
348 sector_t last, s1, s2, d1 = 0, d2 = 0;
349 unsigned long back_max;
350#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
351#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
352 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
353
354 if (rq1 == NULL || rq1 == rq2)
355 return rq2;
356 if (rq2 == NULL)
357 return rq1;
358
359 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
360 return rq1;
361 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
362 return rq2;
363 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
364 return rq1;
365 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
366 return rq2;
367
368 s1 = blk_rq_pos(rq1);
369 s2 = blk_rq_pos(rq2);
370
371 last = cfqd->last_position;
372
373 /*
374 * by definition, 1KiB is 2 sectors
375 */
376 back_max = cfqd->cfq_back_max * 2;
377
378 /*
379 * Strict one way elevator _except_ in the case where we allow
380 * short backward seeks which are biased as twice the cost of a
381 * similar forward seek.
382 */
383 if (s1 >= last)
384 d1 = s1 - last;
385 else if (s1 + back_max >= last)
386 d1 = (last - s1) * cfqd->cfq_back_penalty;
387 else
388 wrap |= CFQ_RQ1_WRAP;
389
390 if (s2 >= last)
391 d2 = s2 - last;
392 else if (s2 + back_max >= last)
393 d2 = (last - s2) * cfqd->cfq_back_penalty;
394 else
395 wrap |= CFQ_RQ2_WRAP;
396
397 /* Found required data */
398
399 /*
400 * By doing switch() on the bit mask "wrap" we avoid having to
401 * check two variables for all permutations: --> faster!
402 */
403 switch (wrap) {
404 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
405 if (d1 < d2)
406 return rq1;
407 else if (d2 < d1)
408 return rq2;
409 else {
410 if (s1 >= s2)
411 return rq1;
412 else
413 return rq2;
414 }
415
416 case CFQ_RQ2_WRAP:
417 return rq1;
418 case CFQ_RQ1_WRAP:
419 return rq2;
420 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
421 default:
422 /*
423 * Since both rqs are wrapped,
424 * start with the one that's further behind head
425 * (--> only *one* back seek required),
426 * since back seek takes more time than forward.
427 */
428 if (s1 <= s2)
429 return rq1;
430 else
431 return rq2;
432 }
433}
434
435/*
436 * The below is leftmost cache rbtree addon
437 */
438static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
439{
440 if (!root->left)
441 root->left = rb_first(&root->rb);
442
443 if (root->left)
444 return rb_entry(root->left, struct cfq_queue, rb_node);
445
446 return NULL;
447}
448
449static void rb_erase_init(struct rb_node *n, struct rb_root *root)
450{
451 rb_erase(n, root);
452 RB_CLEAR_NODE(n);
453}
454
455static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
456{
457 if (root->left == n)
458 root->left = NULL;
459 rb_erase_init(n, &root->rb);
460}
461
462/*
463 * would be nice to take fifo expire time into account as well
464 */
465static struct request *
466cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
467 struct request *last)
468{
469 struct rb_node *rbnext = rb_next(&last->rb_node);
470 struct rb_node *rbprev = rb_prev(&last->rb_node);
471 struct request *next = NULL, *prev = NULL;
472
473 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
474
475 if (rbprev)
476 prev = rb_entry_rq(rbprev);
477
478 if (rbnext)
479 next = rb_entry_rq(rbnext);
480 else {
481 rbnext = rb_first(&cfqq->sort_list);
482 if (rbnext && rbnext != &last->rb_node)
483 next = rb_entry_rq(rbnext);
484 }
485
486 return cfq_choose_req(cfqd, next, prev);
487}
488
489static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
490 struct cfq_queue *cfqq)
491{
492 /*
493 * just an approximation, should be ok.
494 */
495 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
496 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
497}
498
499/*
500 * The cfqd->service_tree holds all pending cfq_queue's that have
501 * requests waiting to be processed. It is sorted in the order that
502 * we will service the queues.
503 */
504static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
505 bool add_front)
506{
507 struct rb_node **p, *parent;
508 struct cfq_queue *__cfqq;
509 unsigned long rb_key;
510 int left;
511
512 if (cfq_class_idle(cfqq)) {
513 rb_key = CFQ_IDLE_DELAY;
514 parent = rb_last(&cfqd->service_tree.rb);
515 if (parent && parent != &cfqq->rb_node) {
516 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
517 rb_key += __cfqq->rb_key;
518 } else
519 rb_key += jiffies;
520 } else if (!add_front) {
521 /*
522 * Get our rb key offset. Subtract any residual slice
523 * value carried from last service. A negative resid
524 * count indicates slice overrun, and this should position
525 * the next service time further away in the tree.
526 */
527 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
528 rb_key -= cfqq->slice_resid;
529 cfqq->slice_resid = 0;
530 } else {
531 rb_key = -HZ;
532 __cfqq = cfq_rb_first(&cfqd->service_tree);
533 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
534 }
535
536 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
537 /*
538 * same position, nothing more to do
539 */
540 if (rb_key == cfqq->rb_key)
541 return;
542
543 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
544 }
545
546 left = 1;
547 parent = NULL;
548 p = &cfqd->service_tree.rb.rb_node;
549 while (*p) {
550 struct rb_node **n;
551
552 parent = *p;
553 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
554
555 /*
556 * sort RT queues first, we always want to give
557 * preference to them. IDLE queues goes to the back.
558 * after that, sort on the next service time.
559 */
560 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
561 n = &(*p)->rb_left;
562 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
563 n = &(*p)->rb_right;
564 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
565 n = &(*p)->rb_left;
566 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
567 n = &(*p)->rb_right;
568 else if (time_before(rb_key, __cfqq->rb_key))
569 n = &(*p)->rb_left;
570 else
571 n = &(*p)->rb_right;
572
573 if (n == &(*p)->rb_right)
574 left = 0;
575
576 p = n;
577 }
578
579 if (left)
580 cfqd->service_tree.left = &cfqq->rb_node;
581
582 cfqq->rb_key = rb_key;
583 rb_link_node(&cfqq->rb_node, parent, p);
584 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
585}
586
587static struct cfq_queue *
588cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
589 sector_t sector, struct rb_node **ret_parent,
590 struct rb_node ***rb_link)
591{
592 struct rb_node **p, *parent;
593 struct cfq_queue *cfqq = NULL;
594
595 parent = NULL;
596 p = &root->rb_node;
597 while (*p) {
598 struct rb_node **n;
599
600 parent = *p;
601 cfqq = rb_entry(parent, struct cfq_queue, p_node);
602
603 /*
604 * Sort strictly based on sector. Smallest to the left,
605 * largest to the right.
606 */
607 if (sector > blk_rq_pos(cfqq->next_rq))
608 n = &(*p)->rb_right;
609 else if (sector < blk_rq_pos(cfqq->next_rq))
610 n = &(*p)->rb_left;
611 else
612 break;
613 p = n;
614 cfqq = NULL;
615 }
616
617 *ret_parent = parent;
618 if (rb_link)
619 *rb_link = p;
620 return cfqq;
621}
622
623static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
624{
625 struct rb_node **p, *parent;
626 struct cfq_queue *__cfqq;
627
628 if (cfqq->p_root) {
629 rb_erase(&cfqq->p_node, cfqq->p_root);
630 cfqq->p_root = NULL;
631 }
632
633 if (cfq_class_idle(cfqq))
634 return;
635 if (!cfqq->next_rq)
636 return;
637
638 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
639 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
640 blk_rq_pos(cfqq->next_rq), &parent, &p);
641 if (!__cfqq) {
642 rb_link_node(&cfqq->p_node, parent, p);
643 rb_insert_color(&cfqq->p_node, cfqq->p_root);
644 } else
645 cfqq->p_root = NULL;
646}
647
648/*
649 * Update cfqq's position in the service tree.
650 */
651static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
652{
653 /*
654 * Resorting requires the cfqq to be on the RR list already.
655 */
656 if (cfq_cfqq_on_rr(cfqq)) {
657 cfq_service_tree_add(cfqd, cfqq, 0);
658 cfq_prio_tree_add(cfqd, cfqq);
659 }
660}
661
662/*
663 * add to busy list of queues for service, trying to be fair in ordering
664 * the pending list according to last request service
665 */
666static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
667{
668 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
669 BUG_ON(cfq_cfqq_on_rr(cfqq));
670 cfq_mark_cfqq_on_rr(cfqq);
671 cfqd->busy_queues++;
672
673 cfq_resort_rr_list(cfqd, cfqq);
674}
675
676/*
677 * Called when the cfqq no longer has requests pending, remove it from
678 * the service tree.
679 */
680static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
681{
682 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
683 BUG_ON(!cfq_cfqq_on_rr(cfqq));
684 cfq_clear_cfqq_on_rr(cfqq);
685
686 if (!RB_EMPTY_NODE(&cfqq->rb_node))
687 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
688 if (cfqq->p_root) {
689 rb_erase(&cfqq->p_node, cfqq->p_root);
690 cfqq->p_root = NULL;
691 }
692
693 BUG_ON(!cfqd->busy_queues);
694 cfqd->busy_queues--;
695}
696
697/*
698 * rb tree support functions
699 */
700static void cfq_del_rq_rb(struct request *rq)
701{
702 struct cfq_queue *cfqq = RQ_CFQQ(rq);
703 struct cfq_data *cfqd = cfqq->cfqd;
704 const int sync = rq_is_sync(rq);
705
706 BUG_ON(!cfqq->queued[sync]);
707 cfqq->queued[sync]--;
708
709 elv_rb_del(&cfqq->sort_list, rq);
710
711 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
712 cfq_del_cfqq_rr(cfqd, cfqq);
713}
714
715static void cfq_add_rq_rb(struct request *rq)
716{
717 struct cfq_queue *cfqq = RQ_CFQQ(rq);
718 struct cfq_data *cfqd = cfqq->cfqd;
719 struct request *__alias, *prev;
720
721 cfqq->queued[rq_is_sync(rq)]++;
722
723 /*
724 * looks a little odd, but the first insert might return an alias.
725 * if that happens, put the alias on the dispatch list
726 */
727 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
728 cfq_dispatch_insert(cfqd->queue, __alias);
729
730 if (!cfq_cfqq_on_rr(cfqq))
731 cfq_add_cfqq_rr(cfqd, cfqq);
732
733 /*
734 * check if this request is a better next-serve candidate
735 */
736 prev = cfqq->next_rq;
737 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
738
739 /*
740 * adjust priority tree position, if ->next_rq changes
741 */
742 if (prev != cfqq->next_rq)
743 cfq_prio_tree_add(cfqd, cfqq);
744
745 BUG_ON(!cfqq->next_rq);
746}
747
748static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
749{
750 elv_rb_del(&cfqq->sort_list, rq);
751 cfqq->queued[rq_is_sync(rq)]--;
752 cfq_add_rq_rb(rq);
753}
754
755static struct request *
756cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
757{
758 struct task_struct *tsk = current;
759 struct cfq_io_context *cic;
760 struct cfq_queue *cfqq;
761
762 cic = cfq_cic_lookup(cfqd, tsk->io_context);
763 if (!cic)
764 return NULL;
765
766 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
767 if (cfqq) {
768 sector_t sector = bio->bi_sector + bio_sectors(bio);
769
770 return elv_rb_find(&cfqq->sort_list, sector);
771 }
772
773 return NULL;
774}
775
776static void cfq_activate_request(struct request_queue *q, struct request *rq)
777{
778 struct cfq_data *cfqd = q->elevator->elevator_data;
779
780 cfqd->rq_in_driver[rq_is_sync(rq)]++;
781 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
782 rq_in_driver(cfqd));
783
784 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
785}
786
787static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
788{
789 struct cfq_data *cfqd = q->elevator->elevator_data;
790 const int sync = rq_is_sync(rq);
791
792 WARN_ON(!cfqd->rq_in_driver[sync]);
793 cfqd->rq_in_driver[sync]--;
794 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
795 rq_in_driver(cfqd));
796}
797
798static void cfq_remove_request(struct request *rq)
799{
800 struct cfq_queue *cfqq = RQ_CFQQ(rq);
801
802 if (cfqq->next_rq == rq)
803 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
804
805 list_del_init(&rq->queuelist);
806 cfq_del_rq_rb(rq);
807
808 cfqq->cfqd->rq_queued--;
809 if (rq_is_meta(rq)) {
810 WARN_ON(!cfqq->meta_pending);
811 cfqq->meta_pending--;
812 }
813}
814
815static int cfq_merge(struct request_queue *q, struct request **req,
816 struct bio *bio)
817{
818 struct cfq_data *cfqd = q->elevator->elevator_data;
819 struct request *__rq;
820
821 __rq = cfq_find_rq_fmerge(cfqd, bio);
822 if (__rq && elv_rq_merge_ok(__rq, bio)) {
823 *req = __rq;
824 return ELEVATOR_FRONT_MERGE;
825 }
826
827 return ELEVATOR_NO_MERGE;
828}
829
830static void cfq_merged_request(struct request_queue *q, struct request *req,
831 int type)
832{
833 if (type == ELEVATOR_FRONT_MERGE) {
834 struct cfq_queue *cfqq = RQ_CFQQ(req);
835
836 cfq_reposition_rq_rb(cfqq, req);
837 }
838}
839
840static void
841cfq_merged_requests(struct request_queue *q, struct request *rq,
842 struct request *next)
843{
844 /*
845 * reposition in fifo if next is older than rq
846 */
847 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
848 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
849 list_move(&rq->queuelist, &next->queuelist);
850 rq_set_fifo_time(rq, rq_fifo_time(next));
851 }
852
853 cfq_remove_request(next);
854}
855
856static int cfq_allow_merge(struct request_queue *q, struct request *rq,
857 struct bio *bio)
858{
859 struct cfq_data *cfqd = q->elevator->elevator_data;
860 struct cfq_io_context *cic;
861 struct cfq_queue *cfqq;
862
863 /*
864 * Disallow merge of a sync bio into an async request.
865 */
866 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
867 return false;
868
869 /*
870 * Lookup the cfqq that this bio will be queued with. Allow
871 * merge only if rq is queued there.
872 */
873 cic = cfq_cic_lookup(cfqd, current->io_context);
874 if (!cic)
875 return false;
876
877 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
878 return cfqq == RQ_CFQQ(rq);
879}
880
881static void __cfq_set_active_queue(struct cfq_data *cfqd,
882 struct cfq_queue *cfqq)
883{
884 if (cfqq) {
885 cfq_log_cfqq(cfqd, cfqq, "set_active");
886 cfqq->slice_end = 0;
887 cfqq->slice_dispatch = 0;
888
889 cfq_clear_cfqq_wait_request(cfqq);
890 cfq_clear_cfqq_must_dispatch(cfqq);
891 cfq_clear_cfqq_must_alloc_slice(cfqq);
892 cfq_clear_cfqq_fifo_expire(cfqq);
893 cfq_mark_cfqq_slice_new(cfqq);
894
895 del_timer(&cfqd->idle_slice_timer);
896 }
897
898 cfqd->active_queue = cfqq;
899}
900
901/*
902 * current cfqq expired its slice (or was too idle), select new one
903 */
904static void
905__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
906 bool timed_out)
907{
908 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
909
910 if (cfq_cfqq_wait_request(cfqq))
911 del_timer(&cfqd->idle_slice_timer);
912
913 cfq_clear_cfqq_wait_request(cfqq);
914
915 /*
916 * store what was left of this slice, if the queue idled/timed out
917 */
918 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
919 cfqq->slice_resid = cfqq->slice_end - jiffies;
920 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
921 }
922
923 cfq_resort_rr_list(cfqd, cfqq);
924
925 if (cfqq == cfqd->active_queue)
926 cfqd->active_queue = NULL;
927
928 if (cfqd->active_cic) {
929 put_io_context(cfqd->active_cic->ioc);
930 cfqd->active_cic = NULL;
931 }
932}
933
934static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
935{
936 struct cfq_queue *cfqq = cfqd->active_queue;
937
938 if (cfqq)
939 __cfq_slice_expired(cfqd, cfqq, timed_out);
940}
941
942/*
943 * Get next queue for service. Unless we have a queue preemption,
944 * we'll simply select the first cfqq in the service tree.
945 */
946static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
947{
948 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
949 return NULL;
950
951 return cfq_rb_first(&cfqd->service_tree);
952}
953
954/*
955 * Get and set a new active queue for service.
956 */
957static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
958 struct cfq_queue *cfqq)
959{
960 if (!cfqq)
961 cfqq = cfq_get_next_queue(cfqd);
962
963 __cfq_set_active_queue(cfqd, cfqq);
964 return cfqq;
965}
966
967static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
968 struct request *rq)
969{
970 if (blk_rq_pos(rq) >= cfqd->last_position)
971 return blk_rq_pos(rq) - cfqd->last_position;
972 else
973 return cfqd->last_position - blk_rq_pos(rq);
974}
975
976#define CFQQ_SEEK_THR 8 * 1024
977#define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
978
979static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
980 struct request *rq)
981{
982 sector_t sdist = cfqq->seek_mean;
983
984 if (!sample_valid(cfqq->seek_samples))
985 sdist = CFQQ_SEEK_THR;
986
987 return cfq_dist_from_last(cfqd, rq) <= sdist;
988}
989
990static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
991 struct cfq_queue *cur_cfqq)
992{
993 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
994 struct rb_node *parent, *node;
995 struct cfq_queue *__cfqq;
996 sector_t sector = cfqd->last_position;
997
998 if (RB_EMPTY_ROOT(root))
999 return NULL;
1000
1001 /*
1002 * First, if we find a request starting at the end of the last
1003 * request, choose it.
1004 */
1005 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1006 if (__cfqq)
1007 return __cfqq;
1008
1009 /*
1010 * If the exact sector wasn't found, the parent of the NULL leaf
1011 * will contain the closest sector.
1012 */
1013 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1014 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1015 return __cfqq;
1016
1017 if (blk_rq_pos(__cfqq->next_rq) < sector)
1018 node = rb_next(&__cfqq->p_node);
1019 else
1020 node = rb_prev(&__cfqq->p_node);
1021 if (!node)
1022 return NULL;
1023
1024 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1025 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1026 return __cfqq;
1027
1028 return NULL;
1029}
1030
1031/*
1032 * cfqd - obvious
1033 * cur_cfqq - passed in so that we don't decide that the current queue is
1034 * closely cooperating with itself.
1035 *
1036 * So, basically we're assuming that that cur_cfqq has dispatched at least
1037 * one request, and that cfqd->last_position reflects a position on the disk
1038 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1039 * assumption.
1040 */
1041static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1042 struct cfq_queue *cur_cfqq)
1043{
1044 struct cfq_queue *cfqq;
1045
1046 if (!cfq_cfqq_sync(cur_cfqq))
1047 return NULL;
1048 if (CFQQ_SEEKY(cur_cfqq))
1049 return NULL;
1050
1051 /*
1052 * We should notice if some of the queues are cooperating, eg
1053 * working closely on the same area of the disk. In that case,
1054 * we can group them together and don't waste time idling.
1055 */
1056 cfqq = cfqq_close(cfqd, cur_cfqq);
1057 if (!cfqq)
1058 return NULL;
1059
1060 /*
1061 * It only makes sense to merge sync queues.
1062 */
1063 if (!cfq_cfqq_sync(cfqq))
1064 return NULL;
1065 if (CFQQ_SEEKY(cfqq))
1066 return NULL;
1067
1068 return cfqq;
1069}
1070
1071static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1072{
1073 struct cfq_queue *cfqq = cfqd->active_queue;
1074 struct cfq_io_context *cic;
1075 unsigned long sl;
1076
1077 /*
1078 * SSD device without seek penalty, disable idling. But only do so
1079 * for devices that support queuing, otherwise we still have a problem
1080 * with sync vs async workloads.
1081 */
1082 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1083 return;
1084
1085 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1086 WARN_ON(cfq_cfqq_slice_new(cfqq));
1087
1088 /*
1089 * idle is disabled, either manually or by past process history
1090 */
1091 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
1092 return;
1093
1094 /*
1095 * still requests with the driver, don't idle
1096 */
1097 if (rq_in_driver(cfqd))
1098 return;
1099
1100 /*
1101 * task has exited, don't wait
1102 */
1103 cic = cfqd->active_cic;
1104 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1105 return;
1106
1107 /*
1108 * If our average think time is larger than the remaining time
1109 * slice, then don't idle. This avoids overrunning the allotted
1110 * time slice.
1111 */
1112 if (sample_valid(cic->ttime_samples) &&
1113 (cfqq->slice_end - jiffies < cic->ttime_mean))
1114 return;
1115
1116 cfq_mark_cfqq_wait_request(cfqq);
1117
1118 /*
1119 * we don't want to idle for seeks, but we do want to allow
1120 * fair distribution of slice time for a process doing back-to-back
1121 * seeks. so allow a little bit of time for him to submit a new rq
1122 */
1123 sl = cfqd->cfq_slice_idle;
1124 if (sample_valid(cfqq->seek_samples) && CFQQ_SEEKY(cfqq))
1125 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
1126
1127 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1128 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1129}
1130
1131/*
1132 * Move request from internal lists to the request queue dispatch list.
1133 */
1134static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1135{
1136 struct cfq_data *cfqd = q->elevator->elevator_data;
1137 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1138
1139 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1140
1141 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1142 cfq_remove_request(rq);
1143 cfqq->dispatched++;
1144 elv_dispatch_sort(q, rq);
1145
1146 if (cfq_cfqq_sync(cfqq))
1147 cfqd->sync_flight++;
1148}
1149
1150/*
1151 * return expired entry, or NULL to just start from scratch in rbtree
1152 */
1153static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1154{
1155 struct request *rq = NULL;
1156
1157 if (cfq_cfqq_fifo_expire(cfqq))
1158 return NULL;
1159
1160 cfq_mark_cfqq_fifo_expire(cfqq);
1161
1162 if (list_empty(&cfqq->fifo))
1163 return NULL;
1164
1165 rq = rq_entry_fifo(cfqq->fifo.next);
1166 if (time_before(jiffies, rq_fifo_time(rq)))
1167 rq = NULL;
1168
1169 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1170 return rq;
1171}
1172
1173static inline int
1174cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1175{
1176 const int base_rq = cfqd->cfq_slice_async_rq;
1177
1178 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1179
1180 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1181}
1182
1183/*
1184 * Must be called with the queue_lock held.
1185 */
1186static int cfqq_process_refs(struct cfq_queue *cfqq)
1187{
1188 int process_refs, io_refs;
1189
1190 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1191 process_refs = atomic_read(&cfqq->ref) - io_refs;
1192 BUG_ON(process_refs < 0);
1193 return process_refs;
1194}
1195
1196static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1197{
1198 int process_refs, new_process_refs;
1199 struct cfq_queue *__cfqq;
1200
1201 /* Avoid a circular list and skip interim queue merges */
1202 while ((__cfqq = new_cfqq->new_cfqq)) {
1203 if (__cfqq == cfqq)
1204 return;
1205 new_cfqq = __cfqq;
1206 }
1207
1208 process_refs = cfqq_process_refs(cfqq);
1209 /*
1210 * If the process for the cfqq has gone away, there is no
1211 * sense in merging the queues.
1212 */
1213 if (process_refs == 0)
1214 return;
1215
1216 /*
1217 * Merge in the direction of the lesser amount of work.
1218 */
1219 new_process_refs = cfqq_process_refs(new_cfqq);
1220 if (new_process_refs >= process_refs) {
1221 cfqq->new_cfqq = new_cfqq;
1222 atomic_add(process_refs, &new_cfqq->ref);
1223 } else {
1224 new_cfqq->new_cfqq = cfqq;
1225 atomic_add(new_process_refs, &cfqq->ref);
1226 }
1227}
1228
1229/*
1230 * Select a queue for service. If we have a current active queue,
1231 * check whether to continue servicing it, or retrieve and set a new one.
1232 */
1233static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1234{
1235 struct cfq_queue *cfqq, *new_cfqq = NULL;
1236
1237 cfqq = cfqd->active_queue;
1238 if (!cfqq)
1239 goto new_queue;
1240
1241 /*
1242 * The active queue has run out of time, expire it and select new.
1243 */
1244 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
1245 goto expire;
1246
1247 /*
1248 * The active queue has requests and isn't expired, allow it to
1249 * dispatch.
1250 */
1251 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1252 goto keep_queue;
1253
1254 /*
1255 * If another queue has a request waiting within our mean seek
1256 * distance, let it run. The expire code will check for close
1257 * cooperators and put the close queue at the front of the service
1258 * tree. If possible, merge the expiring queue with the new cfqq.
1259 */
1260 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
1261 if (new_cfqq) {
1262 if (!cfqq->new_cfqq)
1263 cfq_setup_merge(cfqq, new_cfqq);
1264 goto expire;
1265 }
1266
1267 /*
1268 * No requests pending. If the active queue still has requests in
1269 * flight or is idling for a new request, allow either of these
1270 * conditions to happen (or time out) before selecting a new queue.
1271 */
1272 if (timer_pending(&cfqd->idle_slice_timer) ||
1273 (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1274 cfqq = NULL;
1275 goto keep_queue;
1276 }
1277
1278expire:
1279 cfq_slice_expired(cfqd, 0);
1280new_queue:
1281 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1282keep_queue:
1283 return cfqq;
1284}
1285
1286static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1287{
1288 int dispatched = 0;
1289
1290 while (cfqq->next_rq) {
1291 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1292 dispatched++;
1293 }
1294
1295 BUG_ON(!list_empty(&cfqq->fifo));
1296 return dispatched;
1297}
1298
1299/*
1300 * Drain our current requests. Used for barriers and when switching
1301 * io schedulers on-the-fly.
1302 */
1303static int cfq_forced_dispatch(struct cfq_data *cfqd)
1304{
1305 struct cfq_queue *cfqq;
1306 int dispatched = 0;
1307
1308 while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1309 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1310
1311 cfq_slice_expired(cfqd, 0);
1312
1313 BUG_ON(cfqd->busy_queues);
1314
1315 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1316 return dispatched;
1317}
1318
1319static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1320{
1321 unsigned int max_dispatch;
1322
1323 /*
1324 * Drain async requests before we start sync IO
1325 */
1326 if (cfq_cfqq_idle_window(cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1327 return false;
1328
1329 /*
1330 * If this is an async queue and we have sync IO in flight, let it wait
1331 */
1332 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1333 return false;
1334
1335 max_dispatch = cfqd->cfq_quantum;
1336 if (cfq_class_idle(cfqq))
1337 max_dispatch = 1;
1338
1339 /*
1340 * Does this cfqq already have too much IO in flight?
1341 */
1342 if (cfqq->dispatched >= max_dispatch) {
1343 /*
1344 * idle queue must always only have a single IO in flight
1345 */
1346 if (cfq_class_idle(cfqq))
1347 return false;
1348
1349 /*
1350 * We have other queues, don't allow more IO from this one
1351 */
1352 if (cfqd->busy_queues > 1)
1353 return false;
1354
1355 /*
1356 * Sole queue user, allow bigger slice
1357 */
1358 max_dispatch *= 4;
1359 }
1360
1361 /*
1362 * Async queues must wait a bit before being allowed dispatch.
1363 * We also ramp up the dispatch depth gradually for async IO,
1364 * based on the last sync IO we serviced
1365 */
1366 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
1367 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1368 unsigned int depth;
1369
1370 depth = last_sync / cfqd->cfq_slice[1];
1371 if (!depth && !cfqq->dispatched)
1372 depth = 1;
1373 if (depth < max_dispatch)
1374 max_dispatch = depth;
1375 }
1376
1377 /*
1378 * If we're below the current max, allow a dispatch
1379 */
1380 return cfqq->dispatched < max_dispatch;
1381}
1382
1383/*
1384 * Dispatch a request from cfqq, moving them to the request queue
1385 * dispatch list.
1386 */
1387static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1388{
1389 struct request *rq;
1390
1391 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1392
1393 if (!cfq_may_dispatch(cfqd, cfqq))
1394 return false;
1395
1396 /*
1397 * follow expired path, else get first next available
1398 */
1399 rq = cfq_check_fifo(cfqq);
1400 if (!rq)
1401 rq = cfqq->next_rq;
1402
1403 /*
1404 * insert request into driver dispatch list
1405 */
1406 cfq_dispatch_insert(cfqd->queue, rq);
1407
1408 if (!cfqd->active_cic) {
1409 struct cfq_io_context *cic = RQ_CIC(rq);
1410
1411 atomic_long_inc(&cic->ioc->refcount);
1412 cfqd->active_cic = cic;
1413 }
1414
1415 return true;
1416}
1417
1418/*
1419 * Find the cfqq that we need to service and move a request from that to the
1420 * dispatch list
1421 */
1422static int cfq_dispatch_requests(struct request_queue *q, int force)
1423{
1424 struct cfq_data *cfqd = q->elevator->elevator_data;
1425 struct cfq_queue *cfqq;
1426
1427 if (!cfqd->busy_queues)
1428 return 0;
1429
1430 if (unlikely(force))
1431 return cfq_forced_dispatch(cfqd);
1432
1433 cfqq = cfq_select_queue(cfqd);
1434 if (!cfqq)
1435 return 0;
1436
1437 /*
1438 * Dispatch a request from this cfqq, if it is allowed
1439 */
1440 if (!cfq_dispatch_request(cfqd, cfqq))
1441 return 0;
1442
1443 cfqq->slice_dispatch++;
1444 cfq_clear_cfqq_must_dispatch(cfqq);
1445
1446 /*
1447 * expire an async queue immediately if it has used up its slice. idle
1448 * queue always expire after 1 dispatch round.
1449 */
1450 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1451 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1452 cfq_class_idle(cfqq))) {
1453 cfqq->slice_end = jiffies + 1;
1454 cfq_slice_expired(cfqd, 0);
1455 }
1456
1457 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
1458 return 1;
1459}
1460
1461/*
1462 * task holds one reference to the queue, dropped when task exits. each rq
1463 * in-flight on this queue also holds a reference, dropped when rq is freed.
1464 *
1465 * queue lock must be held here.
1466 */
1467static void cfq_put_queue(struct cfq_queue *cfqq)
1468{
1469 struct cfq_data *cfqd = cfqq->cfqd;
1470
1471 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1472
1473 if (!atomic_dec_and_test(&cfqq->ref))
1474 return;
1475
1476 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1477 BUG_ON(rb_first(&cfqq->sort_list));
1478 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1479 BUG_ON(cfq_cfqq_on_rr(cfqq));
1480
1481 if (unlikely(cfqd->active_queue == cfqq)) {
1482 __cfq_slice_expired(cfqd, cfqq, 0);
1483 cfq_schedule_dispatch(cfqd);
1484 }
1485
1486 kmem_cache_free(cfq_pool, cfqq);
1487}
1488
1489/*
1490 * Must always be called with the rcu_read_lock() held
1491 */
1492static void
1493__call_for_each_cic(struct io_context *ioc,
1494 void (*func)(struct io_context *, struct cfq_io_context *))
1495{
1496 struct cfq_io_context *cic;
1497 struct hlist_node *n;
1498
1499 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1500 func(ioc, cic);
1501}
1502
1503/*
1504 * Call func for each cic attached to this ioc.
1505 */
1506static void
1507call_for_each_cic(struct io_context *ioc,
1508 void (*func)(struct io_context *, struct cfq_io_context *))
1509{
1510 rcu_read_lock();
1511 __call_for_each_cic(ioc, func);
1512 rcu_read_unlock();
1513}
1514
1515static void cfq_cic_free_rcu(struct rcu_head *head)
1516{
1517 struct cfq_io_context *cic;
1518
1519 cic = container_of(head, struct cfq_io_context, rcu_head);
1520
1521 kmem_cache_free(cfq_ioc_pool, cic);
1522 elv_ioc_count_dec(cfq_ioc_count);
1523
1524 if (ioc_gone) {
1525 /*
1526 * CFQ scheduler is exiting, grab exit lock and check
1527 * the pending io context count. If it hits zero,
1528 * complete ioc_gone and set it back to NULL
1529 */
1530 spin_lock(&ioc_gone_lock);
1531 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
1532 complete(ioc_gone);
1533 ioc_gone = NULL;
1534 }
1535 spin_unlock(&ioc_gone_lock);
1536 }
1537}
1538
1539static void cfq_cic_free(struct cfq_io_context *cic)
1540{
1541 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1542}
1543
1544static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1545{
1546 unsigned long flags;
1547
1548 BUG_ON(!cic->dead_key);
1549
1550 spin_lock_irqsave(&ioc->lock, flags);
1551 radix_tree_delete(&ioc->radix_root, cic->dead_key);
1552 hlist_del_rcu(&cic->cic_list);
1553 spin_unlock_irqrestore(&ioc->lock, flags);
1554
1555 cfq_cic_free(cic);
1556}
1557
1558/*
1559 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1560 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1561 * and ->trim() which is called with the task lock held
1562 */
1563static void cfq_free_io_context(struct io_context *ioc)
1564{
1565 /*
1566 * ioc->refcount is zero here, or we are called from elv_unregister(),
1567 * so no more cic's are allowed to be linked into this ioc. So it
1568 * should be ok to iterate over the known list, we will see all cic's
1569 * since no new ones are added.
1570 */
1571 __call_for_each_cic(ioc, cic_free_func);
1572}
1573
1574static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1575{
1576 struct cfq_queue *__cfqq, *next;
1577
1578 if (unlikely(cfqq == cfqd->active_queue)) {
1579 __cfq_slice_expired(cfqd, cfqq, 0);
1580 cfq_schedule_dispatch(cfqd);
1581 }
1582
1583 /*
1584 * If this queue was scheduled to merge with another queue, be
1585 * sure to drop the reference taken on that queue (and others in
1586 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
1587 */
1588 __cfqq = cfqq->new_cfqq;
1589 while (__cfqq) {
1590 if (__cfqq == cfqq) {
1591 WARN(1, "cfqq->new_cfqq loop detected\n");
1592 break;
1593 }
1594 next = __cfqq->new_cfqq;
1595 cfq_put_queue(__cfqq);
1596 __cfqq = next;
1597 }
1598
1599 cfq_put_queue(cfqq);
1600}
1601
1602static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1603 struct cfq_io_context *cic)
1604{
1605 struct io_context *ioc = cic->ioc;
1606
1607 list_del_init(&cic->queue_list);
1608
1609 /*
1610 * Make sure key == NULL is seen for dead queues
1611 */
1612 smp_wmb();
1613 cic->dead_key = (unsigned long) cic->key;
1614 cic->key = NULL;
1615
1616 if (ioc->ioc_data == cic)
1617 rcu_assign_pointer(ioc->ioc_data, NULL);
1618
1619 if (cic->cfqq[BLK_RW_ASYNC]) {
1620 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1621 cic->cfqq[BLK_RW_ASYNC] = NULL;
1622 }
1623
1624 if (cic->cfqq[BLK_RW_SYNC]) {
1625 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1626 cic->cfqq[BLK_RW_SYNC] = NULL;
1627 }
1628}
1629
1630static void cfq_exit_single_io_context(struct io_context *ioc,
1631 struct cfq_io_context *cic)
1632{
1633 struct cfq_data *cfqd = cic->key;
1634
1635 if (cfqd) {
1636 struct request_queue *q = cfqd->queue;
1637 unsigned long flags;
1638
1639 spin_lock_irqsave(q->queue_lock, flags);
1640
1641 /*
1642 * Ensure we get a fresh copy of the ->key to prevent
1643 * race between exiting task and queue
1644 */
1645 smp_read_barrier_depends();
1646 if (cic->key)
1647 __cfq_exit_single_io_context(cfqd, cic);
1648
1649 spin_unlock_irqrestore(q->queue_lock, flags);
1650 }
1651}
1652
1653/*
1654 * The process that ioc belongs to has exited, we need to clean up
1655 * and put the internal structures we have that belongs to that process.
1656 */
1657static void cfq_exit_io_context(struct io_context *ioc)
1658{
1659 call_for_each_cic(ioc, cfq_exit_single_io_context);
1660}
1661
1662static struct cfq_io_context *
1663cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1664{
1665 struct cfq_io_context *cic;
1666
1667 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1668 cfqd->queue->node);
1669 if (cic) {
1670 cic->last_end_request = jiffies;
1671 INIT_LIST_HEAD(&cic->queue_list);
1672 INIT_HLIST_NODE(&cic->cic_list);
1673 cic->dtor = cfq_free_io_context;
1674 cic->exit = cfq_exit_io_context;
1675 elv_ioc_count_inc(cfq_ioc_count);
1676 }
1677
1678 return cic;
1679}
1680
1681static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1682{
1683 struct task_struct *tsk = current;
1684 int ioprio_class;
1685
1686 if (!cfq_cfqq_prio_changed(cfqq))
1687 return;
1688
1689 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1690 switch (ioprio_class) {
1691 default:
1692 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1693 case IOPRIO_CLASS_NONE:
1694 /*
1695 * no prio set, inherit CPU scheduling settings
1696 */
1697 cfqq->ioprio = task_nice_ioprio(tsk);
1698 cfqq->ioprio_class = task_nice_ioclass(tsk);
1699 break;
1700 case IOPRIO_CLASS_RT:
1701 cfqq->ioprio = task_ioprio(ioc);
1702 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1703 break;
1704 case IOPRIO_CLASS_BE:
1705 cfqq->ioprio = task_ioprio(ioc);
1706 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1707 break;
1708 case IOPRIO_CLASS_IDLE:
1709 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1710 cfqq->ioprio = 7;
1711 cfq_clear_cfqq_idle_window(cfqq);
1712 break;
1713 }
1714
1715 /*
1716 * keep track of original prio settings in case we have to temporarily
1717 * elevate the priority of this queue
1718 */
1719 cfqq->org_ioprio = cfqq->ioprio;
1720 cfqq->org_ioprio_class = cfqq->ioprio_class;
1721 cfq_clear_cfqq_prio_changed(cfqq);
1722}
1723
1724static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1725{
1726 struct cfq_data *cfqd = cic->key;
1727 struct cfq_queue *cfqq;
1728 unsigned long flags;
1729
1730 if (unlikely(!cfqd))
1731 return;
1732
1733 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1734
1735 cfqq = cic->cfqq[BLK_RW_ASYNC];
1736 if (cfqq) {
1737 struct cfq_queue *new_cfqq;
1738 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1739 GFP_ATOMIC);
1740 if (new_cfqq) {
1741 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
1742 cfq_put_queue(cfqq);
1743 }
1744 }
1745
1746 cfqq = cic->cfqq[BLK_RW_SYNC];
1747 if (cfqq)
1748 cfq_mark_cfqq_prio_changed(cfqq);
1749
1750 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1751}
1752
1753static void cfq_ioc_set_ioprio(struct io_context *ioc)
1754{
1755 call_for_each_cic(ioc, changed_ioprio);
1756 ioc->ioprio_changed = 0;
1757}
1758
1759static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1760 pid_t pid, bool is_sync)
1761{
1762 RB_CLEAR_NODE(&cfqq->rb_node);
1763 RB_CLEAR_NODE(&cfqq->p_node);
1764 INIT_LIST_HEAD(&cfqq->fifo);
1765
1766 atomic_set(&cfqq->ref, 0);
1767 cfqq->cfqd = cfqd;
1768
1769 cfq_mark_cfqq_prio_changed(cfqq);
1770
1771 if (is_sync) {
1772 if (!cfq_class_idle(cfqq))
1773 cfq_mark_cfqq_idle_window(cfqq);
1774 cfq_mark_cfqq_sync(cfqq);
1775 }
1776 cfqq->pid = pid;
1777}
1778
1779static struct cfq_queue *
1780cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
1781 struct io_context *ioc, gfp_t gfp_mask)
1782{
1783 struct cfq_queue *cfqq, *new_cfqq = NULL;
1784 struct cfq_io_context *cic;
1785
1786retry:
1787 cic = cfq_cic_lookup(cfqd, ioc);
1788 /* cic always exists here */
1789 cfqq = cic_to_cfqq(cic, is_sync);
1790
1791 /*
1792 * Always try a new alloc if we fell back to the OOM cfqq
1793 * originally, since it should just be a temporary situation.
1794 */
1795 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
1796 cfqq = NULL;
1797 if (new_cfqq) {
1798 cfqq = new_cfqq;
1799 new_cfqq = NULL;
1800 } else if (gfp_mask & __GFP_WAIT) {
1801 spin_unlock_irq(cfqd->queue->queue_lock);
1802 new_cfqq = kmem_cache_alloc_node(cfq_pool,
1803 gfp_mask | __GFP_ZERO,
1804 cfqd->queue->node);
1805 spin_lock_irq(cfqd->queue->queue_lock);
1806 if (new_cfqq)
1807 goto retry;
1808 } else {
1809 cfqq = kmem_cache_alloc_node(cfq_pool,
1810 gfp_mask | __GFP_ZERO,
1811 cfqd->queue->node);
1812 }
1813
1814 if (cfqq) {
1815 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
1816 cfq_init_prio_data(cfqq, ioc);
1817 cfq_log_cfqq(cfqd, cfqq, "alloced");
1818 } else
1819 cfqq = &cfqd->oom_cfqq;
1820 }
1821
1822 if (new_cfqq)
1823 kmem_cache_free(cfq_pool, new_cfqq);
1824
1825 return cfqq;
1826}
1827
1828static struct cfq_queue **
1829cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1830{
1831 switch (ioprio_class) {
1832 case IOPRIO_CLASS_RT:
1833 return &cfqd->async_cfqq[0][ioprio];
1834 case IOPRIO_CLASS_BE:
1835 return &cfqd->async_cfqq[1][ioprio];
1836 case IOPRIO_CLASS_IDLE:
1837 return &cfqd->async_idle_cfqq;
1838 default:
1839 BUG();
1840 }
1841}
1842
1843static struct cfq_queue *
1844cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
1845 gfp_t gfp_mask)
1846{
1847 const int ioprio = task_ioprio(ioc);
1848 const int ioprio_class = task_ioprio_class(ioc);
1849 struct cfq_queue **async_cfqq = NULL;
1850 struct cfq_queue *cfqq = NULL;
1851
1852 if (!is_sync) {
1853 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1854 cfqq = *async_cfqq;
1855 }
1856
1857 if (!cfqq)
1858 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1859
1860 /*
1861 * pin the queue now that it's allocated, scheduler exit will prune it
1862 */
1863 if (!is_sync && !(*async_cfqq)) {
1864 atomic_inc(&cfqq->ref);
1865 *async_cfqq = cfqq;
1866 }
1867
1868 atomic_inc(&cfqq->ref);
1869 return cfqq;
1870}
1871
1872/*
1873 * We drop cfq io contexts lazily, so we may find a dead one.
1874 */
1875static void
1876cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1877 struct cfq_io_context *cic)
1878{
1879 unsigned long flags;
1880
1881 WARN_ON(!list_empty(&cic->queue_list));
1882
1883 spin_lock_irqsave(&ioc->lock, flags);
1884
1885 BUG_ON(ioc->ioc_data == cic);
1886
1887 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1888 hlist_del_rcu(&cic->cic_list);
1889 spin_unlock_irqrestore(&ioc->lock, flags);
1890
1891 cfq_cic_free(cic);
1892}
1893
1894static struct cfq_io_context *
1895cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1896{
1897 struct cfq_io_context *cic;
1898 unsigned long flags;
1899 void *k;
1900
1901 if (unlikely(!ioc))
1902 return NULL;
1903
1904 rcu_read_lock();
1905
1906 /*
1907 * we maintain a last-hit cache, to avoid browsing over the tree
1908 */
1909 cic = rcu_dereference(ioc->ioc_data);
1910 if (cic && cic->key == cfqd) {
1911 rcu_read_unlock();
1912 return cic;
1913 }
1914
1915 do {
1916 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1917 rcu_read_unlock();
1918 if (!cic)
1919 break;
1920 /* ->key must be copied to avoid race with cfq_exit_queue() */
1921 k = cic->key;
1922 if (unlikely(!k)) {
1923 cfq_drop_dead_cic(cfqd, ioc, cic);
1924 rcu_read_lock();
1925 continue;
1926 }
1927
1928 spin_lock_irqsave(&ioc->lock, flags);
1929 rcu_assign_pointer(ioc->ioc_data, cic);
1930 spin_unlock_irqrestore(&ioc->lock, flags);
1931 break;
1932 } while (1);
1933
1934 return cic;
1935}
1936
1937/*
1938 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1939 * the process specific cfq io context when entered from the block layer.
1940 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1941 */
1942static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1943 struct cfq_io_context *cic, gfp_t gfp_mask)
1944{
1945 unsigned long flags;
1946 int ret;
1947
1948 ret = radix_tree_preload(gfp_mask);
1949 if (!ret) {
1950 cic->ioc = ioc;
1951 cic->key = cfqd;
1952
1953 spin_lock_irqsave(&ioc->lock, flags);
1954 ret = radix_tree_insert(&ioc->radix_root,
1955 (unsigned long) cfqd, cic);
1956 if (!ret)
1957 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
1958 spin_unlock_irqrestore(&ioc->lock, flags);
1959
1960 radix_tree_preload_end();
1961
1962 if (!ret) {
1963 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1964 list_add(&cic->queue_list, &cfqd->cic_list);
1965 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1966 }
1967 }
1968
1969 if (ret)
1970 printk(KERN_ERR "cfq: cic link failed!\n");
1971
1972 return ret;
1973}
1974
1975/*
1976 * Setup general io context and cfq io context. There can be several cfq
1977 * io contexts per general io context, if this process is doing io to more
1978 * than one device managed by cfq.
1979 */
1980static struct cfq_io_context *
1981cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1982{
1983 struct io_context *ioc = NULL;
1984 struct cfq_io_context *cic;
1985
1986 might_sleep_if(gfp_mask & __GFP_WAIT);
1987
1988 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1989 if (!ioc)
1990 return NULL;
1991
1992 cic = cfq_cic_lookup(cfqd, ioc);
1993 if (cic)
1994 goto out;
1995
1996 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1997 if (cic == NULL)
1998 goto err;
1999
2000 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2001 goto err_free;
2002
2003out:
2004 smp_read_barrier_depends();
2005 if (unlikely(ioc->ioprio_changed))
2006 cfq_ioc_set_ioprio(ioc);
2007
2008 return cic;
2009err_free:
2010 cfq_cic_free(cic);
2011err:
2012 put_io_context(ioc);
2013 return NULL;
2014}
2015
2016static void
2017cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2018{
2019 unsigned long elapsed = jiffies - cic->last_end_request;
2020 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2021
2022 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2023 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2024 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2025}
2026
2027static void
2028cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2029 struct request *rq)
2030{
2031 sector_t sdist;
2032 u64 total;
2033
2034 if (!cfqq->last_request_pos)
2035 sdist = 0;
2036 else if (cfqq->last_request_pos < blk_rq_pos(rq))
2037 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2038 else
2039 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2040
2041 /*
2042 * Don't allow the seek distance to get too large from the
2043 * odd fragment, pagein, etc
2044 */
2045 if (cfqq->seek_samples <= 60) /* second&third seek */
2046 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2047 else
2048 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2049
2050 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2051 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2052 total = cfqq->seek_total + (cfqq->seek_samples/2);
2053 do_div(total, cfqq->seek_samples);
2054 cfqq->seek_mean = (sector_t)total;
2055
2056 /*
2057 * If this cfqq is shared between multiple processes, check to
2058 * make sure that those processes are still issuing I/Os within
2059 * the mean seek distance. If not, it may be time to break the
2060 * queues apart again.
2061 */
2062 if (cfq_cfqq_coop(cfqq)) {
2063 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2064 cfqq->seeky_start = jiffies;
2065 else if (!CFQQ_SEEKY(cfqq))
2066 cfqq->seeky_start = 0;
2067 }
2068}
2069
2070/*
2071 * Disable idle window if the process thinks too long or seeks so much that
2072 * it doesn't matter
2073 */
2074static void
2075cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2076 struct cfq_io_context *cic)
2077{
2078 int old_idle, enable_idle;
2079
2080 /*
2081 * Don't idle for async or idle io prio class
2082 */
2083 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2084 return;
2085
2086 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
2087
2088 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2089 (!cfqd->cfq_latency && cfqd->hw_tag && CFQQ_SEEKY(cfqq)))
2090 enable_idle = 0;
2091 else if (sample_valid(cic->ttime_samples)) {
2092 unsigned int slice_idle = cfqd->cfq_slice_idle;
2093 if (sample_valid(cfqq->seek_samples) && CFQQ_SEEKY(cfqq))
2094 slice_idle = msecs_to_jiffies(CFQ_MIN_TT);
2095 if (cic->ttime_mean > slice_idle)
2096 enable_idle = 0;
2097 else
2098 enable_idle = 1;
2099 }
2100
2101 if (old_idle != enable_idle) {
2102 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2103 if (enable_idle)
2104 cfq_mark_cfqq_idle_window(cfqq);
2105 else
2106 cfq_clear_cfqq_idle_window(cfqq);
2107 }
2108}
2109
2110/*
2111 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2112 * no or if we aren't sure, a 1 will cause a preempt.
2113 */
2114static bool
2115cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
2116 struct request *rq)
2117{
2118 struct cfq_queue *cfqq;
2119
2120 cfqq = cfqd->active_queue;
2121 if (!cfqq)
2122 return false;
2123
2124 if (cfq_slice_used(cfqq))
2125 return true;
2126
2127 if (cfq_class_idle(new_cfqq))
2128 return false;
2129
2130 if (cfq_class_idle(cfqq))
2131 return true;
2132
2133 /*
2134 * if the new request is sync, but the currently running queue is
2135 * not, let the sync request have priority.
2136 */
2137 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2138 return true;
2139
2140 /*
2141 * So both queues are sync. Let the new request get disk time if
2142 * it's a metadata request and the current queue is doing regular IO.
2143 */
2144 if (rq_is_meta(rq) && !cfqq->meta_pending)
2145 return false;
2146
2147 /*
2148 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2149 */
2150 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2151 return true;
2152
2153 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2154 return false;
2155
2156 /*
2157 * if this request is as-good as one we would expect from the
2158 * current cfqq, let it preempt
2159 */
2160 if (cfq_rq_close(cfqd, cfqq, rq))
2161 return true;
2162
2163 return false;
2164}
2165
2166/*
2167 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2168 * let it have half of its nominal slice.
2169 */
2170static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2171{
2172 cfq_log_cfqq(cfqd, cfqq, "preempt");
2173 cfq_slice_expired(cfqd, 1);
2174
2175 /*
2176 * Put the new queue at the front of the of the current list,
2177 * so we know that it will be selected next.
2178 */
2179 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2180
2181 cfq_service_tree_add(cfqd, cfqq, 1);
2182
2183 cfqq->slice_end = 0;
2184 cfq_mark_cfqq_slice_new(cfqq);
2185}
2186
2187/*
2188 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2189 * something we should do about it
2190 */
2191static void
2192cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2193 struct request *rq)
2194{
2195 struct cfq_io_context *cic = RQ_CIC(rq);
2196
2197 cfqd->rq_queued++;
2198 if (rq_is_meta(rq))
2199 cfqq->meta_pending++;
2200
2201 cfq_update_io_thinktime(cfqd, cic);
2202 cfq_update_io_seektime(cfqd, cfqq, rq);
2203 cfq_update_idle_window(cfqd, cfqq, cic);
2204
2205 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2206
2207 if (cfqq == cfqd->active_queue) {
2208 /*
2209 * Remember that we saw a request from this process, but
2210 * don't start queuing just yet. Otherwise we risk seeing lots
2211 * of tiny requests, because we disrupt the normal plugging
2212 * and merging. If the request is already larger than a single
2213 * page, let it rip immediately. For that case we assume that
2214 * merging is already done. Ditto for a busy system that
2215 * has other work pending, don't risk delaying until the
2216 * idle timer unplug to continue working.
2217 */
2218 if (cfq_cfqq_wait_request(cfqq)) {
2219 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2220 cfqd->busy_queues > 1) {
2221 del_timer(&cfqd->idle_slice_timer);
2222 __blk_run_queue(cfqd->queue);
2223 }
2224 cfq_mark_cfqq_must_dispatch(cfqq);
2225 }
2226 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2227 /*
2228 * not the active queue - expire current slice if it is
2229 * idle and has expired it's mean thinktime or this new queue
2230 * has some old slice time left and is of higher priority or
2231 * this new queue is RT and the current one is BE
2232 */
2233 cfq_preempt_queue(cfqd, cfqq);
2234 __blk_run_queue(cfqd->queue);
2235 }
2236}
2237
2238static void cfq_insert_request(struct request_queue *q, struct request *rq)
2239{
2240 struct cfq_data *cfqd = q->elevator->elevator_data;
2241 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2242
2243 cfq_log_cfqq(cfqd, cfqq, "insert_request");
2244 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
2245
2246 cfq_add_rq_rb(rq);
2247
2248 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
2249 list_add_tail(&rq->queuelist, &cfqq->fifo);
2250
2251 cfq_rq_enqueued(cfqd, cfqq, rq);
2252}
2253
2254/*
2255 * Update hw_tag based on peak queue depth over 50 samples under
2256 * sufficient load.
2257 */
2258static void cfq_update_hw_tag(struct cfq_data *cfqd)
2259{
2260 struct cfq_queue *cfqq = cfqd->active_queue;
2261
2262 if (rq_in_driver(cfqd) > cfqd->rq_in_driver_peak)
2263 cfqd->rq_in_driver_peak = rq_in_driver(cfqd);
2264
2265 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2266 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2267 return;
2268
2269 /*
2270 * If active queue hasn't enough requests and can idle, cfq might not
2271 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
2272 * case
2273 */
2274 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
2275 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
2276 CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
2277 return;
2278
2279 if (cfqd->hw_tag_samples++ < 50)
2280 return;
2281
2282 if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2283 cfqd->hw_tag = 1;
2284 else
2285 cfqd->hw_tag = 0;
2286
2287 cfqd->hw_tag_samples = 0;
2288 cfqd->rq_in_driver_peak = 0;
2289}
2290
2291static void cfq_completed_request(struct request_queue *q, struct request *rq)
2292{
2293 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2294 struct cfq_data *cfqd = cfqq->cfqd;
2295 const int sync = rq_is_sync(rq);
2296 unsigned long now;
2297
2298 now = jiffies;
2299 cfq_log_cfqq(cfqd, cfqq, "complete");
2300
2301 cfq_update_hw_tag(cfqd);
2302
2303 WARN_ON(!cfqd->rq_in_driver[sync]);
2304 WARN_ON(!cfqq->dispatched);
2305 cfqd->rq_in_driver[sync]--;
2306 cfqq->dispatched--;
2307
2308 if (cfq_cfqq_sync(cfqq))
2309 cfqd->sync_flight--;
2310
2311 if (sync) {
2312 RQ_CIC(rq)->last_end_request = now;
2313 cfqd->last_end_sync_rq = now;
2314 }
2315
2316 /*
2317 * If this is the active queue, check if it needs to be expired,
2318 * or if we want to idle in case it has no pending requests.
2319 */
2320 if (cfqd->active_queue == cfqq) {
2321 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2322
2323 if (cfq_cfqq_slice_new(cfqq)) {
2324 cfq_set_prio_slice(cfqd, cfqq);
2325 cfq_clear_cfqq_slice_new(cfqq);
2326 }
2327 /*
2328 * If there are no requests waiting in this queue, and
2329 * there are other queues ready to issue requests, AND
2330 * those other queues are issuing requests within our
2331 * mean seek distance, give them a chance to run instead
2332 * of idling.
2333 */
2334 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2335 cfq_slice_expired(cfqd, 1);
2336 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq) &&
2337 sync && !rq_noidle(rq))
2338 cfq_arm_slice_timer(cfqd);
2339 }
2340
2341 if (!rq_in_driver(cfqd))
2342 cfq_schedule_dispatch(cfqd);
2343}
2344
2345/*
2346 * we temporarily boost lower priority queues if they are holding fs exclusive
2347 * resources. they are boosted to normal prio (CLASS_BE/4)
2348 */
2349static void cfq_prio_boost(struct cfq_queue *cfqq)
2350{
2351 if (has_fs_excl()) {
2352 /*
2353 * boost idle prio on transactions that would lock out other
2354 * users of the filesystem
2355 */
2356 if (cfq_class_idle(cfqq))
2357 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2358 if (cfqq->ioprio > IOPRIO_NORM)
2359 cfqq->ioprio = IOPRIO_NORM;
2360 } else {
2361 /*
2362 * check if we need to unboost the queue
2363 */
2364 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2365 cfqq->ioprio_class = cfqq->org_ioprio_class;
2366 if (cfqq->ioprio != cfqq->org_ioprio)
2367 cfqq->ioprio = cfqq->org_ioprio;
2368 }
2369}
2370
2371static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2372{
2373 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
2374 cfq_mark_cfqq_must_alloc_slice(cfqq);
2375 return ELV_MQUEUE_MUST;
2376 }
2377
2378 return ELV_MQUEUE_MAY;
2379}
2380
2381static int cfq_may_queue(struct request_queue *q, int rw)
2382{
2383 struct cfq_data *cfqd = q->elevator->elevator_data;
2384 struct task_struct *tsk = current;
2385 struct cfq_io_context *cic;
2386 struct cfq_queue *cfqq;
2387
2388 /*
2389 * don't force setup of a queue from here, as a call to may_queue
2390 * does not necessarily imply that a request actually will be queued.
2391 * so just lookup a possibly existing queue, or return 'may queue'
2392 * if that fails
2393 */
2394 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2395 if (!cic)
2396 return ELV_MQUEUE_MAY;
2397
2398 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2399 if (cfqq) {
2400 cfq_init_prio_data(cfqq, cic->ioc);
2401 cfq_prio_boost(cfqq);
2402
2403 return __cfq_may_queue(cfqq);
2404 }
2405
2406 return ELV_MQUEUE_MAY;
2407}
2408
2409/*
2410 * queue lock held here
2411 */
2412static void cfq_put_request(struct request *rq)
2413{
2414 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2415
2416 if (cfqq) {
2417 const int rw = rq_data_dir(rq);
2418
2419 BUG_ON(!cfqq->allocated[rw]);
2420 cfqq->allocated[rw]--;
2421
2422 put_io_context(RQ_CIC(rq)->ioc);
2423
2424 rq->elevator_private = NULL;
2425 rq->elevator_private2 = NULL;
2426
2427 cfq_put_queue(cfqq);
2428 }
2429}
2430
2431static struct cfq_queue *
2432cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
2433 struct cfq_queue *cfqq)
2434{
2435 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
2436 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
2437 cfq_mark_cfqq_coop(cfqq->new_cfqq);
2438 cfq_put_queue(cfqq);
2439 return cic_to_cfqq(cic, 1);
2440}
2441
2442static int should_split_cfqq(struct cfq_queue *cfqq)
2443{
2444 if (cfqq->seeky_start &&
2445 time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
2446 return 1;
2447 return 0;
2448}
2449
2450/*
2451 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
2452 * was the last process referring to said cfqq.
2453 */
2454static struct cfq_queue *
2455split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
2456{
2457 if (cfqq_process_refs(cfqq) == 1) {
2458 cfqq->seeky_start = 0;
2459 cfqq->pid = current->pid;
2460 cfq_clear_cfqq_coop(cfqq);
2461 return cfqq;
2462 }
2463
2464 cic_set_cfqq(cic, NULL, 1);
2465 cfq_put_queue(cfqq);
2466 return NULL;
2467}
2468/*
2469 * Allocate cfq data structures associated with this request.
2470 */
2471static int
2472cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2473{
2474 struct cfq_data *cfqd = q->elevator->elevator_data;
2475 struct cfq_io_context *cic;
2476 const int rw = rq_data_dir(rq);
2477 const bool is_sync = rq_is_sync(rq);
2478 struct cfq_queue *cfqq;
2479 unsigned long flags;
2480
2481 might_sleep_if(gfp_mask & __GFP_WAIT);
2482
2483 cic = cfq_get_io_context(cfqd, gfp_mask);
2484
2485 spin_lock_irqsave(q->queue_lock, flags);
2486
2487 if (!cic)
2488 goto queue_fail;
2489
2490new_queue:
2491 cfqq = cic_to_cfqq(cic, is_sync);
2492 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2493 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2494 cic_set_cfqq(cic, cfqq, is_sync);
2495 } else {
2496 /*
2497 * If the queue was seeky for too long, break it apart.
2498 */
2499 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
2500 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
2501 cfqq = split_cfqq(cic, cfqq);
2502 if (!cfqq)
2503 goto new_queue;
2504 }
2505
2506 /*
2507 * Check to see if this queue is scheduled to merge with
2508 * another, closely cooperating queue. The merging of
2509 * queues happens here as it must be done in process context.
2510 * The reference on new_cfqq was taken in merge_cfqqs.
2511 */
2512 if (cfqq->new_cfqq)
2513 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
2514 }
2515
2516 cfqq->allocated[rw]++;
2517 atomic_inc(&cfqq->ref);
2518
2519 spin_unlock_irqrestore(q->queue_lock, flags);
2520
2521 rq->elevator_private = cic;
2522 rq->elevator_private2 = cfqq;
2523 return 0;
2524
2525queue_fail:
2526 if (cic)
2527 put_io_context(cic->ioc);
2528
2529 cfq_schedule_dispatch(cfqd);
2530 spin_unlock_irqrestore(q->queue_lock, flags);
2531 cfq_log(cfqd, "set_request fail");
2532 return 1;
2533}
2534
2535static void cfq_kick_queue(struct work_struct *work)
2536{
2537 struct cfq_data *cfqd =
2538 container_of(work, struct cfq_data, unplug_work);
2539 struct request_queue *q = cfqd->queue;
2540
2541 spin_lock_irq(q->queue_lock);
2542 __blk_run_queue(cfqd->queue);
2543 spin_unlock_irq(q->queue_lock);
2544}
2545
2546/*
2547 * Timer running if the active_queue is currently idling inside its time slice
2548 */
2549static void cfq_idle_slice_timer(unsigned long data)
2550{
2551 struct cfq_data *cfqd = (struct cfq_data *) data;
2552 struct cfq_queue *cfqq;
2553 unsigned long flags;
2554 int timed_out = 1;
2555
2556 cfq_log(cfqd, "idle timer fired");
2557
2558 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2559
2560 cfqq = cfqd->active_queue;
2561 if (cfqq) {
2562 timed_out = 0;
2563
2564 /*
2565 * We saw a request before the queue expired, let it through
2566 */
2567 if (cfq_cfqq_must_dispatch(cfqq))
2568 goto out_kick;
2569
2570 /*
2571 * expired
2572 */
2573 if (cfq_slice_used(cfqq))
2574 goto expire;
2575
2576 /*
2577 * only expire and reinvoke request handler, if there are
2578 * other queues with pending requests
2579 */
2580 if (!cfqd->busy_queues)
2581 goto out_cont;
2582
2583 /*
2584 * not expired and it has a request pending, let it dispatch
2585 */
2586 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2587 goto out_kick;
2588 }
2589expire:
2590 cfq_slice_expired(cfqd, timed_out);
2591out_kick:
2592 cfq_schedule_dispatch(cfqd);
2593out_cont:
2594 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2595}
2596
2597static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2598{
2599 del_timer_sync(&cfqd->idle_slice_timer);
2600 cancel_work_sync(&cfqd->unplug_work);
2601}
2602
2603static void cfq_put_async_queues(struct cfq_data *cfqd)
2604{
2605 int i;
2606
2607 for (i = 0; i < IOPRIO_BE_NR; i++) {
2608 if (cfqd->async_cfqq[0][i])
2609 cfq_put_queue(cfqd->async_cfqq[0][i]);
2610 if (cfqd->async_cfqq[1][i])
2611 cfq_put_queue(cfqd->async_cfqq[1][i]);
2612 }
2613
2614 if (cfqd->async_idle_cfqq)
2615 cfq_put_queue(cfqd->async_idle_cfqq);
2616}
2617
2618static void cfq_exit_queue(struct elevator_queue *e)
2619{
2620 struct cfq_data *cfqd = e->elevator_data;
2621 struct request_queue *q = cfqd->queue;
2622
2623 cfq_shutdown_timer_wq(cfqd);
2624
2625 spin_lock_irq(q->queue_lock);
2626
2627 if (cfqd->active_queue)
2628 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2629
2630 while (!list_empty(&cfqd->cic_list)) {
2631 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2632 struct cfq_io_context,
2633 queue_list);
2634
2635 __cfq_exit_single_io_context(cfqd, cic);
2636 }
2637
2638 cfq_put_async_queues(cfqd);
2639
2640 spin_unlock_irq(q->queue_lock);
2641
2642 cfq_shutdown_timer_wq(cfqd);
2643
2644 kfree(cfqd);
2645}
2646
2647static void *cfq_init_queue(struct request_queue *q)
2648{
2649 struct cfq_data *cfqd;
2650 int i;
2651
2652 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2653 if (!cfqd)
2654 return NULL;
2655
2656 cfqd->service_tree = CFQ_RB_ROOT;
2657
2658 /*
2659 * Not strictly needed (since RB_ROOT just clears the node and we
2660 * zeroed cfqd on alloc), but better be safe in case someone decides
2661 * to add magic to the rb code
2662 */
2663 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2664 cfqd->prio_trees[i] = RB_ROOT;
2665
2666 /*
2667 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2668 * Grab a permanent reference to it, so that the normal code flow
2669 * will not attempt to free it.
2670 */
2671 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2672 atomic_inc(&cfqd->oom_cfqq.ref);
2673
2674 INIT_LIST_HEAD(&cfqd->cic_list);
2675
2676 cfqd->queue = q;
2677
2678 init_timer(&cfqd->idle_slice_timer);
2679 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2680 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2681
2682 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2683
2684 cfqd->cfq_quantum = cfq_quantum;
2685 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2686 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2687 cfqd->cfq_back_max = cfq_back_max;
2688 cfqd->cfq_back_penalty = cfq_back_penalty;
2689 cfqd->cfq_slice[0] = cfq_slice_async;
2690 cfqd->cfq_slice[1] = cfq_slice_sync;
2691 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2692 cfqd->cfq_slice_idle = cfq_slice_idle;
2693 cfqd->cfq_latency = 1;
2694 cfqd->hw_tag = 1;
2695 cfqd->last_end_sync_rq = jiffies;
2696 return cfqd;
2697}
2698
2699static void cfq_slab_kill(void)
2700{
2701 /*
2702 * Caller already ensured that pending RCU callbacks are completed,
2703 * so we should have no busy allocations at this point.
2704 */
2705 if (cfq_pool)
2706 kmem_cache_destroy(cfq_pool);
2707 if (cfq_ioc_pool)
2708 kmem_cache_destroy(cfq_ioc_pool);
2709}
2710
2711static int __init cfq_slab_setup(void)
2712{
2713 cfq_pool = KMEM_CACHE(cfq_queue, 0);
2714 if (!cfq_pool)
2715 goto fail;
2716
2717 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2718 if (!cfq_ioc_pool)
2719 goto fail;
2720
2721 return 0;
2722fail:
2723 cfq_slab_kill();
2724 return -ENOMEM;
2725}
2726
2727/*
2728 * sysfs parts below -->
2729 */
2730static ssize_t
2731cfq_var_show(unsigned int var, char *page)
2732{
2733 return sprintf(page, "%d\n", var);
2734}
2735
2736static ssize_t
2737cfq_var_store(unsigned int *var, const char *page, size_t count)
2738{
2739 char *p = (char *) page;
2740
2741 *var = simple_strtoul(p, &p, 10);
2742 return count;
2743}
2744
2745#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2746static ssize_t __FUNC(struct elevator_queue *e, char *page) \
2747{ \
2748 struct cfq_data *cfqd = e->elevator_data; \
2749 unsigned int __data = __VAR; \
2750 if (__CONV) \
2751 __data = jiffies_to_msecs(__data); \
2752 return cfq_var_show(__data, (page)); \
2753}
2754SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2755SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2756SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2757SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2758SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2759SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2760SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2761SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2762SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2763SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
2764#undef SHOW_FUNCTION
2765
2766#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2767static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
2768{ \
2769 struct cfq_data *cfqd = e->elevator_data; \
2770 unsigned int __data; \
2771 int ret = cfq_var_store(&__data, (page), count); \
2772 if (__data < (MIN)) \
2773 __data = (MIN); \
2774 else if (__data > (MAX)) \
2775 __data = (MAX); \
2776 if (__CONV) \
2777 *(__PTR) = msecs_to_jiffies(__data); \
2778 else \
2779 *(__PTR) = __data; \
2780 return ret; \
2781}
2782STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2783STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2784 UINT_MAX, 1);
2785STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2786 UINT_MAX, 1);
2787STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2788STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2789 UINT_MAX, 0);
2790STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2791STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2792STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2793STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2794 UINT_MAX, 0);
2795STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
2796#undef STORE_FUNCTION
2797
2798#define CFQ_ATTR(name) \
2799 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2800
2801static struct elv_fs_entry cfq_attrs[] = {
2802 CFQ_ATTR(quantum),
2803 CFQ_ATTR(fifo_expire_sync),
2804 CFQ_ATTR(fifo_expire_async),
2805 CFQ_ATTR(back_seek_max),
2806 CFQ_ATTR(back_seek_penalty),
2807 CFQ_ATTR(slice_sync),
2808 CFQ_ATTR(slice_async),
2809 CFQ_ATTR(slice_async_rq),
2810 CFQ_ATTR(slice_idle),
2811 CFQ_ATTR(low_latency),
2812 __ATTR_NULL
2813};
2814
2815static struct elevator_type iosched_cfq = {
2816 .ops = {
2817 .elevator_merge_fn = cfq_merge,
2818 .elevator_merged_fn = cfq_merged_request,
2819 .elevator_merge_req_fn = cfq_merged_requests,
2820 .elevator_allow_merge_fn = cfq_allow_merge,
2821 .elevator_dispatch_fn = cfq_dispatch_requests,
2822 .elevator_add_req_fn = cfq_insert_request,
2823 .elevator_activate_req_fn = cfq_activate_request,
2824 .elevator_deactivate_req_fn = cfq_deactivate_request,
2825 .elevator_queue_empty_fn = cfq_queue_empty,
2826 .elevator_completed_req_fn = cfq_completed_request,
2827 .elevator_former_req_fn = elv_rb_former_request,
2828 .elevator_latter_req_fn = elv_rb_latter_request,
2829 .elevator_set_req_fn = cfq_set_request,
2830 .elevator_put_req_fn = cfq_put_request,
2831 .elevator_may_queue_fn = cfq_may_queue,
2832 .elevator_init_fn = cfq_init_queue,
2833 .elevator_exit_fn = cfq_exit_queue,
2834 .trim = cfq_free_io_context,
2835 },
2836 .elevator_attrs = cfq_attrs,
2837 .elevator_name = "cfq",
2838 .elevator_owner = THIS_MODULE,
2839};
2840
2841static int __init cfq_init(void)
2842{
2843 /*
2844 * could be 0 on HZ < 1000 setups
2845 */
2846 if (!cfq_slice_async)
2847 cfq_slice_async = 1;
2848 if (!cfq_slice_idle)
2849 cfq_slice_idle = 1;
2850
2851 if (cfq_slab_setup())
2852 return -ENOMEM;
2853
2854 elv_register(&iosched_cfq);
2855
2856 return 0;
2857}
2858
2859static void __exit cfq_exit(void)
2860{
2861 DECLARE_COMPLETION_ONSTACK(all_gone);
2862 elv_unregister(&iosched_cfq);
2863 ioc_gone = &all_gone;
2864 /* ioc_gone's update must be visible before reading ioc_count */
2865 smp_wmb();
2866
2867 /*
2868 * this also protects us from entering cfq_slab_kill() with
2869 * pending RCU callbacks
2870 */
2871 if (elv_ioc_count_read(cfq_ioc_count))
2872 wait_for_completion(&all_gone);
2873 cfq_slab_kill();
2874}
2875
2876module_init(cfq_init);
2877module_exit(cfq_exit);
2878
2879MODULE_AUTHOR("Jens Axboe");
2880MODULE_LICENSE("GPL");
2881MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");