blk-throttle: remove deferred config application mechanism
[linux-2.6-block.git] / block / blk-throttle.c
... / ...
CommitLineData
1/*
2 * Interface for controlling IO bandwidth on a request queue
3 *
4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5 */
6
7#include <linux/module.h>
8#include <linux/slab.h>
9#include <linux/blkdev.h>
10#include <linux/bio.h>
11#include <linux/blktrace_api.h>
12#include "blk-cgroup.h"
13#include "blk.h"
14
15/* Max dispatch from a group in 1 round */
16static int throtl_grp_quantum = 8;
17
18/* Total max dispatch from all groups in one round */
19static int throtl_quantum = 32;
20
21/* Throttling is performed over 100ms slice and after that slice is renewed */
22static unsigned long throtl_slice = HZ/10; /* 100 ms */
23
24static struct blkcg_policy blkcg_policy_throtl;
25
26/* A workqueue to queue throttle related work */
27static struct workqueue_struct *kthrotld_workqueue;
28static void throtl_schedule_delayed_work(struct throtl_data *td,
29 unsigned long delay);
30
31struct throtl_rb_root {
32 struct rb_root rb;
33 struct rb_node *left;
34 unsigned int count;
35 unsigned long min_disptime;
36};
37
38#define THROTL_RB_ROOT (struct throtl_rb_root) { .rb = RB_ROOT, .left = NULL, \
39 .count = 0, .min_disptime = 0}
40
41#define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
42
43/* Per-cpu group stats */
44struct tg_stats_cpu {
45 /* total bytes transferred */
46 struct blkg_rwstat service_bytes;
47 /* total IOs serviced, post merge */
48 struct blkg_rwstat serviced;
49};
50
51struct throtl_grp {
52 /* must be the first member */
53 struct blkg_policy_data pd;
54
55 /* active throtl group service_tree member */
56 struct rb_node rb_node;
57
58 /*
59 * Dispatch time in jiffies. This is the estimated time when group
60 * will unthrottle and is ready to dispatch more bio. It is used as
61 * key to sort active groups in service tree.
62 */
63 unsigned long disptime;
64
65 unsigned int flags;
66
67 /* Two lists for READ and WRITE */
68 struct bio_list bio_lists[2];
69
70 /* Number of queued bios on READ and WRITE lists */
71 unsigned int nr_queued[2];
72
73 /* bytes per second rate limits */
74 uint64_t bps[2];
75
76 /* IOPS limits */
77 unsigned int iops[2];
78
79 /* Number of bytes disptached in current slice */
80 uint64_t bytes_disp[2];
81 /* Number of bio's dispatched in current slice */
82 unsigned int io_disp[2];
83
84 /* When did we start a new slice */
85 unsigned long slice_start[2];
86 unsigned long slice_end[2];
87
88 /* Per cpu stats pointer */
89 struct tg_stats_cpu __percpu *stats_cpu;
90
91 /* List of tgs waiting for per cpu stats memory to be allocated */
92 struct list_head stats_alloc_node;
93};
94
95struct throtl_data
96{
97 /* service tree for active throtl groups */
98 struct throtl_rb_root tg_service_tree;
99
100 struct request_queue *queue;
101
102 /* Total Number of queued bios on READ and WRITE lists */
103 unsigned int nr_queued[2];
104
105 /*
106 * number of total undestroyed groups
107 */
108 unsigned int nr_undestroyed_grps;
109
110 /* Work for dispatching throttled bios */
111 struct delayed_work throtl_work;
112};
113
114/* list and work item to allocate percpu group stats */
115static DEFINE_SPINLOCK(tg_stats_alloc_lock);
116static LIST_HEAD(tg_stats_alloc_list);
117
118static void tg_stats_alloc_fn(struct work_struct *);
119static DECLARE_DELAYED_WORK(tg_stats_alloc_work, tg_stats_alloc_fn);
120
121static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
122{
123 return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
124}
125
126static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
127{
128 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
129}
130
131static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
132{
133 return pd_to_blkg(&tg->pd);
134}
135
136static inline struct throtl_grp *td_root_tg(struct throtl_data *td)
137{
138 return blkg_to_tg(td->queue->root_blkg);
139}
140
141enum tg_state_flags {
142 THROTL_TG_FLAG_on_rr = 0, /* on round-robin busy list */
143};
144
145#define THROTL_TG_FNS(name) \
146static inline void throtl_mark_tg_##name(struct throtl_grp *tg) \
147{ \
148 (tg)->flags |= (1 << THROTL_TG_FLAG_##name); \
149} \
150static inline void throtl_clear_tg_##name(struct throtl_grp *tg) \
151{ \
152 (tg)->flags &= ~(1 << THROTL_TG_FLAG_##name); \
153} \
154static inline int throtl_tg_##name(const struct throtl_grp *tg) \
155{ \
156 return ((tg)->flags & (1 << THROTL_TG_FLAG_##name)) != 0; \
157}
158
159THROTL_TG_FNS(on_rr);
160
161#define throtl_log_tg(td, tg, fmt, args...) do { \
162 char __pbuf[128]; \
163 \
164 blkg_path(tg_to_blkg(tg), __pbuf, sizeof(__pbuf)); \
165 blk_add_trace_msg((td)->queue, "throtl %s " fmt, __pbuf, ##args); \
166} while (0)
167
168#define throtl_log(td, fmt, args...) \
169 blk_add_trace_msg((td)->queue, "throtl " fmt, ##args)
170
171static inline unsigned int total_nr_queued(struct throtl_data *td)
172{
173 return td->nr_queued[0] + td->nr_queued[1];
174}
175
176/*
177 * Worker for allocating per cpu stat for tgs. This is scheduled on the
178 * system_wq once there are some groups on the alloc_list waiting for
179 * allocation.
180 */
181static void tg_stats_alloc_fn(struct work_struct *work)
182{
183 static struct tg_stats_cpu *stats_cpu; /* this fn is non-reentrant */
184 struct delayed_work *dwork = to_delayed_work(work);
185 bool empty = false;
186
187alloc_stats:
188 if (!stats_cpu) {
189 stats_cpu = alloc_percpu(struct tg_stats_cpu);
190 if (!stats_cpu) {
191 /* allocation failed, try again after some time */
192 schedule_delayed_work(dwork, msecs_to_jiffies(10));
193 return;
194 }
195 }
196
197 spin_lock_irq(&tg_stats_alloc_lock);
198
199 if (!list_empty(&tg_stats_alloc_list)) {
200 struct throtl_grp *tg = list_first_entry(&tg_stats_alloc_list,
201 struct throtl_grp,
202 stats_alloc_node);
203 swap(tg->stats_cpu, stats_cpu);
204 list_del_init(&tg->stats_alloc_node);
205 }
206
207 empty = list_empty(&tg_stats_alloc_list);
208 spin_unlock_irq(&tg_stats_alloc_lock);
209 if (!empty)
210 goto alloc_stats;
211}
212
213static void throtl_pd_init(struct blkcg_gq *blkg)
214{
215 struct throtl_grp *tg = blkg_to_tg(blkg);
216 unsigned long flags;
217
218 RB_CLEAR_NODE(&tg->rb_node);
219 bio_list_init(&tg->bio_lists[0]);
220 bio_list_init(&tg->bio_lists[1]);
221
222 tg->bps[READ] = -1;
223 tg->bps[WRITE] = -1;
224 tg->iops[READ] = -1;
225 tg->iops[WRITE] = -1;
226
227 /*
228 * Ugh... We need to perform per-cpu allocation for tg->stats_cpu
229 * but percpu allocator can't be called from IO path. Queue tg on
230 * tg_stats_alloc_list and allocate from work item.
231 */
232 spin_lock_irqsave(&tg_stats_alloc_lock, flags);
233 list_add(&tg->stats_alloc_node, &tg_stats_alloc_list);
234 schedule_delayed_work(&tg_stats_alloc_work, 0);
235 spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
236}
237
238static void throtl_pd_exit(struct blkcg_gq *blkg)
239{
240 struct throtl_grp *tg = blkg_to_tg(blkg);
241 unsigned long flags;
242
243 spin_lock_irqsave(&tg_stats_alloc_lock, flags);
244 list_del_init(&tg->stats_alloc_node);
245 spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
246
247 free_percpu(tg->stats_cpu);
248}
249
250static void throtl_pd_reset_stats(struct blkcg_gq *blkg)
251{
252 struct throtl_grp *tg = blkg_to_tg(blkg);
253 int cpu;
254
255 if (tg->stats_cpu == NULL)
256 return;
257
258 for_each_possible_cpu(cpu) {
259 struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
260
261 blkg_rwstat_reset(&sc->service_bytes);
262 blkg_rwstat_reset(&sc->serviced);
263 }
264}
265
266static struct throtl_grp *throtl_lookup_tg(struct throtl_data *td,
267 struct blkcg *blkcg)
268{
269 /*
270 * This is the common case when there are no blkcgs. Avoid lookup
271 * in this case
272 */
273 if (blkcg == &blkcg_root)
274 return td_root_tg(td);
275
276 return blkg_to_tg(blkg_lookup(blkcg, td->queue));
277}
278
279static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td,
280 struct blkcg *blkcg)
281{
282 struct request_queue *q = td->queue;
283 struct throtl_grp *tg = NULL;
284
285 /*
286 * This is the common case when there are no blkcgs. Avoid lookup
287 * in this case
288 */
289 if (blkcg == &blkcg_root) {
290 tg = td_root_tg(td);
291 } else {
292 struct blkcg_gq *blkg;
293
294 blkg = blkg_lookup_create(blkcg, q);
295
296 /* if %NULL and @q is alive, fall back to root_tg */
297 if (!IS_ERR(blkg))
298 tg = blkg_to_tg(blkg);
299 else if (!blk_queue_dying(q))
300 tg = td_root_tg(td);
301 }
302
303 return tg;
304}
305
306static struct throtl_grp *throtl_rb_first(struct throtl_rb_root *root)
307{
308 /* Service tree is empty */
309 if (!root->count)
310 return NULL;
311
312 if (!root->left)
313 root->left = rb_first(&root->rb);
314
315 if (root->left)
316 return rb_entry_tg(root->left);
317
318 return NULL;
319}
320
321static void rb_erase_init(struct rb_node *n, struct rb_root *root)
322{
323 rb_erase(n, root);
324 RB_CLEAR_NODE(n);
325}
326
327static void throtl_rb_erase(struct rb_node *n, struct throtl_rb_root *root)
328{
329 if (root->left == n)
330 root->left = NULL;
331 rb_erase_init(n, &root->rb);
332 --root->count;
333}
334
335static void update_min_dispatch_time(struct throtl_rb_root *st)
336{
337 struct throtl_grp *tg;
338
339 tg = throtl_rb_first(st);
340 if (!tg)
341 return;
342
343 st->min_disptime = tg->disptime;
344}
345
346static void
347tg_service_tree_add(struct throtl_rb_root *st, struct throtl_grp *tg)
348{
349 struct rb_node **node = &st->rb.rb_node;
350 struct rb_node *parent = NULL;
351 struct throtl_grp *__tg;
352 unsigned long key = tg->disptime;
353 int left = 1;
354
355 while (*node != NULL) {
356 parent = *node;
357 __tg = rb_entry_tg(parent);
358
359 if (time_before(key, __tg->disptime))
360 node = &parent->rb_left;
361 else {
362 node = &parent->rb_right;
363 left = 0;
364 }
365 }
366
367 if (left)
368 st->left = &tg->rb_node;
369
370 rb_link_node(&tg->rb_node, parent, node);
371 rb_insert_color(&tg->rb_node, &st->rb);
372}
373
374static void __throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
375{
376 struct throtl_rb_root *st = &td->tg_service_tree;
377
378 tg_service_tree_add(st, tg);
379 throtl_mark_tg_on_rr(tg);
380 st->count++;
381}
382
383static void throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
384{
385 if (!throtl_tg_on_rr(tg))
386 __throtl_enqueue_tg(td, tg);
387}
388
389static void __throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
390{
391 throtl_rb_erase(&tg->rb_node, &td->tg_service_tree);
392 throtl_clear_tg_on_rr(tg);
393}
394
395static void throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
396{
397 if (throtl_tg_on_rr(tg))
398 __throtl_dequeue_tg(td, tg);
399}
400
401static void throtl_schedule_next_dispatch(struct throtl_data *td)
402{
403 struct throtl_rb_root *st = &td->tg_service_tree;
404
405 /*
406 * If there are more bios pending, schedule more work.
407 */
408 if (!total_nr_queued(td))
409 return;
410
411 BUG_ON(!st->count);
412
413 update_min_dispatch_time(st);
414
415 if (time_before_eq(st->min_disptime, jiffies))
416 throtl_schedule_delayed_work(td, 0);
417 else
418 throtl_schedule_delayed_work(td, (st->min_disptime - jiffies));
419}
420
421static inline void
422throtl_start_new_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
423{
424 tg->bytes_disp[rw] = 0;
425 tg->io_disp[rw] = 0;
426 tg->slice_start[rw] = jiffies;
427 tg->slice_end[rw] = jiffies + throtl_slice;
428 throtl_log_tg(td, tg, "[%c] new slice start=%lu end=%lu jiffies=%lu",
429 rw == READ ? 'R' : 'W', tg->slice_start[rw],
430 tg->slice_end[rw], jiffies);
431}
432
433static inline void throtl_set_slice_end(struct throtl_data *td,
434 struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
435{
436 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
437}
438
439static inline void throtl_extend_slice(struct throtl_data *td,
440 struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
441{
442 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
443 throtl_log_tg(td, tg, "[%c] extend slice start=%lu end=%lu jiffies=%lu",
444 rw == READ ? 'R' : 'W', tg->slice_start[rw],
445 tg->slice_end[rw], jiffies);
446}
447
448/* Determine if previously allocated or extended slice is complete or not */
449static bool
450throtl_slice_used(struct throtl_data *td, struct throtl_grp *tg, bool rw)
451{
452 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
453 return 0;
454
455 return 1;
456}
457
458/* Trim the used slices and adjust slice start accordingly */
459static inline void
460throtl_trim_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
461{
462 unsigned long nr_slices, time_elapsed, io_trim;
463 u64 bytes_trim, tmp;
464
465 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
466
467 /*
468 * If bps are unlimited (-1), then time slice don't get
469 * renewed. Don't try to trim the slice if slice is used. A new
470 * slice will start when appropriate.
471 */
472 if (throtl_slice_used(td, tg, rw))
473 return;
474
475 /*
476 * A bio has been dispatched. Also adjust slice_end. It might happen
477 * that initially cgroup limit was very low resulting in high
478 * slice_end, but later limit was bumped up and bio was dispached
479 * sooner, then we need to reduce slice_end. A high bogus slice_end
480 * is bad because it does not allow new slice to start.
481 */
482
483 throtl_set_slice_end(td, tg, rw, jiffies + throtl_slice);
484
485 time_elapsed = jiffies - tg->slice_start[rw];
486
487 nr_slices = time_elapsed / throtl_slice;
488
489 if (!nr_slices)
490 return;
491 tmp = tg->bps[rw] * throtl_slice * nr_slices;
492 do_div(tmp, HZ);
493 bytes_trim = tmp;
494
495 io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
496
497 if (!bytes_trim && !io_trim)
498 return;
499
500 if (tg->bytes_disp[rw] >= bytes_trim)
501 tg->bytes_disp[rw] -= bytes_trim;
502 else
503 tg->bytes_disp[rw] = 0;
504
505 if (tg->io_disp[rw] >= io_trim)
506 tg->io_disp[rw] -= io_trim;
507 else
508 tg->io_disp[rw] = 0;
509
510 tg->slice_start[rw] += nr_slices * throtl_slice;
511
512 throtl_log_tg(td, tg, "[%c] trim slice nr=%lu bytes=%llu io=%lu"
513 " start=%lu end=%lu jiffies=%lu",
514 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
515 tg->slice_start[rw], tg->slice_end[rw], jiffies);
516}
517
518static bool tg_with_in_iops_limit(struct throtl_data *td, struct throtl_grp *tg,
519 struct bio *bio, unsigned long *wait)
520{
521 bool rw = bio_data_dir(bio);
522 unsigned int io_allowed;
523 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
524 u64 tmp;
525
526 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
527
528 /* Slice has just started. Consider one slice interval */
529 if (!jiffy_elapsed)
530 jiffy_elapsed_rnd = throtl_slice;
531
532 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
533
534 /*
535 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
536 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
537 * will allow dispatch after 1 second and after that slice should
538 * have been trimmed.
539 */
540
541 tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
542 do_div(tmp, HZ);
543
544 if (tmp > UINT_MAX)
545 io_allowed = UINT_MAX;
546 else
547 io_allowed = tmp;
548
549 if (tg->io_disp[rw] + 1 <= io_allowed) {
550 if (wait)
551 *wait = 0;
552 return 1;
553 }
554
555 /* Calc approx time to dispatch */
556 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
557
558 if (jiffy_wait > jiffy_elapsed)
559 jiffy_wait = jiffy_wait - jiffy_elapsed;
560 else
561 jiffy_wait = 1;
562
563 if (wait)
564 *wait = jiffy_wait;
565 return 0;
566}
567
568static bool tg_with_in_bps_limit(struct throtl_data *td, struct throtl_grp *tg,
569 struct bio *bio, unsigned long *wait)
570{
571 bool rw = bio_data_dir(bio);
572 u64 bytes_allowed, extra_bytes, tmp;
573 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
574
575 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
576
577 /* Slice has just started. Consider one slice interval */
578 if (!jiffy_elapsed)
579 jiffy_elapsed_rnd = throtl_slice;
580
581 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
582
583 tmp = tg->bps[rw] * jiffy_elapsed_rnd;
584 do_div(tmp, HZ);
585 bytes_allowed = tmp;
586
587 if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) {
588 if (wait)
589 *wait = 0;
590 return 1;
591 }
592
593 /* Calc approx time to dispatch */
594 extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed;
595 jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
596
597 if (!jiffy_wait)
598 jiffy_wait = 1;
599
600 /*
601 * This wait time is without taking into consideration the rounding
602 * up we did. Add that time also.
603 */
604 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
605 if (wait)
606 *wait = jiffy_wait;
607 return 0;
608}
609
610static bool tg_no_rule_group(struct throtl_grp *tg, bool rw) {
611 if (tg->bps[rw] == -1 && tg->iops[rw] == -1)
612 return 1;
613 return 0;
614}
615
616/*
617 * Returns whether one can dispatch a bio or not. Also returns approx number
618 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
619 */
620static bool tg_may_dispatch(struct throtl_data *td, struct throtl_grp *tg,
621 struct bio *bio, unsigned long *wait)
622{
623 bool rw = bio_data_dir(bio);
624 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
625
626 /*
627 * Currently whole state machine of group depends on first bio
628 * queued in the group bio list. So one should not be calling
629 * this function with a different bio if there are other bios
630 * queued.
631 */
632 BUG_ON(tg->nr_queued[rw] && bio != bio_list_peek(&tg->bio_lists[rw]));
633
634 /* If tg->bps = -1, then BW is unlimited */
635 if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
636 if (wait)
637 *wait = 0;
638 return 1;
639 }
640
641 /*
642 * If previous slice expired, start a new one otherwise renew/extend
643 * existing slice to make sure it is at least throtl_slice interval
644 * long since now.
645 */
646 if (throtl_slice_used(td, tg, rw))
647 throtl_start_new_slice(td, tg, rw);
648 else {
649 if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
650 throtl_extend_slice(td, tg, rw, jiffies + throtl_slice);
651 }
652
653 if (tg_with_in_bps_limit(td, tg, bio, &bps_wait)
654 && tg_with_in_iops_limit(td, tg, bio, &iops_wait)) {
655 if (wait)
656 *wait = 0;
657 return 1;
658 }
659
660 max_wait = max(bps_wait, iops_wait);
661
662 if (wait)
663 *wait = max_wait;
664
665 if (time_before(tg->slice_end[rw], jiffies + max_wait))
666 throtl_extend_slice(td, tg, rw, jiffies + max_wait);
667
668 return 0;
669}
670
671static void throtl_update_dispatch_stats(struct blkcg_gq *blkg, u64 bytes,
672 int rw)
673{
674 struct throtl_grp *tg = blkg_to_tg(blkg);
675 struct tg_stats_cpu *stats_cpu;
676 unsigned long flags;
677
678 /* If per cpu stats are not allocated yet, don't do any accounting. */
679 if (tg->stats_cpu == NULL)
680 return;
681
682 /*
683 * Disabling interrupts to provide mutual exclusion between two
684 * writes on same cpu. It probably is not needed for 64bit. Not
685 * optimizing that case yet.
686 */
687 local_irq_save(flags);
688
689 stats_cpu = this_cpu_ptr(tg->stats_cpu);
690
691 blkg_rwstat_add(&stats_cpu->serviced, rw, 1);
692 blkg_rwstat_add(&stats_cpu->service_bytes, rw, bytes);
693
694 local_irq_restore(flags);
695}
696
697static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
698{
699 bool rw = bio_data_dir(bio);
700
701 /* Charge the bio to the group */
702 tg->bytes_disp[rw] += bio->bi_size;
703 tg->io_disp[rw]++;
704
705 throtl_update_dispatch_stats(tg_to_blkg(tg), bio->bi_size, bio->bi_rw);
706}
707
708static void throtl_add_bio_tg(struct throtl_data *td, struct throtl_grp *tg,
709 struct bio *bio)
710{
711 bool rw = bio_data_dir(bio);
712
713 bio_list_add(&tg->bio_lists[rw], bio);
714 /* Take a bio reference on tg */
715 blkg_get(tg_to_blkg(tg));
716 tg->nr_queued[rw]++;
717 td->nr_queued[rw]++;
718 throtl_enqueue_tg(td, tg);
719}
720
721static void tg_update_disptime(struct throtl_data *td, struct throtl_grp *tg)
722{
723 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
724 struct bio *bio;
725
726 if ((bio = bio_list_peek(&tg->bio_lists[READ])))
727 tg_may_dispatch(td, tg, bio, &read_wait);
728
729 if ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
730 tg_may_dispatch(td, tg, bio, &write_wait);
731
732 min_wait = min(read_wait, write_wait);
733 disptime = jiffies + min_wait;
734
735 /* Update dispatch time */
736 throtl_dequeue_tg(td, tg);
737 tg->disptime = disptime;
738 throtl_enqueue_tg(td, tg);
739}
740
741static void tg_dispatch_one_bio(struct throtl_data *td, struct throtl_grp *tg,
742 bool rw, struct bio_list *bl)
743{
744 struct bio *bio;
745
746 bio = bio_list_pop(&tg->bio_lists[rw]);
747 tg->nr_queued[rw]--;
748 /* Drop bio reference on blkg */
749 blkg_put(tg_to_blkg(tg));
750
751 BUG_ON(td->nr_queued[rw] <= 0);
752 td->nr_queued[rw]--;
753
754 throtl_charge_bio(tg, bio);
755 bio_list_add(bl, bio);
756 bio->bi_rw |= REQ_THROTTLED;
757
758 throtl_trim_slice(td, tg, rw);
759}
760
761static int throtl_dispatch_tg(struct throtl_data *td, struct throtl_grp *tg,
762 struct bio_list *bl)
763{
764 unsigned int nr_reads = 0, nr_writes = 0;
765 unsigned int max_nr_reads = throtl_grp_quantum*3/4;
766 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
767 struct bio *bio;
768
769 /* Try to dispatch 75% READS and 25% WRITES */
770
771 while ((bio = bio_list_peek(&tg->bio_lists[READ]))
772 && tg_may_dispatch(td, tg, bio, NULL)) {
773
774 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
775 nr_reads++;
776
777 if (nr_reads >= max_nr_reads)
778 break;
779 }
780
781 while ((bio = bio_list_peek(&tg->bio_lists[WRITE]))
782 && tg_may_dispatch(td, tg, bio, NULL)) {
783
784 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
785 nr_writes++;
786
787 if (nr_writes >= max_nr_writes)
788 break;
789 }
790
791 return nr_reads + nr_writes;
792}
793
794static int throtl_select_dispatch(struct throtl_data *td, struct bio_list *bl)
795{
796 unsigned int nr_disp = 0;
797 struct throtl_grp *tg;
798 struct throtl_rb_root *st = &td->tg_service_tree;
799
800 while (1) {
801 tg = throtl_rb_first(st);
802
803 if (!tg)
804 break;
805
806 if (time_before(jiffies, tg->disptime))
807 break;
808
809 throtl_dequeue_tg(td, tg);
810
811 nr_disp += throtl_dispatch_tg(td, tg, bl);
812
813 if (tg->nr_queued[0] || tg->nr_queued[1])
814 tg_update_disptime(td, tg);
815
816 if (nr_disp >= throtl_quantum)
817 break;
818 }
819
820 return nr_disp;
821}
822
823/* Dispatch throttled bios. Should be called without queue lock held. */
824static int throtl_dispatch(struct request_queue *q)
825{
826 struct throtl_data *td = q->td;
827 unsigned int nr_disp = 0;
828 struct bio_list bio_list_on_stack;
829 struct bio *bio;
830 struct blk_plug plug;
831
832 spin_lock_irq(q->queue_lock);
833
834 if (!total_nr_queued(td))
835 goto out;
836
837 bio_list_init(&bio_list_on_stack);
838
839 throtl_log(td, "dispatch nr_queued=%u read=%u write=%u",
840 total_nr_queued(td), td->nr_queued[READ],
841 td->nr_queued[WRITE]);
842
843 nr_disp = throtl_select_dispatch(td, &bio_list_on_stack);
844
845 if (nr_disp)
846 throtl_log(td, "bios disp=%u", nr_disp);
847
848 throtl_schedule_next_dispatch(td);
849out:
850 spin_unlock_irq(q->queue_lock);
851
852 /*
853 * If we dispatched some requests, unplug the queue to make sure
854 * immediate dispatch
855 */
856 if (nr_disp) {
857 blk_start_plug(&plug);
858 while((bio = bio_list_pop(&bio_list_on_stack)))
859 generic_make_request(bio);
860 blk_finish_plug(&plug);
861 }
862 return nr_disp;
863}
864
865void blk_throtl_work(struct work_struct *work)
866{
867 struct throtl_data *td = container_of(work, struct throtl_data,
868 throtl_work.work);
869 struct request_queue *q = td->queue;
870
871 throtl_dispatch(q);
872}
873
874/* Call with queue lock held */
875static void
876throtl_schedule_delayed_work(struct throtl_data *td, unsigned long delay)
877{
878
879 struct delayed_work *dwork = &td->throtl_work;
880
881 if (total_nr_queued(td)) {
882 mod_delayed_work(kthrotld_workqueue, dwork, delay);
883 throtl_log(td, "schedule work. delay=%lu jiffies=%lu",
884 delay, jiffies);
885 }
886}
887
888static u64 tg_prfill_cpu_rwstat(struct seq_file *sf,
889 struct blkg_policy_data *pd, int off)
890{
891 struct throtl_grp *tg = pd_to_tg(pd);
892 struct blkg_rwstat rwstat = { }, tmp;
893 int i, cpu;
894
895 for_each_possible_cpu(cpu) {
896 struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
897
898 tmp = blkg_rwstat_read((void *)sc + off);
899 for (i = 0; i < BLKG_RWSTAT_NR; i++)
900 rwstat.cnt[i] += tmp.cnt[i];
901 }
902
903 return __blkg_prfill_rwstat(sf, pd, &rwstat);
904}
905
906static int tg_print_cpu_rwstat(struct cgroup *cgrp, struct cftype *cft,
907 struct seq_file *sf)
908{
909 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
910
911 blkcg_print_blkgs(sf, blkcg, tg_prfill_cpu_rwstat, &blkcg_policy_throtl,
912 cft->private, true);
913 return 0;
914}
915
916static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
917 int off)
918{
919 struct throtl_grp *tg = pd_to_tg(pd);
920 u64 v = *(u64 *)((void *)tg + off);
921
922 if (v == -1)
923 return 0;
924 return __blkg_prfill_u64(sf, pd, v);
925}
926
927static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
928 int off)
929{
930 struct throtl_grp *tg = pd_to_tg(pd);
931 unsigned int v = *(unsigned int *)((void *)tg + off);
932
933 if (v == -1)
934 return 0;
935 return __blkg_prfill_u64(sf, pd, v);
936}
937
938static int tg_print_conf_u64(struct cgroup *cgrp, struct cftype *cft,
939 struct seq_file *sf)
940{
941 blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp), tg_prfill_conf_u64,
942 &blkcg_policy_throtl, cft->private, false);
943 return 0;
944}
945
946static int tg_print_conf_uint(struct cgroup *cgrp, struct cftype *cft,
947 struct seq_file *sf)
948{
949 blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp), tg_prfill_conf_uint,
950 &blkcg_policy_throtl, cft->private, false);
951 return 0;
952}
953
954static int tg_set_conf(struct cgroup *cgrp, struct cftype *cft, const char *buf,
955 bool is_u64)
956{
957 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
958 struct blkg_conf_ctx ctx;
959 struct throtl_grp *tg;
960 struct throtl_data *td;
961 int ret;
962
963 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
964 if (ret)
965 return ret;
966
967 tg = blkg_to_tg(ctx.blkg);
968 td = ctx.blkg->q->td;
969
970 if (!ctx.v)
971 ctx.v = -1;
972
973 if (is_u64)
974 *(u64 *)((void *)tg + cft->private) = ctx.v;
975 else
976 *(unsigned int *)((void *)tg + cft->private) = ctx.v;
977
978 throtl_log_tg(td, tg, "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
979 tg->bps[READ], tg->bps[WRITE],
980 tg->iops[READ], tg->iops[WRITE]);
981
982 /*
983 * We're already holding queue_lock and know @tg is valid. Let's
984 * apply the new config directly.
985 *
986 * Restart the slices for both READ and WRITES. It might happen
987 * that a group's limit are dropped suddenly and we don't want to
988 * account recently dispatched IO with new low rate.
989 */
990 throtl_start_new_slice(td, tg, 0);
991 throtl_start_new_slice(td, tg, 1);
992
993 if (throtl_tg_on_rr(tg)) {
994 tg_update_disptime(td, tg);
995 throtl_schedule_next_dispatch(td);
996 }
997
998 blkg_conf_finish(&ctx);
999 return 0;
1000}
1001
1002static int tg_set_conf_u64(struct cgroup *cgrp, struct cftype *cft,
1003 const char *buf)
1004{
1005 return tg_set_conf(cgrp, cft, buf, true);
1006}
1007
1008static int tg_set_conf_uint(struct cgroup *cgrp, struct cftype *cft,
1009 const char *buf)
1010{
1011 return tg_set_conf(cgrp, cft, buf, false);
1012}
1013
1014static struct cftype throtl_files[] = {
1015 {
1016 .name = "throttle.read_bps_device",
1017 .private = offsetof(struct throtl_grp, bps[READ]),
1018 .read_seq_string = tg_print_conf_u64,
1019 .write_string = tg_set_conf_u64,
1020 .max_write_len = 256,
1021 },
1022 {
1023 .name = "throttle.write_bps_device",
1024 .private = offsetof(struct throtl_grp, bps[WRITE]),
1025 .read_seq_string = tg_print_conf_u64,
1026 .write_string = tg_set_conf_u64,
1027 .max_write_len = 256,
1028 },
1029 {
1030 .name = "throttle.read_iops_device",
1031 .private = offsetof(struct throtl_grp, iops[READ]),
1032 .read_seq_string = tg_print_conf_uint,
1033 .write_string = tg_set_conf_uint,
1034 .max_write_len = 256,
1035 },
1036 {
1037 .name = "throttle.write_iops_device",
1038 .private = offsetof(struct throtl_grp, iops[WRITE]),
1039 .read_seq_string = tg_print_conf_uint,
1040 .write_string = tg_set_conf_uint,
1041 .max_write_len = 256,
1042 },
1043 {
1044 .name = "throttle.io_service_bytes",
1045 .private = offsetof(struct tg_stats_cpu, service_bytes),
1046 .read_seq_string = tg_print_cpu_rwstat,
1047 },
1048 {
1049 .name = "throttle.io_serviced",
1050 .private = offsetof(struct tg_stats_cpu, serviced),
1051 .read_seq_string = tg_print_cpu_rwstat,
1052 },
1053 { } /* terminate */
1054};
1055
1056static void throtl_shutdown_wq(struct request_queue *q)
1057{
1058 struct throtl_data *td = q->td;
1059
1060 cancel_delayed_work_sync(&td->throtl_work);
1061}
1062
1063static struct blkcg_policy blkcg_policy_throtl = {
1064 .pd_size = sizeof(struct throtl_grp),
1065 .cftypes = throtl_files,
1066
1067 .pd_init_fn = throtl_pd_init,
1068 .pd_exit_fn = throtl_pd_exit,
1069 .pd_reset_stats_fn = throtl_pd_reset_stats,
1070};
1071
1072bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
1073{
1074 struct throtl_data *td = q->td;
1075 struct throtl_grp *tg;
1076 bool rw = bio_data_dir(bio), update_disptime = true;
1077 struct blkcg *blkcg;
1078 bool throttled = false;
1079
1080 if (bio->bi_rw & REQ_THROTTLED) {
1081 bio->bi_rw &= ~REQ_THROTTLED;
1082 goto out;
1083 }
1084
1085 /*
1086 * A throtl_grp pointer retrieved under rcu can be used to access
1087 * basic fields like stats and io rates. If a group has no rules,
1088 * just update the dispatch stats in lockless manner and return.
1089 */
1090 rcu_read_lock();
1091 blkcg = bio_blkcg(bio);
1092 tg = throtl_lookup_tg(td, blkcg);
1093 if (tg) {
1094 if (tg_no_rule_group(tg, rw)) {
1095 throtl_update_dispatch_stats(tg_to_blkg(tg),
1096 bio->bi_size, bio->bi_rw);
1097 goto out_unlock_rcu;
1098 }
1099 }
1100
1101 /*
1102 * Either group has not been allocated yet or it is not an unlimited
1103 * IO group
1104 */
1105 spin_lock_irq(q->queue_lock);
1106 tg = throtl_lookup_create_tg(td, blkcg);
1107 if (unlikely(!tg))
1108 goto out_unlock;
1109
1110 if (tg->nr_queued[rw]) {
1111 /*
1112 * There is already another bio queued in same dir. No
1113 * need to update dispatch time.
1114 */
1115 update_disptime = false;
1116 goto queue_bio;
1117
1118 }
1119
1120 /* Bio is with-in rate limit of group */
1121 if (tg_may_dispatch(td, tg, bio, NULL)) {
1122 throtl_charge_bio(tg, bio);
1123
1124 /*
1125 * We need to trim slice even when bios are not being queued
1126 * otherwise it might happen that a bio is not queued for
1127 * a long time and slice keeps on extending and trim is not
1128 * called for a long time. Now if limits are reduced suddenly
1129 * we take into account all the IO dispatched so far at new
1130 * low rate and * newly queued IO gets a really long dispatch
1131 * time.
1132 *
1133 * So keep on trimming slice even if bio is not queued.
1134 */
1135 throtl_trim_slice(td, tg, rw);
1136 goto out_unlock;
1137 }
1138
1139queue_bio:
1140 throtl_log_tg(td, tg, "[%c] bio. bdisp=%llu sz=%u bps=%llu"
1141 " iodisp=%u iops=%u queued=%d/%d",
1142 rw == READ ? 'R' : 'W',
1143 tg->bytes_disp[rw], bio->bi_size, tg->bps[rw],
1144 tg->io_disp[rw], tg->iops[rw],
1145 tg->nr_queued[READ], tg->nr_queued[WRITE]);
1146
1147 bio_associate_current(bio);
1148 throtl_add_bio_tg(q->td, tg, bio);
1149 throttled = true;
1150
1151 if (update_disptime) {
1152 tg_update_disptime(td, tg);
1153 throtl_schedule_next_dispatch(td);
1154 }
1155
1156out_unlock:
1157 spin_unlock_irq(q->queue_lock);
1158out_unlock_rcu:
1159 rcu_read_unlock();
1160out:
1161 return throttled;
1162}
1163
1164/**
1165 * blk_throtl_drain - drain throttled bios
1166 * @q: request_queue to drain throttled bios for
1167 *
1168 * Dispatch all currently throttled bios on @q through ->make_request_fn().
1169 */
1170void blk_throtl_drain(struct request_queue *q)
1171 __releases(q->queue_lock) __acquires(q->queue_lock)
1172{
1173 struct throtl_data *td = q->td;
1174 struct throtl_rb_root *st = &td->tg_service_tree;
1175 struct throtl_grp *tg;
1176 struct bio_list bl;
1177 struct bio *bio;
1178
1179 queue_lockdep_assert_held(q);
1180
1181 bio_list_init(&bl);
1182
1183 while ((tg = throtl_rb_first(st))) {
1184 throtl_dequeue_tg(td, tg);
1185
1186 while ((bio = bio_list_peek(&tg->bio_lists[READ])))
1187 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
1188 while ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
1189 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
1190 }
1191 spin_unlock_irq(q->queue_lock);
1192
1193 while ((bio = bio_list_pop(&bl)))
1194 generic_make_request(bio);
1195
1196 spin_lock_irq(q->queue_lock);
1197}
1198
1199int blk_throtl_init(struct request_queue *q)
1200{
1201 struct throtl_data *td;
1202 int ret;
1203
1204 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1205 if (!td)
1206 return -ENOMEM;
1207
1208 td->tg_service_tree = THROTL_RB_ROOT;
1209 INIT_DELAYED_WORK(&td->throtl_work, blk_throtl_work);
1210
1211 q->td = td;
1212 td->queue = q;
1213
1214 /* activate policy */
1215 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
1216 if (ret)
1217 kfree(td);
1218 return ret;
1219}
1220
1221void blk_throtl_exit(struct request_queue *q)
1222{
1223 BUG_ON(!q->td);
1224 throtl_shutdown_wq(q);
1225 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
1226 kfree(q->td);
1227}
1228
1229static int __init throtl_init(void)
1230{
1231 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1232 if (!kthrotld_workqueue)
1233 panic("Failed to create kthrotld\n");
1234
1235 return blkcg_policy_register(&blkcg_policy_throtl);
1236}
1237
1238module_init(throtl_init);