dm-crypt: use __bio_add_page to add single page to clone bio
[linux-block.git] / block / blk-throttle.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Interface for controlling IO bandwidth on a request queue
4 *
5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6 */
7
8#include <linux/module.h>
9#include <linux/slab.h>
10#include <linux/blkdev.h>
11#include <linux/bio.h>
12#include <linux/blktrace_api.h>
13#include "blk.h"
14#include "blk-cgroup-rwstat.h"
15#include "blk-stat.h"
16#include "blk-throttle.h"
17
18/* Max dispatch from a group in 1 round */
19#define THROTL_GRP_QUANTUM 8
20
21/* Total max dispatch from all groups in one round */
22#define THROTL_QUANTUM 32
23
24/* Throttling is performed over a slice and after that slice is renewed */
25#define DFL_THROTL_SLICE_HD (HZ / 10)
26#define DFL_THROTL_SLICE_SSD (HZ / 50)
27#define MAX_THROTL_SLICE (HZ)
28#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
29#define MIN_THROTL_BPS (320 * 1024)
30#define MIN_THROTL_IOPS (10)
31#define DFL_LATENCY_TARGET (-1L)
32#define DFL_IDLE_THRESHOLD (0)
33#define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
34#define LATENCY_FILTERED_SSD (0)
35/*
36 * For HD, very small latency comes from sequential IO. Such IO is helpless to
37 * help determine if its IO is impacted by others, hence we ignore the IO
38 */
39#define LATENCY_FILTERED_HD (1000L) /* 1ms */
40
41/* A workqueue to queue throttle related work */
42static struct workqueue_struct *kthrotld_workqueue;
43
44#define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
45
46/* We measure latency for request size from <= 4k to >= 1M */
47#define LATENCY_BUCKET_SIZE 9
48
49struct latency_bucket {
50 unsigned long total_latency; /* ns / 1024 */
51 int samples;
52};
53
54struct avg_latency_bucket {
55 unsigned long latency; /* ns / 1024 */
56 bool valid;
57};
58
59struct throtl_data
60{
61 /* service tree for active throtl groups */
62 struct throtl_service_queue service_queue;
63
64 struct request_queue *queue;
65
66 /* Total Number of queued bios on READ and WRITE lists */
67 unsigned int nr_queued[2];
68
69 unsigned int throtl_slice;
70
71 /* Work for dispatching throttled bios */
72 struct work_struct dispatch_work;
73 unsigned int limit_index;
74 bool limit_valid[LIMIT_CNT];
75
76 unsigned long low_upgrade_time;
77 unsigned long low_downgrade_time;
78
79 unsigned int scale;
80
81 struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
82 struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
83 struct latency_bucket __percpu *latency_buckets[2];
84 unsigned long last_calculate_time;
85 unsigned long filtered_latency;
86
87 bool track_bio_latency;
88};
89
90static void throtl_pending_timer_fn(struct timer_list *t);
91
92static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
93{
94 return pd_to_blkg(&tg->pd);
95}
96
97/**
98 * sq_to_tg - return the throl_grp the specified service queue belongs to
99 * @sq: the throtl_service_queue of interest
100 *
101 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
102 * embedded in throtl_data, %NULL is returned.
103 */
104static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
105{
106 if (sq && sq->parent_sq)
107 return container_of(sq, struct throtl_grp, service_queue);
108 else
109 return NULL;
110}
111
112/**
113 * sq_to_td - return throtl_data the specified service queue belongs to
114 * @sq: the throtl_service_queue of interest
115 *
116 * A service_queue can be embedded in either a throtl_grp or throtl_data.
117 * Determine the associated throtl_data accordingly and return it.
118 */
119static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
120{
121 struct throtl_grp *tg = sq_to_tg(sq);
122
123 if (tg)
124 return tg->td;
125 else
126 return container_of(sq, struct throtl_data, service_queue);
127}
128
129/*
130 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
131 * make the IO dispatch more smooth.
132 * Scale up: linearly scale up according to elapsed time since upgrade. For
133 * every throtl_slice, the limit scales up 1/2 .low limit till the
134 * limit hits .max limit
135 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
136 */
137static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
138{
139 /* arbitrary value to avoid too big scale */
140 if (td->scale < 4096 && time_after_eq(jiffies,
141 td->low_upgrade_time + td->scale * td->throtl_slice))
142 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
143
144 return low + (low >> 1) * td->scale;
145}
146
147static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
148{
149 struct blkcg_gq *blkg = tg_to_blkg(tg);
150 struct throtl_data *td;
151 uint64_t ret;
152
153 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
154 return U64_MAX;
155
156 td = tg->td;
157 ret = tg->bps[rw][td->limit_index];
158 if (ret == 0 && td->limit_index == LIMIT_LOW) {
159 /* intermediate node or iops isn't 0 */
160 if (!list_empty(&blkg->blkcg->css.children) ||
161 tg->iops[rw][td->limit_index])
162 return U64_MAX;
163 else
164 return MIN_THROTL_BPS;
165 }
166
167 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
168 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
169 uint64_t adjusted;
170
171 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
172 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
173 }
174 return ret;
175}
176
177static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
178{
179 struct blkcg_gq *blkg = tg_to_blkg(tg);
180 struct throtl_data *td;
181 unsigned int ret;
182
183 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
184 return UINT_MAX;
185
186 td = tg->td;
187 ret = tg->iops[rw][td->limit_index];
188 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
189 /* intermediate node or bps isn't 0 */
190 if (!list_empty(&blkg->blkcg->css.children) ||
191 tg->bps[rw][td->limit_index])
192 return UINT_MAX;
193 else
194 return MIN_THROTL_IOPS;
195 }
196
197 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
198 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
199 uint64_t adjusted;
200
201 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
202 if (adjusted > UINT_MAX)
203 adjusted = UINT_MAX;
204 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
205 }
206 return ret;
207}
208
209#define request_bucket_index(sectors) \
210 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
211
212/**
213 * throtl_log - log debug message via blktrace
214 * @sq: the service_queue being reported
215 * @fmt: printf format string
216 * @args: printf args
217 *
218 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
219 * throtl_grp; otherwise, just "throtl".
220 */
221#define throtl_log(sq, fmt, args...) do { \
222 struct throtl_grp *__tg = sq_to_tg((sq)); \
223 struct throtl_data *__td = sq_to_td((sq)); \
224 \
225 (void)__td; \
226 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
227 break; \
228 if ((__tg)) { \
229 blk_add_cgroup_trace_msg(__td->queue, \
230 &tg_to_blkg(__tg)->blkcg->css, "throtl " fmt, ##args);\
231 } else { \
232 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
233 } \
234} while (0)
235
236static inline unsigned int throtl_bio_data_size(struct bio *bio)
237{
238 /* assume it's one sector */
239 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
240 return 512;
241 return bio->bi_iter.bi_size;
242}
243
244static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
245{
246 INIT_LIST_HEAD(&qn->node);
247 bio_list_init(&qn->bios);
248 qn->tg = tg;
249}
250
251/**
252 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
253 * @bio: bio being added
254 * @qn: qnode to add bio to
255 * @queued: the service_queue->queued[] list @qn belongs to
256 *
257 * Add @bio to @qn and put @qn on @queued if it's not already on.
258 * @qn->tg's reference count is bumped when @qn is activated. See the
259 * comment on top of throtl_qnode definition for details.
260 */
261static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
262 struct list_head *queued)
263{
264 bio_list_add(&qn->bios, bio);
265 if (list_empty(&qn->node)) {
266 list_add_tail(&qn->node, queued);
267 blkg_get(tg_to_blkg(qn->tg));
268 }
269}
270
271/**
272 * throtl_peek_queued - peek the first bio on a qnode list
273 * @queued: the qnode list to peek
274 */
275static struct bio *throtl_peek_queued(struct list_head *queued)
276{
277 struct throtl_qnode *qn;
278 struct bio *bio;
279
280 if (list_empty(queued))
281 return NULL;
282
283 qn = list_first_entry(queued, struct throtl_qnode, node);
284 bio = bio_list_peek(&qn->bios);
285 WARN_ON_ONCE(!bio);
286 return bio;
287}
288
289/**
290 * throtl_pop_queued - pop the first bio form a qnode list
291 * @queued: the qnode list to pop a bio from
292 * @tg_to_put: optional out argument for throtl_grp to put
293 *
294 * Pop the first bio from the qnode list @queued. After popping, the first
295 * qnode is removed from @queued if empty or moved to the end of @queued so
296 * that the popping order is round-robin.
297 *
298 * When the first qnode is removed, its associated throtl_grp should be put
299 * too. If @tg_to_put is NULL, this function automatically puts it;
300 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
301 * responsible for putting it.
302 */
303static struct bio *throtl_pop_queued(struct list_head *queued,
304 struct throtl_grp **tg_to_put)
305{
306 struct throtl_qnode *qn;
307 struct bio *bio;
308
309 if (list_empty(queued))
310 return NULL;
311
312 qn = list_first_entry(queued, struct throtl_qnode, node);
313 bio = bio_list_pop(&qn->bios);
314 WARN_ON_ONCE(!bio);
315
316 if (bio_list_empty(&qn->bios)) {
317 list_del_init(&qn->node);
318 if (tg_to_put)
319 *tg_to_put = qn->tg;
320 else
321 blkg_put(tg_to_blkg(qn->tg));
322 } else {
323 list_move_tail(&qn->node, queued);
324 }
325
326 return bio;
327}
328
329/* init a service_queue, assumes the caller zeroed it */
330static void throtl_service_queue_init(struct throtl_service_queue *sq)
331{
332 INIT_LIST_HEAD(&sq->queued[READ]);
333 INIT_LIST_HEAD(&sq->queued[WRITE]);
334 sq->pending_tree = RB_ROOT_CACHED;
335 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
336}
337
338static struct blkg_policy_data *throtl_pd_alloc(struct gendisk *disk,
339 struct blkcg *blkcg, gfp_t gfp)
340{
341 struct throtl_grp *tg;
342 int rw;
343
344 tg = kzalloc_node(sizeof(*tg), gfp, disk->node_id);
345 if (!tg)
346 return NULL;
347
348 if (blkg_rwstat_init(&tg->stat_bytes, gfp))
349 goto err_free_tg;
350
351 if (blkg_rwstat_init(&tg->stat_ios, gfp))
352 goto err_exit_stat_bytes;
353
354 throtl_service_queue_init(&tg->service_queue);
355
356 for (rw = READ; rw <= WRITE; rw++) {
357 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
358 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
359 }
360
361 RB_CLEAR_NODE(&tg->rb_node);
362 tg->bps[READ][LIMIT_MAX] = U64_MAX;
363 tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
364 tg->iops[READ][LIMIT_MAX] = UINT_MAX;
365 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
366 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
367 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
368 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
369 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
370 /* LIMIT_LOW will have default value 0 */
371
372 tg->latency_target = DFL_LATENCY_TARGET;
373 tg->latency_target_conf = DFL_LATENCY_TARGET;
374 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
375 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
376
377 return &tg->pd;
378
379err_exit_stat_bytes:
380 blkg_rwstat_exit(&tg->stat_bytes);
381err_free_tg:
382 kfree(tg);
383 return NULL;
384}
385
386static void throtl_pd_init(struct blkg_policy_data *pd)
387{
388 struct throtl_grp *tg = pd_to_tg(pd);
389 struct blkcg_gq *blkg = tg_to_blkg(tg);
390 struct throtl_data *td = blkg->q->td;
391 struct throtl_service_queue *sq = &tg->service_queue;
392
393 /*
394 * If on the default hierarchy, we switch to properly hierarchical
395 * behavior where limits on a given throtl_grp are applied to the
396 * whole subtree rather than just the group itself. e.g. If 16M
397 * read_bps limit is set on a parent group, summary bps of
398 * parent group and its subtree groups can't exceed 16M for the
399 * device.
400 *
401 * If not on the default hierarchy, the broken flat hierarchy
402 * behavior is retained where all throtl_grps are treated as if
403 * they're all separate root groups right below throtl_data.
404 * Limits of a group don't interact with limits of other groups
405 * regardless of the position of the group in the hierarchy.
406 */
407 sq->parent_sq = &td->service_queue;
408 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
409 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
410 tg->td = td;
411}
412
413/*
414 * Set has_rules[] if @tg or any of its parents have limits configured.
415 * This doesn't require walking up to the top of the hierarchy as the
416 * parent's has_rules[] is guaranteed to be correct.
417 */
418static void tg_update_has_rules(struct throtl_grp *tg)
419{
420 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
421 struct throtl_data *td = tg->td;
422 int rw;
423
424 for (rw = READ; rw <= WRITE; rw++) {
425 tg->has_rules_iops[rw] =
426 (parent_tg && parent_tg->has_rules_iops[rw]) ||
427 (td->limit_valid[td->limit_index] &&
428 tg_iops_limit(tg, rw) != UINT_MAX);
429 tg->has_rules_bps[rw] =
430 (parent_tg && parent_tg->has_rules_bps[rw]) ||
431 (td->limit_valid[td->limit_index] &&
432 (tg_bps_limit(tg, rw) != U64_MAX));
433 }
434}
435
436static void throtl_pd_online(struct blkg_policy_data *pd)
437{
438 struct throtl_grp *tg = pd_to_tg(pd);
439 /*
440 * We don't want new groups to escape the limits of its ancestors.
441 * Update has_rules[] after a new group is brought online.
442 */
443 tg_update_has_rules(tg);
444}
445
446#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
447static void blk_throtl_update_limit_valid(struct throtl_data *td)
448{
449 struct cgroup_subsys_state *pos_css;
450 struct blkcg_gq *blkg;
451 bool low_valid = false;
452
453 rcu_read_lock();
454 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
455 struct throtl_grp *tg = blkg_to_tg(blkg);
456
457 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
458 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
459 low_valid = true;
460 break;
461 }
462 }
463 rcu_read_unlock();
464
465 td->limit_valid[LIMIT_LOW] = low_valid;
466}
467#else
468static inline void blk_throtl_update_limit_valid(struct throtl_data *td)
469{
470}
471#endif
472
473static void throtl_upgrade_state(struct throtl_data *td);
474static void throtl_pd_offline(struct blkg_policy_data *pd)
475{
476 struct throtl_grp *tg = pd_to_tg(pd);
477
478 tg->bps[READ][LIMIT_LOW] = 0;
479 tg->bps[WRITE][LIMIT_LOW] = 0;
480 tg->iops[READ][LIMIT_LOW] = 0;
481 tg->iops[WRITE][LIMIT_LOW] = 0;
482
483 blk_throtl_update_limit_valid(tg->td);
484
485 if (!tg->td->limit_valid[tg->td->limit_index])
486 throtl_upgrade_state(tg->td);
487}
488
489static void throtl_pd_free(struct blkg_policy_data *pd)
490{
491 struct throtl_grp *tg = pd_to_tg(pd);
492
493 del_timer_sync(&tg->service_queue.pending_timer);
494 blkg_rwstat_exit(&tg->stat_bytes);
495 blkg_rwstat_exit(&tg->stat_ios);
496 kfree(tg);
497}
498
499static struct throtl_grp *
500throtl_rb_first(struct throtl_service_queue *parent_sq)
501{
502 struct rb_node *n;
503
504 n = rb_first_cached(&parent_sq->pending_tree);
505 WARN_ON_ONCE(!n);
506 if (!n)
507 return NULL;
508 return rb_entry_tg(n);
509}
510
511static void throtl_rb_erase(struct rb_node *n,
512 struct throtl_service_queue *parent_sq)
513{
514 rb_erase_cached(n, &parent_sq->pending_tree);
515 RB_CLEAR_NODE(n);
516}
517
518static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
519{
520 struct throtl_grp *tg;
521
522 tg = throtl_rb_first(parent_sq);
523 if (!tg)
524 return;
525
526 parent_sq->first_pending_disptime = tg->disptime;
527}
528
529static void tg_service_queue_add(struct throtl_grp *tg)
530{
531 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
532 struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
533 struct rb_node *parent = NULL;
534 struct throtl_grp *__tg;
535 unsigned long key = tg->disptime;
536 bool leftmost = true;
537
538 while (*node != NULL) {
539 parent = *node;
540 __tg = rb_entry_tg(parent);
541
542 if (time_before(key, __tg->disptime))
543 node = &parent->rb_left;
544 else {
545 node = &parent->rb_right;
546 leftmost = false;
547 }
548 }
549
550 rb_link_node(&tg->rb_node, parent, node);
551 rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
552 leftmost);
553}
554
555static void throtl_enqueue_tg(struct throtl_grp *tg)
556{
557 if (!(tg->flags & THROTL_TG_PENDING)) {
558 tg_service_queue_add(tg);
559 tg->flags |= THROTL_TG_PENDING;
560 tg->service_queue.parent_sq->nr_pending++;
561 }
562}
563
564static void throtl_dequeue_tg(struct throtl_grp *tg)
565{
566 if (tg->flags & THROTL_TG_PENDING) {
567 struct throtl_service_queue *parent_sq =
568 tg->service_queue.parent_sq;
569
570 throtl_rb_erase(&tg->rb_node, parent_sq);
571 --parent_sq->nr_pending;
572 tg->flags &= ~THROTL_TG_PENDING;
573 }
574}
575
576/* Call with queue lock held */
577static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
578 unsigned long expires)
579{
580 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
581
582 /*
583 * Since we are adjusting the throttle limit dynamically, the sleep
584 * time calculated according to previous limit might be invalid. It's
585 * possible the cgroup sleep time is very long and no other cgroups
586 * have IO running so notify the limit changes. Make sure the cgroup
587 * doesn't sleep too long to avoid the missed notification.
588 */
589 if (time_after(expires, max_expire))
590 expires = max_expire;
591 mod_timer(&sq->pending_timer, expires);
592 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
593 expires - jiffies, jiffies);
594}
595
596/**
597 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
598 * @sq: the service_queue to schedule dispatch for
599 * @force: force scheduling
600 *
601 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
602 * dispatch time of the first pending child. Returns %true if either timer
603 * is armed or there's no pending child left. %false if the current
604 * dispatch window is still open and the caller should continue
605 * dispatching.
606 *
607 * If @force is %true, the dispatch timer is always scheduled and this
608 * function is guaranteed to return %true. This is to be used when the
609 * caller can't dispatch itself and needs to invoke pending_timer
610 * unconditionally. Note that forced scheduling is likely to induce short
611 * delay before dispatch starts even if @sq->first_pending_disptime is not
612 * in the future and thus shouldn't be used in hot paths.
613 */
614static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
615 bool force)
616{
617 /* any pending children left? */
618 if (!sq->nr_pending)
619 return true;
620
621 update_min_dispatch_time(sq);
622
623 /* is the next dispatch time in the future? */
624 if (force || time_after(sq->first_pending_disptime, jiffies)) {
625 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
626 return true;
627 }
628
629 /* tell the caller to continue dispatching */
630 return false;
631}
632
633static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
634 bool rw, unsigned long start)
635{
636 tg->bytes_disp[rw] = 0;
637 tg->io_disp[rw] = 0;
638 tg->carryover_bytes[rw] = 0;
639 tg->carryover_ios[rw] = 0;
640
641 /*
642 * Previous slice has expired. We must have trimmed it after last
643 * bio dispatch. That means since start of last slice, we never used
644 * that bandwidth. Do try to make use of that bandwidth while giving
645 * credit.
646 */
647 if (time_after(start, tg->slice_start[rw]))
648 tg->slice_start[rw] = start;
649
650 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
651 throtl_log(&tg->service_queue,
652 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
653 rw == READ ? 'R' : 'W', tg->slice_start[rw],
654 tg->slice_end[rw], jiffies);
655}
656
657static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw,
658 bool clear_carryover)
659{
660 tg->bytes_disp[rw] = 0;
661 tg->io_disp[rw] = 0;
662 tg->slice_start[rw] = jiffies;
663 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
664 if (clear_carryover) {
665 tg->carryover_bytes[rw] = 0;
666 tg->carryover_ios[rw] = 0;
667 }
668
669 throtl_log(&tg->service_queue,
670 "[%c] new slice start=%lu end=%lu jiffies=%lu",
671 rw == READ ? 'R' : 'W', tg->slice_start[rw],
672 tg->slice_end[rw], jiffies);
673}
674
675static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
676 unsigned long jiffy_end)
677{
678 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
679}
680
681static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
682 unsigned long jiffy_end)
683{
684 throtl_set_slice_end(tg, rw, jiffy_end);
685 throtl_log(&tg->service_queue,
686 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
687 rw == READ ? 'R' : 'W', tg->slice_start[rw],
688 tg->slice_end[rw], jiffies);
689}
690
691/* Determine if previously allocated or extended slice is complete or not */
692static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
693{
694 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
695 return false;
696
697 return true;
698}
699
700/* Trim the used slices and adjust slice start accordingly */
701static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
702{
703 unsigned long nr_slices, time_elapsed, io_trim;
704 u64 bytes_trim, tmp;
705
706 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
707
708 /*
709 * If bps are unlimited (-1), then time slice don't get
710 * renewed. Don't try to trim the slice if slice is used. A new
711 * slice will start when appropriate.
712 */
713 if (throtl_slice_used(tg, rw))
714 return;
715
716 /*
717 * A bio has been dispatched. Also adjust slice_end. It might happen
718 * that initially cgroup limit was very low resulting in high
719 * slice_end, but later limit was bumped up and bio was dispatched
720 * sooner, then we need to reduce slice_end. A high bogus slice_end
721 * is bad because it does not allow new slice to start.
722 */
723
724 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
725
726 time_elapsed = jiffies - tg->slice_start[rw];
727
728 nr_slices = time_elapsed / tg->td->throtl_slice;
729
730 if (!nr_slices)
731 return;
732 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
733 do_div(tmp, HZ);
734 bytes_trim = tmp;
735
736 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
737 HZ;
738
739 if (!bytes_trim && !io_trim)
740 return;
741
742 if (tg->bytes_disp[rw] >= bytes_trim)
743 tg->bytes_disp[rw] -= bytes_trim;
744 else
745 tg->bytes_disp[rw] = 0;
746
747 if (tg->io_disp[rw] >= io_trim)
748 tg->io_disp[rw] -= io_trim;
749 else
750 tg->io_disp[rw] = 0;
751
752 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
753
754 throtl_log(&tg->service_queue,
755 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
756 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
757 tg->slice_start[rw], tg->slice_end[rw], jiffies);
758}
759
760static unsigned int calculate_io_allowed(u32 iops_limit,
761 unsigned long jiffy_elapsed)
762{
763 unsigned int io_allowed;
764 u64 tmp;
765
766 /*
767 * jiffy_elapsed should not be a big value as minimum iops can be
768 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
769 * will allow dispatch after 1 second and after that slice should
770 * have been trimmed.
771 */
772
773 tmp = (u64)iops_limit * jiffy_elapsed;
774 do_div(tmp, HZ);
775
776 if (tmp > UINT_MAX)
777 io_allowed = UINT_MAX;
778 else
779 io_allowed = tmp;
780
781 return io_allowed;
782}
783
784static u64 calculate_bytes_allowed(u64 bps_limit, unsigned long jiffy_elapsed)
785{
786 return mul_u64_u64_div_u64(bps_limit, (u64)jiffy_elapsed, (u64)HZ);
787}
788
789static void __tg_update_carryover(struct throtl_grp *tg, bool rw)
790{
791 unsigned long jiffy_elapsed = jiffies - tg->slice_start[rw];
792 u64 bps_limit = tg_bps_limit(tg, rw);
793 u32 iops_limit = tg_iops_limit(tg, rw);
794
795 /*
796 * If config is updated while bios are still throttled, calculate and
797 * accumulate how many bytes/ios are waited across changes. And
798 * carryover_bytes/ios will be used to calculate new wait time under new
799 * configuration.
800 */
801 if (bps_limit != U64_MAX)
802 tg->carryover_bytes[rw] +=
803 calculate_bytes_allowed(bps_limit, jiffy_elapsed) -
804 tg->bytes_disp[rw];
805 if (iops_limit != UINT_MAX)
806 tg->carryover_ios[rw] +=
807 calculate_io_allowed(iops_limit, jiffy_elapsed) -
808 tg->io_disp[rw];
809}
810
811static void tg_update_carryover(struct throtl_grp *tg)
812{
813 if (tg->service_queue.nr_queued[READ])
814 __tg_update_carryover(tg, READ);
815 if (tg->service_queue.nr_queued[WRITE])
816 __tg_update_carryover(tg, WRITE);
817
818 /* see comments in struct throtl_grp for meaning of these fields. */
819 throtl_log(&tg->service_queue, "%s: %llu %llu %u %u\n", __func__,
820 tg->carryover_bytes[READ], tg->carryover_bytes[WRITE],
821 tg->carryover_ios[READ], tg->carryover_ios[WRITE]);
822}
823
824static unsigned long tg_within_iops_limit(struct throtl_grp *tg, struct bio *bio,
825 u32 iops_limit)
826{
827 bool rw = bio_data_dir(bio);
828 unsigned int io_allowed;
829 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
830
831 if (iops_limit == UINT_MAX) {
832 return 0;
833 }
834
835 jiffy_elapsed = jiffies - tg->slice_start[rw];
836
837 /* Round up to the next throttle slice, wait time must be nonzero */
838 jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
839 io_allowed = calculate_io_allowed(iops_limit, jiffy_elapsed_rnd) +
840 tg->carryover_ios[rw];
841 if (tg->io_disp[rw] + 1 <= io_allowed) {
842 return 0;
843 }
844
845 /* Calc approx time to dispatch */
846 jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
847 return jiffy_wait;
848}
849
850static unsigned long tg_within_bps_limit(struct throtl_grp *tg, struct bio *bio,
851 u64 bps_limit)
852{
853 bool rw = bio_data_dir(bio);
854 u64 bytes_allowed, extra_bytes;
855 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
856 unsigned int bio_size = throtl_bio_data_size(bio);
857
858 /* no need to throttle if this bio's bytes have been accounted */
859 if (bps_limit == U64_MAX || bio_flagged(bio, BIO_BPS_THROTTLED)) {
860 return 0;
861 }
862
863 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
864
865 /* Slice has just started. Consider one slice interval */
866 if (!jiffy_elapsed)
867 jiffy_elapsed_rnd = tg->td->throtl_slice;
868
869 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
870 bytes_allowed = calculate_bytes_allowed(bps_limit, jiffy_elapsed_rnd) +
871 tg->carryover_bytes[rw];
872 if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
873 return 0;
874 }
875
876 /* Calc approx time to dispatch */
877 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
878 jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
879
880 if (!jiffy_wait)
881 jiffy_wait = 1;
882
883 /*
884 * This wait time is without taking into consideration the rounding
885 * up we did. Add that time also.
886 */
887 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
888 return jiffy_wait;
889}
890
891/*
892 * Returns whether one can dispatch a bio or not. Also returns approx number
893 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
894 */
895static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
896 unsigned long *wait)
897{
898 bool rw = bio_data_dir(bio);
899 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
900 u64 bps_limit = tg_bps_limit(tg, rw);
901 u32 iops_limit = tg_iops_limit(tg, rw);
902
903 /*
904 * Currently whole state machine of group depends on first bio
905 * queued in the group bio list. So one should not be calling
906 * this function with a different bio if there are other bios
907 * queued.
908 */
909 BUG_ON(tg->service_queue.nr_queued[rw] &&
910 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
911
912 /* If tg->bps = -1, then BW is unlimited */
913 if ((bps_limit == U64_MAX && iops_limit == UINT_MAX) ||
914 tg->flags & THROTL_TG_CANCELING) {
915 if (wait)
916 *wait = 0;
917 return true;
918 }
919
920 /*
921 * If previous slice expired, start a new one otherwise renew/extend
922 * existing slice to make sure it is at least throtl_slice interval
923 * long since now. New slice is started only for empty throttle group.
924 * If there is queued bio, that means there should be an active
925 * slice and it should be extended instead.
926 */
927 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
928 throtl_start_new_slice(tg, rw, true);
929 else {
930 if (time_before(tg->slice_end[rw],
931 jiffies + tg->td->throtl_slice))
932 throtl_extend_slice(tg, rw,
933 jiffies + tg->td->throtl_slice);
934 }
935
936 bps_wait = tg_within_bps_limit(tg, bio, bps_limit);
937 iops_wait = tg_within_iops_limit(tg, bio, iops_limit);
938 if (bps_wait + iops_wait == 0) {
939 if (wait)
940 *wait = 0;
941 return true;
942 }
943
944 max_wait = max(bps_wait, iops_wait);
945
946 if (wait)
947 *wait = max_wait;
948
949 if (time_before(tg->slice_end[rw], jiffies + max_wait))
950 throtl_extend_slice(tg, rw, jiffies + max_wait);
951
952 return false;
953}
954
955static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
956{
957 bool rw = bio_data_dir(bio);
958 unsigned int bio_size = throtl_bio_data_size(bio);
959
960 /* Charge the bio to the group */
961 if (!bio_flagged(bio, BIO_BPS_THROTTLED)) {
962 tg->bytes_disp[rw] += bio_size;
963 tg->last_bytes_disp[rw] += bio_size;
964 }
965
966 tg->io_disp[rw]++;
967 tg->last_io_disp[rw]++;
968}
969
970/**
971 * throtl_add_bio_tg - add a bio to the specified throtl_grp
972 * @bio: bio to add
973 * @qn: qnode to use
974 * @tg: the target throtl_grp
975 *
976 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
977 * tg->qnode_on_self[] is used.
978 */
979static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
980 struct throtl_grp *tg)
981{
982 struct throtl_service_queue *sq = &tg->service_queue;
983 bool rw = bio_data_dir(bio);
984
985 if (!qn)
986 qn = &tg->qnode_on_self[rw];
987
988 /*
989 * If @tg doesn't currently have any bios queued in the same
990 * direction, queueing @bio can change when @tg should be
991 * dispatched. Mark that @tg was empty. This is automatically
992 * cleared on the next tg_update_disptime().
993 */
994 if (!sq->nr_queued[rw])
995 tg->flags |= THROTL_TG_WAS_EMPTY;
996
997 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
998
999 sq->nr_queued[rw]++;
1000 throtl_enqueue_tg(tg);
1001}
1002
1003static void tg_update_disptime(struct throtl_grp *tg)
1004{
1005 struct throtl_service_queue *sq = &tg->service_queue;
1006 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1007 struct bio *bio;
1008
1009 bio = throtl_peek_queued(&sq->queued[READ]);
1010 if (bio)
1011 tg_may_dispatch(tg, bio, &read_wait);
1012
1013 bio = throtl_peek_queued(&sq->queued[WRITE]);
1014 if (bio)
1015 tg_may_dispatch(tg, bio, &write_wait);
1016
1017 min_wait = min(read_wait, write_wait);
1018 disptime = jiffies + min_wait;
1019
1020 /* Update dispatch time */
1021 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
1022 tg->disptime = disptime;
1023 tg_service_queue_add(tg);
1024
1025 /* see throtl_add_bio_tg() */
1026 tg->flags &= ~THROTL_TG_WAS_EMPTY;
1027}
1028
1029static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1030 struct throtl_grp *parent_tg, bool rw)
1031{
1032 if (throtl_slice_used(parent_tg, rw)) {
1033 throtl_start_new_slice_with_credit(parent_tg, rw,
1034 child_tg->slice_start[rw]);
1035 }
1036
1037}
1038
1039static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1040{
1041 struct throtl_service_queue *sq = &tg->service_queue;
1042 struct throtl_service_queue *parent_sq = sq->parent_sq;
1043 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1044 struct throtl_grp *tg_to_put = NULL;
1045 struct bio *bio;
1046
1047 /*
1048 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1049 * from @tg may put its reference and @parent_sq might end up
1050 * getting released prematurely. Remember the tg to put and put it
1051 * after @bio is transferred to @parent_sq.
1052 */
1053 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1054 sq->nr_queued[rw]--;
1055
1056 throtl_charge_bio(tg, bio);
1057
1058 /*
1059 * If our parent is another tg, we just need to transfer @bio to
1060 * the parent using throtl_add_bio_tg(). If our parent is
1061 * @td->service_queue, @bio is ready to be issued. Put it on its
1062 * bio_lists[] and decrease total number queued. The caller is
1063 * responsible for issuing these bios.
1064 */
1065 if (parent_tg) {
1066 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1067 start_parent_slice_with_credit(tg, parent_tg, rw);
1068 } else {
1069 bio_set_flag(bio, BIO_BPS_THROTTLED);
1070 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1071 &parent_sq->queued[rw]);
1072 BUG_ON(tg->td->nr_queued[rw] <= 0);
1073 tg->td->nr_queued[rw]--;
1074 }
1075
1076 throtl_trim_slice(tg, rw);
1077
1078 if (tg_to_put)
1079 blkg_put(tg_to_blkg(tg_to_put));
1080}
1081
1082static int throtl_dispatch_tg(struct throtl_grp *tg)
1083{
1084 struct throtl_service_queue *sq = &tg->service_queue;
1085 unsigned int nr_reads = 0, nr_writes = 0;
1086 unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1087 unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
1088 struct bio *bio;
1089
1090 /* Try to dispatch 75% READS and 25% WRITES */
1091
1092 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1093 tg_may_dispatch(tg, bio, NULL)) {
1094
1095 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1096 nr_reads++;
1097
1098 if (nr_reads >= max_nr_reads)
1099 break;
1100 }
1101
1102 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1103 tg_may_dispatch(tg, bio, NULL)) {
1104
1105 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1106 nr_writes++;
1107
1108 if (nr_writes >= max_nr_writes)
1109 break;
1110 }
1111
1112 return nr_reads + nr_writes;
1113}
1114
1115static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1116{
1117 unsigned int nr_disp = 0;
1118
1119 while (1) {
1120 struct throtl_grp *tg;
1121 struct throtl_service_queue *sq;
1122
1123 if (!parent_sq->nr_pending)
1124 break;
1125
1126 tg = throtl_rb_first(parent_sq);
1127 if (!tg)
1128 break;
1129
1130 if (time_before(jiffies, tg->disptime))
1131 break;
1132
1133 nr_disp += throtl_dispatch_tg(tg);
1134
1135 sq = &tg->service_queue;
1136 if (sq->nr_queued[READ] || sq->nr_queued[WRITE])
1137 tg_update_disptime(tg);
1138 else
1139 throtl_dequeue_tg(tg);
1140
1141 if (nr_disp >= THROTL_QUANTUM)
1142 break;
1143 }
1144
1145 return nr_disp;
1146}
1147
1148static bool throtl_can_upgrade(struct throtl_data *td,
1149 struct throtl_grp *this_tg);
1150/**
1151 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1152 * @t: the pending_timer member of the throtl_service_queue being serviced
1153 *
1154 * This timer is armed when a child throtl_grp with active bio's become
1155 * pending and queued on the service_queue's pending_tree and expires when
1156 * the first child throtl_grp should be dispatched. This function
1157 * dispatches bio's from the children throtl_grps to the parent
1158 * service_queue.
1159 *
1160 * If the parent's parent is another throtl_grp, dispatching is propagated
1161 * by either arming its pending_timer or repeating dispatch directly. If
1162 * the top-level service_tree is reached, throtl_data->dispatch_work is
1163 * kicked so that the ready bio's are issued.
1164 */
1165static void throtl_pending_timer_fn(struct timer_list *t)
1166{
1167 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1168 struct throtl_grp *tg = sq_to_tg(sq);
1169 struct throtl_data *td = sq_to_td(sq);
1170 struct throtl_service_queue *parent_sq;
1171 struct request_queue *q;
1172 bool dispatched;
1173 int ret;
1174
1175 /* throtl_data may be gone, so figure out request queue by blkg */
1176 if (tg)
1177 q = tg->pd.blkg->q;
1178 else
1179 q = td->queue;
1180
1181 spin_lock_irq(&q->queue_lock);
1182
1183 if (!q->root_blkg)
1184 goto out_unlock;
1185
1186 if (throtl_can_upgrade(td, NULL))
1187 throtl_upgrade_state(td);
1188
1189again:
1190 parent_sq = sq->parent_sq;
1191 dispatched = false;
1192
1193 while (true) {
1194 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1195 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1196 sq->nr_queued[READ], sq->nr_queued[WRITE]);
1197
1198 ret = throtl_select_dispatch(sq);
1199 if (ret) {
1200 throtl_log(sq, "bios disp=%u", ret);
1201 dispatched = true;
1202 }
1203
1204 if (throtl_schedule_next_dispatch(sq, false))
1205 break;
1206
1207 /* this dispatch windows is still open, relax and repeat */
1208 spin_unlock_irq(&q->queue_lock);
1209 cpu_relax();
1210 spin_lock_irq(&q->queue_lock);
1211 }
1212
1213 if (!dispatched)
1214 goto out_unlock;
1215
1216 if (parent_sq) {
1217 /* @parent_sq is another throl_grp, propagate dispatch */
1218 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1219 tg_update_disptime(tg);
1220 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1221 /* window is already open, repeat dispatching */
1222 sq = parent_sq;
1223 tg = sq_to_tg(sq);
1224 goto again;
1225 }
1226 }
1227 } else {
1228 /* reached the top-level, queue issuing */
1229 queue_work(kthrotld_workqueue, &td->dispatch_work);
1230 }
1231out_unlock:
1232 spin_unlock_irq(&q->queue_lock);
1233}
1234
1235/**
1236 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1237 * @work: work item being executed
1238 *
1239 * This function is queued for execution when bios reach the bio_lists[]
1240 * of throtl_data->service_queue. Those bios are ready and issued by this
1241 * function.
1242 */
1243static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1244{
1245 struct throtl_data *td = container_of(work, struct throtl_data,
1246 dispatch_work);
1247 struct throtl_service_queue *td_sq = &td->service_queue;
1248 struct request_queue *q = td->queue;
1249 struct bio_list bio_list_on_stack;
1250 struct bio *bio;
1251 struct blk_plug plug;
1252 int rw;
1253
1254 bio_list_init(&bio_list_on_stack);
1255
1256 spin_lock_irq(&q->queue_lock);
1257 for (rw = READ; rw <= WRITE; rw++)
1258 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1259 bio_list_add(&bio_list_on_stack, bio);
1260 spin_unlock_irq(&q->queue_lock);
1261
1262 if (!bio_list_empty(&bio_list_on_stack)) {
1263 blk_start_plug(&plug);
1264 while ((bio = bio_list_pop(&bio_list_on_stack)))
1265 submit_bio_noacct_nocheck(bio);
1266 blk_finish_plug(&plug);
1267 }
1268}
1269
1270static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1271 int off)
1272{
1273 struct throtl_grp *tg = pd_to_tg(pd);
1274 u64 v = *(u64 *)((void *)tg + off);
1275
1276 if (v == U64_MAX)
1277 return 0;
1278 return __blkg_prfill_u64(sf, pd, v);
1279}
1280
1281static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1282 int off)
1283{
1284 struct throtl_grp *tg = pd_to_tg(pd);
1285 unsigned int v = *(unsigned int *)((void *)tg + off);
1286
1287 if (v == UINT_MAX)
1288 return 0;
1289 return __blkg_prfill_u64(sf, pd, v);
1290}
1291
1292static int tg_print_conf_u64(struct seq_file *sf, void *v)
1293{
1294 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1295 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1296 return 0;
1297}
1298
1299static int tg_print_conf_uint(struct seq_file *sf, void *v)
1300{
1301 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1302 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1303 return 0;
1304}
1305
1306static void tg_conf_updated(struct throtl_grp *tg, bool global)
1307{
1308 struct throtl_service_queue *sq = &tg->service_queue;
1309 struct cgroup_subsys_state *pos_css;
1310 struct blkcg_gq *blkg;
1311
1312 throtl_log(&tg->service_queue,
1313 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1314 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1315 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1316
1317 /*
1318 * Update has_rules[] flags for the updated tg's subtree. A tg is
1319 * considered to have rules if either the tg itself or any of its
1320 * ancestors has rules. This identifies groups without any
1321 * restrictions in the whole hierarchy and allows them to bypass
1322 * blk-throttle.
1323 */
1324 blkg_for_each_descendant_pre(blkg, pos_css,
1325 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1326 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1327 struct throtl_grp *parent_tg;
1328
1329 tg_update_has_rules(this_tg);
1330 /* ignore root/second level */
1331 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1332 !blkg->parent->parent)
1333 continue;
1334 parent_tg = blkg_to_tg(blkg->parent);
1335 /*
1336 * make sure all children has lower idle time threshold and
1337 * higher latency target
1338 */
1339 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1340 parent_tg->idletime_threshold);
1341 this_tg->latency_target = max(this_tg->latency_target,
1342 parent_tg->latency_target);
1343 }
1344
1345 /*
1346 * We're already holding queue_lock and know @tg is valid. Let's
1347 * apply the new config directly.
1348 *
1349 * Restart the slices for both READ and WRITES. It might happen
1350 * that a group's limit are dropped suddenly and we don't want to
1351 * account recently dispatched IO with new low rate.
1352 */
1353 throtl_start_new_slice(tg, READ, false);
1354 throtl_start_new_slice(tg, WRITE, false);
1355
1356 if (tg->flags & THROTL_TG_PENDING) {
1357 tg_update_disptime(tg);
1358 throtl_schedule_next_dispatch(sq->parent_sq, true);
1359 }
1360}
1361
1362static ssize_t tg_set_conf(struct kernfs_open_file *of,
1363 char *buf, size_t nbytes, loff_t off, bool is_u64)
1364{
1365 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1366 struct blkg_conf_ctx ctx;
1367 struct throtl_grp *tg;
1368 int ret;
1369 u64 v;
1370
1371 blkg_conf_init(&ctx, buf);
1372
1373 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, &ctx);
1374 if (ret)
1375 goto out_finish;
1376
1377 ret = -EINVAL;
1378 if (sscanf(ctx.body, "%llu", &v) != 1)
1379 goto out_finish;
1380 if (!v)
1381 v = U64_MAX;
1382
1383 tg = blkg_to_tg(ctx.blkg);
1384 tg_update_carryover(tg);
1385
1386 if (is_u64)
1387 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1388 else
1389 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1390
1391 tg_conf_updated(tg, false);
1392 ret = 0;
1393out_finish:
1394 blkg_conf_exit(&ctx);
1395 return ret ?: nbytes;
1396}
1397
1398static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1399 char *buf, size_t nbytes, loff_t off)
1400{
1401 return tg_set_conf(of, buf, nbytes, off, true);
1402}
1403
1404static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1405 char *buf, size_t nbytes, loff_t off)
1406{
1407 return tg_set_conf(of, buf, nbytes, off, false);
1408}
1409
1410static int tg_print_rwstat(struct seq_file *sf, void *v)
1411{
1412 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1413 blkg_prfill_rwstat, &blkcg_policy_throtl,
1414 seq_cft(sf)->private, true);
1415 return 0;
1416}
1417
1418static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1419 struct blkg_policy_data *pd, int off)
1420{
1421 struct blkg_rwstat_sample sum;
1422
1423 blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1424 &sum);
1425 return __blkg_prfill_rwstat(sf, pd, &sum);
1426}
1427
1428static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1429{
1430 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1431 tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1432 seq_cft(sf)->private, true);
1433 return 0;
1434}
1435
1436static struct cftype throtl_legacy_files[] = {
1437 {
1438 .name = "throttle.read_bps_device",
1439 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1440 .seq_show = tg_print_conf_u64,
1441 .write = tg_set_conf_u64,
1442 },
1443 {
1444 .name = "throttle.write_bps_device",
1445 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1446 .seq_show = tg_print_conf_u64,
1447 .write = tg_set_conf_u64,
1448 },
1449 {
1450 .name = "throttle.read_iops_device",
1451 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1452 .seq_show = tg_print_conf_uint,
1453 .write = tg_set_conf_uint,
1454 },
1455 {
1456 .name = "throttle.write_iops_device",
1457 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1458 .seq_show = tg_print_conf_uint,
1459 .write = tg_set_conf_uint,
1460 },
1461 {
1462 .name = "throttle.io_service_bytes",
1463 .private = offsetof(struct throtl_grp, stat_bytes),
1464 .seq_show = tg_print_rwstat,
1465 },
1466 {
1467 .name = "throttle.io_service_bytes_recursive",
1468 .private = offsetof(struct throtl_grp, stat_bytes),
1469 .seq_show = tg_print_rwstat_recursive,
1470 },
1471 {
1472 .name = "throttle.io_serviced",
1473 .private = offsetof(struct throtl_grp, stat_ios),
1474 .seq_show = tg_print_rwstat,
1475 },
1476 {
1477 .name = "throttle.io_serviced_recursive",
1478 .private = offsetof(struct throtl_grp, stat_ios),
1479 .seq_show = tg_print_rwstat_recursive,
1480 },
1481 { } /* terminate */
1482};
1483
1484static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1485 int off)
1486{
1487 struct throtl_grp *tg = pd_to_tg(pd);
1488 const char *dname = blkg_dev_name(pd->blkg);
1489 char bufs[4][21] = { "max", "max", "max", "max" };
1490 u64 bps_dft;
1491 unsigned int iops_dft;
1492 char idle_time[26] = "";
1493 char latency_time[26] = "";
1494
1495 if (!dname)
1496 return 0;
1497
1498 if (off == LIMIT_LOW) {
1499 bps_dft = 0;
1500 iops_dft = 0;
1501 } else {
1502 bps_dft = U64_MAX;
1503 iops_dft = UINT_MAX;
1504 }
1505
1506 if (tg->bps_conf[READ][off] == bps_dft &&
1507 tg->bps_conf[WRITE][off] == bps_dft &&
1508 tg->iops_conf[READ][off] == iops_dft &&
1509 tg->iops_conf[WRITE][off] == iops_dft &&
1510 (off != LIMIT_LOW ||
1511 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1512 tg->latency_target_conf == DFL_LATENCY_TARGET)))
1513 return 0;
1514
1515 if (tg->bps_conf[READ][off] != U64_MAX)
1516 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1517 tg->bps_conf[READ][off]);
1518 if (tg->bps_conf[WRITE][off] != U64_MAX)
1519 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1520 tg->bps_conf[WRITE][off]);
1521 if (tg->iops_conf[READ][off] != UINT_MAX)
1522 snprintf(bufs[2], sizeof(bufs[2]), "%u",
1523 tg->iops_conf[READ][off]);
1524 if (tg->iops_conf[WRITE][off] != UINT_MAX)
1525 snprintf(bufs[3], sizeof(bufs[3]), "%u",
1526 tg->iops_conf[WRITE][off]);
1527 if (off == LIMIT_LOW) {
1528 if (tg->idletime_threshold_conf == ULONG_MAX)
1529 strcpy(idle_time, " idle=max");
1530 else
1531 snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1532 tg->idletime_threshold_conf);
1533
1534 if (tg->latency_target_conf == ULONG_MAX)
1535 strcpy(latency_time, " latency=max");
1536 else
1537 snprintf(latency_time, sizeof(latency_time),
1538 " latency=%lu", tg->latency_target_conf);
1539 }
1540
1541 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1542 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1543 latency_time);
1544 return 0;
1545}
1546
1547static int tg_print_limit(struct seq_file *sf, void *v)
1548{
1549 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1550 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1551 return 0;
1552}
1553
1554static ssize_t tg_set_limit(struct kernfs_open_file *of,
1555 char *buf, size_t nbytes, loff_t off)
1556{
1557 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1558 struct blkg_conf_ctx ctx;
1559 struct throtl_grp *tg;
1560 u64 v[4];
1561 unsigned long idle_time;
1562 unsigned long latency_time;
1563 int ret;
1564 int index = of_cft(of)->private;
1565
1566 blkg_conf_init(&ctx, buf);
1567
1568 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, &ctx);
1569 if (ret)
1570 goto out_finish;
1571
1572 tg = blkg_to_tg(ctx.blkg);
1573 tg_update_carryover(tg);
1574
1575 v[0] = tg->bps_conf[READ][index];
1576 v[1] = tg->bps_conf[WRITE][index];
1577 v[2] = tg->iops_conf[READ][index];
1578 v[3] = tg->iops_conf[WRITE][index];
1579
1580 idle_time = tg->idletime_threshold_conf;
1581 latency_time = tg->latency_target_conf;
1582 while (true) {
1583 char tok[27]; /* wiops=18446744073709551616 */
1584 char *p;
1585 u64 val = U64_MAX;
1586 int len;
1587
1588 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1589 break;
1590 if (tok[0] == '\0')
1591 break;
1592 ctx.body += len;
1593
1594 ret = -EINVAL;
1595 p = tok;
1596 strsep(&p, "=");
1597 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1598 goto out_finish;
1599
1600 ret = -ERANGE;
1601 if (!val)
1602 goto out_finish;
1603
1604 ret = -EINVAL;
1605 if (!strcmp(tok, "rbps") && val > 1)
1606 v[0] = val;
1607 else if (!strcmp(tok, "wbps") && val > 1)
1608 v[1] = val;
1609 else if (!strcmp(tok, "riops") && val > 1)
1610 v[2] = min_t(u64, val, UINT_MAX);
1611 else if (!strcmp(tok, "wiops") && val > 1)
1612 v[3] = min_t(u64, val, UINT_MAX);
1613 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1614 idle_time = val;
1615 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1616 latency_time = val;
1617 else
1618 goto out_finish;
1619 }
1620
1621 tg->bps_conf[READ][index] = v[0];
1622 tg->bps_conf[WRITE][index] = v[1];
1623 tg->iops_conf[READ][index] = v[2];
1624 tg->iops_conf[WRITE][index] = v[3];
1625
1626 if (index == LIMIT_MAX) {
1627 tg->bps[READ][index] = v[0];
1628 tg->bps[WRITE][index] = v[1];
1629 tg->iops[READ][index] = v[2];
1630 tg->iops[WRITE][index] = v[3];
1631 }
1632 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1633 tg->bps_conf[READ][LIMIT_MAX]);
1634 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1635 tg->bps_conf[WRITE][LIMIT_MAX]);
1636 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1637 tg->iops_conf[READ][LIMIT_MAX]);
1638 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1639 tg->iops_conf[WRITE][LIMIT_MAX]);
1640 tg->idletime_threshold_conf = idle_time;
1641 tg->latency_target_conf = latency_time;
1642
1643 /* force user to configure all settings for low limit */
1644 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1645 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1646 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1647 tg->latency_target_conf == DFL_LATENCY_TARGET) {
1648 tg->bps[READ][LIMIT_LOW] = 0;
1649 tg->bps[WRITE][LIMIT_LOW] = 0;
1650 tg->iops[READ][LIMIT_LOW] = 0;
1651 tg->iops[WRITE][LIMIT_LOW] = 0;
1652 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1653 tg->latency_target = DFL_LATENCY_TARGET;
1654 } else if (index == LIMIT_LOW) {
1655 tg->idletime_threshold = tg->idletime_threshold_conf;
1656 tg->latency_target = tg->latency_target_conf;
1657 }
1658
1659 blk_throtl_update_limit_valid(tg->td);
1660 if (tg->td->limit_valid[LIMIT_LOW]) {
1661 if (index == LIMIT_LOW)
1662 tg->td->limit_index = LIMIT_LOW;
1663 } else
1664 tg->td->limit_index = LIMIT_MAX;
1665 tg_conf_updated(tg, index == LIMIT_LOW &&
1666 tg->td->limit_valid[LIMIT_LOW]);
1667 ret = 0;
1668out_finish:
1669 blkg_conf_exit(&ctx);
1670 return ret ?: nbytes;
1671}
1672
1673static struct cftype throtl_files[] = {
1674#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1675 {
1676 .name = "low",
1677 .flags = CFTYPE_NOT_ON_ROOT,
1678 .seq_show = tg_print_limit,
1679 .write = tg_set_limit,
1680 .private = LIMIT_LOW,
1681 },
1682#endif
1683 {
1684 .name = "max",
1685 .flags = CFTYPE_NOT_ON_ROOT,
1686 .seq_show = tg_print_limit,
1687 .write = tg_set_limit,
1688 .private = LIMIT_MAX,
1689 },
1690 { } /* terminate */
1691};
1692
1693static void throtl_shutdown_wq(struct request_queue *q)
1694{
1695 struct throtl_data *td = q->td;
1696
1697 cancel_work_sync(&td->dispatch_work);
1698}
1699
1700struct blkcg_policy blkcg_policy_throtl = {
1701 .dfl_cftypes = throtl_files,
1702 .legacy_cftypes = throtl_legacy_files,
1703
1704 .pd_alloc_fn = throtl_pd_alloc,
1705 .pd_init_fn = throtl_pd_init,
1706 .pd_online_fn = throtl_pd_online,
1707 .pd_offline_fn = throtl_pd_offline,
1708 .pd_free_fn = throtl_pd_free,
1709};
1710
1711void blk_throtl_cancel_bios(struct gendisk *disk)
1712{
1713 struct request_queue *q = disk->queue;
1714 struct cgroup_subsys_state *pos_css;
1715 struct blkcg_gq *blkg;
1716
1717 spin_lock_irq(&q->queue_lock);
1718 /*
1719 * queue_lock is held, rcu lock is not needed here technically.
1720 * However, rcu lock is still held to emphasize that following
1721 * path need RCU protection and to prevent warning from lockdep.
1722 */
1723 rcu_read_lock();
1724 blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) {
1725 struct throtl_grp *tg = blkg_to_tg(blkg);
1726 struct throtl_service_queue *sq = &tg->service_queue;
1727
1728 /*
1729 * Set the flag to make sure throtl_pending_timer_fn() won't
1730 * stop until all throttled bios are dispatched.
1731 */
1732 tg->flags |= THROTL_TG_CANCELING;
1733
1734 /*
1735 * Do not dispatch cgroup without THROTL_TG_PENDING or cgroup
1736 * will be inserted to service queue without THROTL_TG_PENDING
1737 * set in tg_update_disptime below. Then IO dispatched from
1738 * child in tg_dispatch_one_bio will trigger double insertion
1739 * and corrupt the tree.
1740 */
1741 if (!(tg->flags & THROTL_TG_PENDING))
1742 continue;
1743
1744 /*
1745 * Update disptime after setting the above flag to make sure
1746 * throtl_select_dispatch() won't exit without dispatching.
1747 */
1748 tg_update_disptime(tg);
1749
1750 throtl_schedule_pending_timer(sq, jiffies + 1);
1751 }
1752 rcu_read_unlock();
1753 spin_unlock_irq(&q->queue_lock);
1754}
1755
1756#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1757static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1758{
1759 unsigned long rtime = jiffies, wtime = jiffies;
1760
1761 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1762 rtime = tg->last_low_overflow_time[READ];
1763 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1764 wtime = tg->last_low_overflow_time[WRITE];
1765 return min(rtime, wtime);
1766}
1767
1768static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1769{
1770 struct throtl_service_queue *parent_sq;
1771 struct throtl_grp *parent = tg;
1772 unsigned long ret = __tg_last_low_overflow_time(tg);
1773
1774 while (true) {
1775 parent_sq = parent->service_queue.parent_sq;
1776 parent = sq_to_tg(parent_sq);
1777 if (!parent)
1778 break;
1779
1780 /*
1781 * The parent doesn't have low limit, it always reaches low
1782 * limit. Its overflow time is useless for children
1783 */
1784 if (!parent->bps[READ][LIMIT_LOW] &&
1785 !parent->iops[READ][LIMIT_LOW] &&
1786 !parent->bps[WRITE][LIMIT_LOW] &&
1787 !parent->iops[WRITE][LIMIT_LOW])
1788 continue;
1789 if (time_after(__tg_last_low_overflow_time(parent), ret))
1790 ret = __tg_last_low_overflow_time(parent);
1791 }
1792 return ret;
1793}
1794
1795static bool throtl_tg_is_idle(struct throtl_grp *tg)
1796{
1797 /*
1798 * cgroup is idle if:
1799 * - single idle is too long, longer than a fixed value (in case user
1800 * configure a too big threshold) or 4 times of idletime threshold
1801 * - average think time is more than threshold
1802 * - IO latency is largely below threshold
1803 */
1804 unsigned long time;
1805 bool ret;
1806
1807 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1808 ret = tg->latency_target == DFL_LATENCY_TARGET ||
1809 tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1810 (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1811 tg->avg_idletime > tg->idletime_threshold ||
1812 (tg->latency_target && tg->bio_cnt &&
1813 tg->bad_bio_cnt * 5 < tg->bio_cnt);
1814 throtl_log(&tg->service_queue,
1815 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1816 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1817 tg->bio_cnt, ret, tg->td->scale);
1818 return ret;
1819}
1820
1821static bool throtl_low_limit_reached(struct throtl_grp *tg, int rw)
1822{
1823 struct throtl_service_queue *sq = &tg->service_queue;
1824 bool limit = tg->bps[rw][LIMIT_LOW] || tg->iops[rw][LIMIT_LOW];
1825
1826 /*
1827 * if low limit is zero, low limit is always reached.
1828 * if low limit is non-zero, we can check if there is any request
1829 * is queued to determine if low limit is reached as we throttle
1830 * request according to limit.
1831 */
1832 return !limit || sq->nr_queued[rw];
1833}
1834
1835static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1836{
1837 /*
1838 * cgroup reaches low limit when low limit of READ and WRITE are
1839 * both reached, it's ok to upgrade to next limit if cgroup reaches
1840 * low limit
1841 */
1842 if (throtl_low_limit_reached(tg, READ) &&
1843 throtl_low_limit_reached(tg, WRITE))
1844 return true;
1845
1846 if (time_after_eq(jiffies,
1847 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1848 throtl_tg_is_idle(tg))
1849 return true;
1850 return false;
1851}
1852
1853static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1854{
1855 while (true) {
1856 if (throtl_tg_can_upgrade(tg))
1857 return true;
1858 tg = sq_to_tg(tg->service_queue.parent_sq);
1859 if (!tg || !tg_to_blkg(tg)->parent)
1860 return false;
1861 }
1862 return false;
1863}
1864
1865static bool throtl_can_upgrade(struct throtl_data *td,
1866 struct throtl_grp *this_tg)
1867{
1868 struct cgroup_subsys_state *pos_css;
1869 struct blkcg_gq *blkg;
1870
1871 if (td->limit_index != LIMIT_LOW)
1872 return false;
1873
1874 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1875 return false;
1876
1877 rcu_read_lock();
1878 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1879 struct throtl_grp *tg = blkg_to_tg(blkg);
1880
1881 if (tg == this_tg)
1882 continue;
1883 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1884 continue;
1885 if (!throtl_hierarchy_can_upgrade(tg)) {
1886 rcu_read_unlock();
1887 return false;
1888 }
1889 }
1890 rcu_read_unlock();
1891 return true;
1892}
1893
1894static void throtl_upgrade_check(struct throtl_grp *tg)
1895{
1896 unsigned long now = jiffies;
1897
1898 if (tg->td->limit_index != LIMIT_LOW)
1899 return;
1900
1901 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1902 return;
1903
1904 tg->last_check_time = now;
1905
1906 if (!time_after_eq(now,
1907 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1908 return;
1909
1910 if (throtl_can_upgrade(tg->td, NULL))
1911 throtl_upgrade_state(tg->td);
1912}
1913
1914static void throtl_upgrade_state(struct throtl_data *td)
1915{
1916 struct cgroup_subsys_state *pos_css;
1917 struct blkcg_gq *blkg;
1918
1919 throtl_log(&td->service_queue, "upgrade to max");
1920 td->limit_index = LIMIT_MAX;
1921 td->low_upgrade_time = jiffies;
1922 td->scale = 0;
1923 rcu_read_lock();
1924 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1925 struct throtl_grp *tg = blkg_to_tg(blkg);
1926 struct throtl_service_queue *sq = &tg->service_queue;
1927
1928 tg->disptime = jiffies - 1;
1929 throtl_select_dispatch(sq);
1930 throtl_schedule_next_dispatch(sq, true);
1931 }
1932 rcu_read_unlock();
1933 throtl_select_dispatch(&td->service_queue);
1934 throtl_schedule_next_dispatch(&td->service_queue, true);
1935 queue_work(kthrotld_workqueue, &td->dispatch_work);
1936}
1937
1938static void throtl_downgrade_state(struct throtl_data *td)
1939{
1940 td->scale /= 2;
1941
1942 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1943 if (td->scale) {
1944 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1945 return;
1946 }
1947
1948 td->limit_index = LIMIT_LOW;
1949 td->low_downgrade_time = jiffies;
1950}
1951
1952static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1953{
1954 struct throtl_data *td = tg->td;
1955 unsigned long now = jiffies;
1956
1957 /*
1958 * If cgroup is below low limit, consider downgrade and throttle other
1959 * cgroups
1960 */
1961 if (time_after_eq(now, tg_last_low_overflow_time(tg) +
1962 td->throtl_slice) &&
1963 (!throtl_tg_is_idle(tg) ||
1964 !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1965 return true;
1966 return false;
1967}
1968
1969static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1970{
1971 struct throtl_data *td = tg->td;
1972
1973 if (time_before(jiffies, td->low_upgrade_time + td->throtl_slice))
1974 return false;
1975
1976 while (true) {
1977 if (!throtl_tg_can_downgrade(tg))
1978 return false;
1979 tg = sq_to_tg(tg->service_queue.parent_sq);
1980 if (!tg || !tg_to_blkg(tg)->parent)
1981 break;
1982 }
1983 return true;
1984}
1985
1986static void throtl_downgrade_check(struct throtl_grp *tg)
1987{
1988 uint64_t bps;
1989 unsigned int iops;
1990 unsigned long elapsed_time;
1991 unsigned long now = jiffies;
1992
1993 if (tg->td->limit_index != LIMIT_MAX ||
1994 !tg->td->limit_valid[LIMIT_LOW])
1995 return;
1996 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1997 return;
1998 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1999 return;
2000
2001 elapsed_time = now - tg->last_check_time;
2002 tg->last_check_time = now;
2003
2004 if (time_before(now, tg_last_low_overflow_time(tg) +
2005 tg->td->throtl_slice))
2006 return;
2007
2008 if (tg->bps[READ][LIMIT_LOW]) {
2009 bps = tg->last_bytes_disp[READ] * HZ;
2010 do_div(bps, elapsed_time);
2011 if (bps >= tg->bps[READ][LIMIT_LOW])
2012 tg->last_low_overflow_time[READ] = now;
2013 }
2014
2015 if (tg->bps[WRITE][LIMIT_LOW]) {
2016 bps = tg->last_bytes_disp[WRITE] * HZ;
2017 do_div(bps, elapsed_time);
2018 if (bps >= tg->bps[WRITE][LIMIT_LOW])
2019 tg->last_low_overflow_time[WRITE] = now;
2020 }
2021
2022 if (tg->iops[READ][LIMIT_LOW]) {
2023 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2024 if (iops >= tg->iops[READ][LIMIT_LOW])
2025 tg->last_low_overflow_time[READ] = now;
2026 }
2027
2028 if (tg->iops[WRITE][LIMIT_LOW]) {
2029 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2030 if (iops >= tg->iops[WRITE][LIMIT_LOW])
2031 tg->last_low_overflow_time[WRITE] = now;
2032 }
2033
2034 /*
2035 * If cgroup is below low limit, consider downgrade and throttle other
2036 * cgroups
2037 */
2038 if (throtl_hierarchy_can_downgrade(tg))
2039 throtl_downgrade_state(tg->td);
2040
2041 tg->last_bytes_disp[READ] = 0;
2042 tg->last_bytes_disp[WRITE] = 0;
2043 tg->last_io_disp[READ] = 0;
2044 tg->last_io_disp[WRITE] = 0;
2045}
2046
2047static void blk_throtl_update_idletime(struct throtl_grp *tg)
2048{
2049 unsigned long now;
2050 unsigned long last_finish_time = tg->last_finish_time;
2051
2052 if (last_finish_time == 0)
2053 return;
2054
2055 now = ktime_get_ns() >> 10;
2056 if (now <= last_finish_time ||
2057 last_finish_time == tg->checked_last_finish_time)
2058 return;
2059
2060 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2061 tg->checked_last_finish_time = last_finish_time;
2062}
2063
2064static void throtl_update_latency_buckets(struct throtl_data *td)
2065{
2066 struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2067 int i, cpu, rw;
2068 unsigned long last_latency[2] = { 0 };
2069 unsigned long latency[2];
2070
2071 if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
2072 return;
2073 if (time_before(jiffies, td->last_calculate_time + HZ))
2074 return;
2075 td->last_calculate_time = jiffies;
2076
2077 memset(avg_latency, 0, sizeof(avg_latency));
2078 for (rw = READ; rw <= WRITE; rw++) {
2079 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2080 struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2081
2082 for_each_possible_cpu(cpu) {
2083 struct latency_bucket *bucket;
2084
2085 /* this isn't race free, but ok in practice */
2086 bucket = per_cpu_ptr(td->latency_buckets[rw],
2087 cpu);
2088 tmp->total_latency += bucket[i].total_latency;
2089 tmp->samples += bucket[i].samples;
2090 bucket[i].total_latency = 0;
2091 bucket[i].samples = 0;
2092 }
2093
2094 if (tmp->samples >= 32) {
2095 int samples = tmp->samples;
2096
2097 latency[rw] = tmp->total_latency;
2098
2099 tmp->total_latency = 0;
2100 tmp->samples = 0;
2101 latency[rw] /= samples;
2102 if (latency[rw] == 0)
2103 continue;
2104 avg_latency[rw][i].latency = latency[rw];
2105 }
2106 }
2107 }
2108
2109 for (rw = READ; rw <= WRITE; rw++) {
2110 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2111 if (!avg_latency[rw][i].latency) {
2112 if (td->avg_buckets[rw][i].latency < last_latency[rw])
2113 td->avg_buckets[rw][i].latency =
2114 last_latency[rw];
2115 continue;
2116 }
2117
2118 if (!td->avg_buckets[rw][i].valid)
2119 latency[rw] = avg_latency[rw][i].latency;
2120 else
2121 latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2122 avg_latency[rw][i].latency) >> 3;
2123
2124 td->avg_buckets[rw][i].latency = max(latency[rw],
2125 last_latency[rw]);
2126 td->avg_buckets[rw][i].valid = true;
2127 last_latency[rw] = td->avg_buckets[rw][i].latency;
2128 }
2129 }
2130
2131 for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2132 throtl_log(&td->service_queue,
2133 "Latency bucket %d: read latency=%ld, read valid=%d, "
2134 "write latency=%ld, write valid=%d", i,
2135 td->avg_buckets[READ][i].latency,
2136 td->avg_buckets[READ][i].valid,
2137 td->avg_buckets[WRITE][i].latency,
2138 td->avg_buckets[WRITE][i].valid);
2139}
2140#else
2141static inline void throtl_update_latency_buckets(struct throtl_data *td)
2142{
2143}
2144
2145static void blk_throtl_update_idletime(struct throtl_grp *tg)
2146{
2147}
2148
2149static void throtl_downgrade_check(struct throtl_grp *tg)
2150{
2151}
2152
2153static void throtl_upgrade_check(struct throtl_grp *tg)
2154{
2155}
2156
2157static bool throtl_can_upgrade(struct throtl_data *td,
2158 struct throtl_grp *this_tg)
2159{
2160 return false;
2161}
2162
2163static void throtl_upgrade_state(struct throtl_data *td)
2164{
2165}
2166#endif
2167
2168bool __blk_throtl_bio(struct bio *bio)
2169{
2170 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2171 struct blkcg_gq *blkg = bio->bi_blkg;
2172 struct throtl_qnode *qn = NULL;
2173 struct throtl_grp *tg = blkg_to_tg(blkg);
2174 struct throtl_service_queue *sq;
2175 bool rw = bio_data_dir(bio);
2176 bool throttled = false;
2177 struct throtl_data *td = tg->td;
2178
2179 rcu_read_lock();
2180
2181 if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) {
2182 blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf,
2183 bio->bi_iter.bi_size);
2184 blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1);
2185 }
2186
2187 spin_lock_irq(&q->queue_lock);
2188
2189 throtl_update_latency_buckets(td);
2190
2191 blk_throtl_update_idletime(tg);
2192
2193 sq = &tg->service_queue;
2194
2195again:
2196 while (true) {
2197 if (tg->last_low_overflow_time[rw] == 0)
2198 tg->last_low_overflow_time[rw] = jiffies;
2199 throtl_downgrade_check(tg);
2200 throtl_upgrade_check(tg);
2201 /* throtl is FIFO - if bios are already queued, should queue */
2202 if (sq->nr_queued[rw])
2203 break;
2204
2205 /* if above limits, break to queue */
2206 if (!tg_may_dispatch(tg, bio, NULL)) {
2207 tg->last_low_overflow_time[rw] = jiffies;
2208 if (throtl_can_upgrade(td, tg)) {
2209 throtl_upgrade_state(td);
2210 goto again;
2211 }
2212 break;
2213 }
2214
2215 /* within limits, let's charge and dispatch directly */
2216 throtl_charge_bio(tg, bio);
2217
2218 /*
2219 * We need to trim slice even when bios are not being queued
2220 * otherwise it might happen that a bio is not queued for
2221 * a long time and slice keeps on extending and trim is not
2222 * called for a long time. Now if limits are reduced suddenly
2223 * we take into account all the IO dispatched so far at new
2224 * low rate and * newly queued IO gets a really long dispatch
2225 * time.
2226 *
2227 * So keep on trimming slice even if bio is not queued.
2228 */
2229 throtl_trim_slice(tg, rw);
2230
2231 /*
2232 * @bio passed through this layer without being throttled.
2233 * Climb up the ladder. If we're already at the top, it
2234 * can be executed directly.
2235 */
2236 qn = &tg->qnode_on_parent[rw];
2237 sq = sq->parent_sq;
2238 tg = sq_to_tg(sq);
2239 if (!tg) {
2240 bio_set_flag(bio, BIO_BPS_THROTTLED);
2241 goto out_unlock;
2242 }
2243 }
2244
2245 /* out-of-limit, queue to @tg */
2246 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2247 rw == READ ? 'R' : 'W',
2248 tg->bytes_disp[rw], bio->bi_iter.bi_size,
2249 tg_bps_limit(tg, rw),
2250 tg->io_disp[rw], tg_iops_limit(tg, rw),
2251 sq->nr_queued[READ], sq->nr_queued[WRITE]);
2252
2253 tg->last_low_overflow_time[rw] = jiffies;
2254
2255 td->nr_queued[rw]++;
2256 throtl_add_bio_tg(bio, qn, tg);
2257 throttled = true;
2258
2259 /*
2260 * Update @tg's dispatch time and force schedule dispatch if @tg
2261 * was empty before @bio. The forced scheduling isn't likely to
2262 * cause undue delay as @bio is likely to be dispatched directly if
2263 * its @tg's disptime is not in the future.
2264 */
2265 if (tg->flags & THROTL_TG_WAS_EMPTY) {
2266 tg_update_disptime(tg);
2267 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2268 }
2269
2270out_unlock:
2271#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2272 if (throttled || !td->track_bio_latency)
2273 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2274#endif
2275 spin_unlock_irq(&q->queue_lock);
2276
2277 rcu_read_unlock();
2278 return throttled;
2279}
2280
2281#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2282static void throtl_track_latency(struct throtl_data *td, sector_t size,
2283 enum req_op op, unsigned long time)
2284{
2285 const bool rw = op_is_write(op);
2286 struct latency_bucket *latency;
2287 int index;
2288
2289 if (!td || td->limit_index != LIMIT_LOW ||
2290 !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2291 !blk_queue_nonrot(td->queue))
2292 return;
2293
2294 index = request_bucket_index(size);
2295
2296 latency = get_cpu_ptr(td->latency_buckets[rw]);
2297 latency[index].total_latency += time;
2298 latency[index].samples++;
2299 put_cpu_ptr(td->latency_buckets[rw]);
2300}
2301
2302void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2303{
2304 struct request_queue *q = rq->q;
2305 struct throtl_data *td = q->td;
2306
2307 throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2308 time_ns >> 10);
2309}
2310
2311void blk_throtl_bio_endio(struct bio *bio)
2312{
2313 struct blkcg_gq *blkg;
2314 struct throtl_grp *tg;
2315 u64 finish_time_ns;
2316 unsigned long finish_time;
2317 unsigned long start_time;
2318 unsigned long lat;
2319 int rw = bio_data_dir(bio);
2320
2321 blkg = bio->bi_blkg;
2322 if (!blkg)
2323 return;
2324 tg = blkg_to_tg(blkg);
2325 if (!tg->td->limit_valid[LIMIT_LOW])
2326 return;
2327
2328 finish_time_ns = ktime_get_ns();
2329 tg->last_finish_time = finish_time_ns >> 10;
2330
2331 start_time = bio_issue_time(&bio->bi_issue) >> 10;
2332 finish_time = __bio_issue_time(finish_time_ns) >> 10;
2333 if (!start_time || finish_time <= start_time)
2334 return;
2335
2336 lat = finish_time - start_time;
2337 /* this is only for bio based driver */
2338 if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2339 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2340 bio_op(bio), lat);
2341
2342 if (tg->latency_target && lat >= tg->td->filtered_latency) {
2343 int bucket;
2344 unsigned int threshold;
2345
2346 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2347 threshold = tg->td->avg_buckets[rw][bucket].latency +
2348 tg->latency_target;
2349 if (lat > threshold)
2350 tg->bad_bio_cnt++;
2351 /*
2352 * Not race free, could get wrong count, which means cgroups
2353 * will be throttled
2354 */
2355 tg->bio_cnt++;
2356 }
2357
2358 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2359 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2360 tg->bio_cnt /= 2;
2361 tg->bad_bio_cnt /= 2;
2362 }
2363}
2364#endif
2365
2366int blk_throtl_init(struct gendisk *disk)
2367{
2368 struct request_queue *q = disk->queue;
2369 struct throtl_data *td;
2370 int ret;
2371
2372 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2373 if (!td)
2374 return -ENOMEM;
2375 td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2376 LATENCY_BUCKET_SIZE, __alignof__(u64));
2377 if (!td->latency_buckets[READ]) {
2378 kfree(td);
2379 return -ENOMEM;
2380 }
2381 td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2382 LATENCY_BUCKET_SIZE, __alignof__(u64));
2383 if (!td->latency_buckets[WRITE]) {
2384 free_percpu(td->latency_buckets[READ]);
2385 kfree(td);
2386 return -ENOMEM;
2387 }
2388
2389 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2390 throtl_service_queue_init(&td->service_queue);
2391
2392 q->td = td;
2393 td->queue = q;
2394
2395 td->limit_valid[LIMIT_MAX] = true;
2396 td->limit_index = LIMIT_MAX;
2397 td->low_upgrade_time = jiffies;
2398 td->low_downgrade_time = jiffies;
2399
2400 /* activate policy */
2401 ret = blkcg_activate_policy(disk, &blkcg_policy_throtl);
2402 if (ret) {
2403 free_percpu(td->latency_buckets[READ]);
2404 free_percpu(td->latency_buckets[WRITE]);
2405 kfree(td);
2406 }
2407 return ret;
2408}
2409
2410void blk_throtl_exit(struct gendisk *disk)
2411{
2412 struct request_queue *q = disk->queue;
2413
2414 BUG_ON(!q->td);
2415 del_timer_sync(&q->td->service_queue.pending_timer);
2416 throtl_shutdown_wq(q);
2417 blkcg_deactivate_policy(disk, &blkcg_policy_throtl);
2418 free_percpu(q->td->latency_buckets[READ]);
2419 free_percpu(q->td->latency_buckets[WRITE]);
2420 kfree(q->td);
2421}
2422
2423void blk_throtl_register(struct gendisk *disk)
2424{
2425 struct request_queue *q = disk->queue;
2426 struct throtl_data *td;
2427 int i;
2428
2429 td = q->td;
2430 BUG_ON(!td);
2431
2432 if (blk_queue_nonrot(q)) {
2433 td->throtl_slice = DFL_THROTL_SLICE_SSD;
2434 td->filtered_latency = LATENCY_FILTERED_SSD;
2435 } else {
2436 td->throtl_slice = DFL_THROTL_SLICE_HD;
2437 td->filtered_latency = LATENCY_FILTERED_HD;
2438 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2439 td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2440 td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2441 }
2442 }
2443#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2444 /* if no low limit, use previous default */
2445 td->throtl_slice = DFL_THROTL_SLICE_HD;
2446
2447#else
2448 td->track_bio_latency = !queue_is_mq(q);
2449 if (!td->track_bio_latency)
2450 blk_stat_enable_accounting(q);
2451#endif
2452}
2453
2454#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2455ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2456{
2457 if (!q->td)
2458 return -EINVAL;
2459 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2460}
2461
2462ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2463 const char *page, size_t count)
2464{
2465 unsigned long v;
2466 unsigned long t;
2467
2468 if (!q->td)
2469 return -EINVAL;
2470 if (kstrtoul(page, 10, &v))
2471 return -EINVAL;
2472 t = msecs_to_jiffies(v);
2473 if (t == 0 || t > MAX_THROTL_SLICE)
2474 return -EINVAL;
2475 q->td->throtl_slice = t;
2476 return count;
2477}
2478#endif
2479
2480static int __init throtl_init(void)
2481{
2482 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2483 if (!kthrotld_workqueue)
2484 panic("Failed to create kthrotld\n");
2485
2486 return blkcg_policy_register(&blkcg_policy_throtl);
2487}
2488
2489module_init(throtl_init);