Merge tag 'pci-v6.16-fixes-3' of git://git.kernel.org/pub/scm/linux/kernel/git/pci/pci
[linux-2.6-block.git] / block / blk-mq.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/backing-dev.h>
11#include <linux/bio.h>
12#include <linux/blkdev.h>
13#include <linux/blk-integrity.h>
14#include <linux/kmemleak.h>
15#include <linux/mm.h>
16#include <linux/init.h>
17#include <linux/slab.h>
18#include <linux/workqueue.h>
19#include <linux/smp.h>
20#include <linux/interrupt.h>
21#include <linux/llist.h>
22#include <linux/cpu.h>
23#include <linux/cache.h>
24#include <linux/sched/topology.h>
25#include <linux/sched/signal.h>
26#include <linux/delay.h>
27#include <linux/crash_dump.h>
28#include <linux/prefetch.h>
29#include <linux/blk-crypto.h>
30#include <linux/part_stat.h>
31#include <linux/sched/isolation.h>
32
33#include <trace/events/block.h>
34
35#include <linux/t10-pi.h>
36#include "blk.h"
37#include "blk-mq.h"
38#include "blk-mq-debugfs.h"
39#include "blk-pm.h"
40#include "blk-stat.h"
41#include "blk-mq-sched.h"
42#include "blk-rq-qos.h"
43
44static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
46static DEFINE_MUTEX(blk_mq_cpuhp_lock);
47
48static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
49static void blk_mq_request_bypass_insert(struct request *rq,
50 blk_insert_t flags);
51static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
52 struct list_head *list);
53static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
54 struct io_comp_batch *iob, unsigned int flags);
55
56/*
57 * Check if any of the ctx, dispatch list or elevator
58 * have pending work in this hardware queue.
59 */
60static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
61{
62 return !list_empty_careful(&hctx->dispatch) ||
63 sbitmap_any_bit_set(&hctx->ctx_map) ||
64 blk_mq_sched_has_work(hctx);
65}
66
67/*
68 * Mark this ctx as having pending work in this hardware queue
69 */
70static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
71 struct blk_mq_ctx *ctx)
72{
73 const int bit = ctx->index_hw[hctx->type];
74
75 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
76 sbitmap_set_bit(&hctx->ctx_map, bit);
77}
78
79static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
80 struct blk_mq_ctx *ctx)
81{
82 const int bit = ctx->index_hw[hctx->type];
83
84 sbitmap_clear_bit(&hctx->ctx_map, bit);
85}
86
87struct mq_inflight {
88 struct block_device *part;
89 unsigned int inflight[2];
90};
91
92static bool blk_mq_check_in_driver(struct request *rq, void *priv)
93{
94 struct mq_inflight *mi = priv;
95
96 if (rq->rq_flags & RQF_IO_STAT &&
97 (!bdev_is_partition(mi->part) || rq->part == mi->part) &&
98 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
99 mi->inflight[rq_data_dir(rq)]++;
100
101 return true;
102}
103
104void blk_mq_in_driver_rw(struct block_device *part, unsigned int inflight[2])
105{
106 struct mq_inflight mi = { .part = part };
107
108 blk_mq_queue_tag_busy_iter(bdev_get_queue(part), blk_mq_check_in_driver,
109 &mi);
110 inflight[READ] = mi.inflight[READ];
111 inflight[WRITE] = mi.inflight[WRITE];
112}
113
114#ifdef CONFIG_LOCKDEP
115static bool blk_freeze_set_owner(struct request_queue *q,
116 struct task_struct *owner)
117{
118 if (!owner)
119 return false;
120
121 if (!q->mq_freeze_depth) {
122 q->mq_freeze_owner = owner;
123 q->mq_freeze_owner_depth = 1;
124 q->mq_freeze_disk_dead = !q->disk ||
125 test_bit(GD_DEAD, &q->disk->state) ||
126 !blk_queue_registered(q);
127 q->mq_freeze_queue_dying = blk_queue_dying(q);
128 return true;
129 }
130
131 if (owner == q->mq_freeze_owner)
132 q->mq_freeze_owner_depth += 1;
133 return false;
134}
135
136/* verify the last unfreeze in owner context */
137static bool blk_unfreeze_check_owner(struct request_queue *q)
138{
139 if (q->mq_freeze_owner != current)
140 return false;
141 if (--q->mq_freeze_owner_depth == 0) {
142 q->mq_freeze_owner = NULL;
143 return true;
144 }
145 return false;
146}
147
148#else
149
150static bool blk_freeze_set_owner(struct request_queue *q,
151 struct task_struct *owner)
152{
153 return false;
154}
155
156static bool blk_unfreeze_check_owner(struct request_queue *q)
157{
158 return false;
159}
160#endif
161
162bool __blk_freeze_queue_start(struct request_queue *q,
163 struct task_struct *owner)
164{
165 bool freeze;
166
167 mutex_lock(&q->mq_freeze_lock);
168 freeze = blk_freeze_set_owner(q, owner);
169 if (++q->mq_freeze_depth == 1) {
170 percpu_ref_kill(&q->q_usage_counter);
171 mutex_unlock(&q->mq_freeze_lock);
172 if (queue_is_mq(q))
173 blk_mq_run_hw_queues(q, false);
174 } else {
175 mutex_unlock(&q->mq_freeze_lock);
176 }
177
178 return freeze;
179}
180
181void blk_freeze_queue_start(struct request_queue *q)
182{
183 if (__blk_freeze_queue_start(q, current))
184 blk_freeze_acquire_lock(q);
185}
186EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
187
188void blk_mq_freeze_queue_wait(struct request_queue *q)
189{
190 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
191}
192EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
193
194int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
195 unsigned long timeout)
196{
197 return wait_event_timeout(q->mq_freeze_wq,
198 percpu_ref_is_zero(&q->q_usage_counter),
199 timeout);
200}
201EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
202
203void blk_mq_freeze_queue_nomemsave(struct request_queue *q)
204{
205 blk_freeze_queue_start(q);
206 blk_mq_freeze_queue_wait(q);
207}
208EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_nomemsave);
209
210bool __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
211{
212 bool unfreeze;
213
214 mutex_lock(&q->mq_freeze_lock);
215 if (force_atomic)
216 q->q_usage_counter.data->force_atomic = true;
217 q->mq_freeze_depth--;
218 WARN_ON_ONCE(q->mq_freeze_depth < 0);
219 if (!q->mq_freeze_depth) {
220 percpu_ref_resurrect(&q->q_usage_counter);
221 wake_up_all(&q->mq_freeze_wq);
222 }
223 unfreeze = blk_unfreeze_check_owner(q);
224 mutex_unlock(&q->mq_freeze_lock);
225
226 return unfreeze;
227}
228
229void blk_mq_unfreeze_queue_nomemrestore(struct request_queue *q)
230{
231 if (__blk_mq_unfreeze_queue(q, false))
232 blk_unfreeze_release_lock(q);
233}
234EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue_nomemrestore);
235
236/*
237 * non_owner variant of blk_freeze_queue_start
238 *
239 * Unlike blk_freeze_queue_start, the queue doesn't need to be unfrozen
240 * by the same task. This is fragile and should not be used if at all
241 * possible.
242 */
243void blk_freeze_queue_start_non_owner(struct request_queue *q)
244{
245 __blk_freeze_queue_start(q, NULL);
246}
247EXPORT_SYMBOL_GPL(blk_freeze_queue_start_non_owner);
248
249/* non_owner variant of blk_mq_unfreeze_queue */
250void blk_mq_unfreeze_queue_non_owner(struct request_queue *q)
251{
252 __blk_mq_unfreeze_queue(q, false);
253}
254EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue_non_owner);
255
256/*
257 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
258 * mpt3sas driver such that this function can be removed.
259 */
260void blk_mq_quiesce_queue_nowait(struct request_queue *q)
261{
262 unsigned long flags;
263
264 spin_lock_irqsave(&q->queue_lock, flags);
265 if (!q->quiesce_depth++)
266 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
267 spin_unlock_irqrestore(&q->queue_lock, flags);
268}
269EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
270
271/**
272 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
273 * @set: tag_set to wait on
274 *
275 * Note: it is driver's responsibility for making sure that quiesce has
276 * been started on or more of the request_queues of the tag_set. This
277 * function only waits for the quiesce on those request_queues that had
278 * the quiesce flag set using blk_mq_quiesce_queue_nowait.
279 */
280void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
281{
282 if (set->flags & BLK_MQ_F_BLOCKING)
283 synchronize_srcu(set->srcu);
284 else
285 synchronize_rcu();
286}
287EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
288
289/**
290 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
291 * @q: request queue.
292 *
293 * Note: this function does not prevent that the struct request end_io()
294 * callback function is invoked. Once this function is returned, we make
295 * sure no dispatch can happen until the queue is unquiesced via
296 * blk_mq_unquiesce_queue().
297 */
298void blk_mq_quiesce_queue(struct request_queue *q)
299{
300 blk_mq_quiesce_queue_nowait(q);
301 /* nothing to wait for non-mq queues */
302 if (queue_is_mq(q))
303 blk_mq_wait_quiesce_done(q->tag_set);
304}
305EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
306
307/*
308 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
309 * @q: request queue.
310 *
311 * This function recovers queue into the state before quiescing
312 * which is done by blk_mq_quiesce_queue.
313 */
314void blk_mq_unquiesce_queue(struct request_queue *q)
315{
316 unsigned long flags;
317 bool run_queue = false;
318
319 spin_lock_irqsave(&q->queue_lock, flags);
320 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
321 ;
322 } else if (!--q->quiesce_depth) {
323 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
324 run_queue = true;
325 }
326 spin_unlock_irqrestore(&q->queue_lock, flags);
327
328 /* dispatch requests which are inserted during quiescing */
329 if (run_queue)
330 blk_mq_run_hw_queues(q, true);
331}
332EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
333
334void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
335{
336 struct request_queue *q;
337
338 mutex_lock(&set->tag_list_lock);
339 list_for_each_entry(q, &set->tag_list, tag_set_list) {
340 if (!blk_queue_skip_tagset_quiesce(q))
341 blk_mq_quiesce_queue_nowait(q);
342 }
343 mutex_unlock(&set->tag_list_lock);
344
345 blk_mq_wait_quiesce_done(set);
346}
347EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
348
349void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
350{
351 struct request_queue *q;
352
353 mutex_lock(&set->tag_list_lock);
354 list_for_each_entry(q, &set->tag_list, tag_set_list) {
355 if (!blk_queue_skip_tagset_quiesce(q))
356 blk_mq_unquiesce_queue(q);
357 }
358 mutex_unlock(&set->tag_list_lock);
359}
360EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
361
362void blk_mq_wake_waiters(struct request_queue *q)
363{
364 struct blk_mq_hw_ctx *hctx;
365 unsigned long i;
366
367 queue_for_each_hw_ctx(q, hctx, i)
368 if (blk_mq_hw_queue_mapped(hctx))
369 blk_mq_tag_wakeup_all(hctx->tags, true);
370}
371
372void blk_rq_init(struct request_queue *q, struct request *rq)
373{
374 memset(rq, 0, sizeof(*rq));
375
376 INIT_LIST_HEAD(&rq->queuelist);
377 rq->q = q;
378 rq->__sector = (sector_t) -1;
379 INIT_HLIST_NODE(&rq->hash);
380 RB_CLEAR_NODE(&rq->rb_node);
381 rq->tag = BLK_MQ_NO_TAG;
382 rq->internal_tag = BLK_MQ_NO_TAG;
383 rq->start_time_ns = blk_time_get_ns();
384 blk_crypto_rq_set_defaults(rq);
385}
386EXPORT_SYMBOL(blk_rq_init);
387
388/* Set start and alloc time when the allocated request is actually used */
389static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
390{
391#ifdef CONFIG_BLK_RQ_ALLOC_TIME
392 if (blk_queue_rq_alloc_time(rq->q))
393 rq->alloc_time_ns = alloc_time_ns;
394 else
395 rq->alloc_time_ns = 0;
396#endif
397}
398
399static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
400 struct blk_mq_tags *tags, unsigned int tag)
401{
402 struct blk_mq_ctx *ctx = data->ctx;
403 struct blk_mq_hw_ctx *hctx = data->hctx;
404 struct request_queue *q = data->q;
405 struct request *rq = tags->static_rqs[tag];
406
407 rq->q = q;
408 rq->mq_ctx = ctx;
409 rq->mq_hctx = hctx;
410 rq->cmd_flags = data->cmd_flags;
411
412 if (data->flags & BLK_MQ_REQ_PM)
413 data->rq_flags |= RQF_PM;
414 rq->rq_flags = data->rq_flags;
415
416 if (data->rq_flags & RQF_SCHED_TAGS) {
417 rq->tag = BLK_MQ_NO_TAG;
418 rq->internal_tag = tag;
419 } else {
420 rq->tag = tag;
421 rq->internal_tag = BLK_MQ_NO_TAG;
422 }
423 rq->timeout = 0;
424
425 rq->part = NULL;
426 rq->io_start_time_ns = 0;
427 rq->stats_sectors = 0;
428 rq->nr_phys_segments = 0;
429 rq->nr_integrity_segments = 0;
430 rq->end_io = NULL;
431 rq->end_io_data = NULL;
432
433 blk_crypto_rq_set_defaults(rq);
434 INIT_LIST_HEAD(&rq->queuelist);
435 /* tag was already set */
436 WRITE_ONCE(rq->deadline, 0);
437 req_ref_set(rq, 1);
438
439 if (rq->rq_flags & RQF_USE_SCHED) {
440 struct elevator_queue *e = data->q->elevator;
441
442 INIT_HLIST_NODE(&rq->hash);
443 RB_CLEAR_NODE(&rq->rb_node);
444
445 if (e->type->ops.prepare_request)
446 e->type->ops.prepare_request(rq);
447 }
448
449 return rq;
450}
451
452static inline struct request *
453__blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
454{
455 unsigned int tag, tag_offset;
456 struct blk_mq_tags *tags;
457 struct request *rq;
458 unsigned long tag_mask;
459 int i, nr = 0;
460
461 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
462 if (unlikely(!tag_mask))
463 return NULL;
464
465 tags = blk_mq_tags_from_data(data);
466 for (i = 0; tag_mask; i++) {
467 if (!(tag_mask & (1UL << i)))
468 continue;
469 tag = tag_offset + i;
470 prefetch(tags->static_rqs[tag]);
471 tag_mask &= ~(1UL << i);
472 rq = blk_mq_rq_ctx_init(data, tags, tag);
473 rq_list_add_head(data->cached_rqs, rq);
474 nr++;
475 }
476 if (!(data->rq_flags & RQF_SCHED_TAGS))
477 blk_mq_add_active_requests(data->hctx, nr);
478 /* caller already holds a reference, add for remainder */
479 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
480 data->nr_tags -= nr;
481
482 return rq_list_pop(data->cached_rqs);
483}
484
485static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
486{
487 struct request_queue *q = data->q;
488 u64 alloc_time_ns = 0;
489 struct request *rq;
490 unsigned int tag;
491
492 /* alloc_time includes depth and tag waits */
493 if (blk_queue_rq_alloc_time(q))
494 alloc_time_ns = blk_time_get_ns();
495
496 if (data->cmd_flags & REQ_NOWAIT)
497 data->flags |= BLK_MQ_REQ_NOWAIT;
498
499retry:
500 data->ctx = blk_mq_get_ctx(q);
501 data->hctx = blk_mq_map_queue(data->cmd_flags, data->ctx);
502
503 if (q->elevator) {
504 /*
505 * All requests use scheduler tags when an I/O scheduler is
506 * enabled for the queue.
507 */
508 data->rq_flags |= RQF_SCHED_TAGS;
509
510 /*
511 * Flush/passthrough requests are special and go directly to the
512 * dispatch list.
513 */
514 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
515 !blk_op_is_passthrough(data->cmd_flags)) {
516 struct elevator_mq_ops *ops = &q->elevator->type->ops;
517
518 WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
519
520 data->rq_flags |= RQF_USE_SCHED;
521 if (ops->limit_depth)
522 ops->limit_depth(data->cmd_flags, data);
523 }
524 } else {
525 blk_mq_tag_busy(data->hctx);
526 }
527
528 if (data->flags & BLK_MQ_REQ_RESERVED)
529 data->rq_flags |= RQF_RESV;
530
531 /*
532 * Try batched alloc if we want more than 1 tag.
533 */
534 if (data->nr_tags > 1) {
535 rq = __blk_mq_alloc_requests_batch(data);
536 if (rq) {
537 blk_mq_rq_time_init(rq, alloc_time_ns);
538 return rq;
539 }
540 data->nr_tags = 1;
541 }
542
543 /*
544 * Waiting allocations only fail because of an inactive hctx. In that
545 * case just retry the hctx assignment and tag allocation as CPU hotplug
546 * should have migrated us to an online CPU by now.
547 */
548 tag = blk_mq_get_tag(data);
549 if (tag == BLK_MQ_NO_TAG) {
550 if (data->flags & BLK_MQ_REQ_NOWAIT)
551 return NULL;
552 /*
553 * Give up the CPU and sleep for a random short time to
554 * ensure that thread using a realtime scheduling class
555 * are migrated off the CPU, and thus off the hctx that
556 * is going away.
557 */
558 msleep(3);
559 goto retry;
560 }
561
562 if (!(data->rq_flags & RQF_SCHED_TAGS))
563 blk_mq_inc_active_requests(data->hctx);
564 rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
565 blk_mq_rq_time_init(rq, alloc_time_ns);
566 return rq;
567}
568
569static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
570 struct blk_plug *plug,
571 blk_opf_t opf,
572 blk_mq_req_flags_t flags)
573{
574 struct blk_mq_alloc_data data = {
575 .q = q,
576 .flags = flags,
577 .shallow_depth = 0,
578 .cmd_flags = opf,
579 .rq_flags = 0,
580 .nr_tags = plug->nr_ios,
581 .cached_rqs = &plug->cached_rqs,
582 .ctx = NULL,
583 .hctx = NULL
584 };
585 struct request *rq;
586
587 if (blk_queue_enter(q, flags))
588 return NULL;
589
590 plug->nr_ios = 1;
591
592 rq = __blk_mq_alloc_requests(&data);
593 if (unlikely(!rq))
594 blk_queue_exit(q);
595 return rq;
596}
597
598static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
599 blk_opf_t opf,
600 blk_mq_req_flags_t flags)
601{
602 struct blk_plug *plug = current->plug;
603 struct request *rq;
604
605 if (!plug)
606 return NULL;
607
608 if (rq_list_empty(&plug->cached_rqs)) {
609 if (plug->nr_ios == 1)
610 return NULL;
611 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
612 if (!rq)
613 return NULL;
614 } else {
615 rq = rq_list_peek(&plug->cached_rqs);
616 if (!rq || rq->q != q)
617 return NULL;
618
619 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
620 return NULL;
621 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
622 return NULL;
623
624 rq_list_pop(&plug->cached_rqs);
625 blk_mq_rq_time_init(rq, blk_time_get_ns());
626 }
627
628 rq->cmd_flags = opf;
629 INIT_LIST_HEAD(&rq->queuelist);
630 return rq;
631}
632
633struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
634 blk_mq_req_flags_t flags)
635{
636 struct request *rq;
637
638 rq = blk_mq_alloc_cached_request(q, opf, flags);
639 if (!rq) {
640 struct blk_mq_alloc_data data = {
641 .q = q,
642 .flags = flags,
643 .shallow_depth = 0,
644 .cmd_flags = opf,
645 .rq_flags = 0,
646 .nr_tags = 1,
647 .cached_rqs = NULL,
648 .ctx = NULL,
649 .hctx = NULL
650 };
651 int ret;
652
653 ret = blk_queue_enter(q, flags);
654 if (ret)
655 return ERR_PTR(ret);
656
657 rq = __blk_mq_alloc_requests(&data);
658 if (!rq)
659 goto out_queue_exit;
660 }
661 rq->__data_len = 0;
662 rq->__sector = (sector_t) -1;
663 rq->bio = rq->biotail = NULL;
664 return rq;
665out_queue_exit:
666 blk_queue_exit(q);
667 return ERR_PTR(-EWOULDBLOCK);
668}
669EXPORT_SYMBOL(blk_mq_alloc_request);
670
671struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
672 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
673{
674 struct blk_mq_alloc_data data = {
675 .q = q,
676 .flags = flags,
677 .shallow_depth = 0,
678 .cmd_flags = opf,
679 .rq_flags = 0,
680 .nr_tags = 1,
681 .cached_rqs = NULL,
682 .ctx = NULL,
683 .hctx = NULL
684 };
685 u64 alloc_time_ns = 0;
686 struct request *rq;
687 unsigned int cpu;
688 unsigned int tag;
689 int ret;
690
691 /* alloc_time includes depth and tag waits */
692 if (blk_queue_rq_alloc_time(q))
693 alloc_time_ns = blk_time_get_ns();
694
695 /*
696 * If the tag allocator sleeps we could get an allocation for a
697 * different hardware context. No need to complicate the low level
698 * allocator for this for the rare use case of a command tied to
699 * a specific queue.
700 */
701 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
702 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
703 return ERR_PTR(-EINVAL);
704
705 if (hctx_idx >= q->nr_hw_queues)
706 return ERR_PTR(-EIO);
707
708 ret = blk_queue_enter(q, flags);
709 if (ret)
710 return ERR_PTR(ret);
711
712 /*
713 * Check if the hardware context is actually mapped to anything.
714 * If not tell the caller that it should skip this queue.
715 */
716 ret = -EXDEV;
717 data.hctx = xa_load(&q->hctx_table, hctx_idx);
718 if (!blk_mq_hw_queue_mapped(data.hctx))
719 goto out_queue_exit;
720 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
721 if (cpu >= nr_cpu_ids)
722 goto out_queue_exit;
723 data.ctx = __blk_mq_get_ctx(q, cpu);
724
725 if (q->elevator)
726 data.rq_flags |= RQF_SCHED_TAGS;
727 else
728 blk_mq_tag_busy(data.hctx);
729
730 if (flags & BLK_MQ_REQ_RESERVED)
731 data.rq_flags |= RQF_RESV;
732
733 ret = -EWOULDBLOCK;
734 tag = blk_mq_get_tag(&data);
735 if (tag == BLK_MQ_NO_TAG)
736 goto out_queue_exit;
737 if (!(data.rq_flags & RQF_SCHED_TAGS))
738 blk_mq_inc_active_requests(data.hctx);
739 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
740 blk_mq_rq_time_init(rq, alloc_time_ns);
741 rq->__data_len = 0;
742 rq->__sector = (sector_t) -1;
743 rq->bio = rq->biotail = NULL;
744 return rq;
745
746out_queue_exit:
747 blk_queue_exit(q);
748 return ERR_PTR(ret);
749}
750EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
751
752static void blk_mq_finish_request(struct request *rq)
753{
754 struct request_queue *q = rq->q;
755
756 blk_zone_finish_request(rq);
757
758 if (rq->rq_flags & RQF_USE_SCHED) {
759 q->elevator->type->ops.finish_request(rq);
760 /*
761 * For postflush request that may need to be
762 * completed twice, we should clear this flag
763 * to avoid double finish_request() on the rq.
764 */
765 rq->rq_flags &= ~RQF_USE_SCHED;
766 }
767}
768
769static void __blk_mq_free_request(struct request *rq)
770{
771 struct request_queue *q = rq->q;
772 struct blk_mq_ctx *ctx = rq->mq_ctx;
773 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
774 const int sched_tag = rq->internal_tag;
775
776 blk_crypto_free_request(rq);
777 blk_pm_mark_last_busy(rq);
778 rq->mq_hctx = NULL;
779
780 if (rq->tag != BLK_MQ_NO_TAG) {
781 blk_mq_dec_active_requests(hctx);
782 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
783 }
784 if (sched_tag != BLK_MQ_NO_TAG)
785 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
786 blk_mq_sched_restart(hctx);
787 blk_queue_exit(q);
788}
789
790void blk_mq_free_request(struct request *rq)
791{
792 struct request_queue *q = rq->q;
793
794 blk_mq_finish_request(rq);
795
796 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
797 laptop_io_completion(q->disk->bdi);
798
799 rq_qos_done(q, rq);
800
801 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
802 if (req_ref_put_and_test(rq))
803 __blk_mq_free_request(rq);
804}
805EXPORT_SYMBOL_GPL(blk_mq_free_request);
806
807void blk_mq_free_plug_rqs(struct blk_plug *plug)
808{
809 struct request *rq;
810
811 while ((rq = rq_list_pop(&plug->cached_rqs)) != NULL)
812 blk_mq_free_request(rq);
813}
814
815void blk_dump_rq_flags(struct request *rq, char *msg)
816{
817 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
818 rq->q->disk ? rq->q->disk->disk_name : "?",
819 (__force unsigned long long) rq->cmd_flags);
820
821 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
822 (unsigned long long)blk_rq_pos(rq),
823 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
824 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
825 rq->bio, rq->biotail, blk_rq_bytes(rq));
826}
827EXPORT_SYMBOL(blk_dump_rq_flags);
828
829static void blk_account_io_completion(struct request *req, unsigned int bytes)
830{
831 if (req->rq_flags & RQF_IO_STAT) {
832 const int sgrp = op_stat_group(req_op(req));
833
834 part_stat_lock();
835 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
836 part_stat_unlock();
837 }
838}
839
840static void blk_print_req_error(struct request *req, blk_status_t status)
841{
842 printk_ratelimited(KERN_ERR
843 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
844 "phys_seg %u prio class %u\n",
845 blk_status_to_str(status),
846 req->q->disk ? req->q->disk->disk_name : "?",
847 blk_rq_pos(req), (__force u32)req_op(req),
848 blk_op_str(req_op(req)),
849 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
850 req->nr_phys_segments,
851 IOPRIO_PRIO_CLASS(req_get_ioprio(req)));
852}
853
854/*
855 * Fully end IO on a request. Does not support partial completions, or
856 * errors.
857 */
858static void blk_complete_request(struct request *req)
859{
860 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
861 int total_bytes = blk_rq_bytes(req);
862 struct bio *bio = req->bio;
863
864 trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
865
866 if (!bio)
867 return;
868
869 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
870 blk_integrity_complete(req, total_bytes);
871
872 /*
873 * Upper layers may call blk_crypto_evict_key() anytime after the last
874 * bio_endio(). Therefore, the keyslot must be released before that.
875 */
876 blk_crypto_rq_put_keyslot(req);
877
878 blk_account_io_completion(req, total_bytes);
879
880 do {
881 struct bio *next = bio->bi_next;
882
883 /* Completion has already been traced */
884 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
885
886 blk_zone_update_request_bio(req, bio);
887
888 if (!is_flush)
889 bio_endio(bio);
890 bio = next;
891 } while (bio);
892
893 /*
894 * Reset counters so that the request stacking driver
895 * can find how many bytes remain in the request
896 * later.
897 */
898 if (!req->end_io) {
899 req->bio = NULL;
900 req->__data_len = 0;
901 }
902}
903
904/**
905 * blk_update_request - Complete multiple bytes without completing the request
906 * @req: the request being processed
907 * @error: block status code
908 * @nr_bytes: number of bytes to complete for @req
909 *
910 * Description:
911 * Ends I/O on a number of bytes attached to @req, but doesn't complete
912 * the request structure even if @req doesn't have leftover.
913 * If @req has leftover, sets it up for the next range of segments.
914 *
915 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
916 * %false return from this function.
917 *
918 * Note:
919 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
920 * except in the consistency check at the end of this function.
921 *
922 * Return:
923 * %false - this request doesn't have any more data
924 * %true - this request has more data
925 **/
926bool blk_update_request(struct request *req, blk_status_t error,
927 unsigned int nr_bytes)
928{
929 bool is_flush = req->rq_flags & RQF_FLUSH_SEQ;
930 bool quiet = req->rq_flags & RQF_QUIET;
931 int total_bytes;
932
933 trace_block_rq_complete(req, error, nr_bytes);
934
935 if (!req->bio)
936 return false;
937
938 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
939 error == BLK_STS_OK)
940 blk_integrity_complete(req, nr_bytes);
941
942 /*
943 * Upper layers may call blk_crypto_evict_key() anytime after the last
944 * bio_endio(). Therefore, the keyslot must be released before that.
945 */
946 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
947 __blk_crypto_rq_put_keyslot(req);
948
949 if (unlikely(error && !blk_rq_is_passthrough(req) && !quiet) &&
950 !test_bit(GD_DEAD, &req->q->disk->state)) {
951 blk_print_req_error(req, error);
952 trace_block_rq_error(req, error, nr_bytes);
953 }
954
955 blk_account_io_completion(req, nr_bytes);
956
957 total_bytes = 0;
958 while (req->bio) {
959 struct bio *bio = req->bio;
960 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
961
962 if (unlikely(error))
963 bio->bi_status = error;
964
965 if (bio_bytes == bio->bi_iter.bi_size) {
966 req->bio = bio->bi_next;
967 } else if (bio_is_zone_append(bio) && error == BLK_STS_OK) {
968 /*
969 * Partial zone append completions cannot be supported
970 * as the BIO fragments may end up not being written
971 * sequentially.
972 */
973 bio->bi_status = BLK_STS_IOERR;
974 }
975
976 /* Completion has already been traced */
977 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
978 if (unlikely(quiet))
979 bio_set_flag(bio, BIO_QUIET);
980
981 bio_advance(bio, bio_bytes);
982
983 /* Don't actually finish bio if it's part of flush sequence */
984 if (!bio->bi_iter.bi_size) {
985 blk_zone_update_request_bio(req, bio);
986 if (!is_flush)
987 bio_endio(bio);
988 }
989
990 total_bytes += bio_bytes;
991 nr_bytes -= bio_bytes;
992
993 if (!nr_bytes)
994 break;
995 }
996
997 /*
998 * completely done
999 */
1000 if (!req->bio) {
1001 /*
1002 * Reset counters so that the request stacking driver
1003 * can find how many bytes remain in the request
1004 * later.
1005 */
1006 req->__data_len = 0;
1007 return false;
1008 }
1009
1010 req->__data_len -= total_bytes;
1011
1012 /* update sector only for requests with clear definition of sector */
1013 if (!blk_rq_is_passthrough(req))
1014 req->__sector += total_bytes >> 9;
1015
1016 /* mixed attributes always follow the first bio */
1017 if (req->rq_flags & RQF_MIXED_MERGE) {
1018 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1019 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1020 }
1021
1022 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1023 /*
1024 * If total number of sectors is less than the first segment
1025 * size, something has gone terribly wrong.
1026 */
1027 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1028 blk_dump_rq_flags(req, "request botched");
1029 req->__data_len = blk_rq_cur_bytes(req);
1030 }
1031
1032 /* recalculate the number of segments */
1033 req->nr_phys_segments = blk_recalc_rq_segments(req);
1034 }
1035
1036 return true;
1037}
1038EXPORT_SYMBOL_GPL(blk_update_request);
1039
1040static inline void blk_account_io_done(struct request *req, u64 now)
1041{
1042 trace_block_io_done(req);
1043
1044 /*
1045 * Account IO completion. flush_rq isn't accounted as a
1046 * normal IO on queueing nor completion. Accounting the
1047 * containing request is enough.
1048 */
1049 if ((req->rq_flags & (RQF_IO_STAT|RQF_FLUSH_SEQ)) == RQF_IO_STAT) {
1050 const int sgrp = op_stat_group(req_op(req));
1051
1052 part_stat_lock();
1053 update_io_ticks(req->part, jiffies, true);
1054 part_stat_inc(req->part, ios[sgrp]);
1055 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1056 part_stat_local_dec(req->part,
1057 in_flight[op_is_write(req_op(req))]);
1058 part_stat_unlock();
1059 }
1060}
1061
1062static inline bool blk_rq_passthrough_stats(struct request *req)
1063{
1064 struct bio *bio = req->bio;
1065
1066 if (!blk_queue_passthrough_stat(req->q))
1067 return false;
1068
1069 /* Requests without a bio do not transfer data. */
1070 if (!bio)
1071 return false;
1072
1073 /*
1074 * Stats are accumulated in the bdev, so must have one attached to a
1075 * bio to track stats. Most drivers do not set the bdev for passthrough
1076 * requests, but nvme is one that will set it.
1077 */
1078 if (!bio->bi_bdev)
1079 return false;
1080
1081 /*
1082 * We don't know what a passthrough command does, but we know the
1083 * payload size and data direction. Ensuring the size is aligned to the
1084 * block size filters out most commands with payloads that don't
1085 * represent sector access.
1086 */
1087 if (blk_rq_bytes(req) & (bdev_logical_block_size(bio->bi_bdev) - 1))
1088 return false;
1089 return true;
1090}
1091
1092static inline void blk_account_io_start(struct request *req)
1093{
1094 trace_block_io_start(req);
1095
1096 if (!blk_queue_io_stat(req->q))
1097 return;
1098 if (blk_rq_is_passthrough(req) && !blk_rq_passthrough_stats(req))
1099 return;
1100
1101 req->rq_flags |= RQF_IO_STAT;
1102 req->start_time_ns = blk_time_get_ns();
1103
1104 /*
1105 * All non-passthrough requests are created from a bio with one
1106 * exception: when a flush command that is part of a flush sequence
1107 * generated by the state machine in blk-flush.c is cloned onto the
1108 * lower device by dm-multipath we can get here without a bio.
1109 */
1110 if (req->bio)
1111 req->part = req->bio->bi_bdev;
1112 else
1113 req->part = req->q->disk->part0;
1114
1115 part_stat_lock();
1116 update_io_ticks(req->part, jiffies, false);
1117 part_stat_local_inc(req->part, in_flight[op_is_write(req_op(req))]);
1118 part_stat_unlock();
1119}
1120
1121static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1122{
1123 if (rq->rq_flags & RQF_STATS)
1124 blk_stat_add(rq, now);
1125
1126 blk_mq_sched_completed_request(rq, now);
1127 blk_account_io_done(rq, now);
1128}
1129
1130inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1131{
1132 if (blk_mq_need_time_stamp(rq))
1133 __blk_mq_end_request_acct(rq, blk_time_get_ns());
1134
1135 blk_mq_finish_request(rq);
1136
1137 if (rq->end_io) {
1138 rq_qos_done(rq->q, rq);
1139 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1140 blk_mq_free_request(rq);
1141 } else {
1142 blk_mq_free_request(rq);
1143 }
1144}
1145EXPORT_SYMBOL(__blk_mq_end_request);
1146
1147void blk_mq_end_request(struct request *rq, blk_status_t error)
1148{
1149 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1150 BUG();
1151 __blk_mq_end_request(rq, error);
1152}
1153EXPORT_SYMBOL(blk_mq_end_request);
1154
1155#define TAG_COMP_BATCH 32
1156
1157static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1158 int *tag_array, int nr_tags)
1159{
1160 struct request_queue *q = hctx->queue;
1161
1162 blk_mq_sub_active_requests(hctx, nr_tags);
1163
1164 blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1165 percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1166}
1167
1168void blk_mq_end_request_batch(struct io_comp_batch *iob)
1169{
1170 int tags[TAG_COMP_BATCH], nr_tags = 0;
1171 struct blk_mq_hw_ctx *cur_hctx = NULL;
1172 struct request *rq;
1173 u64 now = 0;
1174
1175 if (iob->need_ts)
1176 now = blk_time_get_ns();
1177
1178 while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1179 prefetch(rq->bio);
1180 prefetch(rq->rq_next);
1181
1182 blk_complete_request(rq);
1183 if (iob->need_ts)
1184 __blk_mq_end_request_acct(rq, now);
1185
1186 blk_mq_finish_request(rq);
1187
1188 rq_qos_done(rq->q, rq);
1189
1190 /*
1191 * If end_io handler returns NONE, then it still has
1192 * ownership of the request.
1193 */
1194 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1195 continue;
1196
1197 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1198 if (!req_ref_put_and_test(rq))
1199 continue;
1200
1201 blk_crypto_free_request(rq);
1202 blk_pm_mark_last_busy(rq);
1203
1204 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1205 if (cur_hctx)
1206 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1207 nr_tags = 0;
1208 cur_hctx = rq->mq_hctx;
1209 }
1210 tags[nr_tags++] = rq->tag;
1211 }
1212
1213 if (nr_tags)
1214 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1215}
1216EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1217
1218static void blk_complete_reqs(struct llist_head *list)
1219{
1220 struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1221 struct request *rq, *next;
1222
1223 llist_for_each_entry_safe(rq, next, entry, ipi_list)
1224 rq->q->mq_ops->complete(rq);
1225}
1226
1227static __latent_entropy void blk_done_softirq(void)
1228{
1229 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1230}
1231
1232static int blk_softirq_cpu_dead(unsigned int cpu)
1233{
1234 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1235 return 0;
1236}
1237
1238static void __blk_mq_complete_request_remote(void *data)
1239{
1240 __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1241}
1242
1243static inline bool blk_mq_complete_need_ipi(struct request *rq)
1244{
1245 int cpu = raw_smp_processor_id();
1246
1247 if (!IS_ENABLED(CONFIG_SMP) ||
1248 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1249 return false;
1250 /*
1251 * With force threaded interrupts enabled, raising softirq from an SMP
1252 * function call will always result in waking the ksoftirqd thread.
1253 * This is probably worse than completing the request on a different
1254 * cache domain.
1255 */
1256 if (force_irqthreads())
1257 return false;
1258
1259 /* same CPU or cache domain and capacity? Complete locally */
1260 if (cpu == rq->mq_ctx->cpu ||
1261 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1262 cpus_share_cache(cpu, rq->mq_ctx->cpu) &&
1263 cpus_equal_capacity(cpu, rq->mq_ctx->cpu)))
1264 return false;
1265
1266 /* don't try to IPI to an offline CPU */
1267 return cpu_online(rq->mq_ctx->cpu);
1268}
1269
1270static void blk_mq_complete_send_ipi(struct request *rq)
1271{
1272 unsigned int cpu;
1273
1274 cpu = rq->mq_ctx->cpu;
1275 if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1276 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1277}
1278
1279static void blk_mq_raise_softirq(struct request *rq)
1280{
1281 struct llist_head *list;
1282
1283 preempt_disable();
1284 list = this_cpu_ptr(&blk_cpu_done);
1285 if (llist_add(&rq->ipi_list, list))
1286 raise_softirq(BLOCK_SOFTIRQ);
1287 preempt_enable();
1288}
1289
1290bool blk_mq_complete_request_remote(struct request *rq)
1291{
1292 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1293
1294 /*
1295 * For request which hctx has only one ctx mapping,
1296 * or a polled request, always complete locally,
1297 * it's pointless to redirect the completion.
1298 */
1299 if ((rq->mq_hctx->nr_ctx == 1 &&
1300 rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1301 rq->cmd_flags & REQ_POLLED)
1302 return false;
1303
1304 if (blk_mq_complete_need_ipi(rq)) {
1305 blk_mq_complete_send_ipi(rq);
1306 return true;
1307 }
1308
1309 if (rq->q->nr_hw_queues == 1) {
1310 blk_mq_raise_softirq(rq);
1311 return true;
1312 }
1313 return false;
1314}
1315EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1316
1317/**
1318 * blk_mq_complete_request - end I/O on a request
1319 * @rq: the request being processed
1320 *
1321 * Description:
1322 * Complete a request by scheduling the ->complete_rq operation.
1323 **/
1324void blk_mq_complete_request(struct request *rq)
1325{
1326 if (!blk_mq_complete_request_remote(rq))
1327 rq->q->mq_ops->complete(rq);
1328}
1329EXPORT_SYMBOL(blk_mq_complete_request);
1330
1331/**
1332 * blk_mq_start_request - Start processing a request
1333 * @rq: Pointer to request to be started
1334 *
1335 * Function used by device drivers to notify the block layer that a request
1336 * is going to be processed now, so blk layer can do proper initializations
1337 * such as starting the timeout timer.
1338 */
1339void blk_mq_start_request(struct request *rq)
1340{
1341 struct request_queue *q = rq->q;
1342
1343 trace_block_rq_issue(rq);
1344
1345 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
1346 !blk_rq_is_passthrough(rq)) {
1347 rq->io_start_time_ns = blk_time_get_ns();
1348 rq->stats_sectors = blk_rq_sectors(rq);
1349 rq->rq_flags |= RQF_STATS;
1350 rq_qos_issue(q, rq);
1351 }
1352
1353 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1354
1355 blk_add_timer(rq);
1356 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1357 rq->mq_hctx->tags->rqs[rq->tag] = rq;
1358
1359 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1360 blk_integrity_prepare(rq);
1361
1362 if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1363 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1364}
1365EXPORT_SYMBOL(blk_mq_start_request);
1366
1367/*
1368 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1369 * queues. This is important for md arrays to benefit from merging
1370 * requests.
1371 */
1372static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1373{
1374 if (plug->multiple_queues)
1375 return BLK_MAX_REQUEST_COUNT * 2;
1376 return BLK_MAX_REQUEST_COUNT;
1377}
1378
1379static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1380{
1381 struct request *last = rq_list_peek(&plug->mq_list);
1382
1383 if (!plug->rq_count) {
1384 trace_block_plug(rq->q);
1385 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1386 (!blk_queue_nomerges(rq->q) &&
1387 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1388 blk_mq_flush_plug_list(plug, false);
1389 last = NULL;
1390 trace_block_plug(rq->q);
1391 }
1392
1393 if (!plug->multiple_queues && last && last->q != rq->q)
1394 plug->multiple_queues = true;
1395 /*
1396 * Any request allocated from sched tags can't be issued to
1397 * ->queue_rqs() directly
1398 */
1399 if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1400 plug->has_elevator = true;
1401 rq_list_add_tail(&plug->mq_list, rq);
1402 plug->rq_count++;
1403}
1404
1405/**
1406 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1407 * @rq: request to insert
1408 * @at_head: insert request at head or tail of queue
1409 *
1410 * Description:
1411 * Insert a fully prepared request at the back of the I/O scheduler queue
1412 * for execution. Don't wait for completion.
1413 *
1414 * Note:
1415 * This function will invoke @done directly if the queue is dead.
1416 */
1417void blk_execute_rq_nowait(struct request *rq, bool at_head)
1418{
1419 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1420
1421 WARN_ON(irqs_disabled());
1422 WARN_ON(!blk_rq_is_passthrough(rq));
1423
1424 blk_account_io_start(rq);
1425
1426 if (current->plug && !at_head) {
1427 blk_add_rq_to_plug(current->plug, rq);
1428 return;
1429 }
1430
1431 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1432 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1433}
1434EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1435
1436struct blk_rq_wait {
1437 struct completion done;
1438 blk_status_t ret;
1439};
1440
1441static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1442{
1443 struct blk_rq_wait *wait = rq->end_io_data;
1444
1445 wait->ret = ret;
1446 complete(&wait->done);
1447 return RQ_END_IO_NONE;
1448}
1449
1450bool blk_rq_is_poll(struct request *rq)
1451{
1452 if (!rq->mq_hctx)
1453 return false;
1454 if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1455 return false;
1456 return true;
1457}
1458EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1459
1460static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1461{
1462 do {
1463 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1464 cond_resched();
1465 } while (!completion_done(wait));
1466}
1467
1468/**
1469 * blk_execute_rq - insert a request into queue for execution
1470 * @rq: request to insert
1471 * @at_head: insert request at head or tail of queue
1472 *
1473 * Description:
1474 * Insert a fully prepared request at the back of the I/O scheduler queue
1475 * for execution and wait for completion.
1476 * Return: The blk_status_t result provided to blk_mq_end_request().
1477 */
1478blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1479{
1480 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1481 struct blk_rq_wait wait = {
1482 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1483 };
1484
1485 WARN_ON(irqs_disabled());
1486 WARN_ON(!blk_rq_is_passthrough(rq));
1487
1488 rq->end_io_data = &wait;
1489 rq->end_io = blk_end_sync_rq;
1490
1491 blk_account_io_start(rq);
1492 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1493 blk_mq_run_hw_queue(hctx, false);
1494
1495 if (blk_rq_is_poll(rq))
1496 blk_rq_poll_completion(rq, &wait.done);
1497 else
1498 blk_wait_io(&wait.done);
1499
1500 return wait.ret;
1501}
1502EXPORT_SYMBOL(blk_execute_rq);
1503
1504static void __blk_mq_requeue_request(struct request *rq)
1505{
1506 struct request_queue *q = rq->q;
1507
1508 blk_mq_put_driver_tag(rq);
1509
1510 trace_block_rq_requeue(rq);
1511 rq_qos_requeue(q, rq);
1512
1513 if (blk_mq_request_started(rq)) {
1514 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1515 rq->rq_flags &= ~RQF_TIMED_OUT;
1516 }
1517}
1518
1519void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1520{
1521 struct request_queue *q = rq->q;
1522 unsigned long flags;
1523
1524 __blk_mq_requeue_request(rq);
1525
1526 /* this request will be re-inserted to io scheduler queue */
1527 blk_mq_sched_requeue_request(rq);
1528
1529 spin_lock_irqsave(&q->requeue_lock, flags);
1530 list_add_tail(&rq->queuelist, &q->requeue_list);
1531 spin_unlock_irqrestore(&q->requeue_lock, flags);
1532
1533 if (kick_requeue_list)
1534 blk_mq_kick_requeue_list(q);
1535}
1536EXPORT_SYMBOL(blk_mq_requeue_request);
1537
1538static void blk_mq_requeue_work(struct work_struct *work)
1539{
1540 struct request_queue *q =
1541 container_of(work, struct request_queue, requeue_work.work);
1542 LIST_HEAD(rq_list);
1543 LIST_HEAD(flush_list);
1544 struct request *rq;
1545
1546 spin_lock_irq(&q->requeue_lock);
1547 list_splice_init(&q->requeue_list, &rq_list);
1548 list_splice_init(&q->flush_list, &flush_list);
1549 spin_unlock_irq(&q->requeue_lock);
1550
1551 while (!list_empty(&rq_list)) {
1552 rq = list_entry(rq_list.next, struct request, queuelist);
1553 list_del_init(&rq->queuelist);
1554 /*
1555 * If RQF_DONTPREP is set, the request has been started by the
1556 * driver already and might have driver-specific data allocated
1557 * already. Insert it into the hctx dispatch list to avoid
1558 * block layer merges for the request.
1559 */
1560 if (rq->rq_flags & RQF_DONTPREP)
1561 blk_mq_request_bypass_insert(rq, 0);
1562 else
1563 blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1564 }
1565
1566 while (!list_empty(&flush_list)) {
1567 rq = list_entry(flush_list.next, struct request, queuelist);
1568 list_del_init(&rq->queuelist);
1569 blk_mq_insert_request(rq, 0);
1570 }
1571
1572 blk_mq_run_hw_queues(q, false);
1573}
1574
1575void blk_mq_kick_requeue_list(struct request_queue *q)
1576{
1577 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1578}
1579EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1580
1581void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1582 unsigned long msecs)
1583{
1584 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1585 msecs_to_jiffies(msecs));
1586}
1587EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1588
1589static bool blk_is_flush_data_rq(struct request *rq)
1590{
1591 return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1592}
1593
1594static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1595{
1596 /*
1597 * If we find a request that isn't idle we know the queue is busy
1598 * as it's checked in the iter.
1599 * Return false to stop the iteration.
1600 *
1601 * In case of queue quiesce, if one flush data request is completed,
1602 * don't count it as inflight given the flush sequence is suspended,
1603 * and the original flush data request is invisible to driver, just
1604 * like other pending requests because of quiesce
1605 */
1606 if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1607 blk_is_flush_data_rq(rq) &&
1608 blk_mq_request_completed(rq))) {
1609 bool *busy = priv;
1610
1611 *busy = true;
1612 return false;
1613 }
1614
1615 return true;
1616}
1617
1618bool blk_mq_queue_inflight(struct request_queue *q)
1619{
1620 bool busy = false;
1621
1622 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1623 return busy;
1624}
1625EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1626
1627static void blk_mq_rq_timed_out(struct request *req)
1628{
1629 req->rq_flags |= RQF_TIMED_OUT;
1630 if (req->q->mq_ops->timeout) {
1631 enum blk_eh_timer_return ret;
1632
1633 ret = req->q->mq_ops->timeout(req);
1634 if (ret == BLK_EH_DONE)
1635 return;
1636 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1637 }
1638
1639 blk_add_timer(req);
1640}
1641
1642struct blk_expired_data {
1643 bool has_timedout_rq;
1644 unsigned long next;
1645 unsigned long timeout_start;
1646};
1647
1648static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1649{
1650 unsigned long deadline;
1651
1652 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1653 return false;
1654 if (rq->rq_flags & RQF_TIMED_OUT)
1655 return false;
1656
1657 deadline = READ_ONCE(rq->deadline);
1658 if (time_after_eq(expired->timeout_start, deadline))
1659 return true;
1660
1661 if (expired->next == 0)
1662 expired->next = deadline;
1663 else if (time_after(expired->next, deadline))
1664 expired->next = deadline;
1665 return false;
1666}
1667
1668void blk_mq_put_rq_ref(struct request *rq)
1669{
1670 if (is_flush_rq(rq)) {
1671 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1672 blk_mq_free_request(rq);
1673 } else if (req_ref_put_and_test(rq)) {
1674 __blk_mq_free_request(rq);
1675 }
1676}
1677
1678static bool blk_mq_check_expired(struct request *rq, void *priv)
1679{
1680 struct blk_expired_data *expired = priv;
1681
1682 /*
1683 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1684 * be reallocated underneath the timeout handler's processing, then
1685 * the expire check is reliable. If the request is not expired, then
1686 * it was completed and reallocated as a new request after returning
1687 * from blk_mq_check_expired().
1688 */
1689 if (blk_mq_req_expired(rq, expired)) {
1690 expired->has_timedout_rq = true;
1691 return false;
1692 }
1693 return true;
1694}
1695
1696static bool blk_mq_handle_expired(struct request *rq, void *priv)
1697{
1698 struct blk_expired_data *expired = priv;
1699
1700 if (blk_mq_req_expired(rq, expired))
1701 blk_mq_rq_timed_out(rq);
1702 return true;
1703}
1704
1705static void blk_mq_timeout_work(struct work_struct *work)
1706{
1707 struct request_queue *q =
1708 container_of(work, struct request_queue, timeout_work);
1709 struct blk_expired_data expired = {
1710 .timeout_start = jiffies,
1711 };
1712 struct blk_mq_hw_ctx *hctx;
1713 unsigned long i;
1714
1715 /* A deadlock might occur if a request is stuck requiring a
1716 * timeout at the same time a queue freeze is waiting
1717 * completion, since the timeout code would not be able to
1718 * acquire the queue reference here.
1719 *
1720 * That's why we don't use blk_queue_enter here; instead, we use
1721 * percpu_ref_tryget directly, because we need to be able to
1722 * obtain a reference even in the short window between the queue
1723 * starting to freeze, by dropping the first reference in
1724 * blk_freeze_queue_start, and the moment the last request is
1725 * consumed, marked by the instant q_usage_counter reaches
1726 * zero.
1727 */
1728 if (!percpu_ref_tryget(&q->q_usage_counter))
1729 return;
1730
1731 /* check if there is any timed-out request */
1732 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1733 if (expired.has_timedout_rq) {
1734 /*
1735 * Before walking tags, we must ensure any submit started
1736 * before the current time has finished. Since the submit
1737 * uses srcu or rcu, wait for a synchronization point to
1738 * ensure all running submits have finished
1739 */
1740 blk_mq_wait_quiesce_done(q->tag_set);
1741
1742 expired.next = 0;
1743 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1744 }
1745
1746 if (expired.next != 0) {
1747 mod_timer(&q->timeout, expired.next);
1748 } else {
1749 /*
1750 * Request timeouts are handled as a forward rolling timer. If
1751 * we end up here it means that no requests are pending and
1752 * also that no request has been pending for a while. Mark
1753 * each hctx as idle.
1754 */
1755 queue_for_each_hw_ctx(q, hctx, i) {
1756 /* the hctx may be unmapped, so check it here */
1757 if (blk_mq_hw_queue_mapped(hctx))
1758 blk_mq_tag_idle(hctx);
1759 }
1760 }
1761 blk_queue_exit(q);
1762}
1763
1764struct flush_busy_ctx_data {
1765 struct blk_mq_hw_ctx *hctx;
1766 struct list_head *list;
1767};
1768
1769static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1770{
1771 struct flush_busy_ctx_data *flush_data = data;
1772 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1773 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1774 enum hctx_type type = hctx->type;
1775
1776 spin_lock(&ctx->lock);
1777 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1778 sbitmap_clear_bit(sb, bitnr);
1779 spin_unlock(&ctx->lock);
1780 return true;
1781}
1782
1783/*
1784 * Process software queues that have been marked busy, splicing them
1785 * to the for-dispatch
1786 */
1787void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1788{
1789 struct flush_busy_ctx_data data = {
1790 .hctx = hctx,
1791 .list = list,
1792 };
1793
1794 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1795}
1796
1797struct dispatch_rq_data {
1798 struct blk_mq_hw_ctx *hctx;
1799 struct request *rq;
1800};
1801
1802static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1803 void *data)
1804{
1805 struct dispatch_rq_data *dispatch_data = data;
1806 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1807 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1808 enum hctx_type type = hctx->type;
1809
1810 spin_lock(&ctx->lock);
1811 if (!list_empty(&ctx->rq_lists[type])) {
1812 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1813 list_del_init(&dispatch_data->rq->queuelist);
1814 if (list_empty(&ctx->rq_lists[type]))
1815 sbitmap_clear_bit(sb, bitnr);
1816 }
1817 spin_unlock(&ctx->lock);
1818
1819 return !dispatch_data->rq;
1820}
1821
1822struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1823 struct blk_mq_ctx *start)
1824{
1825 unsigned off = start ? start->index_hw[hctx->type] : 0;
1826 struct dispatch_rq_data data = {
1827 .hctx = hctx,
1828 .rq = NULL,
1829 };
1830
1831 __sbitmap_for_each_set(&hctx->ctx_map, off,
1832 dispatch_rq_from_ctx, &data);
1833
1834 return data.rq;
1835}
1836
1837bool __blk_mq_alloc_driver_tag(struct request *rq)
1838{
1839 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1840 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1841 int tag;
1842
1843 blk_mq_tag_busy(rq->mq_hctx);
1844
1845 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1846 bt = &rq->mq_hctx->tags->breserved_tags;
1847 tag_offset = 0;
1848 } else {
1849 if (!hctx_may_queue(rq->mq_hctx, bt))
1850 return false;
1851 }
1852
1853 tag = __sbitmap_queue_get(bt);
1854 if (tag == BLK_MQ_NO_TAG)
1855 return false;
1856
1857 rq->tag = tag + tag_offset;
1858 blk_mq_inc_active_requests(rq->mq_hctx);
1859 return true;
1860}
1861
1862static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1863 int flags, void *key)
1864{
1865 struct blk_mq_hw_ctx *hctx;
1866
1867 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1868
1869 spin_lock(&hctx->dispatch_wait_lock);
1870 if (!list_empty(&wait->entry)) {
1871 struct sbitmap_queue *sbq;
1872
1873 list_del_init(&wait->entry);
1874 sbq = &hctx->tags->bitmap_tags;
1875 atomic_dec(&sbq->ws_active);
1876 }
1877 spin_unlock(&hctx->dispatch_wait_lock);
1878
1879 blk_mq_run_hw_queue(hctx, true);
1880 return 1;
1881}
1882
1883/*
1884 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1885 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1886 * restart. For both cases, take care to check the condition again after
1887 * marking us as waiting.
1888 */
1889static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1890 struct request *rq)
1891{
1892 struct sbitmap_queue *sbq;
1893 struct wait_queue_head *wq;
1894 wait_queue_entry_t *wait;
1895 bool ret;
1896
1897 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1898 !(blk_mq_is_shared_tags(hctx->flags))) {
1899 blk_mq_sched_mark_restart_hctx(hctx);
1900
1901 /*
1902 * It's possible that a tag was freed in the window between the
1903 * allocation failure and adding the hardware queue to the wait
1904 * queue.
1905 *
1906 * Don't clear RESTART here, someone else could have set it.
1907 * At most this will cost an extra queue run.
1908 */
1909 return blk_mq_get_driver_tag(rq);
1910 }
1911
1912 wait = &hctx->dispatch_wait;
1913 if (!list_empty_careful(&wait->entry))
1914 return false;
1915
1916 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1917 sbq = &hctx->tags->breserved_tags;
1918 else
1919 sbq = &hctx->tags->bitmap_tags;
1920 wq = &bt_wait_ptr(sbq, hctx)->wait;
1921
1922 spin_lock_irq(&wq->lock);
1923 spin_lock(&hctx->dispatch_wait_lock);
1924 if (!list_empty(&wait->entry)) {
1925 spin_unlock(&hctx->dispatch_wait_lock);
1926 spin_unlock_irq(&wq->lock);
1927 return false;
1928 }
1929
1930 atomic_inc(&sbq->ws_active);
1931 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1932 __add_wait_queue(wq, wait);
1933
1934 /*
1935 * Add one explicit barrier since blk_mq_get_driver_tag() may
1936 * not imply barrier in case of failure.
1937 *
1938 * Order adding us to wait queue and allocating driver tag.
1939 *
1940 * The pair is the one implied in sbitmap_queue_wake_up() which
1941 * orders clearing sbitmap tag bits and waitqueue_active() in
1942 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1943 *
1944 * Otherwise, re-order of adding wait queue and getting driver tag
1945 * may cause __sbitmap_queue_wake_up() to wake up nothing because
1946 * the waitqueue_active() may not observe us in wait queue.
1947 */
1948 smp_mb();
1949
1950 /*
1951 * It's possible that a tag was freed in the window between the
1952 * allocation failure and adding the hardware queue to the wait
1953 * queue.
1954 */
1955 ret = blk_mq_get_driver_tag(rq);
1956 if (!ret) {
1957 spin_unlock(&hctx->dispatch_wait_lock);
1958 spin_unlock_irq(&wq->lock);
1959 return false;
1960 }
1961
1962 /*
1963 * We got a tag, remove ourselves from the wait queue to ensure
1964 * someone else gets the wakeup.
1965 */
1966 list_del_init(&wait->entry);
1967 atomic_dec(&sbq->ws_active);
1968 spin_unlock(&hctx->dispatch_wait_lock);
1969 spin_unlock_irq(&wq->lock);
1970
1971 return true;
1972}
1973
1974#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1975#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1976/*
1977 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1978 * - EWMA is one simple way to compute running average value
1979 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1980 * - take 4 as factor for avoiding to get too small(0) result, and this
1981 * factor doesn't matter because EWMA decreases exponentially
1982 */
1983static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1984{
1985 unsigned int ewma;
1986
1987 ewma = hctx->dispatch_busy;
1988
1989 if (!ewma && !busy)
1990 return;
1991
1992 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1993 if (busy)
1994 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1995 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1996
1997 hctx->dispatch_busy = ewma;
1998}
1999
2000#define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
2001
2002static void blk_mq_handle_dev_resource(struct request *rq,
2003 struct list_head *list)
2004{
2005 list_add(&rq->queuelist, list);
2006 __blk_mq_requeue_request(rq);
2007}
2008
2009enum prep_dispatch {
2010 PREP_DISPATCH_OK,
2011 PREP_DISPATCH_NO_TAG,
2012 PREP_DISPATCH_NO_BUDGET,
2013};
2014
2015static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
2016 bool need_budget)
2017{
2018 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2019 int budget_token = -1;
2020
2021 if (need_budget) {
2022 budget_token = blk_mq_get_dispatch_budget(rq->q);
2023 if (budget_token < 0) {
2024 blk_mq_put_driver_tag(rq);
2025 return PREP_DISPATCH_NO_BUDGET;
2026 }
2027 blk_mq_set_rq_budget_token(rq, budget_token);
2028 }
2029
2030 if (!blk_mq_get_driver_tag(rq)) {
2031 /*
2032 * The initial allocation attempt failed, so we need to
2033 * rerun the hardware queue when a tag is freed. The
2034 * waitqueue takes care of that. If the queue is run
2035 * before we add this entry back on the dispatch list,
2036 * we'll re-run it below.
2037 */
2038 if (!blk_mq_mark_tag_wait(hctx, rq)) {
2039 /*
2040 * All budgets not got from this function will be put
2041 * together during handling partial dispatch
2042 */
2043 if (need_budget)
2044 blk_mq_put_dispatch_budget(rq->q, budget_token);
2045 return PREP_DISPATCH_NO_TAG;
2046 }
2047 }
2048
2049 return PREP_DISPATCH_OK;
2050}
2051
2052/* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
2053static void blk_mq_release_budgets(struct request_queue *q,
2054 struct list_head *list)
2055{
2056 struct request *rq;
2057
2058 list_for_each_entry(rq, list, queuelist) {
2059 int budget_token = blk_mq_get_rq_budget_token(rq);
2060
2061 if (budget_token >= 0)
2062 blk_mq_put_dispatch_budget(q, budget_token);
2063 }
2064}
2065
2066/*
2067 * blk_mq_commit_rqs will notify driver using bd->last that there is no
2068 * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2069 * details)
2070 * Attention, we should explicitly call this in unusual cases:
2071 * 1) did not queue everything initially scheduled to queue
2072 * 2) the last attempt to queue a request failed
2073 */
2074static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2075 bool from_schedule)
2076{
2077 if (hctx->queue->mq_ops->commit_rqs && queued) {
2078 trace_block_unplug(hctx->queue, queued, !from_schedule);
2079 hctx->queue->mq_ops->commit_rqs(hctx);
2080 }
2081}
2082
2083/*
2084 * Returns true if we did some work AND can potentially do more.
2085 */
2086bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2087 bool get_budget)
2088{
2089 enum prep_dispatch prep;
2090 struct request_queue *q = hctx->queue;
2091 struct request *rq;
2092 int queued;
2093 blk_status_t ret = BLK_STS_OK;
2094 bool needs_resource = false;
2095
2096 if (list_empty(list))
2097 return false;
2098
2099 /*
2100 * Now process all the entries, sending them to the driver.
2101 */
2102 queued = 0;
2103 do {
2104 struct blk_mq_queue_data bd;
2105
2106 rq = list_first_entry(list, struct request, queuelist);
2107
2108 WARN_ON_ONCE(hctx != rq->mq_hctx);
2109 prep = blk_mq_prep_dispatch_rq(rq, get_budget);
2110 if (prep != PREP_DISPATCH_OK)
2111 break;
2112
2113 list_del_init(&rq->queuelist);
2114
2115 bd.rq = rq;
2116 bd.last = list_empty(list);
2117
2118 ret = q->mq_ops->queue_rq(hctx, &bd);
2119 switch (ret) {
2120 case BLK_STS_OK:
2121 queued++;
2122 break;
2123 case BLK_STS_RESOURCE:
2124 needs_resource = true;
2125 fallthrough;
2126 case BLK_STS_DEV_RESOURCE:
2127 blk_mq_handle_dev_resource(rq, list);
2128 goto out;
2129 default:
2130 blk_mq_end_request(rq, ret);
2131 }
2132 } while (!list_empty(list));
2133out:
2134 /* If we didn't flush the entire list, we could have told the driver
2135 * there was more coming, but that turned out to be a lie.
2136 */
2137 if (!list_empty(list) || ret != BLK_STS_OK)
2138 blk_mq_commit_rqs(hctx, queued, false);
2139
2140 /*
2141 * Any items that need requeuing? Stuff them into hctx->dispatch,
2142 * that is where we will continue on next queue run.
2143 */
2144 if (!list_empty(list)) {
2145 bool needs_restart;
2146 /* For non-shared tags, the RESTART check will suffice */
2147 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2148 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2149 blk_mq_is_shared_tags(hctx->flags));
2150
2151 /*
2152 * If the caller allocated budgets, free the budgets of the
2153 * requests that have not yet been passed to the block driver.
2154 */
2155 if (!get_budget)
2156 blk_mq_release_budgets(q, list);
2157
2158 spin_lock(&hctx->lock);
2159 list_splice_tail_init(list, &hctx->dispatch);
2160 spin_unlock(&hctx->lock);
2161
2162 /*
2163 * Order adding requests to hctx->dispatch and checking
2164 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2165 * in blk_mq_sched_restart(). Avoid restart code path to
2166 * miss the new added requests to hctx->dispatch, meantime
2167 * SCHED_RESTART is observed here.
2168 */
2169 smp_mb();
2170
2171 /*
2172 * If SCHED_RESTART was set by the caller of this function and
2173 * it is no longer set that means that it was cleared by another
2174 * thread and hence that a queue rerun is needed.
2175 *
2176 * If 'no_tag' is set, that means that we failed getting
2177 * a driver tag with an I/O scheduler attached. If our dispatch
2178 * waitqueue is no longer active, ensure that we run the queue
2179 * AFTER adding our entries back to the list.
2180 *
2181 * If no I/O scheduler has been configured it is possible that
2182 * the hardware queue got stopped and restarted before requests
2183 * were pushed back onto the dispatch list. Rerun the queue to
2184 * avoid starvation. Notes:
2185 * - blk_mq_run_hw_queue() checks whether or not a queue has
2186 * been stopped before rerunning a queue.
2187 * - Some but not all block drivers stop a queue before
2188 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2189 * and dm-rq.
2190 *
2191 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2192 * bit is set, run queue after a delay to avoid IO stalls
2193 * that could otherwise occur if the queue is idle. We'll do
2194 * similar if we couldn't get budget or couldn't lock a zone
2195 * and SCHED_RESTART is set.
2196 */
2197 needs_restart = blk_mq_sched_needs_restart(hctx);
2198 if (prep == PREP_DISPATCH_NO_BUDGET)
2199 needs_resource = true;
2200 if (!needs_restart ||
2201 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2202 blk_mq_run_hw_queue(hctx, true);
2203 else if (needs_resource)
2204 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2205
2206 blk_mq_update_dispatch_busy(hctx, true);
2207 return false;
2208 }
2209
2210 blk_mq_update_dispatch_busy(hctx, false);
2211 return true;
2212}
2213
2214static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2215{
2216 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2217
2218 if (cpu >= nr_cpu_ids)
2219 cpu = cpumask_first(hctx->cpumask);
2220 return cpu;
2221}
2222
2223/*
2224 * ->next_cpu is always calculated from hctx->cpumask, so simply use
2225 * it for speeding up the check
2226 */
2227static bool blk_mq_hctx_empty_cpumask(struct blk_mq_hw_ctx *hctx)
2228{
2229 return hctx->next_cpu >= nr_cpu_ids;
2230}
2231
2232/*
2233 * It'd be great if the workqueue API had a way to pass
2234 * in a mask and had some smarts for more clever placement.
2235 * For now we just round-robin here, switching for every
2236 * BLK_MQ_CPU_WORK_BATCH queued items.
2237 */
2238static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2239{
2240 bool tried = false;
2241 int next_cpu = hctx->next_cpu;
2242
2243 /* Switch to unbound if no allowable CPUs in this hctx */
2244 if (hctx->queue->nr_hw_queues == 1 || blk_mq_hctx_empty_cpumask(hctx))
2245 return WORK_CPU_UNBOUND;
2246
2247 if (--hctx->next_cpu_batch <= 0) {
2248select_cpu:
2249 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2250 cpu_online_mask);
2251 if (next_cpu >= nr_cpu_ids)
2252 next_cpu = blk_mq_first_mapped_cpu(hctx);
2253 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2254 }
2255
2256 /*
2257 * Do unbound schedule if we can't find a online CPU for this hctx,
2258 * and it should only happen in the path of handling CPU DEAD.
2259 */
2260 if (!cpu_online(next_cpu)) {
2261 if (!tried) {
2262 tried = true;
2263 goto select_cpu;
2264 }
2265
2266 /*
2267 * Make sure to re-select CPU next time once after CPUs
2268 * in hctx->cpumask become online again.
2269 */
2270 hctx->next_cpu = next_cpu;
2271 hctx->next_cpu_batch = 1;
2272 return WORK_CPU_UNBOUND;
2273 }
2274
2275 hctx->next_cpu = next_cpu;
2276 return next_cpu;
2277}
2278
2279/**
2280 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2281 * @hctx: Pointer to the hardware queue to run.
2282 * @msecs: Milliseconds of delay to wait before running the queue.
2283 *
2284 * Run a hardware queue asynchronously with a delay of @msecs.
2285 */
2286void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2287{
2288 if (unlikely(blk_mq_hctx_stopped(hctx)))
2289 return;
2290 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2291 msecs_to_jiffies(msecs));
2292}
2293EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2294
2295static inline bool blk_mq_hw_queue_need_run(struct blk_mq_hw_ctx *hctx)
2296{
2297 bool need_run;
2298
2299 /*
2300 * When queue is quiesced, we may be switching io scheduler, or
2301 * updating nr_hw_queues, or other things, and we can't run queue
2302 * any more, even blk_mq_hctx_has_pending() can't be called safely.
2303 *
2304 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2305 * quiesced.
2306 */
2307 __blk_mq_run_dispatch_ops(hctx->queue, false,
2308 need_run = !blk_queue_quiesced(hctx->queue) &&
2309 blk_mq_hctx_has_pending(hctx));
2310 return need_run;
2311}
2312
2313/**
2314 * blk_mq_run_hw_queue - Start to run a hardware queue.
2315 * @hctx: Pointer to the hardware queue to run.
2316 * @async: If we want to run the queue asynchronously.
2317 *
2318 * Check if the request queue is not in a quiesced state and if there are
2319 * pending requests to be sent. If this is true, run the queue to send requests
2320 * to hardware.
2321 */
2322void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2323{
2324 bool need_run;
2325
2326 /*
2327 * We can't run the queue inline with interrupts disabled.
2328 */
2329 WARN_ON_ONCE(!async && in_interrupt());
2330
2331 might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2332
2333 need_run = blk_mq_hw_queue_need_run(hctx);
2334 if (!need_run) {
2335 unsigned long flags;
2336
2337 /*
2338 * Synchronize with blk_mq_unquiesce_queue(), because we check
2339 * if hw queue is quiesced locklessly above, we need the use
2340 * ->queue_lock to make sure we see the up-to-date status to
2341 * not miss rerunning the hw queue.
2342 */
2343 spin_lock_irqsave(&hctx->queue->queue_lock, flags);
2344 need_run = blk_mq_hw_queue_need_run(hctx);
2345 spin_unlock_irqrestore(&hctx->queue->queue_lock, flags);
2346
2347 if (!need_run)
2348 return;
2349 }
2350
2351 if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2352 blk_mq_delay_run_hw_queue(hctx, 0);
2353 return;
2354 }
2355
2356 blk_mq_run_dispatch_ops(hctx->queue,
2357 blk_mq_sched_dispatch_requests(hctx));
2358}
2359EXPORT_SYMBOL(blk_mq_run_hw_queue);
2360
2361/*
2362 * Return prefered queue to dispatch from (if any) for non-mq aware IO
2363 * scheduler.
2364 */
2365static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2366{
2367 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2368 /*
2369 * If the IO scheduler does not respect hardware queues when
2370 * dispatching, we just don't bother with multiple HW queues and
2371 * dispatch from hctx for the current CPU since running multiple queues
2372 * just causes lock contention inside the scheduler and pointless cache
2373 * bouncing.
2374 */
2375 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2376
2377 if (!blk_mq_hctx_stopped(hctx))
2378 return hctx;
2379 return NULL;
2380}
2381
2382/**
2383 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2384 * @q: Pointer to the request queue to run.
2385 * @async: If we want to run the queue asynchronously.
2386 */
2387void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2388{
2389 struct blk_mq_hw_ctx *hctx, *sq_hctx;
2390 unsigned long i;
2391
2392 sq_hctx = NULL;
2393 if (blk_queue_sq_sched(q))
2394 sq_hctx = blk_mq_get_sq_hctx(q);
2395 queue_for_each_hw_ctx(q, hctx, i) {
2396 if (blk_mq_hctx_stopped(hctx))
2397 continue;
2398 /*
2399 * Dispatch from this hctx either if there's no hctx preferred
2400 * by IO scheduler or if it has requests that bypass the
2401 * scheduler.
2402 */
2403 if (!sq_hctx || sq_hctx == hctx ||
2404 !list_empty_careful(&hctx->dispatch))
2405 blk_mq_run_hw_queue(hctx, async);
2406 }
2407}
2408EXPORT_SYMBOL(blk_mq_run_hw_queues);
2409
2410/**
2411 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2412 * @q: Pointer to the request queue to run.
2413 * @msecs: Milliseconds of delay to wait before running the queues.
2414 */
2415void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2416{
2417 struct blk_mq_hw_ctx *hctx, *sq_hctx;
2418 unsigned long i;
2419
2420 sq_hctx = NULL;
2421 if (blk_queue_sq_sched(q))
2422 sq_hctx = blk_mq_get_sq_hctx(q);
2423 queue_for_each_hw_ctx(q, hctx, i) {
2424 if (blk_mq_hctx_stopped(hctx))
2425 continue;
2426 /*
2427 * If there is already a run_work pending, leave the
2428 * pending delay untouched. Otherwise, a hctx can stall
2429 * if another hctx is re-delaying the other's work
2430 * before the work executes.
2431 */
2432 if (delayed_work_pending(&hctx->run_work))
2433 continue;
2434 /*
2435 * Dispatch from this hctx either if there's no hctx preferred
2436 * by IO scheduler or if it has requests that bypass the
2437 * scheduler.
2438 */
2439 if (!sq_hctx || sq_hctx == hctx ||
2440 !list_empty_careful(&hctx->dispatch))
2441 blk_mq_delay_run_hw_queue(hctx, msecs);
2442 }
2443}
2444EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2445
2446/*
2447 * This function is often used for pausing .queue_rq() by driver when
2448 * there isn't enough resource or some conditions aren't satisfied, and
2449 * BLK_STS_RESOURCE is usually returned.
2450 *
2451 * We do not guarantee that dispatch can be drained or blocked
2452 * after blk_mq_stop_hw_queue() returns. Please use
2453 * blk_mq_quiesce_queue() for that requirement.
2454 */
2455void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2456{
2457 cancel_delayed_work(&hctx->run_work);
2458
2459 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2460}
2461EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2462
2463/*
2464 * This function is often used for pausing .queue_rq() by driver when
2465 * there isn't enough resource or some conditions aren't satisfied, and
2466 * BLK_STS_RESOURCE is usually returned.
2467 *
2468 * We do not guarantee that dispatch can be drained or blocked
2469 * after blk_mq_stop_hw_queues() returns. Please use
2470 * blk_mq_quiesce_queue() for that requirement.
2471 */
2472void blk_mq_stop_hw_queues(struct request_queue *q)
2473{
2474 struct blk_mq_hw_ctx *hctx;
2475 unsigned long i;
2476
2477 queue_for_each_hw_ctx(q, hctx, i)
2478 blk_mq_stop_hw_queue(hctx);
2479}
2480EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2481
2482void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2483{
2484 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2485
2486 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2487}
2488EXPORT_SYMBOL(blk_mq_start_hw_queue);
2489
2490void blk_mq_start_hw_queues(struct request_queue *q)
2491{
2492 struct blk_mq_hw_ctx *hctx;
2493 unsigned long i;
2494
2495 queue_for_each_hw_ctx(q, hctx, i)
2496 blk_mq_start_hw_queue(hctx);
2497}
2498EXPORT_SYMBOL(blk_mq_start_hw_queues);
2499
2500void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2501{
2502 if (!blk_mq_hctx_stopped(hctx))
2503 return;
2504
2505 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2506 /*
2507 * Pairs with the smp_mb() in blk_mq_hctx_stopped() to order the
2508 * clearing of BLK_MQ_S_STOPPED above and the checking of dispatch
2509 * list in the subsequent routine.
2510 */
2511 smp_mb__after_atomic();
2512 blk_mq_run_hw_queue(hctx, async);
2513}
2514EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2515
2516void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2517{
2518 struct blk_mq_hw_ctx *hctx;
2519 unsigned long i;
2520
2521 queue_for_each_hw_ctx(q, hctx, i)
2522 blk_mq_start_stopped_hw_queue(hctx, async ||
2523 (hctx->flags & BLK_MQ_F_BLOCKING));
2524}
2525EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2526
2527static void blk_mq_run_work_fn(struct work_struct *work)
2528{
2529 struct blk_mq_hw_ctx *hctx =
2530 container_of(work, struct blk_mq_hw_ctx, run_work.work);
2531
2532 blk_mq_run_dispatch_ops(hctx->queue,
2533 blk_mq_sched_dispatch_requests(hctx));
2534}
2535
2536/**
2537 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2538 * @rq: Pointer to request to be inserted.
2539 * @flags: BLK_MQ_INSERT_*
2540 *
2541 * Should only be used carefully, when the caller knows we want to
2542 * bypass a potential IO scheduler on the target device.
2543 */
2544static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2545{
2546 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2547
2548 spin_lock(&hctx->lock);
2549 if (flags & BLK_MQ_INSERT_AT_HEAD)
2550 list_add(&rq->queuelist, &hctx->dispatch);
2551 else
2552 list_add_tail(&rq->queuelist, &hctx->dispatch);
2553 spin_unlock(&hctx->lock);
2554}
2555
2556static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2557 struct blk_mq_ctx *ctx, struct list_head *list,
2558 bool run_queue_async)
2559{
2560 struct request *rq;
2561 enum hctx_type type = hctx->type;
2562
2563 /*
2564 * Try to issue requests directly if the hw queue isn't busy to save an
2565 * extra enqueue & dequeue to the sw queue.
2566 */
2567 if (!hctx->dispatch_busy && !run_queue_async) {
2568 blk_mq_run_dispatch_ops(hctx->queue,
2569 blk_mq_try_issue_list_directly(hctx, list));
2570 if (list_empty(list))
2571 goto out;
2572 }
2573
2574 /*
2575 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2576 * offline now
2577 */
2578 list_for_each_entry(rq, list, queuelist) {
2579 BUG_ON(rq->mq_ctx != ctx);
2580 trace_block_rq_insert(rq);
2581 if (rq->cmd_flags & REQ_NOWAIT)
2582 run_queue_async = true;
2583 }
2584
2585 spin_lock(&ctx->lock);
2586 list_splice_tail_init(list, &ctx->rq_lists[type]);
2587 blk_mq_hctx_mark_pending(hctx, ctx);
2588 spin_unlock(&ctx->lock);
2589out:
2590 blk_mq_run_hw_queue(hctx, run_queue_async);
2591}
2592
2593static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2594{
2595 struct request_queue *q = rq->q;
2596 struct blk_mq_ctx *ctx = rq->mq_ctx;
2597 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2598
2599 if (blk_rq_is_passthrough(rq)) {
2600 /*
2601 * Passthrough request have to be added to hctx->dispatch
2602 * directly. The device may be in a situation where it can't
2603 * handle FS request, and always returns BLK_STS_RESOURCE for
2604 * them, which gets them added to hctx->dispatch.
2605 *
2606 * If a passthrough request is required to unblock the queues,
2607 * and it is added to the scheduler queue, there is no chance to
2608 * dispatch it given we prioritize requests in hctx->dispatch.
2609 */
2610 blk_mq_request_bypass_insert(rq, flags);
2611 } else if (req_op(rq) == REQ_OP_FLUSH) {
2612 /*
2613 * Firstly normal IO request is inserted to scheduler queue or
2614 * sw queue, meantime we add flush request to dispatch queue(
2615 * hctx->dispatch) directly and there is at most one in-flight
2616 * flush request for each hw queue, so it doesn't matter to add
2617 * flush request to tail or front of the dispatch queue.
2618 *
2619 * Secondly in case of NCQ, flush request belongs to non-NCQ
2620 * command, and queueing it will fail when there is any
2621 * in-flight normal IO request(NCQ command). When adding flush
2622 * rq to the front of hctx->dispatch, it is easier to introduce
2623 * extra time to flush rq's latency because of S_SCHED_RESTART
2624 * compared with adding to the tail of dispatch queue, then
2625 * chance of flush merge is increased, and less flush requests
2626 * will be issued to controller. It is observed that ~10% time
2627 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2628 * drive when adding flush rq to the front of hctx->dispatch.
2629 *
2630 * Simply queue flush rq to the front of hctx->dispatch so that
2631 * intensive flush workloads can benefit in case of NCQ HW.
2632 */
2633 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2634 } else if (q->elevator) {
2635 LIST_HEAD(list);
2636
2637 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2638
2639 list_add(&rq->queuelist, &list);
2640 q->elevator->type->ops.insert_requests(hctx, &list, flags);
2641 } else {
2642 trace_block_rq_insert(rq);
2643
2644 spin_lock(&ctx->lock);
2645 if (flags & BLK_MQ_INSERT_AT_HEAD)
2646 list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2647 else
2648 list_add_tail(&rq->queuelist,
2649 &ctx->rq_lists[hctx->type]);
2650 blk_mq_hctx_mark_pending(hctx, ctx);
2651 spin_unlock(&ctx->lock);
2652 }
2653}
2654
2655static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2656 unsigned int nr_segs)
2657{
2658 int err;
2659
2660 if (bio->bi_opf & REQ_RAHEAD)
2661 rq->cmd_flags |= REQ_FAILFAST_MASK;
2662
2663 rq->bio = rq->biotail = bio;
2664 rq->__sector = bio->bi_iter.bi_sector;
2665 rq->__data_len = bio->bi_iter.bi_size;
2666 rq->nr_phys_segments = nr_segs;
2667 if (bio_integrity(bio))
2668 rq->nr_integrity_segments = blk_rq_count_integrity_sg(rq->q,
2669 bio);
2670
2671 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2672 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2673 WARN_ON_ONCE(err);
2674
2675 blk_account_io_start(rq);
2676}
2677
2678static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2679 struct request *rq, bool last)
2680{
2681 struct request_queue *q = rq->q;
2682 struct blk_mq_queue_data bd = {
2683 .rq = rq,
2684 .last = last,
2685 };
2686 blk_status_t ret;
2687
2688 /*
2689 * For OK queue, we are done. For error, caller may kill it.
2690 * Any other error (busy), just add it to our list as we
2691 * previously would have done.
2692 */
2693 ret = q->mq_ops->queue_rq(hctx, &bd);
2694 switch (ret) {
2695 case BLK_STS_OK:
2696 blk_mq_update_dispatch_busy(hctx, false);
2697 break;
2698 case BLK_STS_RESOURCE:
2699 case BLK_STS_DEV_RESOURCE:
2700 blk_mq_update_dispatch_busy(hctx, true);
2701 __blk_mq_requeue_request(rq);
2702 break;
2703 default:
2704 blk_mq_update_dispatch_busy(hctx, false);
2705 break;
2706 }
2707
2708 return ret;
2709}
2710
2711static bool blk_mq_get_budget_and_tag(struct request *rq)
2712{
2713 int budget_token;
2714
2715 budget_token = blk_mq_get_dispatch_budget(rq->q);
2716 if (budget_token < 0)
2717 return false;
2718 blk_mq_set_rq_budget_token(rq, budget_token);
2719 if (!blk_mq_get_driver_tag(rq)) {
2720 blk_mq_put_dispatch_budget(rq->q, budget_token);
2721 return false;
2722 }
2723 return true;
2724}
2725
2726/**
2727 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2728 * @hctx: Pointer of the associated hardware queue.
2729 * @rq: Pointer to request to be sent.
2730 *
2731 * If the device has enough resources to accept a new request now, send the
2732 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2733 * we can try send it another time in the future. Requests inserted at this
2734 * queue have higher priority.
2735 */
2736static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2737 struct request *rq)
2738{
2739 blk_status_t ret;
2740
2741 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2742 blk_mq_insert_request(rq, 0);
2743 blk_mq_run_hw_queue(hctx, false);
2744 return;
2745 }
2746
2747 if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2748 blk_mq_insert_request(rq, 0);
2749 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2750 return;
2751 }
2752
2753 ret = __blk_mq_issue_directly(hctx, rq, true);
2754 switch (ret) {
2755 case BLK_STS_OK:
2756 break;
2757 case BLK_STS_RESOURCE:
2758 case BLK_STS_DEV_RESOURCE:
2759 blk_mq_request_bypass_insert(rq, 0);
2760 blk_mq_run_hw_queue(hctx, false);
2761 break;
2762 default:
2763 blk_mq_end_request(rq, ret);
2764 break;
2765 }
2766}
2767
2768static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2769{
2770 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2771
2772 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2773 blk_mq_insert_request(rq, 0);
2774 blk_mq_run_hw_queue(hctx, false);
2775 return BLK_STS_OK;
2776 }
2777
2778 if (!blk_mq_get_budget_and_tag(rq))
2779 return BLK_STS_RESOURCE;
2780 return __blk_mq_issue_directly(hctx, rq, last);
2781}
2782
2783static void blk_mq_issue_direct(struct rq_list *rqs)
2784{
2785 struct blk_mq_hw_ctx *hctx = NULL;
2786 struct request *rq;
2787 int queued = 0;
2788 blk_status_t ret = BLK_STS_OK;
2789
2790 while ((rq = rq_list_pop(rqs))) {
2791 bool last = rq_list_empty(rqs);
2792
2793 if (hctx != rq->mq_hctx) {
2794 if (hctx) {
2795 blk_mq_commit_rqs(hctx, queued, false);
2796 queued = 0;
2797 }
2798 hctx = rq->mq_hctx;
2799 }
2800
2801 ret = blk_mq_request_issue_directly(rq, last);
2802 switch (ret) {
2803 case BLK_STS_OK:
2804 queued++;
2805 break;
2806 case BLK_STS_RESOURCE:
2807 case BLK_STS_DEV_RESOURCE:
2808 blk_mq_request_bypass_insert(rq, 0);
2809 blk_mq_run_hw_queue(hctx, false);
2810 goto out;
2811 default:
2812 blk_mq_end_request(rq, ret);
2813 break;
2814 }
2815 }
2816
2817out:
2818 if (ret != BLK_STS_OK)
2819 blk_mq_commit_rqs(hctx, queued, false);
2820}
2821
2822static void __blk_mq_flush_list(struct request_queue *q, struct rq_list *rqs)
2823{
2824 if (blk_queue_quiesced(q))
2825 return;
2826 q->mq_ops->queue_rqs(rqs);
2827}
2828
2829static unsigned blk_mq_extract_queue_requests(struct rq_list *rqs,
2830 struct rq_list *queue_rqs)
2831{
2832 struct request *rq = rq_list_pop(rqs);
2833 struct request_queue *this_q = rq->q;
2834 struct request **prev = &rqs->head;
2835 struct rq_list matched_rqs = {};
2836 struct request *last = NULL;
2837 unsigned depth = 1;
2838
2839 rq_list_add_tail(&matched_rqs, rq);
2840 while ((rq = *prev)) {
2841 if (rq->q == this_q) {
2842 /* move rq from rqs to matched_rqs */
2843 *prev = rq->rq_next;
2844 rq_list_add_tail(&matched_rqs, rq);
2845 depth++;
2846 } else {
2847 /* leave rq in rqs */
2848 prev = &rq->rq_next;
2849 last = rq;
2850 }
2851 }
2852
2853 rqs->tail = last;
2854 *queue_rqs = matched_rqs;
2855 return depth;
2856}
2857
2858static void blk_mq_dispatch_queue_requests(struct rq_list *rqs, unsigned depth)
2859{
2860 struct request_queue *q = rq_list_peek(rqs)->q;
2861
2862 trace_block_unplug(q, depth, true);
2863
2864 /*
2865 * Peek first request and see if we have a ->queue_rqs() hook.
2866 * If we do, we can dispatch the whole list in one go.
2867 * We already know at this point that all requests belong to the
2868 * same queue, caller must ensure that's the case.
2869 */
2870 if (q->mq_ops->queue_rqs) {
2871 blk_mq_run_dispatch_ops(q, __blk_mq_flush_list(q, rqs));
2872 if (rq_list_empty(rqs))
2873 return;
2874 }
2875
2876 blk_mq_run_dispatch_ops(q, blk_mq_issue_direct(rqs));
2877}
2878
2879static void blk_mq_dispatch_list(struct rq_list *rqs, bool from_sched)
2880{
2881 struct blk_mq_hw_ctx *this_hctx = NULL;
2882 struct blk_mq_ctx *this_ctx = NULL;
2883 struct rq_list requeue_list = {};
2884 unsigned int depth = 0;
2885 bool is_passthrough = false;
2886 LIST_HEAD(list);
2887
2888 do {
2889 struct request *rq = rq_list_pop(rqs);
2890
2891 if (!this_hctx) {
2892 this_hctx = rq->mq_hctx;
2893 this_ctx = rq->mq_ctx;
2894 is_passthrough = blk_rq_is_passthrough(rq);
2895 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2896 is_passthrough != blk_rq_is_passthrough(rq)) {
2897 rq_list_add_tail(&requeue_list, rq);
2898 continue;
2899 }
2900 list_add_tail(&rq->queuelist, &list);
2901 depth++;
2902 } while (!rq_list_empty(rqs));
2903
2904 *rqs = requeue_list;
2905 trace_block_unplug(this_hctx->queue, depth, !from_sched);
2906
2907 percpu_ref_get(&this_hctx->queue->q_usage_counter);
2908 /* passthrough requests should never be issued to the I/O scheduler */
2909 if (is_passthrough) {
2910 spin_lock(&this_hctx->lock);
2911 list_splice_tail_init(&list, &this_hctx->dispatch);
2912 spin_unlock(&this_hctx->lock);
2913 blk_mq_run_hw_queue(this_hctx, from_sched);
2914 } else if (this_hctx->queue->elevator) {
2915 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2916 &list, 0);
2917 blk_mq_run_hw_queue(this_hctx, from_sched);
2918 } else {
2919 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2920 }
2921 percpu_ref_put(&this_hctx->queue->q_usage_counter);
2922}
2923
2924static void blk_mq_dispatch_multiple_queue_requests(struct rq_list *rqs)
2925{
2926 do {
2927 struct rq_list queue_rqs;
2928 unsigned depth;
2929
2930 depth = blk_mq_extract_queue_requests(rqs, &queue_rqs);
2931 blk_mq_dispatch_queue_requests(&queue_rqs, depth);
2932 while (!rq_list_empty(&queue_rqs))
2933 blk_mq_dispatch_list(&queue_rqs, false);
2934 } while (!rq_list_empty(rqs));
2935}
2936
2937void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2938{
2939 unsigned int depth;
2940
2941 /*
2942 * We may have been called recursively midway through handling
2943 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2944 * To avoid mq_list changing under our feet, clear rq_count early and
2945 * bail out specifically if rq_count is 0 rather than checking
2946 * whether the mq_list is empty.
2947 */
2948 if (plug->rq_count == 0)
2949 return;
2950 depth = plug->rq_count;
2951 plug->rq_count = 0;
2952
2953 if (!plug->has_elevator && !from_schedule) {
2954 if (plug->multiple_queues) {
2955 blk_mq_dispatch_multiple_queue_requests(&plug->mq_list);
2956 return;
2957 }
2958
2959 blk_mq_dispatch_queue_requests(&plug->mq_list, depth);
2960 if (rq_list_empty(&plug->mq_list))
2961 return;
2962 }
2963
2964 do {
2965 blk_mq_dispatch_list(&plug->mq_list, from_schedule);
2966 } while (!rq_list_empty(&plug->mq_list));
2967}
2968
2969static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2970 struct list_head *list)
2971{
2972 int queued = 0;
2973 blk_status_t ret = BLK_STS_OK;
2974
2975 while (!list_empty(list)) {
2976 struct request *rq = list_first_entry(list, struct request,
2977 queuelist);
2978
2979 list_del_init(&rq->queuelist);
2980 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2981 switch (ret) {
2982 case BLK_STS_OK:
2983 queued++;
2984 break;
2985 case BLK_STS_RESOURCE:
2986 case BLK_STS_DEV_RESOURCE:
2987 blk_mq_request_bypass_insert(rq, 0);
2988 if (list_empty(list))
2989 blk_mq_run_hw_queue(hctx, false);
2990 goto out;
2991 default:
2992 blk_mq_end_request(rq, ret);
2993 break;
2994 }
2995 }
2996
2997out:
2998 if (ret != BLK_STS_OK)
2999 blk_mq_commit_rqs(hctx, queued, false);
3000}
3001
3002static bool blk_mq_attempt_bio_merge(struct request_queue *q,
3003 struct bio *bio, unsigned int nr_segs)
3004{
3005 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
3006 if (blk_attempt_plug_merge(q, bio, nr_segs))
3007 return true;
3008 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
3009 return true;
3010 }
3011 return false;
3012}
3013
3014static struct request *blk_mq_get_new_requests(struct request_queue *q,
3015 struct blk_plug *plug,
3016 struct bio *bio)
3017{
3018 struct blk_mq_alloc_data data = {
3019 .q = q,
3020 .flags = 0,
3021 .shallow_depth = 0,
3022 .cmd_flags = bio->bi_opf,
3023 .rq_flags = 0,
3024 .nr_tags = 1,
3025 .cached_rqs = NULL,
3026 .ctx = NULL,
3027 .hctx = NULL
3028 };
3029 struct request *rq;
3030
3031 rq_qos_throttle(q, bio);
3032
3033 if (plug) {
3034 data.nr_tags = plug->nr_ios;
3035 plug->nr_ios = 1;
3036 data.cached_rqs = &plug->cached_rqs;
3037 }
3038
3039 rq = __blk_mq_alloc_requests(&data);
3040 if (unlikely(!rq))
3041 rq_qos_cleanup(q, bio);
3042 return rq;
3043}
3044
3045/*
3046 * Check if there is a suitable cached request and return it.
3047 */
3048static struct request *blk_mq_peek_cached_request(struct blk_plug *plug,
3049 struct request_queue *q, blk_opf_t opf)
3050{
3051 enum hctx_type type = blk_mq_get_hctx_type(opf);
3052 struct request *rq;
3053
3054 if (!plug)
3055 return NULL;
3056 rq = rq_list_peek(&plug->cached_rqs);
3057 if (!rq || rq->q != q)
3058 return NULL;
3059 if (type != rq->mq_hctx->type &&
3060 (type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT))
3061 return NULL;
3062 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
3063 return NULL;
3064 return rq;
3065}
3066
3067static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug,
3068 struct bio *bio)
3069{
3070 if (rq_list_pop(&plug->cached_rqs) != rq)
3071 WARN_ON_ONCE(1);
3072
3073 /*
3074 * If any qos ->throttle() end up blocking, we will have flushed the
3075 * plug and hence killed the cached_rq list as well. Pop this entry
3076 * before we throttle.
3077 */
3078 rq_qos_throttle(rq->q, bio);
3079
3080 blk_mq_rq_time_init(rq, blk_time_get_ns());
3081 rq->cmd_flags = bio->bi_opf;
3082 INIT_LIST_HEAD(&rq->queuelist);
3083}
3084
3085static bool bio_unaligned(const struct bio *bio, struct request_queue *q)
3086{
3087 unsigned int bs_mask = queue_logical_block_size(q) - 1;
3088
3089 /* .bi_sector of any zero sized bio need to be initialized */
3090 if ((bio->bi_iter.bi_size & bs_mask) ||
3091 ((bio->bi_iter.bi_sector << SECTOR_SHIFT) & bs_mask))
3092 return true;
3093 return false;
3094}
3095
3096/**
3097 * blk_mq_submit_bio - Create and send a request to block device.
3098 * @bio: Bio pointer.
3099 *
3100 * Builds up a request structure from @q and @bio and send to the device. The
3101 * request may not be queued directly to hardware if:
3102 * * This request can be merged with another one
3103 * * We want to place request at plug queue for possible future merging
3104 * * There is an IO scheduler active at this queue
3105 *
3106 * It will not queue the request if there is an error with the bio, or at the
3107 * request creation.
3108 */
3109void blk_mq_submit_bio(struct bio *bio)
3110{
3111 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
3112 struct blk_plug *plug = current->plug;
3113 const int is_sync = op_is_sync(bio->bi_opf);
3114 struct blk_mq_hw_ctx *hctx;
3115 unsigned int nr_segs;
3116 struct request *rq;
3117 blk_status_t ret;
3118
3119 /*
3120 * If the plug has a cached request for this queue, try to use it.
3121 */
3122 rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf);
3123
3124 /*
3125 * A BIO that was released from a zone write plug has already been
3126 * through the preparation in this function, already holds a reference
3127 * on the queue usage counter, and is the only write BIO in-flight for
3128 * the target zone. Go straight to preparing a request for it.
3129 */
3130 if (bio_zone_write_plugging(bio)) {
3131 nr_segs = bio->__bi_nr_segments;
3132 if (rq)
3133 blk_queue_exit(q);
3134 goto new_request;
3135 }
3136
3137 /*
3138 * The cached request already holds a q_usage_counter reference and we
3139 * don't have to acquire a new one if we use it.
3140 */
3141 if (!rq) {
3142 if (unlikely(bio_queue_enter(bio)))
3143 return;
3144 }
3145
3146 /*
3147 * Device reconfiguration may change logical block size or reduce the
3148 * number of poll queues, so the checks for alignment and poll support
3149 * have to be done with queue usage counter held.
3150 */
3151 if (unlikely(bio_unaligned(bio, q))) {
3152 bio_io_error(bio);
3153 goto queue_exit;
3154 }
3155
3156 if ((bio->bi_opf & REQ_POLLED) && !blk_mq_can_poll(q)) {
3157 bio->bi_status = BLK_STS_NOTSUPP;
3158 bio_endio(bio);
3159 goto queue_exit;
3160 }
3161
3162 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
3163 if (!bio)
3164 goto queue_exit;
3165
3166 if (!bio_integrity_prep(bio))
3167 goto queue_exit;
3168
3169 if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
3170 goto queue_exit;
3171
3172 if (blk_queue_is_zoned(q) && blk_zone_plug_bio(bio, nr_segs))
3173 goto queue_exit;
3174
3175new_request:
3176 if (rq) {
3177 blk_mq_use_cached_rq(rq, plug, bio);
3178 } else {
3179 rq = blk_mq_get_new_requests(q, plug, bio);
3180 if (unlikely(!rq)) {
3181 if (bio->bi_opf & REQ_NOWAIT)
3182 bio_wouldblock_error(bio);
3183 goto queue_exit;
3184 }
3185 }
3186
3187 trace_block_getrq(bio);
3188
3189 rq_qos_track(q, rq, bio);
3190
3191 blk_mq_bio_to_request(rq, bio, nr_segs);
3192
3193 ret = blk_crypto_rq_get_keyslot(rq);
3194 if (ret != BLK_STS_OK) {
3195 bio->bi_status = ret;
3196 bio_endio(bio);
3197 blk_mq_free_request(rq);
3198 return;
3199 }
3200
3201 if (bio_zone_write_plugging(bio))
3202 blk_zone_write_plug_init_request(rq);
3203
3204 if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3205 return;
3206
3207 if (plug) {
3208 blk_add_rq_to_plug(plug, rq);
3209 return;
3210 }
3211
3212 hctx = rq->mq_hctx;
3213 if ((rq->rq_flags & RQF_USE_SCHED) ||
3214 (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3215 blk_mq_insert_request(rq, 0);
3216 blk_mq_run_hw_queue(hctx, true);
3217 } else {
3218 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3219 }
3220 return;
3221
3222queue_exit:
3223 /*
3224 * Don't drop the queue reference if we were trying to use a cached
3225 * request and thus didn't acquire one.
3226 */
3227 if (!rq)
3228 blk_queue_exit(q);
3229}
3230
3231#ifdef CONFIG_BLK_MQ_STACKING
3232/**
3233 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3234 * @rq: the request being queued
3235 */
3236blk_status_t blk_insert_cloned_request(struct request *rq)
3237{
3238 struct request_queue *q = rq->q;
3239 unsigned int max_sectors = blk_queue_get_max_sectors(rq);
3240 unsigned int max_segments = blk_rq_get_max_segments(rq);
3241 blk_status_t ret;
3242
3243 if (blk_rq_sectors(rq) > max_sectors) {
3244 /*
3245 * SCSI device does not have a good way to return if
3246 * Write Same/Zero is actually supported. If a device rejects
3247 * a non-read/write command (discard, write same,etc.) the
3248 * low-level device driver will set the relevant queue limit to
3249 * 0 to prevent blk-lib from issuing more of the offending
3250 * operations. Commands queued prior to the queue limit being
3251 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3252 * errors being propagated to upper layers.
3253 */
3254 if (max_sectors == 0)
3255 return BLK_STS_NOTSUPP;
3256
3257 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3258 __func__, blk_rq_sectors(rq), max_sectors);
3259 return BLK_STS_IOERR;
3260 }
3261
3262 /*
3263 * The queue settings related to segment counting may differ from the
3264 * original queue.
3265 */
3266 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3267 if (rq->nr_phys_segments > max_segments) {
3268 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3269 __func__, rq->nr_phys_segments, max_segments);
3270 return BLK_STS_IOERR;
3271 }
3272
3273 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3274 return BLK_STS_IOERR;
3275
3276 ret = blk_crypto_rq_get_keyslot(rq);
3277 if (ret != BLK_STS_OK)
3278 return ret;
3279
3280 blk_account_io_start(rq);
3281
3282 /*
3283 * Since we have a scheduler attached on the top device,
3284 * bypass a potential scheduler on the bottom device for
3285 * insert.
3286 */
3287 blk_mq_run_dispatch_ops(q,
3288 ret = blk_mq_request_issue_directly(rq, true));
3289 if (ret)
3290 blk_account_io_done(rq, blk_time_get_ns());
3291 return ret;
3292}
3293EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3294
3295/**
3296 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3297 * @rq: the clone request to be cleaned up
3298 *
3299 * Description:
3300 * Free all bios in @rq for a cloned request.
3301 */
3302void blk_rq_unprep_clone(struct request *rq)
3303{
3304 struct bio *bio;
3305
3306 while ((bio = rq->bio) != NULL) {
3307 rq->bio = bio->bi_next;
3308
3309 bio_put(bio);
3310 }
3311}
3312EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3313
3314/**
3315 * blk_rq_prep_clone - Helper function to setup clone request
3316 * @rq: the request to be setup
3317 * @rq_src: original request to be cloned
3318 * @bs: bio_set that bios for clone are allocated from
3319 * @gfp_mask: memory allocation mask for bio
3320 * @bio_ctr: setup function to be called for each clone bio.
3321 * Returns %0 for success, non %0 for failure.
3322 * @data: private data to be passed to @bio_ctr
3323 *
3324 * Description:
3325 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3326 * Also, pages which the original bios are pointing to are not copied
3327 * and the cloned bios just point same pages.
3328 * So cloned bios must be completed before original bios, which means
3329 * the caller must complete @rq before @rq_src.
3330 */
3331int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3332 struct bio_set *bs, gfp_t gfp_mask,
3333 int (*bio_ctr)(struct bio *, struct bio *, void *),
3334 void *data)
3335{
3336 struct bio *bio_src;
3337
3338 if (!bs)
3339 bs = &fs_bio_set;
3340
3341 __rq_for_each_bio(bio_src, rq_src) {
3342 struct bio *bio = bio_alloc_clone(rq->q->disk->part0, bio_src,
3343 gfp_mask, bs);
3344 if (!bio)
3345 goto free_and_out;
3346
3347 if (bio_ctr && bio_ctr(bio, bio_src, data)) {
3348 bio_put(bio);
3349 goto free_and_out;
3350 }
3351
3352 if (rq->bio) {
3353 rq->biotail->bi_next = bio;
3354 rq->biotail = bio;
3355 } else {
3356 rq->bio = rq->biotail = bio;
3357 }
3358 }
3359
3360 /* Copy attributes of the original request to the clone request. */
3361 rq->__sector = blk_rq_pos(rq_src);
3362 rq->__data_len = blk_rq_bytes(rq_src);
3363 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3364 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3365 rq->special_vec = rq_src->special_vec;
3366 }
3367 rq->nr_phys_segments = rq_src->nr_phys_segments;
3368 rq->nr_integrity_segments = rq_src->nr_integrity_segments;
3369
3370 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3371 goto free_and_out;
3372
3373 return 0;
3374
3375free_and_out:
3376 blk_rq_unprep_clone(rq);
3377
3378 return -ENOMEM;
3379}
3380EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3381#endif /* CONFIG_BLK_MQ_STACKING */
3382
3383/*
3384 * Steal bios from a request and add them to a bio list.
3385 * The request must not have been partially completed before.
3386 */
3387void blk_steal_bios(struct bio_list *list, struct request *rq)
3388{
3389 if (rq->bio) {
3390 if (list->tail)
3391 list->tail->bi_next = rq->bio;
3392 else
3393 list->head = rq->bio;
3394 list->tail = rq->biotail;
3395
3396 rq->bio = NULL;
3397 rq->biotail = NULL;
3398 }
3399
3400 rq->__data_len = 0;
3401}
3402EXPORT_SYMBOL_GPL(blk_steal_bios);
3403
3404static size_t order_to_size(unsigned int order)
3405{
3406 return (size_t)PAGE_SIZE << order;
3407}
3408
3409/* called before freeing request pool in @tags */
3410static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3411 struct blk_mq_tags *tags)
3412{
3413 struct page *page;
3414 unsigned long flags;
3415
3416 /*
3417 * There is no need to clear mapping if driver tags is not initialized
3418 * or the mapping belongs to the driver tags.
3419 */
3420 if (!drv_tags || drv_tags == tags)
3421 return;
3422
3423 list_for_each_entry(page, &tags->page_list, lru) {
3424 unsigned long start = (unsigned long)page_address(page);
3425 unsigned long end = start + order_to_size(page->private);
3426 int i;
3427
3428 for (i = 0; i < drv_tags->nr_tags; i++) {
3429 struct request *rq = drv_tags->rqs[i];
3430 unsigned long rq_addr = (unsigned long)rq;
3431
3432 if (rq_addr >= start && rq_addr < end) {
3433 WARN_ON_ONCE(req_ref_read(rq) != 0);
3434 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3435 }
3436 }
3437 }
3438
3439 /*
3440 * Wait until all pending iteration is done.
3441 *
3442 * Request reference is cleared and it is guaranteed to be observed
3443 * after the ->lock is released.
3444 */
3445 spin_lock_irqsave(&drv_tags->lock, flags);
3446 spin_unlock_irqrestore(&drv_tags->lock, flags);
3447}
3448
3449void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3450 unsigned int hctx_idx)
3451{
3452 struct blk_mq_tags *drv_tags;
3453 struct page *page;
3454
3455 if (list_empty(&tags->page_list))
3456 return;
3457
3458 if (blk_mq_is_shared_tags(set->flags))
3459 drv_tags = set->shared_tags;
3460 else
3461 drv_tags = set->tags[hctx_idx];
3462
3463 if (tags->static_rqs && set->ops->exit_request) {
3464 int i;
3465
3466 for (i = 0; i < tags->nr_tags; i++) {
3467 struct request *rq = tags->static_rqs[i];
3468
3469 if (!rq)
3470 continue;
3471 set->ops->exit_request(set, rq, hctx_idx);
3472 tags->static_rqs[i] = NULL;
3473 }
3474 }
3475
3476 blk_mq_clear_rq_mapping(drv_tags, tags);
3477
3478 while (!list_empty(&tags->page_list)) {
3479 page = list_first_entry(&tags->page_list, struct page, lru);
3480 list_del_init(&page->lru);
3481 /*
3482 * Remove kmemleak object previously allocated in
3483 * blk_mq_alloc_rqs().
3484 */
3485 kmemleak_free(page_address(page));
3486 __free_pages(page, page->private);
3487 }
3488}
3489
3490void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3491{
3492 kfree(tags->rqs);
3493 tags->rqs = NULL;
3494 kfree(tags->static_rqs);
3495 tags->static_rqs = NULL;
3496
3497 blk_mq_free_tags(tags);
3498}
3499
3500static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3501 unsigned int hctx_idx)
3502{
3503 int i;
3504
3505 for (i = 0; i < set->nr_maps; i++) {
3506 unsigned int start = set->map[i].queue_offset;
3507 unsigned int end = start + set->map[i].nr_queues;
3508
3509 if (hctx_idx >= start && hctx_idx < end)
3510 break;
3511 }
3512
3513 if (i >= set->nr_maps)
3514 i = HCTX_TYPE_DEFAULT;
3515
3516 return i;
3517}
3518
3519static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3520 unsigned int hctx_idx)
3521{
3522 enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3523
3524 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3525}
3526
3527static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3528 unsigned int hctx_idx,
3529 unsigned int nr_tags,
3530 unsigned int reserved_tags)
3531{
3532 int node = blk_mq_get_hctx_node(set, hctx_idx);
3533 struct blk_mq_tags *tags;
3534
3535 if (node == NUMA_NO_NODE)
3536 node = set->numa_node;
3537
3538 tags = blk_mq_init_tags(nr_tags, reserved_tags, set->flags, node);
3539 if (!tags)
3540 return NULL;
3541
3542 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3543 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3544 node);
3545 if (!tags->rqs)
3546 goto err_free_tags;
3547
3548 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3549 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3550 node);
3551 if (!tags->static_rqs)
3552 goto err_free_rqs;
3553
3554 return tags;
3555
3556err_free_rqs:
3557 kfree(tags->rqs);
3558err_free_tags:
3559 blk_mq_free_tags(tags);
3560 return NULL;
3561}
3562
3563static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3564 unsigned int hctx_idx, int node)
3565{
3566 int ret;
3567
3568 if (set->ops->init_request) {
3569 ret = set->ops->init_request(set, rq, hctx_idx, node);
3570 if (ret)
3571 return ret;
3572 }
3573
3574 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3575 return 0;
3576}
3577
3578static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3579 struct blk_mq_tags *tags,
3580 unsigned int hctx_idx, unsigned int depth)
3581{
3582 unsigned int i, j, entries_per_page, max_order = 4;
3583 int node = blk_mq_get_hctx_node(set, hctx_idx);
3584 size_t rq_size, left;
3585
3586 if (node == NUMA_NO_NODE)
3587 node = set->numa_node;
3588
3589 INIT_LIST_HEAD(&tags->page_list);
3590
3591 /*
3592 * rq_size is the size of the request plus driver payload, rounded
3593 * to the cacheline size
3594 */
3595 rq_size = round_up(sizeof(struct request) + set->cmd_size,
3596 cache_line_size());
3597 left = rq_size * depth;
3598
3599 for (i = 0; i < depth; ) {
3600 int this_order = max_order;
3601 struct page *page;
3602 int to_do;
3603 void *p;
3604
3605 while (this_order && left < order_to_size(this_order - 1))
3606 this_order--;
3607
3608 do {
3609 page = alloc_pages_node(node,
3610 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3611 this_order);
3612 if (page)
3613 break;
3614 if (!this_order--)
3615 break;
3616 if (order_to_size(this_order) < rq_size)
3617 break;
3618 } while (1);
3619
3620 if (!page)
3621 goto fail;
3622
3623 page->private = this_order;
3624 list_add_tail(&page->lru, &tags->page_list);
3625
3626 p = page_address(page);
3627 /*
3628 * Allow kmemleak to scan these pages as they contain pointers
3629 * to additional allocations like via ops->init_request().
3630 */
3631 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3632 entries_per_page = order_to_size(this_order) / rq_size;
3633 to_do = min(entries_per_page, depth - i);
3634 left -= to_do * rq_size;
3635 for (j = 0; j < to_do; j++) {
3636 struct request *rq = p;
3637
3638 tags->static_rqs[i] = rq;
3639 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3640 tags->static_rqs[i] = NULL;
3641 goto fail;
3642 }
3643
3644 p += rq_size;
3645 i++;
3646 }
3647 }
3648 return 0;
3649
3650fail:
3651 blk_mq_free_rqs(set, tags, hctx_idx);
3652 return -ENOMEM;
3653}
3654
3655struct rq_iter_data {
3656 struct blk_mq_hw_ctx *hctx;
3657 bool has_rq;
3658};
3659
3660static bool blk_mq_has_request(struct request *rq, void *data)
3661{
3662 struct rq_iter_data *iter_data = data;
3663
3664 if (rq->mq_hctx != iter_data->hctx)
3665 return true;
3666 iter_data->has_rq = true;
3667 return false;
3668}
3669
3670static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3671{
3672 struct blk_mq_tags *tags = hctx->sched_tags ?
3673 hctx->sched_tags : hctx->tags;
3674 struct rq_iter_data data = {
3675 .hctx = hctx,
3676 };
3677
3678 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3679 return data.has_rq;
3680}
3681
3682static bool blk_mq_hctx_has_online_cpu(struct blk_mq_hw_ctx *hctx,
3683 unsigned int this_cpu)
3684{
3685 enum hctx_type type = hctx->type;
3686 int cpu;
3687
3688 /*
3689 * hctx->cpumask has to rule out isolated CPUs, but userspace still
3690 * might submit IOs on these isolated CPUs, so use the queue map to
3691 * check if all CPUs mapped to this hctx are offline
3692 */
3693 for_each_online_cpu(cpu) {
3694 struct blk_mq_hw_ctx *h = blk_mq_map_queue_type(hctx->queue,
3695 type, cpu);
3696
3697 if (h != hctx)
3698 continue;
3699
3700 /* this hctx has at least one online CPU */
3701 if (this_cpu != cpu)
3702 return true;
3703 }
3704
3705 return false;
3706}
3707
3708static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3709{
3710 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3711 struct blk_mq_hw_ctx, cpuhp_online);
3712
3713 if (blk_mq_hctx_has_online_cpu(hctx, cpu))
3714 return 0;
3715
3716 /*
3717 * Prevent new request from being allocated on the current hctx.
3718 *
3719 * The smp_mb__after_atomic() Pairs with the implied barrier in
3720 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
3721 * seen once we return from the tag allocator.
3722 */
3723 set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3724 smp_mb__after_atomic();
3725
3726 /*
3727 * Try to grab a reference to the queue and wait for any outstanding
3728 * requests. If we could not grab a reference the queue has been
3729 * frozen and there are no requests.
3730 */
3731 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3732 while (blk_mq_hctx_has_requests(hctx))
3733 msleep(5);
3734 percpu_ref_put(&hctx->queue->q_usage_counter);
3735 }
3736
3737 return 0;
3738}
3739
3740/*
3741 * Check if one CPU is mapped to the specified hctx
3742 *
3743 * Isolated CPUs have been ruled out from hctx->cpumask, which is supposed
3744 * to be used for scheduling kworker only. For other usage, please call this
3745 * helper for checking if one CPU belongs to the specified hctx
3746 */
3747static bool blk_mq_cpu_mapped_to_hctx(unsigned int cpu,
3748 const struct blk_mq_hw_ctx *hctx)
3749{
3750 struct blk_mq_hw_ctx *mapped_hctx = blk_mq_map_queue_type(hctx->queue,
3751 hctx->type, cpu);
3752
3753 return mapped_hctx == hctx;
3754}
3755
3756static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3757{
3758 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3759 struct blk_mq_hw_ctx, cpuhp_online);
3760
3761 if (blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3762 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3763 return 0;
3764}
3765
3766/*
3767 * 'cpu' is going away. splice any existing rq_list entries from this
3768 * software queue to the hw queue dispatch list, and ensure that it
3769 * gets run.
3770 */
3771static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3772{
3773 struct blk_mq_hw_ctx *hctx;
3774 struct blk_mq_ctx *ctx;
3775 LIST_HEAD(tmp);
3776 enum hctx_type type;
3777
3778 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3779 if (!blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3780 return 0;
3781
3782 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3783 type = hctx->type;
3784
3785 spin_lock(&ctx->lock);
3786 if (!list_empty(&ctx->rq_lists[type])) {
3787 list_splice_init(&ctx->rq_lists[type], &tmp);
3788 blk_mq_hctx_clear_pending(hctx, ctx);
3789 }
3790 spin_unlock(&ctx->lock);
3791
3792 if (list_empty(&tmp))
3793 return 0;
3794
3795 spin_lock(&hctx->lock);
3796 list_splice_tail_init(&tmp, &hctx->dispatch);
3797 spin_unlock(&hctx->lock);
3798
3799 blk_mq_run_hw_queue(hctx, true);
3800 return 0;
3801}
3802
3803static void __blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3804{
3805 lockdep_assert_held(&blk_mq_cpuhp_lock);
3806
3807 if (!(hctx->flags & BLK_MQ_F_STACKING) &&
3808 !hlist_unhashed(&hctx->cpuhp_online)) {
3809 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3810 &hctx->cpuhp_online);
3811 INIT_HLIST_NODE(&hctx->cpuhp_online);
3812 }
3813
3814 if (!hlist_unhashed(&hctx->cpuhp_dead)) {
3815 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3816 &hctx->cpuhp_dead);
3817 INIT_HLIST_NODE(&hctx->cpuhp_dead);
3818 }
3819}
3820
3821static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3822{
3823 mutex_lock(&blk_mq_cpuhp_lock);
3824 __blk_mq_remove_cpuhp(hctx);
3825 mutex_unlock(&blk_mq_cpuhp_lock);
3826}
3827
3828static void __blk_mq_add_cpuhp(struct blk_mq_hw_ctx *hctx)
3829{
3830 lockdep_assert_held(&blk_mq_cpuhp_lock);
3831
3832 if (!(hctx->flags & BLK_MQ_F_STACKING) &&
3833 hlist_unhashed(&hctx->cpuhp_online))
3834 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3835 &hctx->cpuhp_online);
3836
3837 if (hlist_unhashed(&hctx->cpuhp_dead))
3838 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3839 &hctx->cpuhp_dead);
3840}
3841
3842static void __blk_mq_remove_cpuhp_list(struct list_head *head)
3843{
3844 struct blk_mq_hw_ctx *hctx;
3845
3846 lockdep_assert_held(&blk_mq_cpuhp_lock);
3847
3848 list_for_each_entry(hctx, head, hctx_list)
3849 __blk_mq_remove_cpuhp(hctx);
3850}
3851
3852/*
3853 * Unregister cpuhp callbacks from exited hw queues
3854 *
3855 * Safe to call if this `request_queue` is live
3856 */
3857static void blk_mq_remove_hw_queues_cpuhp(struct request_queue *q)
3858{
3859 LIST_HEAD(hctx_list);
3860
3861 spin_lock(&q->unused_hctx_lock);
3862 list_splice_init(&q->unused_hctx_list, &hctx_list);
3863 spin_unlock(&q->unused_hctx_lock);
3864
3865 mutex_lock(&blk_mq_cpuhp_lock);
3866 __blk_mq_remove_cpuhp_list(&hctx_list);
3867 mutex_unlock(&blk_mq_cpuhp_lock);
3868
3869 spin_lock(&q->unused_hctx_lock);
3870 list_splice(&hctx_list, &q->unused_hctx_list);
3871 spin_unlock(&q->unused_hctx_lock);
3872}
3873
3874/*
3875 * Register cpuhp callbacks from all hw queues
3876 *
3877 * Safe to call if this `request_queue` is live
3878 */
3879static void blk_mq_add_hw_queues_cpuhp(struct request_queue *q)
3880{
3881 struct blk_mq_hw_ctx *hctx;
3882 unsigned long i;
3883
3884 mutex_lock(&blk_mq_cpuhp_lock);
3885 queue_for_each_hw_ctx(q, hctx, i)
3886 __blk_mq_add_cpuhp(hctx);
3887 mutex_unlock(&blk_mq_cpuhp_lock);
3888}
3889
3890/*
3891 * Before freeing hw queue, clearing the flush request reference in
3892 * tags->rqs[] for avoiding potential UAF.
3893 */
3894static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3895 unsigned int queue_depth, struct request *flush_rq)
3896{
3897 int i;
3898 unsigned long flags;
3899
3900 /* The hw queue may not be mapped yet */
3901 if (!tags)
3902 return;
3903
3904 WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3905
3906 for (i = 0; i < queue_depth; i++)
3907 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3908
3909 /*
3910 * Wait until all pending iteration is done.
3911 *
3912 * Request reference is cleared and it is guaranteed to be observed
3913 * after the ->lock is released.
3914 */
3915 spin_lock_irqsave(&tags->lock, flags);
3916 spin_unlock_irqrestore(&tags->lock, flags);
3917}
3918
3919/* hctx->ctxs will be freed in queue's release handler */
3920static void blk_mq_exit_hctx(struct request_queue *q,
3921 struct blk_mq_tag_set *set,
3922 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3923{
3924 struct request *flush_rq = hctx->fq->flush_rq;
3925
3926 if (blk_mq_hw_queue_mapped(hctx))
3927 blk_mq_tag_idle(hctx);
3928
3929 if (blk_queue_init_done(q))
3930 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3931 set->queue_depth, flush_rq);
3932 if (set->ops->exit_request)
3933 set->ops->exit_request(set, flush_rq, hctx_idx);
3934
3935 if (set->ops->exit_hctx)
3936 set->ops->exit_hctx(hctx, hctx_idx);
3937
3938 xa_erase(&q->hctx_table, hctx_idx);
3939
3940 spin_lock(&q->unused_hctx_lock);
3941 list_add(&hctx->hctx_list, &q->unused_hctx_list);
3942 spin_unlock(&q->unused_hctx_lock);
3943}
3944
3945static void blk_mq_exit_hw_queues(struct request_queue *q,
3946 struct blk_mq_tag_set *set, int nr_queue)
3947{
3948 struct blk_mq_hw_ctx *hctx;
3949 unsigned long i;
3950
3951 queue_for_each_hw_ctx(q, hctx, i) {
3952 if (i == nr_queue)
3953 break;
3954 blk_mq_remove_cpuhp(hctx);
3955 blk_mq_exit_hctx(q, set, hctx, i);
3956 }
3957}
3958
3959static int blk_mq_init_hctx(struct request_queue *q,
3960 struct blk_mq_tag_set *set,
3961 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3962{
3963 hctx->queue_num = hctx_idx;
3964
3965 hctx->tags = set->tags[hctx_idx];
3966
3967 if (set->ops->init_hctx &&
3968 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3969 goto fail;
3970
3971 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3972 hctx->numa_node))
3973 goto exit_hctx;
3974
3975 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3976 goto exit_flush_rq;
3977
3978 return 0;
3979
3980 exit_flush_rq:
3981 if (set->ops->exit_request)
3982 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3983 exit_hctx:
3984 if (set->ops->exit_hctx)
3985 set->ops->exit_hctx(hctx, hctx_idx);
3986 fail:
3987 return -1;
3988}
3989
3990static struct blk_mq_hw_ctx *
3991blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3992 int node)
3993{
3994 struct blk_mq_hw_ctx *hctx;
3995 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3996
3997 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3998 if (!hctx)
3999 goto fail_alloc_hctx;
4000
4001 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
4002 goto free_hctx;
4003
4004 atomic_set(&hctx->nr_active, 0);
4005 if (node == NUMA_NO_NODE)
4006 node = set->numa_node;
4007 hctx->numa_node = node;
4008
4009 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
4010 spin_lock_init(&hctx->lock);
4011 INIT_LIST_HEAD(&hctx->dispatch);
4012 INIT_HLIST_NODE(&hctx->cpuhp_dead);
4013 INIT_HLIST_NODE(&hctx->cpuhp_online);
4014 hctx->queue = q;
4015 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
4016
4017 INIT_LIST_HEAD(&hctx->hctx_list);
4018
4019 /*
4020 * Allocate space for all possible cpus to avoid allocation at
4021 * runtime
4022 */
4023 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
4024 gfp, node);
4025 if (!hctx->ctxs)
4026 goto free_cpumask;
4027
4028 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
4029 gfp, node, false, false))
4030 goto free_ctxs;
4031 hctx->nr_ctx = 0;
4032
4033 spin_lock_init(&hctx->dispatch_wait_lock);
4034 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
4035 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
4036
4037 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
4038 if (!hctx->fq)
4039 goto free_bitmap;
4040
4041 blk_mq_hctx_kobj_init(hctx);
4042
4043 return hctx;
4044
4045 free_bitmap:
4046 sbitmap_free(&hctx->ctx_map);
4047 free_ctxs:
4048 kfree(hctx->ctxs);
4049 free_cpumask:
4050 free_cpumask_var(hctx->cpumask);
4051 free_hctx:
4052 kfree(hctx);
4053 fail_alloc_hctx:
4054 return NULL;
4055}
4056
4057static void blk_mq_init_cpu_queues(struct request_queue *q,
4058 unsigned int nr_hw_queues)
4059{
4060 struct blk_mq_tag_set *set = q->tag_set;
4061 unsigned int i, j;
4062
4063 for_each_possible_cpu(i) {
4064 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
4065 struct blk_mq_hw_ctx *hctx;
4066 int k;
4067
4068 __ctx->cpu = i;
4069 spin_lock_init(&__ctx->lock);
4070 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
4071 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
4072
4073 __ctx->queue = q;
4074
4075 /*
4076 * Set local node, IFF we have more than one hw queue. If
4077 * not, we remain on the home node of the device
4078 */
4079 for (j = 0; j < set->nr_maps; j++) {
4080 hctx = blk_mq_map_queue_type(q, j, i);
4081 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
4082 hctx->numa_node = cpu_to_node(i);
4083 }
4084 }
4085}
4086
4087struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
4088 unsigned int hctx_idx,
4089 unsigned int depth)
4090{
4091 struct blk_mq_tags *tags;
4092 int ret;
4093
4094 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
4095 if (!tags)
4096 return NULL;
4097
4098 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
4099 if (ret) {
4100 blk_mq_free_rq_map(tags);
4101 return NULL;
4102 }
4103
4104 return tags;
4105}
4106
4107static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
4108 int hctx_idx)
4109{
4110 if (blk_mq_is_shared_tags(set->flags)) {
4111 set->tags[hctx_idx] = set->shared_tags;
4112
4113 return true;
4114 }
4115
4116 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
4117 set->queue_depth);
4118
4119 return set->tags[hctx_idx];
4120}
4121
4122void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
4123 struct blk_mq_tags *tags,
4124 unsigned int hctx_idx)
4125{
4126 if (tags) {
4127 blk_mq_free_rqs(set, tags, hctx_idx);
4128 blk_mq_free_rq_map(tags);
4129 }
4130}
4131
4132static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
4133 unsigned int hctx_idx)
4134{
4135 if (!blk_mq_is_shared_tags(set->flags))
4136 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
4137
4138 set->tags[hctx_idx] = NULL;
4139}
4140
4141static void blk_mq_map_swqueue(struct request_queue *q)
4142{
4143 unsigned int j, hctx_idx;
4144 unsigned long i;
4145 struct blk_mq_hw_ctx *hctx;
4146 struct blk_mq_ctx *ctx;
4147 struct blk_mq_tag_set *set = q->tag_set;
4148
4149 queue_for_each_hw_ctx(q, hctx, i) {
4150 cpumask_clear(hctx->cpumask);
4151 hctx->nr_ctx = 0;
4152 hctx->dispatch_from = NULL;
4153 }
4154
4155 /*
4156 * Map software to hardware queues.
4157 *
4158 * If the cpu isn't present, the cpu is mapped to first hctx.
4159 */
4160 for_each_possible_cpu(i) {
4161
4162 ctx = per_cpu_ptr(q->queue_ctx, i);
4163 for (j = 0; j < set->nr_maps; j++) {
4164 if (!set->map[j].nr_queues) {
4165 ctx->hctxs[j] = blk_mq_map_queue_type(q,
4166 HCTX_TYPE_DEFAULT, i);
4167 continue;
4168 }
4169 hctx_idx = set->map[j].mq_map[i];
4170 /* unmapped hw queue can be remapped after CPU topo changed */
4171 if (!set->tags[hctx_idx] &&
4172 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
4173 /*
4174 * If tags initialization fail for some hctx,
4175 * that hctx won't be brought online. In this
4176 * case, remap the current ctx to hctx[0] which
4177 * is guaranteed to always have tags allocated
4178 */
4179 set->map[j].mq_map[i] = 0;
4180 }
4181
4182 hctx = blk_mq_map_queue_type(q, j, i);
4183 ctx->hctxs[j] = hctx;
4184 /*
4185 * If the CPU is already set in the mask, then we've
4186 * mapped this one already. This can happen if
4187 * devices share queues across queue maps.
4188 */
4189 if (cpumask_test_cpu(i, hctx->cpumask))
4190 continue;
4191
4192 cpumask_set_cpu(i, hctx->cpumask);
4193 hctx->type = j;
4194 ctx->index_hw[hctx->type] = hctx->nr_ctx;
4195 hctx->ctxs[hctx->nr_ctx++] = ctx;
4196
4197 /*
4198 * If the nr_ctx type overflows, we have exceeded the
4199 * amount of sw queues we can support.
4200 */
4201 BUG_ON(!hctx->nr_ctx);
4202 }
4203
4204 for (; j < HCTX_MAX_TYPES; j++)
4205 ctx->hctxs[j] = blk_mq_map_queue_type(q,
4206 HCTX_TYPE_DEFAULT, i);
4207 }
4208
4209 queue_for_each_hw_ctx(q, hctx, i) {
4210 int cpu;
4211
4212 /*
4213 * If no software queues are mapped to this hardware queue,
4214 * disable it and free the request entries.
4215 */
4216 if (!hctx->nr_ctx) {
4217 /* Never unmap queue 0. We need it as a
4218 * fallback in case of a new remap fails
4219 * allocation
4220 */
4221 if (i)
4222 __blk_mq_free_map_and_rqs(set, i);
4223
4224 hctx->tags = NULL;
4225 continue;
4226 }
4227
4228 hctx->tags = set->tags[i];
4229 WARN_ON(!hctx->tags);
4230
4231 /*
4232 * Set the map size to the number of mapped software queues.
4233 * This is more accurate and more efficient than looping
4234 * over all possibly mapped software queues.
4235 */
4236 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
4237
4238 /*
4239 * Rule out isolated CPUs from hctx->cpumask to avoid
4240 * running block kworker on isolated CPUs
4241 */
4242 for_each_cpu(cpu, hctx->cpumask) {
4243 if (cpu_is_isolated(cpu))
4244 cpumask_clear_cpu(cpu, hctx->cpumask);
4245 }
4246
4247 /*
4248 * Initialize batch roundrobin counts
4249 */
4250 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
4251 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
4252 }
4253}
4254
4255/*
4256 * Caller needs to ensure that we're either frozen/quiesced, or that
4257 * the queue isn't live yet.
4258 */
4259static void queue_set_hctx_shared(struct request_queue *q, bool shared)
4260{
4261 struct blk_mq_hw_ctx *hctx;
4262 unsigned long i;
4263
4264 queue_for_each_hw_ctx(q, hctx, i) {
4265 if (shared) {
4266 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4267 } else {
4268 blk_mq_tag_idle(hctx);
4269 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4270 }
4271 }
4272}
4273
4274static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
4275 bool shared)
4276{
4277 struct request_queue *q;
4278 unsigned int memflags;
4279
4280 lockdep_assert_held(&set->tag_list_lock);
4281
4282 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4283 memflags = blk_mq_freeze_queue(q);
4284 queue_set_hctx_shared(q, shared);
4285 blk_mq_unfreeze_queue(q, memflags);
4286 }
4287}
4288
4289static void blk_mq_del_queue_tag_set(struct request_queue *q)
4290{
4291 struct blk_mq_tag_set *set = q->tag_set;
4292
4293 mutex_lock(&set->tag_list_lock);
4294 list_del(&q->tag_set_list);
4295 if (list_is_singular(&set->tag_list)) {
4296 /* just transitioned to unshared */
4297 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4298 /* update existing queue */
4299 blk_mq_update_tag_set_shared(set, false);
4300 }
4301 mutex_unlock(&set->tag_list_lock);
4302 INIT_LIST_HEAD(&q->tag_set_list);
4303}
4304
4305static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
4306 struct request_queue *q)
4307{
4308 mutex_lock(&set->tag_list_lock);
4309
4310 /*
4311 * Check to see if we're transitioning to shared (from 1 to 2 queues).
4312 */
4313 if (!list_empty(&set->tag_list) &&
4314 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4315 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4316 /* update existing queue */
4317 blk_mq_update_tag_set_shared(set, true);
4318 }
4319 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4320 queue_set_hctx_shared(q, true);
4321 list_add_tail(&q->tag_set_list, &set->tag_list);
4322
4323 mutex_unlock(&set->tag_list_lock);
4324}
4325
4326/* All allocations will be freed in release handler of q->mq_kobj */
4327static int blk_mq_alloc_ctxs(struct request_queue *q)
4328{
4329 struct blk_mq_ctxs *ctxs;
4330 int cpu;
4331
4332 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4333 if (!ctxs)
4334 return -ENOMEM;
4335
4336 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4337 if (!ctxs->queue_ctx)
4338 goto fail;
4339
4340 for_each_possible_cpu(cpu) {
4341 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4342 ctx->ctxs = ctxs;
4343 }
4344
4345 q->mq_kobj = &ctxs->kobj;
4346 q->queue_ctx = ctxs->queue_ctx;
4347
4348 return 0;
4349 fail:
4350 kfree(ctxs);
4351 return -ENOMEM;
4352}
4353
4354/*
4355 * It is the actual release handler for mq, but we do it from
4356 * request queue's release handler for avoiding use-after-free
4357 * and headache because q->mq_kobj shouldn't have been introduced,
4358 * but we can't group ctx/kctx kobj without it.
4359 */
4360void blk_mq_release(struct request_queue *q)
4361{
4362 struct blk_mq_hw_ctx *hctx, *next;
4363 unsigned long i;
4364
4365 queue_for_each_hw_ctx(q, hctx, i)
4366 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4367
4368 /* all hctx are in .unused_hctx_list now */
4369 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4370 list_del_init(&hctx->hctx_list);
4371 kobject_put(&hctx->kobj);
4372 }
4373
4374 xa_destroy(&q->hctx_table);
4375
4376 /*
4377 * release .mq_kobj and sw queue's kobject now because
4378 * both share lifetime with request queue.
4379 */
4380 blk_mq_sysfs_deinit(q);
4381}
4382
4383struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set,
4384 struct queue_limits *lim, void *queuedata)
4385{
4386 struct queue_limits default_lim = { };
4387 struct request_queue *q;
4388 int ret;
4389
4390 if (!lim)
4391 lim = &default_lim;
4392 lim->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT;
4393 if (set->nr_maps > HCTX_TYPE_POLL)
4394 lim->features |= BLK_FEAT_POLL;
4395
4396 q = blk_alloc_queue(lim, set->numa_node);
4397 if (IS_ERR(q))
4398 return q;
4399 q->queuedata = queuedata;
4400 ret = blk_mq_init_allocated_queue(set, q);
4401 if (ret) {
4402 blk_put_queue(q);
4403 return ERR_PTR(ret);
4404 }
4405 return q;
4406}
4407EXPORT_SYMBOL(blk_mq_alloc_queue);
4408
4409/**
4410 * blk_mq_destroy_queue - shutdown a request queue
4411 * @q: request queue to shutdown
4412 *
4413 * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future
4414 * requests will be failed with -ENODEV. The caller is responsible for dropping
4415 * the reference from blk_mq_alloc_queue() by calling blk_put_queue().
4416 *
4417 * Context: can sleep
4418 */
4419void blk_mq_destroy_queue(struct request_queue *q)
4420{
4421 WARN_ON_ONCE(!queue_is_mq(q));
4422 WARN_ON_ONCE(blk_queue_registered(q));
4423
4424 might_sleep();
4425
4426 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4427 blk_queue_start_drain(q);
4428 blk_mq_freeze_queue_wait(q);
4429
4430 blk_sync_queue(q);
4431 blk_mq_cancel_work_sync(q);
4432 blk_mq_exit_queue(q);
4433}
4434EXPORT_SYMBOL(blk_mq_destroy_queue);
4435
4436struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set,
4437 struct queue_limits *lim, void *queuedata,
4438 struct lock_class_key *lkclass)
4439{
4440 struct request_queue *q;
4441 struct gendisk *disk;
4442
4443 q = blk_mq_alloc_queue(set, lim, queuedata);
4444 if (IS_ERR(q))
4445 return ERR_CAST(q);
4446
4447 disk = __alloc_disk_node(q, set->numa_node, lkclass);
4448 if (!disk) {
4449 blk_mq_destroy_queue(q);
4450 blk_put_queue(q);
4451 return ERR_PTR(-ENOMEM);
4452 }
4453 set_bit(GD_OWNS_QUEUE, &disk->state);
4454 return disk;
4455}
4456EXPORT_SYMBOL(__blk_mq_alloc_disk);
4457
4458struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4459 struct lock_class_key *lkclass)
4460{
4461 struct gendisk *disk;
4462
4463 if (!blk_get_queue(q))
4464 return NULL;
4465 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4466 if (!disk)
4467 blk_put_queue(q);
4468 return disk;
4469}
4470EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4471
4472/*
4473 * Only hctx removed from cpuhp list can be reused
4474 */
4475static bool blk_mq_hctx_is_reusable(struct blk_mq_hw_ctx *hctx)
4476{
4477 return hlist_unhashed(&hctx->cpuhp_online) &&
4478 hlist_unhashed(&hctx->cpuhp_dead);
4479}
4480
4481static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4482 struct blk_mq_tag_set *set, struct request_queue *q,
4483 int hctx_idx, int node)
4484{
4485 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4486
4487 /* reuse dead hctx first */
4488 spin_lock(&q->unused_hctx_lock);
4489 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4490 if (tmp->numa_node == node && blk_mq_hctx_is_reusable(tmp)) {
4491 hctx = tmp;
4492 break;
4493 }
4494 }
4495 if (hctx)
4496 list_del_init(&hctx->hctx_list);
4497 spin_unlock(&q->unused_hctx_lock);
4498
4499 if (!hctx)
4500 hctx = blk_mq_alloc_hctx(q, set, node);
4501 if (!hctx)
4502 goto fail;
4503
4504 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4505 goto free_hctx;
4506
4507 return hctx;
4508
4509 free_hctx:
4510 kobject_put(&hctx->kobj);
4511 fail:
4512 return NULL;
4513}
4514
4515static void __blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4516 struct request_queue *q)
4517{
4518 struct blk_mq_hw_ctx *hctx;
4519 unsigned long i, j;
4520
4521 for (i = 0; i < set->nr_hw_queues; i++) {
4522 int old_node;
4523 int node = blk_mq_get_hctx_node(set, i);
4524 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4525
4526 if (old_hctx) {
4527 old_node = old_hctx->numa_node;
4528 blk_mq_exit_hctx(q, set, old_hctx, i);
4529 }
4530
4531 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4532 if (!old_hctx)
4533 break;
4534 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4535 node, old_node);
4536 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4537 WARN_ON_ONCE(!hctx);
4538 }
4539 }
4540 /*
4541 * Increasing nr_hw_queues fails. Free the newly allocated
4542 * hctxs and keep the previous q->nr_hw_queues.
4543 */
4544 if (i != set->nr_hw_queues) {
4545 j = q->nr_hw_queues;
4546 } else {
4547 j = i;
4548 q->nr_hw_queues = set->nr_hw_queues;
4549 }
4550
4551 xa_for_each_start(&q->hctx_table, j, hctx, j)
4552 blk_mq_exit_hctx(q, set, hctx, j);
4553}
4554
4555static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4556 struct request_queue *q)
4557{
4558 __blk_mq_realloc_hw_ctxs(set, q);
4559
4560 /* unregister cpuhp callbacks for exited hctxs */
4561 blk_mq_remove_hw_queues_cpuhp(q);
4562
4563 /* register cpuhp for new initialized hctxs */
4564 blk_mq_add_hw_queues_cpuhp(q);
4565}
4566
4567int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4568 struct request_queue *q)
4569{
4570 /* mark the queue as mq asap */
4571 q->mq_ops = set->ops;
4572
4573 /*
4574 * ->tag_set has to be setup before initialize hctx, which cpuphp
4575 * handler needs it for checking queue mapping
4576 */
4577 q->tag_set = set;
4578
4579 if (blk_mq_alloc_ctxs(q))
4580 goto err_exit;
4581
4582 /* init q->mq_kobj and sw queues' kobjects */
4583 blk_mq_sysfs_init(q);
4584
4585 INIT_LIST_HEAD(&q->unused_hctx_list);
4586 spin_lock_init(&q->unused_hctx_lock);
4587
4588 xa_init(&q->hctx_table);
4589
4590 blk_mq_realloc_hw_ctxs(set, q);
4591 if (!q->nr_hw_queues)
4592 goto err_hctxs;
4593
4594 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4595 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4596
4597 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4598
4599 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4600 INIT_LIST_HEAD(&q->flush_list);
4601 INIT_LIST_HEAD(&q->requeue_list);
4602 spin_lock_init(&q->requeue_lock);
4603
4604 q->nr_requests = set->queue_depth;
4605
4606 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4607 blk_mq_map_swqueue(q);
4608 blk_mq_add_queue_tag_set(set, q);
4609 return 0;
4610
4611err_hctxs:
4612 blk_mq_release(q);
4613err_exit:
4614 q->mq_ops = NULL;
4615 return -ENOMEM;
4616}
4617EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4618
4619/* tags can _not_ be used after returning from blk_mq_exit_queue */
4620void blk_mq_exit_queue(struct request_queue *q)
4621{
4622 struct blk_mq_tag_set *set = q->tag_set;
4623
4624 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4625 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4626 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4627 blk_mq_del_queue_tag_set(q);
4628}
4629
4630static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4631{
4632 int i;
4633
4634 if (blk_mq_is_shared_tags(set->flags)) {
4635 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4636 BLK_MQ_NO_HCTX_IDX,
4637 set->queue_depth);
4638 if (!set->shared_tags)
4639 return -ENOMEM;
4640 }
4641
4642 for (i = 0; i < set->nr_hw_queues; i++) {
4643 if (!__blk_mq_alloc_map_and_rqs(set, i))
4644 goto out_unwind;
4645 cond_resched();
4646 }
4647
4648 return 0;
4649
4650out_unwind:
4651 while (--i >= 0)
4652 __blk_mq_free_map_and_rqs(set, i);
4653
4654 if (blk_mq_is_shared_tags(set->flags)) {
4655 blk_mq_free_map_and_rqs(set, set->shared_tags,
4656 BLK_MQ_NO_HCTX_IDX);
4657 }
4658
4659 return -ENOMEM;
4660}
4661
4662/*
4663 * Allocate the request maps associated with this tag_set. Note that this
4664 * may reduce the depth asked for, if memory is tight. set->queue_depth
4665 * will be updated to reflect the allocated depth.
4666 */
4667static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4668{
4669 unsigned int depth;
4670 int err;
4671
4672 depth = set->queue_depth;
4673 do {
4674 err = __blk_mq_alloc_rq_maps(set);
4675 if (!err)
4676 break;
4677
4678 set->queue_depth >>= 1;
4679 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4680 err = -ENOMEM;
4681 break;
4682 }
4683 } while (set->queue_depth);
4684
4685 if (!set->queue_depth || err) {
4686 pr_err("blk-mq: failed to allocate request map\n");
4687 return -ENOMEM;
4688 }
4689
4690 if (depth != set->queue_depth)
4691 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4692 depth, set->queue_depth);
4693
4694 return 0;
4695}
4696
4697static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4698{
4699 /*
4700 * blk_mq_map_queues() and multiple .map_queues() implementations
4701 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4702 * number of hardware queues.
4703 */
4704 if (set->nr_maps == 1)
4705 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4706
4707 if (set->ops->map_queues) {
4708 int i;
4709
4710 /*
4711 * transport .map_queues is usually done in the following
4712 * way:
4713 *
4714 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4715 * mask = get_cpu_mask(queue)
4716 * for_each_cpu(cpu, mask)
4717 * set->map[x].mq_map[cpu] = queue;
4718 * }
4719 *
4720 * When we need to remap, the table has to be cleared for
4721 * killing stale mapping since one CPU may not be mapped
4722 * to any hw queue.
4723 */
4724 for (i = 0; i < set->nr_maps; i++)
4725 blk_mq_clear_mq_map(&set->map[i]);
4726
4727 set->ops->map_queues(set);
4728 } else {
4729 BUG_ON(set->nr_maps > 1);
4730 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4731 }
4732}
4733
4734static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4735 int new_nr_hw_queues)
4736{
4737 struct blk_mq_tags **new_tags;
4738 int i;
4739
4740 if (set->nr_hw_queues >= new_nr_hw_queues)
4741 goto done;
4742
4743 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4744 GFP_KERNEL, set->numa_node);
4745 if (!new_tags)
4746 return -ENOMEM;
4747
4748 if (set->tags)
4749 memcpy(new_tags, set->tags, set->nr_hw_queues *
4750 sizeof(*set->tags));
4751 kfree(set->tags);
4752 set->tags = new_tags;
4753
4754 for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4755 if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4756 while (--i >= set->nr_hw_queues)
4757 __blk_mq_free_map_and_rqs(set, i);
4758 return -ENOMEM;
4759 }
4760 cond_resched();
4761 }
4762
4763done:
4764 set->nr_hw_queues = new_nr_hw_queues;
4765 return 0;
4766}
4767
4768/*
4769 * Alloc a tag set to be associated with one or more request queues.
4770 * May fail with EINVAL for various error conditions. May adjust the
4771 * requested depth down, if it's too large. In that case, the set
4772 * value will be stored in set->queue_depth.
4773 */
4774int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4775{
4776 int i, ret;
4777
4778 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4779
4780 if (!set->nr_hw_queues)
4781 return -EINVAL;
4782 if (!set->queue_depth)
4783 return -EINVAL;
4784 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4785 return -EINVAL;
4786
4787 if (!set->ops->queue_rq)
4788 return -EINVAL;
4789
4790 if (!set->ops->get_budget ^ !set->ops->put_budget)
4791 return -EINVAL;
4792
4793 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4794 pr_info("blk-mq: reduced tag depth to %u\n",
4795 BLK_MQ_MAX_DEPTH);
4796 set->queue_depth = BLK_MQ_MAX_DEPTH;
4797 }
4798
4799 if (!set->nr_maps)
4800 set->nr_maps = 1;
4801 else if (set->nr_maps > HCTX_MAX_TYPES)
4802 return -EINVAL;
4803
4804 /*
4805 * If a crashdump is active, then we are potentially in a very
4806 * memory constrained environment. Limit us to 64 tags to prevent
4807 * using too much memory.
4808 */
4809 if (is_kdump_kernel())
4810 set->queue_depth = min(64U, set->queue_depth);
4811
4812 /*
4813 * There is no use for more h/w queues than cpus if we just have
4814 * a single map
4815 */
4816 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4817 set->nr_hw_queues = nr_cpu_ids;
4818
4819 if (set->flags & BLK_MQ_F_BLOCKING) {
4820 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4821 if (!set->srcu)
4822 return -ENOMEM;
4823 ret = init_srcu_struct(set->srcu);
4824 if (ret)
4825 goto out_free_srcu;
4826 }
4827
4828 init_rwsem(&set->update_nr_hwq_lock);
4829
4830 ret = -ENOMEM;
4831 set->tags = kcalloc_node(set->nr_hw_queues,
4832 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4833 set->numa_node);
4834 if (!set->tags)
4835 goto out_cleanup_srcu;
4836
4837 for (i = 0; i < set->nr_maps; i++) {
4838 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4839 sizeof(set->map[i].mq_map[0]),
4840 GFP_KERNEL, set->numa_node);
4841 if (!set->map[i].mq_map)
4842 goto out_free_mq_map;
4843 set->map[i].nr_queues = set->nr_hw_queues;
4844 }
4845
4846 blk_mq_update_queue_map(set);
4847
4848 ret = blk_mq_alloc_set_map_and_rqs(set);
4849 if (ret)
4850 goto out_free_mq_map;
4851
4852 mutex_init(&set->tag_list_lock);
4853 INIT_LIST_HEAD(&set->tag_list);
4854
4855 return 0;
4856
4857out_free_mq_map:
4858 for (i = 0; i < set->nr_maps; i++) {
4859 kfree(set->map[i].mq_map);
4860 set->map[i].mq_map = NULL;
4861 }
4862 kfree(set->tags);
4863 set->tags = NULL;
4864out_cleanup_srcu:
4865 if (set->flags & BLK_MQ_F_BLOCKING)
4866 cleanup_srcu_struct(set->srcu);
4867out_free_srcu:
4868 if (set->flags & BLK_MQ_F_BLOCKING)
4869 kfree(set->srcu);
4870 return ret;
4871}
4872EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4873
4874/* allocate and initialize a tagset for a simple single-queue device */
4875int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4876 const struct blk_mq_ops *ops, unsigned int queue_depth,
4877 unsigned int set_flags)
4878{
4879 memset(set, 0, sizeof(*set));
4880 set->ops = ops;
4881 set->nr_hw_queues = 1;
4882 set->nr_maps = 1;
4883 set->queue_depth = queue_depth;
4884 set->numa_node = NUMA_NO_NODE;
4885 set->flags = set_flags;
4886 return blk_mq_alloc_tag_set(set);
4887}
4888EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4889
4890void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4891{
4892 int i, j;
4893
4894 for (i = 0; i < set->nr_hw_queues; i++)
4895 __blk_mq_free_map_and_rqs(set, i);
4896
4897 if (blk_mq_is_shared_tags(set->flags)) {
4898 blk_mq_free_map_and_rqs(set, set->shared_tags,
4899 BLK_MQ_NO_HCTX_IDX);
4900 }
4901
4902 for (j = 0; j < set->nr_maps; j++) {
4903 kfree(set->map[j].mq_map);
4904 set->map[j].mq_map = NULL;
4905 }
4906
4907 kfree(set->tags);
4908 set->tags = NULL;
4909 if (set->flags & BLK_MQ_F_BLOCKING) {
4910 cleanup_srcu_struct(set->srcu);
4911 kfree(set->srcu);
4912 }
4913}
4914EXPORT_SYMBOL(blk_mq_free_tag_set);
4915
4916int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4917{
4918 struct blk_mq_tag_set *set = q->tag_set;
4919 struct blk_mq_hw_ctx *hctx;
4920 int ret;
4921 unsigned long i;
4922
4923 if (WARN_ON_ONCE(!q->mq_freeze_depth))
4924 return -EINVAL;
4925
4926 if (!set)
4927 return -EINVAL;
4928
4929 if (q->nr_requests == nr)
4930 return 0;
4931
4932 blk_mq_quiesce_queue(q);
4933
4934 ret = 0;
4935 queue_for_each_hw_ctx(q, hctx, i) {
4936 if (!hctx->tags)
4937 continue;
4938 /*
4939 * If we're using an MQ scheduler, just update the scheduler
4940 * queue depth. This is similar to what the old code would do.
4941 */
4942 if (hctx->sched_tags) {
4943 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4944 nr, true);
4945 } else {
4946 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4947 false);
4948 }
4949 if (ret)
4950 break;
4951 if (q->elevator && q->elevator->type->ops.depth_updated)
4952 q->elevator->type->ops.depth_updated(hctx);
4953 }
4954 if (!ret) {
4955 q->nr_requests = nr;
4956 if (blk_mq_is_shared_tags(set->flags)) {
4957 if (q->elevator)
4958 blk_mq_tag_update_sched_shared_tags(q);
4959 else
4960 blk_mq_tag_resize_shared_tags(set, nr);
4961 }
4962 }
4963
4964 blk_mq_unquiesce_queue(q);
4965
4966 return ret;
4967}
4968
4969static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4970 int nr_hw_queues)
4971{
4972 struct request_queue *q;
4973 int prev_nr_hw_queues = set->nr_hw_queues;
4974 unsigned int memflags;
4975 int i;
4976
4977 lockdep_assert_held(&set->tag_list_lock);
4978
4979 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4980 nr_hw_queues = nr_cpu_ids;
4981 if (nr_hw_queues < 1)
4982 return;
4983 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4984 return;
4985
4986 memflags = memalloc_noio_save();
4987 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4988 blk_mq_debugfs_unregister_hctxs(q);
4989 blk_mq_sysfs_unregister_hctxs(q);
4990 }
4991
4992 list_for_each_entry(q, &set->tag_list, tag_set_list)
4993 blk_mq_freeze_queue_nomemsave(q);
4994
4995 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0) {
4996 list_for_each_entry(q, &set->tag_list, tag_set_list)
4997 blk_mq_unfreeze_queue_nomemrestore(q);
4998 goto reregister;
4999 }
5000
5001fallback:
5002 blk_mq_update_queue_map(set);
5003 list_for_each_entry(q, &set->tag_list, tag_set_list) {
5004 __blk_mq_realloc_hw_ctxs(set, q);
5005
5006 if (q->nr_hw_queues != set->nr_hw_queues) {
5007 int i = prev_nr_hw_queues;
5008
5009 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
5010 nr_hw_queues, prev_nr_hw_queues);
5011 for (; i < set->nr_hw_queues; i++)
5012 __blk_mq_free_map_and_rqs(set, i);
5013
5014 set->nr_hw_queues = prev_nr_hw_queues;
5015 goto fallback;
5016 }
5017 blk_mq_map_swqueue(q);
5018 }
5019
5020 /* elv_update_nr_hw_queues() unfreeze queue for us */
5021 list_for_each_entry(q, &set->tag_list, tag_set_list)
5022 elv_update_nr_hw_queues(q);
5023
5024reregister:
5025 list_for_each_entry(q, &set->tag_list, tag_set_list) {
5026 blk_mq_sysfs_register_hctxs(q);
5027 blk_mq_debugfs_register_hctxs(q);
5028
5029 blk_mq_remove_hw_queues_cpuhp(q);
5030 blk_mq_add_hw_queues_cpuhp(q);
5031 }
5032 memalloc_noio_restore(memflags);
5033
5034 /* Free the excess tags when nr_hw_queues shrink. */
5035 for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
5036 __blk_mq_free_map_and_rqs(set, i);
5037}
5038
5039void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
5040{
5041 down_write(&set->update_nr_hwq_lock);
5042 mutex_lock(&set->tag_list_lock);
5043 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
5044 mutex_unlock(&set->tag_list_lock);
5045 up_write(&set->update_nr_hwq_lock);
5046}
5047EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
5048
5049static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
5050 struct io_comp_batch *iob, unsigned int flags)
5051{
5052 long state = get_current_state();
5053 int ret;
5054
5055 do {
5056 ret = q->mq_ops->poll(hctx, iob);
5057 if (ret > 0) {
5058 __set_current_state(TASK_RUNNING);
5059 return ret;
5060 }
5061
5062 if (signal_pending_state(state, current))
5063 __set_current_state(TASK_RUNNING);
5064 if (task_is_running(current))
5065 return 1;
5066
5067 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
5068 break;
5069 cpu_relax();
5070 } while (!need_resched());
5071
5072 __set_current_state(TASK_RUNNING);
5073 return 0;
5074}
5075
5076int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
5077 struct io_comp_batch *iob, unsigned int flags)
5078{
5079 if (!blk_mq_can_poll(q))
5080 return 0;
5081 return blk_hctx_poll(q, xa_load(&q->hctx_table, cookie), iob, flags);
5082}
5083
5084int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
5085 unsigned int poll_flags)
5086{
5087 struct request_queue *q = rq->q;
5088 int ret;
5089
5090 if (!blk_rq_is_poll(rq))
5091 return 0;
5092 if (!percpu_ref_tryget(&q->q_usage_counter))
5093 return 0;
5094
5095 ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
5096 blk_queue_exit(q);
5097
5098 return ret;
5099}
5100EXPORT_SYMBOL_GPL(blk_rq_poll);
5101
5102unsigned int blk_mq_rq_cpu(struct request *rq)
5103{
5104 return rq->mq_ctx->cpu;
5105}
5106EXPORT_SYMBOL(blk_mq_rq_cpu);
5107
5108void blk_mq_cancel_work_sync(struct request_queue *q)
5109{
5110 struct blk_mq_hw_ctx *hctx;
5111 unsigned long i;
5112
5113 cancel_delayed_work_sync(&q->requeue_work);
5114
5115 queue_for_each_hw_ctx(q, hctx, i)
5116 cancel_delayed_work_sync(&hctx->run_work);
5117}
5118
5119static int __init blk_mq_init(void)
5120{
5121 int i;
5122
5123 for_each_possible_cpu(i)
5124 init_llist_head(&per_cpu(blk_cpu_done, i));
5125 for_each_possible_cpu(i)
5126 INIT_CSD(&per_cpu(blk_cpu_csd, i),
5127 __blk_mq_complete_request_remote, NULL);
5128 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
5129
5130 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
5131 "block/softirq:dead", NULL,
5132 blk_softirq_cpu_dead);
5133 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
5134 blk_mq_hctx_notify_dead);
5135 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
5136 blk_mq_hctx_notify_online,
5137 blk_mq_hctx_notify_offline);
5138 return 0;
5139}
5140subsys_initcall(blk_mq_init);