blk-mq: don't use the requeue list to queue flush commands
[linux-block.git] / block / blk-flush.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Functions to sequence PREFLUSH and FUA writes.
4 *
5 * Copyright (C) 2011 Max Planck Institute for Gravitational Physics
6 * Copyright (C) 2011 Tejun Heo <tj@kernel.org>
7 *
8 * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three
9 * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
10 * properties and hardware capability.
11 *
12 * If a request doesn't have data, only REQ_PREFLUSH makes sense, which
13 * indicates a simple flush request. If there is data, REQ_PREFLUSH indicates
14 * that the device cache should be flushed before the data is executed, and
15 * REQ_FUA means that the data must be on non-volatile media on request
16 * completion.
17 *
18 * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any
19 * difference. The requests are either completed immediately if there's no data
20 * or executed as normal requests otherwise.
21 *
22 * If the device has writeback cache and supports FUA, REQ_PREFLUSH is
23 * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
24 *
25 * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH
26 * is translated to PREFLUSH and REQ_FUA to POSTFLUSH.
27 *
28 * The actual execution of flush is double buffered. Whenever a request
29 * needs to execute PRE or POSTFLUSH, it queues at
30 * fq->flush_queue[fq->flush_pending_idx]. Once certain criteria are met, a
31 * REQ_OP_FLUSH is issued and the pending_idx is toggled. When the flush
32 * completes, all the requests which were pending are proceeded to the next
33 * step. This allows arbitrary merging of different types of PREFLUSH/FUA
34 * requests.
35 *
36 * Currently, the following conditions are used to determine when to issue
37 * flush.
38 *
39 * C1. At any given time, only one flush shall be in progress. This makes
40 * double buffering sufficient.
41 *
42 * C2. Flush is deferred if any request is executing DATA of its sequence.
43 * This avoids issuing separate POSTFLUSHes for requests which shared
44 * PREFLUSH.
45 *
46 * C3. The second condition is ignored if there is a request which has
47 * waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid
48 * starvation in the unlikely case where there are continuous stream of
49 * FUA (without PREFLUSH) requests.
50 *
51 * For devices which support FUA, it isn't clear whether C2 (and thus C3)
52 * is beneficial.
53 *
54 * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice.
55 * Once while executing DATA and again after the whole sequence is
56 * complete. The first completion updates the contained bio but doesn't
57 * finish it so that the bio submitter is notified only after the whole
58 * sequence is complete. This is implemented by testing RQF_FLUSH_SEQ in
59 * req_bio_endio().
60 *
61 * The above peculiarity requires that each PREFLUSH/FUA request has only one
62 * bio attached to it, which is guaranteed as they aren't allowed to be
63 * merged in the usual way.
64 */
65
66#include <linux/kernel.h>
67#include <linux/module.h>
68#include <linux/bio.h>
69#include <linux/blkdev.h>
70#include <linux/gfp.h>
71#include <linux/part_stat.h>
72
73#include "blk.h"
74#include "blk-mq.h"
75#include "blk-mq-sched.h"
76
77/* PREFLUSH/FUA sequences */
78enum {
79 REQ_FSEQ_PREFLUSH = (1 << 0), /* pre-flushing in progress */
80 REQ_FSEQ_DATA = (1 << 1), /* data write in progress */
81 REQ_FSEQ_POSTFLUSH = (1 << 2), /* post-flushing in progress */
82 REQ_FSEQ_DONE = (1 << 3),
83
84 REQ_FSEQ_ACTIONS = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
85 REQ_FSEQ_POSTFLUSH,
86
87 /*
88 * If flush has been pending longer than the following timeout,
89 * it's issued even if flush_data requests are still in flight.
90 */
91 FLUSH_PENDING_TIMEOUT = 5 * HZ,
92};
93
94static void blk_kick_flush(struct request_queue *q,
95 struct blk_flush_queue *fq, blk_opf_t flags);
96
97static inline struct blk_flush_queue *
98blk_get_flush_queue(struct request_queue *q, struct blk_mq_ctx *ctx)
99{
100 return blk_mq_map_queue(q, REQ_OP_FLUSH, ctx)->fq;
101}
102
103static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq)
104{
105 unsigned int policy = 0;
106
107 if (blk_rq_sectors(rq))
108 policy |= REQ_FSEQ_DATA;
109
110 if (fflags & (1UL << QUEUE_FLAG_WC)) {
111 if (rq->cmd_flags & REQ_PREFLUSH)
112 policy |= REQ_FSEQ_PREFLUSH;
113 if (!(fflags & (1UL << QUEUE_FLAG_FUA)) &&
114 (rq->cmd_flags & REQ_FUA))
115 policy |= REQ_FSEQ_POSTFLUSH;
116 }
117 return policy;
118}
119
120static unsigned int blk_flush_cur_seq(struct request *rq)
121{
122 return 1 << ffz(rq->flush.seq);
123}
124
125static void blk_flush_restore_request(struct request *rq)
126{
127 /*
128 * After flush data completion, @rq->bio is %NULL but we need to
129 * complete the bio again. @rq->biotail is guaranteed to equal the
130 * original @rq->bio. Restore it.
131 */
132 rq->bio = rq->biotail;
133
134 /* make @rq a normal request */
135 rq->rq_flags &= ~RQF_FLUSH_SEQ;
136 rq->end_io = rq->flush.saved_end_io;
137}
138
139static void blk_account_io_flush(struct request *rq)
140{
141 struct block_device *part = rq->q->disk->part0;
142
143 part_stat_lock();
144 part_stat_inc(part, ios[STAT_FLUSH]);
145 part_stat_add(part, nsecs[STAT_FLUSH],
146 ktime_get_ns() - rq->start_time_ns);
147 part_stat_unlock();
148}
149
150/**
151 * blk_flush_complete_seq - complete flush sequence
152 * @rq: PREFLUSH/FUA request being sequenced
153 * @fq: flush queue
154 * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
155 * @error: whether an error occurred
156 *
157 * @rq just completed @seq part of its flush sequence, record the
158 * completion and trigger the next step.
159 *
160 * CONTEXT:
161 * spin_lock_irq(fq->mq_flush_lock)
162 */
163static void blk_flush_complete_seq(struct request *rq,
164 struct blk_flush_queue *fq,
165 unsigned int seq, blk_status_t error)
166{
167 struct request_queue *q = rq->q;
168 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
169 blk_opf_t cmd_flags;
170
171 BUG_ON(rq->flush.seq & seq);
172 rq->flush.seq |= seq;
173 cmd_flags = rq->cmd_flags;
174
175 if (likely(!error))
176 seq = blk_flush_cur_seq(rq);
177 else
178 seq = REQ_FSEQ_DONE;
179
180 switch (seq) {
181 case REQ_FSEQ_PREFLUSH:
182 case REQ_FSEQ_POSTFLUSH:
183 /* queue for flush */
184 if (list_empty(pending))
185 fq->flush_pending_since = jiffies;
186 list_move_tail(&rq->flush.list, pending);
187 break;
188
189 case REQ_FSEQ_DATA:
190 list_move_tail(&rq->flush.list, &fq->flush_data_in_flight);
191 spin_lock(&q->requeue_lock);
192 list_add_tail(&rq->queuelist, &q->flush_list);
193 spin_unlock(&q->requeue_lock);
194 blk_mq_kick_requeue_list(q);
195 break;
196
197 case REQ_FSEQ_DONE:
198 /*
199 * @rq was previously adjusted by blk_insert_flush() for
200 * flush sequencing and may already have gone through the
201 * flush data request completion path. Restore @rq for
202 * normal completion and end it.
203 */
204 list_del_init(&rq->flush.list);
205 blk_flush_restore_request(rq);
206 blk_mq_end_request(rq, error);
207 break;
208
209 default:
210 BUG();
211 }
212
213 blk_kick_flush(q, fq, cmd_flags);
214}
215
216static enum rq_end_io_ret flush_end_io(struct request *flush_rq,
217 blk_status_t error)
218{
219 struct request_queue *q = flush_rq->q;
220 struct list_head *running;
221 struct request *rq, *n;
222 unsigned long flags = 0;
223 struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx);
224
225 /* release the tag's ownership to the req cloned from */
226 spin_lock_irqsave(&fq->mq_flush_lock, flags);
227
228 if (!req_ref_put_and_test(flush_rq)) {
229 fq->rq_status = error;
230 spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
231 return RQ_END_IO_NONE;
232 }
233
234 blk_account_io_flush(flush_rq);
235 /*
236 * Flush request has to be marked as IDLE when it is really ended
237 * because its .end_io() is called from timeout code path too for
238 * avoiding use-after-free.
239 */
240 WRITE_ONCE(flush_rq->state, MQ_RQ_IDLE);
241 if (fq->rq_status != BLK_STS_OK) {
242 error = fq->rq_status;
243 fq->rq_status = BLK_STS_OK;
244 }
245
246 if (!q->elevator) {
247 flush_rq->tag = BLK_MQ_NO_TAG;
248 } else {
249 blk_mq_put_driver_tag(flush_rq);
250 flush_rq->internal_tag = BLK_MQ_NO_TAG;
251 }
252
253 running = &fq->flush_queue[fq->flush_running_idx];
254 BUG_ON(fq->flush_pending_idx == fq->flush_running_idx);
255
256 /* account completion of the flush request */
257 fq->flush_running_idx ^= 1;
258
259 /* and push the waiting requests to the next stage */
260 list_for_each_entry_safe(rq, n, running, flush.list) {
261 unsigned int seq = blk_flush_cur_seq(rq);
262
263 BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
264 blk_flush_complete_seq(rq, fq, seq, error);
265 }
266
267 spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
268 return RQ_END_IO_NONE;
269}
270
271bool is_flush_rq(struct request *rq)
272{
273 return rq->end_io == flush_end_io;
274}
275
276/**
277 * blk_kick_flush - consider issuing flush request
278 * @q: request_queue being kicked
279 * @fq: flush queue
280 * @flags: cmd_flags of the original request
281 *
282 * Flush related states of @q have changed, consider issuing flush request.
283 * Please read the comment at the top of this file for more info.
284 *
285 * CONTEXT:
286 * spin_lock_irq(fq->mq_flush_lock)
287 *
288 */
289static void blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq,
290 blk_opf_t flags)
291{
292 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
293 struct request *first_rq =
294 list_first_entry(pending, struct request, flush.list);
295 struct request *flush_rq = fq->flush_rq;
296
297 /* C1 described at the top of this file */
298 if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending))
299 return;
300
301 /* C2 and C3 */
302 if (!list_empty(&fq->flush_data_in_flight) &&
303 time_before(jiffies,
304 fq->flush_pending_since + FLUSH_PENDING_TIMEOUT))
305 return;
306
307 /*
308 * Issue flush and toggle pending_idx. This makes pending_idx
309 * different from running_idx, which means flush is in flight.
310 */
311 fq->flush_pending_idx ^= 1;
312
313 blk_rq_init(q, flush_rq);
314
315 /*
316 * In case of none scheduler, borrow tag from the first request
317 * since they can't be in flight at the same time. And acquire
318 * the tag's ownership for flush req.
319 *
320 * In case of IO scheduler, flush rq need to borrow scheduler tag
321 * just for cheating put/get driver tag.
322 */
323 flush_rq->mq_ctx = first_rq->mq_ctx;
324 flush_rq->mq_hctx = first_rq->mq_hctx;
325
326 if (!q->elevator) {
327 flush_rq->tag = first_rq->tag;
328
329 /*
330 * We borrow data request's driver tag, so have to mark
331 * this flush request as INFLIGHT for avoiding double
332 * account of this driver tag
333 */
334 flush_rq->rq_flags |= RQF_MQ_INFLIGHT;
335 } else
336 flush_rq->internal_tag = first_rq->internal_tag;
337
338 flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH;
339 flush_rq->cmd_flags |= (flags & REQ_DRV) | (flags & REQ_FAILFAST_MASK);
340 flush_rq->rq_flags |= RQF_FLUSH_SEQ;
341 flush_rq->end_io = flush_end_io;
342 /*
343 * Order WRITE ->end_io and WRITE rq->ref, and its pair is the one
344 * implied in refcount_inc_not_zero() called from
345 * blk_mq_find_and_get_req(), which orders WRITE/READ flush_rq->ref
346 * and READ flush_rq->end_io
347 */
348 smp_wmb();
349 req_ref_set(flush_rq, 1);
350
351 spin_lock(&q->requeue_lock);
352 list_add_tail(&flush_rq->queuelist, &q->flush_list);
353 spin_unlock(&q->requeue_lock);
354
355 blk_mq_kick_requeue_list(q);
356}
357
358static enum rq_end_io_ret mq_flush_data_end_io(struct request *rq,
359 blk_status_t error)
360{
361 struct request_queue *q = rq->q;
362 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
363 struct blk_mq_ctx *ctx = rq->mq_ctx;
364 unsigned long flags;
365 struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx);
366
367 if (q->elevator) {
368 WARN_ON(rq->tag < 0);
369 blk_mq_put_driver_tag(rq);
370 }
371
372 /*
373 * After populating an empty queue, kick it to avoid stall. Read
374 * the comment in flush_end_io().
375 */
376 spin_lock_irqsave(&fq->mq_flush_lock, flags);
377 blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error);
378 spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
379
380 blk_mq_sched_restart(hctx);
381 return RQ_END_IO_NONE;
382}
383
384static void blk_rq_init_flush(struct request *rq)
385{
386 rq->flush.seq = 0;
387 INIT_LIST_HEAD(&rq->flush.list);
388 rq->rq_flags |= RQF_FLUSH_SEQ;
389 rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
390 rq->end_io = mq_flush_data_end_io;
391}
392
393/*
394 * Insert a PREFLUSH/FUA request into the flush state machine.
395 * Returns true if the request has been consumed by the flush state machine,
396 * or false if the caller should continue to process it.
397 */
398bool blk_insert_flush(struct request *rq)
399{
400 struct request_queue *q = rq->q;
401 unsigned long fflags = q->queue_flags; /* may change, cache */
402 unsigned int policy = blk_flush_policy(fflags, rq);
403 struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx);
404
405 /* FLUSH/FUA request must never be merged */
406 WARN_ON_ONCE(rq->bio != rq->biotail);
407
408 /*
409 * @policy now records what operations need to be done. Adjust
410 * REQ_PREFLUSH and FUA for the driver.
411 */
412 rq->cmd_flags &= ~REQ_PREFLUSH;
413 if (!(fflags & (1UL << QUEUE_FLAG_FUA)))
414 rq->cmd_flags &= ~REQ_FUA;
415
416 /*
417 * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any
418 * of those flags, we have to set REQ_SYNC to avoid skewing
419 * the request accounting.
420 */
421 rq->cmd_flags |= REQ_SYNC;
422
423 switch (policy) {
424 case 0:
425 /*
426 * An empty flush handed down from a stacking driver may
427 * translate into nothing if the underlying device does not
428 * advertise a write-back cache. In this case, simply
429 * complete the request.
430 */
431 blk_mq_end_request(rq, 0);
432 return true;
433 case REQ_FSEQ_DATA:
434 /*
435 * If there's data, but no flush is necessary, the request can
436 * be processed directly without going through flush machinery.
437 * Queue for normal execution.
438 */
439 return false;
440 case REQ_FSEQ_DATA | REQ_FSEQ_POSTFLUSH:
441 /*
442 * Initialize the flush fields and completion handler to trigger
443 * the post flush, and then just pass the command on.
444 */
445 blk_rq_init_flush(rq);
446 rq->flush.seq |= REQ_FSEQ_POSTFLUSH;
447 spin_lock_irq(&fq->mq_flush_lock);
448 list_move_tail(&rq->flush.list, &fq->flush_data_in_flight);
449 spin_unlock_irq(&fq->mq_flush_lock);
450 return false;
451 default:
452 /*
453 * Mark the request as part of a flush sequence and submit it
454 * for further processing to the flush state machine.
455 */
456 blk_rq_init_flush(rq);
457 spin_lock_irq(&fq->mq_flush_lock);
458 blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
459 spin_unlock_irq(&fq->mq_flush_lock);
460 return true;
461 }
462}
463
464/**
465 * blkdev_issue_flush - queue a flush
466 * @bdev: blockdev to issue flush for
467 *
468 * Description:
469 * Issue a flush for the block device in question.
470 */
471int blkdev_issue_flush(struct block_device *bdev)
472{
473 struct bio bio;
474
475 bio_init(&bio, bdev, NULL, 0, REQ_OP_WRITE | REQ_PREFLUSH);
476 return submit_bio_wait(&bio);
477}
478EXPORT_SYMBOL(blkdev_issue_flush);
479
480struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
481 gfp_t flags)
482{
483 struct blk_flush_queue *fq;
484 int rq_sz = sizeof(struct request);
485
486 fq = kzalloc_node(sizeof(*fq), flags, node);
487 if (!fq)
488 goto fail;
489
490 spin_lock_init(&fq->mq_flush_lock);
491
492 rq_sz = round_up(rq_sz + cmd_size, cache_line_size());
493 fq->flush_rq = kzalloc_node(rq_sz, flags, node);
494 if (!fq->flush_rq)
495 goto fail_rq;
496
497 INIT_LIST_HEAD(&fq->flush_queue[0]);
498 INIT_LIST_HEAD(&fq->flush_queue[1]);
499 INIT_LIST_HEAD(&fq->flush_data_in_flight);
500
501 return fq;
502
503 fail_rq:
504 kfree(fq);
505 fail:
506 return NULL;
507}
508
509void blk_free_flush_queue(struct blk_flush_queue *fq)
510{
511 /* bio based request queue hasn't flush queue */
512 if (!fq)
513 return;
514
515 kfree(fq->flush_rq);
516 kfree(fq);
517}
518
519/*
520 * Allow driver to set its own lock class to fq->mq_flush_lock for
521 * avoiding lockdep complaint.
522 *
523 * flush_end_io() may be called recursively from some driver, such as
524 * nvme-loop, so lockdep may complain 'possible recursive locking' because
525 * all 'struct blk_flush_queue' instance share same mq_flush_lock lock class
526 * key. We need to assign different lock class for these driver's
527 * fq->mq_flush_lock for avoiding the lockdep warning.
528 *
529 * Use dynamically allocated lock class key for each 'blk_flush_queue'
530 * instance is over-kill, and more worse it introduces horrible boot delay
531 * issue because synchronize_rcu() is implied in lockdep_unregister_key which
532 * is called for each hctx release. SCSI probing may synchronously create and
533 * destroy lots of MQ request_queues for non-existent devices, and some robot
534 * test kernel always enable lockdep option. It is observed that more than half
535 * an hour is taken during SCSI MQ probe with per-fq lock class.
536 */
537void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx,
538 struct lock_class_key *key)
539{
540 lockdep_set_class(&hctx->fq->mq_flush_lock, key);
541}
542EXPORT_SYMBOL_GPL(blk_mq_hctx_set_fq_lock_class);