Merge tag 'x86_cache_for_6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[linux-block.git] / block / blk-core.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12/*
13 * This handles all read/write requests to block devices
14 */
15#include <linux/kernel.h>
16#include <linux/module.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/blk-pm.h>
20#include <linux/blk-integrity.h>
21#include <linux/highmem.h>
22#include <linux/mm.h>
23#include <linux/pagemap.h>
24#include <linux/kernel_stat.h>
25#include <linux/string.h>
26#include <linux/init.h>
27#include <linux/completion.h>
28#include <linux/slab.h>
29#include <linux/swap.h>
30#include <linux/writeback.h>
31#include <linux/task_io_accounting_ops.h>
32#include <linux/fault-inject.h>
33#include <linux/list_sort.h>
34#include <linux/delay.h>
35#include <linux/ratelimit.h>
36#include <linux/pm_runtime.h>
37#include <linux/t10-pi.h>
38#include <linux/debugfs.h>
39#include <linux/bpf.h>
40#include <linux/part_stat.h>
41#include <linux/sched/sysctl.h>
42#include <linux/blk-crypto.h>
43
44#define CREATE_TRACE_POINTS
45#include <trace/events/block.h>
46
47#include "blk.h"
48#include "blk-mq-sched.h"
49#include "blk-pm.h"
50#include "blk-cgroup.h"
51#include "blk-throttle.h"
52
53struct dentry *blk_debugfs_root;
54
55EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
56EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
57EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
58EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
59EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
60EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
61
62static DEFINE_IDA(blk_queue_ida);
63
64/*
65 * For queue allocation
66 */
67static struct kmem_cache *blk_requestq_cachep;
68
69/*
70 * Controlling structure to kblockd
71 */
72static struct workqueue_struct *kblockd_workqueue;
73
74/**
75 * blk_queue_flag_set - atomically set a queue flag
76 * @flag: flag to be set
77 * @q: request queue
78 */
79void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
80{
81 set_bit(flag, &q->queue_flags);
82}
83EXPORT_SYMBOL(blk_queue_flag_set);
84
85/**
86 * blk_queue_flag_clear - atomically clear a queue flag
87 * @flag: flag to be cleared
88 * @q: request queue
89 */
90void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
91{
92 clear_bit(flag, &q->queue_flags);
93}
94EXPORT_SYMBOL(blk_queue_flag_clear);
95
96/**
97 * blk_queue_flag_test_and_set - atomically test and set a queue flag
98 * @flag: flag to be set
99 * @q: request queue
100 *
101 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
102 * the flag was already set.
103 */
104bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
105{
106 return test_and_set_bit(flag, &q->queue_flags);
107}
108EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
109
110#define REQ_OP_NAME(name) [REQ_OP_##name] = #name
111static const char *const blk_op_name[] = {
112 REQ_OP_NAME(READ),
113 REQ_OP_NAME(WRITE),
114 REQ_OP_NAME(FLUSH),
115 REQ_OP_NAME(DISCARD),
116 REQ_OP_NAME(SECURE_ERASE),
117 REQ_OP_NAME(ZONE_RESET),
118 REQ_OP_NAME(ZONE_RESET_ALL),
119 REQ_OP_NAME(ZONE_OPEN),
120 REQ_OP_NAME(ZONE_CLOSE),
121 REQ_OP_NAME(ZONE_FINISH),
122 REQ_OP_NAME(ZONE_APPEND),
123 REQ_OP_NAME(WRITE_ZEROES),
124 REQ_OP_NAME(DRV_IN),
125 REQ_OP_NAME(DRV_OUT),
126};
127#undef REQ_OP_NAME
128
129/**
130 * blk_op_str - Return string XXX in the REQ_OP_XXX.
131 * @op: REQ_OP_XXX.
132 *
133 * Description: Centralize block layer function to convert REQ_OP_XXX into
134 * string format. Useful in the debugging and tracing bio or request. For
135 * invalid REQ_OP_XXX it returns string "UNKNOWN".
136 */
137inline const char *blk_op_str(enum req_op op)
138{
139 const char *op_str = "UNKNOWN";
140
141 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
142 op_str = blk_op_name[op];
143
144 return op_str;
145}
146EXPORT_SYMBOL_GPL(blk_op_str);
147
148static const struct {
149 int errno;
150 const char *name;
151} blk_errors[] = {
152 [BLK_STS_OK] = { 0, "" },
153 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
154 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
155 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
156 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
157 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
158 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
159 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
160 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
161 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
162 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
163 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
164 [BLK_STS_OFFLINE] = { -ENODEV, "device offline" },
165
166 /* device mapper special case, should not leak out: */
167 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
168
169 /* zone device specific errors */
170 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
171 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
172
173 /* everything else not covered above: */
174 [BLK_STS_IOERR] = { -EIO, "I/O" },
175};
176
177blk_status_t errno_to_blk_status(int errno)
178{
179 int i;
180
181 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
182 if (blk_errors[i].errno == errno)
183 return (__force blk_status_t)i;
184 }
185
186 return BLK_STS_IOERR;
187}
188EXPORT_SYMBOL_GPL(errno_to_blk_status);
189
190int blk_status_to_errno(blk_status_t status)
191{
192 int idx = (__force int)status;
193
194 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
195 return -EIO;
196 return blk_errors[idx].errno;
197}
198EXPORT_SYMBOL_GPL(blk_status_to_errno);
199
200const char *blk_status_to_str(blk_status_t status)
201{
202 int idx = (__force int)status;
203
204 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
205 return "<null>";
206 return blk_errors[idx].name;
207}
208
209/**
210 * blk_sync_queue - cancel any pending callbacks on a queue
211 * @q: the queue
212 *
213 * Description:
214 * The block layer may perform asynchronous callback activity
215 * on a queue, such as calling the unplug function after a timeout.
216 * A block device may call blk_sync_queue to ensure that any
217 * such activity is cancelled, thus allowing it to release resources
218 * that the callbacks might use. The caller must already have made sure
219 * that its ->submit_bio will not re-add plugging prior to calling
220 * this function.
221 *
222 * This function does not cancel any asynchronous activity arising
223 * out of elevator or throttling code. That would require elevator_exit()
224 * and blkcg_exit_queue() to be called with queue lock initialized.
225 *
226 */
227void blk_sync_queue(struct request_queue *q)
228{
229 del_timer_sync(&q->timeout);
230 cancel_work_sync(&q->timeout_work);
231}
232EXPORT_SYMBOL(blk_sync_queue);
233
234/**
235 * blk_set_pm_only - increment pm_only counter
236 * @q: request queue pointer
237 */
238void blk_set_pm_only(struct request_queue *q)
239{
240 atomic_inc(&q->pm_only);
241}
242EXPORT_SYMBOL_GPL(blk_set_pm_only);
243
244void blk_clear_pm_only(struct request_queue *q)
245{
246 int pm_only;
247
248 pm_only = atomic_dec_return(&q->pm_only);
249 WARN_ON_ONCE(pm_only < 0);
250 if (pm_only == 0)
251 wake_up_all(&q->mq_freeze_wq);
252}
253EXPORT_SYMBOL_GPL(blk_clear_pm_only);
254
255static void blk_free_queue_rcu(struct rcu_head *rcu_head)
256{
257 struct request_queue *q = container_of(rcu_head,
258 struct request_queue, rcu_head);
259
260 percpu_ref_exit(&q->q_usage_counter);
261 kmem_cache_free(blk_requestq_cachep, q);
262}
263
264static void blk_free_queue(struct request_queue *q)
265{
266 blk_free_queue_stats(q->stats);
267 if (queue_is_mq(q))
268 blk_mq_release(q);
269
270 ida_free(&blk_queue_ida, q->id);
271 call_rcu(&q->rcu_head, blk_free_queue_rcu);
272}
273
274/**
275 * blk_put_queue - decrement the request_queue refcount
276 * @q: the request_queue structure to decrement the refcount for
277 *
278 * Decrements the refcount of the request_queue and free it when the refcount
279 * reaches 0.
280 */
281void blk_put_queue(struct request_queue *q)
282{
283 if (refcount_dec_and_test(&q->refs))
284 blk_free_queue(q);
285}
286EXPORT_SYMBOL(blk_put_queue);
287
288void blk_queue_start_drain(struct request_queue *q)
289{
290 /*
291 * When queue DYING flag is set, we need to block new req
292 * entering queue, so we call blk_freeze_queue_start() to
293 * prevent I/O from crossing blk_queue_enter().
294 */
295 blk_freeze_queue_start(q);
296 if (queue_is_mq(q))
297 blk_mq_wake_waiters(q);
298 /* Make blk_queue_enter() reexamine the DYING flag. */
299 wake_up_all(&q->mq_freeze_wq);
300}
301
302/**
303 * blk_queue_enter() - try to increase q->q_usage_counter
304 * @q: request queue pointer
305 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
306 */
307int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
308{
309 const bool pm = flags & BLK_MQ_REQ_PM;
310
311 while (!blk_try_enter_queue(q, pm)) {
312 if (flags & BLK_MQ_REQ_NOWAIT)
313 return -EAGAIN;
314
315 /*
316 * read pair of barrier in blk_freeze_queue_start(), we need to
317 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
318 * reading .mq_freeze_depth or queue dying flag, otherwise the
319 * following wait may never return if the two reads are
320 * reordered.
321 */
322 smp_rmb();
323 wait_event(q->mq_freeze_wq,
324 (!q->mq_freeze_depth &&
325 blk_pm_resume_queue(pm, q)) ||
326 blk_queue_dying(q));
327 if (blk_queue_dying(q))
328 return -ENODEV;
329 }
330
331 return 0;
332}
333
334int __bio_queue_enter(struct request_queue *q, struct bio *bio)
335{
336 while (!blk_try_enter_queue(q, false)) {
337 struct gendisk *disk = bio->bi_bdev->bd_disk;
338
339 if (bio->bi_opf & REQ_NOWAIT) {
340 if (test_bit(GD_DEAD, &disk->state))
341 goto dead;
342 bio_wouldblock_error(bio);
343 return -EAGAIN;
344 }
345
346 /*
347 * read pair of barrier in blk_freeze_queue_start(), we need to
348 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
349 * reading .mq_freeze_depth or queue dying flag, otherwise the
350 * following wait may never return if the two reads are
351 * reordered.
352 */
353 smp_rmb();
354 wait_event(q->mq_freeze_wq,
355 (!q->mq_freeze_depth &&
356 blk_pm_resume_queue(false, q)) ||
357 test_bit(GD_DEAD, &disk->state));
358 if (test_bit(GD_DEAD, &disk->state))
359 goto dead;
360 }
361
362 return 0;
363dead:
364 bio_io_error(bio);
365 return -ENODEV;
366}
367
368void blk_queue_exit(struct request_queue *q)
369{
370 percpu_ref_put(&q->q_usage_counter);
371}
372
373static void blk_queue_usage_counter_release(struct percpu_ref *ref)
374{
375 struct request_queue *q =
376 container_of(ref, struct request_queue, q_usage_counter);
377
378 wake_up_all(&q->mq_freeze_wq);
379}
380
381static void blk_rq_timed_out_timer(struct timer_list *t)
382{
383 struct request_queue *q = from_timer(q, t, timeout);
384
385 kblockd_schedule_work(&q->timeout_work);
386}
387
388static void blk_timeout_work(struct work_struct *work)
389{
390}
391
392struct request_queue *blk_alloc_queue(int node_id)
393{
394 struct request_queue *q;
395
396 q = kmem_cache_alloc_node(blk_requestq_cachep, GFP_KERNEL | __GFP_ZERO,
397 node_id);
398 if (!q)
399 return NULL;
400
401 q->last_merge = NULL;
402
403 q->id = ida_alloc(&blk_queue_ida, GFP_KERNEL);
404 if (q->id < 0)
405 goto fail_q;
406
407 q->stats = blk_alloc_queue_stats();
408 if (!q->stats)
409 goto fail_id;
410
411 q->node = node_id;
412
413 atomic_set(&q->nr_active_requests_shared_tags, 0);
414
415 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
416 INIT_WORK(&q->timeout_work, blk_timeout_work);
417 INIT_LIST_HEAD(&q->icq_list);
418
419 refcount_set(&q->refs, 1);
420 mutex_init(&q->debugfs_mutex);
421 mutex_init(&q->sysfs_lock);
422 mutex_init(&q->sysfs_dir_lock);
423 spin_lock_init(&q->queue_lock);
424
425 init_waitqueue_head(&q->mq_freeze_wq);
426 mutex_init(&q->mq_freeze_lock);
427
428 /*
429 * Init percpu_ref in atomic mode so that it's faster to shutdown.
430 * See blk_register_queue() for details.
431 */
432 if (percpu_ref_init(&q->q_usage_counter,
433 blk_queue_usage_counter_release,
434 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
435 goto fail_stats;
436
437 blk_set_default_limits(&q->limits);
438 q->nr_requests = BLKDEV_DEFAULT_RQ;
439
440 return q;
441
442fail_stats:
443 blk_free_queue_stats(q->stats);
444fail_id:
445 ida_free(&blk_queue_ida, q->id);
446fail_q:
447 kmem_cache_free(blk_requestq_cachep, q);
448 return NULL;
449}
450
451/**
452 * blk_get_queue - increment the request_queue refcount
453 * @q: the request_queue structure to increment the refcount for
454 *
455 * Increment the refcount of the request_queue kobject.
456 *
457 * Context: Any context.
458 */
459bool blk_get_queue(struct request_queue *q)
460{
461 if (unlikely(blk_queue_dying(q)))
462 return false;
463 refcount_inc(&q->refs);
464 return true;
465}
466EXPORT_SYMBOL(blk_get_queue);
467
468#ifdef CONFIG_FAIL_MAKE_REQUEST
469
470static DECLARE_FAULT_ATTR(fail_make_request);
471
472static int __init setup_fail_make_request(char *str)
473{
474 return setup_fault_attr(&fail_make_request, str);
475}
476__setup("fail_make_request=", setup_fail_make_request);
477
478bool should_fail_request(struct block_device *part, unsigned int bytes)
479{
480 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
481}
482
483static int __init fail_make_request_debugfs(void)
484{
485 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
486 NULL, &fail_make_request);
487
488 return PTR_ERR_OR_ZERO(dir);
489}
490
491late_initcall(fail_make_request_debugfs);
492#endif /* CONFIG_FAIL_MAKE_REQUEST */
493
494static inline void bio_check_ro(struct bio *bio)
495{
496 if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
497 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
498 return;
499 pr_warn("Trying to write to read-only block-device %pg\n",
500 bio->bi_bdev);
501 /* Older lvm-tools actually trigger this */
502 }
503}
504
505static noinline int should_fail_bio(struct bio *bio)
506{
507 if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
508 return -EIO;
509 return 0;
510}
511ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
512
513/*
514 * Check whether this bio extends beyond the end of the device or partition.
515 * This may well happen - the kernel calls bread() without checking the size of
516 * the device, e.g., when mounting a file system.
517 */
518static inline int bio_check_eod(struct bio *bio)
519{
520 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
521 unsigned int nr_sectors = bio_sectors(bio);
522
523 if (nr_sectors && maxsector &&
524 (nr_sectors > maxsector ||
525 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
526 pr_info_ratelimited("%s: attempt to access beyond end of device\n"
527 "%pg: rw=%d, sector=%llu, nr_sectors = %u limit=%llu\n",
528 current->comm, bio->bi_bdev, bio->bi_opf,
529 bio->bi_iter.bi_sector, nr_sectors, maxsector);
530 return -EIO;
531 }
532 return 0;
533}
534
535/*
536 * Remap block n of partition p to block n+start(p) of the disk.
537 */
538static int blk_partition_remap(struct bio *bio)
539{
540 struct block_device *p = bio->bi_bdev;
541
542 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
543 return -EIO;
544 if (bio_sectors(bio)) {
545 bio->bi_iter.bi_sector += p->bd_start_sect;
546 trace_block_bio_remap(bio, p->bd_dev,
547 bio->bi_iter.bi_sector -
548 p->bd_start_sect);
549 }
550 bio_set_flag(bio, BIO_REMAPPED);
551 return 0;
552}
553
554/*
555 * Check write append to a zoned block device.
556 */
557static inline blk_status_t blk_check_zone_append(struct request_queue *q,
558 struct bio *bio)
559{
560 int nr_sectors = bio_sectors(bio);
561
562 /* Only applicable to zoned block devices */
563 if (!bdev_is_zoned(bio->bi_bdev))
564 return BLK_STS_NOTSUPP;
565
566 /* The bio sector must point to the start of a sequential zone */
567 if (!bdev_is_zone_start(bio->bi_bdev, bio->bi_iter.bi_sector) ||
568 !bio_zone_is_seq(bio))
569 return BLK_STS_IOERR;
570
571 /*
572 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
573 * split and could result in non-contiguous sectors being written in
574 * different zones.
575 */
576 if (nr_sectors > q->limits.chunk_sectors)
577 return BLK_STS_IOERR;
578
579 /* Make sure the BIO is small enough and will not get split */
580 if (nr_sectors > q->limits.max_zone_append_sectors)
581 return BLK_STS_IOERR;
582
583 bio->bi_opf |= REQ_NOMERGE;
584
585 return BLK_STS_OK;
586}
587
588static void __submit_bio(struct bio *bio)
589{
590 if (unlikely(!blk_crypto_bio_prep(&bio)))
591 return;
592
593 if (!bio->bi_bdev->bd_has_submit_bio) {
594 blk_mq_submit_bio(bio);
595 } else if (likely(bio_queue_enter(bio) == 0)) {
596 struct gendisk *disk = bio->bi_bdev->bd_disk;
597
598 disk->fops->submit_bio(bio);
599 blk_queue_exit(disk->queue);
600 }
601}
602
603/*
604 * The loop in this function may be a bit non-obvious, and so deserves some
605 * explanation:
606 *
607 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
608 * that), so we have a list with a single bio.
609 * - We pretend that we have just taken it off a longer list, so we assign
610 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
611 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
612 * bios through a recursive call to submit_bio_noacct. If it did, we find a
613 * non-NULL value in bio_list and re-enter the loop from the top.
614 * - In this case we really did just take the bio of the top of the list (no
615 * pretending) and so remove it from bio_list, and call into ->submit_bio()
616 * again.
617 *
618 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
619 * bio_list_on_stack[1] contains bios that were submitted before the current
620 * ->submit_bio, but that haven't been processed yet.
621 */
622static void __submit_bio_noacct(struct bio *bio)
623{
624 struct bio_list bio_list_on_stack[2];
625
626 BUG_ON(bio->bi_next);
627
628 bio_list_init(&bio_list_on_stack[0]);
629 current->bio_list = bio_list_on_stack;
630
631 do {
632 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
633 struct bio_list lower, same;
634
635 /*
636 * Create a fresh bio_list for all subordinate requests.
637 */
638 bio_list_on_stack[1] = bio_list_on_stack[0];
639 bio_list_init(&bio_list_on_stack[0]);
640
641 __submit_bio(bio);
642
643 /*
644 * Sort new bios into those for a lower level and those for the
645 * same level.
646 */
647 bio_list_init(&lower);
648 bio_list_init(&same);
649 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
650 if (q == bdev_get_queue(bio->bi_bdev))
651 bio_list_add(&same, bio);
652 else
653 bio_list_add(&lower, bio);
654
655 /*
656 * Now assemble so we handle the lowest level first.
657 */
658 bio_list_merge(&bio_list_on_stack[0], &lower);
659 bio_list_merge(&bio_list_on_stack[0], &same);
660 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
661 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
662
663 current->bio_list = NULL;
664}
665
666static void __submit_bio_noacct_mq(struct bio *bio)
667{
668 struct bio_list bio_list[2] = { };
669
670 current->bio_list = bio_list;
671
672 do {
673 __submit_bio(bio);
674 } while ((bio = bio_list_pop(&bio_list[0])));
675
676 current->bio_list = NULL;
677}
678
679void submit_bio_noacct_nocheck(struct bio *bio)
680{
681 blk_cgroup_bio_start(bio);
682 blkcg_bio_issue_init(bio);
683
684 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
685 trace_block_bio_queue(bio);
686 /*
687 * Now that enqueuing has been traced, we need to trace
688 * completion as well.
689 */
690 bio_set_flag(bio, BIO_TRACE_COMPLETION);
691 }
692
693 /*
694 * We only want one ->submit_bio to be active at a time, else stack
695 * usage with stacked devices could be a problem. Use current->bio_list
696 * to collect a list of requests submited by a ->submit_bio method while
697 * it is active, and then process them after it returned.
698 */
699 if (current->bio_list)
700 bio_list_add(&current->bio_list[0], bio);
701 else if (!bio->bi_bdev->bd_has_submit_bio)
702 __submit_bio_noacct_mq(bio);
703 else
704 __submit_bio_noacct(bio);
705}
706
707/**
708 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
709 * @bio: The bio describing the location in memory and on the device.
710 *
711 * This is a version of submit_bio() that shall only be used for I/O that is
712 * resubmitted to lower level drivers by stacking block drivers. All file
713 * systems and other upper level users of the block layer should use
714 * submit_bio() instead.
715 */
716void submit_bio_noacct(struct bio *bio)
717{
718 struct block_device *bdev = bio->bi_bdev;
719 struct request_queue *q = bdev_get_queue(bdev);
720 blk_status_t status = BLK_STS_IOERR;
721 struct blk_plug *plug;
722
723 might_sleep();
724
725 plug = blk_mq_plug(bio);
726 if (plug && plug->nowait)
727 bio->bi_opf |= REQ_NOWAIT;
728
729 /*
730 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
731 * if queue does not support NOWAIT.
732 */
733 if ((bio->bi_opf & REQ_NOWAIT) && !bdev_nowait(bdev))
734 goto not_supported;
735
736 if (should_fail_bio(bio))
737 goto end_io;
738 bio_check_ro(bio);
739 if (!bio_flagged(bio, BIO_REMAPPED)) {
740 if (unlikely(bio_check_eod(bio)))
741 goto end_io;
742 if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
743 goto end_io;
744 }
745
746 /*
747 * Filter flush bio's early so that bio based drivers without flush
748 * support don't have to worry about them.
749 */
750 if (op_is_flush(bio->bi_opf)) {
751 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_WRITE &&
752 bio_op(bio) != REQ_OP_ZONE_APPEND))
753 goto end_io;
754 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
755 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
756 if (!bio_sectors(bio)) {
757 status = BLK_STS_OK;
758 goto end_io;
759 }
760 }
761 }
762
763 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
764 bio_clear_polled(bio);
765
766 switch (bio_op(bio)) {
767 case REQ_OP_DISCARD:
768 if (!bdev_max_discard_sectors(bdev))
769 goto not_supported;
770 break;
771 case REQ_OP_SECURE_ERASE:
772 if (!bdev_max_secure_erase_sectors(bdev))
773 goto not_supported;
774 break;
775 case REQ_OP_ZONE_APPEND:
776 status = blk_check_zone_append(q, bio);
777 if (status != BLK_STS_OK)
778 goto end_io;
779 break;
780 case REQ_OP_ZONE_RESET:
781 case REQ_OP_ZONE_OPEN:
782 case REQ_OP_ZONE_CLOSE:
783 case REQ_OP_ZONE_FINISH:
784 if (!bdev_is_zoned(bio->bi_bdev))
785 goto not_supported;
786 break;
787 case REQ_OP_ZONE_RESET_ALL:
788 if (!bdev_is_zoned(bio->bi_bdev) || !blk_queue_zone_resetall(q))
789 goto not_supported;
790 break;
791 case REQ_OP_WRITE_ZEROES:
792 if (!q->limits.max_write_zeroes_sectors)
793 goto not_supported;
794 break;
795 default:
796 break;
797 }
798
799 if (blk_throtl_bio(bio))
800 return;
801 submit_bio_noacct_nocheck(bio);
802 return;
803
804not_supported:
805 status = BLK_STS_NOTSUPP;
806end_io:
807 bio->bi_status = status;
808 bio_endio(bio);
809}
810EXPORT_SYMBOL(submit_bio_noacct);
811
812/**
813 * submit_bio - submit a bio to the block device layer for I/O
814 * @bio: The &struct bio which describes the I/O
815 *
816 * submit_bio() is used to submit I/O requests to block devices. It is passed a
817 * fully set up &struct bio that describes the I/O that needs to be done. The
818 * bio will be send to the device described by the bi_bdev field.
819 *
820 * The success/failure status of the request, along with notification of
821 * completion, is delivered asynchronously through the ->bi_end_io() callback
822 * in @bio. The bio must NOT be touched by the caller until ->bi_end_io() has
823 * been called.
824 */
825void submit_bio(struct bio *bio)
826{
827 if (bio_op(bio) == REQ_OP_READ) {
828 task_io_account_read(bio->bi_iter.bi_size);
829 count_vm_events(PGPGIN, bio_sectors(bio));
830 } else if (bio_op(bio) == REQ_OP_WRITE) {
831 count_vm_events(PGPGOUT, bio_sectors(bio));
832 }
833
834 submit_bio_noacct(bio);
835}
836EXPORT_SYMBOL(submit_bio);
837
838/**
839 * bio_poll - poll for BIO completions
840 * @bio: bio to poll for
841 * @iob: batches of IO
842 * @flags: BLK_POLL_* flags that control the behavior
843 *
844 * Poll for completions on queue associated with the bio. Returns number of
845 * completed entries found.
846 *
847 * Note: the caller must either be the context that submitted @bio, or
848 * be in a RCU critical section to prevent freeing of @bio.
849 */
850int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
851{
852 blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
853 struct block_device *bdev;
854 struct request_queue *q;
855 int ret = 0;
856
857 bdev = READ_ONCE(bio->bi_bdev);
858 if (!bdev)
859 return 0;
860
861 q = bdev_get_queue(bdev);
862 if (cookie == BLK_QC_T_NONE ||
863 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
864 return 0;
865
866 /*
867 * As the requests that require a zone lock are not plugged in the
868 * first place, directly accessing the plug instead of using
869 * blk_mq_plug() should not have any consequences during flushing for
870 * zoned devices.
871 */
872 blk_flush_plug(current->plug, false);
873
874 /*
875 * We need to be able to enter a frozen queue, similar to how
876 * timeouts also need to do that. If that is blocked, then we can
877 * have pending IO when a queue freeze is started, and then the
878 * wait for the freeze to finish will wait for polled requests to
879 * timeout as the poller is preventer from entering the queue and
880 * completing them. As long as we prevent new IO from being queued,
881 * that should be all that matters.
882 */
883 if (!percpu_ref_tryget(&q->q_usage_counter))
884 return 0;
885 if (queue_is_mq(q)) {
886 ret = blk_mq_poll(q, cookie, iob, flags);
887 } else {
888 struct gendisk *disk = q->disk;
889
890 if (disk && disk->fops->poll_bio)
891 ret = disk->fops->poll_bio(bio, iob, flags);
892 }
893 blk_queue_exit(q);
894 return ret;
895}
896EXPORT_SYMBOL_GPL(bio_poll);
897
898/*
899 * Helper to implement file_operations.iopoll. Requires the bio to be stored
900 * in iocb->private, and cleared before freeing the bio.
901 */
902int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
903 unsigned int flags)
904{
905 struct bio *bio;
906 int ret = 0;
907
908 /*
909 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
910 * point to a freshly allocated bio at this point. If that happens
911 * we have a few cases to consider:
912 *
913 * 1) the bio is beeing initialized and bi_bdev is NULL. We can just
914 * simply nothing in this case
915 * 2) the bio points to a not poll enabled device. bio_poll will catch
916 * this and return 0
917 * 3) the bio points to a poll capable device, including but not
918 * limited to the one that the original bio pointed to. In this
919 * case we will call into the actual poll method and poll for I/O,
920 * even if we don't need to, but it won't cause harm either.
921 *
922 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
923 * is still allocated. Because partitions hold a reference to the whole
924 * device bdev and thus disk, the disk is also still valid. Grabbing
925 * a reference to the queue in bio_poll() ensures the hctxs and requests
926 * are still valid as well.
927 */
928 rcu_read_lock();
929 bio = READ_ONCE(kiocb->private);
930 if (bio)
931 ret = bio_poll(bio, iob, flags);
932 rcu_read_unlock();
933
934 return ret;
935}
936EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
937
938void update_io_ticks(struct block_device *part, unsigned long now, bool end)
939{
940 unsigned long stamp;
941again:
942 stamp = READ_ONCE(part->bd_stamp);
943 if (unlikely(time_after(now, stamp))) {
944 if (likely(try_cmpxchg(&part->bd_stamp, &stamp, now)))
945 __part_stat_add(part, io_ticks, end ? now - stamp : 1);
946 }
947 if (part->bd_partno) {
948 part = bdev_whole(part);
949 goto again;
950 }
951}
952
953unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
954 unsigned long start_time)
955{
956 part_stat_lock();
957 update_io_ticks(bdev, start_time, false);
958 part_stat_local_inc(bdev, in_flight[op_is_write(op)]);
959 part_stat_unlock();
960
961 return start_time;
962}
963EXPORT_SYMBOL(bdev_start_io_acct);
964
965/**
966 * bio_start_io_acct - start I/O accounting for bio based drivers
967 * @bio: bio to start account for
968 *
969 * Returns the start time that should be passed back to bio_end_io_acct().
970 */
971unsigned long bio_start_io_acct(struct bio *bio)
972{
973 return bdev_start_io_acct(bio->bi_bdev, bio_op(bio), jiffies);
974}
975EXPORT_SYMBOL_GPL(bio_start_io_acct);
976
977void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
978 unsigned int sectors, unsigned long start_time)
979{
980 const int sgrp = op_stat_group(op);
981 unsigned long now = READ_ONCE(jiffies);
982 unsigned long duration = now - start_time;
983
984 part_stat_lock();
985 update_io_ticks(bdev, now, true);
986 part_stat_inc(bdev, ios[sgrp]);
987 part_stat_add(bdev, sectors[sgrp], sectors);
988 part_stat_add(bdev, nsecs[sgrp], jiffies_to_nsecs(duration));
989 part_stat_local_dec(bdev, in_flight[op_is_write(op)]);
990 part_stat_unlock();
991}
992EXPORT_SYMBOL(bdev_end_io_acct);
993
994void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
995 struct block_device *orig_bdev)
996{
997 bdev_end_io_acct(orig_bdev, bio_op(bio), bio_sectors(bio), start_time);
998}
999EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1000
1001/**
1002 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1003 * @q : the queue of the device being checked
1004 *
1005 * Description:
1006 * Check if underlying low-level drivers of a device are busy.
1007 * If the drivers want to export their busy state, they must set own
1008 * exporting function using blk_queue_lld_busy() first.
1009 *
1010 * Basically, this function is used only by request stacking drivers
1011 * to stop dispatching requests to underlying devices when underlying
1012 * devices are busy. This behavior helps more I/O merging on the queue
1013 * of the request stacking driver and prevents I/O throughput regression
1014 * on burst I/O load.
1015 *
1016 * Return:
1017 * 0 - Not busy (The request stacking driver should dispatch request)
1018 * 1 - Busy (The request stacking driver should stop dispatching request)
1019 */
1020int blk_lld_busy(struct request_queue *q)
1021{
1022 if (queue_is_mq(q) && q->mq_ops->busy)
1023 return q->mq_ops->busy(q);
1024
1025 return 0;
1026}
1027EXPORT_SYMBOL_GPL(blk_lld_busy);
1028
1029int kblockd_schedule_work(struct work_struct *work)
1030{
1031 return queue_work(kblockd_workqueue, work);
1032}
1033EXPORT_SYMBOL(kblockd_schedule_work);
1034
1035int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1036 unsigned long delay)
1037{
1038 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1039}
1040EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1041
1042void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1043{
1044 struct task_struct *tsk = current;
1045
1046 /*
1047 * If this is a nested plug, don't actually assign it.
1048 */
1049 if (tsk->plug)
1050 return;
1051
1052 plug->mq_list = NULL;
1053 plug->cached_rq = NULL;
1054 plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1055 plug->rq_count = 0;
1056 plug->multiple_queues = false;
1057 plug->has_elevator = false;
1058 plug->nowait = false;
1059 INIT_LIST_HEAD(&plug->cb_list);
1060
1061 /*
1062 * Store ordering should not be needed here, since a potential
1063 * preempt will imply a full memory barrier
1064 */
1065 tsk->plug = plug;
1066}
1067
1068/**
1069 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1070 * @plug: The &struct blk_plug that needs to be initialized
1071 *
1072 * Description:
1073 * blk_start_plug() indicates to the block layer an intent by the caller
1074 * to submit multiple I/O requests in a batch. The block layer may use
1075 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1076 * is called. However, the block layer may choose to submit requests
1077 * before a call to blk_finish_plug() if the number of queued I/Os
1078 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1079 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1080 * the task schedules (see below).
1081 *
1082 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1083 * pending I/O should the task end up blocking between blk_start_plug() and
1084 * blk_finish_plug(). This is important from a performance perspective, but
1085 * also ensures that we don't deadlock. For instance, if the task is blocking
1086 * for a memory allocation, memory reclaim could end up wanting to free a
1087 * page belonging to that request that is currently residing in our private
1088 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1089 * this kind of deadlock.
1090 */
1091void blk_start_plug(struct blk_plug *plug)
1092{
1093 blk_start_plug_nr_ios(plug, 1);
1094}
1095EXPORT_SYMBOL(blk_start_plug);
1096
1097static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1098{
1099 LIST_HEAD(callbacks);
1100
1101 while (!list_empty(&plug->cb_list)) {
1102 list_splice_init(&plug->cb_list, &callbacks);
1103
1104 while (!list_empty(&callbacks)) {
1105 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1106 struct blk_plug_cb,
1107 list);
1108 list_del(&cb->list);
1109 cb->callback(cb, from_schedule);
1110 }
1111 }
1112}
1113
1114struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1115 int size)
1116{
1117 struct blk_plug *plug = current->plug;
1118 struct blk_plug_cb *cb;
1119
1120 if (!plug)
1121 return NULL;
1122
1123 list_for_each_entry(cb, &plug->cb_list, list)
1124 if (cb->callback == unplug && cb->data == data)
1125 return cb;
1126
1127 /* Not currently on the callback list */
1128 BUG_ON(size < sizeof(*cb));
1129 cb = kzalloc(size, GFP_ATOMIC);
1130 if (cb) {
1131 cb->data = data;
1132 cb->callback = unplug;
1133 list_add(&cb->list, &plug->cb_list);
1134 }
1135 return cb;
1136}
1137EXPORT_SYMBOL(blk_check_plugged);
1138
1139void __blk_flush_plug(struct blk_plug *plug, bool from_schedule)
1140{
1141 if (!list_empty(&plug->cb_list))
1142 flush_plug_callbacks(plug, from_schedule);
1143 if (!rq_list_empty(plug->mq_list))
1144 blk_mq_flush_plug_list(plug, from_schedule);
1145 /*
1146 * Unconditionally flush out cached requests, even if the unplug
1147 * event came from schedule. Since we know hold references to the
1148 * queue for cached requests, we don't want a blocked task holding
1149 * up a queue freeze/quiesce event.
1150 */
1151 if (unlikely(!rq_list_empty(plug->cached_rq)))
1152 blk_mq_free_plug_rqs(plug);
1153}
1154
1155/**
1156 * blk_finish_plug - mark the end of a batch of submitted I/O
1157 * @plug: The &struct blk_plug passed to blk_start_plug()
1158 *
1159 * Description:
1160 * Indicate that a batch of I/O submissions is complete. This function
1161 * must be paired with an initial call to blk_start_plug(). The intent
1162 * is to allow the block layer to optimize I/O submission. See the
1163 * documentation for blk_start_plug() for more information.
1164 */
1165void blk_finish_plug(struct blk_plug *plug)
1166{
1167 if (plug == current->plug) {
1168 __blk_flush_plug(plug, false);
1169 current->plug = NULL;
1170 }
1171}
1172EXPORT_SYMBOL(blk_finish_plug);
1173
1174void blk_io_schedule(void)
1175{
1176 /* Prevent hang_check timer from firing at us during very long I/O */
1177 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1178
1179 if (timeout)
1180 io_schedule_timeout(timeout);
1181 else
1182 io_schedule();
1183}
1184EXPORT_SYMBOL_GPL(blk_io_schedule);
1185
1186int __init blk_dev_init(void)
1187{
1188 BUILD_BUG_ON((__force u32)REQ_OP_LAST >= (1 << REQ_OP_BITS));
1189 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1190 sizeof_field(struct request, cmd_flags));
1191 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1192 sizeof_field(struct bio, bi_opf));
1193
1194 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1195 kblockd_workqueue = alloc_workqueue("kblockd",
1196 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1197 if (!kblockd_workqueue)
1198 panic("Failed to create kblockd\n");
1199
1200 blk_requestq_cachep = kmem_cache_create("request_queue",
1201 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1202
1203 blk_debugfs_root = debugfs_create_dir("block", NULL);
1204
1205 return 0;
1206}