Merge tag 'x86_cache_for_6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[linux-block.git] / block / blk-cgroup.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Common Block IO controller cgroup interface
4 *
5 * Based on ideas and code from CFQ, CFS and BFQ:
6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7 *
8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9 * Paolo Valente <paolo.valente@unimore.it>
10 *
11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12 * Nauman Rafique <nauman@google.com>
13 *
14 * For policy-specific per-blkcg data:
15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16 * Arianna Avanzini <avanzini.arianna@gmail.com>
17 */
18#include <linux/ioprio.h>
19#include <linux/kdev_t.h>
20#include <linux/module.h>
21#include <linux/sched/signal.h>
22#include <linux/err.h>
23#include <linux/blkdev.h>
24#include <linux/backing-dev.h>
25#include <linux/slab.h>
26#include <linux/delay.h>
27#include <linux/atomic.h>
28#include <linux/ctype.h>
29#include <linux/resume_user_mode.h>
30#include <linux/psi.h>
31#include <linux/part_stat.h>
32#include "blk.h"
33#include "blk-cgroup.h"
34#include "blk-ioprio.h"
35#include "blk-throttle.h"
36
37/*
38 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
39 * blkcg_pol_register_mutex nests outside of it and synchronizes entire
40 * policy [un]register operations including cgroup file additions /
41 * removals. Putting cgroup file registration outside blkcg_pol_mutex
42 * allows grabbing it from cgroup callbacks.
43 */
44static DEFINE_MUTEX(blkcg_pol_register_mutex);
45static DEFINE_MUTEX(blkcg_pol_mutex);
46
47struct blkcg blkcg_root;
48EXPORT_SYMBOL_GPL(blkcg_root);
49
50struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
51EXPORT_SYMBOL_GPL(blkcg_root_css);
52
53static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
54
55static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */
56
57bool blkcg_debug_stats = false;
58
59#define BLKG_DESTROY_BATCH_SIZE 64
60
61/*
62 * Lockless lists for tracking IO stats update
63 *
64 * New IO stats are stored in the percpu iostat_cpu within blkcg_gq (blkg).
65 * There are multiple blkg's (one for each block device) attached to each
66 * blkcg. The rstat code keeps track of which cpu has IO stats updated,
67 * but it doesn't know which blkg has the updated stats. If there are many
68 * block devices in a system, the cost of iterating all the blkg's to flush
69 * out the IO stats can be high. To reduce such overhead, a set of percpu
70 * lockless lists (lhead) per blkcg are used to track the set of recently
71 * updated iostat_cpu's since the last flush. An iostat_cpu will be put
72 * onto the lockless list on the update side [blk_cgroup_bio_start()] if
73 * not there yet and then removed when being flushed [blkcg_rstat_flush()].
74 * References to blkg are gotten and then put back in the process to
75 * protect against blkg removal.
76 *
77 * Return: 0 if successful or -ENOMEM if allocation fails.
78 */
79static int init_blkcg_llists(struct blkcg *blkcg)
80{
81 int cpu;
82
83 blkcg->lhead = alloc_percpu_gfp(struct llist_head, GFP_KERNEL);
84 if (!blkcg->lhead)
85 return -ENOMEM;
86
87 for_each_possible_cpu(cpu)
88 init_llist_head(per_cpu_ptr(blkcg->lhead, cpu));
89 return 0;
90}
91
92/**
93 * blkcg_css - find the current css
94 *
95 * Find the css associated with either the kthread or the current task.
96 * This may return a dying css, so it is up to the caller to use tryget logic
97 * to confirm it is alive and well.
98 */
99static struct cgroup_subsys_state *blkcg_css(void)
100{
101 struct cgroup_subsys_state *css;
102
103 css = kthread_blkcg();
104 if (css)
105 return css;
106 return task_css(current, io_cgrp_id);
107}
108
109static bool blkcg_policy_enabled(struct request_queue *q,
110 const struct blkcg_policy *pol)
111{
112 return pol && test_bit(pol->plid, q->blkcg_pols);
113}
114
115static void blkg_free_workfn(struct work_struct *work)
116{
117 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
118 free_work);
119 struct request_queue *q = blkg->q;
120 int i;
121
122 /*
123 * pd_free_fn() can also be called from blkcg_deactivate_policy(),
124 * in order to make sure pd_free_fn() is called in order, the deletion
125 * of the list blkg->q_node is delayed to here from blkg_destroy(), and
126 * blkcg_mutex is used to synchronize blkg_free_workfn() and
127 * blkcg_deactivate_policy().
128 */
129 mutex_lock(&q->blkcg_mutex);
130 for (i = 0; i < BLKCG_MAX_POLS; i++)
131 if (blkg->pd[i])
132 blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
133 if (blkg->parent)
134 blkg_put(blkg->parent);
135 list_del_init(&blkg->q_node);
136 mutex_unlock(&q->blkcg_mutex);
137
138 blk_put_queue(q);
139 free_percpu(blkg->iostat_cpu);
140 percpu_ref_exit(&blkg->refcnt);
141 kfree(blkg);
142}
143
144/**
145 * blkg_free - free a blkg
146 * @blkg: blkg to free
147 *
148 * Free @blkg which may be partially allocated.
149 */
150static void blkg_free(struct blkcg_gq *blkg)
151{
152 if (!blkg)
153 return;
154
155 /*
156 * Both ->pd_free_fn() and request queue's release handler may
157 * sleep, so free us by scheduling one work func
158 */
159 INIT_WORK(&blkg->free_work, blkg_free_workfn);
160 schedule_work(&blkg->free_work);
161}
162
163static void __blkg_release(struct rcu_head *rcu)
164{
165 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
166
167#ifdef CONFIG_BLK_CGROUP_PUNT_BIO
168 WARN_ON(!bio_list_empty(&blkg->async_bios));
169#endif
170
171 /* release the blkcg and parent blkg refs this blkg has been holding */
172 css_put(&blkg->blkcg->css);
173 blkg_free(blkg);
174}
175
176/*
177 * A group is RCU protected, but having an rcu lock does not mean that one
178 * can access all the fields of blkg and assume these are valid. For
179 * example, don't try to follow throtl_data and request queue links.
180 *
181 * Having a reference to blkg under an rcu allows accesses to only values
182 * local to groups like group stats and group rate limits.
183 */
184static void blkg_release(struct percpu_ref *ref)
185{
186 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
187
188 call_rcu(&blkg->rcu_head, __blkg_release);
189}
190
191#ifdef CONFIG_BLK_CGROUP_PUNT_BIO
192static struct workqueue_struct *blkcg_punt_bio_wq;
193
194static void blkg_async_bio_workfn(struct work_struct *work)
195{
196 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
197 async_bio_work);
198 struct bio_list bios = BIO_EMPTY_LIST;
199 struct bio *bio;
200 struct blk_plug plug;
201 bool need_plug = false;
202
203 /* as long as there are pending bios, @blkg can't go away */
204 spin_lock(&blkg->async_bio_lock);
205 bio_list_merge(&bios, &blkg->async_bios);
206 bio_list_init(&blkg->async_bios);
207 spin_unlock(&blkg->async_bio_lock);
208
209 /* start plug only when bio_list contains at least 2 bios */
210 if (bios.head && bios.head->bi_next) {
211 need_plug = true;
212 blk_start_plug(&plug);
213 }
214 while ((bio = bio_list_pop(&bios)))
215 submit_bio(bio);
216 if (need_plug)
217 blk_finish_plug(&plug);
218}
219
220/*
221 * When a shared kthread issues a bio for a cgroup, doing so synchronously can
222 * lead to priority inversions as the kthread can be trapped waiting for that
223 * cgroup. Use this helper instead of submit_bio to punt the actual issuing to
224 * a dedicated per-blkcg work item to avoid such priority inversions.
225 */
226void blkcg_punt_bio_submit(struct bio *bio)
227{
228 struct blkcg_gq *blkg = bio->bi_blkg;
229
230 if (blkg->parent) {
231 spin_lock(&blkg->async_bio_lock);
232 bio_list_add(&blkg->async_bios, bio);
233 spin_unlock(&blkg->async_bio_lock);
234 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
235 } else {
236 /* never bounce for the root cgroup */
237 submit_bio(bio);
238 }
239}
240EXPORT_SYMBOL_GPL(blkcg_punt_bio_submit);
241
242static int __init blkcg_punt_bio_init(void)
243{
244 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
245 WQ_MEM_RECLAIM | WQ_FREEZABLE |
246 WQ_UNBOUND | WQ_SYSFS, 0);
247 if (!blkcg_punt_bio_wq)
248 return -ENOMEM;
249 return 0;
250}
251subsys_initcall(blkcg_punt_bio_init);
252#endif /* CONFIG_BLK_CGROUP_PUNT_BIO */
253
254/**
255 * bio_blkcg_css - return the blkcg CSS associated with a bio
256 * @bio: target bio
257 *
258 * This returns the CSS for the blkcg associated with a bio, or %NULL if not
259 * associated. Callers are expected to either handle %NULL or know association
260 * has been done prior to calling this.
261 */
262struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio)
263{
264 if (!bio || !bio->bi_blkg)
265 return NULL;
266 return &bio->bi_blkg->blkcg->css;
267}
268EXPORT_SYMBOL_GPL(bio_blkcg_css);
269
270/**
271 * blkcg_parent - get the parent of a blkcg
272 * @blkcg: blkcg of interest
273 *
274 * Return the parent blkcg of @blkcg. Can be called anytime.
275 */
276static inline struct blkcg *blkcg_parent(struct blkcg *blkcg)
277{
278 return css_to_blkcg(blkcg->css.parent);
279}
280
281/**
282 * blkg_alloc - allocate a blkg
283 * @blkcg: block cgroup the new blkg is associated with
284 * @disk: gendisk the new blkg is associated with
285 * @gfp_mask: allocation mask to use
286 *
287 * Allocate a new blkg assocating @blkcg and @q.
288 */
289static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct gendisk *disk,
290 gfp_t gfp_mask)
291{
292 struct blkcg_gq *blkg;
293 int i, cpu;
294
295 /* alloc and init base part */
296 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, disk->queue->node);
297 if (!blkg)
298 return NULL;
299 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
300 goto out_free_blkg;
301 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
302 if (!blkg->iostat_cpu)
303 goto out_exit_refcnt;
304 if (!blk_get_queue(disk->queue))
305 goto out_free_iostat;
306
307 blkg->q = disk->queue;
308 INIT_LIST_HEAD(&blkg->q_node);
309 blkg->blkcg = blkcg;
310#ifdef CONFIG_BLK_CGROUP_PUNT_BIO
311 spin_lock_init(&blkg->async_bio_lock);
312 bio_list_init(&blkg->async_bios);
313 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
314#endif
315
316 u64_stats_init(&blkg->iostat.sync);
317 for_each_possible_cpu(cpu) {
318 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
319 per_cpu_ptr(blkg->iostat_cpu, cpu)->blkg = blkg;
320 }
321
322 for (i = 0; i < BLKCG_MAX_POLS; i++) {
323 struct blkcg_policy *pol = blkcg_policy[i];
324 struct blkg_policy_data *pd;
325
326 if (!blkcg_policy_enabled(disk->queue, pol))
327 continue;
328
329 /* alloc per-policy data and attach it to blkg */
330 pd = pol->pd_alloc_fn(disk, blkcg, gfp_mask);
331 if (!pd)
332 goto out_free_pds;
333 blkg->pd[i] = pd;
334 pd->blkg = blkg;
335 pd->plid = i;
336 pd->online = false;
337 }
338
339 return blkg;
340
341out_free_pds:
342 while (--i >= 0)
343 if (blkg->pd[i])
344 blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
345 blk_put_queue(disk->queue);
346out_free_iostat:
347 free_percpu(blkg->iostat_cpu);
348out_exit_refcnt:
349 percpu_ref_exit(&blkg->refcnt);
350out_free_blkg:
351 kfree(blkg);
352 return NULL;
353}
354
355/*
356 * If @new_blkg is %NULL, this function tries to allocate a new one as
357 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return.
358 */
359static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct gendisk *disk,
360 struct blkcg_gq *new_blkg)
361{
362 struct blkcg_gq *blkg;
363 int i, ret;
364
365 lockdep_assert_held(&disk->queue->queue_lock);
366
367 /* request_queue is dying, do not create/recreate a blkg */
368 if (blk_queue_dying(disk->queue)) {
369 ret = -ENODEV;
370 goto err_free_blkg;
371 }
372
373 /* blkg holds a reference to blkcg */
374 if (!css_tryget_online(&blkcg->css)) {
375 ret = -ENODEV;
376 goto err_free_blkg;
377 }
378
379 /* allocate */
380 if (!new_blkg) {
381 new_blkg = blkg_alloc(blkcg, disk, GFP_NOWAIT | __GFP_NOWARN);
382 if (unlikely(!new_blkg)) {
383 ret = -ENOMEM;
384 goto err_put_css;
385 }
386 }
387 blkg = new_blkg;
388
389 /* link parent */
390 if (blkcg_parent(blkcg)) {
391 blkg->parent = blkg_lookup(blkcg_parent(blkcg), disk->queue);
392 if (WARN_ON_ONCE(!blkg->parent)) {
393 ret = -ENODEV;
394 goto err_put_css;
395 }
396 blkg_get(blkg->parent);
397 }
398
399 /* invoke per-policy init */
400 for (i = 0; i < BLKCG_MAX_POLS; i++) {
401 struct blkcg_policy *pol = blkcg_policy[i];
402
403 if (blkg->pd[i] && pol->pd_init_fn)
404 pol->pd_init_fn(blkg->pd[i]);
405 }
406
407 /* insert */
408 spin_lock(&blkcg->lock);
409 ret = radix_tree_insert(&blkcg->blkg_tree, disk->queue->id, blkg);
410 if (likely(!ret)) {
411 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
412 list_add(&blkg->q_node, &disk->queue->blkg_list);
413
414 for (i = 0; i < BLKCG_MAX_POLS; i++) {
415 struct blkcg_policy *pol = blkcg_policy[i];
416
417 if (blkg->pd[i]) {
418 if (pol->pd_online_fn)
419 pol->pd_online_fn(blkg->pd[i]);
420 blkg->pd[i]->online = true;
421 }
422 }
423 }
424 blkg->online = true;
425 spin_unlock(&blkcg->lock);
426
427 if (!ret)
428 return blkg;
429
430 /* @blkg failed fully initialized, use the usual release path */
431 blkg_put(blkg);
432 return ERR_PTR(ret);
433
434err_put_css:
435 css_put(&blkcg->css);
436err_free_blkg:
437 if (new_blkg)
438 blkg_free(new_blkg);
439 return ERR_PTR(ret);
440}
441
442/**
443 * blkg_lookup_create - lookup blkg, try to create one if not there
444 * @blkcg: blkcg of interest
445 * @disk: gendisk of interest
446 *
447 * Lookup blkg for the @blkcg - @disk pair. If it doesn't exist, try to
448 * create one. blkg creation is performed recursively from blkcg_root such
449 * that all non-root blkg's have access to the parent blkg. This function
450 * should be called under RCU read lock and takes @disk->queue->queue_lock.
451 *
452 * Returns the blkg or the closest blkg if blkg_create() fails as it walks
453 * down from root.
454 */
455static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
456 struct gendisk *disk)
457{
458 struct request_queue *q = disk->queue;
459 struct blkcg_gq *blkg;
460 unsigned long flags;
461
462 WARN_ON_ONCE(!rcu_read_lock_held());
463
464 blkg = blkg_lookup(blkcg, q);
465 if (blkg)
466 return blkg;
467
468 spin_lock_irqsave(&q->queue_lock, flags);
469 blkg = blkg_lookup(blkcg, q);
470 if (blkg) {
471 if (blkcg != &blkcg_root &&
472 blkg != rcu_dereference(blkcg->blkg_hint))
473 rcu_assign_pointer(blkcg->blkg_hint, blkg);
474 goto found;
475 }
476
477 /*
478 * Create blkgs walking down from blkcg_root to @blkcg, so that all
479 * non-root blkgs have access to their parents. Returns the closest
480 * blkg to the intended blkg should blkg_create() fail.
481 */
482 while (true) {
483 struct blkcg *pos = blkcg;
484 struct blkcg *parent = blkcg_parent(blkcg);
485 struct blkcg_gq *ret_blkg = q->root_blkg;
486
487 while (parent) {
488 blkg = blkg_lookup(parent, q);
489 if (blkg) {
490 /* remember closest blkg */
491 ret_blkg = blkg;
492 break;
493 }
494 pos = parent;
495 parent = blkcg_parent(parent);
496 }
497
498 blkg = blkg_create(pos, disk, NULL);
499 if (IS_ERR(blkg)) {
500 blkg = ret_blkg;
501 break;
502 }
503 if (pos == blkcg)
504 break;
505 }
506
507found:
508 spin_unlock_irqrestore(&q->queue_lock, flags);
509 return blkg;
510}
511
512static void blkg_destroy(struct blkcg_gq *blkg)
513{
514 struct blkcg *blkcg = blkg->blkcg;
515 int i;
516
517 lockdep_assert_held(&blkg->q->queue_lock);
518 lockdep_assert_held(&blkcg->lock);
519
520 /*
521 * blkg stays on the queue list until blkg_free_workfn(), see details in
522 * blkg_free_workfn(), hence this function can be called from
523 * blkcg_destroy_blkgs() first and again from blkg_destroy_all() before
524 * blkg_free_workfn().
525 */
526 if (hlist_unhashed(&blkg->blkcg_node))
527 return;
528
529 for (i = 0; i < BLKCG_MAX_POLS; i++) {
530 struct blkcg_policy *pol = blkcg_policy[i];
531
532 if (blkg->pd[i] && blkg->pd[i]->online) {
533 blkg->pd[i]->online = false;
534 if (pol->pd_offline_fn)
535 pol->pd_offline_fn(blkg->pd[i]);
536 }
537 }
538
539 blkg->online = false;
540
541 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
542 hlist_del_init_rcu(&blkg->blkcg_node);
543
544 /*
545 * Both setting lookup hint to and clearing it from @blkg are done
546 * under queue_lock. If it's not pointing to @blkg now, it never
547 * will. Hint assignment itself can race safely.
548 */
549 if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
550 rcu_assign_pointer(blkcg->blkg_hint, NULL);
551
552 /*
553 * Put the reference taken at the time of creation so that when all
554 * queues are gone, group can be destroyed.
555 */
556 percpu_ref_kill(&blkg->refcnt);
557}
558
559static void blkg_destroy_all(struct gendisk *disk)
560{
561 struct request_queue *q = disk->queue;
562 struct blkcg_gq *blkg, *n;
563 int count = BLKG_DESTROY_BATCH_SIZE;
564
565restart:
566 spin_lock_irq(&q->queue_lock);
567 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
568 struct blkcg *blkcg = blkg->blkcg;
569
570 spin_lock(&blkcg->lock);
571 blkg_destroy(blkg);
572 spin_unlock(&blkcg->lock);
573
574 /*
575 * in order to avoid holding the spin lock for too long, release
576 * it when a batch of blkgs are destroyed.
577 */
578 if (!(--count)) {
579 count = BLKG_DESTROY_BATCH_SIZE;
580 spin_unlock_irq(&q->queue_lock);
581 cond_resched();
582 goto restart;
583 }
584 }
585
586 q->root_blkg = NULL;
587 spin_unlock_irq(&q->queue_lock);
588}
589
590static int blkcg_reset_stats(struct cgroup_subsys_state *css,
591 struct cftype *cftype, u64 val)
592{
593 struct blkcg *blkcg = css_to_blkcg(css);
594 struct blkcg_gq *blkg;
595 int i, cpu;
596
597 mutex_lock(&blkcg_pol_mutex);
598 spin_lock_irq(&blkcg->lock);
599
600 /*
601 * Note that stat reset is racy - it doesn't synchronize against
602 * stat updates. This is a debug feature which shouldn't exist
603 * anyway. If you get hit by a race, retry.
604 */
605 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
606 for_each_possible_cpu(cpu) {
607 struct blkg_iostat_set *bis =
608 per_cpu_ptr(blkg->iostat_cpu, cpu);
609 memset(bis, 0, sizeof(*bis));
610 }
611 memset(&blkg->iostat, 0, sizeof(blkg->iostat));
612
613 for (i = 0; i < BLKCG_MAX_POLS; i++) {
614 struct blkcg_policy *pol = blkcg_policy[i];
615
616 if (blkg->pd[i] && pol->pd_reset_stats_fn)
617 pol->pd_reset_stats_fn(blkg->pd[i]);
618 }
619 }
620
621 spin_unlock_irq(&blkcg->lock);
622 mutex_unlock(&blkcg_pol_mutex);
623 return 0;
624}
625
626const char *blkg_dev_name(struct blkcg_gq *blkg)
627{
628 if (!blkg->q->disk)
629 return NULL;
630 return bdi_dev_name(blkg->q->disk->bdi);
631}
632
633/**
634 * blkcg_print_blkgs - helper for printing per-blkg data
635 * @sf: seq_file to print to
636 * @blkcg: blkcg of interest
637 * @prfill: fill function to print out a blkg
638 * @pol: policy in question
639 * @data: data to be passed to @prfill
640 * @show_total: to print out sum of prfill return values or not
641 *
642 * This function invokes @prfill on each blkg of @blkcg if pd for the
643 * policy specified by @pol exists. @prfill is invoked with @sf, the
644 * policy data and @data and the matching queue lock held. If @show_total
645 * is %true, the sum of the return values from @prfill is printed with
646 * "Total" label at the end.
647 *
648 * This is to be used to construct print functions for
649 * cftype->read_seq_string method.
650 */
651void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
652 u64 (*prfill)(struct seq_file *,
653 struct blkg_policy_data *, int),
654 const struct blkcg_policy *pol, int data,
655 bool show_total)
656{
657 struct blkcg_gq *blkg;
658 u64 total = 0;
659
660 rcu_read_lock();
661 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
662 spin_lock_irq(&blkg->q->queue_lock);
663 if (blkcg_policy_enabled(blkg->q, pol))
664 total += prfill(sf, blkg->pd[pol->plid], data);
665 spin_unlock_irq(&blkg->q->queue_lock);
666 }
667 rcu_read_unlock();
668
669 if (show_total)
670 seq_printf(sf, "Total %llu\n", (unsigned long long)total);
671}
672EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
673
674/**
675 * __blkg_prfill_u64 - prfill helper for a single u64 value
676 * @sf: seq_file to print to
677 * @pd: policy private data of interest
678 * @v: value to print
679 *
680 * Print @v to @sf for the device associated with @pd.
681 */
682u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
683{
684 const char *dname = blkg_dev_name(pd->blkg);
685
686 if (!dname)
687 return 0;
688
689 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
690 return v;
691}
692EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
693
694/**
695 * blkg_conf_init - initialize a blkg_conf_ctx
696 * @ctx: blkg_conf_ctx to initialize
697 * @input: input string
698 *
699 * Initialize @ctx which can be used to parse blkg config input string @input.
700 * Once initialized, @ctx can be used with blkg_conf_open_bdev() and
701 * blkg_conf_prep(), and must be cleaned up with blkg_conf_exit().
702 */
703void blkg_conf_init(struct blkg_conf_ctx *ctx, char *input)
704{
705 *ctx = (struct blkg_conf_ctx){ .input = input };
706}
707EXPORT_SYMBOL_GPL(blkg_conf_init);
708
709/**
710 * blkg_conf_open_bdev - parse and open bdev for per-blkg config update
711 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
712 *
713 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update from
714 * @ctx->input and get and store the matching bdev in @ctx->bdev. @ctx->body is
715 * set to point past the device node prefix.
716 *
717 * This function may be called multiple times on @ctx and the extra calls become
718 * NOOPs. blkg_conf_prep() implicitly calls this function. Use this function
719 * explicitly if bdev access is needed without resolving the blkcg / policy part
720 * of @ctx->input. Returns -errno on error.
721 */
722int blkg_conf_open_bdev(struct blkg_conf_ctx *ctx)
723{
724 char *input = ctx->input;
725 unsigned int major, minor;
726 struct block_device *bdev;
727 int key_len;
728
729 if (ctx->bdev)
730 return 0;
731
732 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
733 return -EINVAL;
734
735 input += key_len;
736 if (!isspace(*input))
737 return -EINVAL;
738 input = skip_spaces(input);
739
740 bdev = blkdev_get_no_open(MKDEV(major, minor));
741 if (!bdev)
742 return -ENODEV;
743 if (bdev_is_partition(bdev)) {
744 blkdev_put_no_open(bdev);
745 return -ENODEV;
746 }
747
748 ctx->body = input;
749 ctx->bdev = bdev;
750 return 0;
751}
752
753/**
754 * blkg_conf_prep - parse and prepare for per-blkg config update
755 * @blkcg: target block cgroup
756 * @pol: target policy
757 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
758 *
759 * Parse per-blkg config update from @ctx->input and initialize @ctx
760 * accordingly. On success, @ctx->body points to the part of @ctx->input
761 * following MAJ:MIN, @ctx->bdev points to the target block device and
762 * @ctx->blkg to the blkg being configured.
763 *
764 * blkg_conf_open_bdev() may be called on @ctx beforehand. On success, this
765 * function returns with queue lock held and must be followed by
766 * blkg_conf_exit().
767 */
768int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
769 struct blkg_conf_ctx *ctx)
770 __acquires(&bdev->bd_queue->queue_lock)
771{
772 struct gendisk *disk;
773 struct request_queue *q;
774 struct blkcg_gq *blkg;
775 int ret;
776
777 ret = blkg_conf_open_bdev(ctx);
778 if (ret)
779 return ret;
780
781 disk = ctx->bdev->bd_disk;
782 q = disk->queue;
783
784 /*
785 * blkcg_deactivate_policy() requires queue to be frozen, we can grab
786 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy().
787 */
788 ret = blk_queue_enter(q, 0);
789 if (ret)
790 goto fail;
791
792 spin_lock_irq(&q->queue_lock);
793
794 if (!blkcg_policy_enabled(q, pol)) {
795 ret = -EOPNOTSUPP;
796 goto fail_unlock;
797 }
798
799 blkg = blkg_lookup(blkcg, q);
800 if (blkg)
801 goto success;
802
803 /*
804 * Create blkgs walking down from blkcg_root to @blkcg, so that all
805 * non-root blkgs have access to their parents.
806 */
807 while (true) {
808 struct blkcg *pos = blkcg;
809 struct blkcg *parent;
810 struct blkcg_gq *new_blkg;
811
812 parent = blkcg_parent(blkcg);
813 while (parent && !blkg_lookup(parent, q)) {
814 pos = parent;
815 parent = blkcg_parent(parent);
816 }
817
818 /* Drop locks to do new blkg allocation with GFP_KERNEL. */
819 spin_unlock_irq(&q->queue_lock);
820
821 new_blkg = blkg_alloc(pos, disk, GFP_KERNEL);
822 if (unlikely(!new_blkg)) {
823 ret = -ENOMEM;
824 goto fail_exit_queue;
825 }
826
827 if (radix_tree_preload(GFP_KERNEL)) {
828 blkg_free(new_blkg);
829 ret = -ENOMEM;
830 goto fail_exit_queue;
831 }
832
833 spin_lock_irq(&q->queue_lock);
834
835 if (!blkcg_policy_enabled(q, pol)) {
836 blkg_free(new_blkg);
837 ret = -EOPNOTSUPP;
838 goto fail_preloaded;
839 }
840
841 blkg = blkg_lookup(pos, q);
842 if (blkg) {
843 blkg_free(new_blkg);
844 } else {
845 blkg = blkg_create(pos, disk, new_blkg);
846 if (IS_ERR(blkg)) {
847 ret = PTR_ERR(blkg);
848 goto fail_preloaded;
849 }
850 }
851
852 radix_tree_preload_end();
853
854 if (pos == blkcg)
855 goto success;
856 }
857success:
858 blk_queue_exit(q);
859 ctx->blkg = blkg;
860 return 0;
861
862fail_preloaded:
863 radix_tree_preload_end();
864fail_unlock:
865 spin_unlock_irq(&q->queue_lock);
866fail_exit_queue:
867 blk_queue_exit(q);
868fail:
869 /*
870 * If queue was bypassing, we should retry. Do so after a
871 * short msleep(). It isn't strictly necessary but queue
872 * can be bypassing for some time and it's always nice to
873 * avoid busy looping.
874 */
875 if (ret == -EBUSY) {
876 msleep(10);
877 ret = restart_syscall();
878 }
879 return ret;
880}
881EXPORT_SYMBOL_GPL(blkg_conf_prep);
882
883/**
884 * blkg_conf_exit - clean up per-blkg config update
885 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
886 *
887 * Clean up after per-blkg config update. This function must be called on all
888 * blkg_conf_ctx's initialized with blkg_conf_init().
889 */
890void blkg_conf_exit(struct blkg_conf_ctx *ctx)
891 __releases(&ctx->bdev->bd_queue->queue_lock)
892{
893 if (ctx->blkg) {
894 spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock);
895 ctx->blkg = NULL;
896 }
897
898 if (ctx->bdev) {
899 blkdev_put_no_open(ctx->bdev);
900 ctx->body = NULL;
901 ctx->bdev = NULL;
902 }
903}
904EXPORT_SYMBOL_GPL(blkg_conf_exit);
905
906static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
907{
908 int i;
909
910 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
911 dst->bytes[i] = src->bytes[i];
912 dst->ios[i] = src->ios[i];
913 }
914}
915
916static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
917{
918 int i;
919
920 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
921 dst->bytes[i] += src->bytes[i];
922 dst->ios[i] += src->ios[i];
923 }
924}
925
926static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
927{
928 int i;
929
930 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
931 dst->bytes[i] -= src->bytes[i];
932 dst->ios[i] -= src->ios[i];
933 }
934}
935
936static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur,
937 struct blkg_iostat *last)
938{
939 struct blkg_iostat delta;
940 unsigned long flags;
941
942 /* propagate percpu delta to global */
943 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
944 blkg_iostat_set(&delta, cur);
945 blkg_iostat_sub(&delta, last);
946 blkg_iostat_add(&blkg->iostat.cur, &delta);
947 blkg_iostat_add(last, &delta);
948 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
949}
950
951static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
952{
953 struct blkcg *blkcg = css_to_blkcg(css);
954 struct llist_head *lhead = per_cpu_ptr(blkcg->lhead, cpu);
955 struct llist_node *lnode;
956 struct blkg_iostat_set *bisc, *next_bisc;
957
958 /* Root-level stats are sourced from system-wide IO stats */
959 if (!cgroup_parent(css->cgroup))
960 return;
961
962 rcu_read_lock();
963
964 lnode = llist_del_all(lhead);
965 if (!lnode)
966 goto out;
967
968 /*
969 * Iterate only the iostat_cpu's queued in the lockless list.
970 */
971 llist_for_each_entry_safe(bisc, next_bisc, lnode, lnode) {
972 struct blkcg_gq *blkg = bisc->blkg;
973 struct blkcg_gq *parent = blkg->parent;
974 struct blkg_iostat cur;
975 unsigned int seq;
976
977 WRITE_ONCE(bisc->lqueued, false);
978
979 /* fetch the current per-cpu values */
980 do {
981 seq = u64_stats_fetch_begin(&bisc->sync);
982 blkg_iostat_set(&cur, &bisc->cur);
983 } while (u64_stats_fetch_retry(&bisc->sync, seq));
984
985 blkcg_iostat_update(blkg, &cur, &bisc->last);
986
987 /* propagate global delta to parent (unless that's root) */
988 if (parent && parent->parent)
989 blkcg_iostat_update(parent, &blkg->iostat.cur,
990 &blkg->iostat.last);
991 percpu_ref_put(&blkg->refcnt);
992 }
993
994out:
995 rcu_read_unlock();
996}
997
998/*
999 * We source root cgroup stats from the system-wide stats to avoid
1000 * tracking the same information twice and incurring overhead when no
1001 * cgroups are defined. For that reason, cgroup_rstat_flush in
1002 * blkcg_print_stat does not actually fill out the iostat in the root
1003 * cgroup's blkcg_gq.
1004 *
1005 * However, we would like to re-use the printing code between the root and
1006 * non-root cgroups to the extent possible. For that reason, we simulate
1007 * flushing the root cgroup's stats by explicitly filling in the iostat
1008 * with disk level statistics.
1009 */
1010static void blkcg_fill_root_iostats(void)
1011{
1012 struct class_dev_iter iter;
1013 struct device *dev;
1014
1015 class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1016 while ((dev = class_dev_iter_next(&iter))) {
1017 struct block_device *bdev = dev_to_bdev(dev);
1018 struct blkcg_gq *blkg = bdev->bd_disk->queue->root_blkg;
1019 struct blkg_iostat tmp;
1020 int cpu;
1021 unsigned long flags;
1022
1023 memset(&tmp, 0, sizeof(tmp));
1024 for_each_possible_cpu(cpu) {
1025 struct disk_stats *cpu_dkstats;
1026
1027 cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
1028 tmp.ios[BLKG_IOSTAT_READ] +=
1029 cpu_dkstats->ios[STAT_READ];
1030 tmp.ios[BLKG_IOSTAT_WRITE] +=
1031 cpu_dkstats->ios[STAT_WRITE];
1032 tmp.ios[BLKG_IOSTAT_DISCARD] +=
1033 cpu_dkstats->ios[STAT_DISCARD];
1034 // convert sectors to bytes
1035 tmp.bytes[BLKG_IOSTAT_READ] +=
1036 cpu_dkstats->sectors[STAT_READ] << 9;
1037 tmp.bytes[BLKG_IOSTAT_WRITE] +=
1038 cpu_dkstats->sectors[STAT_WRITE] << 9;
1039 tmp.bytes[BLKG_IOSTAT_DISCARD] +=
1040 cpu_dkstats->sectors[STAT_DISCARD] << 9;
1041 }
1042
1043 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
1044 blkg_iostat_set(&blkg->iostat.cur, &tmp);
1045 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
1046 }
1047}
1048
1049static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s)
1050{
1051 struct blkg_iostat_set *bis = &blkg->iostat;
1052 u64 rbytes, wbytes, rios, wios, dbytes, dios;
1053 const char *dname;
1054 unsigned seq;
1055 int i;
1056
1057 if (!blkg->online)
1058 return;
1059
1060 dname = blkg_dev_name(blkg);
1061 if (!dname)
1062 return;
1063
1064 seq_printf(s, "%s ", dname);
1065
1066 do {
1067 seq = u64_stats_fetch_begin(&bis->sync);
1068
1069 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
1070 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
1071 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
1072 rios = bis->cur.ios[BLKG_IOSTAT_READ];
1073 wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
1074 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
1075 } while (u64_stats_fetch_retry(&bis->sync, seq));
1076
1077 if (rbytes || wbytes || rios || wios) {
1078 seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
1079 rbytes, wbytes, rios, wios,
1080 dbytes, dios);
1081 }
1082
1083 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
1084 seq_printf(s, " use_delay=%d delay_nsec=%llu",
1085 atomic_read(&blkg->use_delay),
1086 atomic64_read(&blkg->delay_nsec));
1087 }
1088
1089 for (i = 0; i < BLKCG_MAX_POLS; i++) {
1090 struct blkcg_policy *pol = blkcg_policy[i];
1091
1092 if (!blkg->pd[i] || !pol->pd_stat_fn)
1093 continue;
1094
1095 pol->pd_stat_fn(blkg->pd[i], s);
1096 }
1097
1098 seq_puts(s, "\n");
1099}
1100
1101static int blkcg_print_stat(struct seq_file *sf, void *v)
1102{
1103 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1104 struct blkcg_gq *blkg;
1105
1106 if (!seq_css(sf)->parent)
1107 blkcg_fill_root_iostats();
1108 else
1109 cgroup_rstat_flush(blkcg->css.cgroup);
1110
1111 rcu_read_lock();
1112 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
1113 spin_lock_irq(&blkg->q->queue_lock);
1114 blkcg_print_one_stat(blkg, sf);
1115 spin_unlock_irq(&blkg->q->queue_lock);
1116 }
1117 rcu_read_unlock();
1118 return 0;
1119}
1120
1121static struct cftype blkcg_files[] = {
1122 {
1123 .name = "stat",
1124 .seq_show = blkcg_print_stat,
1125 },
1126 { } /* terminate */
1127};
1128
1129static struct cftype blkcg_legacy_files[] = {
1130 {
1131 .name = "reset_stats",
1132 .write_u64 = blkcg_reset_stats,
1133 },
1134 { } /* terminate */
1135};
1136
1137#ifdef CONFIG_CGROUP_WRITEBACK
1138struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css)
1139{
1140 return &css_to_blkcg(css)->cgwb_list;
1141}
1142#endif
1143
1144/*
1145 * blkcg destruction is a three-stage process.
1146 *
1147 * 1. Destruction starts. The blkcg_css_offline() callback is invoked
1148 * which offlines writeback. Here we tie the next stage of blkg destruction
1149 * to the completion of writeback associated with the blkcg. This lets us
1150 * avoid punting potentially large amounts of outstanding writeback to root
1151 * while maintaining any ongoing policies. The next stage is triggered when
1152 * the nr_cgwbs count goes to zero.
1153 *
1154 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
1155 * and handles the destruction of blkgs. Here the css reference held by
1156 * the blkg is put back eventually allowing blkcg_css_free() to be called.
1157 * This work may occur in cgwb_release_workfn() on the cgwb_release
1158 * workqueue. Any submitted ios that fail to get the blkg ref will be
1159 * punted to the root_blkg.
1160 *
1161 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
1162 * This finally frees the blkcg.
1163 */
1164
1165/**
1166 * blkcg_destroy_blkgs - responsible for shooting down blkgs
1167 * @blkcg: blkcg of interest
1168 *
1169 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock
1170 * is nested inside q lock, this function performs reverse double lock dancing.
1171 * Destroying the blkgs releases the reference held on the blkcg's css allowing
1172 * blkcg_css_free to eventually be called.
1173 *
1174 * This is the blkcg counterpart of ioc_release_fn().
1175 */
1176static void blkcg_destroy_blkgs(struct blkcg *blkcg)
1177{
1178 might_sleep();
1179
1180 spin_lock_irq(&blkcg->lock);
1181
1182 while (!hlist_empty(&blkcg->blkg_list)) {
1183 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1184 struct blkcg_gq, blkcg_node);
1185 struct request_queue *q = blkg->q;
1186
1187 if (need_resched() || !spin_trylock(&q->queue_lock)) {
1188 /*
1189 * Given that the system can accumulate a huge number
1190 * of blkgs in pathological cases, check to see if we
1191 * need to rescheduling to avoid softlockup.
1192 */
1193 spin_unlock_irq(&blkcg->lock);
1194 cond_resched();
1195 spin_lock_irq(&blkcg->lock);
1196 continue;
1197 }
1198
1199 blkg_destroy(blkg);
1200 spin_unlock(&q->queue_lock);
1201 }
1202
1203 spin_unlock_irq(&blkcg->lock);
1204}
1205
1206/**
1207 * blkcg_pin_online - pin online state
1208 * @blkcg_css: blkcg of interest
1209 *
1210 * While pinned, a blkcg is kept online. This is primarily used to
1211 * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline
1212 * while an associated cgwb is still active.
1213 */
1214void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css)
1215{
1216 refcount_inc(&css_to_blkcg(blkcg_css)->online_pin);
1217}
1218
1219/**
1220 * blkcg_unpin_online - unpin online state
1221 * @blkcg_css: blkcg of interest
1222 *
1223 * This is primarily used to impedance-match blkg and cgwb lifetimes so
1224 * that blkg doesn't go offline while an associated cgwb is still active.
1225 * When this count goes to zero, all active cgwbs have finished so the
1226 * blkcg can continue destruction by calling blkcg_destroy_blkgs().
1227 */
1228void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css)
1229{
1230 struct blkcg *blkcg = css_to_blkcg(blkcg_css);
1231
1232 do {
1233 if (!refcount_dec_and_test(&blkcg->online_pin))
1234 break;
1235 blkcg_destroy_blkgs(blkcg);
1236 blkcg = blkcg_parent(blkcg);
1237 } while (blkcg);
1238}
1239
1240/**
1241 * blkcg_css_offline - cgroup css_offline callback
1242 * @css: css of interest
1243 *
1244 * This function is called when @css is about to go away. Here the cgwbs are
1245 * offlined first and only once writeback associated with the blkcg has
1246 * finished do we start step 2 (see above).
1247 */
1248static void blkcg_css_offline(struct cgroup_subsys_state *css)
1249{
1250 /* this prevents anyone from attaching or migrating to this blkcg */
1251 wb_blkcg_offline(css);
1252
1253 /* put the base online pin allowing step 2 to be triggered */
1254 blkcg_unpin_online(css);
1255}
1256
1257static void blkcg_css_free(struct cgroup_subsys_state *css)
1258{
1259 struct blkcg *blkcg = css_to_blkcg(css);
1260 int i;
1261
1262 mutex_lock(&blkcg_pol_mutex);
1263
1264 list_del(&blkcg->all_blkcgs_node);
1265
1266 for (i = 0; i < BLKCG_MAX_POLS; i++)
1267 if (blkcg->cpd[i])
1268 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1269
1270 mutex_unlock(&blkcg_pol_mutex);
1271
1272 free_percpu(blkcg->lhead);
1273 kfree(blkcg);
1274}
1275
1276static struct cgroup_subsys_state *
1277blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1278{
1279 struct blkcg *blkcg;
1280 int i;
1281
1282 mutex_lock(&blkcg_pol_mutex);
1283
1284 if (!parent_css) {
1285 blkcg = &blkcg_root;
1286 } else {
1287 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1288 if (!blkcg)
1289 goto unlock;
1290 }
1291
1292 if (init_blkcg_llists(blkcg))
1293 goto free_blkcg;
1294
1295 for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1296 struct blkcg_policy *pol = blkcg_policy[i];
1297 struct blkcg_policy_data *cpd;
1298
1299 /*
1300 * If the policy hasn't been attached yet, wait for it
1301 * to be attached before doing anything else. Otherwise,
1302 * check if the policy requires any specific per-cgroup
1303 * data: if it does, allocate and initialize it.
1304 */
1305 if (!pol || !pol->cpd_alloc_fn)
1306 continue;
1307
1308 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1309 if (!cpd)
1310 goto free_pd_blkcg;
1311
1312 blkcg->cpd[i] = cpd;
1313 cpd->blkcg = blkcg;
1314 cpd->plid = i;
1315 }
1316
1317 spin_lock_init(&blkcg->lock);
1318 refcount_set(&blkcg->online_pin, 1);
1319 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1320 INIT_HLIST_HEAD(&blkcg->blkg_list);
1321#ifdef CONFIG_CGROUP_WRITEBACK
1322 INIT_LIST_HEAD(&blkcg->cgwb_list);
1323#endif
1324 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1325
1326 mutex_unlock(&blkcg_pol_mutex);
1327 return &blkcg->css;
1328
1329free_pd_blkcg:
1330 for (i--; i >= 0; i--)
1331 if (blkcg->cpd[i])
1332 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1333 free_percpu(blkcg->lhead);
1334free_blkcg:
1335 if (blkcg != &blkcg_root)
1336 kfree(blkcg);
1337unlock:
1338 mutex_unlock(&blkcg_pol_mutex);
1339 return ERR_PTR(-ENOMEM);
1340}
1341
1342static int blkcg_css_online(struct cgroup_subsys_state *css)
1343{
1344 struct blkcg *parent = blkcg_parent(css_to_blkcg(css));
1345
1346 /*
1347 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1348 * don't go offline while cgwbs are still active on them. Pin the
1349 * parent so that offline always happens towards the root.
1350 */
1351 if (parent)
1352 blkcg_pin_online(&parent->css);
1353 return 0;
1354}
1355
1356int blkcg_init_disk(struct gendisk *disk)
1357{
1358 struct request_queue *q = disk->queue;
1359 struct blkcg_gq *new_blkg, *blkg;
1360 bool preloaded;
1361 int ret;
1362
1363 INIT_LIST_HEAD(&q->blkg_list);
1364 mutex_init(&q->blkcg_mutex);
1365
1366 new_blkg = blkg_alloc(&blkcg_root, disk, GFP_KERNEL);
1367 if (!new_blkg)
1368 return -ENOMEM;
1369
1370 preloaded = !radix_tree_preload(GFP_KERNEL);
1371
1372 /* Make sure the root blkg exists. */
1373 /* spin_lock_irq can serve as RCU read-side critical section. */
1374 spin_lock_irq(&q->queue_lock);
1375 blkg = blkg_create(&blkcg_root, disk, new_blkg);
1376 if (IS_ERR(blkg))
1377 goto err_unlock;
1378 q->root_blkg = blkg;
1379 spin_unlock_irq(&q->queue_lock);
1380
1381 if (preloaded)
1382 radix_tree_preload_end();
1383
1384 ret = blk_ioprio_init(disk);
1385 if (ret)
1386 goto err_destroy_all;
1387
1388 ret = blk_throtl_init(disk);
1389 if (ret)
1390 goto err_ioprio_exit;
1391
1392 return 0;
1393
1394err_ioprio_exit:
1395 blk_ioprio_exit(disk);
1396err_destroy_all:
1397 blkg_destroy_all(disk);
1398 return ret;
1399err_unlock:
1400 spin_unlock_irq(&q->queue_lock);
1401 if (preloaded)
1402 radix_tree_preload_end();
1403 return PTR_ERR(blkg);
1404}
1405
1406void blkcg_exit_disk(struct gendisk *disk)
1407{
1408 blkg_destroy_all(disk);
1409 blk_throtl_exit(disk);
1410}
1411
1412static void blkcg_exit(struct task_struct *tsk)
1413{
1414 if (tsk->throttle_disk)
1415 put_disk(tsk->throttle_disk);
1416 tsk->throttle_disk = NULL;
1417}
1418
1419struct cgroup_subsys io_cgrp_subsys = {
1420 .css_alloc = blkcg_css_alloc,
1421 .css_online = blkcg_css_online,
1422 .css_offline = blkcg_css_offline,
1423 .css_free = blkcg_css_free,
1424 .css_rstat_flush = blkcg_rstat_flush,
1425 .dfl_cftypes = blkcg_files,
1426 .legacy_cftypes = blkcg_legacy_files,
1427 .legacy_name = "blkio",
1428 .exit = blkcg_exit,
1429#ifdef CONFIG_MEMCG
1430 /*
1431 * This ensures that, if available, memcg is automatically enabled
1432 * together on the default hierarchy so that the owner cgroup can
1433 * be retrieved from writeback pages.
1434 */
1435 .depends_on = 1 << memory_cgrp_id,
1436#endif
1437};
1438EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1439
1440/**
1441 * blkcg_activate_policy - activate a blkcg policy on a gendisk
1442 * @disk: gendisk of interest
1443 * @pol: blkcg policy to activate
1444 *
1445 * Activate @pol on @disk. Requires %GFP_KERNEL context. @disk goes through
1446 * bypass mode to populate its blkgs with policy_data for @pol.
1447 *
1448 * Activation happens with @disk bypassed, so nobody would be accessing blkgs
1449 * from IO path. Update of each blkg is protected by both queue and blkcg
1450 * locks so that holding either lock and testing blkcg_policy_enabled() is
1451 * always enough for dereferencing policy data.
1452 *
1453 * The caller is responsible for synchronizing [de]activations and policy
1454 * [un]registerations. Returns 0 on success, -errno on failure.
1455 */
1456int blkcg_activate_policy(struct gendisk *disk, const struct blkcg_policy *pol)
1457{
1458 struct request_queue *q = disk->queue;
1459 struct blkg_policy_data *pd_prealloc = NULL;
1460 struct blkcg_gq *blkg, *pinned_blkg = NULL;
1461 int ret;
1462
1463 if (blkcg_policy_enabled(q, pol))
1464 return 0;
1465
1466 if (queue_is_mq(q))
1467 blk_mq_freeze_queue(q);
1468retry:
1469 spin_lock_irq(&q->queue_lock);
1470
1471 /* blkg_list is pushed at the head, reverse walk to allocate parents first */
1472 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1473 struct blkg_policy_data *pd;
1474
1475 if (blkg->pd[pol->plid])
1476 continue;
1477
1478 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1479 if (blkg == pinned_blkg) {
1480 pd = pd_prealloc;
1481 pd_prealloc = NULL;
1482 } else {
1483 pd = pol->pd_alloc_fn(disk, blkg->blkcg,
1484 GFP_NOWAIT | __GFP_NOWARN);
1485 }
1486
1487 if (!pd) {
1488 /*
1489 * GFP_NOWAIT failed. Free the existing one and
1490 * prealloc for @blkg w/ GFP_KERNEL.
1491 */
1492 if (pinned_blkg)
1493 blkg_put(pinned_blkg);
1494 blkg_get(blkg);
1495 pinned_blkg = blkg;
1496
1497 spin_unlock_irq(&q->queue_lock);
1498
1499 if (pd_prealloc)
1500 pol->pd_free_fn(pd_prealloc);
1501 pd_prealloc = pol->pd_alloc_fn(disk, blkg->blkcg,
1502 GFP_KERNEL);
1503 if (pd_prealloc)
1504 goto retry;
1505 else
1506 goto enomem;
1507 }
1508
1509 blkg->pd[pol->plid] = pd;
1510 pd->blkg = blkg;
1511 pd->plid = pol->plid;
1512 pd->online = false;
1513 }
1514
1515 /* all allocated, init in the same order */
1516 if (pol->pd_init_fn)
1517 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
1518 pol->pd_init_fn(blkg->pd[pol->plid]);
1519
1520 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1521 if (pol->pd_online_fn)
1522 pol->pd_online_fn(blkg->pd[pol->plid]);
1523 blkg->pd[pol->plid]->online = true;
1524 }
1525
1526 __set_bit(pol->plid, q->blkcg_pols);
1527 ret = 0;
1528
1529 spin_unlock_irq(&q->queue_lock);
1530out:
1531 if (queue_is_mq(q))
1532 blk_mq_unfreeze_queue(q);
1533 if (pinned_blkg)
1534 blkg_put(pinned_blkg);
1535 if (pd_prealloc)
1536 pol->pd_free_fn(pd_prealloc);
1537 return ret;
1538
1539enomem:
1540 /* alloc failed, nothing's initialized yet, free everything */
1541 spin_lock_irq(&q->queue_lock);
1542 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1543 struct blkcg *blkcg = blkg->blkcg;
1544
1545 spin_lock(&blkcg->lock);
1546 if (blkg->pd[pol->plid]) {
1547 pol->pd_free_fn(blkg->pd[pol->plid]);
1548 blkg->pd[pol->plid] = NULL;
1549 }
1550 spin_unlock(&blkcg->lock);
1551 }
1552 spin_unlock_irq(&q->queue_lock);
1553 ret = -ENOMEM;
1554 goto out;
1555}
1556EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1557
1558/**
1559 * blkcg_deactivate_policy - deactivate a blkcg policy on a gendisk
1560 * @disk: gendisk of interest
1561 * @pol: blkcg policy to deactivate
1562 *
1563 * Deactivate @pol on @disk. Follows the same synchronization rules as
1564 * blkcg_activate_policy().
1565 */
1566void blkcg_deactivate_policy(struct gendisk *disk,
1567 const struct blkcg_policy *pol)
1568{
1569 struct request_queue *q = disk->queue;
1570 struct blkcg_gq *blkg;
1571
1572 if (!blkcg_policy_enabled(q, pol))
1573 return;
1574
1575 if (queue_is_mq(q))
1576 blk_mq_freeze_queue(q);
1577
1578 mutex_lock(&q->blkcg_mutex);
1579 spin_lock_irq(&q->queue_lock);
1580
1581 __clear_bit(pol->plid, q->blkcg_pols);
1582
1583 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1584 struct blkcg *blkcg = blkg->blkcg;
1585
1586 spin_lock(&blkcg->lock);
1587 if (blkg->pd[pol->plid]) {
1588 if (blkg->pd[pol->plid]->online && pol->pd_offline_fn)
1589 pol->pd_offline_fn(blkg->pd[pol->plid]);
1590 pol->pd_free_fn(blkg->pd[pol->plid]);
1591 blkg->pd[pol->plid] = NULL;
1592 }
1593 spin_unlock(&blkcg->lock);
1594 }
1595
1596 spin_unlock_irq(&q->queue_lock);
1597 mutex_unlock(&q->blkcg_mutex);
1598
1599 if (queue_is_mq(q))
1600 blk_mq_unfreeze_queue(q);
1601}
1602EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1603
1604static void blkcg_free_all_cpd(struct blkcg_policy *pol)
1605{
1606 struct blkcg *blkcg;
1607
1608 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1609 if (blkcg->cpd[pol->plid]) {
1610 pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1611 blkcg->cpd[pol->plid] = NULL;
1612 }
1613 }
1614}
1615
1616/**
1617 * blkcg_policy_register - register a blkcg policy
1618 * @pol: blkcg policy to register
1619 *
1620 * Register @pol with blkcg core. Might sleep and @pol may be modified on
1621 * successful registration. Returns 0 on success and -errno on failure.
1622 */
1623int blkcg_policy_register(struct blkcg_policy *pol)
1624{
1625 struct blkcg *blkcg;
1626 int i, ret;
1627
1628 mutex_lock(&blkcg_pol_register_mutex);
1629 mutex_lock(&blkcg_pol_mutex);
1630
1631 /* find an empty slot */
1632 ret = -ENOSPC;
1633 for (i = 0; i < BLKCG_MAX_POLS; i++)
1634 if (!blkcg_policy[i])
1635 break;
1636 if (i >= BLKCG_MAX_POLS) {
1637 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1638 goto err_unlock;
1639 }
1640
1641 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1642 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1643 (!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1644 goto err_unlock;
1645
1646 /* register @pol */
1647 pol->plid = i;
1648 blkcg_policy[pol->plid] = pol;
1649
1650 /* allocate and install cpd's */
1651 if (pol->cpd_alloc_fn) {
1652 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1653 struct blkcg_policy_data *cpd;
1654
1655 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1656 if (!cpd)
1657 goto err_free_cpds;
1658
1659 blkcg->cpd[pol->plid] = cpd;
1660 cpd->blkcg = blkcg;
1661 cpd->plid = pol->plid;
1662 }
1663 }
1664
1665 mutex_unlock(&blkcg_pol_mutex);
1666
1667 /* everything is in place, add intf files for the new policy */
1668 if (pol->dfl_cftypes)
1669 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1670 pol->dfl_cftypes));
1671 if (pol->legacy_cftypes)
1672 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1673 pol->legacy_cftypes));
1674 mutex_unlock(&blkcg_pol_register_mutex);
1675 return 0;
1676
1677err_free_cpds:
1678 if (pol->cpd_free_fn)
1679 blkcg_free_all_cpd(pol);
1680
1681 blkcg_policy[pol->plid] = NULL;
1682err_unlock:
1683 mutex_unlock(&blkcg_pol_mutex);
1684 mutex_unlock(&blkcg_pol_register_mutex);
1685 return ret;
1686}
1687EXPORT_SYMBOL_GPL(blkcg_policy_register);
1688
1689/**
1690 * blkcg_policy_unregister - unregister a blkcg policy
1691 * @pol: blkcg policy to unregister
1692 *
1693 * Undo blkcg_policy_register(@pol). Might sleep.
1694 */
1695void blkcg_policy_unregister(struct blkcg_policy *pol)
1696{
1697 mutex_lock(&blkcg_pol_register_mutex);
1698
1699 if (WARN_ON(blkcg_policy[pol->plid] != pol))
1700 goto out_unlock;
1701
1702 /* kill the intf files first */
1703 if (pol->dfl_cftypes)
1704 cgroup_rm_cftypes(pol->dfl_cftypes);
1705 if (pol->legacy_cftypes)
1706 cgroup_rm_cftypes(pol->legacy_cftypes);
1707
1708 /* remove cpds and unregister */
1709 mutex_lock(&blkcg_pol_mutex);
1710
1711 if (pol->cpd_free_fn)
1712 blkcg_free_all_cpd(pol);
1713
1714 blkcg_policy[pol->plid] = NULL;
1715
1716 mutex_unlock(&blkcg_pol_mutex);
1717out_unlock:
1718 mutex_unlock(&blkcg_pol_register_mutex);
1719}
1720EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1721
1722/*
1723 * Scale the accumulated delay based on how long it has been since we updated
1724 * the delay. We only call this when we are adding delay, in case it's been a
1725 * while since we added delay, and when we are checking to see if we need to
1726 * delay a task, to account for any delays that may have occurred.
1727 */
1728static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1729{
1730 u64 old = atomic64_read(&blkg->delay_start);
1731
1732 /* negative use_delay means no scaling, see blkcg_set_delay() */
1733 if (atomic_read(&blkg->use_delay) < 0)
1734 return;
1735
1736 /*
1737 * We only want to scale down every second. The idea here is that we
1738 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1739 * time window. We only want to throttle tasks for recent delay that
1740 * has occurred, in 1 second time windows since that's the maximum
1741 * things can be throttled. We save the current delay window in
1742 * blkg->last_delay so we know what amount is still left to be charged
1743 * to the blkg from this point onward. blkg->last_use keeps track of
1744 * the use_delay counter. The idea is if we're unthrottling the blkg we
1745 * are ok with whatever is happening now, and we can take away more of
1746 * the accumulated delay as we've already throttled enough that
1747 * everybody is happy with their IO latencies.
1748 */
1749 if (time_before64(old + NSEC_PER_SEC, now) &&
1750 atomic64_try_cmpxchg(&blkg->delay_start, &old, now)) {
1751 u64 cur = atomic64_read(&blkg->delay_nsec);
1752 u64 sub = min_t(u64, blkg->last_delay, now - old);
1753 int cur_use = atomic_read(&blkg->use_delay);
1754
1755 /*
1756 * We've been unthrottled, subtract a larger chunk of our
1757 * accumulated delay.
1758 */
1759 if (cur_use < blkg->last_use)
1760 sub = max_t(u64, sub, blkg->last_delay >> 1);
1761
1762 /*
1763 * This shouldn't happen, but handle it anyway. Our delay_nsec
1764 * should only ever be growing except here where we subtract out
1765 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1766 * rather not end up with negative numbers.
1767 */
1768 if (unlikely(cur < sub)) {
1769 atomic64_set(&blkg->delay_nsec, 0);
1770 blkg->last_delay = 0;
1771 } else {
1772 atomic64_sub(sub, &blkg->delay_nsec);
1773 blkg->last_delay = cur - sub;
1774 }
1775 blkg->last_use = cur_use;
1776 }
1777}
1778
1779/*
1780 * This is called when we want to actually walk up the hierarchy and check to
1781 * see if we need to throttle, and then actually throttle if there is some
1782 * accumulated delay. This should only be called upon return to user space so
1783 * we're not holding some lock that would induce a priority inversion.
1784 */
1785static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1786{
1787 unsigned long pflags;
1788 bool clamp;
1789 u64 now = ktime_to_ns(ktime_get());
1790 u64 exp;
1791 u64 delay_nsec = 0;
1792 int tok;
1793
1794 while (blkg->parent) {
1795 int use_delay = atomic_read(&blkg->use_delay);
1796
1797 if (use_delay) {
1798 u64 this_delay;
1799
1800 blkcg_scale_delay(blkg, now);
1801 this_delay = atomic64_read(&blkg->delay_nsec);
1802 if (this_delay > delay_nsec) {
1803 delay_nsec = this_delay;
1804 clamp = use_delay > 0;
1805 }
1806 }
1807 blkg = blkg->parent;
1808 }
1809
1810 if (!delay_nsec)
1811 return;
1812
1813 /*
1814 * Let's not sleep for all eternity if we've amassed a huge delay.
1815 * Swapping or metadata IO can accumulate 10's of seconds worth of
1816 * delay, and we want userspace to be able to do _something_ so cap the
1817 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1818 * tasks will be delayed for 0.25 second for every syscall. If
1819 * blkcg_set_delay() was used as indicated by negative use_delay, the
1820 * caller is responsible for regulating the range.
1821 */
1822 if (clamp)
1823 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1824
1825 if (use_memdelay)
1826 psi_memstall_enter(&pflags);
1827
1828 exp = ktime_add_ns(now, delay_nsec);
1829 tok = io_schedule_prepare();
1830 do {
1831 __set_current_state(TASK_KILLABLE);
1832 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1833 break;
1834 } while (!fatal_signal_pending(current));
1835 io_schedule_finish(tok);
1836
1837 if (use_memdelay)
1838 psi_memstall_leave(&pflags);
1839}
1840
1841/**
1842 * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1843 *
1844 * This is only called if we've been marked with set_notify_resume(). Obviously
1845 * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1846 * check to see if current->throttle_disk is set and if not this doesn't do
1847 * anything. This should only ever be called by the resume code, it's not meant
1848 * to be called by people willy-nilly as it will actually do the work to
1849 * throttle the task if it is setup for throttling.
1850 */
1851void blkcg_maybe_throttle_current(void)
1852{
1853 struct gendisk *disk = current->throttle_disk;
1854 struct blkcg *blkcg;
1855 struct blkcg_gq *blkg;
1856 bool use_memdelay = current->use_memdelay;
1857
1858 if (!disk)
1859 return;
1860
1861 current->throttle_disk = NULL;
1862 current->use_memdelay = false;
1863
1864 rcu_read_lock();
1865 blkcg = css_to_blkcg(blkcg_css());
1866 if (!blkcg)
1867 goto out;
1868 blkg = blkg_lookup(blkcg, disk->queue);
1869 if (!blkg)
1870 goto out;
1871 if (!blkg_tryget(blkg))
1872 goto out;
1873 rcu_read_unlock();
1874
1875 blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1876 blkg_put(blkg);
1877 put_disk(disk);
1878 return;
1879out:
1880 rcu_read_unlock();
1881}
1882
1883/**
1884 * blkcg_schedule_throttle - this task needs to check for throttling
1885 * @disk: disk to throttle
1886 * @use_memdelay: do we charge this to memory delay for PSI
1887 *
1888 * This is called by the IO controller when we know there's delay accumulated
1889 * for the blkg for this task. We do not pass the blkg because there are places
1890 * we call this that may not have that information, the swapping code for
1891 * instance will only have a block_device at that point. This set's the
1892 * notify_resume for the task to check and see if it requires throttling before
1893 * returning to user space.
1894 *
1895 * We will only schedule once per syscall. You can call this over and over
1896 * again and it will only do the check once upon return to user space, and only
1897 * throttle once. If the task needs to be throttled again it'll need to be
1898 * re-set at the next time we see the task.
1899 */
1900void blkcg_schedule_throttle(struct gendisk *disk, bool use_memdelay)
1901{
1902 if (unlikely(current->flags & PF_KTHREAD))
1903 return;
1904
1905 if (current->throttle_disk != disk) {
1906 if (test_bit(GD_DEAD, &disk->state))
1907 return;
1908 get_device(disk_to_dev(disk));
1909
1910 if (current->throttle_disk)
1911 put_disk(current->throttle_disk);
1912 current->throttle_disk = disk;
1913 }
1914
1915 if (use_memdelay)
1916 current->use_memdelay = use_memdelay;
1917 set_notify_resume(current);
1918}
1919
1920/**
1921 * blkcg_add_delay - add delay to this blkg
1922 * @blkg: blkg of interest
1923 * @now: the current time in nanoseconds
1924 * @delta: how many nanoseconds of delay to add
1925 *
1926 * Charge @delta to the blkg's current delay accumulation. This is used to
1927 * throttle tasks if an IO controller thinks we need more throttling.
1928 */
1929void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1930{
1931 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1932 return;
1933 blkcg_scale_delay(blkg, now);
1934 atomic64_add(delta, &blkg->delay_nsec);
1935}
1936
1937/**
1938 * blkg_tryget_closest - try and get a blkg ref on the closet blkg
1939 * @bio: target bio
1940 * @css: target css
1941 *
1942 * As the failure mode here is to walk up the blkg tree, this ensure that the
1943 * blkg->parent pointers are always valid. This returns the blkg that it ended
1944 * up taking a reference on or %NULL if no reference was taken.
1945 */
1946static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
1947 struct cgroup_subsys_state *css)
1948{
1949 struct blkcg_gq *blkg, *ret_blkg = NULL;
1950
1951 rcu_read_lock();
1952 blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_bdev->bd_disk);
1953 while (blkg) {
1954 if (blkg_tryget(blkg)) {
1955 ret_blkg = blkg;
1956 break;
1957 }
1958 blkg = blkg->parent;
1959 }
1960 rcu_read_unlock();
1961
1962 return ret_blkg;
1963}
1964
1965/**
1966 * bio_associate_blkg_from_css - associate a bio with a specified css
1967 * @bio: target bio
1968 * @css: target css
1969 *
1970 * Associate @bio with the blkg found by combining the css's blkg and the
1971 * request_queue of the @bio. An association failure is handled by walking up
1972 * the blkg tree. Therefore, the blkg associated can be anything between @blkg
1973 * and q->root_blkg. This situation only happens when a cgroup is dying and
1974 * then the remaining bios will spill to the closest alive blkg.
1975 *
1976 * A reference will be taken on the blkg and will be released when @bio is
1977 * freed.
1978 */
1979void bio_associate_blkg_from_css(struct bio *bio,
1980 struct cgroup_subsys_state *css)
1981{
1982 if (bio->bi_blkg)
1983 blkg_put(bio->bi_blkg);
1984
1985 if (css && css->parent) {
1986 bio->bi_blkg = blkg_tryget_closest(bio, css);
1987 } else {
1988 blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg);
1989 bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg;
1990 }
1991}
1992EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
1993
1994/**
1995 * bio_associate_blkg - associate a bio with a blkg
1996 * @bio: target bio
1997 *
1998 * Associate @bio with the blkg found from the bio's css and request_queue.
1999 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2000 * already associated, the css is reused and association redone as the
2001 * request_queue may have changed.
2002 */
2003void bio_associate_blkg(struct bio *bio)
2004{
2005 struct cgroup_subsys_state *css;
2006
2007 rcu_read_lock();
2008
2009 if (bio->bi_blkg)
2010 css = bio_blkcg_css(bio);
2011 else
2012 css = blkcg_css();
2013
2014 bio_associate_blkg_from_css(bio, css);
2015
2016 rcu_read_unlock();
2017}
2018EXPORT_SYMBOL_GPL(bio_associate_blkg);
2019
2020/**
2021 * bio_clone_blkg_association - clone blkg association from src to dst bio
2022 * @dst: destination bio
2023 * @src: source bio
2024 */
2025void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2026{
2027 if (src->bi_blkg)
2028 bio_associate_blkg_from_css(dst, bio_blkcg_css(src));
2029}
2030EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2031
2032static int blk_cgroup_io_type(struct bio *bio)
2033{
2034 if (op_is_discard(bio->bi_opf))
2035 return BLKG_IOSTAT_DISCARD;
2036 if (op_is_write(bio->bi_opf))
2037 return BLKG_IOSTAT_WRITE;
2038 return BLKG_IOSTAT_READ;
2039}
2040
2041void blk_cgroup_bio_start(struct bio *bio)
2042{
2043 struct blkcg *blkcg = bio->bi_blkg->blkcg;
2044 int rwd = blk_cgroup_io_type(bio), cpu;
2045 struct blkg_iostat_set *bis;
2046 unsigned long flags;
2047
2048 /* Root-level stats are sourced from system-wide IO stats */
2049 if (!cgroup_parent(blkcg->css.cgroup))
2050 return;
2051
2052 cpu = get_cpu();
2053 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
2054 flags = u64_stats_update_begin_irqsave(&bis->sync);
2055
2056 /*
2057 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
2058 * bio and we would have already accounted for the size of the bio.
2059 */
2060 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
2061 bio_set_flag(bio, BIO_CGROUP_ACCT);
2062 bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
2063 }
2064 bis->cur.ios[rwd]++;
2065
2066 /*
2067 * If the iostat_cpu isn't in a lockless list, put it into the
2068 * list to indicate that a stat update is pending.
2069 */
2070 if (!READ_ONCE(bis->lqueued)) {
2071 struct llist_head *lhead = this_cpu_ptr(blkcg->lhead);
2072
2073 llist_add(&bis->lnode, lhead);
2074 WRITE_ONCE(bis->lqueued, true);
2075 percpu_ref_get(&bis->blkg->refcnt);
2076 }
2077
2078 u64_stats_update_end_irqrestore(&bis->sync, flags);
2079 if (cgroup_subsys_on_dfl(io_cgrp_subsys))
2080 cgroup_rstat_updated(blkcg->css.cgroup, cpu);
2081 put_cpu();
2082}
2083
2084bool blk_cgroup_congested(void)
2085{
2086 struct cgroup_subsys_state *css;
2087 bool ret = false;
2088
2089 rcu_read_lock();
2090 for (css = blkcg_css(); css; css = css->parent) {
2091 if (atomic_read(&css->cgroup->congestion_count)) {
2092 ret = true;
2093 break;
2094 }
2095 }
2096 rcu_read_unlock();
2097 return ret;
2098}
2099
2100module_param(blkcg_debug_stats, bool, 0644);
2101MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");