btreplay/btrecord man pages
[blktrace.git] / blkparse.c
... / ...
CommitLineData
1/*
2 * block queue tracing parse application
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 */
22#include <sys/types.h>
23#include <sys/stat.h>
24#include <unistd.h>
25#include <stdio.h>
26#include <fcntl.h>
27#include <stdlib.h>
28#include <string.h>
29#include <getopt.h>
30#include <errno.h>
31#include <signal.h>
32#include <locale.h>
33#include <libgen.h>
34
35#include "blktrace.h"
36#include "rbtree.h"
37#include "jhash.h"
38
39static char blkparse_version[] = "0.99.3";
40
41struct skip_info {
42 unsigned long start, end;
43 struct skip_info *prev, *next;
44};
45
46struct per_dev_info {
47 dev_t dev;
48 char *name;
49
50 int backwards;
51 unsigned long long events;
52 unsigned long long first_reported_time;
53 unsigned long long last_reported_time;
54 unsigned long long last_read_time;
55 struct io_stats io_stats;
56 unsigned long skips;
57 unsigned long long seq_skips;
58 unsigned int max_depth[2];
59 unsigned int cur_depth[2];
60
61 struct rb_root rb_track;
62
63 int nfiles;
64 int ncpus;
65
66 unsigned long *cpu_map;
67 unsigned int cpu_map_max;
68
69 struct per_cpu_info *cpus;
70};
71
72/*
73 * some duplicated effort here, we can unify this hash and the ppi hash later
74 */
75struct process_pid_map {
76 pid_t pid;
77 char comm[16];
78 struct process_pid_map *hash_next, *list_next;
79};
80
81#define PPM_HASH_SHIFT (8)
82#define PPM_HASH_SIZE (1 << PPM_HASH_SHIFT)
83#define PPM_HASH_MASK (PPM_HASH_SIZE - 1)
84static struct process_pid_map *ppm_hash_table[PPM_HASH_SIZE];
85
86struct per_process_info {
87 struct process_pid_map *ppm;
88 struct io_stats io_stats;
89 struct per_process_info *hash_next, *list_next;
90 int more_than_one;
91
92 /*
93 * individual io stats
94 */
95 unsigned long long longest_allocation_wait[2];
96 unsigned long long longest_dispatch_wait[2];
97 unsigned long long longest_completion_wait[2];
98};
99
100#define PPI_HASH_SHIFT (8)
101#define PPI_HASH_SIZE (1 << PPI_HASH_SHIFT)
102#define PPI_HASH_MASK (PPI_HASH_SIZE - 1)
103static struct per_process_info *ppi_hash_table[PPI_HASH_SIZE];
104static struct per_process_info *ppi_list;
105static int ppi_list_entries;
106
107#define S_OPTS "a:A:b:D:d:f:F:hi:o:Oqstw:vV"
108static struct option l_opts[] = {
109 {
110 .name = "act-mask",
111 .has_arg = required_argument,
112 .flag = NULL,
113 .val = 'a'
114 },
115 {
116 .name = "set-mask",
117 .has_arg = required_argument,
118 .flag = NULL,
119 .val = 'A'
120 },
121 {
122 .name = "batch",
123 .has_arg = required_argument,
124 .flag = NULL,
125 .val = 'b'
126 },
127 {
128 .name = "input-directory",
129 .has_arg = required_argument,
130 .flag = NULL,
131 .val = 'D'
132 },
133 {
134 .name = "dump-binary",
135 .has_arg = required_argument,
136 .flag = NULL,
137 .val = 'd'
138 },
139 {
140 .name = "format",
141 .has_arg = required_argument,
142 .flag = NULL,
143 .val = 'f'
144 },
145 {
146 .name = "format-spec",
147 .has_arg = required_argument,
148 .flag = NULL,
149 .val = 'F'
150 },
151 {
152 .name = "hash-by-name",
153 .has_arg = no_argument,
154 .flag = NULL,
155 .val = 'h'
156 },
157 {
158 .name = "input",
159 .has_arg = required_argument,
160 .flag = NULL,
161 .val = 'i'
162 },
163 {
164 .name = "output",
165 .has_arg = required_argument,
166 .flag = NULL,
167 .val = 'o'
168 },
169 {
170 .name = "no-text-output",
171 .has_arg = no_argument,
172 .flag = NULL,
173 .val = 'O'
174 },
175 {
176 .name = "quiet",
177 .has_arg = no_argument,
178 .flag = NULL,
179 .val = 'q'
180 },
181 {
182 .name = "per-program-stats",
183 .has_arg = no_argument,
184 .flag = NULL,
185 .val = 's'
186 },
187 {
188 .name = "track-ios",
189 .has_arg = no_argument,
190 .flag = NULL,
191 .val = 't'
192 },
193 {
194 .name = "stopwatch",
195 .has_arg = required_argument,
196 .flag = NULL,
197 .val = 'w'
198 },
199 {
200 .name = "verbose",
201 .has_arg = no_argument,
202 .flag = NULL,
203 .val = 'v'
204 },
205 {
206 .name = "version",
207 .has_arg = no_argument,
208 .flag = NULL,
209 .val = 'V'
210 },
211 {
212 .name = NULL,
213 }
214};
215
216/*
217 * for sorting the displayed output
218 */
219struct trace {
220 struct blk_io_trace *bit;
221 struct rb_node rb_node;
222 struct trace *next;
223 unsigned long read_sequence;
224};
225
226static struct rb_root rb_sort_root;
227static unsigned long rb_sort_entries;
228
229static struct trace *trace_list;
230
231/*
232 * allocation cache
233 */
234static struct blk_io_trace *bit_alloc_list;
235static struct trace *t_alloc_list;
236
237/*
238 * for tracking individual ios
239 */
240struct io_track {
241 struct rb_node rb_node;
242
243 struct process_pid_map *ppm;
244 __u64 sector;
245 unsigned long long allocation_time;
246 unsigned long long queue_time;
247 unsigned long long dispatch_time;
248 unsigned long long completion_time;
249};
250
251static int ndevices;
252static struct per_dev_info *devices;
253static char *get_dev_name(struct per_dev_info *, char *, int);
254static int trace_rb_insert_last(struct per_dev_info *, struct trace *);
255
256FILE *ofp = NULL;
257static char *output_name;
258static char *input_dir;
259
260static unsigned long long genesis_time;
261static unsigned long long last_allowed_time;
262static unsigned long long stopwatch_start; /* start from zero by default */
263static unsigned long long stopwatch_end = -1ULL; /* "infinity" */
264static unsigned long read_sequence;
265
266static int per_process_stats;
267static int per_device_and_cpu_stats = 1;
268static int track_ios;
269static int ppi_hash_by_pid = 1;
270static int verbose;
271static unsigned int act_mask = -1U;
272static int stats_printed;
273int data_is_native = -1;
274
275static FILE *dump_fp;
276static char *dump_binary;
277
278static unsigned int t_alloc_cache;
279static unsigned int bit_alloc_cache;
280
281#define RB_BATCH_DEFAULT (512)
282static unsigned int rb_batch = RB_BATCH_DEFAULT;
283
284static int pipeline;
285static char *pipename;
286
287static int text_output = 1;
288
289#define is_done() (*(volatile int *)(&done))
290static volatile int done;
291
292struct timespec abs_start_time;
293static unsigned long long start_timestamp;
294
295#define JHASH_RANDOM (0x3af5f2ee)
296
297#define CPUS_PER_LONG (8 * sizeof(unsigned long))
298#define CPU_IDX(cpu) ((cpu) / CPUS_PER_LONG)
299#define CPU_BIT(cpu) ((cpu) & (CPUS_PER_LONG - 1))
300
301static void output_binary(void *buf, int len)
302{
303 if (dump_binary) {
304 size_t n = fwrite(buf, len, 1, dump_fp);
305 if (n != 1) {
306 perror(dump_binary);
307 fclose(dump_fp);
308 dump_binary = NULL;
309 }
310 }
311}
312
313static void resize_cpu_info(struct per_dev_info *pdi, int cpu)
314{
315 struct per_cpu_info *cpus = pdi->cpus;
316 int ncpus = pdi->ncpus;
317 int new_count = cpu + 1;
318 int new_space, size;
319 char *new_start;
320
321 size = new_count * sizeof(struct per_cpu_info);
322 cpus = realloc(cpus, size);
323 if (!cpus) {
324 char name[20];
325 fprintf(stderr, "Out of memory, CPU info for device %s (%d)\n",
326 get_dev_name(pdi, name, sizeof(name)), size);
327 exit(1);
328 }
329
330 new_start = (char *)cpus + (ncpus * sizeof(struct per_cpu_info));
331 new_space = (new_count - ncpus) * sizeof(struct per_cpu_info);
332 memset(new_start, 0, new_space);
333
334 pdi->ncpus = new_count;
335 pdi->cpus = cpus;
336
337 for (new_count = 0; new_count < pdi->ncpus; new_count++) {
338 struct per_cpu_info *pci = &pdi->cpus[new_count];
339
340 if (!pci->fd) {
341 pci->fd = -1;
342 memset(&pci->rb_last, 0, sizeof(pci->rb_last));
343 pci->rb_last_entries = 0;
344 pci->last_sequence = -1;
345 }
346 }
347}
348
349static struct per_cpu_info *get_cpu_info(struct per_dev_info *pdi, int cpu)
350{
351 struct per_cpu_info *pci;
352
353 if (cpu >= pdi->ncpus)
354 resize_cpu_info(pdi, cpu);
355
356 pci = &pdi->cpus[cpu];
357 pci->cpu = cpu;
358 return pci;
359}
360
361
362static int resize_devices(char *name)
363{
364 int size = (ndevices + 1) * sizeof(struct per_dev_info);
365
366 devices = realloc(devices, size);
367 if (!devices) {
368 fprintf(stderr, "Out of memory, device %s (%d)\n", name, size);
369 return 1;
370 }
371 memset(&devices[ndevices], 0, sizeof(struct per_dev_info));
372 devices[ndevices].name = name;
373 ndevices++;
374 return 0;
375}
376
377static struct per_dev_info *get_dev_info(dev_t dev)
378{
379 struct per_dev_info *pdi;
380 int i;
381
382 for (i = 0; i < ndevices; i++) {
383 if (!devices[i].dev)
384 devices[i].dev = dev;
385 if (devices[i].dev == dev)
386 return &devices[i];
387 }
388
389 if (resize_devices(NULL))
390 return NULL;
391
392 pdi = &devices[ndevices - 1];
393 pdi->dev = dev;
394 pdi->first_reported_time = 0;
395 pdi->last_read_time = 0;
396
397 return pdi;
398}
399
400static void insert_skip(struct per_cpu_info *pci, unsigned long start,
401 unsigned long end)
402{
403 struct skip_info *sip;
404
405 for (sip = pci->skips_tail; sip != NULL; sip = sip->prev) {
406 if (end == (sip->start - 1)) {
407 sip->start = start;
408 return;
409 } else if (start == (sip->end + 1)) {
410 sip->end = end;
411 return;
412 }
413 }
414
415 sip = malloc(sizeof(struct skip_info));
416 sip->start = start;
417 sip->end = end;
418 sip->prev = sip->next = NULL;
419 if (pci->skips_tail == NULL)
420 pci->skips_head = pci->skips_tail = sip;
421 else {
422 sip->prev = pci->skips_tail;
423 pci->skips_tail->next = sip;
424 pci->skips_tail = sip;
425 }
426}
427
428static void remove_sip(struct per_cpu_info *pci, struct skip_info *sip)
429{
430 if (sip->prev == NULL) {
431 if (sip->next == NULL)
432 pci->skips_head = pci->skips_tail = NULL;
433 else {
434 pci->skips_head = sip->next;
435 sip->next->prev = NULL;
436 }
437 } else if (sip->next == NULL) {
438 pci->skips_tail = sip->prev;
439 sip->prev->next = NULL;
440 } else {
441 sip->prev->next = sip->next;
442 sip->next->prev = sip->prev;
443 }
444
445 sip->prev = sip->next = NULL;
446 free(sip);
447}
448
449#define IN_SKIP(sip,seq) (((sip)->start <= (seq)) && ((seq) <= sip->end))
450static int check_current_skips(struct per_cpu_info *pci, unsigned long seq)
451{
452 struct skip_info *sip;
453
454 for (sip = pci->skips_tail; sip != NULL; sip = sip->prev) {
455 if (IN_SKIP(sip, seq)) {
456 if (sip->start == seq) {
457 if (sip->end == seq)
458 remove_sip(pci, sip);
459 else
460 sip->start += 1;
461 } else if (sip->end == seq)
462 sip->end -= 1;
463 else {
464 sip->end = seq - 1;
465 insert_skip(pci, seq + 1, sip->end);
466 }
467 return 1;
468 }
469 }
470
471 return 0;
472}
473
474static void collect_pdi_skips(struct per_dev_info *pdi)
475{
476 struct skip_info *sip;
477 int cpu;
478
479 pdi->skips = 0;
480 pdi->seq_skips = 0;
481
482 for (cpu = 0; cpu < pdi->ncpus; cpu++) {
483 struct per_cpu_info *pci = &pdi->cpus[cpu];
484
485 for (sip = pci->skips_head; sip != NULL; sip = sip->next) {
486 pdi->skips++;
487 pdi->seq_skips += (sip->end - sip->start + 1);
488 if (verbose)
489 fprintf(stderr,"(%d,%d): skipping %lu -> %lu\n",
490 MAJOR(pdi->dev), MINOR(pdi->dev),
491 sip->start, sip->end);
492 }
493 }
494}
495
496static void cpu_mark_online(struct per_dev_info *pdi, unsigned int cpu)
497{
498 if (cpu >= pdi->cpu_map_max || !pdi->cpu_map) {
499 int new_max = (cpu + CPUS_PER_LONG) & ~(CPUS_PER_LONG - 1);
500 unsigned long *map = malloc(new_max / sizeof(long));
501
502 memset(map, 0, new_max / sizeof(long));
503
504 if (pdi->cpu_map) {
505 memcpy(map, pdi->cpu_map, pdi->cpu_map_max / sizeof(long));
506 free(pdi->cpu_map);
507 }
508
509 pdi->cpu_map = map;
510 pdi->cpu_map_max = new_max;
511 }
512
513 pdi->cpu_map[CPU_IDX(cpu)] |= (1UL << CPU_BIT(cpu));
514}
515
516static inline void cpu_mark_offline(struct per_dev_info *pdi, int cpu)
517{
518 pdi->cpu_map[CPU_IDX(cpu)] &= ~(1UL << CPU_BIT(cpu));
519}
520
521static inline int cpu_is_online(struct per_dev_info *pdi, int cpu)
522{
523 return (pdi->cpu_map[CPU_IDX(cpu)] & (1UL << CPU_BIT(cpu))) != 0;
524}
525
526static inline int ppm_hash_pid(pid_t pid)
527{
528 return jhash_1word(pid, JHASH_RANDOM) & PPM_HASH_MASK;
529}
530
531static struct process_pid_map *find_ppm(pid_t pid)
532{
533 const int hash_idx = ppm_hash_pid(pid);
534 struct process_pid_map *ppm;
535
536 ppm = ppm_hash_table[hash_idx];
537 while (ppm) {
538 if (ppm->pid == pid)
539 return ppm;
540
541 ppm = ppm->hash_next;
542 }
543
544 return NULL;
545}
546
547static void add_ppm_hash(pid_t pid, const char *name)
548{
549 const int hash_idx = ppm_hash_pid(pid);
550 struct process_pid_map *ppm;
551
552 ppm = find_ppm(pid);
553 if (!ppm) {
554 ppm = malloc(sizeof(*ppm));
555 memset(ppm, 0, sizeof(*ppm));
556 ppm->pid = pid;
557 strcpy(ppm->comm, name);
558 ppm->hash_next = ppm_hash_table[hash_idx];
559 ppm_hash_table[hash_idx] = ppm;
560 }
561}
562
563static void handle_notify(struct blk_io_trace *bit)
564{
565 void *payload = (caddr_t) bit + sizeof(*bit);
566 __u32 two32[2];
567
568 switch (bit->action) {
569 case BLK_TN_PROCESS:
570 add_ppm_hash(bit->pid, payload);
571 break;
572
573 case BLK_TN_TIMESTAMP:
574 if (bit->pdu_len != sizeof(two32))
575 return;
576 memcpy(two32, payload, sizeof(two32));
577 if (!data_is_native) {
578 two32[0] = be32_to_cpu(two32[0]);
579 two32[1] = be32_to_cpu(two32[1]);
580 }
581 start_timestamp = bit->time;
582 abs_start_time.tv_sec = two32[0];
583 abs_start_time.tv_nsec = two32[1];
584 if (abs_start_time.tv_nsec < 0) {
585 abs_start_time.tv_sec--;
586 abs_start_time.tv_nsec += 1000000000;
587 }
588
589 break;
590
591 default:
592 /* Ignore unknown notify events */
593 ;
594 }
595}
596
597char *find_process_name(pid_t pid)
598{
599 struct process_pid_map *ppm = find_ppm(pid);
600
601 if (ppm)
602 return ppm->comm;
603
604 return NULL;
605}
606
607static inline int ppi_hash_pid(pid_t pid)
608{
609 return jhash_1word(pid, JHASH_RANDOM) & PPI_HASH_MASK;
610}
611
612static inline int ppi_hash_name(const char *name)
613{
614 return jhash(name, 16, JHASH_RANDOM) & PPI_HASH_MASK;
615}
616
617static inline int ppi_hash(struct per_process_info *ppi)
618{
619 struct process_pid_map *ppm = ppi->ppm;
620
621 if (ppi_hash_by_pid)
622 return ppi_hash_pid(ppm->pid);
623
624 return ppi_hash_name(ppm->comm);
625}
626
627static inline void add_ppi_to_hash(struct per_process_info *ppi)
628{
629 const int hash_idx = ppi_hash(ppi);
630
631 ppi->hash_next = ppi_hash_table[hash_idx];
632 ppi_hash_table[hash_idx] = ppi;
633}
634
635static inline void add_ppi_to_list(struct per_process_info *ppi)
636{
637 ppi->list_next = ppi_list;
638 ppi_list = ppi;
639 ppi_list_entries++;
640}
641
642static struct per_process_info *find_ppi_by_name(char *name)
643{
644 const int hash_idx = ppi_hash_name(name);
645 struct per_process_info *ppi;
646
647 ppi = ppi_hash_table[hash_idx];
648 while (ppi) {
649 struct process_pid_map *ppm = ppi->ppm;
650
651 if (!strcmp(ppm->comm, name))
652 return ppi;
653
654 ppi = ppi->hash_next;
655 }
656
657 return NULL;
658}
659
660static struct per_process_info *find_ppi_by_pid(pid_t pid)
661{
662 const int hash_idx = ppi_hash_pid(pid);
663 struct per_process_info *ppi;
664
665 ppi = ppi_hash_table[hash_idx];
666 while (ppi) {
667 struct process_pid_map *ppm = ppi->ppm;
668
669 if (ppm->pid == pid)
670 return ppi;
671
672 ppi = ppi->hash_next;
673 }
674
675 return NULL;
676}
677
678static struct per_process_info *find_ppi(pid_t pid)
679{
680 struct per_process_info *ppi;
681 char *name;
682
683 if (ppi_hash_by_pid)
684 return find_ppi_by_pid(pid);
685
686 name = find_process_name(pid);
687 if (!name)
688 return NULL;
689
690 ppi = find_ppi_by_name(name);
691 if (ppi && ppi->ppm->pid != pid)
692 ppi->more_than_one = 1;
693
694 return ppi;
695}
696
697/*
698 * struct trace and blktrace allocation cache, we do potentially
699 * millions of mallocs for these structures while only using at most
700 * a few thousand at the time
701 */
702static inline void t_free(struct trace *t)
703{
704 if (t_alloc_cache < 1024) {
705 t->next = t_alloc_list;
706 t_alloc_list = t;
707 t_alloc_cache++;
708 } else
709 free(t);
710}
711
712static inline struct trace *t_alloc(void)
713{
714 struct trace *t = t_alloc_list;
715
716 if (t) {
717 t_alloc_list = t->next;
718 t_alloc_cache--;
719 return t;
720 }
721
722 return malloc(sizeof(*t));
723}
724
725static inline void bit_free(struct blk_io_trace *bit)
726{
727 if (bit_alloc_cache < 1024 && !bit->pdu_len) {
728 /*
729 * abuse a 64-bit field for a next pointer for the free item
730 */
731 bit->time = (__u64) (unsigned long) bit_alloc_list;
732 bit_alloc_list = (struct blk_io_trace *) bit;
733 bit_alloc_cache++;
734 } else
735 free(bit);
736}
737
738static inline struct blk_io_trace *bit_alloc(void)
739{
740 struct blk_io_trace *bit = bit_alloc_list;
741
742 if (bit) {
743 bit_alloc_list = (struct blk_io_trace *) (unsigned long) \
744 bit->time;
745 bit_alloc_cache--;
746 return bit;
747 }
748
749 return malloc(sizeof(*bit));
750}
751
752static inline void __put_trace_last(struct per_dev_info *pdi, struct trace *t)
753{
754 struct per_cpu_info *pci = get_cpu_info(pdi, t->bit->cpu);
755
756 rb_erase(&t->rb_node, &pci->rb_last);
757 pci->rb_last_entries--;
758
759 bit_free(t->bit);
760 t_free(t);
761}
762
763static void put_trace(struct per_dev_info *pdi, struct trace *t)
764{
765 rb_erase(&t->rb_node, &rb_sort_root);
766 rb_sort_entries--;
767
768 trace_rb_insert_last(pdi, t);
769}
770
771static inline int trace_rb_insert(struct trace *t, struct rb_root *root)
772{
773 struct rb_node **p = &root->rb_node;
774 struct rb_node *parent = NULL;
775 struct trace *__t;
776
777 while (*p) {
778 parent = *p;
779
780 __t = rb_entry(parent, struct trace, rb_node);
781
782 if (t->bit->time < __t->bit->time)
783 p = &(*p)->rb_left;
784 else if (t->bit->time > __t->bit->time)
785 p = &(*p)->rb_right;
786 else if (t->bit->device < __t->bit->device)
787 p = &(*p)->rb_left;
788 else if (t->bit->device > __t->bit->device)
789 p = &(*p)->rb_right;
790 else if (t->bit->sequence < __t->bit->sequence)
791 p = &(*p)->rb_left;
792 else /* >= sequence */
793 p = &(*p)->rb_right;
794 }
795
796 rb_link_node(&t->rb_node, parent, p);
797 rb_insert_color(&t->rb_node, root);
798 return 0;
799}
800
801static inline int trace_rb_insert_sort(struct trace *t)
802{
803 if (!trace_rb_insert(t, &rb_sort_root)) {
804 rb_sort_entries++;
805 return 0;
806 }
807
808 return 1;
809}
810
811static int trace_rb_insert_last(struct per_dev_info *pdi, struct trace *t)
812{
813 struct per_cpu_info *pci = get_cpu_info(pdi, t->bit->cpu);
814
815 if (trace_rb_insert(t, &pci->rb_last))
816 return 1;
817
818 pci->rb_last_entries++;
819
820 if (pci->rb_last_entries > rb_batch * pdi->nfiles) {
821 struct rb_node *n = rb_first(&pci->rb_last);
822
823 t = rb_entry(n, struct trace, rb_node);
824 __put_trace_last(pdi, t);
825 }
826
827 return 0;
828}
829
830static struct trace *trace_rb_find(dev_t device, unsigned long sequence,
831 struct rb_root *root, int order)
832{
833 struct rb_node *n = root->rb_node;
834 struct rb_node *prev = NULL;
835 struct trace *__t;
836
837 while (n) {
838 __t = rb_entry(n, struct trace, rb_node);
839 prev = n;
840
841 if (device < __t->bit->device)
842 n = n->rb_left;
843 else if (device > __t->bit->device)
844 n = n->rb_right;
845 else if (sequence < __t->bit->sequence)
846 n = n->rb_left;
847 else if (sequence > __t->bit->sequence)
848 n = n->rb_right;
849 else
850 return __t;
851 }
852
853 /*
854 * hack - the list may not be sequence ordered because some
855 * events don't have sequence and time matched. so we end up
856 * being a little off in the rb lookup here, because we don't
857 * know the time we are looking for. compensate by browsing
858 * a little ahead from the last entry to find the match
859 */
860 if (order && prev) {
861 int max = 5;
862
863 while (((n = rb_next(prev)) != NULL) && max--) {
864 __t = rb_entry(n, struct trace, rb_node);
865
866 if (__t->bit->device == device &&
867 __t->bit->sequence == sequence)
868 return __t;
869
870 prev = n;
871 }
872 }
873
874 return NULL;
875}
876
877static inline struct trace *trace_rb_find_last(struct per_dev_info *pdi,
878 struct per_cpu_info *pci,
879 unsigned long seq)
880{
881 return trace_rb_find(pdi->dev, seq, &pci->rb_last, 0);
882}
883
884static inline int track_rb_insert(struct per_dev_info *pdi,struct io_track *iot)
885{
886 struct rb_node **p = &pdi->rb_track.rb_node;
887 struct rb_node *parent = NULL;
888 struct io_track *__iot;
889
890 while (*p) {
891 parent = *p;
892 __iot = rb_entry(parent, struct io_track, rb_node);
893
894 if (iot->sector < __iot->sector)
895 p = &(*p)->rb_left;
896 else if (iot->sector > __iot->sector)
897 p = &(*p)->rb_right;
898 else {
899 fprintf(stderr,
900 "sector alias (%Lu) on device %d,%d!\n",
901 (unsigned long long) iot->sector,
902 MAJOR(pdi->dev), MINOR(pdi->dev));
903 return 1;
904 }
905 }
906
907 rb_link_node(&iot->rb_node, parent, p);
908 rb_insert_color(&iot->rb_node, &pdi->rb_track);
909 return 0;
910}
911
912static struct io_track *__find_track(struct per_dev_info *pdi, __u64 sector)
913{
914 struct rb_node *n = pdi->rb_track.rb_node;
915 struct io_track *__iot;
916
917 while (n) {
918 __iot = rb_entry(n, struct io_track, rb_node);
919
920 if (sector < __iot->sector)
921 n = n->rb_left;
922 else if (sector > __iot->sector)
923 n = n->rb_right;
924 else
925 return __iot;
926 }
927
928 return NULL;
929}
930
931static struct io_track *find_track(struct per_dev_info *pdi, pid_t pid,
932 __u64 sector)
933{
934 struct io_track *iot;
935
936 iot = __find_track(pdi, sector);
937 if (!iot) {
938 iot = malloc(sizeof(*iot));
939 iot->ppm = find_ppm(pid);
940 iot->sector = sector;
941 track_rb_insert(pdi, iot);
942 }
943
944 return iot;
945}
946
947static void log_track_frontmerge(struct per_dev_info *pdi,
948 struct blk_io_trace *t)
949{
950 struct io_track *iot;
951
952 if (!track_ios)
953 return;
954
955 iot = __find_track(pdi, t->sector + t_sec(t));
956 if (!iot) {
957 if (verbose)
958 fprintf(stderr, "merge not found for (%d,%d): %llu\n",
959 MAJOR(pdi->dev), MINOR(pdi->dev),
960 (unsigned long long) t->sector + t_sec(t));
961 return;
962 }
963
964 rb_erase(&iot->rb_node, &pdi->rb_track);
965 iot->sector -= t_sec(t);
966 track_rb_insert(pdi, iot);
967}
968
969static void log_track_getrq(struct per_dev_info *pdi, struct blk_io_trace *t)
970{
971 struct io_track *iot;
972
973 if (!track_ios)
974 return;
975
976 iot = find_track(pdi, t->pid, t->sector);
977 iot->allocation_time = t->time;
978}
979
980static inline int is_remapper(struct per_dev_info *pdi)
981{
982 int major = MAJOR(pdi->dev);
983
984 return (major == 253 || major == 9);
985}
986
987/*
988 * for md/dm setups, the interesting cycle is Q -> C. So track queueing
989 * time here, as dispatch time
990 */
991static void log_track_queue(struct per_dev_info *pdi, struct blk_io_trace *t)
992{
993 struct io_track *iot;
994
995 if (!track_ios)
996 return;
997 if (!is_remapper(pdi))
998 return;
999
1000 iot = find_track(pdi, t->pid, t->sector);
1001 iot->dispatch_time = t->time;
1002}
1003
1004/*
1005 * return time between rq allocation and insertion
1006 */
1007static unsigned long long log_track_insert(struct per_dev_info *pdi,
1008 struct blk_io_trace *t)
1009{
1010 unsigned long long elapsed;
1011 struct io_track *iot;
1012
1013 if (!track_ios)
1014 return -1;
1015
1016 iot = find_track(pdi, t->pid, t->sector);
1017 iot->queue_time = t->time;
1018
1019 if (!iot->allocation_time)
1020 return -1;
1021
1022 elapsed = iot->queue_time - iot->allocation_time;
1023
1024 if (per_process_stats) {
1025 struct per_process_info *ppi = find_ppi(iot->ppm->pid);
1026 int w = (t->action & BLK_TC_ACT(BLK_TC_WRITE)) != 0;
1027
1028 if (ppi && elapsed > ppi->longest_allocation_wait[w])
1029 ppi->longest_allocation_wait[w] = elapsed;
1030 }
1031
1032 return elapsed;
1033}
1034
1035/*
1036 * return time between queue and issue
1037 */
1038static unsigned long long log_track_issue(struct per_dev_info *pdi,
1039 struct blk_io_trace *t)
1040{
1041 unsigned long long elapsed;
1042 struct io_track *iot;
1043
1044 if (!track_ios)
1045 return -1;
1046 if ((t->action & BLK_TC_ACT(BLK_TC_FS)) == 0)
1047 return -1;
1048
1049 iot = __find_track(pdi, t->sector);
1050 if (!iot) {
1051 if (verbose)
1052 fprintf(stderr, "issue not found for (%d,%d): %llu\n",
1053 MAJOR(pdi->dev), MINOR(pdi->dev),
1054 (unsigned long long) t->sector);
1055 return -1;
1056 }
1057
1058 iot->dispatch_time = t->time;
1059 elapsed = iot->dispatch_time - iot->queue_time;
1060
1061 if (per_process_stats) {
1062 struct per_process_info *ppi = find_ppi(iot->ppm->pid);
1063 int w = (t->action & BLK_TC_ACT(BLK_TC_WRITE)) != 0;
1064
1065 if (ppi && elapsed > ppi->longest_dispatch_wait[w])
1066 ppi->longest_dispatch_wait[w] = elapsed;
1067 }
1068
1069 return elapsed;
1070}
1071
1072/*
1073 * return time between dispatch and complete
1074 */
1075static unsigned long long log_track_complete(struct per_dev_info *pdi,
1076 struct blk_io_trace *t)
1077{
1078 unsigned long long elapsed;
1079 struct io_track *iot;
1080
1081 if (!track_ios)
1082 return -1;
1083
1084 iot = __find_track(pdi, t->sector);
1085 if (!iot) {
1086 if (verbose)
1087 fprintf(stderr,"complete not found for (%d,%d): %llu\n",
1088 MAJOR(pdi->dev), MINOR(pdi->dev),
1089 (unsigned long long) t->sector);
1090 return -1;
1091 }
1092
1093 iot->completion_time = t->time;
1094 elapsed = iot->completion_time - iot->dispatch_time;
1095
1096 if (per_process_stats) {
1097 struct per_process_info *ppi = find_ppi(iot->ppm->pid);
1098 int w = (t->action & BLK_TC_ACT(BLK_TC_WRITE)) != 0;
1099
1100 if (ppi && elapsed > ppi->longest_completion_wait[w])
1101 ppi->longest_completion_wait[w] = elapsed;
1102 }
1103
1104 /*
1105 * kill the trace, we don't need it after completion
1106 */
1107 rb_erase(&iot->rb_node, &pdi->rb_track);
1108 free(iot);
1109
1110 return elapsed;
1111}
1112
1113
1114static struct io_stats *find_process_io_stats(pid_t pid)
1115{
1116 struct per_process_info *ppi = find_ppi(pid);
1117
1118 if (!ppi) {
1119 ppi = malloc(sizeof(*ppi));
1120 memset(ppi, 0, sizeof(*ppi));
1121 ppi->ppm = find_ppm(pid);
1122 add_ppi_to_hash(ppi);
1123 add_ppi_to_list(ppi);
1124 }
1125
1126 return &ppi->io_stats;
1127}
1128
1129static char *get_dev_name(struct per_dev_info *pdi, char *buffer, int size)
1130{
1131 if (pdi->name)
1132 snprintf(buffer, size, "%s", pdi->name);
1133 else
1134 snprintf(buffer, size, "%d,%d",MAJOR(pdi->dev),MINOR(pdi->dev));
1135 return buffer;
1136}
1137
1138static void check_time(struct per_dev_info *pdi, struct blk_io_trace *bit)
1139{
1140 unsigned long long this = bit->time;
1141 unsigned long long last = pdi->last_reported_time;
1142
1143 pdi->backwards = (this < last) ? 'B' : ' ';
1144 pdi->last_reported_time = this;
1145}
1146
1147static inline void __account_m(struct io_stats *ios, struct blk_io_trace *t,
1148 int rw)
1149{
1150 if (rw) {
1151 ios->mwrites++;
1152 ios->mwrite_kb += t_kb(t);
1153 } else {
1154 ios->mreads++;
1155 ios->mread_kb += t_kb(t);
1156 }
1157}
1158
1159static inline void account_m(struct blk_io_trace *t, struct per_cpu_info *pci,
1160 int rw)
1161{
1162 __account_m(&pci->io_stats, t, rw);
1163
1164 if (per_process_stats) {
1165 struct io_stats *ios = find_process_io_stats(t->pid);
1166
1167 __account_m(ios, t, rw);
1168 }
1169}
1170
1171static inline void __account_queue(struct io_stats *ios, struct blk_io_trace *t,
1172 int rw)
1173{
1174 if (rw) {
1175 ios->qwrites++;
1176 ios->qwrite_kb += t_kb(t);
1177 } else {
1178 ios->qreads++;
1179 ios->qread_kb += t_kb(t);
1180 }
1181}
1182
1183static inline void account_queue(struct blk_io_trace *t,
1184 struct per_cpu_info *pci, int rw)
1185{
1186 __account_queue(&pci->io_stats, t, rw);
1187
1188 if (per_process_stats) {
1189 struct io_stats *ios = find_process_io_stats(t->pid);
1190
1191 __account_queue(ios, t, rw);
1192 }
1193}
1194
1195static inline void __account_c(struct io_stats *ios, int rw, int bytes)
1196{
1197 if (rw) {
1198 ios->cwrites++;
1199 ios->cwrite_kb += bytes >> 10;
1200 } else {
1201 ios->creads++;
1202 ios->cread_kb += bytes >> 10;
1203 }
1204}
1205
1206static inline void account_c(struct blk_io_trace *t, struct per_cpu_info *pci,
1207 int rw, int bytes)
1208{
1209 __account_c(&pci->io_stats, rw, bytes);
1210
1211 if (per_process_stats) {
1212 struct io_stats *ios = find_process_io_stats(t->pid);
1213
1214 __account_c(ios, rw, bytes);
1215 }
1216}
1217
1218static inline void __account_issue(struct io_stats *ios, int rw,
1219 unsigned int bytes)
1220{
1221 if (rw) {
1222 ios->iwrites++;
1223 ios->iwrite_kb += bytes >> 10;
1224 } else {
1225 ios->ireads++;
1226 ios->iread_kb += bytes >> 10;
1227 }
1228}
1229
1230static inline void account_issue(struct blk_io_trace *t,
1231 struct per_cpu_info *pci, int rw)
1232{
1233 __account_issue(&pci->io_stats, rw, t->bytes);
1234
1235 if (per_process_stats) {
1236 struct io_stats *ios = find_process_io_stats(t->pid);
1237
1238 __account_issue(ios, rw, t->bytes);
1239 }
1240}
1241
1242static inline void __account_unplug(struct io_stats *ios, int timer)
1243{
1244 if (timer)
1245 ios->timer_unplugs++;
1246 else
1247 ios->io_unplugs++;
1248}
1249
1250static inline void account_unplug(struct blk_io_trace *t,
1251 struct per_cpu_info *pci, int timer)
1252{
1253 __account_unplug(&pci->io_stats, timer);
1254
1255 if (per_process_stats) {
1256 struct io_stats *ios = find_process_io_stats(t->pid);
1257
1258 __account_unplug(ios, timer);
1259 }
1260}
1261
1262static inline void __account_requeue(struct io_stats *ios,
1263 struct blk_io_trace *t, int rw)
1264{
1265 if (rw) {
1266 ios->wrqueue++;
1267 ios->iwrite_kb -= t_kb(t);
1268 } else {
1269 ios->rrqueue++;
1270 ios->iread_kb -= t_kb(t);
1271 }
1272}
1273
1274static inline void account_requeue(struct blk_io_trace *t,
1275 struct per_cpu_info *pci, int rw)
1276{
1277 __account_requeue(&pci->io_stats, t, rw);
1278
1279 if (per_process_stats) {
1280 struct io_stats *ios = find_process_io_stats(t->pid);
1281
1282 __account_requeue(ios, t, rw);
1283 }
1284}
1285
1286static void log_complete(struct per_dev_info *pdi, struct per_cpu_info *pci,
1287 struct blk_io_trace *t, char *act)
1288{
1289 process_fmt(act, pci, t, log_track_complete(pdi, t), 0, NULL);
1290}
1291
1292static void log_insert(struct per_dev_info *pdi, struct per_cpu_info *pci,
1293 struct blk_io_trace *t, char *act)
1294{
1295 process_fmt(act, pci, t, log_track_insert(pdi, t), 0, NULL);
1296}
1297
1298static void log_queue(struct per_cpu_info *pci, struct blk_io_trace *t,
1299 char *act)
1300{
1301 process_fmt(act, pci, t, -1, 0, NULL);
1302}
1303
1304static void log_issue(struct per_dev_info *pdi, struct per_cpu_info *pci,
1305 struct blk_io_trace *t, char *act)
1306{
1307 process_fmt(act, pci, t, log_track_issue(pdi, t), 0, NULL);
1308}
1309
1310static void log_merge(struct per_dev_info *pdi, struct per_cpu_info *pci,
1311 struct blk_io_trace *t, char *act)
1312{
1313 if (act[0] == 'F')
1314 log_track_frontmerge(pdi, t);
1315
1316 process_fmt(act, pci, t, -1ULL, 0, NULL);
1317}
1318
1319static void log_action(struct per_cpu_info *pci, struct blk_io_trace *t,
1320 char *act)
1321{
1322 process_fmt(act, pci, t, -1ULL, 0, NULL);
1323}
1324
1325static void log_generic(struct per_cpu_info *pci, struct blk_io_trace *t,
1326 char *act)
1327{
1328 process_fmt(act, pci, t, -1ULL, 0, NULL);
1329}
1330
1331static void log_unplug(struct per_cpu_info *pci, struct blk_io_trace *t,
1332 char *act)
1333{
1334 process_fmt(act, pci, t, -1ULL, 0, NULL);
1335}
1336
1337static void log_split(struct per_cpu_info *pci, struct blk_io_trace *t,
1338 char *act)
1339{
1340 process_fmt(act, pci, t, -1ULL, 0, NULL);
1341}
1342
1343static void log_pc(struct per_cpu_info *pci, struct blk_io_trace *t, char *act)
1344{
1345 unsigned char *buf = (unsigned char *) t + sizeof(*t);
1346
1347 process_fmt(act, pci, t, -1ULL, t->pdu_len, buf);
1348}
1349
1350static void dump_trace_pc(struct blk_io_trace *t, struct per_cpu_info *pci)
1351{
1352 int act = t->action & 0xffff;
1353
1354 switch (act) {
1355 case __BLK_TA_QUEUE:
1356 log_generic(pci, t, "Q");
1357 break;
1358 case __BLK_TA_GETRQ:
1359 log_generic(pci, t, "G");
1360 break;
1361 case __BLK_TA_SLEEPRQ:
1362 log_generic(pci, t, "S");
1363 break;
1364 case __BLK_TA_REQUEUE:
1365 log_generic(pci, t, "R");
1366 break;
1367 case __BLK_TA_ISSUE:
1368 log_pc(pci, t, "D");
1369 break;
1370 case __BLK_TA_COMPLETE:
1371 log_pc(pci, t, "C");
1372 break;
1373 case __BLK_TA_INSERT:
1374 log_pc(pci, t, "I");
1375 break;
1376 default:
1377 fprintf(stderr, "Bad pc action %x\n", act);
1378 break;
1379 }
1380}
1381
1382static void dump_trace_fs(struct blk_io_trace *t, struct per_dev_info *pdi,
1383 struct per_cpu_info *pci)
1384{
1385 int w = (t->action & BLK_TC_ACT(BLK_TC_WRITE)) != 0;
1386 int act = t->action & 0xffff;
1387
1388 switch (act) {
1389 case __BLK_TA_QUEUE:
1390 log_track_queue(pdi, t);
1391 account_queue(t, pci, w);
1392 log_queue(pci, t, "Q");
1393 break;
1394 case __BLK_TA_INSERT:
1395 log_insert(pdi, pci, t, "I");
1396 break;
1397 case __BLK_TA_BACKMERGE:
1398 account_m(t, pci, w);
1399 log_merge(pdi, pci, t, "M");
1400 break;
1401 case __BLK_TA_FRONTMERGE:
1402 account_m(t, pci, w);
1403 log_merge(pdi, pci, t, "F");
1404 break;
1405 case __BLK_TA_GETRQ:
1406 log_track_getrq(pdi, t);
1407 log_generic(pci, t, "G");
1408 break;
1409 case __BLK_TA_SLEEPRQ:
1410 log_generic(pci, t, "S");
1411 break;
1412 case __BLK_TA_REQUEUE:
1413 /*
1414 * can happen if we miss traces, don't let it go
1415 * below zero
1416 */
1417 if (pdi->cur_depth[w])
1418 pdi->cur_depth[w]--;
1419 account_requeue(t, pci, w);
1420 log_queue(pci, t, "R");
1421 break;
1422 case __BLK_TA_ISSUE:
1423 account_issue(t, pci, w);
1424 pdi->cur_depth[w]++;
1425 if (pdi->cur_depth[w] > pdi->max_depth[w])
1426 pdi->max_depth[w] = pdi->cur_depth[w];
1427 log_issue(pdi, pci, t, "D");
1428 break;
1429 case __BLK_TA_COMPLETE:
1430 if (pdi->cur_depth[w])
1431 pdi->cur_depth[w]--;
1432 account_c(t, pci, w, t->bytes);
1433 log_complete(pdi, pci, t, "C");
1434 break;
1435 case __BLK_TA_PLUG:
1436 log_action(pci, t, "P");
1437 break;
1438 case __BLK_TA_UNPLUG_IO:
1439 account_unplug(t, pci, 0);
1440 log_unplug(pci, t, "U");
1441 break;
1442 case __BLK_TA_UNPLUG_TIMER:
1443 account_unplug(t, pci, 1);
1444 log_unplug(pci, t, "UT");
1445 break;
1446 case __BLK_TA_SPLIT:
1447 log_split(pci, t, "X");
1448 break;
1449 case __BLK_TA_BOUNCE:
1450 log_generic(pci, t, "B");
1451 break;
1452 case __BLK_TA_REMAP:
1453 log_generic(pci, t, "A");
1454 break;
1455 default:
1456 fprintf(stderr, "Bad fs action %x\n", t->action);
1457 break;
1458 }
1459}
1460
1461static void dump_trace(struct blk_io_trace *t, struct per_cpu_info *pci,
1462 struct per_dev_info *pdi)
1463{
1464 if (text_output) {
1465 if (t->action & BLK_TC_ACT(BLK_TC_PC))
1466 dump_trace_pc(t, pci);
1467 else
1468 dump_trace_fs(t, pdi, pci);
1469 }
1470
1471 if (!pdi->events)
1472 pdi->first_reported_time = t->time;
1473
1474 pdi->events++;
1475
1476 output_binary(t, sizeof(*t) + t->pdu_len);
1477}
1478
1479/*
1480 * print in a proper way, not too small and not too big. if more than
1481 * 1000,000K, turn into M and so on
1482 */
1483static char *size_cnv(char *dst, unsigned long long num, int in_kb)
1484{
1485 char suff[] = { '\0', 'K', 'M', 'G', 'P' };
1486 unsigned int i = 0;
1487
1488 if (in_kb)
1489 i++;
1490
1491 while (num > 1000 * 1000ULL && (i < sizeof(suff) - 1)) {
1492 i++;
1493 num /= 1000;
1494 }
1495
1496 sprintf(dst, "%'8Lu%c", num, suff[i]);
1497 return dst;
1498}
1499
1500static void dump_io_stats(struct per_dev_info *pdi, struct io_stats *ios,
1501 char *msg)
1502{
1503 static char x[256], y[256];
1504
1505 fprintf(ofp, "%s\n", msg);
1506
1507 fprintf(ofp, " Reads Queued: %s, %siB\t", size_cnv(x, ios->qreads, 0), size_cnv(y, ios->qread_kb, 1));
1508 fprintf(ofp, " Writes Queued: %s, %siB\n", size_cnv(x, ios->qwrites, 0), size_cnv(y, ios->qwrite_kb, 1));
1509 fprintf(ofp, " Read Dispatches: %s, %siB\t", size_cnv(x, ios->ireads, 0), size_cnv(y, ios->iread_kb, 1));
1510 fprintf(ofp, " Write Dispatches: %s, %siB\n", size_cnv(x, ios->iwrites, 0), size_cnv(y, ios->iwrite_kb, 1));
1511 fprintf(ofp, " Reads Requeued: %s\t\t", size_cnv(x, ios->rrqueue, 0));
1512 fprintf(ofp, " Writes Requeued: %s\n", size_cnv(x, ios->wrqueue, 0));
1513 fprintf(ofp, " Reads Completed: %s, %siB\t", size_cnv(x, ios->creads, 0), size_cnv(y, ios->cread_kb, 1));
1514 fprintf(ofp, " Writes Completed: %s, %siB\n", size_cnv(x, ios->cwrites, 0), size_cnv(y, ios->cwrite_kb, 1));
1515 fprintf(ofp, " Read Merges: %s, %siB\t", size_cnv(x, ios->mreads, 0), size_cnv(y, ios->mread_kb, 1));
1516 fprintf(ofp, " Write Merges: %s, %siB\n", size_cnv(x, ios->mwrites, 0), size_cnv(y, ios->mwrite_kb, 1));
1517 if (pdi) {
1518 fprintf(ofp, " Read depth: %'8u%8c\t", pdi->max_depth[0], ' ');
1519 fprintf(ofp, " Write depth: %'8u\n", pdi->max_depth[1]);
1520 }
1521 fprintf(ofp, " IO unplugs: %'8lu%8c\t", ios->io_unplugs, ' ');
1522 fprintf(ofp, " Timer unplugs: %'8lu\n", ios->timer_unplugs);
1523}
1524
1525static void dump_wait_stats(struct per_process_info *ppi)
1526{
1527 unsigned long rawait = ppi->longest_allocation_wait[0] / 1000;
1528 unsigned long rdwait = ppi->longest_dispatch_wait[0] / 1000;
1529 unsigned long rcwait = ppi->longest_completion_wait[0] / 1000;
1530 unsigned long wawait = ppi->longest_allocation_wait[1] / 1000;
1531 unsigned long wdwait = ppi->longest_dispatch_wait[1] / 1000;
1532 unsigned long wcwait = ppi->longest_completion_wait[1] / 1000;
1533
1534 fprintf(ofp, " Allocation wait: %'8lu%8c\t", rawait, ' ');
1535 fprintf(ofp, " Allocation wait: %'8lu\n", wawait);
1536 fprintf(ofp, " Dispatch wait: %'8lu%8c\t", rdwait, ' ');
1537 fprintf(ofp, " Dispatch wait: %'8lu\n", wdwait);
1538 fprintf(ofp, " Completion wait: %'8lu%8c\t", rcwait, ' ');
1539 fprintf(ofp, " Completion wait: %'8lu\n", wcwait);
1540}
1541
1542static int ppi_name_compare(const void *p1, const void *p2)
1543{
1544 struct per_process_info *ppi1 = *((struct per_process_info **) p1);
1545 struct per_process_info *ppi2 = *((struct per_process_info **) p2);
1546 int res;
1547
1548 res = strverscmp(ppi1->ppm->comm, ppi2->ppm->comm);
1549 if (!res)
1550 res = ppi1->ppm->pid > ppi2->ppm->pid;
1551
1552 return res;
1553}
1554
1555static void sort_process_list(void)
1556{
1557 struct per_process_info **ppis;
1558 struct per_process_info *ppi;
1559 int i = 0;
1560
1561 ppis = malloc(ppi_list_entries * sizeof(struct per_process_info *));
1562
1563 ppi = ppi_list;
1564 while (ppi) {
1565 ppis[i++] = ppi;
1566 ppi = ppi->list_next;
1567 }
1568
1569 qsort(ppis, ppi_list_entries, sizeof(ppi), ppi_name_compare);
1570
1571 i = ppi_list_entries - 1;
1572 ppi_list = NULL;
1573 while (i >= 0) {
1574 ppi = ppis[i];
1575
1576 ppi->list_next = ppi_list;
1577 ppi_list = ppi;
1578 i--;
1579 }
1580
1581 free(ppis);
1582}
1583
1584static void show_process_stats(void)
1585{
1586 struct per_process_info *ppi;
1587
1588 sort_process_list();
1589
1590 ppi = ppi_list;
1591 while (ppi) {
1592 struct process_pid_map *ppm = ppi->ppm;
1593 char name[64];
1594
1595 if (ppi->more_than_one)
1596 sprintf(name, "%s (%u, ...)", ppm->comm, ppm->pid);
1597 else
1598 sprintf(name, "%s (%u)", ppm->comm, ppm->pid);
1599
1600 dump_io_stats(NULL, &ppi->io_stats, name);
1601 dump_wait_stats(ppi);
1602 ppi = ppi->list_next;
1603 }
1604
1605 fprintf(ofp, "\n");
1606}
1607
1608static void show_device_and_cpu_stats(void)
1609{
1610 struct per_dev_info *pdi;
1611 struct per_cpu_info *pci;
1612 struct io_stats total, *ios;
1613 unsigned long long rrate, wrate, msec;
1614 int i, j, pci_events;
1615 char line[3 + 8/*cpu*/ + 2 + 32/*dev*/ + 3];
1616 char name[32];
1617 double ratio;
1618
1619 for (pdi = devices, i = 0; i < ndevices; i++, pdi++) {
1620
1621 memset(&total, 0, sizeof(total));
1622 pci_events = 0;
1623
1624 if (i > 0)
1625 fprintf(ofp, "\n");
1626
1627 for (pci = pdi->cpus, j = 0; j < pdi->ncpus; j++, pci++) {
1628 if (!pci->nelems)
1629 continue;
1630
1631 ios = &pci->io_stats;
1632 total.qreads += ios->qreads;
1633 total.qwrites += ios->qwrites;
1634 total.creads += ios->creads;
1635 total.cwrites += ios->cwrites;
1636 total.mreads += ios->mreads;
1637 total.mwrites += ios->mwrites;
1638 total.ireads += ios->ireads;
1639 total.iwrites += ios->iwrites;
1640 total.rrqueue += ios->rrqueue;
1641 total.wrqueue += ios->wrqueue;
1642 total.qread_kb += ios->qread_kb;
1643 total.qwrite_kb += ios->qwrite_kb;
1644 total.cread_kb += ios->cread_kb;
1645 total.cwrite_kb += ios->cwrite_kb;
1646 total.iread_kb += ios->iread_kb;
1647 total.iwrite_kb += ios->iwrite_kb;
1648 total.mread_kb += ios->mread_kb;
1649 total.mwrite_kb += ios->mwrite_kb;
1650 total.timer_unplugs += ios->timer_unplugs;
1651 total.io_unplugs += ios->io_unplugs;
1652
1653 snprintf(line, sizeof(line) - 1, "CPU%d (%s):",
1654 j, get_dev_name(pdi, name, sizeof(name)));
1655 dump_io_stats(pdi, ios, line);
1656 pci_events++;
1657 }
1658
1659 if (pci_events > 1) {
1660 fprintf(ofp, "\n");
1661 snprintf(line, sizeof(line) - 1, "Total (%s):",
1662 get_dev_name(pdi, name, sizeof(name)));
1663 dump_io_stats(NULL, &total, line);
1664 }
1665
1666 wrate = rrate = 0;
1667 msec = (pdi->last_reported_time - pdi->first_reported_time) / 1000000;
1668 if (msec) {
1669 rrate = 1000 * total.cread_kb / msec;
1670 wrate = 1000 * total.cwrite_kb / msec;
1671 }
1672
1673 fprintf(ofp, "\nThroughput (R/W): %'LuKiB/s / %'LuKiB/s\n",
1674 rrate, wrate);
1675 fprintf(ofp, "Events (%s): %'Lu entries\n",
1676 get_dev_name(pdi, line, sizeof(line)), pdi->events);
1677
1678 collect_pdi_skips(pdi);
1679 if (!pdi->skips && !pdi->events)
1680 ratio = 0.0;
1681 else
1682 ratio = 100.0 * ((double)pdi->seq_skips /
1683 (double)(pdi->events + pdi->seq_skips));
1684 fprintf(ofp, "Skips: %'lu forward (%'llu - %5.1lf%%)\n",
1685 pdi->skips, pdi->seq_skips, ratio);
1686 }
1687}
1688
1689static void find_genesis(void)
1690{
1691 struct trace *t = trace_list;
1692
1693 genesis_time = -1ULL;
1694 while (t != NULL) {
1695 if (t->bit->time < genesis_time)
1696 genesis_time = t->bit->time;
1697
1698 t = t->next;
1699 }
1700
1701 /* The time stamp record will usually be the first
1702 * record in the trace, but not always.
1703 */
1704 if (start_timestamp
1705 && start_timestamp != genesis_time) {
1706 long delta = genesis_time - start_timestamp;
1707
1708 abs_start_time.tv_sec += SECONDS(delta);
1709 abs_start_time.tv_nsec += NANO_SECONDS(delta);
1710 if (abs_start_time.tv_nsec < 0) {
1711 abs_start_time.tv_nsec += 1000000000;
1712 abs_start_time.tv_sec -= 1;
1713 } else
1714 if (abs_start_time.tv_nsec > 1000000000) {
1715 abs_start_time.tv_nsec -= 1000000000;
1716 abs_start_time.tv_sec += 1;
1717 }
1718 }
1719}
1720
1721static inline int check_stopwatch(struct blk_io_trace *bit)
1722{
1723 if (bit->time < stopwatch_end &&
1724 bit->time >= stopwatch_start)
1725 return 0;
1726
1727 return 1;
1728}
1729
1730/*
1731 * return youngest entry read
1732 */
1733static int sort_entries(unsigned long long *youngest)
1734{
1735 struct per_dev_info *pdi = NULL;
1736 struct per_cpu_info *pci = NULL;
1737 struct trace *t;
1738
1739 if (!genesis_time)
1740 find_genesis();
1741
1742 *youngest = 0;
1743 while ((t = trace_list) != NULL) {
1744 struct blk_io_trace *bit = t->bit;
1745
1746 trace_list = t->next;
1747
1748 bit->time -= genesis_time;
1749
1750 if (bit->time < *youngest || !*youngest)
1751 *youngest = bit->time;
1752
1753 if (!pdi || pdi->dev != bit->device) {
1754 pdi = get_dev_info(bit->device);
1755 pci = NULL;
1756 }
1757
1758 if (!pci || pci->cpu != bit->cpu)
1759 pci = get_cpu_info(pdi, bit->cpu);
1760
1761 if (bit->sequence < pci->smallest_seq_read)
1762 pci->smallest_seq_read = bit->sequence;
1763
1764 if (check_stopwatch(bit)) {
1765 bit_free(bit);
1766 t_free(t);
1767 continue;
1768 }
1769
1770 if (trace_rb_insert_sort(t))
1771 return -1;
1772 }
1773
1774 return 0;
1775}
1776
1777/*
1778 * to continue, we must have traces from all online cpus in the tree
1779 */
1780static int check_cpu_map(struct per_dev_info *pdi)
1781{
1782 unsigned long *cpu_map;
1783 struct rb_node *n;
1784 struct trace *__t;
1785 unsigned int i;
1786 int ret, cpu;
1787
1788 /*
1789 * create a map of the cpus we have traces for
1790 */
1791 cpu_map = malloc(pdi->cpu_map_max / sizeof(long));
1792 n = rb_first(&rb_sort_root);
1793 while (n) {
1794 __t = rb_entry(n, struct trace, rb_node);
1795 cpu = __t->bit->cpu;
1796
1797 cpu_map[CPU_IDX(cpu)] |= (1UL << CPU_BIT(cpu));
1798 n = rb_next(n);
1799 }
1800
1801 /*
1802 * we can't continue if pdi->cpu_map has entries set that we don't
1803 * have in the sort rbtree. the opposite is not a problem, though
1804 */
1805 ret = 0;
1806 for (i = 0; i < pdi->cpu_map_max / CPUS_PER_LONG; i++) {
1807 if (pdi->cpu_map[i] & ~(cpu_map[i])) {
1808 ret = 1;
1809 break;
1810 }
1811 }
1812
1813 free(cpu_map);
1814 return ret;
1815}
1816
1817static int check_sequence(struct per_dev_info *pdi, struct trace *t, int force)
1818{
1819 struct blk_io_trace *bit = t->bit;
1820 unsigned long expected_sequence;
1821 struct per_cpu_info *pci;
1822 struct trace *__t;
1823
1824 pci = get_cpu_info(pdi, bit->cpu);
1825 expected_sequence = pci->last_sequence + 1;
1826
1827 if (!expected_sequence) {
1828 /*
1829 * 1 should be the first entry, just allow it
1830 */
1831 if (bit->sequence == 1)
1832 return 0;
1833 if (bit->sequence == pci->smallest_seq_read)
1834 return 0;
1835
1836 return check_cpu_map(pdi);
1837 }
1838
1839 if (bit->sequence == expected_sequence)
1840 return 0;
1841
1842 /*
1843 * we may not have seen that sequence yet. if we are not doing
1844 * the final run, break and wait for more entries.
1845 */
1846 if (expected_sequence < pci->smallest_seq_read) {
1847 __t = trace_rb_find_last(pdi, pci, expected_sequence);
1848 if (!__t)
1849 goto skip;
1850
1851 __put_trace_last(pdi, __t);
1852 return 0;
1853 } else if (!force) {
1854 return 1;
1855 } else {
1856skip:
1857 if (check_current_skips(pci, bit->sequence))
1858 return 0;
1859
1860 if (expected_sequence < bit->sequence)
1861 insert_skip(pci, expected_sequence, bit->sequence - 1);
1862 return 0;
1863 }
1864}
1865
1866static void show_entries_rb(int force)
1867{
1868 struct per_dev_info *pdi = NULL;
1869 struct per_cpu_info *pci = NULL;
1870 struct blk_io_trace *bit;
1871 struct rb_node *n;
1872 struct trace *t;
1873
1874 while ((n = rb_first(&rb_sort_root)) != NULL) {
1875 if (is_done() && !force && !pipeline)
1876 break;
1877
1878 t = rb_entry(n, struct trace, rb_node);
1879 bit = t->bit;
1880
1881 if (read_sequence - t->read_sequence < 1 && !force)
1882 break;
1883
1884 if (!pdi || pdi->dev != bit->device) {
1885 pdi = get_dev_info(bit->device);
1886 pci = NULL;
1887 }
1888
1889 if (!pdi) {
1890 fprintf(stderr, "Unknown device ID? (%d,%d)\n",
1891 MAJOR(bit->device), MINOR(bit->device));
1892 break;
1893 }
1894
1895 if (check_sequence(pdi, t, force))
1896 break;
1897
1898 if (!force && bit->time > last_allowed_time)
1899 break;
1900
1901 check_time(pdi, bit);
1902
1903 if (!pci || pci->cpu != bit->cpu)
1904 pci = get_cpu_info(pdi, bit->cpu);
1905
1906 pci->last_sequence = bit->sequence;
1907
1908 pci->nelems++;
1909
1910 if (bit->action & (act_mask << BLK_TC_SHIFT))
1911 dump_trace(bit, pci, pdi);
1912
1913 put_trace(pdi, t);
1914 }
1915}
1916
1917static int read_data(int fd, void *buffer, int bytes, int block, int *fdblock)
1918{
1919 int ret, bytes_left, fl;
1920 void *p;
1921
1922 if (block != *fdblock) {
1923 fl = fcntl(fd, F_GETFL);
1924
1925 if (!block) {
1926 *fdblock = 0;
1927 fcntl(fd, F_SETFL, fl | O_NONBLOCK);
1928 } else {
1929 *fdblock = 1;
1930 fcntl(fd, F_SETFL, fl & ~O_NONBLOCK);
1931 }
1932 }
1933
1934 bytes_left = bytes;
1935 p = buffer;
1936 while (bytes_left > 0) {
1937 ret = read(fd, p, bytes_left);
1938 if (!ret)
1939 return 1;
1940 else if (ret < 0) {
1941 if (errno != EAGAIN) {
1942 perror("read");
1943 return -1;
1944 }
1945
1946 /*
1947 * never do partial reads. we can return if we
1948 * didn't read anything and we should not block,
1949 * otherwise wait for data
1950 */
1951 if ((bytes_left == bytes) && !block)
1952 return 1;
1953
1954 usleep(10);
1955 continue;
1956 } else {
1957 p += ret;
1958 bytes_left -= ret;
1959 }
1960 }
1961
1962 return 0;
1963}
1964
1965static inline __u16 get_pdulen(struct blk_io_trace *bit)
1966{
1967 if (data_is_native)
1968 return bit->pdu_len;
1969
1970 return __bswap_16(bit->pdu_len);
1971}
1972
1973static inline __u32 get_magic(struct blk_io_trace *bit)
1974{
1975 if (data_is_native)
1976 return bit->magic;
1977
1978 return __bswap_32(bit->magic);
1979}
1980
1981static int read_events(int fd, int always_block, int *fdblock)
1982{
1983 struct per_dev_info *pdi = NULL;
1984 unsigned int events = 0;
1985
1986 while (!is_done() && events < rb_batch) {
1987 struct blk_io_trace *bit;
1988 struct trace *t;
1989 int pdu_len, should_block, ret;
1990 __u32 magic;
1991
1992 bit = bit_alloc();
1993
1994 should_block = !events || always_block;
1995
1996 ret = read_data(fd, bit, sizeof(*bit), should_block, fdblock);
1997 if (ret) {
1998 bit_free(bit);
1999 if (!events && ret < 0)
2000 events = ret;
2001 break;
2002 }
2003
2004 /*
2005 * look at first trace to check whether we need to convert
2006 * data in the future
2007 */
2008 if (data_is_native == -1 && check_data_endianness(bit->magic))
2009 break;
2010
2011 magic = get_magic(bit);
2012 if ((magic & 0xffffff00) != BLK_IO_TRACE_MAGIC) {
2013 fprintf(stderr, "Bad magic %x\n", magic);
2014 break;
2015 }
2016
2017 pdu_len = get_pdulen(bit);
2018 if (pdu_len) {
2019 void *ptr = realloc(bit, sizeof(*bit) + pdu_len);
2020
2021 if (read_data(fd, ptr + sizeof(*bit), pdu_len, 1, fdblock)) {
2022 bit_free(ptr);
2023 break;
2024 }
2025
2026 bit = ptr;
2027 }
2028
2029 trace_to_cpu(bit);
2030
2031 if (verify_trace(bit)) {
2032 bit_free(bit);
2033 continue;
2034 }
2035
2036 /*
2037 * not a real trace, so grab and handle it here
2038 */
2039 if (bit->action & BLK_TC_ACT(BLK_TC_NOTIFY)) {
2040 handle_notify(bit);
2041 output_binary(bit, sizeof(*bit) + bit->pdu_len);
2042 continue;
2043 }
2044
2045 t = t_alloc();
2046 memset(t, 0, sizeof(*t));
2047 t->bit = bit;
2048 t->read_sequence = read_sequence;
2049
2050 t->next = trace_list;
2051 trace_list = t;
2052
2053 if (!pdi || pdi->dev != bit->device)
2054 pdi = get_dev_info(bit->device);
2055
2056 if (bit->time > pdi->last_read_time)
2057 pdi->last_read_time = bit->time;
2058
2059 events++;
2060 }
2061
2062 return events;
2063}
2064
2065/*
2066 * Managing input streams
2067 */
2068
2069struct ms_stream {
2070 struct ms_stream *next;
2071 struct trace *first, *last;
2072 struct per_dev_info *pdi;
2073 unsigned int cpu;
2074};
2075
2076#define MS_HASH(d, c) ((MAJOR(d) & 0xff) ^ (MINOR(d) & 0xff) ^ (cpu & 0xff))
2077
2078struct ms_stream *ms_head;
2079struct ms_stream *ms_hash[256];
2080
2081static void ms_sort(struct ms_stream *msp);
2082static int ms_prime(struct ms_stream *msp);
2083
2084static inline struct trace *ms_peek(struct ms_stream *msp)
2085{
2086 return (msp == NULL) ? NULL : msp->first;
2087}
2088
2089static inline __u64 ms_peek_time(struct ms_stream *msp)
2090{
2091 return ms_peek(msp)->bit->time;
2092}
2093
2094static inline void ms_resort(struct ms_stream *msp)
2095{
2096 if (msp->next && ms_peek_time(msp) > ms_peek_time(msp->next)) {
2097 ms_head = msp->next;
2098 msp->next = NULL;
2099 ms_sort(msp);
2100 }
2101}
2102
2103static inline void ms_deq(struct ms_stream *msp)
2104{
2105 msp->first = msp->first->next;
2106 if (!msp->first) {
2107 msp->last = NULL;
2108 if (!ms_prime(msp)) {
2109 ms_head = msp->next;
2110 msp->next = NULL;
2111 return;
2112 }
2113 }
2114
2115 ms_resort(msp);
2116}
2117
2118static void ms_sort(struct ms_stream *msp)
2119{
2120 __u64 msp_t = ms_peek_time(msp);
2121 struct ms_stream *this_msp = ms_head;
2122
2123 if (this_msp == NULL)
2124 ms_head = msp;
2125 else if (msp_t < ms_peek_time(this_msp)) {
2126 msp->next = this_msp;
2127 ms_head = msp;
2128 }
2129 else {
2130 while (this_msp->next && ms_peek_time(this_msp->next) < msp_t)
2131 this_msp = this_msp->next;
2132
2133 msp->next = this_msp->next;
2134 this_msp->next = msp;
2135 }
2136}
2137
2138static int ms_prime(struct ms_stream *msp)
2139{
2140 __u32 magic;
2141 unsigned int i;
2142 struct trace *t;
2143 struct per_dev_info *pdi = msp->pdi;
2144 struct per_cpu_info *pci = get_cpu_info(pdi, msp->cpu);
2145 struct blk_io_trace *bit = NULL;
2146 int ret, pdu_len, ndone = 0;
2147
2148 for (i = 0; !is_done() && pci->fd >= 0 && i < rb_batch; i++) {
2149 bit = bit_alloc();
2150 ret = read_data(pci->fd, bit, sizeof(*bit), 1, &pci->fdblock);
2151 if (ret)
2152 goto err;
2153
2154 if (data_is_native == -1 && check_data_endianness(bit->magic))
2155 goto err;
2156
2157 magic = get_magic(bit);
2158 if ((magic & 0xffffff00) != BLK_IO_TRACE_MAGIC) {
2159 fprintf(stderr, "Bad magic %x\n", magic);
2160 goto err;
2161
2162 }
2163
2164 pdu_len = get_pdulen(bit);
2165 if (pdu_len) {
2166 void *ptr = realloc(bit, sizeof(*bit) + pdu_len);
2167 ret = read_data(pci->fd, ptr + sizeof(*bit), pdu_len,
2168 1, &pci->fdblock);
2169 if (ret) {
2170 free(ptr);
2171 bit = NULL;
2172 goto err;
2173 }
2174
2175 bit = ptr;
2176 }
2177
2178 trace_to_cpu(bit);
2179 if (verify_trace(bit))
2180 goto err;
2181
2182 if (bit->action & BLK_TC_ACT(BLK_TC_NOTIFY)) {
2183 handle_notify(bit);
2184 output_binary(bit, sizeof(*bit) + bit->pdu_len);
2185 bit_free(bit);
2186
2187 i -= 1;
2188 continue;
2189 }
2190
2191 if (bit->time > pdi->last_read_time)
2192 pdi->last_read_time = bit->time;
2193
2194 t = t_alloc();
2195 memset(t, 0, sizeof(*t));
2196 t->bit = bit;
2197
2198 if (msp->first == NULL)
2199 msp->first = msp->last = t;
2200 else {
2201 msp->last->next = t;
2202 msp->last = t;
2203 }
2204
2205 ndone++;
2206 }
2207
2208 return ndone;
2209
2210err:
2211 if (bit) bit_free(bit);
2212
2213 cpu_mark_offline(pdi, pci->cpu);
2214 close(pci->fd);
2215 pci->fd = -1;
2216
2217 return ndone;
2218}
2219
2220static struct ms_stream *ms_alloc(struct per_dev_info *pdi, int cpu)
2221{
2222 struct ms_stream *msp = malloc(sizeof(*msp));
2223
2224 msp->next = NULL;
2225 msp->first = msp->last = NULL;
2226 msp->pdi = pdi;
2227 msp->cpu = cpu;
2228
2229 if (ms_prime(msp))
2230 ms_sort(msp);
2231
2232 return msp;
2233}
2234
2235static int setup_file(struct per_dev_info *pdi, int cpu)
2236{
2237 int len = 0;
2238 struct stat st;
2239 char *p, *dname;
2240 struct per_cpu_info *pci = get_cpu_info(pdi, cpu);
2241
2242 pci->cpu = cpu;
2243 pci->fdblock = -1;
2244
2245 p = strdup(pdi->name);
2246 dname = dirname(p);
2247 if (strcmp(dname, ".")) {
2248 input_dir = dname;
2249 p = strdup(pdi->name);
2250 strcpy(pdi->name, basename(p));
2251 }
2252 free(p);
2253
2254 if (input_dir)
2255 len = sprintf(pci->fname, "%s/", input_dir);
2256
2257 snprintf(pci->fname + len, sizeof(pci->fname)-1-len,
2258 "%s.blktrace.%d", pdi->name, pci->cpu);
2259 if (stat(pci->fname, &st) < 0)
2260 return 0;
2261 if (!st.st_size)
2262 return 1;
2263
2264 pci->fd = open(pci->fname, O_RDONLY);
2265 if (pci->fd < 0) {
2266 perror(pci->fname);
2267 return 0;
2268 }
2269
2270 printf("Input file %s added\n", pci->fname);
2271 cpu_mark_online(pdi, pci->cpu);
2272
2273 pdi->nfiles++;
2274 ms_alloc(pdi, pci->cpu);
2275
2276 return 1;
2277}
2278
2279static int handle(struct ms_stream *msp)
2280{
2281 struct trace *t;
2282 struct per_dev_info *pdi;
2283 struct per_cpu_info *pci;
2284 struct blk_io_trace *bit;
2285
2286 t = ms_peek(msp);
2287 if (t->bit->time > stopwatch_end)
2288 return 0;
2289
2290 bit = t->bit;
2291 pdi = msp->pdi;
2292 pci = get_cpu_info(pdi, msp->cpu);
2293 pci->nelems++;
2294
2295 bit->time -= genesis_time;
2296 pdi->last_reported_time = bit->time;
2297 if (bit->action & (act_mask << BLK_TC_SHIFT))
2298 dump_trace(bit, pci, pdi);
2299
2300 ms_deq(msp);
2301
2302 if (text_output)
2303 trace_rb_insert_last(pdi, t);
2304 else {
2305 bit_free(t->bit);
2306 t_free(t);
2307 }
2308
2309 return 1;
2310}
2311
2312/*
2313 * Check if we need to sanitize the name. We allow 'foo', or if foo.blktrace.X
2314 * is given, then strip back down to 'foo' to avoid missing files.
2315 */
2316static int name_fixup(char *name)
2317{
2318 char *b;
2319
2320 if (!name)
2321 return 1;
2322
2323 b = strstr(name, ".blktrace.");
2324 if (b)
2325 *b = '\0';
2326
2327 return 0;
2328}
2329
2330static int do_file(void)
2331{
2332 int i, cpu, ret;
2333 struct per_dev_info *pdi;
2334
2335 /*
2336 * first prepare all files for reading
2337 */
2338 for (i = 0; i < ndevices; i++) {
2339 pdi = &devices[i];
2340 ret = name_fixup(pdi->name);
2341 if (ret)
2342 return ret;
2343
2344 for (cpu = 0; setup_file(pdi, cpu); cpu++)
2345 ;
2346 }
2347
2348 /*
2349 * Get the initial time stamp
2350 */
2351 if (ms_head)
2352 genesis_time = ms_peek_time(ms_head);
2353
2354 /*
2355 * Keep processing traces while any are left
2356 */
2357 while (!is_done() && ms_head && handle(ms_head))
2358 ;
2359
2360 return 0;
2361}
2362
2363static void do_pipe(int fd)
2364{
2365 unsigned long long youngest;
2366 int events, fdblock;
2367
2368 last_allowed_time = -1ULL;
2369 fdblock = -1;
2370 while ((events = read_events(fd, 0, &fdblock)) > 0) {
2371 read_sequence++;
2372
2373#if 0
2374 smallest_seq_read = -1U;
2375#endif
2376
2377 if (sort_entries(&youngest))
2378 break;
2379
2380 if (youngest > stopwatch_end)
2381 break;
2382
2383 show_entries_rb(0);
2384 }
2385
2386 if (rb_sort_entries)
2387 show_entries_rb(1);
2388}
2389
2390static int do_fifo(void)
2391{
2392 int fd;
2393
2394 if (!strcmp(pipename, "-"))
2395 fd = dup(STDIN_FILENO);
2396 else
2397 fd = open(pipename, O_RDONLY);
2398
2399 if (fd == -1) {
2400 perror("dup stdin");
2401 return -1;
2402 }
2403
2404 do_pipe(fd);
2405 close(fd);
2406 return 0;
2407}
2408
2409static void show_stats(void)
2410{
2411 if (!ofp)
2412 return;
2413 if (stats_printed)
2414 return;
2415
2416 stats_printed = 1;
2417
2418 if (per_process_stats)
2419 show_process_stats();
2420
2421 if (per_device_and_cpu_stats)
2422 show_device_and_cpu_stats();
2423
2424 fflush(ofp);
2425}
2426
2427static void handle_sigint(__attribute__((__unused__)) int sig)
2428{
2429 done = 1;
2430}
2431
2432/*
2433 * Extract start and duration times from a string, allowing
2434 * us to specify a time interval of interest within a trace.
2435 * Format: "duration" (start is zero) or "start:duration".
2436 */
2437static int find_stopwatch_interval(char *string)
2438{
2439 double value;
2440 char *sp;
2441
2442 value = strtod(string, &sp);
2443 if (sp == string) {
2444 fprintf(stderr,"Invalid stopwatch timer: %s\n", string);
2445 return 1;
2446 }
2447 if (*sp == ':') {
2448 stopwatch_start = DOUBLE_TO_NANO_ULL(value);
2449 string = sp + 1;
2450 value = strtod(string, &sp);
2451 if (sp == string || *sp != '\0') {
2452 fprintf(stderr,"Invalid stopwatch duration time: %s\n",
2453 string);
2454 return 1;
2455 }
2456 } else if (*sp != '\0') {
2457 fprintf(stderr,"Invalid stopwatch start timer: %s\n", string);
2458 return 1;
2459 }
2460 stopwatch_end = DOUBLE_TO_NANO_ULL(value);
2461 if (stopwatch_end <= stopwatch_start) {
2462 fprintf(stderr, "Invalid stopwatch interval: %Lu -> %Lu\n",
2463 stopwatch_start, stopwatch_end);
2464 return 1;
2465 }
2466
2467 return 0;
2468}
2469
2470static int is_pipe(const char *str)
2471{
2472 struct stat st;
2473
2474 if (!strcmp(str, "-"))
2475 return 1;
2476 if (!stat(str, &st) && S_ISFIFO(st.st_mode))
2477 return 1;
2478
2479 return 0;
2480}
2481
2482#define S_OPTS "a:A:b:D:d:f:F:hi:o:Oqstw:vV"
2483static char usage_str[] = "\n\n" \
2484 "-i <file> | --input=<file>\n" \
2485 "[ -a <action field> | --act-mask=<action field> ]\n" \
2486 "[ -A <action mask> | --set-mask=<action mask> ]\n" \
2487 "[ -b <traces> | --batch=<traces> ]\n" \
2488 "[ -d <file> | --dump-binary=<file> ]\n" \
2489 "[ -D <dir> | --input-directory=<dir> ]\n" \
2490 "[ -f <format> | --format=<format> ]\n" \
2491 "[ -F <spec> | --format-spec=<spec> ]\n" \
2492 "[ -h | --hash-by-name ]\n" \
2493 "[ -o <file> | --output=<file> ]\n" \
2494 "[ -O | --no-text-output ]\n" \
2495 "[ -q | --quiet ]\n" \
2496 "[ -s | --per-program-stats ]\n" \
2497 "[ -t | --track-ios ]\n" \
2498 "[ -w <time> | --stopwatch=<time> ]\n" \
2499 "[ -v | --verbose ]\n" \
2500 "[ -V | --version ]\n\n" \
2501 "\t-b stdin read batching\n" \
2502 "\t-d Output file. If specified, binary data is written to file\n" \
2503 "\t-D Directory to prepend to input file names\n" \
2504 "\t-f Output format. Customize the output format. The format field\n" \
2505 "\t identifies can be found in the documentation\n" \
2506 "\t-F Format specification. Can be found in the documentation\n" \
2507 "\t-h Hash processes by name, not pid\n" \
2508 "\t-i Input file containing trace data, or '-' for stdin\n" \
2509 "\t-o Output file. If not given, output is stdout\n" \
2510 "\t-O Do NOT output text data\n" \
2511 "\t-q Quiet. Don't display any stats at the end of the trace\n" \
2512 "\t-s Show per-program io statistics\n" \
2513 "\t-t Track individual ios. Will tell you the time a request took\n" \
2514 "\t to get queued, to get dispatched, and to get completed\n" \
2515 "\t-w Only parse data between the given time interval in seconds.\n" \
2516 "\t If 'start' isn't given, blkparse defaults the start time to 0\n" \
2517 "\t-v More verbose for marginal errors\n" \
2518 "\t-V Print program version info\n\n";
2519
2520static void usage(char *prog)
2521{
2522 fprintf(stderr, "Usage: %s %s %s", prog, blkparse_version, usage_str);
2523}
2524
2525int main(int argc, char *argv[])
2526{
2527 int i, c, ret, mode;
2528 int act_mask_tmp = 0;
2529 char *ofp_buffer = NULL;
2530 char *bin_ofp_buffer = NULL;
2531
2532 while ((c = getopt_long(argc, argv, S_OPTS, l_opts, NULL)) != -1) {
2533 switch (c) {
2534 case 'a':
2535 i = find_mask_map(optarg);
2536 if (i < 0) {
2537 fprintf(stderr,"Invalid action mask %s\n",
2538 optarg);
2539 return 1;
2540 }
2541 act_mask_tmp |= i;
2542 break;
2543
2544 case 'A':
2545 if ((sscanf(optarg, "%x", &i) != 1) ||
2546 !valid_act_opt(i)) {
2547 fprintf(stderr,
2548 "Invalid set action mask %s/0x%x\n",
2549 optarg, i);
2550 return 1;
2551 }
2552 act_mask_tmp = i;
2553 break;
2554 case 'i':
2555 if (is_pipe(optarg) && !pipeline) {
2556 pipeline = 1;
2557 pipename = strdup(optarg);
2558 } else if (resize_devices(optarg) != 0)
2559 return 1;
2560 break;
2561 case 'D':
2562 input_dir = optarg;
2563 break;
2564 case 'o':
2565 output_name = optarg;
2566 break;
2567 case 'O':
2568 text_output = 0;
2569 break;
2570 case 'b':
2571 rb_batch = atoi(optarg);
2572 if (rb_batch <= 0)
2573 rb_batch = RB_BATCH_DEFAULT;
2574 break;
2575 case 's':
2576 per_process_stats = 1;
2577 break;
2578 case 't':
2579 track_ios = 1;
2580 break;
2581 case 'q':
2582 per_device_and_cpu_stats = 0;
2583 break;
2584 case 'w':
2585 if (find_stopwatch_interval(optarg) != 0)
2586 return 1;
2587 break;
2588 case 'f':
2589 set_all_format_specs(optarg);
2590 break;
2591 case 'F':
2592 if (add_format_spec(optarg) != 0)
2593 return 1;
2594 break;
2595 case 'h':
2596 ppi_hash_by_pid = 0;
2597 break;
2598 case 'v':
2599 verbose++;
2600 break;
2601 case 'V':
2602 printf("%s version %s\n", argv[0], blkparse_version);
2603 return 0;
2604 case 'd':
2605 dump_binary = optarg;
2606 break;
2607 default:
2608 usage(argv[0]);
2609 return 1;
2610 }
2611 }
2612
2613 while (optind < argc) {
2614 if (is_pipe(argv[optind]) && !pipeline) {
2615 pipeline = 1;
2616 pipename = strdup(argv[optind]);
2617 } else if (resize_devices(argv[optind]) != 0)
2618 return 1;
2619 optind++;
2620 }
2621
2622 if (!pipeline && !ndevices) {
2623 usage(argv[0]);
2624 return 1;
2625 }
2626
2627 if (act_mask_tmp != 0)
2628 act_mask = act_mask_tmp;
2629
2630 memset(&rb_sort_root, 0, sizeof(rb_sort_root));
2631
2632 signal(SIGINT, handle_sigint);
2633 signal(SIGHUP, handle_sigint);
2634 signal(SIGTERM, handle_sigint);
2635
2636 setlocale(LC_NUMERIC, "en_US");
2637
2638 if (text_output) {
2639 if (!output_name) {
2640 ofp = fdopen(STDOUT_FILENO, "w");
2641 mode = _IOLBF;
2642 } else {
2643 char ofname[128];
2644
2645 snprintf(ofname, sizeof(ofname) - 1, "%s", output_name);
2646 ofp = fopen(ofname, "w");
2647 mode = _IOFBF;
2648 }
2649
2650 if (!ofp) {
2651 perror("fopen");
2652 return 1;
2653 }
2654
2655 ofp_buffer = malloc(4096);
2656 if (setvbuf(ofp, ofp_buffer, mode, 4096)) {
2657 perror("setvbuf");
2658 return 1;
2659 }
2660 }
2661
2662 if (dump_binary) {
2663 dump_fp = fopen(dump_binary, "w");
2664 if (!dump_fp) {
2665 perror(dump_binary);
2666 dump_binary = NULL;
2667 return 1;
2668 }
2669 bin_ofp_buffer = malloc(128 * 1024);
2670 if (setvbuf(dump_fp, bin_ofp_buffer, _IOFBF, 128 * 1024)) {
2671 perror("setvbuf binary");
2672 return 1;
2673 }
2674 }
2675
2676 if (pipeline)
2677 ret = do_fifo();
2678 else
2679 ret = do_file();
2680
2681 if (!ret)
2682 show_stats();
2683
2684 if (ofp_buffer) {
2685 fflush(ofp);
2686 free(ofp_buffer);
2687 }
2688 if (bin_ofp_buffer) {
2689 fflush(dump_fp);
2690 free(bin_ofp_buffer);
2691 }
2692 return ret;
2693}