KVM: x86: pass struct kvm_mmu_page to gfn_to_rmap
[linux-2.6-block.git] / arch / x86 / kvm / x86.c
... / ...
CommitLineData
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22#include <linux/kvm_host.h>
23#include "irq.h"
24#include "mmu.h"
25#include "i8254.h"
26#include "tss.h"
27#include "kvm_cache_regs.h"
28#include "x86.h"
29#include "cpuid.h"
30#include "assigned-dev.h"
31
32#include <linux/clocksource.h>
33#include <linux/interrupt.h>
34#include <linux/kvm.h>
35#include <linux/fs.h>
36#include <linux/vmalloc.h>
37#include <linux/module.h>
38#include <linux/mman.h>
39#include <linux/highmem.h>
40#include <linux/iommu.h>
41#include <linux/intel-iommu.h>
42#include <linux/cpufreq.h>
43#include <linux/user-return-notifier.h>
44#include <linux/srcu.h>
45#include <linux/slab.h>
46#include <linux/perf_event.h>
47#include <linux/uaccess.h>
48#include <linux/hash.h>
49#include <linux/pci.h>
50#include <linux/timekeeper_internal.h>
51#include <linux/pvclock_gtod.h>
52#include <trace/events/kvm.h>
53
54#define CREATE_TRACE_POINTS
55#include "trace.h"
56
57#include <asm/debugreg.h>
58#include <asm/msr.h>
59#include <asm/desc.h>
60#include <asm/mtrr.h>
61#include <asm/mce.h>
62#include <asm/i387.h>
63#include <asm/fpu-internal.h> /* Ugh! */
64#include <asm/xcr.h>
65#include <asm/pvclock.h>
66#include <asm/div64.h>
67
68#define MAX_IO_MSRS 256
69#define KVM_MAX_MCE_BANKS 32
70#define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
71
72#define emul_to_vcpu(ctxt) \
73 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
74
75/* EFER defaults:
76 * - enable syscall per default because its emulated by KVM
77 * - enable LME and LMA per default on 64 bit KVM
78 */
79#ifdef CONFIG_X86_64
80static
81u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
82#else
83static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
84#endif
85
86#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
87#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
88
89static void update_cr8_intercept(struct kvm_vcpu *vcpu);
90static void process_nmi(struct kvm_vcpu *vcpu);
91static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
92
93struct kvm_x86_ops *kvm_x86_ops;
94EXPORT_SYMBOL_GPL(kvm_x86_ops);
95
96static bool ignore_msrs = 0;
97module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
98
99unsigned int min_timer_period_us = 500;
100module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
101
102static bool __read_mostly kvmclock_periodic_sync = true;
103module_param(kvmclock_periodic_sync, bool, S_IRUGO);
104
105bool kvm_has_tsc_control;
106EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
107u32 kvm_max_guest_tsc_khz;
108EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
109
110/* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
111static u32 tsc_tolerance_ppm = 250;
112module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
113
114/* lapic timer advance (tscdeadline mode only) in nanoseconds */
115unsigned int lapic_timer_advance_ns = 0;
116module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
117
118static bool backwards_tsc_observed = false;
119
120#define KVM_NR_SHARED_MSRS 16
121
122struct kvm_shared_msrs_global {
123 int nr;
124 u32 msrs[KVM_NR_SHARED_MSRS];
125};
126
127struct kvm_shared_msrs {
128 struct user_return_notifier urn;
129 bool registered;
130 struct kvm_shared_msr_values {
131 u64 host;
132 u64 curr;
133 } values[KVM_NR_SHARED_MSRS];
134};
135
136static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
137static struct kvm_shared_msrs __percpu *shared_msrs;
138
139struct kvm_stats_debugfs_item debugfs_entries[] = {
140 { "pf_fixed", VCPU_STAT(pf_fixed) },
141 { "pf_guest", VCPU_STAT(pf_guest) },
142 { "tlb_flush", VCPU_STAT(tlb_flush) },
143 { "invlpg", VCPU_STAT(invlpg) },
144 { "exits", VCPU_STAT(exits) },
145 { "io_exits", VCPU_STAT(io_exits) },
146 { "mmio_exits", VCPU_STAT(mmio_exits) },
147 { "signal_exits", VCPU_STAT(signal_exits) },
148 { "irq_window", VCPU_STAT(irq_window_exits) },
149 { "nmi_window", VCPU_STAT(nmi_window_exits) },
150 { "halt_exits", VCPU_STAT(halt_exits) },
151 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
152 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
153 { "hypercalls", VCPU_STAT(hypercalls) },
154 { "request_irq", VCPU_STAT(request_irq_exits) },
155 { "irq_exits", VCPU_STAT(irq_exits) },
156 { "host_state_reload", VCPU_STAT(host_state_reload) },
157 { "efer_reload", VCPU_STAT(efer_reload) },
158 { "fpu_reload", VCPU_STAT(fpu_reload) },
159 { "insn_emulation", VCPU_STAT(insn_emulation) },
160 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
161 { "irq_injections", VCPU_STAT(irq_injections) },
162 { "nmi_injections", VCPU_STAT(nmi_injections) },
163 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
164 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
165 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
166 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
167 { "mmu_flooded", VM_STAT(mmu_flooded) },
168 { "mmu_recycled", VM_STAT(mmu_recycled) },
169 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
170 { "mmu_unsync", VM_STAT(mmu_unsync) },
171 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
172 { "largepages", VM_STAT(lpages) },
173 { NULL }
174};
175
176u64 __read_mostly host_xcr0;
177
178static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
179
180static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
181{
182 int i;
183 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
184 vcpu->arch.apf.gfns[i] = ~0;
185}
186
187static void kvm_on_user_return(struct user_return_notifier *urn)
188{
189 unsigned slot;
190 struct kvm_shared_msrs *locals
191 = container_of(urn, struct kvm_shared_msrs, urn);
192 struct kvm_shared_msr_values *values;
193
194 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
195 values = &locals->values[slot];
196 if (values->host != values->curr) {
197 wrmsrl(shared_msrs_global.msrs[slot], values->host);
198 values->curr = values->host;
199 }
200 }
201 locals->registered = false;
202 user_return_notifier_unregister(urn);
203}
204
205static void shared_msr_update(unsigned slot, u32 msr)
206{
207 u64 value;
208 unsigned int cpu = smp_processor_id();
209 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
210
211 /* only read, and nobody should modify it at this time,
212 * so don't need lock */
213 if (slot >= shared_msrs_global.nr) {
214 printk(KERN_ERR "kvm: invalid MSR slot!");
215 return;
216 }
217 rdmsrl_safe(msr, &value);
218 smsr->values[slot].host = value;
219 smsr->values[slot].curr = value;
220}
221
222void kvm_define_shared_msr(unsigned slot, u32 msr)
223{
224 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
225 if (slot >= shared_msrs_global.nr)
226 shared_msrs_global.nr = slot + 1;
227 shared_msrs_global.msrs[slot] = msr;
228 /* we need ensured the shared_msr_global have been updated */
229 smp_wmb();
230}
231EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
232
233static void kvm_shared_msr_cpu_online(void)
234{
235 unsigned i;
236
237 for (i = 0; i < shared_msrs_global.nr; ++i)
238 shared_msr_update(i, shared_msrs_global.msrs[i]);
239}
240
241int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
242{
243 unsigned int cpu = smp_processor_id();
244 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
245 int err;
246
247 if (((value ^ smsr->values[slot].curr) & mask) == 0)
248 return 0;
249 smsr->values[slot].curr = value;
250 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
251 if (err)
252 return 1;
253
254 if (!smsr->registered) {
255 smsr->urn.on_user_return = kvm_on_user_return;
256 user_return_notifier_register(&smsr->urn);
257 smsr->registered = true;
258 }
259 return 0;
260}
261EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
262
263static void drop_user_return_notifiers(void)
264{
265 unsigned int cpu = smp_processor_id();
266 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
267
268 if (smsr->registered)
269 kvm_on_user_return(&smsr->urn);
270}
271
272u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
273{
274 return vcpu->arch.apic_base;
275}
276EXPORT_SYMBOL_GPL(kvm_get_apic_base);
277
278int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
279{
280 u64 old_state = vcpu->arch.apic_base &
281 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
282 u64 new_state = msr_info->data &
283 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
284 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
285 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
286
287 if (!msr_info->host_initiated &&
288 ((msr_info->data & reserved_bits) != 0 ||
289 new_state == X2APIC_ENABLE ||
290 (new_state == MSR_IA32_APICBASE_ENABLE &&
291 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
292 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
293 old_state == 0)))
294 return 1;
295
296 kvm_lapic_set_base(vcpu, msr_info->data);
297 return 0;
298}
299EXPORT_SYMBOL_GPL(kvm_set_apic_base);
300
301asmlinkage __visible void kvm_spurious_fault(void)
302{
303 /* Fault while not rebooting. We want the trace. */
304 BUG();
305}
306EXPORT_SYMBOL_GPL(kvm_spurious_fault);
307
308#define EXCPT_BENIGN 0
309#define EXCPT_CONTRIBUTORY 1
310#define EXCPT_PF 2
311
312static int exception_class(int vector)
313{
314 switch (vector) {
315 case PF_VECTOR:
316 return EXCPT_PF;
317 case DE_VECTOR:
318 case TS_VECTOR:
319 case NP_VECTOR:
320 case SS_VECTOR:
321 case GP_VECTOR:
322 return EXCPT_CONTRIBUTORY;
323 default:
324 break;
325 }
326 return EXCPT_BENIGN;
327}
328
329#define EXCPT_FAULT 0
330#define EXCPT_TRAP 1
331#define EXCPT_ABORT 2
332#define EXCPT_INTERRUPT 3
333
334static int exception_type(int vector)
335{
336 unsigned int mask;
337
338 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
339 return EXCPT_INTERRUPT;
340
341 mask = 1 << vector;
342
343 /* #DB is trap, as instruction watchpoints are handled elsewhere */
344 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
345 return EXCPT_TRAP;
346
347 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
348 return EXCPT_ABORT;
349
350 /* Reserved exceptions will result in fault */
351 return EXCPT_FAULT;
352}
353
354static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
355 unsigned nr, bool has_error, u32 error_code,
356 bool reinject)
357{
358 u32 prev_nr;
359 int class1, class2;
360
361 kvm_make_request(KVM_REQ_EVENT, vcpu);
362
363 if (!vcpu->arch.exception.pending) {
364 queue:
365 if (has_error && !is_protmode(vcpu))
366 has_error = false;
367 vcpu->arch.exception.pending = true;
368 vcpu->arch.exception.has_error_code = has_error;
369 vcpu->arch.exception.nr = nr;
370 vcpu->arch.exception.error_code = error_code;
371 vcpu->arch.exception.reinject = reinject;
372 return;
373 }
374
375 /* to check exception */
376 prev_nr = vcpu->arch.exception.nr;
377 if (prev_nr == DF_VECTOR) {
378 /* triple fault -> shutdown */
379 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
380 return;
381 }
382 class1 = exception_class(prev_nr);
383 class2 = exception_class(nr);
384 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
385 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
386 /* generate double fault per SDM Table 5-5 */
387 vcpu->arch.exception.pending = true;
388 vcpu->arch.exception.has_error_code = true;
389 vcpu->arch.exception.nr = DF_VECTOR;
390 vcpu->arch.exception.error_code = 0;
391 } else
392 /* replace previous exception with a new one in a hope
393 that instruction re-execution will regenerate lost
394 exception */
395 goto queue;
396}
397
398void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
399{
400 kvm_multiple_exception(vcpu, nr, false, 0, false);
401}
402EXPORT_SYMBOL_GPL(kvm_queue_exception);
403
404void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
405{
406 kvm_multiple_exception(vcpu, nr, false, 0, true);
407}
408EXPORT_SYMBOL_GPL(kvm_requeue_exception);
409
410void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
411{
412 if (err)
413 kvm_inject_gp(vcpu, 0);
414 else
415 kvm_x86_ops->skip_emulated_instruction(vcpu);
416}
417EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
418
419void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
420{
421 ++vcpu->stat.pf_guest;
422 vcpu->arch.cr2 = fault->address;
423 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
424}
425EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
426
427static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
428{
429 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
430 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
431 else
432 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
433
434 return fault->nested_page_fault;
435}
436
437void kvm_inject_nmi(struct kvm_vcpu *vcpu)
438{
439 atomic_inc(&vcpu->arch.nmi_queued);
440 kvm_make_request(KVM_REQ_NMI, vcpu);
441}
442EXPORT_SYMBOL_GPL(kvm_inject_nmi);
443
444void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
445{
446 kvm_multiple_exception(vcpu, nr, true, error_code, false);
447}
448EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
449
450void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
451{
452 kvm_multiple_exception(vcpu, nr, true, error_code, true);
453}
454EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
455
456/*
457 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
458 * a #GP and return false.
459 */
460bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
461{
462 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
463 return true;
464 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
465 return false;
466}
467EXPORT_SYMBOL_GPL(kvm_require_cpl);
468
469bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
470{
471 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
472 return true;
473
474 kvm_queue_exception(vcpu, UD_VECTOR);
475 return false;
476}
477EXPORT_SYMBOL_GPL(kvm_require_dr);
478
479/*
480 * This function will be used to read from the physical memory of the currently
481 * running guest. The difference to kvm_read_guest_page is that this function
482 * can read from guest physical or from the guest's guest physical memory.
483 */
484int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
485 gfn_t ngfn, void *data, int offset, int len,
486 u32 access)
487{
488 struct x86_exception exception;
489 gfn_t real_gfn;
490 gpa_t ngpa;
491
492 ngpa = gfn_to_gpa(ngfn);
493 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
494 if (real_gfn == UNMAPPED_GVA)
495 return -EFAULT;
496
497 real_gfn = gpa_to_gfn(real_gfn);
498
499 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
500}
501EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
502
503static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
504 void *data, int offset, int len, u32 access)
505{
506 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
507 data, offset, len, access);
508}
509
510/*
511 * Load the pae pdptrs. Return true is they are all valid.
512 */
513int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
514{
515 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
516 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
517 int i;
518 int ret;
519 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
520
521 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
522 offset * sizeof(u64), sizeof(pdpte),
523 PFERR_USER_MASK|PFERR_WRITE_MASK);
524 if (ret < 0) {
525 ret = 0;
526 goto out;
527 }
528 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
529 if (is_present_gpte(pdpte[i]) &&
530 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
531 ret = 0;
532 goto out;
533 }
534 }
535 ret = 1;
536
537 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
538 __set_bit(VCPU_EXREG_PDPTR,
539 (unsigned long *)&vcpu->arch.regs_avail);
540 __set_bit(VCPU_EXREG_PDPTR,
541 (unsigned long *)&vcpu->arch.regs_dirty);
542out:
543
544 return ret;
545}
546EXPORT_SYMBOL_GPL(load_pdptrs);
547
548static bool pdptrs_changed(struct kvm_vcpu *vcpu)
549{
550 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
551 bool changed = true;
552 int offset;
553 gfn_t gfn;
554 int r;
555
556 if (is_long_mode(vcpu) || !is_pae(vcpu))
557 return false;
558
559 if (!test_bit(VCPU_EXREG_PDPTR,
560 (unsigned long *)&vcpu->arch.regs_avail))
561 return true;
562
563 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
564 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
565 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
566 PFERR_USER_MASK | PFERR_WRITE_MASK);
567 if (r < 0)
568 goto out;
569 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
570out:
571
572 return changed;
573}
574
575int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
576{
577 unsigned long old_cr0 = kvm_read_cr0(vcpu);
578 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
579
580 cr0 |= X86_CR0_ET;
581
582#ifdef CONFIG_X86_64
583 if (cr0 & 0xffffffff00000000UL)
584 return 1;
585#endif
586
587 cr0 &= ~CR0_RESERVED_BITS;
588
589 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
590 return 1;
591
592 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
593 return 1;
594
595 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
596#ifdef CONFIG_X86_64
597 if ((vcpu->arch.efer & EFER_LME)) {
598 int cs_db, cs_l;
599
600 if (!is_pae(vcpu))
601 return 1;
602 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
603 if (cs_l)
604 return 1;
605 } else
606#endif
607 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
608 kvm_read_cr3(vcpu)))
609 return 1;
610 }
611
612 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
613 return 1;
614
615 kvm_x86_ops->set_cr0(vcpu, cr0);
616
617 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
618 kvm_clear_async_pf_completion_queue(vcpu);
619 kvm_async_pf_hash_reset(vcpu);
620 }
621
622 if ((cr0 ^ old_cr0) & update_bits)
623 kvm_mmu_reset_context(vcpu);
624 return 0;
625}
626EXPORT_SYMBOL_GPL(kvm_set_cr0);
627
628void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
629{
630 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
631}
632EXPORT_SYMBOL_GPL(kvm_lmsw);
633
634static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
635{
636 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
637 !vcpu->guest_xcr0_loaded) {
638 /* kvm_set_xcr() also depends on this */
639 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
640 vcpu->guest_xcr0_loaded = 1;
641 }
642}
643
644static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
645{
646 if (vcpu->guest_xcr0_loaded) {
647 if (vcpu->arch.xcr0 != host_xcr0)
648 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
649 vcpu->guest_xcr0_loaded = 0;
650 }
651}
652
653static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
654{
655 u64 xcr0 = xcr;
656 u64 old_xcr0 = vcpu->arch.xcr0;
657 u64 valid_bits;
658
659 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
660 if (index != XCR_XFEATURE_ENABLED_MASK)
661 return 1;
662 if (!(xcr0 & XSTATE_FP))
663 return 1;
664 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
665 return 1;
666
667 /*
668 * Do not allow the guest to set bits that we do not support
669 * saving. However, xcr0 bit 0 is always set, even if the
670 * emulated CPU does not support XSAVE (see fx_init).
671 */
672 valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
673 if (xcr0 & ~valid_bits)
674 return 1;
675
676 if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
677 return 1;
678
679 if (xcr0 & XSTATE_AVX512) {
680 if (!(xcr0 & XSTATE_YMM))
681 return 1;
682 if ((xcr0 & XSTATE_AVX512) != XSTATE_AVX512)
683 return 1;
684 }
685 kvm_put_guest_xcr0(vcpu);
686 vcpu->arch.xcr0 = xcr0;
687
688 if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
689 kvm_update_cpuid(vcpu);
690 return 0;
691}
692
693int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
694{
695 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
696 __kvm_set_xcr(vcpu, index, xcr)) {
697 kvm_inject_gp(vcpu, 0);
698 return 1;
699 }
700 return 0;
701}
702EXPORT_SYMBOL_GPL(kvm_set_xcr);
703
704int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
705{
706 unsigned long old_cr4 = kvm_read_cr4(vcpu);
707 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
708 X86_CR4_SMEP | X86_CR4_SMAP;
709
710 if (cr4 & CR4_RESERVED_BITS)
711 return 1;
712
713 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
714 return 1;
715
716 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
717 return 1;
718
719 if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
720 return 1;
721
722 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
723 return 1;
724
725 if (is_long_mode(vcpu)) {
726 if (!(cr4 & X86_CR4_PAE))
727 return 1;
728 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
729 && ((cr4 ^ old_cr4) & pdptr_bits)
730 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
731 kvm_read_cr3(vcpu)))
732 return 1;
733
734 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
735 if (!guest_cpuid_has_pcid(vcpu))
736 return 1;
737
738 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
739 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
740 return 1;
741 }
742
743 if (kvm_x86_ops->set_cr4(vcpu, cr4))
744 return 1;
745
746 if (((cr4 ^ old_cr4) & pdptr_bits) ||
747 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
748 kvm_mmu_reset_context(vcpu);
749
750 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
751 kvm_update_cpuid(vcpu);
752
753 return 0;
754}
755EXPORT_SYMBOL_GPL(kvm_set_cr4);
756
757int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
758{
759#ifdef CONFIG_X86_64
760 cr3 &= ~CR3_PCID_INVD;
761#endif
762
763 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
764 kvm_mmu_sync_roots(vcpu);
765 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
766 return 0;
767 }
768
769 if (is_long_mode(vcpu)) {
770 if (cr3 & CR3_L_MODE_RESERVED_BITS)
771 return 1;
772 } else if (is_pae(vcpu) && is_paging(vcpu) &&
773 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
774 return 1;
775
776 vcpu->arch.cr3 = cr3;
777 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
778 kvm_mmu_new_cr3(vcpu);
779 return 0;
780}
781EXPORT_SYMBOL_GPL(kvm_set_cr3);
782
783int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
784{
785 if (cr8 & CR8_RESERVED_BITS)
786 return 1;
787 if (irqchip_in_kernel(vcpu->kvm))
788 kvm_lapic_set_tpr(vcpu, cr8);
789 else
790 vcpu->arch.cr8 = cr8;
791 return 0;
792}
793EXPORT_SYMBOL_GPL(kvm_set_cr8);
794
795unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
796{
797 if (irqchip_in_kernel(vcpu->kvm))
798 return kvm_lapic_get_cr8(vcpu);
799 else
800 return vcpu->arch.cr8;
801}
802EXPORT_SYMBOL_GPL(kvm_get_cr8);
803
804static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
805{
806 int i;
807
808 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
809 for (i = 0; i < KVM_NR_DB_REGS; i++)
810 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
811 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
812 }
813}
814
815static void kvm_update_dr6(struct kvm_vcpu *vcpu)
816{
817 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
818 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
819}
820
821static void kvm_update_dr7(struct kvm_vcpu *vcpu)
822{
823 unsigned long dr7;
824
825 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
826 dr7 = vcpu->arch.guest_debug_dr7;
827 else
828 dr7 = vcpu->arch.dr7;
829 kvm_x86_ops->set_dr7(vcpu, dr7);
830 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
831 if (dr7 & DR7_BP_EN_MASK)
832 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
833}
834
835static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
836{
837 u64 fixed = DR6_FIXED_1;
838
839 if (!guest_cpuid_has_rtm(vcpu))
840 fixed |= DR6_RTM;
841 return fixed;
842}
843
844static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
845{
846 switch (dr) {
847 case 0 ... 3:
848 vcpu->arch.db[dr] = val;
849 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
850 vcpu->arch.eff_db[dr] = val;
851 break;
852 case 4:
853 /* fall through */
854 case 6:
855 if (val & 0xffffffff00000000ULL)
856 return -1; /* #GP */
857 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
858 kvm_update_dr6(vcpu);
859 break;
860 case 5:
861 /* fall through */
862 default: /* 7 */
863 if (val & 0xffffffff00000000ULL)
864 return -1; /* #GP */
865 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
866 kvm_update_dr7(vcpu);
867 break;
868 }
869
870 return 0;
871}
872
873int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
874{
875 if (__kvm_set_dr(vcpu, dr, val)) {
876 kvm_inject_gp(vcpu, 0);
877 return 1;
878 }
879 return 0;
880}
881EXPORT_SYMBOL_GPL(kvm_set_dr);
882
883int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
884{
885 switch (dr) {
886 case 0 ... 3:
887 *val = vcpu->arch.db[dr];
888 break;
889 case 4:
890 /* fall through */
891 case 6:
892 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
893 *val = vcpu->arch.dr6;
894 else
895 *val = kvm_x86_ops->get_dr6(vcpu);
896 break;
897 case 5:
898 /* fall through */
899 default: /* 7 */
900 *val = vcpu->arch.dr7;
901 break;
902 }
903 return 0;
904}
905EXPORT_SYMBOL_GPL(kvm_get_dr);
906
907bool kvm_rdpmc(struct kvm_vcpu *vcpu)
908{
909 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
910 u64 data;
911 int err;
912
913 err = kvm_pmu_read_pmc(vcpu, ecx, &data);
914 if (err)
915 return err;
916 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
917 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
918 return err;
919}
920EXPORT_SYMBOL_GPL(kvm_rdpmc);
921
922/*
923 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
924 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
925 *
926 * This list is modified at module load time to reflect the
927 * capabilities of the host cpu. This capabilities test skips MSRs that are
928 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
929 * may depend on host virtualization features rather than host cpu features.
930 */
931
932static u32 msrs_to_save[] = {
933 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
934 MSR_STAR,
935#ifdef CONFIG_X86_64
936 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
937#endif
938 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
939 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
940};
941
942static unsigned num_msrs_to_save;
943
944static u32 emulated_msrs[] = {
945 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
946 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
947 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
948 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
949 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
950 MSR_KVM_PV_EOI_EN,
951
952 MSR_IA32_TSC_ADJUST,
953 MSR_IA32_TSCDEADLINE,
954 MSR_IA32_MISC_ENABLE,
955 MSR_IA32_MCG_STATUS,
956 MSR_IA32_MCG_CTL,
957 MSR_IA32_SMBASE,
958};
959
960static unsigned num_emulated_msrs;
961
962bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
963{
964 if (efer & efer_reserved_bits)
965 return false;
966
967 if (efer & EFER_FFXSR) {
968 struct kvm_cpuid_entry2 *feat;
969
970 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
971 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
972 return false;
973 }
974
975 if (efer & EFER_SVME) {
976 struct kvm_cpuid_entry2 *feat;
977
978 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
979 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
980 return false;
981 }
982
983 return true;
984}
985EXPORT_SYMBOL_GPL(kvm_valid_efer);
986
987static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
988{
989 u64 old_efer = vcpu->arch.efer;
990
991 if (!kvm_valid_efer(vcpu, efer))
992 return 1;
993
994 if (is_paging(vcpu)
995 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
996 return 1;
997
998 efer &= ~EFER_LMA;
999 efer |= vcpu->arch.efer & EFER_LMA;
1000
1001 kvm_x86_ops->set_efer(vcpu, efer);
1002
1003 /* Update reserved bits */
1004 if ((efer ^ old_efer) & EFER_NX)
1005 kvm_mmu_reset_context(vcpu);
1006
1007 return 0;
1008}
1009
1010void kvm_enable_efer_bits(u64 mask)
1011{
1012 efer_reserved_bits &= ~mask;
1013}
1014EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1015
1016/*
1017 * Writes msr value into into the appropriate "register".
1018 * Returns 0 on success, non-0 otherwise.
1019 * Assumes vcpu_load() was already called.
1020 */
1021int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1022{
1023 switch (msr->index) {
1024 case MSR_FS_BASE:
1025 case MSR_GS_BASE:
1026 case MSR_KERNEL_GS_BASE:
1027 case MSR_CSTAR:
1028 case MSR_LSTAR:
1029 if (is_noncanonical_address(msr->data))
1030 return 1;
1031 break;
1032 case MSR_IA32_SYSENTER_EIP:
1033 case MSR_IA32_SYSENTER_ESP:
1034 /*
1035 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1036 * non-canonical address is written on Intel but not on
1037 * AMD (which ignores the top 32-bits, because it does
1038 * not implement 64-bit SYSENTER).
1039 *
1040 * 64-bit code should hence be able to write a non-canonical
1041 * value on AMD. Making the address canonical ensures that
1042 * vmentry does not fail on Intel after writing a non-canonical
1043 * value, and that something deterministic happens if the guest
1044 * invokes 64-bit SYSENTER.
1045 */
1046 msr->data = get_canonical(msr->data);
1047 }
1048 return kvm_x86_ops->set_msr(vcpu, msr);
1049}
1050EXPORT_SYMBOL_GPL(kvm_set_msr);
1051
1052/*
1053 * Adapt set_msr() to msr_io()'s calling convention
1054 */
1055static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1056{
1057 struct msr_data msr;
1058 int r;
1059
1060 msr.index = index;
1061 msr.host_initiated = true;
1062 r = kvm_get_msr(vcpu, &msr);
1063 if (r)
1064 return r;
1065
1066 *data = msr.data;
1067 return 0;
1068}
1069
1070static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1071{
1072 struct msr_data msr;
1073
1074 msr.data = *data;
1075 msr.index = index;
1076 msr.host_initiated = true;
1077 return kvm_set_msr(vcpu, &msr);
1078}
1079
1080#ifdef CONFIG_X86_64
1081struct pvclock_gtod_data {
1082 seqcount_t seq;
1083
1084 struct { /* extract of a clocksource struct */
1085 int vclock_mode;
1086 cycle_t cycle_last;
1087 cycle_t mask;
1088 u32 mult;
1089 u32 shift;
1090 } clock;
1091
1092 u64 boot_ns;
1093 u64 nsec_base;
1094};
1095
1096static struct pvclock_gtod_data pvclock_gtod_data;
1097
1098static void update_pvclock_gtod(struct timekeeper *tk)
1099{
1100 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1101 u64 boot_ns;
1102
1103 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1104
1105 write_seqcount_begin(&vdata->seq);
1106
1107 /* copy pvclock gtod data */
1108 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1109 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1110 vdata->clock.mask = tk->tkr_mono.mask;
1111 vdata->clock.mult = tk->tkr_mono.mult;
1112 vdata->clock.shift = tk->tkr_mono.shift;
1113
1114 vdata->boot_ns = boot_ns;
1115 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1116
1117 write_seqcount_end(&vdata->seq);
1118}
1119#endif
1120
1121void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1122{
1123 /*
1124 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1125 * vcpu_enter_guest. This function is only called from
1126 * the physical CPU that is running vcpu.
1127 */
1128 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1129}
1130
1131static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1132{
1133 int version;
1134 int r;
1135 struct pvclock_wall_clock wc;
1136 struct timespec boot;
1137
1138 if (!wall_clock)
1139 return;
1140
1141 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1142 if (r)
1143 return;
1144
1145 if (version & 1)
1146 ++version; /* first time write, random junk */
1147
1148 ++version;
1149
1150 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1151
1152 /*
1153 * The guest calculates current wall clock time by adding
1154 * system time (updated by kvm_guest_time_update below) to the
1155 * wall clock specified here. guest system time equals host
1156 * system time for us, thus we must fill in host boot time here.
1157 */
1158 getboottime(&boot);
1159
1160 if (kvm->arch.kvmclock_offset) {
1161 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1162 boot = timespec_sub(boot, ts);
1163 }
1164 wc.sec = boot.tv_sec;
1165 wc.nsec = boot.tv_nsec;
1166 wc.version = version;
1167
1168 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1169
1170 version++;
1171 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1172}
1173
1174static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1175{
1176 uint32_t quotient, remainder;
1177
1178 /* Don't try to replace with do_div(), this one calculates
1179 * "(dividend << 32) / divisor" */
1180 __asm__ ( "divl %4"
1181 : "=a" (quotient), "=d" (remainder)
1182 : "0" (0), "1" (dividend), "r" (divisor) );
1183 return quotient;
1184}
1185
1186static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1187 s8 *pshift, u32 *pmultiplier)
1188{
1189 uint64_t scaled64;
1190 int32_t shift = 0;
1191 uint64_t tps64;
1192 uint32_t tps32;
1193
1194 tps64 = base_khz * 1000LL;
1195 scaled64 = scaled_khz * 1000LL;
1196 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1197 tps64 >>= 1;
1198 shift--;
1199 }
1200
1201 tps32 = (uint32_t)tps64;
1202 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1203 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1204 scaled64 >>= 1;
1205 else
1206 tps32 <<= 1;
1207 shift++;
1208 }
1209
1210 *pshift = shift;
1211 *pmultiplier = div_frac(scaled64, tps32);
1212
1213 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1214 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1215}
1216
1217static inline u64 get_kernel_ns(void)
1218{
1219 return ktime_get_boot_ns();
1220}
1221
1222#ifdef CONFIG_X86_64
1223static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1224#endif
1225
1226static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1227static unsigned long max_tsc_khz;
1228
1229static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1230{
1231 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1232 vcpu->arch.virtual_tsc_shift);
1233}
1234
1235static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1236{
1237 u64 v = (u64)khz * (1000000 + ppm);
1238 do_div(v, 1000000);
1239 return v;
1240}
1241
1242static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1243{
1244 u32 thresh_lo, thresh_hi;
1245 int use_scaling = 0;
1246
1247 /* tsc_khz can be zero if TSC calibration fails */
1248 if (this_tsc_khz == 0)
1249 return;
1250
1251 /* Compute a scale to convert nanoseconds in TSC cycles */
1252 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1253 &vcpu->arch.virtual_tsc_shift,
1254 &vcpu->arch.virtual_tsc_mult);
1255 vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1256
1257 /*
1258 * Compute the variation in TSC rate which is acceptable
1259 * within the range of tolerance and decide if the
1260 * rate being applied is within that bounds of the hardware
1261 * rate. If so, no scaling or compensation need be done.
1262 */
1263 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1264 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1265 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1266 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1267 use_scaling = 1;
1268 }
1269 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1270}
1271
1272static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1273{
1274 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1275 vcpu->arch.virtual_tsc_mult,
1276 vcpu->arch.virtual_tsc_shift);
1277 tsc += vcpu->arch.this_tsc_write;
1278 return tsc;
1279}
1280
1281static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1282{
1283#ifdef CONFIG_X86_64
1284 bool vcpus_matched;
1285 struct kvm_arch *ka = &vcpu->kvm->arch;
1286 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1287
1288 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1289 atomic_read(&vcpu->kvm->online_vcpus));
1290
1291 /*
1292 * Once the masterclock is enabled, always perform request in
1293 * order to update it.
1294 *
1295 * In order to enable masterclock, the host clocksource must be TSC
1296 * and the vcpus need to have matched TSCs. When that happens,
1297 * perform request to enable masterclock.
1298 */
1299 if (ka->use_master_clock ||
1300 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1301 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1302
1303 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1304 atomic_read(&vcpu->kvm->online_vcpus),
1305 ka->use_master_clock, gtod->clock.vclock_mode);
1306#endif
1307}
1308
1309static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1310{
1311 u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1312 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1313}
1314
1315void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1316{
1317 struct kvm *kvm = vcpu->kvm;
1318 u64 offset, ns, elapsed;
1319 unsigned long flags;
1320 s64 usdiff;
1321 bool matched;
1322 bool already_matched;
1323 u64 data = msr->data;
1324
1325 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1326 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1327 ns = get_kernel_ns();
1328 elapsed = ns - kvm->arch.last_tsc_nsec;
1329
1330 if (vcpu->arch.virtual_tsc_khz) {
1331 int faulted = 0;
1332
1333 /* n.b - signed multiplication and division required */
1334 usdiff = data - kvm->arch.last_tsc_write;
1335#ifdef CONFIG_X86_64
1336 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1337#else
1338 /* do_div() only does unsigned */
1339 asm("1: idivl %[divisor]\n"
1340 "2: xor %%edx, %%edx\n"
1341 " movl $0, %[faulted]\n"
1342 "3:\n"
1343 ".section .fixup,\"ax\"\n"
1344 "4: movl $1, %[faulted]\n"
1345 " jmp 3b\n"
1346 ".previous\n"
1347
1348 _ASM_EXTABLE(1b, 4b)
1349
1350 : "=A"(usdiff), [faulted] "=r" (faulted)
1351 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1352
1353#endif
1354 do_div(elapsed, 1000);
1355 usdiff -= elapsed;
1356 if (usdiff < 0)
1357 usdiff = -usdiff;
1358
1359 /* idivl overflow => difference is larger than USEC_PER_SEC */
1360 if (faulted)
1361 usdiff = USEC_PER_SEC;
1362 } else
1363 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1364
1365 /*
1366 * Special case: TSC write with a small delta (1 second) of virtual
1367 * cycle time against real time is interpreted as an attempt to
1368 * synchronize the CPU.
1369 *
1370 * For a reliable TSC, we can match TSC offsets, and for an unstable
1371 * TSC, we add elapsed time in this computation. We could let the
1372 * compensation code attempt to catch up if we fall behind, but
1373 * it's better to try to match offsets from the beginning.
1374 */
1375 if (usdiff < USEC_PER_SEC &&
1376 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1377 if (!check_tsc_unstable()) {
1378 offset = kvm->arch.cur_tsc_offset;
1379 pr_debug("kvm: matched tsc offset for %llu\n", data);
1380 } else {
1381 u64 delta = nsec_to_cycles(vcpu, elapsed);
1382 data += delta;
1383 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1384 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1385 }
1386 matched = true;
1387 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1388 } else {
1389 /*
1390 * We split periods of matched TSC writes into generations.
1391 * For each generation, we track the original measured
1392 * nanosecond time, offset, and write, so if TSCs are in
1393 * sync, we can match exact offset, and if not, we can match
1394 * exact software computation in compute_guest_tsc()
1395 *
1396 * These values are tracked in kvm->arch.cur_xxx variables.
1397 */
1398 kvm->arch.cur_tsc_generation++;
1399 kvm->arch.cur_tsc_nsec = ns;
1400 kvm->arch.cur_tsc_write = data;
1401 kvm->arch.cur_tsc_offset = offset;
1402 matched = false;
1403 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1404 kvm->arch.cur_tsc_generation, data);
1405 }
1406
1407 /*
1408 * We also track th most recent recorded KHZ, write and time to
1409 * allow the matching interval to be extended at each write.
1410 */
1411 kvm->arch.last_tsc_nsec = ns;
1412 kvm->arch.last_tsc_write = data;
1413 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1414
1415 vcpu->arch.last_guest_tsc = data;
1416
1417 /* Keep track of which generation this VCPU has synchronized to */
1418 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1419 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1420 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1421
1422 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1423 update_ia32_tsc_adjust_msr(vcpu, offset);
1424 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1425 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1426
1427 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1428 if (!matched) {
1429 kvm->arch.nr_vcpus_matched_tsc = 0;
1430 } else if (!already_matched) {
1431 kvm->arch.nr_vcpus_matched_tsc++;
1432 }
1433
1434 kvm_track_tsc_matching(vcpu);
1435 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1436}
1437
1438EXPORT_SYMBOL_GPL(kvm_write_tsc);
1439
1440#ifdef CONFIG_X86_64
1441
1442static cycle_t read_tsc(void)
1443{
1444 cycle_t ret;
1445 u64 last;
1446
1447 /*
1448 * Empirically, a fence (of type that depends on the CPU)
1449 * before rdtsc is enough to ensure that rdtsc is ordered
1450 * with respect to loads. The various CPU manuals are unclear
1451 * as to whether rdtsc can be reordered with later loads,
1452 * but no one has ever seen it happen.
1453 */
1454 rdtsc_barrier();
1455 ret = (cycle_t)vget_cycles();
1456
1457 last = pvclock_gtod_data.clock.cycle_last;
1458
1459 if (likely(ret >= last))
1460 return ret;
1461
1462 /*
1463 * GCC likes to generate cmov here, but this branch is extremely
1464 * predictable (it's just a funciton of time and the likely is
1465 * very likely) and there's a data dependence, so force GCC
1466 * to generate a branch instead. I don't barrier() because
1467 * we don't actually need a barrier, and if this function
1468 * ever gets inlined it will generate worse code.
1469 */
1470 asm volatile ("");
1471 return last;
1472}
1473
1474static inline u64 vgettsc(cycle_t *cycle_now)
1475{
1476 long v;
1477 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1478
1479 *cycle_now = read_tsc();
1480
1481 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1482 return v * gtod->clock.mult;
1483}
1484
1485static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1486{
1487 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1488 unsigned long seq;
1489 int mode;
1490 u64 ns;
1491
1492 do {
1493 seq = read_seqcount_begin(&gtod->seq);
1494 mode = gtod->clock.vclock_mode;
1495 ns = gtod->nsec_base;
1496 ns += vgettsc(cycle_now);
1497 ns >>= gtod->clock.shift;
1498 ns += gtod->boot_ns;
1499 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1500 *t = ns;
1501
1502 return mode;
1503}
1504
1505/* returns true if host is using tsc clocksource */
1506static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1507{
1508 /* checked again under seqlock below */
1509 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1510 return false;
1511
1512 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1513}
1514#endif
1515
1516/*
1517 *
1518 * Assuming a stable TSC across physical CPUS, and a stable TSC
1519 * across virtual CPUs, the following condition is possible.
1520 * Each numbered line represents an event visible to both
1521 * CPUs at the next numbered event.
1522 *
1523 * "timespecX" represents host monotonic time. "tscX" represents
1524 * RDTSC value.
1525 *
1526 * VCPU0 on CPU0 | VCPU1 on CPU1
1527 *
1528 * 1. read timespec0,tsc0
1529 * 2. | timespec1 = timespec0 + N
1530 * | tsc1 = tsc0 + M
1531 * 3. transition to guest | transition to guest
1532 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1533 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1534 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1535 *
1536 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1537 *
1538 * - ret0 < ret1
1539 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1540 * ...
1541 * - 0 < N - M => M < N
1542 *
1543 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1544 * always the case (the difference between two distinct xtime instances
1545 * might be smaller then the difference between corresponding TSC reads,
1546 * when updating guest vcpus pvclock areas).
1547 *
1548 * To avoid that problem, do not allow visibility of distinct
1549 * system_timestamp/tsc_timestamp values simultaneously: use a master
1550 * copy of host monotonic time values. Update that master copy
1551 * in lockstep.
1552 *
1553 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1554 *
1555 */
1556
1557static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1558{
1559#ifdef CONFIG_X86_64
1560 struct kvm_arch *ka = &kvm->arch;
1561 int vclock_mode;
1562 bool host_tsc_clocksource, vcpus_matched;
1563
1564 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1565 atomic_read(&kvm->online_vcpus));
1566
1567 /*
1568 * If the host uses TSC clock, then passthrough TSC as stable
1569 * to the guest.
1570 */
1571 host_tsc_clocksource = kvm_get_time_and_clockread(
1572 &ka->master_kernel_ns,
1573 &ka->master_cycle_now);
1574
1575 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1576 && !backwards_tsc_observed
1577 && !ka->boot_vcpu_runs_old_kvmclock;
1578
1579 if (ka->use_master_clock)
1580 atomic_set(&kvm_guest_has_master_clock, 1);
1581
1582 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1583 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1584 vcpus_matched);
1585#endif
1586}
1587
1588static void kvm_gen_update_masterclock(struct kvm *kvm)
1589{
1590#ifdef CONFIG_X86_64
1591 int i;
1592 struct kvm_vcpu *vcpu;
1593 struct kvm_arch *ka = &kvm->arch;
1594
1595 spin_lock(&ka->pvclock_gtod_sync_lock);
1596 kvm_make_mclock_inprogress_request(kvm);
1597 /* no guest entries from this point */
1598 pvclock_update_vm_gtod_copy(kvm);
1599
1600 kvm_for_each_vcpu(i, vcpu, kvm)
1601 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1602
1603 /* guest entries allowed */
1604 kvm_for_each_vcpu(i, vcpu, kvm)
1605 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1606
1607 spin_unlock(&ka->pvclock_gtod_sync_lock);
1608#endif
1609}
1610
1611static int kvm_guest_time_update(struct kvm_vcpu *v)
1612{
1613 unsigned long flags, this_tsc_khz;
1614 struct kvm_vcpu_arch *vcpu = &v->arch;
1615 struct kvm_arch *ka = &v->kvm->arch;
1616 s64 kernel_ns;
1617 u64 tsc_timestamp, host_tsc;
1618 struct pvclock_vcpu_time_info guest_hv_clock;
1619 u8 pvclock_flags;
1620 bool use_master_clock;
1621
1622 kernel_ns = 0;
1623 host_tsc = 0;
1624
1625 /*
1626 * If the host uses TSC clock, then passthrough TSC as stable
1627 * to the guest.
1628 */
1629 spin_lock(&ka->pvclock_gtod_sync_lock);
1630 use_master_clock = ka->use_master_clock;
1631 if (use_master_clock) {
1632 host_tsc = ka->master_cycle_now;
1633 kernel_ns = ka->master_kernel_ns;
1634 }
1635 spin_unlock(&ka->pvclock_gtod_sync_lock);
1636
1637 /* Keep irq disabled to prevent changes to the clock */
1638 local_irq_save(flags);
1639 this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1640 if (unlikely(this_tsc_khz == 0)) {
1641 local_irq_restore(flags);
1642 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1643 return 1;
1644 }
1645 if (!use_master_clock) {
1646 host_tsc = native_read_tsc();
1647 kernel_ns = get_kernel_ns();
1648 }
1649
1650 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1651
1652 /*
1653 * We may have to catch up the TSC to match elapsed wall clock
1654 * time for two reasons, even if kvmclock is used.
1655 * 1) CPU could have been running below the maximum TSC rate
1656 * 2) Broken TSC compensation resets the base at each VCPU
1657 * entry to avoid unknown leaps of TSC even when running
1658 * again on the same CPU. This may cause apparent elapsed
1659 * time to disappear, and the guest to stand still or run
1660 * very slowly.
1661 */
1662 if (vcpu->tsc_catchup) {
1663 u64 tsc = compute_guest_tsc(v, kernel_ns);
1664 if (tsc > tsc_timestamp) {
1665 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1666 tsc_timestamp = tsc;
1667 }
1668 }
1669
1670 local_irq_restore(flags);
1671
1672 if (!vcpu->pv_time_enabled)
1673 return 0;
1674
1675 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1676 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1677 &vcpu->hv_clock.tsc_shift,
1678 &vcpu->hv_clock.tsc_to_system_mul);
1679 vcpu->hw_tsc_khz = this_tsc_khz;
1680 }
1681
1682 /* With all the info we got, fill in the values */
1683 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1684 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1685 vcpu->last_guest_tsc = tsc_timestamp;
1686
1687 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1688 &guest_hv_clock, sizeof(guest_hv_clock))))
1689 return 0;
1690
1691 /* This VCPU is paused, but it's legal for a guest to read another
1692 * VCPU's kvmclock, so we really have to follow the specification where
1693 * it says that version is odd if data is being modified, and even after
1694 * it is consistent.
1695 *
1696 * Version field updates must be kept separate. This is because
1697 * kvm_write_guest_cached might use a "rep movs" instruction, and
1698 * writes within a string instruction are weakly ordered. So there
1699 * are three writes overall.
1700 *
1701 * As a small optimization, only write the version field in the first
1702 * and third write. The vcpu->pv_time cache is still valid, because the
1703 * version field is the first in the struct.
1704 */
1705 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1706
1707 vcpu->hv_clock.version = guest_hv_clock.version + 1;
1708 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1709 &vcpu->hv_clock,
1710 sizeof(vcpu->hv_clock.version));
1711
1712 smp_wmb();
1713
1714 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1715 pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1716
1717 if (vcpu->pvclock_set_guest_stopped_request) {
1718 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1719 vcpu->pvclock_set_guest_stopped_request = false;
1720 }
1721
1722 pvclock_flags |= PVCLOCK_COUNTS_FROM_ZERO;
1723
1724 /* If the host uses TSC clocksource, then it is stable */
1725 if (use_master_clock)
1726 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1727
1728 vcpu->hv_clock.flags = pvclock_flags;
1729
1730 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1731
1732 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1733 &vcpu->hv_clock,
1734 sizeof(vcpu->hv_clock));
1735
1736 smp_wmb();
1737
1738 vcpu->hv_clock.version++;
1739 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1740 &vcpu->hv_clock,
1741 sizeof(vcpu->hv_clock.version));
1742 return 0;
1743}
1744
1745/*
1746 * kvmclock updates which are isolated to a given vcpu, such as
1747 * vcpu->cpu migration, should not allow system_timestamp from
1748 * the rest of the vcpus to remain static. Otherwise ntp frequency
1749 * correction applies to one vcpu's system_timestamp but not
1750 * the others.
1751 *
1752 * So in those cases, request a kvmclock update for all vcpus.
1753 * We need to rate-limit these requests though, as they can
1754 * considerably slow guests that have a large number of vcpus.
1755 * The time for a remote vcpu to update its kvmclock is bound
1756 * by the delay we use to rate-limit the updates.
1757 */
1758
1759#define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1760
1761static void kvmclock_update_fn(struct work_struct *work)
1762{
1763 int i;
1764 struct delayed_work *dwork = to_delayed_work(work);
1765 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1766 kvmclock_update_work);
1767 struct kvm *kvm = container_of(ka, struct kvm, arch);
1768 struct kvm_vcpu *vcpu;
1769
1770 kvm_for_each_vcpu(i, vcpu, kvm) {
1771 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1772 kvm_vcpu_kick(vcpu);
1773 }
1774}
1775
1776static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1777{
1778 struct kvm *kvm = v->kvm;
1779
1780 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1781 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1782 KVMCLOCK_UPDATE_DELAY);
1783}
1784
1785#define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1786
1787static void kvmclock_sync_fn(struct work_struct *work)
1788{
1789 struct delayed_work *dwork = to_delayed_work(work);
1790 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1791 kvmclock_sync_work);
1792 struct kvm *kvm = container_of(ka, struct kvm, arch);
1793
1794 if (!kvmclock_periodic_sync)
1795 return;
1796
1797 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1798 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1799 KVMCLOCK_SYNC_PERIOD);
1800}
1801
1802static bool msr_mtrr_valid(unsigned msr)
1803{
1804 switch (msr) {
1805 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1806 case MSR_MTRRfix64K_00000:
1807 case MSR_MTRRfix16K_80000:
1808 case MSR_MTRRfix16K_A0000:
1809 case MSR_MTRRfix4K_C0000:
1810 case MSR_MTRRfix4K_C8000:
1811 case MSR_MTRRfix4K_D0000:
1812 case MSR_MTRRfix4K_D8000:
1813 case MSR_MTRRfix4K_E0000:
1814 case MSR_MTRRfix4K_E8000:
1815 case MSR_MTRRfix4K_F0000:
1816 case MSR_MTRRfix4K_F8000:
1817 case MSR_MTRRdefType:
1818 case MSR_IA32_CR_PAT:
1819 return true;
1820 case 0x2f8:
1821 return true;
1822 }
1823 return false;
1824}
1825
1826static bool valid_pat_type(unsigned t)
1827{
1828 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1829}
1830
1831static bool valid_mtrr_type(unsigned t)
1832{
1833 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1834}
1835
1836bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1837{
1838 int i;
1839 u64 mask;
1840
1841 if (!msr_mtrr_valid(msr))
1842 return false;
1843
1844 if (msr == MSR_IA32_CR_PAT) {
1845 for (i = 0; i < 8; i++)
1846 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1847 return false;
1848 return true;
1849 } else if (msr == MSR_MTRRdefType) {
1850 if (data & ~0xcff)
1851 return false;
1852 return valid_mtrr_type(data & 0xff);
1853 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1854 for (i = 0; i < 8 ; i++)
1855 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1856 return false;
1857 return true;
1858 }
1859
1860 /* variable MTRRs */
1861 WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
1862
1863 mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1864 if ((msr & 1) == 0) {
1865 /* MTRR base */
1866 if (!valid_mtrr_type(data & 0xff))
1867 return false;
1868 mask |= 0xf00;
1869 } else
1870 /* MTRR mask */
1871 mask |= 0x7ff;
1872 if (data & mask) {
1873 kvm_inject_gp(vcpu, 0);
1874 return false;
1875 }
1876
1877 return true;
1878}
1879EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
1880
1881static void update_mtrr(struct kvm_vcpu *vcpu, u32 msr)
1882{
1883 struct mtrr_state_type *mtrr_state = &vcpu->arch.mtrr_state;
1884 unsigned char mtrr_enabled = mtrr_state->enabled;
1885 gfn_t start, end, mask;
1886 int index;
1887 bool is_fixed = true;
1888
1889 if (msr == MSR_IA32_CR_PAT || !tdp_enabled ||
1890 !kvm_arch_has_noncoherent_dma(vcpu->kvm))
1891 return;
1892
1893 if (!(mtrr_enabled & 0x2) && msr != MSR_MTRRdefType)
1894 return;
1895
1896 switch (msr) {
1897 case MSR_MTRRfix64K_00000:
1898 start = 0x0;
1899 end = 0x80000;
1900 break;
1901 case MSR_MTRRfix16K_80000:
1902 start = 0x80000;
1903 end = 0xa0000;
1904 break;
1905 case MSR_MTRRfix16K_A0000:
1906 start = 0xa0000;
1907 end = 0xc0000;
1908 break;
1909 case MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000:
1910 index = msr - MSR_MTRRfix4K_C0000;
1911 start = 0xc0000 + index * (32 << 10);
1912 end = start + (32 << 10);
1913 break;
1914 case MSR_MTRRdefType:
1915 is_fixed = false;
1916 start = 0x0;
1917 end = ~0ULL;
1918 break;
1919 default:
1920 /* variable range MTRRs. */
1921 is_fixed = false;
1922 index = (msr - 0x200) / 2;
1923 start = (((u64)mtrr_state->var_ranges[index].base_hi) << 32) +
1924 (mtrr_state->var_ranges[index].base_lo & PAGE_MASK);
1925 mask = (((u64)mtrr_state->var_ranges[index].mask_hi) << 32) +
1926 (mtrr_state->var_ranges[index].mask_lo & PAGE_MASK);
1927 mask |= ~0ULL << cpuid_maxphyaddr(vcpu);
1928
1929 end = ((start & mask) | ~mask) + 1;
1930 }
1931
1932 if (is_fixed && !(mtrr_enabled & 0x1))
1933 return;
1934
1935 kvm_zap_gfn_range(vcpu->kvm, gpa_to_gfn(start), gpa_to_gfn(end));
1936}
1937
1938static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1939{
1940 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1941
1942 if (!kvm_mtrr_valid(vcpu, msr, data))
1943 return 1;
1944
1945 if (msr == MSR_MTRRdefType) {
1946 vcpu->arch.mtrr_state.def_type = data;
1947 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1948 } else if (msr == MSR_MTRRfix64K_00000)
1949 p[0] = data;
1950 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1951 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1952 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1953 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1954 else if (msr == MSR_IA32_CR_PAT)
1955 vcpu->arch.pat = data;
1956 else { /* Variable MTRRs */
1957 int idx, is_mtrr_mask;
1958 u64 *pt;
1959
1960 idx = (msr - 0x200) / 2;
1961 is_mtrr_mask = msr - 0x200 - 2 * idx;
1962 if (!is_mtrr_mask)
1963 pt =
1964 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1965 else
1966 pt =
1967 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1968 *pt = data;
1969 }
1970
1971 update_mtrr(vcpu, msr);
1972 return 0;
1973}
1974
1975static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1976{
1977 u64 mcg_cap = vcpu->arch.mcg_cap;
1978 unsigned bank_num = mcg_cap & 0xff;
1979
1980 switch (msr) {
1981 case MSR_IA32_MCG_STATUS:
1982 vcpu->arch.mcg_status = data;
1983 break;
1984 case MSR_IA32_MCG_CTL:
1985 if (!(mcg_cap & MCG_CTL_P))
1986 return 1;
1987 if (data != 0 && data != ~(u64)0)
1988 return -1;
1989 vcpu->arch.mcg_ctl = data;
1990 break;
1991 default:
1992 if (msr >= MSR_IA32_MC0_CTL &&
1993 msr < MSR_IA32_MCx_CTL(bank_num)) {
1994 u32 offset = msr - MSR_IA32_MC0_CTL;
1995 /* only 0 or all 1s can be written to IA32_MCi_CTL
1996 * some Linux kernels though clear bit 10 in bank 4 to
1997 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1998 * this to avoid an uncatched #GP in the guest
1999 */
2000 if ((offset & 0x3) == 0 &&
2001 data != 0 && (data | (1 << 10)) != ~(u64)0)
2002 return -1;
2003 vcpu->arch.mce_banks[offset] = data;
2004 break;
2005 }
2006 return 1;
2007 }
2008 return 0;
2009}
2010
2011static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2012{
2013 struct kvm *kvm = vcpu->kvm;
2014 int lm = is_long_mode(vcpu);
2015 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2016 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2017 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2018 : kvm->arch.xen_hvm_config.blob_size_32;
2019 u32 page_num = data & ~PAGE_MASK;
2020 u64 page_addr = data & PAGE_MASK;
2021 u8 *page;
2022 int r;
2023
2024 r = -E2BIG;
2025 if (page_num >= blob_size)
2026 goto out;
2027 r = -ENOMEM;
2028 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2029 if (IS_ERR(page)) {
2030 r = PTR_ERR(page);
2031 goto out;
2032 }
2033 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
2034 goto out_free;
2035 r = 0;
2036out_free:
2037 kfree(page);
2038out:
2039 return r;
2040}
2041
2042static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
2043{
2044 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
2045}
2046
2047static bool kvm_hv_msr_partition_wide(u32 msr)
2048{
2049 bool r = false;
2050 switch (msr) {
2051 case HV_X64_MSR_GUEST_OS_ID:
2052 case HV_X64_MSR_HYPERCALL:
2053 case HV_X64_MSR_REFERENCE_TSC:
2054 case HV_X64_MSR_TIME_REF_COUNT:
2055 r = true;
2056 break;
2057 }
2058
2059 return r;
2060}
2061
2062static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2063{
2064 struct kvm *kvm = vcpu->kvm;
2065
2066 switch (msr) {
2067 case HV_X64_MSR_GUEST_OS_ID:
2068 kvm->arch.hv_guest_os_id = data;
2069 /* setting guest os id to zero disables hypercall page */
2070 if (!kvm->arch.hv_guest_os_id)
2071 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
2072 break;
2073 case HV_X64_MSR_HYPERCALL: {
2074 u64 gfn;
2075 unsigned long addr;
2076 u8 instructions[4];
2077
2078 /* if guest os id is not set hypercall should remain disabled */
2079 if (!kvm->arch.hv_guest_os_id)
2080 break;
2081 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
2082 kvm->arch.hv_hypercall = data;
2083 break;
2084 }
2085 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
2086 addr = gfn_to_hva(kvm, gfn);
2087 if (kvm_is_error_hva(addr))
2088 return 1;
2089 kvm_x86_ops->patch_hypercall(vcpu, instructions);
2090 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
2091 if (__copy_to_user((void __user *)addr, instructions, 4))
2092 return 1;
2093 kvm->arch.hv_hypercall = data;
2094 mark_page_dirty(kvm, gfn);
2095 break;
2096 }
2097 case HV_X64_MSR_REFERENCE_TSC: {
2098 u64 gfn;
2099 HV_REFERENCE_TSC_PAGE tsc_ref;
2100 memset(&tsc_ref, 0, sizeof(tsc_ref));
2101 kvm->arch.hv_tsc_page = data;
2102 if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
2103 break;
2104 gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
2105 if (kvm_write_guest(kvm, gfn << HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT,
2106 &tsc_ref, sizeof(tsc_ref)))
2107 return 1;
2108 mark_page_dirty(kvm, gfn);
2109 break;
2110 }
2111 default:
2112 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
2113 "data 0x%llx\n", msr, data);
2114 return 1;
2115 }
2116 return 0;
2117}
2118
2119static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2120{
2121 switch (msr) {
2122 case HV_X64_MSR_APIC_ASSIST_PAGE: {
2123 u64 gfn;
2124 unsigned long addr;
2125
2126 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
2127 vcpu->arch.hv_vapic = data;
2128 if (kvm_lapic_enable_pv_eoi(vcpu, 0))
2129 return 1;
2130 break;
2131 }
2132 gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
2133 addr = gfn_to_hva(vcpu->kvm, gfn);
2134 if (kvm_is_error_hva(addr))
2135 return 1;
2136 if (__clear_user((void __user *)addr, PAGE_SIZE))
2137 return 1;
2138 vcpu->arch.hv_vapic = data;
2139 mark_page_dirty(vcpu->kvm, gfn);
2140 if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
2141 return 1;
2142 break;
2143 }
2144 case HV_X64_MSR_EOI:
2145 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
2146 case HV_X64_MSR_ICR:
2147 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
2148 case HV_X64_MSR_TPR:
2149 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
2150 default:
2151 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
2152 "data 0x%llx\n", msr, data);
2153 return 1;
2154 }
2155
2156 return 0;
2157}
2158
2159static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2160{
2161 gpa_t gpa = data & ~0x3f;
2162
2163 /* Bits 2:5 are reserved, Should be zero */
2164 if (data & 0x3c)
2165 return 1;
2166
2167 vcpu->arch.apf.msr_val = data;
2168
2169 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2170 kvm_clear_async_pf_completion_queue(vcpu);
2171 kvm_async_pf_hash_reset(vcpu);
2172 return 0;
2173 }
2174
2175 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2176 sizeof(u32)))
2177 return 1;
2178
2179 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2180 kvm_async_pf_wakeup_all(vcpu);
2181 return 0;
2182}
2183
2184static void kvmclock_reset(struct kvm_vcpu *vcpu)
2185{
2186 vcpu->arch.pv_time_enabled = false;
2187}
2188
2189static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2190{
2191 u64 delta;
2192
2193 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2194 return;
2195
2196 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2197 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2198 vcpu->arch.st.accum_steal = delta;
2199}
2200
2201static void record_steal_time(struct kvm_vcpu *vcpu)
2202{
2203 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2204 return;
2205
2206 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2207 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2208 return;
2209
2210 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2211 vcpu->arch.st.steal.version += 2;
2212 vcpu->arch.st.accum_steal = 0;
2213
2214 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2215 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2216}
2217
2218int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2219{
2220 bool pr = false;
2221 u32 msr = msr_info->index;
2222 u64 data = msr_info->data;
2223
2224 switch (msr) {
2225 case MSR_AMD64_NB_CFG:
2226 case MSR_IA32_UCODE_REV:
2227 case MSR_IA32_UCODE_WRITE:
2228 case MSR_VM_HSAVE_PA:
2229 case MSR_AMD64_PATCH_LOADER:
2230 case MSR_AMD64_BU_CFG2:
2231 break;
2232
2233 case MSR_EFER:
2234 return set_efer(vcpu, data);
2235 case MSR_K7_HWCR:
2236 data &= ~(u64)0x40; /* ignore flush filter disable */
2237 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2238 data &= ~(u64)0x8; /* ignore TLB cache disable */
2239 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2240 if (data != 0) {
2241 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2242 data);
2243 return 1;
2244 }
2245 break;
2246 case MSR_FAM10H_MMIO_CONF_BASE:
2247 if (data != 0) {
2248 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2249 "0x%llx\n", data);
2250 return 1;
2251 }
2252 break;
2253 case MSR_IA32_DEBUGCTLMSR:
2254 if (!data) {
2255 /* We support the non-activated case already */
2256 break;
2257 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2258 /* Values other than LBR and BTF are vendor-specific,
2259 thus reserved and should throw a #GP */
2260 return 1;
2261 }
2262 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2263 __func__, data);
2264 break;
2265 case 0x200 ... 0x2ff:
2266 return set_msr_mtrr(vcpu, msr, data);
2267 case MSR_IA32_APICBASE:
2268 return kvm_set_apic_base(vcpu, msr_info);
2269 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2270 return kvm_x2apic_msr_write(vcpu, msr, data);
2271 case MSR_IA32_TSCDEADLINE:
2272 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2273 break;
2274 case MSR_IA32_TSC_ADJUST:
2275 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2276 if (!msr_info->host_initiated) {
2277 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2278 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2279 }
2280 vcpu->arch.ia32_tsc_adjust_msr = data;
2281 }
2282 break;
2283 case MSR_IA32_MISC_ENABLE:
2284 vcpu->arch.ia32_misc_enable_msr = data;
2285 break;
2286 case MSR_IA32_SMBASE:
2287 if (!msr_info->host_initiated)
2288 return 1;
2289 vcpu->arch.smbase = data;
2290 break;
2291 case MSR_KVM_WALL_CLOCK_NEW:
2292 case MSR_KVM_WALL_CLOCK:
2293 vcpu->kvm->arch.wall_clock = data;
2294 kvm_write_wall_clock(vcpu->kvm, data);
2295 break;
2296 case MSR_KVM_SYSTEM_TIME_NEW:
2297 case MSR_KVM_SYSTEM_TIME: {
2298 u64 gpa_offset;
2299 struct kvm_arch *ka = &vcpu->kvm->arch;
2300
2301 kvmclock_reset(vcpu);
2302
2303 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2304 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2305
2306 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2307 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2308 &vcpu->requests);
2309
2310 ka->boot_vcpu_runs_old_kvmclock = tmp;
2311
2312 ka->kvmclock_offset = -get_kernel_ns();
2313 }
2314
2315 vcpu->arch.time = data;
2316 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2317
2318 /* we verify if the enable bit is set... */
2319 if (!(data & 1))
2320 break;
2321
2322 gpa_offset = data & ~(PAGE_MASK | 1);
2323
2324 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2325 &vcpu->arch.pv_time, data & ~1ULL,
2326 sizeof(struct pvclock_vcpu_time_info)))
2327 vcpu->arch.pv_time_enabled = false;
2328 else
2329 vcpu->arch.pv_time_enabled = true;
2330
2331 break;
2332 }
2333 case MSR_KVM_ASYNC_PF_EN:
2334 if (kvm_pv_enable_async_pf(vcpu, data))
2335 return 1;
2336 break;
2337 case MSR_KVM_STEAL_TIME:
2338
2339 if (unlikely(!sched_info_on()))
2340 return 1;
2341
2342 if (data & KVM_STEAL_RESERVED_MASK)
2343 return 1;
2344
2345 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2346 data & KVM_STEAL_VALID_BITS,
2347 sizeof(struct kvm_steal_time)))
2348 return 1;
2349
2350 vcpu->arch.st.msr_val = data;
2351
2352 if (!(data & KVM_MSR_ENABLED))
2353 break;
2354
2355 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2356
2357 preempt_disable();
2358 accumulate_steal_time(vcpu);
2359 preempt_enable();
2360
2361 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2362
2363 break;
2364 case MSR_KVM_PV_EOI_EN:
2365 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2366 return 1;
2367 break;
2368
2369 case MSR_IA32_MCG_CTL:
2370 case MSR_IA32_MCG_STATUS:
2371 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2372 return set_msr_mce(vcpu, msr, data);
2373
2374 /* Performance counters are not protected by a CPUID bit,
2375 * so we should check all of them in the generic path for the sake of
2376 * cross vendor migration.
2377 * Writing a zero into the event select MSRs disables them,
2378 * which we perfectly emulate ;-). Any other value should be at least
2379 * reported, some guests depend on them.
2380 */
2381 case MSR_K7_EVNTSEL0:
2382 case MSR_K7_EVNTSEL1:
2383 case MSR_K7_EVNTSEL2:
2384 case MSR_K7_EVNTSEL3:
2385 if (data != 0)
2386 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2387 "0x%x data 0x%llx\n", msr, data);
2388 break;
2389 /* at least RHEL 4 unconditionally writes to the perfctr registers,
2390 * so we ignore writes to make it happy.
2391 */
2392 case MSR_K7_PERFCTR0:
2393 case MSR_K7_PERFCTR1:
2394 case MSR_K7_PERFCTR2:
2395 case MSR_K7_PERFCTR3:
2396 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2397 "0x%x data 0x%llx\n", msr, data);
2398 break;
2399 case MSR_P6_PERFCTR0:
2400 case MSR_P6_PERFCTR1:
2401 pr = true;
2402 case MSR_P6_EVNTSEL0:
2403 case MSR_P6_EVNTSEL1:
2404 if (kvm_pmu_msr(vcpu, msr))
2405 return kvm_pmu_set_msr(vcpu, msr_info);
2406
2407 if (pr || data != 0)
2408 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2409 "0x%x data 0x%llx\n", msr, data);
2410 break;
2411 case MSR_K7_CLK_CTL:
2412 /*
2413 * Ignore all writes to this no longer documented MSR.
2414 * Writes are only relevant for old K7 processors,
2415 * all pre-dating SVM, but a recommended workaround from
2416 * AMD for these chips. It is possible to specify the
2417 * affected processor models on the command line, hence
2418 * the need to ignore the workaround.
2419 */
2420 break;
2421 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2422 if (kvm_hv_msr_partition_wide(msr)) {
2423 int r;
2424 mutex_lock(&vcpu->kvm->lock);
2425 r = set_msr_hyperv_pw(vcpu, msr, data);
2426 mutex_unlock(&vcpu->kvm->lock);
2427 return r;
2428 } else
2429 return set_msr_hyperv(vcpu, msr, data);
2430 break;
2431 case MSR_IA32_BBL_CR_CTL3:
2432 /* Drop writes to this legacy MSR -- see rdmsr
2433 * counterpart for further detail.
2434 */
2435 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2436 break;
2437 case MSR_AMD64_OSVW_ID_LENGTH:
2438 if (!guest_cpuid_has_osvw(vcpu))
2439 return 1;
2440 vcpu->arch.osvw.length = data;
2441 break;
2442 case MSR_AMD64_OSVW_STATUS:
2443 if (!guest_cpuid_has_osvw(vcpu))
2444 return 1;
2445 vcpu->arch.osvw.status = data;
2446 break;
2447 default:
2448 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2449 return xen_hvm_config(vcpu, data);
2450 if (kvm_pmu_msr(vcpu, msr))
2451 return kvm_pmu_set_msr(vcpu, msr_info);
2452 if (!ignore_msrs) {
2453 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2454 msr, data);
2455 return 1;
2456 } else {
2457 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2458 msr, data);
2459 break;
2460 }
2461 }
2462 return 0;
2463}
2464EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2465
2466
2467/*
2468 * Reads an msr value (of 'msr_index') into 'pdata'.
2469 * Returns 0 on success, non-0 otherwise.
2470 * Assumes vcpu_load() was already called.
2471 */
2472int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2473{
2474 return kvm_x86_ops->get_msr(vcpu, msr);
2475}
2476EXPORT_SYMBOL_GPL(kvm_get_msr);
2477
2478static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2479{
2480 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2481
2482 if (!msr_mtrr_valid(msr))
2483 return 1;
2484
2485 if (msr == MSR_MTRRdefType)
2486 *pdata = vcpu->arch.mtrr_state.def_type +
2487 (vcpu->arch.mtrr_state.enabled << 10);
2488 else if (msr == MSR_MTRRfix64K_00000)
2489 *pdata = p[0];
2490 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2491 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2492 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2493 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2494 else if (msr == MSR_IA32_CR_PAT)
2495 *pdata = vcpu->arch.pat;
2496 else { /* Variable MTRRs */
2497 int idx, is_mtrr_mask;
2498 u64 *pt;
2499
2500 idx = (msr - 0x200) / 2;
2501 is_mtrr_mask = msr - 0x200 - 2 * idx;
2502 if (!is_mtrr_mask)
2503 pt =
2504 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2505 else
2506 pt =
2507 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2508 *pdata = *pt;
2509 }
2510
2511 return 0;
2512}
2513
2514static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2515{
2516 u64 data;
2517 u64 mcg_cap = vcpu->arch.mcg_cap;
2518 unsigned bank_num = mcg_cap & 0xff;
2519
2520 switch (msr) {
2521 case MSR_IA32_P5_MC_ADDR:
2522 case MSR_IA32_P5_MC_TYPE:
2523 data = 0;
2524 break;
2525 case MSR_IA32_MCG_CAP:
2526 data = vcpu->arch.mcg_cap;
2527 break;
2528 case MSR_IA32_MCG_CTL:
2529 if (!(mcg_cap & MCG_CTL_P))
2530 return 1;
2531 data = vcpu->arch.mcg_ctl;
2532 break;
2533 case MSR_IA32_MCG_STATUS:
2534 data = vcpu->arch.mcg_status;
2535 break;
2536 default:
2537 if (msr >= MSR_IA32_MC0_CTL &&
2538 msr < MSR_IA32_MCx_CTL(bank_num)) {
2539 u32 offset = msr - MSR_IA32_MC0_CTL;
2540 data = vcpu->arch.mce_banks[offset];
2541 break;
2542 }
2543 return 1;
2544 }
2545 *pdata = data;
2546 return 0;
2547}
2548
2549static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2550{
2551 u64 data = 0;
2552 struct kvm *kvm = vcpu->kvm;
2553
2554 switch (msr) {
2555 case HV_X64_MSR_GUEST_OS_ID:
2556 data = kvm->arch.hv_guest_os_id;
2557 break;
2558 case HV_X64_MSR_HYPERCALL:
2559 data = kvm->arch.hv_hypercall;
2560 break;
2561 case HV_X64_MSR_TIME_REF_COUNT: {
2562 data =
2563 div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2564 break;
2565 }
2566 case HV_X64_MSR_REFERENCE_TSC:
2567 data = kvm->arch.hv_tsc_page;
2568 break;
2569 default:
2570 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2571 return 1;
2572 }
2573
2574 *pdata = data;
2575 return 0;
2576}
2577
2578static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2579{
2580 u64 data = 0;
2581
2582 switch (msr) {
2583 case HV_X64_MSR_VP_INDEX: {
2584 int r;
2585 struct kvm_vcpu *v;
2586 kvm_for_each_vcpu(r, v, vcpu->kvm) {
2587 if (v == vcpu) {
2588 data = r;
2589 break;
2590 }
2591 }
2592 break;
2593 }
2594 case HV_X64_MSR_EOI:
2595 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2596 case HV_X64_MSR_ICR:
2597 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2598 case HV_X64_MSR_TPR:
2599 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2600 case HV_X64_MSR_APIC_ASSIST_PAGE:
2601 data = vcpu->arch.hv_vapic;
2602 break;
2603 default:
2604 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2605 return 1;
2606 }
2607 *pdata = data;
2608 return 0;
2609}
2610
2611int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2612{
2613 u64 data;
2614
2615 switch (msr_info->index) {
2616 case MSR_IA32_PLATFORM_ID:
2617 case MSR_IA32_EBL_CR_POWERON:
2618 case MSR_IA32_DEBUGCTLMSR:
2619 case MSR_IA32_LASTBRANCHFROMIP:
2620 case MSR_IA32_LASTBRANCHTOIP:
2621 case MSR_IA32_LASTINTFROMIP:
2622 case MSR_IA32_LASTINTTOIP:
2623 case MSR_K8_SYSCFG:
2624 case MSR_K7_HWCR:
2625 case MSR_VM_HSAVE_PA:
2626 case MSR_K7_EVNTSEL0:
2627 case MSR_K7_EVNTSEL1:
2628 case MSR_K7_EVNTSEL2:
2629 case MSR_K7_EVNTSEL3:
2630 case MSR_K7_PERFCTR0:
2631 case MSR_K7_PERFCTR1:
2632 case MSR_K7_PERFCTR2:
2633 case MSR_K7_PERFCTR3:
2634 case MSR_K8_INT_PENDING_MSG:
2635 case MSR_AMD64_NB_CFG:
2636 case MSR_FAM10H_MMIO_CONF_BASE:
2637 case MSR_AMD64_BU_CFG2:
2638 msr_info->data = 0;
2639 break;
2640 case MSR_P6_PERFCTR0:
2641 case MSR_P6_PERFCTR1:
2642 case MSR_P6_EVNTSEL0:
2643 case MSR_P6_EVNTSEL1:
2644 if (kvm_pmu_msr(vcpu, msr_info->index))
2645 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2646 msr_info->data = 0;
2647 break;
2648 case MSR_IA32_UCODE_REV:
2649 msr_info->data = 0x100000000ULL;
2650 break;
2651 case MSR_MTRRcap:
2652 msr_info->data = 0x500 | KVM_NR_VAR_MTRR;
2653 break;
2654 case 0x200 ... 0x2ff:
2655 return get_msr_mtrr(vcpu, msr_info->index, &msr_info->data);
2656 case 0xcd: /* fsb frequency */
2657 msr_info->data = 3;
2658 break;
2659 /*
2660 * MSR_EBC_FREQUENCY_ID
2661 * Conservative value valid for even the basic CPU models.
2662 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2663 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2664 * and 266MHz for model 3, or 4. Set Core Clock
2665 * Frequency to System Bus Frequency Ratio to 1 (bits
2666 * 31:24) even though these are only valid for CPU
2667 * models > 2, however guests may end up dividing or
2668 * multiplying by zero otherwise.
2669 */
2670 case MSR_EBC_FREQUENCY_ID:
2671 msr_info->data = 1 << 24;
2672 break;
2673 case MSR_IA32_APICBASE:
2674 msr_info->data = kvm_get_apic_base(vcpu);
2675 break;
2676 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2677 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2678 break;
2679 case MSR_IA32_TSCDEADLINE:
2680 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2681 break;
2682 case MSR_IA32_TSC_ADJUST:
2683 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2684 break;
2685 case MSR_IA32_MISC_ENABLE:
2686 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2687 break;
2688 case MSR_IA32_SMBASE:
2689 if (!msr_info->host_initiated)
2690 return 1;
2691 msr_info->data = vcpu->arch.smbase;
2692 break;
2693 case MSR_IA32_PERF_STATUS:
2694 /* TSC increment by tick */
2695 msr_info->data = 1000ULL;
2696 /* CPU multiplier */
2697 data |= (((uint64_t)4ULL) << 40);
2698 break;
2699 case MSR_EFER:
2700 msr_info->data = vcpu->arch.efer;
2701 break;
2702 case MSR_KVM_WALL_CLOCK:
2703 case MSR_KVM_WALL_CLOCK_NEW:
2704 msr_info->data = vcpu->kvm->arch.wall_clock;
2705 break;
2706 case MSR_KVM_SYSTEM_TIME:
2707 case MSR_KVM_SYSTEM_TIME_NEW:
2708 msr_info->data = vcpu->arch.time;
2709 break;
2710 case MSR_KVM_ASYNC_PF_EN:
2711 msr_info->data = vcpu->arch.apf.msr_val;
2712 break;
2713 case MSR_KVM_STEAL_TIME:
2714 msr_info->data = vcpu->arch.st.msr_val;
2715 break;
2716 case MSR_KVM_PV_EOI_EN:
2717 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2718 break;
2719 case MSR_IA32_P5_MC_ADDR:
2720 case MSR_IA32_P5_MC_TYPE:
2721 case MSR_IA32_MCG_CAP:
2722 case MSR_IA32_MCG_CTL:
2723 case MSR_IA32_MCG_STATUS:
2724 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2725 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2726 case MSR_K7_CLK_CTL:
2727 /*
2728 * Provide expected ramp-up count for K7. All other
2729 * are set to zero, indicating minimum divisors for
2730 * every field.
2731 *
2732 * This prevents guest kernels on AMD host with CPU
2733 * type 6, model 8 and higher from exploding due to
2734 * the rdmsr failing.
2735 */
2736 msr_info->data = 0x20000000;
2737 break;
2738 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2739 if (kvm_hv_msr_partition_wide(msr_info->index)) {
2740 int r;
2741 mutex_lock(&vcpu->kvm->lock);
2742 r = get_msr_hyperv_pw(vcpu, msr_info->index, &msr_info->data);
2743 mutex_unlock(&vcpu->kvm->lock);
2744 return r;
2745 } else
2746 return get_msr_hyperv(vcpu, msr_info->index, &msr_info->data);
2747 break;
2748 case MSR_IA32_BBL_CR_CTL3:
2749 /* This legacy MSR exists but isn't fully documented in current
2750 * silicon. It is however accessed by winxp in very narrow
2751 * scenarios where it sets bit #19, itself documented as
2752 * a "reserved" bit. Best effort attempt to source coherent
2753 * read data here should the balance of the register be
2754 * interpreted by the guest:
2755 *
2756 * L2 cache control register 3: 64GB range, 256KB size,
2757 * enabled, latency 0x1, configured
2758 */
2759 msr_info->data = 0xbe702111;
2760 break;
2761 case MSR_AMD64_OSVW_ID_LENGTH:
2762 if (!guest_cpuid_has_osvw(vcpu))
2763 return 1;
2764 msr_info->data = vcpu->arch.osvw.length;
2765 break;
2766 case MSR_AMD64_OSVW_STATUS:
2767 if (!guest_cpuid_has_osvw(vcpu))
2768 return 1;
2769 msr_info->data = vcpu->arch.osvw.status;
2770 break;
2771 default:
2772 if (kvm_pmu_msr(vcpu, msr_info->index))
2773 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2774 if (!ignore_msrs) {
2775 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2776 return 1;
2777 } else {
2778 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2779 msr_info->data = 0;
2780 }
2781 break;
2782 }
2783 return 0;
2784}
2785EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2786
2787/*
2788 * Read or write a bunch of msrs. All parameters are kernel addresses.
2789 *
2790 * @return number of msrs set successfully.
2791 */
2792static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2793 struct kvm_msr_entry *entries,
2794 int (*do_msr)(struct kvm_vcpu *vcpu,
2795 unsigned index, u64 *data))
2796{
2797 int i, idx;
2798
2799 idx = srcu_read_lock(&vcpu->kvm->srcu);
2800 for (i = 0; i < msrs->nmsrs; ++i)
2801 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2802 break;
2803 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2804
2805 return i;
2806}
2807
2808/*
2809 * Read or write a bunch of msrs. Parameters are user addresses.
2810 *
2811 * @return number of msrs set successfully.
2812 */
2813static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2814 int (*do_msr)(struct kvm_vcpu *vcpu,
2815 unsigned index, u64 *data),
2816 int writeback)
2817{
2818 struct kvm_msrs msrs;
2819 struct kvm_msr_entry *entries;
2820 int r, n;
2821 unsigned size;
2822
2823 r = -EFAULT;
2824 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2825 goto out;
2826
2827 r = -E2BIG;
2828 if (msrs.nmsrs >= MAX_IO_MSRS)
2829 goto out;
2830
2831 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2832 entries = memdup_user(user_msrs->entries, size);
2833 if (IS_ERR(entries)) {
2834 r = PTR_ERR(entries);
2835 goto out;
2836 }
2837
2838 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2839 if (r < 0)
2840 goto out_free;
2841
2842 r = -EFAULT;
2843 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2844 goto out_free;
2845
2846 r = n;
2847
2848out_free:
2849 kfree(entries);
2850out:
2851 return r;
2852}
2853
2854int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2855{
2856 int r;
2857
2858 switch (ext) {
2859 case KVM_CAP_IRQCHIP:
2860 case KVM_CAP_HLT:
2861 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2862 case KVM_CAP_SET_TSS_ADDR:
2863 case KVM_CAP_EXT_CPUID:
2864 case KVM_CAP_EXT_EMUL_CPUID:
2865 case KVM_CAP_CLOCKSOURCE:
2866 case KVM_CAP_PIT:
2867 case KVM_CAP_NOP_IO_DELAY:
2868 case KVM_CAP_MP_STATE:
2869 case KVM_CAP_SYNC_MMU:
2870 case KVM_CAP_USER_NMI:
2871 case KVM_CAP_REINJECT_CONTROL:
2872 case KVM_CAP_IRQ_INJECT_STATUS:
2873 case KVM_CAP_IOEVENTFD:
2874 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2875 case KVM_CAP_PIT2:
2876 case KVM_CAP_PIT_STATE2:
2877 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2878 case KVM_CAP_XEN_HVM:
2879 case KVM_CAP_ADJUST_CLOCK:
2880 case KVM_CAP_VCPU_EVENTS:
2881 case KVM_CAP_HYPERV:
2882 case KVM_CAP_HYPERV_VAPIC:
2883 case KVM_CAP_HYPERV_SPIN:
2884 case KVM_CAP_PCI_SEGMENT:
2885 case KVM_CAP_DEBUGREGS:
2886 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2887 case KVM_CAP_XSAVE:
2888 case KVM_CAP_ASYNC_PF:
2889 case KVM_CAP_GET_TSC_KHZ:
2890 case KVM_CAP_KVMCLOCK_CTRL:
2891 case KVM_CAP_READONLY_MEM:
2892 case KVM_CAP_HYPERV_TIME:
2893 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2894 case KVM_CAP_TSC_DEADLINE_TIMER:
2895 case KVM_CAP_ENABLE_CAP_VM:
2896 case KVM_CAP_DISABLE_QUIRKS:
2897#ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2898 case KVM_CAP_ASSIGN_DEV_IRQ:
2899 case KVM_CAP_PCI_2_3:
2900#endif
2901 r = 1;
2902 break;
2903 case KVM_CAP_COALESCED_MMIO:
2904 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2905 break;
2906 case KVM_CAP_VAPIC:
2907 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2908 break;
2909 case KVM_CAP_NR_VCPUS:
2910 r = KVM_SOFT_MAX_VCPUS;
2911 break;
2912 case KVM_CAP_MAX_VCPUS:
2913 r = KVM_MAX_VCPUS;
2914 break;
2915 case KVM_CAP_NR_MEMSLOTS:
2916 r = KVM_USER_MEM_SLOTS;
2917 break;
2918 case KVM_CAP_PV_MMU: /* obsolete */
2919 r = 0;
2920 break;
2921#ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2922 case KVM_CAP_IOMMU:
2923 r = iommu_present(&pci_bus_type);
2924 break;
2925#endif
2926 case KVM_CAP_MCE:
2927 r = KVM_MAX_MCE_BANKS;
2928 break;
2929 case KVM_CAP_XCRS:
2930 r = cpu_has_xsave;
2931 break;
2932 case KVM_CAP_TSC_CONTROL:
2933 r = kvm_has_tsc_control;
2934 break;
2935 default:
2936 r = 0;
2937 break;
2938 }
2939 return r;
2940
2941}
2942
2943long kvm_arch_dev_ioctl(struct file *filp,
2944 unsigned int ioctl, unsigned long arg)
2945{
2946 void __user *argp = (void __user *)arg;
2947 long r;
2948
2949 switch (ioctl) {
2950 case KVM_GET_MSR_INDEX_LIST: {
2951 struct kvm_msr_list __user *user_msr_list = argp;
2952 struct kvm_msr_list msr_list;
2953 unsigned n;
2954
2955 r = -EFAULT;
2956 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2957 goto out;
2958 n = msr_list.nmsrs;
2959 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2960 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2961 goto out;
2962 r = -E2BIG;
2963 if (n < msr_list.nmsrs)
2964 goto out;
2965 r = -EFAULT;
2966 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2967 num_msrs_to_save * sizeof(u32)))
2968 goto out;
2969 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2970 &emulated_msrs,
2971 num_emulated_msrs * sizeof(u32)))
2972 goto out;
2973 r = 0;
2974 break;
2975 }
2976 case KVM_GET_SUPPORTED_CPUID:
2977 case KVM_GET_EMULATED_CPUID: {
2978 struct kvm_cpuid2 __user *cpuid_arg = argp;
2979 struct kvm_cpuid2 cpuid;
2980
2981 r = -EFAULT;
2982 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2983 goto out;
2984
2985 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2986 ioctl);
2987 if (r)
2988 goto out;
2989
2990 r = -EFAULT;
2991 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2992 goto out;
2993 r = 0;
2994 break;
2995 }
2996 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2997 u64 mce_cap;
2998
2999 mce_cap = KVM_MCE_CAP_SUPPORTED;
3000 r = -EFAULT;
3001 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
3002 goto out;
3003 r = 0;
3004 break;
3005 }
3006 default:
3007 r = -EINVAL;
3008 }
3009out:
3010 return r;
3011}
3012
3013static void wbinvd_ipi(void *garbage)
3014{
3015 wbinvd();
3016}
3017
3018static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3019{
3020 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3021}
3022
3023void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3024{
3025 /* Address WBINVD may be executed by guest */
3026 if (need_emulate_wbinvd(vcpu)) {
3027 if (kvm_x86_ops->has_wbinvd_exit())
3028 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3029 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3030 smp_call_function_single(vcpu->cpu,
3031 wbinvd_ipi, NULL, 1);
3032 }
3033
3034 kvm_x86_ops->vcpu_load(vcpu, cpu);
3035
3036 /* Apply any externally detected TSC adjustments (due to suspend) */
3037 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3038 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3039 vcpu->arch.tsc_offset_adjustment = 0;
3040 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3041 }
3042
3043 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
3044 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3045 native_read_tsc() - vcpu->arch.last_host_tsc;
3046 if (tsc_delta < 0)
3047 mark_tsc_unstable("KVM discovered backwards TSC");
3048 if (check_tsc_unstable()) {
3049 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
3050 vcpu->arch.last_guest_tsc);
3051 kvm_x86_ops->write_tsc_offset(vcpu, offset);
3052 vcpu->arch.tsc_catchup = 1;
3053 }
3054 /*
3055 * On a host with synchronized TSC, there is no need to update
3056 * kvmclock on vcpu->cpu migration
3057 */
3058 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3059 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3060 if (vcpu->cpu != cpu)
3061 kvm_migrate_timers(vcpu);
3062 vcpu->cpu = cpu;
3063 }
3064
3065 accumulate_steal_time(vcpu);
3066 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3067}
3068
3069void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3070{
3071 kvm_x86_ops->vcpu_put(vcpu);
3072 kvm_put_guest_fpu(vcpu);
3073 vcpu->arch.last_host_tsc = native_read_tsc();
3074}
3075
3076static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3077 struct kvm_lapic_state *s)
3078{
3079 kvm_x86_ops->sync_pir_to_irr(vcpu);
3080 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
3081
3082 return 0;
3083}
3084
3085static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3086 struct kvm_lapic_state *s)
3087{
3088 kvm_apic_post_state_restore(vcpu, s);
3089 update_cr8_intercept(vcpu);
3090
3091 return 0;
3092}
3093
3094static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3095 struct kvm_interrupt *irq)
3096{
3097 if (irq->irq >= KVM_NR_INTERRUPTS)
3098 return -EINVAL;
3099 if (irqchip_in_kernel(vcpu->kvm))
3100 return -ENXIO;
3101
3102 kvm_queue_interrupt(vcpu, irq->irq, false);
3103 kvm_make_request(KVM_REQ_EVENT, vcpu);
3104
3105 return 0;
3106}
3107
3108static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3109{
3110 kvm_inject_nmi(vcpu);
3111
3112 return 0;
3113}
3114
3115static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3116{
3117 kvm_make_request(KVM_REQ_SMI, vcpu);
3118
3119 return 0;
3120}
3121
3122static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3123 struct kvm_tpr_access_ctl *tac)
3124{
3125 if (tac->flags)
3126 return -EINVAL;
3127 vcpu->arch.tpr_access_reporting = !!tac->enabled;
3128 return 0;
3129}
3130
3131static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3132 u64 mcg_cap)
3133{
3134 int r;
3135 unsigned bank_num = mcg_cap & 0xff, bank;
3136
3137 r = -EINVAL;
3138 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3139 goto out;
3140 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
3141 goto out;
3142 r = 0;
3143 vcpu->arch.mcg_cap = mcg_cap;
3144 /* Init IA32_MCG_CTL to all 1s */
3145 if (mcg_cap & MCG_CTL_P)
3146 vcpu->arch.mcg_ctl = ~(u64)0;
3147 /* Init IA32_MCi_CTL to all 1s */
3148 for (bank = 0; bank < bank_num; bank++)
3149 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3150out:
3151 return r;
3152}
3153
3154static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3155 struct kvm_x86_mce *mce)
3156{
3157 u64 mcg_cap = vcpu->arch.mcg_cap;
3158 unsigned bank_num = mcg_cap & 0xff;
3159 u64 *banks = vcpu->arch.mce_banks;
3160
3161 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3162 return -EINVAL;
3163 /*
3164 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3165 * reporting is disabled
3166 */
3167 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3168 vcpu->arch.mcg_ctl != ~(u64)0)
3169 return 0;
3170 banks += 4 * mce->bank;
3171 /*
3172 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3173 * reporting is disabled for the bank
3174 */
3175 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3176 return 0;
3177 if (mce->status & MCI_STATUS_UC) {
3178 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3179 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3180 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3181 return 0;
3182 }
3183 if (banks[1] & MCI_STATUS_VAL)
3184 mce->status |= MCI_STATUS_OVER;
3185 banks[2] = mce->addr;
3186 banks[3] = mce->misc;
3187 vcpu->arch.mcg_status = mce->mcg_status;
3188 banks[1] = mce->status;
3189 kvm_queue_exception(vcpu, MC_VECTOR);
3190 } else if (!(banks[1] & MCI_STATUS_VAL)
3191 || !(banks[1] & MCI_STATUS_UC)) {
3192 if (banks[1] & MCI_STATUS_VAL)
3193 mce->status |= MCI_STATUS_OVER;
3194 banks[2] = mce->addr;
3195 banks[3] = mce->misc;
3196 banks[1] = mce->status;
3197 } else
3198 banks[1] |= MCI_STATUS_OVER;
3199 return 0;
3200}
3201
3202static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3203 struct kvm_vcpu_events *events)
3204{
3205 process_nmi(vcpu);
3206 events->exception.injected =
3207 vcpu->arch.exception.pending &&
3208 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3209 events->exception.nr = vcpu->arch.exception.nr;
3210 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3211 events->exception.pad = 0;
3212 events->exception.error_code = vcpu->arch.exception.error_code;
3213
3214 events->interrupt.injected =
3215 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3216 events->interrupt.nr = vcpu->arch.interrupt.nr;
3217 events->interrupt.soft = 0;
3218 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3219
3220 events->nmi.injected = vcpu->arch.nmi_injected;
3221 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3222 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3223 events->nmi.pad = 0;
3224
3225 events->sipi_vector = 0; /* never valid when reporting to user space */
3226
3227 events->smi.smm = is_smm(vcpu);
3228 events->smi.pending = vcpu->arch.smi_pending;
3229 events->smi.smm_inside_nmi =
3230 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3231 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3232
3233 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3234 | KVM_VCPUEVENT_VALID_SHADOW
3235 | KVM_VCPUEVENT_VALID_SMM);
3236 memset(&events->reserved, 0, sizeof(events->reserved));
3237}
3238
3239static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3240 struct kvm_vcpu_events *events)
3241{
3242 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3243 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3244 | KVM_VCPUEVENT_VALID_SHADOW
3245 | KVM_VCPUEVENT_VALID_SMM))
3246 return -EINVAL;
3247
3248 process_nmi(vcpu);
3249 vcpu->arch.exception.pending = events->exception.injected;
3250 vcpu->arch.exception.nr = events->exception.nr;
3251 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3252 vcpu->arch.exception.error_code = events->exception.error_code;
3253
3254 vcpu->arch.interrupt.pending = events->interrupt.injected;
3255 vcpu->arch.interrupt.nr = events->interrupt.nr;
3256 vcpu->arch.interrupt.soft = events->interrupt.soft;
3257 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3258 kvm_x86_ops->set_interrupt_shadow(vcpu,
3259 events->interrupt.shadow);
3260
3261 vcpu->arch.nmi_injected = events->nmi.injected;
3262 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3263 vcpu->arch.nmi_pending = events->nmi.pending;
3264 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3265
3266 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3267 kvm_vcpu_has_lapic(vcpu))
3268 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3269
3270 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3271 if (events->smi.smm)
3272 vcpu->arch.hflags |= HF_SMM_MASK;
3273 else
3274 vcpu->arch.hflags &= ~HF_SMM_MASK;
3275 vcpu->arch.smi_pending = events->smi.pending;
3276 if (events->smi.smm_inside_nmi)
3277 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3278 else
3279 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3280 if (kvm_vcpu_has_lapic(vcpu)) {
3281 if (events->smi.latched_init)
3282 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3283 else
3284 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3285 }
3286 }
3287
3288 kvm_make_request(KVM_REQ_EVENT, vcpu);
3289
3290 return 0;
3291}
3292
3293static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3294 struct kvm_debugregs *dbgregs)
3295{
3296 unsigned long val;
3297
3298 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3299 kvm_get_dr(vcpu, 6, &val);
3300 dbgregs->dr6 = val;
3301 dbgregs->dr7 = vcpu->arch.dr7;
3302 dbgregs->flags = 0;
3303 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3304}
3305
3306static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3307 struct kvm_debugregs *dbgregs)
3308{
3309 if (dbgregs->flags)
3310 return -EINVAL;
3311
3312 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3313 kvm_update_dr0123(vcpu);
3314 vcpu->arch.dr6 = dbgregs->dr6;
3315 kvm_update_dr6(vcpu);
3316 vcpu->arch.dr7 = dbgregs->dr7;
3317 kvm_update_dr7(vcpu);
3318
3319 return 0;
3320}
3321
3322#define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3323
3324static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3325{
3326 struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
3327 u64 xstate_bv = xsave->xsave_hdr.xstate_bv;
3328 u64 valid;
3329
3330 /*
3331 * Copy legacy XSAVE area, to avoid complications with CPUID
3332 * leaves 0 and 1 in the loop below.
3333 */
3334 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3335
3336 /* Set XSTATE_BV */
3337 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3338
3339 /*
3340 * Copy each region from the possibly compacted offset to the
3341 * non-compacted offset.
3342 */
3343 valid = xstate_bv & ~XSTATE_FPSSE;
3344 while (valid) {
3345 u64 feature = valid & -valid;
3346 int index = fls64(feature) - 1;
3347 void *src = get_xsave_addr(xsave, feature);
3348
3349 if (src) {
3350 u32 size, offset, ecx, edx;
3351 cpuid_count(XSTATE_CPUID, index,
3352 &size, &offset, &ecx, &edx);
3353 memcpy(dest + offset, src, size);
3354 }
3355
3356 valid -= feature;
3357 }
3358}
3359
3360static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3361{
3362 struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
3363 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3364 u64 valid;
3365
3366 /*
3367 * Copy legacy XSAVE area, to avoid complications with CPUID
3368 * leaves 0 and 1 in the loop below.
3369 */
3370 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3371
3372 /* Set XSTATE_BV and possibly XCOMP_BV. */
3373 xsave->xsave_hdr.xstate_bv = xstate_bv;
3374 if (cpu_has_xsaves)
3375 xsave->xsave_hdr.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3376
3377 /*
3378 * Copy each region from the non-compacted offset to the
3379 * possibly compacted offset.
3380 */
3381 valid = xstate_bv & ~XSTATE_FPSSE;
3382 while (valid) {
3383 u64 feature = valid & -valid;
3384 int index = fls64(feature) - 1;
3385 void *dest = get_xsave_addr(xsave, feature);
3386
3387 if (dest) {
3388 u32 size, offset, ecx, edx;
3389 cpuid_count(XSTATE_CPUID, index,
3390 &size, &offset, &ecx, &edx);
3391 memcpy(dest, src + offset, size);
3392 } else
3393 WARN_ON_ONCE(1);
3394
3395 valid -= feature;
3396 }
3397}
3398
3399static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3400 struct kvm_xsave *guest_xsave)
3401{
3402 if (cpu_has_xsave) {
3403 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3404 fill_xsave((u8 *) guest_xsave->region, vcpu);
3405 } else {
3406 memcpy(guest_xsave->region,
3407 &vcpu->arch.guest_fpu.state->fxsave,
3408 sizeof(struct i387_fxsave_struct));
3409 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3410 XSTATE_FPSSE;
3411 }
3412}
3413
3414static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3415 struct kvm_xsave *guest_xsave)
3416{
3417 u64 xstate_bv =
3418 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3419
3420 if (cpu_has_xsave) {
3421 /*
3422 * Here we allow setting states that are not present in
3423 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3424 * with old userspace.
3425 */
3426 if (xstate_bv & ~kvm_supported_xcr0())
3427 return -EINVAL;
3428 load_xsave(vcpu, (u8 *)guest_xsave->region);
3429 } else {
3430 if (xstate_bv & ~XSTATE_FPSSE)
3431 return -EINVAL;
3432 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3433 guest_xsave->region, sizeof(struct i387_fxsave_struct));
3434 }
3435 return 0;
3436}
3437
3438static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3439 struct kvm_xcrs *guest_xcrs)
3440{
3441 if (!cpu_has_xsave) {
3442 guest_xcrs->nr_xcrs = 0;
3443 return;
3444 }
3445
3446 guest_xcrs->nr_xcrs = 1;
3447 guest_xcrs->flags = 0;
3448 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3449 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3450}
3451
3452static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3453 struct kvm_xcrs *guest_xcrs)
3454{
3455 int i, r = 0;
3456
3457 if (!cpu_has_xsave)
3458 return -EINVAL;
3459
3460 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3461 return -EINVAL;
3462
3463 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3464 /* Only support XCR0 currently */
3465 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3466 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3467 guest_xcrs->xcrs[i].value);
3468 break;
3469 }
3470 if (r)
3471 r = -EINVAL;
3472 return r;
3473}
3474
3475/*
3476 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3477 * stopped by the hypervisor. This function will be called from the host only.
3478 * EINVAL is returned when the host attempts to set the flag for a guest that
3479 * does not support pv clocks.
3480 */
3481static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3482{
3483 if (!vcpu->arch.pv_time_enabled)
3484 return -EINVAL;
3485 vcpu->arch.pvclock_set_guest_stopped_request = true;
3486 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3487 return 0;
3488}
3489
3490long kvm_arch_vcpu_ioctl(struct file *filp,
3491 unsigned int ioctl, unsigned long arg)
3492{
3493 struct kvm_vcpu *vcpu = filp->private_data;
3494 void __user *argp = (void __user *)arg;
3495 int r;
3496 union {
3497 struct kvm_lapic_state *lapic;
3498 struct kvm_xsave *xsave;
3499 struct kvm_xcrs *xcrs;
3500 void *buffer;
3501 } u;
3502
3503 u.buffer = NULL;
3504 switch (ioctl) {
3505 case KVM_GET_LAPIC: {
3506 r = -EINVAL;
3507 if (!vcpu->arch.apic)
3508 goto out;
3509 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3510
3511 r = -ENOMEM;
3512 if (!u.lapic)
3513 goto out;
3514 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3515 if (r)
3516 goto out;
3517 r = -EFAULT;
3518 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3519 goto out;
3520 r = 0;
3521 break;
3522 }
3523 case KVM_SET_LAPIC: {
3524 r = -EINVAL;
3525 if (!vcpu->arch.apic)
3526 goto out;
3527 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3528 if (IS_ERR(u.lapic))
3529 return PTR_ERR(u.lapic);
3530
3531 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3532 break;
3533 }
3534 case KVM_INTERRUPT: {
3535 struct kvm_interrupt irq;
3536
3537 r = -EFAULT;
3538 if (copy_from_user(&irq, argp, sizeof irq))
3539 goto out;
3540 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3541 break;
3542 }
3543 case KVM_NMI: {
3544 r = kvm_vcpu_ioctl_nmi(vcpu);
3545 break;
3546 }
3547 case KVM_SMI: {
3548 r = kvm_vcpu_ioctl_smi(vcpu);
3549 break;
3550 }
3551 case KVM_SET_CPUID: {
3552 struct kvm_cpuid __user *cpuid_arg = argp;
3553 struct kvm_cpuid cpuid;
3554
3555 r = -EFAULT;
3556 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3557 goto out;
3558 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3559 break;
3560 }
3561 case KVM_SET_CPUID2: {
3562 struct kvm_cpuid2 __user *cpuid_arg = argp;
3563 struct kvm_cpuid2 cpuid;
3564
3565 r = -EFAULT;
3566 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3567 goto out;
3568 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3569 cpuid_arg->entries);
3570 break;
3571 }
3572 case KVM_GET_CPUID2: {
3573 struct kvm_cpuid2 __user *cpuid_arg = argp;
3574 struct kvm_cpuid2 cpuid;
3575
3576 r = -EFAULT;
3577 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3578 goto out;
3579 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3580 cpuid_arg->entries);
3581 if (r)
3582 goto out;
3583 r = -EFAULT;
3584 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3585 goto out;
3586 r = 0;
3587 break;
3588 }
3589 case KVM_GET_MSRS:
3590 r = msr_io(vcpu, argp, do_get_msr, 1);
3591 break;
3592 case KVM_SET_MSRS:
3593 r = msr_io(vcpu, argp, do_set_msr, 0);
3594 break;
3595 case KVM_TPR_ACCESS_REPORTING: {
3596 struct kvm_tpr_access_ctl tac;
3597
3598 r = -EFAULT;
3599 if (copy_from_user(&tac, argp, sizeof tac))
3600 goto out;
3601 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3602 if (r)
3603 goto out;
3604 r = -EFAULT;
3605 if (copy_to_user(argp, &tac, sizeof tac))
3606 goto out;
3607 r = 0;
3608 break;
3609 };
3610 case KVM_SET_VAPIC_ADDR: {
3611 struct kvm_vapic_addr va;
3612
3613 r = -EINVAL;
3614 if (!irqchip_in_kernel(vcpu->kvm))
3615 goto out;
3616 r = -EFAULT;
3617 if (copy_from_user(&va, argp, sizeof va))
3618 goto out;
3619 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3620 break;
3621 }
3622 case KVM_X86_SETUP_MCE: {
3623 u64 mcg_cap;
3624
3625 r = -EFAULT;
3626 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3627 goto out;
3628 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3629 break;
3630 }
3631 case KVM_X86_SET_MCE: {
3632 struct kvm_x86_mce mce;
3633
3634 r = -EFAULT;
3635 if (copy_from_user(&mce, argp, sizeof mce))
3636 goto out;
3637 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3638 break;
3639 }
3640 case KVM_GET_VCPU_EVENTS: {
3641 struct kvm_vcpu_events events;
3642
3643 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3644
3645 r = -EFAULT;
3646 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3647 break;
3648 r = 0;
3649 break;
3650 }
3651 case KVM_SET_VCPU_EVENTS: {
3652 struct kvm_vcpu_events events;
3653
3654 r = -EFAULT;
3655 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3656 break;
3657
3658 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3659 break;
3660 }
3661 case KVM_GET_DEBUGREGS: {
3662 struct kvm_debugregs dbgregs;
3663
3664 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3665
3666 r = -EFAULT;
3667 if (copy_to_user(argp, &dbgregs,
3668 sizeof(struct kvm_debugregs)))
3669 break;
3670 r = 0;
3671 break;
3672 }
3673 case KVM_SET_DEBUGREGS: {
3674 struct kvm_debugregs dbgregs;
3675
3676 r = -EFAULT;
3677 if (copy_from_user(&dbgregs, argp,
3678 sizeof(struct kvm_debugregs)))
3679 break;
3680
3681 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3682 break;
3683 }
3684 case KVM_GET_XSAVE: {
3685 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3686 r = -ENOMEM;
3687 if (!u.xsave)
3688 break;
3689
3690 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3691
3692 r = -EFAULT;
3693 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3694 break;
3695 r = 0;
3696 break;
3697 }
3698 case KVM_SET_XSAVE: {
3699 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3700 if (IS_ERR(u.xsave))
3701 return PTR_ERR(u.xsave);
3702
3703 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3704 break;
3705 }
3706 case KVM_GET_XCRS: {
3707 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3708 r = -ENOMEM;
3709 if (!u.xcrs)
3710 break;
3711
3712 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3713
3714 r = -EFAULT;
3715 if (copy_to_user(argp, u.xcrs,
3716 sizeof(struct kvm_xcrs)))
3717 break;
3718 r = 0;
3719 break;
3720 }
3721 case KVM_SET_XCRS: {
3722 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3723 if (IS_ERR(u.xcrs))
3724 return PTR_ERR(u.xcrs);
3725
3726 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3727 break;
3728 }
3729 case KVM_SET_TSC_KHZ: {
3730 u32 user_tsc_khz;
3731
3732 r = -EINVAL;
3733 user_tsc_khz = (u32)arg;
3734
3735 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3736 goto out;
3737
3738 if (user_tsc_khz == 0)
3739 user_tsc_khz = tsc_khz;
3740
3741 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3742
3743 r = 0;
3744 goto out;
3745 }
3746 case KVM_GET_TSC_KHZ: {
3747 r = vcpu->arch.virtual_tsc_khz;
3748 goto out;
3749 }
3750 case KVM_KVMCLOCK_CTRL: {
3751 r = kvm_set_guest_paused(vcpu);
3752 goto out;
3753 }
3754 default:
3755 r = -EINVAL;
3756 }
3757out:
3758 kfree(u.buffer);
3759 return r;
3760}
3761
3762int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3763{
3764 return VM_FAULT_SIGBUS;
3765}
3766
3767static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3768{
3769 int ret;
3770
3771 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3772 return -EINVAL;
3773 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3774 return ret;
3775}
3776
3777static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3778 u64 ident_addr)
3779{
3780 kvm->arch.ept_identity_map_addr = ident_addr;
3781 return 0;
3782}
3783
3784static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3785 u32 kvm_nr_mmu_pages)
3786{
3787 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3788 return -EINVAL;
3789
3790 mutex_lock(&kvm->slots_lock);
3791
3792 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3793 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3794
3795 mutex_unlock(&kvm->slots_lock);
3796 return 0;
3797}
3798
3799static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3800{
3801 return kvm->arch.n_max_mmu_pages;
3802}
3803
3804static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3805{
3806 int r;
3807
3808 r = 0;
3809 switch (chip->chip_id) {
3810 case KVM_IRQCHIP_PIC_MASTER:
3811 memcpy(&chip->chip.pic,
3812 &pic_irqchip(kvm)->pics[0],
3813 sizeof(struct kvm_pic_state));
3814 break;
3815 case KVM_IRQCHIP_PIC_SLAVE:
3816 memcpy(&chip->chip.pic,
3817 &pic_irqchip(kvm)->pics[1],
3818 sizeof(struct kvm_pic_state));
3819 break;
3820 case KVM_IRQCHIP_IOAPIC:
3821 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3822 break;
3823 default:
3824 r = -EINVAL;
3825 break;
3826 }
3827 return r;
3828}
3829
3830static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3831{
3832 int r;
3833
3834 r = 0;
3835 switch (chip->chip_id) {
3836 case KVM_IRQCHIP_PIC_MASTER:
3837 spin_lock(&pic_irqchip(kvm)->lock);
3838 memcpy(&pic_irqchip(kvm)->pics[0],
3839 &chip->chip.pic,
3840 sizeof(struct kvm_pic_state));
3841 spin_unlock(&pic_irqchip(kvm)->lock);
3842 break;
3843 case KVM_IRQCHIP_PIC_SLAVE:
3844 spin_lock(&pic_irqchip(kvm)->lock);
3845 memcpy(&pic_irqchip(kvm)->pics[1],
3846 &chip->chip.pic,
3847 sizeof(struct kvm_pic_state));
3848 spin_unlock(&pic_irqchip(kvm)->lock);
3849 break;
3850 case KVM_IRQCHIP_IOAPIC:
3851 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3852 break;
3853 default:
3854 r = -EINVAL;
3855 break;
3856 }
3857 kvm_pic_update_irq(pic_irqchip(kvm));
3858 return r;
3859}
3860
3861static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3862{
3863 int r = 0;
3864
3865 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3866 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3867 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3868 return r;
3869}
3870
3871static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3872{
3873 int r = 0;
3874
3875 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3876 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3877 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3878 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3879 return r;
3880}
3881
3882static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3883{
3884 int r = 0;
3885
3886 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3887 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3888 sizeof(ps->channels));
3889 ps->flags = kvm->arch.vpit->pit_state.flags;
3890 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3891 memset(&ps->reserved, 0, sizeof(ps->reserved));
3892 return r;
3893}
3894
3895static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3896{
3897 int r = 0, start = 0;
3898 u32 prev_legacy, cur_legacy;
3899 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3900 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3901 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3902 if (!prev_legacy && cur_legacy)
3903 start = 1;
3904 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3905 sizeof(kvm->arch.vpit->pit_state.channels));
3906 kvm->arch.vpit->pit_state.flags = ps->flags;
3907 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3908 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3909 return r;
3910}
3911
3912static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3913 struct kvm_reinject_control *control)
3914{
3915 if (!kvm->arch.vpit)
3916 return -ENXIO;
3917 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3918 kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3919 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3920 return 0;
3921}
3922
3923/**
3924 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3925 * @kvm: kvm instance
3926 * @log: slot id and address to which we copy the log
3927 *
3928 * Steps 1-4 below provide general overview of dirty page logging. See
3929 * kvm_get_dirty_log_protect() function description for additional details.
3930 *
3931 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3932 * always flush the TLB (step 4) even if previous step failed and the dirty
3933 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3934 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3935 * writes will be marked dirty for next log read.
3936 *
3937 * 1. Take a snapshot of the bit and clear it if needed.
3938 * 2. Write protect the corresponding page.
3939 * 3. Copy the snapshot to the userspace.
3940 * 4. Flush TLB's if needed.
3941 */
3942int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3943{
3944 bool is_dirty = false;
3945 int r;
3946
3947 mutex_lock(&kvm->slots_lock);
3948
3949 /*
3950 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3951 */
3952 if (kvm_x86_ops->flush_log_dirty)
3953 kvm_x86_ops->flush_log_dirty(kvm);
3954
3955 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3956
3957 /*
3958 * All the TLBs can be flushed out of mmu lock, see the comments in
3959 * kvm_mmu_slot_remove_write_access().
3960 */
3961 lockdep_assert_held(&kvm->slots_lock);
3962 if (is_dirty)
3963 kvm_flush_remote_tlbs(kvm);
3964
3965 mutex_unlock(&kvm->slots_lock);
3966 return r;
3967}
3968
3969int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3970 bool line_status)
3971{
3972 if (!irqchip_in_kernel(kvm))
3973 return -ENXIO;
3974
3975 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3976 irq_event->irq, irq_event->level,
3977 line_status);
3978 return 0;
3979}
3980
3981static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3982 struct kvm_enable_cap *cap)
3983{
3984 int r;
3985
3986 if (cap->flags)
3987 return -EINVAL;
3988
3989 switch (cap->cap) {
3990 case KVM_CAP_DISABLE_QUIRKS:
3991 kvm->arch.disabled_quirks = cap->args[0];
3992 r = 0;
3993 break;
3994 default:
3995 r = -EINVAL;
3996 break;
3997 }
3998 return r;
3999}
4000
4001long kvm_arch_vm_ioctl(struct file *filp,
4002 unsigned int ioctl, unsigned long arg)
4003{
4004 struct kvm *kvm = filp->private_data;
4005 void __user *argp = (void __user *)arg;
4006 int r = -ENOTTY;
4007 /*
4008 * This union makes it completely explicit to gcc-3.x
4009 * that these two variables' stack usage should be
4010 * combined, not added together.
4011 */
4012 union {
4013 struct kvm_pit_state ps;
4014 struct kvm_pit_state2 ps2;
4015 struct kvm_pit_config pit_config;
4016 } u;
4017
4018 switch (ioctl) {
4019 case KVM_SET_TSS_ADDR:
4020 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4021 break;
4022 case KVM_SET_IDENTITY_MAP_ADDR: {
4023 u64 ident_addr;
4024
4025 r = -EFAULT;
4026 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4027 goto out;
4028 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4029 break;
4030 }
4031 case KVM_SET_NR_MMU_PAGES:
4032 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4033 break;
4034 case KVM_GET_NR_MMU_PAGES:
4035 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4036 break;
4037 case KVM_CREATE_IRQCHIP: {
4038 struct kvm_pic *vpic;
4039
4040 mutex_lock(&kvm->lock);
4041 r = -EEXIST;
4042 if (kvm->arch.vpic)
4043 goto create_irqchip_unlock;
4044 r = -EINVAL;
4045 if (atomic_read(&kvm->online_vcpus))
4046 goto create_irqchip_unlock;
4047 r = -ENOMEM;
4048 vpic = kvm_create_pic(kvm);
4049 if (vpic) {
4050 r = kvm_ioapic_init(kvm);
4051 if (r) {
4052 mutex_lock(&kvm->slots_lock);
4053 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
4054 &vpic->dev_master);
4055 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
4056 &vpic->dev_slave);
4057 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
4058 &vpic->dev_eclr);
4059 mutex_unlock(&kvm->slots_lock);
4060 kfree(vpic);
4061 goto create_irqchip_unlock;
4062 }
4063 } else
4064 goto create_irqchip_unlock;
4065 smp_wmb();
4066 kvm->arch.vpic = vpic;
4067 smp_wmb();
4068 r = kvm_setup_default_irq_routing(kvm);
4069 if (r) {
4070 mutex_lock(&kvm->slots_lock);
4071 mutex_lock(&kvm->irq_lock);
4072 kvm_ioapic_destroy(kvm);
4073 kvm_destroy_pic(kvm);
4074 mutex_unlock(&kvm->irq_lock);
4075 mutex_unlock(&kvm->slots_lock);
4076 }
4077 create_irqchip_unlock:
4078 mutex_unlock(&kvm->lock);
4079 break;
4080 }
4081 case KVM_CREATE_PIT:
4082 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4083 goto create_pit;
4084 case KVM_CREATE_PIT2:
4085 r = -EFAULT;
4086 if (copy_from_user(&u.pit_config, argp,
4087 sizeof(struct kvm_pit_config)))
4088 goto out;
4089 create_pit:
4090 mutex_lock(&kvm->slots_lock);
4091 r = -EEXIST;
4092 if (kvm->arch.vpit)
4093 goto create_pit_unlock;
4094 r = -ENOMEM;
4095 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4096 if (kvm->arch.vpit)
4097 r = 0;
4098 create_pit_unlock:
4099 mutex_unlock(&kvm->slots_lock);
4100 break;
4101 case KVM_GET_IRQCHIP: {
4102 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4103 struct kvm_irqchip *chip;
4104
4105 chip = memdup_user(argp, sizeof(*chip));
4106 if (IS_ERR(chip)) {
4107 r = PTR_ERR(chip);
4108 goto out;
4109 }
4110
4111 r = -ENXIO;
4112 if (!irqchip_in_kernel(kvm))
4113 goto get_irqchip_out;
4114 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4115 if (r)
4116 goto get_irqchip_out;
4117 r = -EFAULT;
4118 if (copy_to_user(argp, chip, sizeof *chip))
4119 goto get_irqchip_out;
4120 r = 0;
4121 get_irqchip_out:
4122 kfree(chip);
4123 break;
4124 }
4125 case KVM_SET_IRQCHIP: {
4126 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4127 struct kvm_irqchip *chip;
4128
4129 chip = memdup_user(argp, sizeof(*chip));
4130 if (IS_ERR(chip)) {
4131 r = PTR_ERR(chip);
4132 goto out;
4133 }
4134
4135 r = -ENXIO;
4136 if (!irqchip_in_kernel(kvm))
4137 goto set_irqchip_out;
4138 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4139 if (r)
4140 goto set_irqchip_out;
4141 r = 0;
4142 set_irqchip_out:
4143 kfree(chip);
4144 break;
4145 }
4146 case KVM_GET_PIT: {
4147 r = -EFAULT;
4148 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4149 goto out;
4150 r = -ENXIO;
4151 if (!kvm->arch.vpit)
4152 goto out;
4153 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4154 if (r)
4155 goto out;
4156 r = -EFAULT;
4157 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4158 goto out;
4159 r = 0;
4160 break;
4161 }
4162 case KVM_SET_PIT: {
4163 r = -EFAULT;
4164 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4165 goto out;
4166 r = -ENXIO;
4167 if (!kvm->arch.vpit)
4168 goto out;
4169 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4170 break;
4171 }
4172 case KVM_GET_PIT2: {
4173 r = -ENXIO;
4174 if (!kvm->arch.vpit)
4175 goto out;
4176 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4177 if (r)
4178 goto out;
4179 r = -EFAULT;
4180 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4181 goto out;
4182 r = 0;
4183 break;
4184 }
4185 case KVM_SET_PIT2: {
4186 r = -EFAULT;
4187 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4188 goto out;
4189 r = -ENXIO;
4190 if (!kvm->arch.vpit)
4191 goto out;
4192 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4193 break;
4194 }
4195 case KVM_REINJECT_CONTROL: {
4196 struct kvm_reinject_control control;
4197 r = -EFAULT;
4198 if (copy_from_user(&control, argp, sizeof(control)))
4199 goto out;
4200 r = kvm_vm_ioctl_reinject(kvm, &control);
4201 break;
4202 }
4203 case KVM_XEN_HVM_CONFIG: {
4204 r = -EFAULT;
4205 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4206 sizeof(struct kvm_xen_hvm_config)))
4207 goto out;
4208 r = -EINVAL;
4209 if (kvm->arch.xen_hvm_config.flags)
4210 goto out;
4211 r = 0;
4212 break;
4213 }
4214 case KVM_SET_CLOCK: {
4215 struct kvm_clock_data user_ns;
4216 u64 now_ns;
4217 s64 delta;
4218
4219 r = -EFAULT;
4220 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4221 goto out;
4222
4223 r = -EINVAL;
4224 if (user_ns.flags)
4225 goto out;
4226
4227 r = 0;
4228 local_irq_disable();
4229 now_ns = get_kernel_ns();
4230 delta = user_ns.clock - now_ns;
4231 local_irq_enable();
4232 kvm->arch.kvmclock_offset = delta;
4233 kvm_gen_update_masterclock(kvm);
4234 break;
4235 }
4236 case KVM_GET_CLOCK: {
4237 struct kvm_clock_data user_ns;
4238 u64 now_ns;
4239
4240 local_irq_disable();
4241 now_ns = get_kernel_ns();
4242 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4243 local_irq_enable();
4244 user_ns.flags = 0;
4245 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4246
4247 r = -EFAULT;
4248 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4249 goto out;
4250 r = 0;
4251 break;
4252 }
4253 case KVM_ENABLE_CAP: {
4254 struct kvm_enable_cap cap;
4255
4256 r = -EFAULT;
4257 if (copy_from_user(&cap, argp, sizeof(cap)))
4258 goto out;
4259 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4260 break;
4261 }
4262 default:
4263 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4264 }
4265out:
4266 return r;
4267}
4268
4269static void kvm_init_msr_list(void)
4270{
4271 u32 dummy[2];
4272 unsigned i, j;
4273
4274 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4275 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4276 continue;
4277
4278 /*
4279 * Even MSRs that are valid in the host may not be exposed
4280 * to the guests in some cases. We could work around this
4281 * in VMX with the generic MSR save/load machinery, but it
4282 * is not really worthwhile since it will really only
4283 * happen with nested virtualization.
4284 */
4285 switch (msrs_to_save[i]) {
4286 case MSR_IA32_BNDCFGS:
4287 if (!kvm_x86_ops->mpx_supported())
4288 continue;
4289 break;
4290 default:
4291 break;
4292 }
4293
4294 if (j < i)
4295 msrs_to_save[j] = msrs_to_save[i];
4296 j++;
4297 }
4298 num_msrs_to_save = j;
4299
4300 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4301 switch (emulated_msrs[i]) {
4302 default:
4303 break;
4304 }
4305
4306 if (j < i)
4307 emulated_msrs[j] = emulated_msrs[i];
4308 j++;
4309 }
4310 num_emulated_msrs = j;
4311}
4312
4313static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4314 const void *v)
4315{
4316 int handled = 0;
4317 int n;
4318
4319 do {
4320 n = min(len, 8);
4321 if (!(vcpu->arch.apic &&
4322 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4323 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4324 break;
4325 handled += n;
4326 addr += n;
4327 len -= n;
4328 v += n;
4329 } while (len);
4330
4331 return handled;
4332}
4333
4334static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4335{
4336 int handled = 0;
4337 int n;
4338
4339 do {
4340 n = min(len, 8);
4341 if (!(vcpu->arch.apic &&
4342 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4343 addr, n, v))
4344 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4345 break;
4346 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4347 handled += n;
4348 addr += n;
4349 len -= n;
4350 v += n;
4351 } while (len);
4352
4353 return handled;
4354}
4355
4356static void kvm_set_segment(struct kvm_vcpu *vcpu,
4357 struct kvm_segment *var, int seg)
4358{
4359 kvm_x86_ops->set_segment(vcpu, var, seg);
4360}
4361
4362void kvm_get_segment(struct kvm_vcpu *vcpu,
4363 struct kvm_segment *var, int seg)
4364{
4365 kvm_x86_ops->get_segment(vcpu, var, seg);
4366}
4367
4368gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4369 struct x86_exception *exception)
4370{
4371 gpa_t t_gpa;
4372
4373 BUG_ON(!mmu_is_nested(vcpu));
4374
4375 /* NPT walks are always user-walks */
4376 access |= PFERR_USER_MASK;
4377 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4378
4379 return t_gpa;
4380}
4381
4382gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4383 struct x86_exception *exception)
4384{
4385 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4386 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4387}
4388
4389 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4390 struct x86_exception *exception)
4391{
4392 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4393 access |= PFERR_FETCH_MASK;
4394 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4395}
4396
4397gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4398 struct x86_exception *exception)
4399{
4400 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4401 access |= PFERR_WRITE_MASK;
4402 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4403}
4404
4405/* uses this to access any guest's mapped memory without checking CPL */
4406gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4407 struct x86_exception *exception)
4408{
4409 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4410}
4411
4412static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4413 struct kvm_vcpu *vcpu, u32 access,
4414 struct x86_exception *exception)
4415{
4416 void *data = val;
4417 int r = X86EMUL_CONTINUE;
4418
4419 while (bytes) {
4420 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4421 exception);
4422 unsigned offset = addr & (PAGE_SIZE-1);
4423 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4424 int ret;
4425
4426 if (gpa == UNMAPPED_GVA)
4427 return X86EMUL_PROPAGATE_FAULT;
4428 ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, data,
4429 offset, toread);
4430 if (ret < 0) {
4431 r = X86EMUL_IO_NEEDED;
4432 goto out;
4433 }
4434
4435 bytes -= toread;
4436 data += toread;
4437 addr += toread;
4438 }
4439out:
4440 return r;
4441}
4442
4443/* used for instruction fetching */
4444static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4445 gva_t addr, void *val, unsigned int bytes,
4446 struct x86_exception *exception)
4447{
4448 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4449 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4450 unsigned offset;
4451 int ret;
4452
4453 /* Inline kvm_read_guest_virt_helper for speed. */
4454 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4455 exception);
4456 if (unlikely(gpa == UNMAPPED_GVA))
4457 return X86EMUL_PROPAGATE_FAULT;
4458
4459 offset = addr & (PAGE_SIZE-1);
4460 if (WARN_ON(offset + bytes > PAGE_SIZE))
4461 bytes = (unsigned)PAGE_SIZE - offset;
4462 ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, val,
4463 offset, bytes);
4464 if (unlikely(ret < 0))
4465 return X86EMUL_IO_NEEDED;
4466
4467 return X86EMUL_CONTINUE;
4468}
4469
4470int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4471 gva_t addr, void *val, unsigned int bytes,
4472 struct x86_exception *exception)
4473{
4474 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4475 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4476
4477 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4478 exception);
4479}
4480EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4481
4482static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4483 gva_t addr, void *val, unsigned int bytes,
4484 struct x86_exception *exception)
4485{
4486 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4487 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4488}
4489
4490int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4491 gva_t addr, void *val,
4492 unsigned int bytes,
4493 struct x86_exception *exception)
4494{
4495 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4496 void *data = val;
4497 int r = X86EMUL_CONTINUE;
4498
4499 while (bytes) {
4500 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4501 PFERR_WRITE_MASK,
4502 exception);
4503 unsigned offset = addr & (PAGE_SIZE-1);
4504 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4505 int ret;
4506
4507 if (gpa == UNMAPPED_GVA)
4508 return X86EMUL_PROPAGATE_FAULT;
4509 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4510 if (ret < 0) {
4511 r = X86EMUL_IO_NEEDED;
4512 goto out;
4513 }
4514
4515 bytes -= towrite;
4516 data += towrite;
4517 addr += towrite;
4518 }
4519out:
4520 return r;
4521}
4522EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4523
4524static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4525 gpa_t *gpa, struct x86_exception *exception,
4526 bool write)
4527{
4528 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4529 | (write ? PFERR_WRITE_MASK : 0);
4530
4531 if (vcpu_match_mmio_gva(vcpu, gva)
4532 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4533 vcpu->arch.access, access)) {
4534 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4535 (gva & (PAGE_SIZE - 1));
4536 trace_vcpu_match_mmio(gva, *gpa, write, false);
4537 return 1;
4538 }
4539
4540 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4541
4542 if (*gpa == UNMAPPED_GVA)
4543 return -1;
4544
4545 /* For APIC access vmexit */
4546 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4547 return 1;
4548
4549 if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4550 trace_vcpu_match_mmio(gva, *gpa, write, true);
4551 return 1;
4552 }
4553
4554 return 0;
4555}
4556
4557int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4558 const void *val, int bytes)
4559{
4560 int ret;
4561
4562 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4563 if (ret < 0)
4564 return 0;
4565 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4566 return 1;
4567}
4568
4569struct read_write_emulator_ops {
4570 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4571 int bytes);
4572 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4573 void *val, int bytes);
4574 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4575 int bytes, void *val);
4576 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4577 void *val, int bytes);
4578 bool write;
4579};
4580
4581static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4582{
4583 if (vcpu->mmio_read_completed) {
4584 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4585 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4586 vcpu->mmio_read_completed = 0;
4587 return 1;
4588 }
4589
4590 return 0;
4591}
4592
4593static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4594 void *val, int bytes)
4595{
4596 return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4597}
4598
4599static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4600 void *val, int bytes)
4601{
4602 return emulator_write_phys(vcpu, gpa, val, bytes);
4603}
4604
4605static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4606{
4607 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4608 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4609}
4610
4611static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4612 void *val, int bytes)
4613{
4614 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4615 return X86EMUL_IO_NEEDED;
4616}
4617
4618static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4619 void *val, int bytes)
4620{
4621 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4622
4623 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4624 return X86EMUL_CONTINUE;
4625}
4626
4627static const struct read_write_emulator_ops read_emultor = {
4628 .read_write_prepare = read_prepare,
4629 .read_write_emulate = read_emulate,
4630 .read_write_mmio = vcpu_mmio_read,
4631 .read_write_exit_mmio = read_exit_mmio,
4632};
4633
4634static const struct read_write_emulator_ops write_emultor = {
4635 .read_write_emulate = write_emulate,
4636 .read_write_mmio = write_mmio,
4637 .read_write_exit_mmio = write_exit_mmio,
4638 .write = true,
4639};
4640
4641static int emulator_read_write_onepage(unsigned long addr, void *val,
4642 unsigned int bytes,
4643 struct x86_exception *exception,
4644 struct kvm_vcpu *vcpu,
4645 const struct read_write_emulator_ops *ops)
4646{
4647 gpa_t gpa;
4648 int handled, ret;
4649 bool write = ops->write;
4650 struct kvm_mmio_fragment *frag;
4651
4652 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4653
4654 if (ret < 0)
4655 return X86EMUL_PROPAGATE_FAULT;
4656
4657 /* For APIC access vmexit */
4658 if (ret)
4659 goto mmio;
4660
4661 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4662 return X86EMUL_CONTINUE;
4663
4664mmio:
4665 /*
4666 * Is this MMIO handled locally?
4667 */
4668 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4669 if (handled == bytes)
4670 return X86EMUL_CONTINUE;
4671
4672 gpa += handled;
4673 bytes -= handled;
4674 val += handled;
4675
4676 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4677 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4678 frag->gpa = gpa;
4679 frag->data = val;
4680 frag->len = bytes;
4681 return X86EMUL_CONTINUE;
4682}
4683
4684static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4685 unsigned long addr,
4686 void *val, unsigned int bytes,
4687 struct x86_exception *exception,
4688 const struct read_write_emulator_ops *ops)
4689{
4690 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4691 gpa_t gpa;
4692 int rc;
4693
4694 if (ops->read_write_prepare &&
4695 ops->read_write_prepare(vcpu, val, bytes))
4696 return X86EMUL_CONTINUE;
4697
4698 vcpu->mmio_nr_fragments = 0;
4699
4700 /* Crossing a page boundary? */
4701 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4702 int now;
4703
4704 now = -addr & ~PAGE_MASK;
4705 rc = emulator_read_write_onepage(addr, val, now, exception,
4706 vcpu, ops);
4707
4708 if (rc != X86EMUL_CONTINUE)
4709 return rc;
4710 addr += now;
4711 if (ctxt->mode != X86EMUL_MODE_PROT64)
4712 addr = (u32)addr;
4713 val += now;
4714 bytes -= now;
4715 }
4716
4717 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4718 vcpu, ops);
4719 if (rc != X86EMUL_CONTINUE)
4720 return rc;
4721
4722 if (!vcpu->mmio_nr_fragments)
4723 return rc;
4724
4725 gpa = vcpu->mmio_fragments[0].gpa;
4726
4727 vcpu->mmio_needed = 1;
4728 vcpu->mmio_cur_fragment = 0;
4729
4730 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4731 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4732 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4733 vcpu->run->mmio.phys_addr = gpa;
4734
4735 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4736}
4737
4738static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4739 unsigned long addr,
4740 void *val,
4741 unsigned int bytes,
4742 struct x86_exception *exception)
4743{
4744 return emulator_read_write(ctxt, addr, val, bytes,
4745 exception, &read_emultor);
4746}
4747
4748static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4749 unsigned long addr,
4750 const void *val,
4751 unsigned int bytes,
4752 struct x86_exception *exception)
4753{
4754 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4755 exception, &write_emultor);
4756}
4757
4758#define CMPXCHG_TYPE(t, ptr, old, new) \
4759 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4760
4761#ifdef CONFIG_X86_64
4762# define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4763#else
4764# define CMPXCHG64(ptr, old, new) \
4765 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4766#endif
4767
4768static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4769 unsigned long addr,
4770 const void *old,
4771 const void *new,
4772 unsigned int bytes,
4773 struct x86_exception *exception)
4774{
4775 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4776 gpa_t gpa;
4777 struct page *page;
4778 char *kaddr;
4779 bool exchanged;
4780
4781 /* guests cmpxchg8b have to be emulated atomically */
4782 if (bytes > 8 || (bytes & (bytes - 1)))
4783 goto emul_write;
4784
4785 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4786
4787 if (gpa == UNMAPPED_GVA ||
4788 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4789 goto emul_write;
4790
4791 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4792 goto emul_write;
4793
4794 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4795 if (is_error_page(page))
4796 goto emul_write;
4797
4798 kaddr = kmap_atomic(page);
4799 kaddr += offset_in_page(gpa);
4800 switch (bytes) {
4801 case 1:
4802 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4803 break;
4804 case 2:
4805 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4806 break;
4807 case 4:
4808 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4809 break;
4810 case 8:
4811 exchanged = CMPXCHG64(kaddr, old, new);
4812 break;
4813 default:
4814 BUG();
4815 }
4816 kunmap_atomic(kaddr);
4817 kvm_release_page_dirty(page);
4818
4819 if (!exchanged)
4820 return X86EMUL_CMPXCHG_FAILED;
4821
4822 mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
4823 kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4824
4825 return X86EMUL_CONTINUE;
4826
4827emul_write:
4828 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4829
4830 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4831}
4832
4833static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4834{
4835 /* TODO: String I/O for in kernel device */
4836 int r;
4837
4838 if (vcpu->arch.pio.in)
4839 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4840 vcpu->arch.pio.size, pd);
4841 else
4842 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4843 vcpu->arch.pio.port, vcpu->arch.pio.size,
4844 pd);
4845 return r;
4846}
4847
4848static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4849 unsigned short port, void *val,
4850 unsigned int count, bool in)
4851{
4852 vcpu->arch.pio.port = port;
4853 vcpu->arch.pio.in = in;
4854 vcpu->arch.pio.count = count;
4855 vcpu->arch.pio.size = size;
4856
4857 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4858 vcpu->arch.pio.count = 0;
4859 return 1;
4860 }
4861
4862 vcpu->run->exit_reason = KVM_EXIT_IO;
4863 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4864 vcpu->run->io.size = size;
4865 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4866 vcpu->run->io.count = count;
4867 vcpu->run->io.port = port;
4868
4869 return 0;
4870}
4871
4872static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4873 int size, unsigned short port, void *val,
4874 unsigned int count)
4875{
4876 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4877 int ret;
4878
4879 if (vcpu->arch.pio.count)
4880 goto data_avail;
4881
4882 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4883 if (ret) {
4884data_avail:
4885 memcpy(val, vcpu->arch.pio_data, size * count);
4886 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4887 vcpu->arch.pio.count = 0;
4888 return 1;
4889 }
4890
4891 return 0;
4892}
4893
4894static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4895 int size, unsigned short port,
4896 const void *val, unsigned int count)
4897{
4898 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4899
4900 memcpy(vcpu->arch.pio_data, val, size * count);
4901 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4902 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4903}
4904
4905static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4906{
4907 return kvm_x86_ops->get_segment_base(vcpu, seg);
4908}
4909
4910static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4911{
4912 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4913}
4914
4915int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4916{
4917 if (!need_emulate_wbinvd(vcpu))
4918 return X86EMUL_CONTINUE;
4919
4920 if (kvm_x86_ops->has_wbinvd_exit()) {
4921 int cpu = get_cpu();
4922
4923 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4924 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4925 wbinvd_ipi, NULL, 1);
4926 put_cpu();
4927 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4928 } else
4929 wbinvd();
4930 return X86EMUL_CONTINUE;
4931}
4932
4933int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4934{
4935 kvm_x86_ops->skip_emulated_instruction(vcpu);
4936 return kvm_emulate_wbinvd_noskip(vcpu);
4937}
4938EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4939
4940
4941
4942static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4943{
4944 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4945}
4946
4947static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4948 unsigned long *dest)
4949{
4950 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4951}
4952
4953static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4954 unsigned long value)
4955{
4956
4957 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4958}
4959
4960static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4961{
4962 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4963}
4964
4965static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4966{
4967 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4968 unsigned long value;
4969
4970 switch (cr) {
4971 case 0:
4972 value = kvm_read_cr0(vcpu);
4973 break;
4974 case 2:
4975 value = vcpu->arch.cr2;
4976 break;
4977 case 3:
4978 value = kvm_read_cr3(vcpu);
4979 break;
4980 case 4:
4981 value = kvm_read_cr4(vcpu);
4982 break;
4983 case 8:
4984 value = kvm_get_cr8(vcpu);
4985 break;
4986 default:
4987 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4988 return 0;
4989 }
4990
4991 return value;
4992}
4993
4994static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4995{
4996 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4997 int res = 0;
4998
4999 switch (cr) {
5000 case 0:
5001 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5002 break;
5003 case 2:
5004 vcpu->arch.cr2 = val;
5005 break;
5006 case 3:
5007 res = kvm_set_cr3(vcpu, val);
5008 break;
5009 case 4:
5010 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5011 break;
5012 case 8:
5013 res = kvm_set_cr8(vcpu, val);
5014 break;
5015 default:
5016 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5017 res = -1;
5018 }
5019
5020 return res;
5021}
5022
5023static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5024{
5025 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5026}
5027
5028static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5029{
5030 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5031}
5032
5033static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5034{
5035 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5036}
5037
5038static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5039{
5040 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5041}
5042
5043static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5044{
5045 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5046}
5047
5048static unsigned long emulator_get_cached_segment_base(
5049 struct x86_emulate_ctxt *ctxt, int seg)
5050{
5051 return get_segment_base(emul_to_vcpu(ctxt), seg);
5052}
5053
5054static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5055 struct desc_struct *desc, u32 *base3,
5056 int seg)
5057{
5058 struct kvm_segment var;
5059
5060 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5061 *selector = var.selector;
5062
5063 if (var.unusable) {
5064 memset(desc, 0, sizeof(*desc));
5065 return false;
5066 }
5067
5068 if (var.g)
5069 var.limit >>= 12;
5070 set_desc_limit(desc, var.limit);
5071 set_desc_base(desc, (unsigned long)var.base);
5072#ifdef CONFIG_X86_64
5073 if (base3)
5074 *base3 = var.base >> 32;
5075#endif
5076 desc->type = var.type;
5077 desc->s = var.s;
5078 desc->dpl = var.dpl;
5079 desc->p = var.present;
5080 desc->avl = var.avl;
5081 desc->l = var.l;
5082 desc->d = var.db;
5083 desc->g = var.g;
5084
5085 return true;
5086}
5087
5088static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5089 struct desc_struct *desc, u32 base3,
5090 int seg)
5091{
5092 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5093 struct kvm_segment var;
5094
5095 var.selector = selector;
5096 var.base = get_desc_base(desc);
5097#ifdef CONFIG_X86_64
5098 var.base |= ((u64)base3) << 32;
5099#endif
5100 var.limit = get_desc_limit(desc);
5101 if (desc->g)
5102 var.limit = (var.limit << 12) | 0xfff;
5103 var.type = desc->type;
5104 var.dpl = desc->dpl;
5105 var.db = desc->d;
5106 var.s = desc->s;
5107 var.l = desc->l;
5108 var.g = desc->g;
5109 var.avl = desc->avl;
5110 var.present = desc->p;
5111 var.unusable = !var.present;
5112 var.padding = 0;
5113
5114 kvm_set_segment(vcpu, &var, seg);
5115 return;
5116}
5117
5118static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5119 u32 msr_index, u64 *pdata)
5120{
5121 struct msr_data msr;
5122 int r;
5123
5124 msr.index = msr_index;
5125 msr.host_initiated = false;
5126 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5127 if (r)
5128 return r;
5129
5130 *pdata = msr.data;
5131 return 0;
5132}
5133
5134static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5135 u32 msr_index, u64 data)
5136{
5137 struct msr_data msr;
5138
5139 msr.data = data;
5140 msr.index = msr_index;
5141 msr.host_initiated = false;
5142 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5143}
5144
5145static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5146{
5147 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5148
5149 return vcpu->arch.smbase;
5150}
5151
5152static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5153{
5154 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5155
5156 vcpu->arch.smbase = smbase;
5157}
5158
5159static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5160 u32 pmc)
5161{
5162 return kvm_pmu_check_pmc(emul_to_vcpu(ctxt), pmc);
5163}
5164
5165static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5166 u32 pmc, u64 *pdata)
5167{
5168 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
5169}
5170
5171static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5172{
5173 emul_to_vcpu(ctxt)->arch.halt_request = 1;
5174}
5175
5176static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5177{
5178 preempt_disable();
5179 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5180 /*
5181 * CR0.TS may reference the host fpu state, not the guest fpu state,
5182 * so it may be clear at this point.
5183 */
5184 clts();
5185}
5186
5187static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5188{
5189 preempt_enable();
5190}
5191
5192static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5193 struct x86_instruction_info *info,
5194 enum x86_intercept_stage stage)
5195{
5196 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5197}
5198
5199static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5200 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5201{
5202 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5203}
5204
5205static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5206{
5207 return kvm_register_read(emul_to_vcpu(ctxt), reg);
5208}
5209
5210static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5211{
5212 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5213}
5214
5215static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5216{
5217 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5218}
5219
5220static const struct x86_emulate_ops emulate_ops = {
5221 .read_gpr = emulator_read_gpr,
5222 .write_gpr = emulator_write_gpr,
5223 .read_std = kvm_read_guest_virt_system,
5224 .write_std = kvm_write_guest_virt_system,
5225 .fetch = kvm_fetch_guest_virt,
5226 .read_emulated = emulator_read_emulated,
5227 .write_emulated = emulator_write_emulated,
5228 .cmpxchg_emulated = emulator_cmpxchg_emulated,
5229 .invlpg = emulator_invlpg,
5230 .pio_in_emulated = emulator_pio_in_emulated,
5231 .pio_out_emulated = emulator_pio_out_emulated,
5232 .get_segment = emulator_get_segment,
5233 .set_segment = emulator_set_segment,
5234 .get_cached_segment_base = emulator_get_cached_segment_base,
5235 .get_gdt = emulator_get_gdt,
5236 .get_idt = emulator_get_idt,
5237 .set_gdt = emulator_set_gdt,
5238 .set_idt = emulator_set_idt,
5239 .get_cr = emulator_get_cr,
5240 .set_cr = emulator_set_cr,
5241 .cpl = emulator_get_cpl,
5242 .get_dr = emulator_get_dr,
5243 .set_dr = emulator_set_dr,
5244 .get_smbase = emulator_get_smbase,
5245 .set_smbase = emulator_set_smbase,
5246 .set_msr = emulator_set_msr,
5247 .get_msr = emulator_get_msr,
5248 .check_pmc = emulator_check_pmc,
5249 .read_pmc = emulator_read_pmc,
5250 .halt = emulator_halt,
5251 .wbinvd = emulator_wbinvd,
5252 .fix_hypercall = emulator_fix_hypercall,
5253 .get_fpu = emulator_get_fpu,
5254 .put_fpu = emulator_put_fpu,
5255 .intercept = emulator_intercept,
5256 .get_cpuid = emulator_get_cpuid,
5257 .set_nmi_mask = emulator_set_nmi_mask,
5258};
5259
5260static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5261{
5262 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5263 /*
5264 * an sti; sti; sequence only disable interrupts for the first
5265 * instruction. So, if the last instruction, be it emulated or
5266 * not, left the system with the INT_STI flag enabled, it
5267 * means that the last instruction is an sti. We should not
5268 * leave the flag on in this case. The same goes for mov ss
5269 */
5270 if (int_shadow & mask)
5271 mask = 0;
5272 if (unlikely(int_shadow || mask)) {
5273 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5274 if (!mask)
5275 kvm_make_request(KVM_REQ_EVENT, vcpu);
5276 }
5277}
5278
5279static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5280{
5281 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5282 if (ctxt->exception.vector == PF_VECTOR)
5283 return kvm_propagate_fault(vcpu, &ctxt->exception);
5284
5285 if (ctxt->exception.error_code_valid)
5286 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5287 ctxt->exception.error_code);
5288 else
5289 kvm_queue_exception(vcpu, ctxt->exception.vector);
5290 return false;
5291}
5292
5293static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5294{
5295 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5296 int cs_db, cs_l;
5297
5298 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5299
5300 ctxt->eflags = kvm_get_rflags(vcpu);
5301 ctxt->eip = kvm_rip_read(vcpu);
5302 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5303 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5304 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5305 cs_db ? X86EMUL_MODE_PROT32 :
5306 X86EMUL_MODE_PROT16;
5307 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5308 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5309 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5310 ctxt->emul_flags = vcpu->arch.hflags;
5311
5312 init_decode_cache(ctxt);
5313 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5314}
5315
5316int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5317{
5318 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5319 int ret;
5320
5321 init_emulate_ctxt(vcpu);
5322
5323 ctxt->op_bytes = 2;
5324 ctxt->ad_bytes = 2;
5325 ctxt->_eip = ctxt->eip + inc_eip;
5326 ret = emulate_int_real(ctxt, irq);
5327
5328 if (ret != X86EMUL_CONTINUE)
5329 return EMULATE_FAIL;
5330
5331 ctxt->eip = ctxt->_eip;
5332 kvm_rip_write(vcpu, ctxt->eip);
5333 kvm_set_rflags(vcpu, ctxt->eflags);
5334
5335 if (irq == NMI_VECTOR)
5336 vcpu->arch.nmi_pending = 0;
5337 else
5338 vcpu->arch.interrupt.pending = false;
5339
5340 return EMULATE_DONE;
5341}
5342EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5343
5344static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5345{
5346 int r = EMULATE_DONE;
5347
5348 ++vcpu->stat.insn_emulation_fail;
5349 trace_kvm_emulate_insn_failed(vcpu);
5350 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5351 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5352 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5353 vcpu->run->internal.ndata = 0;
5354 r = EMULATE_FAIL;
5355 }
5356 kvm_queue_exception(vcpu, UD_VECTOR);
5357
5358 return r;
5359}
5360
5361static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5362 bool write_fault_to_shadow_pgtable,
5363 int emulation_type)
5364{
5365 gpa_t gpa = cr2;
5366 pfn_t pfn;
5367
5368 if (emulation_type & EMULTYPE_NO_REEXECUTE)
5369 return false;
5370
5371 if (!vcpu->arch.mmu.direct_map) {
5372 /*
5373 * Write permission should be allowed since only
5374 * write access need to be emulated.
5375 */
5376 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5377
5378 /*
5379 * If the mapping is invalid in guest, let cpu retry
5380 * it to generate fault.
5381 */
5382 if (gpa == UNMAPPED_GVA)
5383 return true;
5384 }
5385
5386 /*
5387 * Do not retry the unhandleable instruction if it faults on the
5388 * readonly host memory, otherwise it will goto a infinite loop:
5389 * retry instruction -> write #PF -> emulation fail -> retry
5390 * instruction -> ...
5391 */
5392 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5393
5394 /*
5395 * If the instruction failed on the error pfn, it can not be fixed,
5396 * report the error to userspace.
5397 */
5398 if (is_error_noslot_pfn(pfn))
5399 return false;
5400
5401 kvm_release_pfn_clean(pfn);
5402
5403 /* The instructions are well-emulated on direct mmu. */
5404 if (vcpu->arch.mmu.direct_map) {
5405 unsigned int indirect_shadow_pages;
5406
5407 spin_lock(&vcpu->kvm->mmu_lock);
5408 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5409 spin_unlock(&vcpu->kvm->mmu_lock);
5410
5411 if (indirect_shadow_pages)
5412 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5413
5414 return true;
5415 }
5416
5417 /*
5418 * if emulation was due to access to shadowed page table
5419 * and it failed try to unshadow page and re-enter the
5420 * guest to let CPU execute the instruction.
5421 */
5422 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5423
5424 /*
5425 * If the access faults on its page table, it can not
5426 * be fixed by unprotecting shadow page and it should
5427 * be reported to userspace.
5428 */
5429 return !write_fault_to_shadow_pgtable;
5430}
5431
5432static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5433 unsigned long cr2, int emulation_type)
5434{
5435 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5436 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5437
5438 last_retry_eip = vcpu->arch.last_retry_eip;
5439 last_retry_addr = vcpu->arch.last_retry_addr;
5440
5441 /*
5442 * If the emulation is caused by #PF and it is non-page_table
5443 * writing instruction, it means the VM-EXIT is caused by shadow
5444 * page protected, we can zap the shadow page and retry this
5445 * instruction directly.
5446 *
5447 * Note: if the guest uses a non-page-table modifying instruction
5448 * on the PDE that points to the instruction, then we will unmap
5449 * the instruction and go to an infinite loop. So, we cache the
5450 * last retried eip and the last fault address, if we meet the eip
5451 * and the address again, we can break out of the potential infinite
5452 * loop.
5453 */
5454 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5455
5456 if (!(emulation_type & EMULTYPE_RETRY))
5457 return false;
5458
5459 if (x86_page_table_writing_insn(ctxt))
5460 return false;
5461
5462 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5463 return false;
5464
5465 vcpu->arch.last_retry_eip = ctxt->eip;
5466 vcpu->arch.last_retry_addr = cr2;
5467
5468 if (!vcpu->arch.mmu.direct_map)
5469 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5470
5471 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5472
5473 return true;
5474}
5475
5476static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5477static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5478
5479static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5480{
5481 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5482 /* This is a good place to trace that we are exiting SMM. */
5483 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5484
5485 if (unlikely(vcpu->arch.smi_pending)) {
5486 kvm_make_request(KVM_REQ_SMI, vcpu);
5487 vcpu->arch.smi_pending = 0;
5488 } else {
5489 /* Process a latched INIT, if any. */
5490 kvm_make_request(KVM_REQ_EVENT, vcpu);
5491 }
5492 }
5493}
5494
5495static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5496{
5497 unsigned changed = vcpu->arch.hflags ^ emul_flags;
5498
5499 vcpu->arch.hflags = emul_flags;
5500
5501 if (changed & HF_SMM_MASK)
5502 kvm_smm_changed(vcpu);
5503}
5504
5505static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5506 unsigned long *db)
5507{
5508 u32 dr6 = 0;
5509 int i;
5510 u32 enable, rwlen;
5511
5512 enable = dr7;
5513 rwlen = dr7 >> 16;
5514 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5515 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5516 dr6 |= (1 << i);
5517 return dr6;
5518}
5519
5520static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5521{
5522 struct kvm_run *kvm_run = vcpu->run;
5523
5524 /*
5525 * rflags is the old, "raw" value of the flags. The new value has
5526 * not been saved yet.
5527 *
5528 * This is correct even for TF set by the guest, because "the
5529 * processor will not generate this exception after the instruction
5530 * that sets the TF flag".
5531 */
5532 if (unlikely(rflags & X86_EFLAGS_TF)) {
5533 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5534 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5535 DR6_RTM;
5536 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5537 kvm_run->debug.arch.exception = DB_VECTOR;
5538 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5539 *r = EMULATE_USER_EXIT;
5540 } else {
5541 vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5542 /*
5543 * "Certain debug exceptions may clear bit 0-3. The
5544 * remaining contents of the DR6 register are never
5545 * cleared by the processor".
5546 */
5547 vcpu->arch.dr6 &= ~15;
5548 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5549 kvm_queue_exception(vcpu, DB_VECTOR);
5550 }
5551 }
5552}
5553
5554static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5555{
5556 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5557 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5558 struct kvm_run *kvm_run = vcpu->run;
5559 unsigned long eip = kvm_get_linear_rip(vcpu);
5560 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5561 vcpu->arch.guest_debug_dr7,
5562 vcpu->arch.eff_db);
5563
5564 if (dr6 != 0) {
5565 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5566 kvm_run->debug.arch.pc = eip;
5567 kvm_run->debug.arch.exception = DB_VECTOR;
5568 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5569 *r = EMULATE_USER_EXIT;
5570 return true;
5571 }
5572 }
5573
5574 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5575 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5576 unsigned long eip = kvm_get_linear_rip(vcpu);
5577 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5578 vcpu->arch.dr7,
5579 vcpu->arch.db);
5580
5581 if (dr6 != 0) {
5582 vcpu->arch.dr6 &= ~15;
5583 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5584 kvm_queue_exception(vcpu, DB_VECTOR);
5585 *r = EMULATE_DONE;
5586 return true;
5587 }
5588 }
5589
5590 return false;
5591}
5592
5593int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5594 unsigned long cr2,
5595 int emulation_type,
5596 void *insn,
5597 int insn_len)
5598{
5599 int r;
5600 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5601 bool writeback = true;
5602 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5603
5604 /*
5605 * Clear write_fault_to_shadow_pgtable here to ensure it is
5606 * never reused.
5607 */
5608 vcpu->arch.write_fault_to_shadow_pgtable = false;
5609 kvm_clear_exception_queue(vcpu);
5610
5611 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5612 init_emulate_ctxt(vcpu);
5613
5614 /*
5615 * We will reenter on the same instruction since
5616 * we do not set complete_userspace_io. This does not
5617 * handle watchpoints yet, those would be handled in
5618 * the emulate_ops.
5619 */
5620 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5621 return r;
5622
5623 ctxt->interruptibility = 0;
5624 ctxt->have_exception = false;
5625 ctxt->exception.vector = -1;
5626 ctxt->perm_ok = false;
5627
5628 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5629
5630 r = x86_decode_insn(ctxt, insn, insn_len);
5631
5632 trace_kvm_emulate_insn_start(vcpu);
5633 ++vcpu->stat.insn_emulation;
5634 if (r != EMULATION_OK) {
5635 if (emulation_type & EMULTYPE_TRAP_UD)
5636 return EMULATE_FAIL;
5637 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5638 emulation_type))
5639 return EMULATE_DONE;
5640 if (emulation_type & EMULTYPE_SKIP)
5641 return EMULATE_FAIL;
5642 return handle_emulation_failure(vcpu);
5643 }
5644 }
5645
5646 if (emulation_type & EMULTYPE_SKIP) {
5647 kvm_rip_write(vcpu, ctxt->_eip);
5648 if (ctxt->eflags & X86_EFLAGS_RF)
5649 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5650 return EMULATE_DONE;
5651 }
5652
5653 if (retry_instruction(ctxt, cr2, emulation_type))
5654 return EMULATE_DONE;
5655
5656 /* this is needed for vmware backdoor interface to work since it
5657 changes registers values during IO operation */
5658 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5659 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5660 emulator_invalidate_register_cache(ctxt);
5661 }
5662
5663restart:
5664 r = x86_emulate_insn(ctxt);
5665
5666 if (r == EMULATION_INTERCEPTED)
5667 return EMULATE_DONE;
5668
5669 if (r == EMULATION_FAILED) {
5670 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5671 emulation_type))
5672 return EMULATE_DONE;
5673
5674 return handle_emulation_failure(vcpu);
5675 }
5676
5677 if (ctxt->have_exception) {
5678 r = EMULATE_DONE;
5679 if (inject_emulated_exception(vcpu))
5680 return r;
5681 } else if (vcpu->arch.pio.count) {
5682 if (!vcpu->arch.pio.in) {
5683 /* FIXME: return into emulator if single-stepping. */
5684 vcpu->arch.pio.count = 0;
5685 } else {
5686 writeback = false;
5687 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5688 }
5689 r = EMULATE_USER_EXIT;
5690 } else if (vcpu->mmio_needed) {
5691 if (!vcpu->mmio_is_write)
5692 writeback = false;
5693 r = EMULATE_USER_EXIT;
5694 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5695 } else if (r == EMULATION_RESTART)
5696 goto restart;
5697 else
5698 r = EMULATE_DONE;
5699
5700 if (writeback) {
5701 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5702 toggle_interruptibility(vcpu, ctxt->interruptibility);
5703 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5704 if (vcpu->arch.hflags != ctxt->emul_flags)
5705 kvm_set_hflags(vcpu, ctxt->emul_flags);
5706 kvm_rip_write(vcpu, ctxt->eip);
5707 if (r == EMULATE_DONE)
5708 kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5709 if (!ctxt->have_exception ||
5710 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5711 __kvm_set_rflags(vcpu, ctxt->eflags);
5712
5713 /*
5714 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5715 * do nothing, and it will be requested again as soon as
5716 * the shadow expires. But we still need to check here,
5717 * because POPF has no interrupt shadow.
5718 */
5719 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5720 kvm_make_request(KVM_REQ_EVENT, vcpu);
5721 } else
5722 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5723
5724 return r;
5725}
5726EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5727
5728int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5729{
5730 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5731 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5732 size, port, &val, 1);
5733 /* do not return to emulator after return from userspace */
5734 vcpu->arch.pio.count = 0;
5735 return ret;
5736}
5737EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5738
5739static void tsc_bad(void *info)
5740{
5741 __this_cpu_write(cpu_tsc_khz, 0);
5742}
5743
5744static void tsc_khz_changed(void *data)
5745{
5746 struct cpufreq_freqs *freq = data;
5747 unsigned long khz = 0;
5748
5749 if (data)
5750 khz = freq->new;
5751 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5752 khz = cpufreq_quick_get(raw_smp_processor_id());
5753 if (!khz)
5754 khz = tsc_khz;
5755 __this_cpu_write(cpu_tsc_khz, khz);
5756}
5757
5758static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5759 void *data)
5760{
5761 struct cpufreq_freqs *freq = data;
5762 struct kvm *kvm;
5763 struct kvm_vcpu *vcpu;
5764 int i, send_ipi = 0;
5765
5766 /*
5767 * We allow guests to temporarily run on slowing clocks,
5768 * provided we notify them after, or to run on accelerating
5769 * clocks, provided we notify them before. Thus time never
5770 * goes backwards.
5771 *
5772 * However, we have a problem. We can't atomically update
5773 * the frequency of a given CPU from this function; it is
5774 * merely a notifier, which can be called from any CPU.
5775 * Changing the TSC frequency at arbitrary points in time
5776 * requires a recomputation of local variables related to
5777 * the TSC for each VCPU. We must flag these local variables
5778 * to be updated and be sure the update takes place with the
5779 * new frequency before any guests proceed.
5780 *
5781 * Unfortunately, the combination of hotplug CPU and frequency
5782 * change creates an intractable locking scenario; the order
5783 * of when these callouts happen is undefined with respect to
5784 * CPU hotplug, and they can race with each other. As such,
5785 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5786 * undefined; you can actually have a CPU frequency change take
5787 * place in between the computation of X and the setting of the
5788 * variable. To protect against this problem, all updates of
5789 * the per_cpu tsc_khz variable are done in an interrupt
5790 * protected IPI, and all callers wishing to update the value
5791 * must wait for a synchronous IPI to complete (which is trivial
5792 * if the caller is on the CPU already). This establishes the
5793 * necessary total order on variable updates.
5794 *
5795 * Note that because a guest time update may take place
5796 * anytime after the setting of the VCPU's request bit, the
5797 * correct TSC value must be set before the request. However,
5798 * to ensure the update actually makes it to any guest which
5799 * starts running in hardware virtualization between the set
5800 * and the acquisition of the spinlock, we must also ping the
5801 * CPU after setting the request bit.
5802 *
5803 */
5804
5805 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5806 return 0;
5807 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5808 return 0;
5809
5810 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5811
5812 spin_lock(&kvm_lock);
5813 list_for_each_entry(kvm, &vm_list, vm_list) {
5814 kvm_for_each_vcpu(i, vcpu, kvm) {
5815 if (vcpu->cpu != freq->cpu)
5816 continue;
5817 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5818 if (vcpu->cpu != smp_processor_id())
5819 send_ipi = 1;
5820 }
5821 }
5822 spin_unlock(&kvm_lock);
5823
5824 if (freq->old < freq->new && send_ipi) {
5825 /*
5826 * We upscale the frequency. Must make the guest
5827 * doesn't see old kvmclock values while running with
5828 * the new frequency, otherwise we risk the guest sees
5829 * time go backwards.
5830 *
5831 * In case we update the frequency for another cpu
5832 * (which might be in guest context) send an interrupt
5833 * to kick the cpu out of guest context. Next time
5834 * guest context is entered kvmclock will be updated,
5835 * so the guest will not see stale values.
5836 */
5837 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5838 }
5839 return 0;
5840}
5841
5842static struct notifier_block kvmclock_cpufreq_notifier_block = {
5843 .notifier_call = kvmclock_cpufreq_notifier
5844};
5845
5846static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5847 unsigned long action, void *hcpu)
5848{
5849 unsigned int cpu = (unsigned long)hcpu;
5850
5851 switch (action) {
5852 case CPU_ONLINE:
5853 case CPU_DOWN_FAILED:
5854 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5855 break;
5856 case CPU_DOWN_PREPARE:
5857 smp_call_function_single(cpu, tsc_bad, NULL, 1);
5858 break;
5859 }
5860 return NOTIFY_OK;
5861}
5862
5863static struct notifier_block kvmclock_cpu_notifier_block = {
5864 .notifier_call = kvmclock_cpu_notifier,
5865 .priority = -INT_MAX
5866};
5867
5868static void kvm_timer_init(void)
5869{
5870 int cpu;
5871
5872 max_tsc_khz = tsc_khz;
5873
5874 cpu_notifier_register_begin();
5875 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5876#ifdef CONFIG_CPU_FREQ
5877 struct cpufreq_policy policy;
5878 memset(&policy, 0, sizeof(policy));
5879 cpu = get_cpu();
5880 cpufreq_get_policy(&policy, cpu);
5881 if (policy.cpuinfo.max_freq)
5882 max_tsc_khz = policy.cpuinfo.max_freq;
5883 put_cpu();
5884#endif
5885 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5886 CPUFREQ_TRANSITION_NOTIFIER);
5887 }
5888 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5889 for_each_online_cpu(cpu)
5890 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5891
5892 __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5893 cpu_notifier_register_done();
5894
5895}
5896
5897static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5898
5899int kvm_is_in_guest(void)
5900{
5901 return __this_cpu_read(current_vcpu) != NULL;
5902}
5903
5904static int kvm_is_user_mode(void)
5905{
5906 int user_mode = 3;
5907
5908 if (__this_cpu_read(current_vcpu))
5909 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5910
5911 return user_mode != 0;
5912}
5913
5914static unsigned long kvm_get_guest_ip(void)
5915{
5916 unsigned long ip = 0;
5917
5918 if (__this_cpu_read(current_vcpu))
5919 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5920
5921 return ip;
5922}
5923
5924static struct perf_guest_info_callbacks kvm_guest_cbs = {
5925 .is_in_guest = kvm_is_in_guest,
5926 .is_user_mode = kvm_is_user_mode,
5927 .get_guest_ip = kvm_get_guest_ip,
5928};
5929
5930void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5931{
5932 __this_cpu_write(current_vcpu, vcpu);
5933}
5934EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5935
5936void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5937{
5938 __this_cpu_write(current_vcpu, NULL);
5939}
5940EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5941
5942static void kvm_set_mmio_spte_mask(void)
5943{
5944 u64 mask;
5945 int maxphyaddr = boot_cpu_data.x86_phys_bits;
5946
5947 /*
5948 * Set the reserved bits and the present bit of an paging-structure
5949 * entry to generate page fault with PFER.RSV = 1.
5950 */
5951 /* Mask the reserved physical address bits. */
5952 mask = rsvd_bits(maxphyaddr, 51);
5953
5954 /* Bit 62 is always reserved for 32bit host. */
5955 mask |= 0x3ull << 62;
5956
5957 /* Set the present bit. */
5958 mask |= 1ull;
5959
5960#ifdef CONFIG_X86_64
5961 /*
5962 * If reserved bit is not supported, clear the present bit to disable
5963 * mmio page fault.
5964 */
5965 if (maxphyaddr == 52)
5966 mask &= ~1ull;
5967#endif
5968
5969 kvm_mmu_set_mmio_spte_mask(mask);
5970}
5971
5972#ifdef CONFIG_X86_64
5973static void pvclock_gtod_update_fn(struct work_struct *work)
5974{
5975 struct kvm *kvm;
5976
5977 struct kvm_vcpu *vcpu;
5978 int i;
5979
5980 spin_lock(&kvm_lock);
5981 list_for_each_entry(kvm, &vm_list, vm_list)
5982 kvm_for_each_vcpu(i, vcpu, kvm)
5983 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5984 atomic_set(&kvm_guest_has_master_clock, 0);
5985 spin_unlock(&kvm_lock);
5986}
5987
5988static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5989
5990/*
5991 * Notification about pvclock gtod data update.
5992 */
5993static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5994 void *priv)
5995{
5996 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5997 struct timekeeper *tk = priv;
5998
5999 update_pvclock_gtod(tk);
6000
6001 /* disable master clock if host does not trust, or does not
6002 * use, TSC clocksource
6003 */
6004 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
6005 atomic_read(&kvm_guest_has_master_clock) != 0)
6006 queue_work(system_long_wq, &pvclock_gtod_work);
6007
6008 return 0;
6009}
6010
6011static struct notifier_block pvclock_gtod_notifier = {
6012 .notifier_call = pvclock_gtod_notify,
6013};
6014#endif
6015
6016int kvm_arch_init(void *opaque)
6017{
6018 int r;
6019 struct kvm_x86_ops *ops = opaque;
6020
6021 if (kvm_x86_ops) {
6022 printk(KERN_ERR "kvm: already loaded the other module\n");
6023 r = -EEXIST;
6024 goto out;
6025 }
6026
6027 if (!ops->cpu_has_kvm_support()) {
6028 printk(KERN_ERR "kvm: no hardware support\n");
6029 r = -EOPNOTSUPP;
6030 goto out;
6031 }
6032 if (ops->disabled_by_bios()) {
6033 printk(KERN_ERR "kvm: disabled by bios\n");
6034 r = -EOPNOTSUPP;
6035 goto out;
6036 }
6037
6038 r = -ENOMEM;
6039 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6040 if (!shared_msrs) {
6041 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6042 goto out;
6043 }
6044
6045 r = kvm_mmu_module_init();
6046 if (r)
6047 goto out_free_percpu;
6048
6049 kvm_set_mmio_spte_mask();
6050
6051 kvm_x86_ops = ops;
6052
6053 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6054 PT_DIRTY_MASK, PT64_NX_MASK, 0);
6055
6056 kvm_timer_init();
6057
6058 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6059
6060 if (cpu_has_xsave)
6061 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6062
6063 kvm_lapic_init();
6064#ifdef CONFIG_X86_64
6065 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6066#endif
6067
6068 return 0;
6069
6070out_free_percpu:
6071 free_percpu(shared_msrs);
6072out:
6073 return r;
6074}
6075
6076void kvm_arch_exit(void)
6077{
6078 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6079
6080 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6081 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6082 CPUFREQ_TRANSITION_NOTIFIER);
6083 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
6084#ifdef CONFIG_X86_64
6085 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6086#endif
6087 kvm_x86_ops = NULL;
6088 kvm_mmu_module_exit();
6089 free_percpu(shared_msrs);
6090}
6091
6092int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6093{
6094 ++vcpu->stat.halt_exits;
6095 if (irqchip_in_kernel(vcpu->kvm)) {
6096 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6097 return 1;
6098 } else {
6099 vcpu->run->exit_reason = KVM_EXIT_HLT;
6100 return 0;
6101 }
6102}
6103EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6104
6105int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6106{
6107 kvm_x86_ops->skip_emulated_instruction(vcpu);
6108 return kvm_vcpu_halt(vcpu);
6109}
6110EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6111
6112int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
6113{
6114 u64 param, ingpa, outgpa, ret;
6115 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
6116 bool fast, longmode;
6117
6118 /*
6119 * hypercall generates UD from non zero cpl and real mode
6120 * per HYPER-V spec
6121 */
6122 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
6123 kvm_queue_exception(vcpu, UD_VECTOR);
6124 return 0;
6125 }
6126
6127 longmode = is_64_bit_mode(vcpu);
6128
6129 if (!longmode) {
6130 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
6131 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
6132 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
6133 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
6134 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
6135 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
6136 }
6137#ifdef CONFIG_X86_64
6138 else {
6139 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
6140 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
6141 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
6142 }
6143#endif
6144
6145 code = param & 0xffff;
6146 fast = (param >> 16) & 0x1;
6147 rep_cnt = (param >> 32) & 0xfff;
6148 rep_idx = (param >> 48) & 0xfff;
6149
6150 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
6151
6152 switch (code) {
6153 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
6154 kvm_vcpu_on_spin(vcpu);
6155 break;
6156 default:
6157 res = HV_STATUS_INVALID_HYPERCALL_CODE;
6158 break;
6159 }
6160
6161 ret = res | (((u64)rep_done & 0xfff) << 32);
6162 if (longmode) {
6163 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6164 } else {
6165 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
6166 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
6167 }
6168
6169 return 1;
6170}
6171
6172/*
6173 * kvm_pv_kick_cpu_op: Kick a vcpu.
6174 *
6175 * @apicid - apicid of vcpu to be kicked.
6176 */
6177static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6178{
6179 struct kvm_lapic_irq lapic_irq;
6180
6181 lapic_irq.shorthand = 0;
6182 lapic_irq.dest_mode = 0;
6183 lapic_irq.dest_id = apicid;
6184 lapic_irq.msi_redir_hint = false;
6185
6186 lapic_irq.delivery_mode = APIC_DM_REMRD;
6187 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6188}
6189
6190int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6191{
6192 unsigned long nr, a0, a1, a2, a3, ret;
6193 int op_64_bit, r = 1;
6194
6195 kvm_x86_ops->skip_emulated_instruction(vcpu);
6196
6197 if (kvm_hv_hypercall_enabled(vcpu->kvm))
6198 return kvm_hv_hypercall(vcpu);
6199
6200 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6201 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6202 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6203 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6204 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6205
6206 trace_kvm_hypercall(nr, a0, a1, a2, a3);
6207
6208 op_64_bit = is_64_bit_mode(vcpu);
6209 if (!op_64_bit) {
6210 nr &= 0xFFFFFFFF;
6211 a0 &= 0xFFFFFFFF;
6212 a1 &= 0xFFFFFFFF;
6213 a2 &= 0xFFFFFFFF;
6214 a3 &= 0xFFFFFFFF;
6215 }
6216
6217 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6218 ret = -KVM_EPERM;
6219 goto out;
6220 }
6221
6222 switch (nr) {
6223 case KVM_HC_VAPIC_POLL_IRQ:
6224 ret = 0;
6225 break;
6226 case KVM_HC_KICK_CPU:
6227 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6228 ret = 0;
6229 break;
6230 default:
6231 ret = -KVM_ENOSYS;
6232 break;
6233 }
6234out:
6235 if (!op_64_bit)
6236 ret = (u32)ret;
6237 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6238 ++vcpu->stat.hypercalls;
6239 return r;
6240}
6241EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6242
6243static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6244{
6245 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6246 char instruction[3];
6247 unsigned long rip = kvm_rip_read(vcpu);
6248
6249 kvm_x86_ops->patch_hypercall(vcpu, instruction);
6250
6251 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6252}
6253
6254/*
6255 * Check if userspace requested an interrupt window, and that the
6256 * interrupt window is open.
6257 *
6258 * No need to exit to userspace if we already have an interrupt queued.
6259 */
6260static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6261{
6262 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
6263 vcpu->run->request_interrupt_window &&
6264 kvm_arch_interrupt_allowed(vcpu));
6265}
6266
6267static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6268{
6269 struct kvm_run *kvm_run = vcpu->run;
6270
6271 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6272 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6273 kvm_run->cr8 = kvm_get_cr8(vcpu);
6274 kvm_run->apic_base = kvm_get_apic_base(vcpu);
6275 if (irqchip_in_kernel(vcpu->kvm))
6276 kvm_run->ready_for_interrupt_injection = 1;
6277 else
6278 kvm_run->ready_for_interrupt_injection =
6279 kvm_arch_interrupt_allowed(vcpu) &&
6280 !kvm_cpu_has_interrupt(vcpu) &&
6281 !kvm_event_needs_reinjection(vcpu);
6282}
6283
6284static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6285{
6286 int max_irr, tpr;
6287
6288 if (!kvm_x86_ops->update_cr8_intercept)
6289 return;
6290
6291 if (!vcpu->arch.apic)
6292 return;
6293
6294 if (!vcpu->arch.apic->vapic_addr)
6295 max_irr = kvm_lapic_find_highest_irr(vcpu);
6296 else
6297 max_irr = -1;
6298
6299 if (max_irr != -1)
6300 max_irr >>= 4;
6301
6302 tpr = kvm_lapic_get_cr8(vcpu);
6303
6304 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6305}
6306
6307static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6308{
6309 int r;
6310
6311 /* try to reinject previous events if any */
6312 if (vcpu->arch.exception.pending) {
6313 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6314 vcpu->arch.exception.has_error_code,
6315 vcpu->arch.exception.error_code);
6316
6317 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6318 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6319 X86_EFLAGS_RF);
6320
6321 if (vcpu->arch.exception.nr == DB_VECTOR &&
6322 (vcpu->arch.dr7 & DR7_GD)) {
6323 vcpu->arch.dr7 &= ~DR7_GD;
6324 kvm_update_dr7(vcpu);
6325 }
6326
6327 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6328 vcpu->arch.exception.has_error_code,
6329 vcpu->arch.exception.error_code,
6330 vcpu->arch.exception.reinject);
6331 return 0;
6332 }
6333
6334 if (vcpu->arch.nmi_injected) {
6335 kvm_x86_ops->set_nmi(vcpu);
6336 return 0;
6337 }
6338
6339 if (vcpu->arch.interrupt.pending) {
6340 kvm_x86_ops->set_irq(vcpu);
6341 return 0;
6342 }
6343
6344 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6345 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6346 if (r != 0)
6347 return r;
6348 }
6349
6350 /* try to inject new event if pending */
6351 if (vcpu->arch.nmi_pending) {
6352 if (kvm_x86_ops->nmi_allowed(vcpu)) {
6353 --vcpu->arch.nmi_pending;
6354 vcpu->arch.nmi_injected = true;
6355 kvm_x86_ops->set_nmi(vcpu);
6356 }
6357 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6358 /*
6359 * Because interrupts can be injected asynchronously, we are
6360 * calling check_nested_events again here to avoid a race condition.
6361 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6362 * proposal and current concerns. Perhaps we should be setting
6363 * KVM_REQ_EVENT only on certain events and not unconditionally?
6364 */
6365 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6366 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6367 if (r != 0)
6368 return r;
6369 }
6370 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6371 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6372 false);
6373 kvm_x86_ops->set_irq(vcpu);
6374 }
6375 }
6376 return 0;
6377}
6378
6379static void process_nmi(struct kvm_vcpu *vcpu)
6380{
6381 unsigned limit = 2;
6382
6383 /*
6384 * x86 is limited to one NMI running, and one NMI pending after it.
6385 * If an NMI is already in progress, limit further NMIs to just one.
6386 * Otherwise, allow two (and we'll inject the first one immediately).
6387 */
6388 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6389 limit = 1;
6390
6391 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6392 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6393 kvm_make_request(KVM_REQ_EVENT, vcpu);
6394}
6395
6396#define put_smstate(type, buf, offset, val) \
6397 *(type *)((buf) + (offset) - 0x7e00) = val
6398
6399static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
6400{
6401 u32 flags = 0;
6402 flags |= seg->g << 23;
6403 flags |= seg->db << 22;
6404 flags |= seg->l << 21;
6405 flags |= seg->avl << 20;
6406 flags |= seg->present << 15;
6407 flags |= seg->dpl << 13;
6408 flags |= seg->s << 12;
6409 flags |= seg->type << 8;
6410 return flags;
6411}
6412
6413static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6414{
6415 struct kvm_segment seg;
6416 int offset;
6417
6418 kvm_get_segment(vcpu, &seg, n);
6419 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6420
6421 if (n < 3)
6422 offset = 0x7f84 + n * 12;
6423 else
6424 offset = 0x7f2c + (n - 3) * 12;
6425
6426 put_smstate(u32, buf, offset + 8, seg.base);
6427 put_smstate(u32, buf, offset + 4, seg.limit);
6428 put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
6429}
6430
6431static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6432{
6433 struct kvm_segment seg;
6434 int offset;
6435 u16 flags;
6436
6437 kvm_get_segment(vcpu, &seg, n);
6438 offset = 0x7e00 + n * 16;
6439
6440 flags = process_smi_get_segment_flags(&seg) >> 8;
6441 put_smstate(u16, buf, offset, seg.selector);
6442 put_smstate(u16, buf, offset + 2, flags);
6443 put_smstate(u32, buf, offset + 4, seg.limit);
6444 put_smstate(u64, buf, offset + 8, seg.base);
6445}
6446
6447static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6448{
6449 struct desc_ptr dt;
6450 struct kvm_segment seg;
6451 unsigned long val;
6452 int i;
6453
6454 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6455 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6456 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6457 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6458
6459 for (i = 0; i < 8; i++)
6460 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6461
6462 kvm_get_dr(vcpu, 6, &val);
6463 put_smstate(u32, buf, 0x7fcc, (u32)val);
6464 kvm_get_dr(vcpu, 7, &val);
6465 put_smstate(u32, buf, 0x7fc8, (u32)val);
6466
6467 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6468 put_smstate(u32, buf, 0x7fc4, seg.selector);
6469 put_smstate(u32, buf, 0x7f64, seg.base);
6470 put_smstate(u32, buf, 0x7f60, seg.limit);
6471 put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
6472
6473 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6474 put_smstate(u32, buf, 0x7fc0, seg.selector);
6475 put_smstate(u32, buf, 0x7f80, seg.base);
6476 put_smstate(u32, buf, 0x7f7c, seg.limit);
6477 put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
6478
6479 kvm_x86_ops->get_gdt(vcpu, &dt);
6480 put_smstate(u32, buf, 0x7f74, dt.address);
6481 put_smstate(u32, buf, 0x7f70, dt.size);
6482
6483 kvm_x86_ops->get_idt(vcpu, &dt);
6484 put_smstate(u32, buf, 0x7f58, dt.address);
6485 put_smstate(u32, buf, 0x7f54, dt.size);
6486
6487 for (i = 0; i < 6; i++)
6488 process_smi_save_seg_32(vcpu, buf, i);
6489
6490 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6491
6492 /* revision id */
6493 put_smstate(u32, buf, 0x7efc, 0x00020000);
6494 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6495}
6496
6497static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6498{
6499#ifdef CONFIG_X86_64
6500 struct desc_ptr dt;
6501 struct kvm_segment seg;
6502 unsigned long val;
6503 int i;
6504
6505 for (i = 0; i < 16; i++)
6506 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6507
6508 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6509 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6510
6511 kvm_get_dr(vcpu, 6, &val);
6512 put_smstate(u64, buf, 0x7f68, val);
6513 kvm_get_dr(vcpu, 7, &val);
6514 put_smstate(u64, buf, 0x7f60, val);
6515
6516 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6517 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6518 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6519
6520 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6521
6522 /* revision id */
6523 put_smstate(u32, buf, 0x7efc, 0x00020064);
6524
6525 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6526
6527 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6528 put_smstate(u16, buf, 0x7e90, seg.selector);
6529 put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6530 put_smstate(u32, buf, 0x7e94, seg.limit);
6531 put_smstate(u64, buf, 0x7e98, seg.base);
6532
6533 kvm_x86_ops->get_idt(vcpu, &dt);
6534 put_smstate(u32, buf, 0x7e84, dt.size);
6535 put_smstate(u64, buf, 0x7e88, dt.address);
6536
6537 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6538 put_smstate(u16, buf, 0x7e70, seg.selector);
6539 put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6540 put_smstate(u32, buf, 0x7e74, seg.limit);
6541 put_smstate(u64, buf, 0x7e78, seg.base);
6542
6543 kvm_x86_ops->get_gdt(vcpu, &dt);
6544 put_smstate(u32, buf, 0x7e64, dt.size);
6545 put_smstate(u64, buf, 0x7e68, dt.address);
6546
6547 for (i = 0; i < 6; i++)
6548 process_smi_save_seg_64(vcpu, buf, i);
6549#else
6550 WARN_ON_ONCE(1);
6551#endif
6552}
6553
6554static void process_smi(struct kvm_vcpu *vcpu)
6555{
6556 struct kvm_segment cs, ds;
6557 char buf[512];
6558 u32 cr0;
6559
6560 if (is_smm(vcpu)) {
6561 vcpu->arch.smi_pending = true;
6562 return;
6563 }
6564
6565 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6566 vcpu->arch.hflags |= HF_SMM_MASK;
6567 memset(buf, 0, 512);
6568 if (guest_cpuid_has_longmode(vcpu))
6569 process_smi_save_state_64(vcpu, buf);
6570 else
6571 process_smi_save_state_32(vcpu, buf);
6572
6573 kvm_write_guest(vcpu->kvm, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6574
6575 if (kvm_x86_ops->get_nmi_mask(vcpu))
6576 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6577 else
6578 kvm_x86_ops->set_nmi_mask(vcpu, true);
6579
6580 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6581 kvm_rip_write(vcpu, 0x8000);
6582
6583 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6584 kvm_x86_ops->set_cr0(vcpu, cr0);
6585 vcpu->arch.cr0 = cr0;
6586
6587 kvm_x86_ops->set_cr4(vcpu, 0);
6588
6589 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6590
6591 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6592 cs.base = vcpu->arch.smbase;
6593
6594 ds.selector = 0;
6595 ds.base = 0;
6596
6597 cs.limit = ds.limit = 0xffffffff;
6598 cs.type = ds.type = 0x3;
6599 cs.dpl = ds.dpl = 0;
6600 cs.db = ds.db = 0;
6601 cs.s = ds.s = 1;
6602 cs.l = ds.l = 0;
6603 cs.g = ds.g = 1;
6604 cs.avl = ds.avl = 0;
6605 cs.present = ds.present = 1;
6606 cs.unusable = ds.unusable = 0;
6607 cs.padding = ds.padding = 0;
6608
6609 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6610 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6611 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6612 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6613 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6614 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6615
6616 if (guest_cpuid_has_longmode(vcpu))
6617 kvm_x86_ops->set_efer(vcpu, 0);
6618
6619 kvm_update_cpuid(vcpu);
6620 kvm_mmu_reset_context(vcpu);
6621}
6622
6623static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6624{
6625 u64 eoi_exit_bitmap[4];
6626 u32 tmr[8];
6627
6628 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6629 return;
6630
6631 memset(eoi_exit_bitmap, 0, 32);
6632 memset(tmr, 0, 32);
6633
6634 kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
6635 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6636 kvm_apic_update_tmr(vcpu, tmr);
6637}
6638
6639static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6640{
6641 ++vcpu->stat.tlb_flush;
6642 kvm_x86_ops->tlb_flush(vcpu);
6643}
6644
6645void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6646{
6647 struct page *page = NULL;
6648
6649 if (!irqchip_in_kernel(vcpu->kvm))
6650 return;
6651
6652 if (!kvm_x86_ops->set_apic_access_page_addr)
6653 return;
6654
6655 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6656 if (is_error_page(page))
6657 return;
6658 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6659
6660 /*
6661 * Do not pin apic access page in memory, the MMU notifier
6662 * will call us again if it is migrated or swapped out.
6663 */
6664 put_page(page);
6665}
6666EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6667
6668void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6669 unsigned long address)
6670{
6671 /*
6672 * The physical address of apic access page is stored in the VMCS.
6673 * Update it when it becomes invalid.
6674 */
6675 if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6676 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6677}
6678
6679/*
6680 * Returns 1 to let vcpu_run() continue the guest execution loop without
6681 * exiting to the userspace. Otherwise, the value will be returned to the
6682 * userspace.
6683 */
6684static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6685{
6686 int r;
6687 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
6688 vcpu->run->request_interrupt_window;
6689 bool req_immediate_exit = false;
6690
6691 if (vcpu->requests) {
6692 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6693 kvm_mmu_unload(vcpu);
6694 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6695 __kvm_migrate_timers(vcpu);
6696 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6697 kvm_gen_update_masterclock(vcpu->kvm);
6698 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6699 kvm_gen_kvmclock_update(vcpu);
6700 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6701 r = kvm_guest_time_update(vcpu);
6702 if (unlikely(r))
6703 goto out;
6704 }
6705 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6706 kvm_mmu_sync_roots(vcpu);
6707 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6708 kvm_vcpu_flush_tlb(vcpu);
6709 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6710 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6711 r = 0;
6712 goto out;
6713 }
6714 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6715 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6716 r = 0;
6717 goto out;
6718 }
6719 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6720 vcpu->fpu_active = 0;
6721 kvm_x86_ops->fpu_deactivate(vcpu);
6722 }
6723 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6724 /* Page is swapped out. Do synthetic halt */
6725 vcpu->arch.apf.halted = true;
6726 r = 1;
6727 goto out;
6728 }
6729 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6730 record_steal_time(vcpu);
6731 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6732 process_smi(vcpu);
6733 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6734 process_nmi(vcpu);
6735 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6736 kvm_handle_pmu_event(vcpu);
6737 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6738 kvm_deliver_pmi(vcpu);
6739 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6740 vcpu_scan_ioapic(vcpu);
6741 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6742 kvm_vcpu_reload_apic_access_page(vcpu);
6743 }
6744
6745 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6746 kvm_apic_accept_events(vcpu);
6747 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6748 r = 1;
6749 goto out;
6750 }
6751
6752 if (inject_pending_event(vcpu, req_int_win) != 0)
6753 req_immediate_exit = true;
6754 /* enable NMI/IRQ window open exits if needed */
6755 else if (vcpu->arch.nmi_pending)
6756 kvm_x86_ops->enable_nmi_window(vcpu);
6757 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6758 kvm_x86_ops->enable_irq_window(vcpu);
6759
6760 if (kvm_lapic_enabled(vcpu)) {
6761 /*
6762 * Update architecture specific hints for APIC
6763 * virtual interrupt delivery.
6764 */
6765 if (kvm_x86_ops->hwapic_irr_update)
6766 kvm_x86_ops->hwapic_irr_update(vcpu,
6767 kvm_lapic_find_highest_irr(vcpu));
6768 update_cr8_intercept(vcpu);
6769 kvm_lapic_sync_to_vapic(vcpu);
6770 }
6771 }
6772
6773 r = kvm_mmu_reload(vcpu);
6774 if (unlikely(r)) {
6775 goto cancel_injection;
6776 }
6777
6778 preempt_disable();
6779
6780 kvm_x86_ops->prepare_guest_switch(vcpu);
6781 if (vcpu->fpu_active)
6782 kvm_load_guest_fpu(vcpu);
6783 kvm_load_guest_xcr0(vcpu);
6784
6785 vcpu->mode = IN_GUEST_MODE;
6786
6787 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6788
6789 /* We should set ->mode before check ->requests,
6790 * see the comment in make_all_cpus_request.
6791 */
6792 smp_mb__after_srcu_read_unlock();
6793
6794 local_irq_disable();
6795
6796 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6797 || need_resched() || signal_pending(current)) {
6798 vcpu->mode = OUTSIDE_GUEST_MODE;
6799 smp_wmb();
6800 local_irq_enable();
6801 preempt_enable();
6802 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6803 r = 1;
6804 goto cancel_injection;
6805 }
6806
6807 if (req_immediate_exit)
6808 smp_send_reschedule(vcpu->cpu);
6809
6810 __kvm_guest_enter();
6811
6812 if (unlikely(vcpu->arch.switch_db_regs)) {
6813 set_debugreg(0, 7);
6814 set_debugreg(vcpu->arch.eff_db[0], 0);
6815 set_debugreg(vcpu->arch.eff_db[1], 1);
6816 set_debugreg(vcpu->arch.eff_db[2], 2);
6817 set_debugreg(vcpu->arch.eff_db[3], 3);
6818 set_debugreg(vcpu->arch.dr6, 6);
6819 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6820 }
6821
6822 trace_kvm_entry(vcpu->vcpu_id);
6823 wait_lapic_expire(vcpu);
6824 kvm_x86_ops->run(vcpu);
6825
6826 /*
6827 * Do this here before restoring debug registers on the host. And
6828 * since we do this before handling the vmexit, a DR access vmexit
6829 * can (a) read the correct value of the debug registers, (b) set
6830 * KVM_DEBUGREG_WONT_EXIT again.
6831 */
6832 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6833 int i;
6834
6835 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6836 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6837 for (i = 0; i < KVM_NR_DB_REGS; i++)
6838 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6839 }
6840
6841 /*
6842 * If the guest has used debug registers, at least dr7
6843 * will be disabled while returning to the host.
6844 * If we don't have active breakpoints in the host, we don't
6845 * care about the messed up debug address registers. But if
6846 * we have some of them active, restore the old state.
6847 */
6848 if (hw_breakpoint_active())
6849 hw_breakpoint_restore();
6850
6851 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6852 native_read_tsc());
6853
6854 vcpu->mode = OUTSIDE_GUEST_MODE;
6855 smp_wmb();
6856
6857 /* Interrupt is enabled by handle_external_intr() */
6858 kvm_x86_ops->handle_external_intr(vcpu);
6859
6860 ++vcpu->stat.exits;
6861
6862 /*
6863 * We must have an instruction between local_irq_enable() and
6864 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6865 * the interrupt shadow. The stat.exits increment will do nicely.
6866 * But we need to prevent reordering, hence this barrier():
6867 */
6868 barrier();
6869
6870 kvm_guest_exit();
6871
6872 preempt_enable();
6873
6874 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6875
6876 /*
6877 * Profile KVM exit RIPs:
6878 */
6879 if (unlikely(prof_on == KVM_PROFILING)) {
6880 unsigned long rip = kvm_rip_read(vcpu);
6881 profile_hit(KVM_PROFILING, (void *)rip);
6882 }
6883
6884 if (unlikely(vcpu->arch.tsc_always_catchup))
6885 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6886
6887 if (vcpu->arch.apic_attention)
6888 kvm_lapic_sync_from_vapic(vcpu);
6889
6890 r = kvm_x86_ops->handle_exit(vcpu);
6891 return r;
6892
6893cancel_injection:
6894 kvm_x86_ops->cancel_injection(vcpu);
6895 if (unlikely(vcpu->arch.apic_attention))
6896 kvm_lapic_sync_from_vapic(vcpu);
6897out:
6898 return r;
6899}
6900
6901static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6902{
6903 if (!kvm_arch_vcpu_runnable(vcpu)) {
6904 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6905 kvm_vcpu_block(vcpu);
6906 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6907 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6908 return 1;
6909 }
6910
6911 kvm_apic_accept_events(vcpu);
6912 switch(vcpu->arch.mp_state) {
6913 case KVM_MP_STATE_HALTED:
6914 vcpu->arch.pv.pv_unhalted = false;
6915 vcpu->arch.mp_state =
6916 KVM_MP_STATE_RUNNABLE;
6917 case KVM_MP_STATE_RUNNABLE:
6918 vcpu->arch.apf.halted = false;
6919 break;
6920 case KVM_MP_STATE_INIT_RECEIVED:
6921 break;
6922 default:
6923 return -EINTR;
6924 break;
6925 }
6926 return 1;
6927}
6928
6929static int vcpu_run(struct kvm_vcpu *vcpu)
6930{
6931 int r;
6932 struct kvm *kvm = vcpu->kvm;
6933
6934 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6935
6936 for (;;) {
6937 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6938 !vcpu->arch.apf.halted)
6939 r = vcpu_enter_guest(vcpu);
6940 else
6941 r = vcpu_block(kvm, vcpu);
6942 if (r <= 0)
6943 break;
6944
6945 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6946 if (kvm_cpu_has_pending_timer(vcpu))
6947 kvm_inject_pending_timer_irqs(vcpu);
6948
6949 if (dm_request_for_irq_injection(vcpu)) {
6950 r = -EINTR;
6951 vcpu->run->exit_reason = KVM_EXIT_INTR;
6952 ++vcpu->stat.request_irq_exits;
6953 break;
6954 }
6955
6956 kvm_check_async_pf_completion(vcpu);
6957
6958 if (signal_pending(current)) {
6959 r = -EINTR;
6960 vcpu->run->exit_reason = KVM_EXIT_INTR;
6961 ++vcpu->stat.signal_exits;
6962 break;
6963 }
6964 if (need_resched()) {
6965 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6966 cond_resched();
6967 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6968 }
6969 }
6970
6971 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6972
6973 return r;
6974}
6975
6976static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6977{
6978 int r;
6979 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6980 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6981 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6982 if (r != EMULATE_DONE)
6983 return 0;
6984 return 1;
6985}
6986
6987static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6988{
6989 BUG_ON(!vcpu->arch.pio.count);
6990
6991 return complete_emulated_io(vcpu);
6992}
6993
6994/*
6995 * Implements the following, as a state machine:
6996 *
6997 * read:
6998 * for each fragment
6999 * for each mmio piece in the fragment
7000 * write gpa, len
7001 * exit
7002 * copy data
7003 * execute insn
7004 *
7005 * write:
7006 * for each fragment
7007 * for each mmio piece in the fragment
7008 * write gpa, len
7009 * copy data
7010 * exit
7011 */
7012static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7013{
7014 struct kvm_run *run = vcpu->run;
7015 struct kvm_mmio_fragment *frag;
7016 unsigned len;
7017
7018 BUG_ON(!vcpu->mmio_needed);
7019
7020 /* Complete previous fragment */
7021 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7022 len = min(8u, frag->len);
7023 if (!vcpu->mmio_is_write)
7024 memcpy(frag->data, run->mmio.data, len);
7025
7026 if (frag->len <= 8) {
7027 /* Switch to the next fragment. */
7028 frag++;
7029 vcpu->mmio_cur_fragment++;
7030 } else {
7031 /* Go forward to the next mmio piece. */
7032 frag->data += len;
7033 frag->gpa += len;
7034 frag->len -= len;
7035 }
7036
7037 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7038 vcpu->mmio_needed = 0;
7039
7040 /* FIXME: return into emulator if single-stepping. */
7041 if (vcpu->mmio_is_write)
7042 return 1;
7043 vcpu->mmio_read_completed = 1;
7044 return complete_emulated_io(vcpu);
7045 }
7046
7047 run->exit_reason = KVM_EXIT_MMIO;
7048 run->mmio.phys_addr = frag->gpa;
7049 if (vcpu->mmio_is_write)
7050 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7051 run->mmio.len = min(8u, frag->len);
7052 run->mmio.is_write = vcpu->mmio_is_write;
7053 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7054 return 0;
7055}
7056
7057
7058int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7059{
7060 int r;
7061 sigset_t sigsaved;
7062
7063 if (!tsk_used_math(current) && init_fpu(current))
7064 return -ENOMEM;
7065
7066 if (vcpu->sigset_active)
7067 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
7068
7069 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7070 kvm_vcpu_block(vcpu);
7071 kvm_apic_accept_events(vcpu);
7072 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
7073 r = -EAGAIN;
7074 goto out;
7075 }
7076
7077 /* re-sync apic's tpr */
7078 if (!irqchip_in_kernel(vcpu->kvm)) {
7079 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7080 r = -EINVAL;
7081 goto out;
7082 }
7083 }
7084
7085 if (unlikely(vcpu->arch.complete_userspace_io)) {
7086 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7087 vcpu->arch.complete_userspace_io = NULL;
7088 r = cui(vcpu);
7089 if (r <= 0)
7090 goto out;
7091 } else
7092 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7093
7094 r = vcpu_run(vcpu);
7095
7096out:
7097 post_kvm_run_save(vcpu);
7098 if (vcpu->sigset_active)
7099 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
7100
7101 return r;
7102}
7103
7104int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7105{
7106 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7107 /*
7108 * We are here if userspace calls get_regs() in the middle of
7109 * instruction emulation. Registers state needs to be copied
7110 * back from emulation context to vcpu. Userspace shouldn't do
7111 * that usually, but some bad designed PV devices (vmware
7112 * backdoor interface) need this to work
7113 */
7114 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7115 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7116 }
7117 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7118 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7119 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7120 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7121 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7122 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7123 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7124 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7125#ifdef CONFIG_X86_64
7126 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7127 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7128 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7129 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7130 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7131 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7132 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7133 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7134#endif
7135
7136 regs->rip = kvm_rip_read(vcpu);
7137 regs->rflags = kvm_get_rflags(vcpu);
7138
7139 return 0;
7140}
7141
7142int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7143{
7144 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7145 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7146
7147 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7148 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7149 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7150 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7151 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7152 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7153 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7154 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7155#ifdef CONFIG_X86_64
7156 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7157 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7158 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7159 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7160 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7161 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7162 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7163 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7164#endif
7165
7166 kvm_rip_write(vcpu, regs->rip);
7167 kvm_set_rflags(vcpu, regs->rflags);
7168
7169 vcpu->arch.exception.pending = false;
7170
7171 kvm_make_request(KVM_REQ_EVENT, vcpu);
7172
7173 return 0;
7174}
7175
7176void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7177{
7178 struct kvm_segment cs;
7179
7180 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7181 *db = cs.db;
7182 *l = cs.l;
7183}
7184EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7185
7186int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7187 struct kvm_sregs *sregs)
7188{
7189 struct desc_ptr dt;
7190
7191 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7192 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7193 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7194 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7195 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7196 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7197
7198 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7199 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7200
7201 kvm_x86_ops->get_idt(vcpu, &dt);
7202 sregs->idt.limit = dt.size;
7203 sregs->idt.base = dt.address;
7204 kvm_x86_ops->get_gdt(vcpu, &dt);
7205 sregs->gdt.limit = dt.size;
7206 sregs->gdt.base = dt.address;
7207
7208 sregs->cr0 = kvm_read_cr0(vcpu);
7209 sregs->cr2 = vcpu->arch.cr2;
7210 sregs->cr3 = kvm_read_cr3(vcpu);
7211 sregs->cr4 = kvm_read_cr4(vcpu);
7212 sregs->cr8 = kvm_get_cr8(vcpu);
7213 sregs->efer = vcpu->arch.efer;
7214 sregs->apic_base = kvm_get_apic_base(vcpu);
7215
7216 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7217
7218 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7219 set_bit(vcpu->arch.interrupt.nr,
7220 (unsigned long *)sregs->interrupt_bitmap);
7221
7222 return 0;
7223}
7224
7225int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7226 struct kvm_mp_state *mp_state)
7227{
7228 kvm_apic_accept_events(vcpu);
7229 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7230 vcpu->arch.pv.pv_unhalted)
7231 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7232 else
7233 mp_state->mp_state = vcpu->arch.mp_state;
7234
7235 return 0;
7236}
7237
7238int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7239 struct kvm_mp_state *mp_state)
7240{
7241 if (!kvm_vcpu_has_lapic(vcpu) &&
7242 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7243 return -EINVAL;
7244
7245 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7246 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7247 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7248 } else
7249 vcpu->arch.mp_state = mp_state->mp_state;
7250 kvm_make_request(KVM_REQ_EVENT, vcpu);
7251 return 0;
7252}
7253
7254int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7255 int reason, bool has_error_code, u32 error_code)
7256{
7257 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7258 int ret;
7259
7260 init_emulate_ctxt(vcpu);
7261
7262 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7263 has_error_code, error_code);
7264
7265 if (ret)
7266 return EMULATE_FAIL;
7267
7268 kvm_rip_write(vcpu, ctxt->eip);
7269 kvm_set_rflags(vcpu, ctxt->eflags);
7270 kvm_make_request(KVM_REQ_EVENT, vcpu);
7271 return EMULATE_DONE;
7272}
7273EXPORT_SYMBOL_GPL(kvm_task_switch);
7274
7275int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7276 struct kvm_sregs *sregs)
7277{
7278 struct msr_data apic_base_msr;
7279 int mmu_reset_needed = 0;
7280 int pending_vec, max_bits, idx;
7281 struct desc_ptr dt;
7282
7283 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7284 return -EINVAL;
7285
7286 dt.size = sregs->idt.limit;
7287 dt.address = sregs->idt.base;
7288 kvm_x86_ops->set_idt(vcpu, &dt);
7289 dt.size = sregs->gdt.limit;
7290 dt.address = sregs->gdt.base;
7291 kvm_x86_ops->set_gdt(vcpu, &dt);
7292
7293 vcpu->arch.cr2 = sregs->cr2;
7294 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7295 vcpu->arch.cr3 = sregs->cr3;
7296 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7297
7298 kvm_set_cr8(vcpu, sregs->cr8);
7299
7300 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7301 kvm_x86_ops->set_efer(vcpu, sregs->efer);
7302 apic_base_msr.data = sregs->apic_base;
7303 apic_base_msr.host_initiated = true;
7304 kvm_set_apic_base(vcpu, &apic_base_msr);
7305
7306 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7307 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7308 vcpu->arch.cr0 = sregs->cr0;
7309
7310 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7311 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7312 if (sregs->cr4 & X86_CR4_OSXSAVE)
7313 kvm_update_cpuid(vcpu);
7314
7315 idx = srcu_read_lock(&vcpu->kvm->srcu);
7316 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7317 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7318 mmu_reset_needed = 1;
7319 }
7320 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7321
7322 if (mmu_reset_needed)
7323 kvm_mmu_reset_context(vcpu);
7324
7325 max_bits = KVM_NR_INTERRUPTS;
7326 pending_vec = find_first_bit(
7327 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7328 if (pending_vec < max_bits) {
7329 kvm_queue_interrupt(vcpu, pending_vec, false);
7330 pr_debug("Set back pending irq %d\n", pending_vec);
7331 }
7332
7333 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7334 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7335 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7336 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7337 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7338 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7339
7340 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7341 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7342
7343 update_cr8_intercept(vcpu);
7344
7345 /* Older userspace won't unhalt the vcpu on reset. */
7346 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7347 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7348 !is_protmode(vcpu))
7349 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7350
7351 kvm_make_request(KVM_REQ_EVENT, vcpu);
7352
7353 return 0;
7354}
7355
7356int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7357 struct kvm_guest_debug *dbg)
7358{
7359 unsigned long rflags;
7360 int i, r;
7361
7362 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7363 r = -EBUSY;
7364 if (vcpu->arch.exception.pending)
7365 goto out;
7366 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7367 kvm_queue_exception(vcpu, DB_VECTOR);
7368 else
7369 kvm_queue_exception(vcpu, BP_VECTOR);
7370 }
7371
7372 /*
7373 * Read rflags as long as potentially injected trace flags are still
7374 * filtered out.
7375 */
7376 rflags = kvm_get_rflags(vcpu);
7377
7378 vcpu->guest_debug = dbg->control;
7379 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7380 vcpu->guest_debug = 0;
7381
7382 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7383 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7384 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7385 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7386 } else {
7387 for (i = 0; i < KVM_NR_DB_REGS; i++)
7388 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7389 }
7390 kvm_update_dr7(vcpu);
7391
7392 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7393 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7394 get_segment_base(vcpu, VCPU_SREG_CS);
7395
7396 /*
7397 * Trigger an rflags update that will inject or remove the trace
7398 * flags.
7399 */
7400 kvm_set_rflags(vcpu, rflags);
7401
7402 kvm_x86_ops->update_db_bp_intercept(vcpu);
7403
7404 r = 0;
7405
7406out:
7407
7408 return r;
7409}
7410
7411/*
7412 * Translate a guest virtual address to a guest physical address.
7413 */
7414int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7415 struct kvm_translation *tr)
7416{
7417 unsigned long vaddr = tr->linear_address;
7418 gpa_t gpa;
7419 int idx;
7420
7421 idx = srcu_read_lock(&vcpu->kvm->srcu);
7422 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7423 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7424 tr->physical_address = gpa;
7425 tr->valid = gpa != UNMAPPED_GVA;
7426 tr->writeable = 1;
7427 tr->usermode = 0;
7428
7429 return 0;
7430}
7431
7432int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7433{
7434 struct i387_fxsave_struct *fxsave =
7435 &vcpu->arch.guest_fpu.state->fxsave;
7436
7437 memcpy(fpu->fpr, fxsave->st_space, 128);
7438 fpu->fcw = fxsave->cwd;
7439 fpu->fsw = fxsave->swd;
7440 fpu->ftwx = fxsave->twd;
7441 fpu->last_opcode = fxsave->fop;
7442 fpu->last_ip = fxsave->rip;
7443 fpu->last_dp = fxsave->rdp;
7444 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7445
7446 return 0;
7447}
7448
7449int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7450{
7451 struct i387_fxsave_struct *fxsave =
7452 &vcpu->arch.guest_fpu.state->fxsave;
7453
7454 memcpy(fxsave->st_space, fpu->fpr, 128);
7455 fxsave->cwd = fpu->fcw;
7456 fxsave->swd = fpu->fsw;
7457 fxsave->twd = fpu->ftwx;
7458 fxsave->fop = fpu->last_opcode;
7459 fxsave->rip = fpu->last_ip;
7460 fxsave->rdp = fpu->last_dp;
7461 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7462
7463 return 0;
7464}
7465
7466int fx_init(struct kvm_vcpu *vcpu, bool init_event)
7467{
7468 int err;
7469
7470 err = fpu_alloc(&vcpu->arch.guest_fpu);
7471 if (err)
7472 return err;
7473
7474 if (!init_event)
7475 fpu_finit(&vcpu->arch.guest_fpu);
7476
7477 if (cpu_has_xsaves)
7478 vcpu->arch.guest_fpu.state->xsave.xsave_hdr.xcomp_bv =
7479 host_xcr0 | XSTATE_COMPACTION_ENABLED;
7480
7481 /*
7482 * Ensure guest xcr0 is valid for loading
7483 */
7484 vcpu->arch.xcr0 = XSTATE_FP;
7485
7486 vcpu->arch.cr0 |= X86_CR0_ET;
7487
7488 return 0;
7489}
7490EXPORT_SYMBOL_GPL(fx_init);
7491
7492static void fx_free(struct kvm_vcpu *vcpu)
7493{
7494 fpu_free(&vcpu->arch.guest_fpu);
7495}
7496
7497void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7498{
7499 if (vcpu->guest_fpu_loaded)
7500 return;
7501
7502 /*
7503 * Restore all possible states in the guest,
7504 * and assume host would use all available bits.
7505 * Guest xcr0 would be loaded later.
7506 */
7507 kvm_put_guest_xcr0(vcpu);
7508 vcpu->guest_fpu_loaded = 1;
7509 __kernel_fpu_begin();
7510 fpu_restore_checking(&vcpu->arch.guest_fpu);
7511 trace_kvm_fpu(1);
7512}
7513
7514void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7515{
7516 kvm_put_guest_xcr0(vcpu);
7517
7518 if (!vcpu->guest_fpu_loaded) {
7519 vcpu->fpu_counter = 0;
7520 return;
7521 }
7522
7523 vcpu->guest_fpu_loaded = 0;
7524 fpu_save_init(&vcpu->arch.guest_fpu);
7525 __kernel_fpu_end();
7526 ++vcpu->stat.fpu_reload;
7527 /*
7528 * If using eager FPU mode, or if the guest is a frequent user
7529 * of the FPU, just leave the FPU active for next time.
7530 * Every 255 times fpu_counter rolls over to 0; a guest that uses
7531 * the FPU in bursts will revert to loading it on demand.
7532 */
7533 if (!vcpu->arch.eager_fpu) {
7534 if (++vcpu->fpu_counter < 5)
7535 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7536 }
7537 trace_kvm_fpu(0);
7538}
7539
7540void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7541{
7542 kvmclock_reset(vcpu);
7543
7544 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7545 fx_free(vcpu);
7546 kvm_x86_ops->vcpu_free(vcpu);
7547}
7548
7549struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7550 unsigned int id)
7551{
7552 struct kvm_vcpu *vcpu;
7553
7554 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7555 printk_once(KERN_WARNING
7556 "kvm: SMP vm created on host with unstable TSC; "
7557 "guest TSC will not be reliable\n");
7558
7559 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7560
7561 /*
7562 * Activate fpu unconditionally in case the guest needs eager FPU. It will be
7563 * deactivated soon if it doesn't.
7564 */
7565 kvm_x86_ops->fpu_activate(vcpu);
7566 return vcpu;
7567}
7568
7569int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7570{
7571 int r;
7572
7573 vcpu->arch.mtrr_state.have_fixed = 1;
7574 r = vcpu_load(vcpu);
7575 if (r)
7576 return r;
7577 kvm_vcpu_reset(vcpu, false);
7578 kvm_mmu_setup(vcpu);
7579 vcpu_put(vcpu);
7580
7581 return r;
7582}
7583
7584void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7585{
7586 struct msr_data msr;
7587 struct kvm *kvm = vcpu->kvm;
7588
7589 if (vcpu_load(vcpu))
7590 return;
7591 msr.data = 0x0;
7592 msr.index = MSR_IA32_TSC;
7593 msr.host_initiated = true;
7594 kvm_write_tsc(vcpu, &msr);
7595 vcpu_put(vcpu);
7596
7597 if (!kvmclock_periodic_sync)
7598 return;
7599
7600 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7601 KVMCLOCK_SYNC_PERIOD);
7602}
7603
7604void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7605{
7606 int r;
7607 vcpu->arch.apf.msr_val = 0;
7608
7609 r = vcpu_load(vcpu);
7610 BUG_ON(r);
7611 kvm_mmu_unload(vcpu);
7612 vcpu_put(vcpu);
7613
7614 fx_free(vcpu);
7615 kvm_x86_ops->vcpu_free(vcpu);
7616}
7617
7618void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7619{
7620 vcpu->arch.hflags = 0;
7621
7622 atomic_set(&vcpu->arch.nmi_queued, 0);
7623 vcpu->arch.nmi_pending = 0;
7624 vcpu->arch.nmi_injected = false;
7625 kvm_clear_interrupt_queue(vcpu);
7626 kvm_clear_exception_queue(vcpu);
7627
7628 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7629 kvm_update_dr0123(vcpu);
7630 vcpu->arch.dr6 = DR6_INIT;
7631 kvm_update_dr6(vcpu);
7632 vcpu->arch.dr7 = DR7_FIXED_1;
7633 kvm_update_dr7(vcpu);
7634
7635 vcpu->arch.cr2 = 0;
7636
7637 kvm_make_request(KVM_REQ_EVENT, vcpu);
7638 vcpu->arch.apf.msr_val = 0;
7639 vcpu->arch.st.msr_val = 0;
7640
7641 kvmclock_reset(vcpu);
7642
7643 kvm_clear_async_pf_completion_queue(vcpu);
7644 kvm_async_pf_hash_reset(vcpu);
7645 vcpu->arch.apf.halted = false;
7646
7647 if (!init_event) {
7648 kvm_pmu_reset(vcpu);
7649 vcpu->arch.smbase = 0x30000;
7650 }
7651
7652 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7653 vcpu->arch.regs_avail = ~0;
7654 vcpu->arch.regs_dirty = ~0;
7655
7656 kvm_x86_ops->vcpu_reset(vcpu, init_event);
7657}
7658
7659void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7660{
7661 struct kvm_segment cs;
7662
7663 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7664 cs.selector = vector << 8;
7665 cs.base = vector << 12;
7666 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7667 kvm_rip_write(vcpu, 0);
7668}
7669
7670int kvm_arch_hardware_enable(void)
7671{
7672 struct kvm *kvm;
7673 struct kvm_vcpu *vcpu;
7674 int i;
7675 int ret;
7676 u64 local_tsc;
7677 u64 max_tsc = 0;
7678 bool stable, backwards_tsc = false;
7679
7680 kvm_shared_msr_cpu_online();
7681 ret = kvm_x86_ops->hardware_enable();
7682 if (ret != 0)
7683 return ret;
7684
7685 local_tsc = native_read_tsc();
7686 stable = !check_tsc_unstable();
7687 list_for_each_entry(kvm, &vm_list, vm_list) {
7688 kvm_for_each_vcpu(i, vcpu, kvm) {
7689 if (!stable && vcpu->cpu == smp_processor_id())
7690 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7691 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7692 backwards_tsc = true;
7693 if (vcpu->arch.last_host_tsc > max_tsc)
7694 max_tsc = vcpu->arch.last_host_tsc;
7695 }
7696 }
7697 }
7698
7699 /*
7700 * Sometimes, even reliable TSCs go backwards. This happens on
7701 * platforms that reset TSC during suspend or hibernate actions, but
7702 * maintain synchronization. We must compensate. Fortunately, we can
7703 * detect that condition here, which happens early in CPU bringup,
7704 * before any KVM threads can be running. Unfortunately, we can't
7705 * bring the TSCs fully up to date with real time, as we aren't yet far
7706 * enough into CPU bringup that we know how much real time has actually
7707 * elapsed; our helper function, get_kernel_ns() will be using boot
7708 * variables that haven't been updated yet.
7709 *
7710 * So we simply find the maximum observed TSC above, then record the
7711 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7712 * the adjustment will be applied. Note that we accumulate
7713 * adjustments, in case multiple suspend cycles happen before some VCPU
7714 * gets a chance to run again. In the event that no KVM threads get a
7715 * chance to run, we will miss the entire elapsed period, as we'll have
7716 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7717 * loose cycle time. This isn't too big a deal, since the loss will be
7718 * uniform across all VCPUs (not to mention the scenario is extremely
7719 * unlikely). It is possible that a second hibernate recovery happens
7720 * much faster than a first, causing the observed TSC here to be
7721 * smaller; this would require additional padding adjustment, which is
7722 * why we set last_host_tsc to the local tsc observed here.
7723 *
7724 * N.B. - this code below runs only on platforms with reliable TSC,
7725 * as that is the only way backwards_tsc is set above. Also note
7726 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7727 * have the same delta_cyc adjustment applied if backwards_tsc
7728 * is detected. Note further, this adjustment is only done once,
7729 * as we reset last_host_tsc on all VCPUs to stop this from being
7730 * called multiple times (one for each physical CPU bringup).
7731 *
7732 * Platforms with unreliable TSCs don't have to deal with this, they
7733 * will be compensated by the logic in vcpu_load, which sets the TSC to
7734 * catchup mode. This will catchup all VCPUs to real time, but cannot
7735 * guarantee that they stay in perfect synchronization.
7736 */
7737 if (backwards_tsc) {
7738 u64 delta_cyc = max_tsc - local_tsc;
7739 backwards_tsc_observed = true;
7740 list_for_each_entry(kvm, &vm_list, vm_list) {
7741 kvm_for_each_vcpu(i, vcpu, kvm) {
7742 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7743 vcpu->arch.last_host_tsc = local_tsc;
7744 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7745 }
7746
7747 /*
7748 * We have to disable TSC offset matching.. if you were
7749 * booting a VM while issuing an S4 host suspend....
7750 * you may have some problem. Solving this issue is
7751 * left as an exercise to the reader.
7752 */
7753 kvm->arch.last_tsc_nsec = 0;
7754 kvm->arch.last_tsc_write = 0;
7755 }
7756
7757 }
7758 return 0;
7759}
7760
7761void kvm_arch_hardware_disable(void)
7762{
7763 kvm_x86_ops->hardware_disable();
7764 drop_user_return_notifiers();
7765}
7766
7767int kvm_arch_hardware_setup(void)
7768{
7769 int r;
7770
7771 r = kvm_x86_ops->hardware_setup();
7772 if (r != 0)
7773 return r;
7774
7775 kvm_init_msr_list();
7776 return 0;
7777}
7778
7779void kvm_arch_hardware_unsetup(void)
7780{
7781 kvm_x86_ops->hardware_unsetup();
7782}
7783
7784void kvm_arch_check_processor_compat(void *rtn)
7785{
7786 kvm_x86_ops->check_processor_compatibility(rtn);
7787}
7788
7789bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7790{
7791 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
7792}
7793
7794struct static_key kvm_no_apic_vcpu __read_mostly;
7795
7796int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7797{
7798 struct page *page;
7799 struct kvm *kvm;
7800 int r;
7801
7802 BUG_ON(vcpu->kvm == NULL);
7803 kvm = vcpu->kvm;
7804
7805 vcpu->arch.pv.pv_unhalted = false;
7806 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7807 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7808 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7809 else
7810 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7811
7812 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7813 if (!page) {
7814 r = -ENOMEM;
7815 goto fail;
7816 }
7817 vcpu->arch.pio_data = page_address(page);
7818
7819 kvm_set_tsc_khz(vcpu, max_tsc_khz);
7820
7821 r = kvm_mmu_create(vcpu);
7822 if (r < 0)
7823 goto fail_free_pio_data;
7824
7825 if (irqchip_in_kernel(kvm)) {
7826 r = kvm_create_lapic(vcpu);
7827 if (r < 0)
7828 goto fail_mmu_destroy;
7829 } else
7830 static_key_slow_inc(&kvm_no_apic_vcpu);
7831
7832 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7833 GFP_KERNEL);
7834 if (!vcpu->arch.mce_banks) {
7835 r = -ENOMEM;
7836 goto fail_free_lapic;
7837 }
7838 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7839
7840 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7841 r = -ENOMEM;
7842 goto fail_free_mce_banks;
7843 }
7844
7845 r = fx_init(vcpu, false);
7846 if (r)
7847 goto fail_free_wbinvd_dirty_mask;
7848
7849 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7850 vcpu->arch.pv_time_enabled = false;
7851
7852 vcpu->arch.guest_supported_xcr0 = 0;
7853 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7854
7855 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7856
7857 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7858
7859 kvm_async_pf_hash_reset(vcpu);
7860 kvm_pmu_init(vcpu);
7861
7862 return 0;
7863fail_free_wbinvd_dirty_mask:
7864 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7865fail_free_mce_banks:
7866 kfree(vcpu->arch.mce_banks);
7867fail_free_lapic:
7868 kvm_free_lapic(vcpu);
7869fail_mmu_destroy:
7870 kvm_mmu_destroy(vcpu);
7871fail_free_pio_data:
7872 free_page((unsigned long)vcpu->arch.pio_data);
7873fail:
7874 return r;
7875}
7876
7877void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7878{
7879 int idx;
7880
7881 kvm_pmu_destroy(vcpu);
7882 kfree(vcpu->arch.mce_banks);
7883 kvm_free_lapic(vcpu);
7884 idx = srcu_read_lock(&vcpu->kvm->srcu);
7885 kvm_mmu_destroy(vcpu);
7886 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7887 free_page((unsigned long)vcpu->arch.pio_data);
7888 if (!irqchip_in_kernel(vcpu->kvm))
7889 static_key_slow_dec(&kvm_no_apic_vcpu);
7890}
7891
7892void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7893{
7894 kvm_x86_ops->sched_in(vcpu, cpu);
7895}
7896
7897int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7898{
7899 if (type)
7900 return -EINVAL;
7901
7902 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7903 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7904 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7905 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7906 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7907
7908 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7909 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7910 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7911 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7912 &kvm->arch.irq_sources_bitmap);
7913
7914 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7915 mutex_init(&kvm->arch.apic_map_lock);
7916 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7917
7918 pvclock_update_vm_gtod_copy(kvm);
7919
7920 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7921 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7922
7923 return 0;
7924}
7925
7926static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7927{
7928 int r;
7929 r = vcpu_load(vcpu);
7930 BUG_ON(r);
7931 kvm_mmu_unload(vcpu);
7932 vcpu_put(vcpu);
7933}
7934
7935static void kvm_free_vcpus(struct kvm *kvm)
7936{
7937 unsigned int i;
7938 struct kvm_vcpu *vcpu;
7939
7940 /*
7941 * Unpin any mmu pages first.
7942 */
7943 kvm_for_each_vcpu(i, vcpu, kvm) {
7944 kvm_clear_async_pf_completion_queue(vcpu);
7945 kvm_unload_vcpu_mmu(vcpu);
7946 }
7947 kvm_for_each_vcpu(i, vcpu, kvm)
7948 kvm_arch_vcpu_free(vcpu);
7949
7950 mutex_lock(&kvm->lock);
7951 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7952 kvm->vcpus[i] = NULL;
7953
7954 atomic_set(&kvm->online_vcpus, 0);
7955 mutex_unlock(&kvm->lock);
7956}
7957
7958void kvm_arch_sync_events(struct kvm *kvm)
7959{
7960 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7961 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7962 kvm_free_all_assigned_devices(kvm);
7963 kvm_free_pit(kvm);
7964}
7965
7966void kvm_arch_destroy_vm(struct kvm *kvm)
7967{
7968 if (current->mm == kvm->mm) {
7969 /*
7970 * Free memory regions allocated on behalf of userspace,
7971 * unless the the memory map has changed due to process exit
7972 * or fd copying.
7973 */
7974 struct kvm_userspace_memory_region mem;
7975 memset(&mem, 0, sizeof(mem));
7976 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7977 kvm_set_memory_region(kvm, &mem);
7978
7979 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7980 kvm_set_memory_region(kvm, &mem);
7981
7982 mem.slot = TSS_PRIVATE_MEMSLOT;
7983 kvm_set_memory_region(kvm, &mem);
7984 }
7985 kvm_iommu_unmap_guest(kvm);
7986 kfree(kvm->arch.vpic);
7987 kfree(kvm->arch.vioapic);
7988 kvm_free_vcpus(kvm);
7989 kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7990}
7991
7992void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7993 struct kvm_memory_slot *dont)
7994{
7995 int i;
7996
7997 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7998 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7999 kvfree(free->arch.rmap[i]);
8000 free->arch.rmap[i] = NULL;
8001 }
8002 if (i == 0)
8003 continue;
8004
8005 if (!dont || free->arch.lpage_info[i - 1] !=
8006 dont->arch.lpage_info[i - 1]) {
8007 kvfree(free->arch.lpage_info[i - 1]);
8008 free->arch.lpage_info[i - 1] = NULL;
8009 }
8010 }
8011}
8012
8013int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8014 unsigned long npages)
8015{
8016 int i;
8017
8018 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8019 unsigned long ugfn;
8020 int lpages;
8021 int level = i + 1;
8022
8023 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8024 slot->base_gfn, level) + 1;
8025
8026 slot->arch.rmap[i] =
8027 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
8028 if (!slot->arch.rmap[i])
8029 goto out_free;
8030 if (i == 0)
8031 continue;
8032
8033 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
8034 sizeof(*slot->arch.lpage_info[i - 1]));
8035 if (!slot->arch.lpage_info[i - 1])
8036 goto out_free;
8037
8038 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8039 slot->arch.lpage_info[i - 1][0].write_count = 1;
8040 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8041 slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
8042 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8043 /*
8044 * If the gfn and userspace address are not aligned wrt each
8045 * other, or if explicitly asked to, disable large page
8046 * support for this slot
8047 */
8048 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8049 !kvm_largepages_enabled()) {
8050 unsigned long j;
8051
8052 for (j = 0; j < lpages; ++j)
8053 slot->arch.lpage_info[i - 1][j].write_count = 1;
8054 }
8055 }
8056
8057 return 0;
8058
8059out_free:
8060 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8061 kvfree(slot->arch.rmap[i]);
8062 slot->arch.rmap[i] = NULL;
8063 if (i == 0)
8064 continue;
8065
8066 kvfree(slot->arch.lpage_info[i - 1]);
8067 slot->arch.lpage_info[i - 1] = NULL;
8068 }
8069 return -ENOMEM;
8070}
8071
8072void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8073{
8074 /*
8075 * memslots->generation has been incremented.
8076 * mmio generation may have reached its maximum value.
8077 */
8078 kvm_mmu_invalidate_mmio_sptes(kvm);
8079}
8080
8081int kvm_arch_prepare_memory_region(struct kvm *kvm,
8082 struct kvm_memory_slot *memslot,
8083 const struct kvm_userspace_memory_region *mem,
8084 enum kvm_mr_change change)
8085{
8086 /*
8087 * Only private memory slots need to be mapped here since
8088 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
8089 */
8090 if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
8091 unsigned long userspace_addr;
8092
8093 /*
8094 * MAP_SHARED to prevent internal slot pages from being moved
8095 * by fork()/COW.
8096 */
8097 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
8098 PROT_READ | PROT_WRITE,
8099 MAP_SHARED | MAP_ANONYMOUS, 0);
8100
8101 if (IS_ERR((void *)userspace_addr))
8102 return PTR_ERR((void *)userspace_addr);
8103
8104 memslot->userspace_addr = userspace_addr;
8105 }
8106
8107 return 0;
8108}
8109
8110static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8111 struct kvm_memory_slot *new)
8112{
8113 /* Still write protect RO slot */
8114 if (new->flags & KVM_MEM_READONLY) {
8115 kvm_mmu_slot_remove_write_access(kvm, new);
8116 return;
8117 }
8118
8119 /*
8120 * Call kvm_x86_ops dirty logging hooks when they are valid.
8121 *
8122 * kvm_x86_ops->slot_disable_log_dirty is called when:
8123 *
8124 * - KVM_MR_CREATE with dirty logging is disabled
8125 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8126 *
8127 * The reason is, in case of PML, we need to set D-bit for any slots
8128 * with dirty logging disabled in order to eliminate unnecessary GPA
8129 * logging in PML buffer (and potential PML buffer full VMEXT). This
8130 * guarantees leaving PML enabled during guest's lifetime won't have
8131 * any additonal overhead from PML when guest is running with dirty
8132 * logging disabled for memory slots.
8133 *
8134 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8135 * to dirty logging mode.
8136 *
8137 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8138 *
8139 * In case of write protect:
8140 *
8141 * Write protect all pages for dirty logging.
8142 *
8143 * All the sptes including the large sptes which point to this
8144 * slot are set to readonly. We can not create any new large
8145 * spte on this slot until the end of the logging.
8146 *
8147 * See the comments in fast_page_fault().
8148 */
8149 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8150 if (kvm_x86_ops->slot_enable_log_dirty)
8151 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8152 else
8153 kvm_mmu_slot_remove_write_access(kvm, new);
8154 } else {
8155 if (kvm_x86_ops->slot_disable_log_dirty)
8156 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8157 }
8158}
8159
8160void kvm_arch_commit_memory_region(struct kvm *kvm,
8161 const struct kvm_userspace_memory_region *mem,
8162 const struct kvm_memory_slot *old,
8163 const struct kvm_memory_slot *new,
8164 enum kvm_mr_change change)
8165{
8166 int nr_mmu_pages = 0;
8167
8168 if (change == KVM_MR_DELETE && old->id >= KVM_USER_MEM_SLOTS) {
8169 int ret;
8170
8171 ret = vm_munmap(old->userspace_addr,
8172 old->npages * PAGE_SIZE);
8173 if (ret < 0)
8174 printk(KERN_WARNING
8175 "kvm_vm_ioctl_set_memory_region: "
8176 "failed to munmap memory\n");
8177 }
8178
8179 if (!kvm->arch.n_requested_mmu_pages)
8180 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8181
8182 if (nr_mmu_pages)
8183 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8184
8185 /*
8186 * Dirty logging tracks sptes in 4k granularity, meaning that large
8187 * sptes have to be split. If live migration is successful, the guest
8188 * in the source machine will be destroyed and large sptes will be
8189 * created in the destination. However, if the guest continues to run
8190 * in the source machine (for example if live migration fails), small
8191 * sptes will remain around and cause bad performance.
8192 *
8193 * Scan sptes if dirty logging has been stopped, dropping those
8194 * which can be collapsed into a single large-page spte. Later
8195 * page faults will create the large-page sptes.
8196 */
8197 if ((change != KVM_MR_DELETE) &&
8198 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8199 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8200 kvm_mmu_zap_collapsible_sptes(kvm, new);
8201
8202 /*
8203 * Set up write protection and/or dirty logging for the new slot.
8204 *
8205 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8206 * been zapped so no dirty logging staff is needed for old slot. For
8207 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8208 * new and it's also covered when dealing with the new slot.
8209 *
8210 * FIXME: const-ify all uses of struct kvm_memory_slot.
8211 */
8212 if (change != KVM_MR_DELETE)
8213 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8214}
8215
8216void kvm_arch_flush_shadow_all(struct kvm *kvm)
8217{
8218 kvm_mmu_invalidate_zap_all_pages(kvm);
8219}
8220
8221void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8222 struct kvm_memory_slot *slot)
8223{
8224 kvm_mmu_invalidate_zap_all_pages(kvm);
8225}
8226
8227int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8228{
8229 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8230 kvm_x86_ops->check_nested_events(vcpu, false);
8231
8232 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8233 !vcpu->arch.apf.halted)
8234 || !list_empty_careful(&vcpu->async_pf.done)
8235 || kvm_apic_has_events(vcpu)
8236 || vcpu->arch.pv.pv_unhalted
8237 || atomic_read(&vcpu->arch.nmi_queued) ||
8238 (kvm_arch_interrupt_allowed(vcpu) &&
8239 kvm_cpu_has_interrupt(vcpu));
8240}
8241
8242int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8243{
8244 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8245}
8246
8247int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8248{
8249 return kvm_x86_ops->interrupt_allowed(vcpu);
8250}
8251
8252unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8253{
8254 if (is_64_bit_mode(vcpu))
8255 return kvm_rip_read(vcpu);
8256 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8257 kvm_rip_read(vcpu));
8258}
8259EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8260
8261bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8262{
8263 return kvm_get_linear_rip(vcpu) == linear_rip;
8264}
8265EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8266
8267unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8268{
8269 unsigned long rflags;
8270
8271 rflags = kvm_x86_ops->get_rflags(vcpu);
8272 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8273 rflags &= ~X86_EFLAGS_TF;
8274 return rflags;
8275}
8276EXPORT_SYMBOL_GPL(kvm_get_rflags);
8277
8278static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8279{
8280 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8281 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8282 rflags |= X86_EFLAGS_TF;
8283 kvm_x86_ops->set_rflags(vcpu, rflags);
8284}
8285
8286void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8287{
8288 __kvm_set_rflags(vcpu, rflags);
8289 kvm_make_request(KVM_REQ_EVENT, vcpu);
8290}
8291EXPORT_SYMBOL_GPL(kvm_set_rflags);
8292
8293void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8294{
8295 int r;
8296
8297 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8298 work->wakeup_all)
8299 return;
8300
8301 r = kvm_mmu_reload(vcpu);
8302 if (unlikely(r))
8303 return;
8304
8305 if (!vcpu->arch.mmu.direct_map &&
8306 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8307 return;
8308
8309 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8310}
8311
8312static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8313{
8314 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8315}
8316
8317static inline u32 kvm_async_pf_next_probe(u32 key)
8318{
8319 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8320}
8321
8322static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8323{
8324 u32 key = kvm_async_pf_hash_fn(gfn);
8325
8326 while (vcpu->arch.apf.gfns[key] != ~0)
8327 key = kvm_async_pf_next_probe(key);
8328
8329 vcpu->arch.apf.gfns[key] = gfn;
8330}
8331
8332static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8333{
8334 int i;
8335 u32 key = kvm_async_pf_hash_fn(gfn);
8336
8337 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8338 (vcpu->arch.apf.gfns[key] != gfn &&
8339 vcpu->arch.apf.gfns[key] != ~0); i++)
8340 key = kvm_async_pf_next_probe(key);
8341
8342 return key;
8343}
8344
8345bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8346{
8347 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8348}
8349
8350static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8351{
8352 u32 i, j, k;
8353
8354 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8355 while (true) {
8356 vcpu->arch.apf.gfns[i] = ~0;
8357 do {
8358 j = kvm_async_pf_next_probe(j);
8359 if (vcpu->arch.apf.gfns[j] == ~0)
8360 return;
8361 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8362 /*
8363 * k lies cyclically in ]i,j]
8364 * | i.k.j |
8365 * |....j i.k.| or |.k..j i...|
8366 */
8367 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8368 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8369 i = j;
8370 }
8371}
8372
8373static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8374{
8375
8376 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8377 sizeof(val));
8378}
8379
8380void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8381 struct kvm_async_pf *work)
8382{
8383 struct x86_exception fault;
8384
8385 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8386 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8387
8388 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8389 (vcpu->arch.apf.send_user_only &&
8390 kvm_x86_ops->get_cpl(vcpu) == 0))
8391 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8392 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8393 fault.vector = PF_VECTOR;
8394 fault.error_code_valid = true;
8395 fault.error_code = 0;
8396 fault.nested_page_fault = false;
8397 fault.address = work->arch.token;
8398 kvm_inject_page_fault(vcpu, &fault);
8399 }
8400}
8401
8402void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8403 struct kvm_async_pf *work)
8404{
8405 struct x86_exception fault;
8406
8407 trace_kvm_async_pf_ready(work->arch.token, work->gva);
8408 if (work->wakeup_all)
8409 work->arch.token = ~0; /* broadcast wakeup */
8410 else
8411 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8412
8413 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8414 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8415 fault.vector = PF_VECTOR;
8416 fault.error_code_valid = true;
8417 fault.error_code = 0;
8418 fault.nested_page_fault = false;
8419 fault.address = work->arch.token;
8420 kvm_inject_page_fault(vcpu, &fault);
8421 }
8422 vcpu->arch.apf.halted = false;
8423 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8424}
8425
8426bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8427{
8428 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8429 return true;
8430 else
8431 return !kvm_event_needs_reinjection(vcpu) &&
8432 kvm_x86_ops->interrupt_allowed(vcpu);
8433}
8434
8435void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8436{
8437 atomic_inc(&kvm->arch.noncoherent_dma_count);
8438}
8439EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8440
8441void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8442{
8443 atomic_dec(&kvm->arch.noncoherent_dma_count);
8444}
8445EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8446
8447bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8448{
8449 return atomic_read(&kvm->arch.noncoherent_dma_count);
8450}
8451EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8452
8453EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8454EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8455EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8456EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8457EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8458EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8459EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8460EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8461EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8462EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8463EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8464EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8465EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8466EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8467EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);