KVM: iommu: fix releasing unmapped page
[linux-block.git] / arch / x86 / kvm / mmu.c
... / ...
CommitLineData
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21#include "irq.h"
22#include "mmu.h"
23#include "x86.h"
24#include "kvm_cache_regs.h"
25
26#include <linux/kvm_host.h>
27#include <linux/types.h>
28#include <linux/string.h>
29#include <linux/mm.h>
30#include <linux/highmem.h>
31#include <linux/module.h>
32#include <linux/swap.h>
33#include <linux/hugetlb.h>
34#include <linux/compiler.h>
35#include <linux/srcu.h>
36#include <linux/slab.h>
37#include <linux/uaccess.h>
38
39#include <asm/page.h>
40#include <asm/cmpxchg.h>
41#include <asm/io.h>
42#include <asm/vmx.h>
43
44/*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
51bool tdp_enabled = false;
52
53enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
60};
61
62#undef MMU_DEBUG
63
64#ifdef MMU_DEBUG
65
66#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69#else
70
71#define pgprintk(x...) do { } while (0)
72#define rmap_printk(x...) do { } while (0)
73
74#endif
75
76#ifdef MMU_DEBUG
77static bool dbg = 0;
78module_param(dbg, bool, 0644);
79#endif
80
81#ifndef MMU_DEBUG
82#define ASSERT(x) do { } while (0)
83#else
84#define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
89#endif
90
91#define PTE_PREFETCH_NUM 8
92
93#define PT_FIRST_AVAIL_BITS_SHIFT 10
94#define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
96#define PT64_LEVEL_BITS 9
97
98#define PT64_LEVEL_SHIFT(level) \
99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100
101#define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105#define PT32_LEVEL_BITS 10
106
107#define PT32_LEVEL_SHIFT(level) \
108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109
110#define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
113
114#define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
118#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119#define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121#define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124#define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
127
128#define PT32_BASE_ADDR_MASK PAGE_MASK
129#define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131#define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
134
135#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
137
138#define ACC_EXEC_MASK 1
139#define ACC_WRITE_MASK PT_WRITABLE_MASK
140#define ACC_USER_MASK PT_USER_MASK
141#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
143#include <trace/events/kvm.h>
144
145#define CREATE_TRACE_POINTS
146#include "mmutrace.h"
147
148#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
150
151#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
153/* make pte_list_desc fit well in cache line */
154#define PTE_LIST_EXT 3
155
156struct pte_list_desc {
157 u64 *sptes[PTE_LIST_EXT];
158 struct pte_list_desc *more;
159};
160
161struct kvm_shadow_walk_iterator {
162 u64 addr;
163 hpa_t shadow_addr;
164 u64 *sptep;
165 int level;
166 unsigned index;
167};
168
169#define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
173
174#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
179
180static struct kmem_cache *pte_list_desc_cache;
181static struct kmem_cache *mmu_page_header_cache;
182static struct percpu_counter kvm_total_used_mmu_pages;
183
184static u64 __read_mostly shadow_nx_mask;
185static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186static u64 __read_mostly shadow_user_mask;
187static u64 __read_mostly shadow_accessed_mask;
188static u64 __read_mostly shadow_dirty_mask;
189static u64 __read_mostly shadow_mmio_mask;
190
191static void mmu_spte_set(u64 *sptep, u64 spte);
192static void mmu_free_roots(struct kvm_vcpu *vcpu);
193
194void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195{
196 shadow_mmio_mask = mmio_mask;
197}
198EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
201{
202 access &= ACC_WRITE_MASK | ACC_USER_MASK;
203
204 trace_mark_mmio_spte(sptep, gfn, access);
205 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
206}
207
208static bool is_mmio_spte(u64 spte)
209{
210 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
211}
212
213static gfn_t get_mmio_spte_gfn(u64 spte)
214{
215 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
216}
217
218static unsigned get_mmio_spte_access(u64 spte)
219{
220 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
221}
222
223static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
224{
225 if (unlikely(is_noslot_pfn(pfn))) {
226 mark_mmio_spte(sptep, gfn, access);
227 return true;
228 }
229
230 return false;
231}
232
233static inline u64 rsvd_bits(int s, int e)
234{
235 return ((1ULL << (e - s + 1)) - 1) << s;
236}
237
238void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
239 u64 dirty_mask, u64 nx_mask, u64 x_mask)
240{
241 shadow_user_mask = user_mask;
242 shadow_accessed_mask = accessed_mask;
243 shadow_dirty_mask = dirty_mask;
244 shadow_nx_mask = nx_mask;
245 shadow_x_mask = x_mask;
246}
247EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
248
249static int is_cpuid_PSE36(void)
250{
251 return 1;
252}
253
254static int is_nx(struct kvm_vcpu *vcpu)
255{
256 return vcpu->arch.efer & EFER_NX;
257}
258
259static int is_shadow_present_pte(u64 pte)
260{
261 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
262}
263
264static int is_large_pte(u64 pte)
265{
266 return pte & PT_PAGE_SIZE_MASK;
267}
268
269static int is_dirty_gpte(unsigned long pte)
270{
271 return pte & PT_DIRTY_MASK;
272}
273
274static int is_rmap_spte(u64 pte)
275{
276 return is_shadow_present_pte(pte);
277}
278
279static int is_last_spte(u64 pte, int level)
280{
281 if (level == PT_PAGE_TABLE_LEVEL)
282 return 1;
283 if (is_large_pte(pte))
284 return 1;
285 return 0;
286}
287
288static pfn_t spte_to_pfn(u64 pte)
289{
290 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
291}
292
293static gfn_t pse36_gfn_delta(u32 gpte)
294{
295 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
296
297 return (gpte & PT32_DIR_PSE36_MASK) << shift;
298}
299
300#ifdef CONFIG_X86_64
301static void __set_spte(u64 *sptep, u64 spte)
302{
303 *sptep = spte;
304}
305
306static void __update_clear_spte_fast(u64 *sptep, u64 spte)
307{
308 *sptep = spte;
309}
310
311static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
312{
313 return xchg(sptep, spte);
314}
315
316static u64 __get_spte_lockless(u64 *sptep)
317{
318 return ACCESS_ONCE(*sptep);
319}
320
321static bool __check_direct_spte_mmio_pf(u64 spte)
322{
323 /* It is valid if the spte is zapped. */
324 return spte == 0ull;
325}
326#else
327union split_spte {
328 struct {
329 u32 spte_low;
330 u32 spte_high;
331 };
332 u64 spte;
333};
334
335static void count_spte_clear(u64 *sptep, u64 spte)
336{
337 struct kvm_mmu_page *sp = page_header(__pa(sptep));
338
339 if (is_shadow_present_pte(spte))
340 return;
341
342 /* Ensure the spte is completely set before we increase the count */
343 smp_wmb();
344 sp->clear_spte_count++;
345}
346
347static void __set_spte(u64 *sptep, u64 spte)
348{
349 union split_spte *ssptep, sspte;
350
351 ssptep = (union split_spte *)sptep;
352 sspte = (union split_spte)spte;
353
354 ssptep->spte_high = sspte.spte_high;
355
356 /*
357 * If we map the spte from nonpresent to present, We should store
358 * the high bits firstly, then set present bit, so cpu can not
359 * fetch this spte while we are setting the spte.
360 */
361 smp_wmb();
362
363 ssptep->spte_low = sspte.spte_low;
364}
365
366static void __update_clear_spte_fast(u64 *sptep, u64 spte)
367{
368 union split_spte *ssptep, sspte;
369
370 ssptep = (union split_spte *)sptep;
371 sspte = (union split_spte)spte;
372
373 ssptep->spte_low = sspte.spte_low;
374
375 /*
376 * If we map the spte from present to nonpresent, we should clear
377 * present bit firstly to avoid vcpu fetch the old high bits.
378 */
379 smp_wmb();
380
381 ssptep->spte_high = sspte.spte_high;
382 count_spte_clear(sptep, spte);
383}
384
385static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
386{
387 union split_spte *ssptep, sspte, orig;
388
389 ssptep = (union split_spte *)sptep;
390 sspte = (union split_spte)spte;
391
392 /* xchg acts as a barrier before the setting of the high bits */
393 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
394 orig.spte_high = ssptep->spte_high;
395 ssptep->spte_high = sspte.spte_high;
396 count_spte_clear(sptep, spte);
397
398 return orig.spte;
399}
400
401/*
402 * The idea using the light way get the spte on x86_32 guest is from
403 * gup_get_pte(arch/x86/mm/gup.c).
404 * The difference is we can not catch the spte tlb flush if we leave
405 * guest mode, so we emulate it by increase clear_spte_count when spte
406 * is cleared.
407 */
408static u64 __get_spte_lockless(u64 *sptep)
409{
410 struct kvm_mmu_page *sp = page_header(__pa(sptep));
411 union split_spte spte, *orig = (union split_spte *)sptep;
412 int count;
413
414retry:
415 count = sp->clear_spte_count;
416 smp_rmb();
417
418 spte.spte_low = orig->spte_low;
419 smp_rmb();
420
421 spte.spte_high = orig->spte_high;
422 smp_rmb();
423
424 if (unlikely(spte.spte_low != orig->spte_low ||
425 count != sp->clear_spte_count))
426 goto retry;
427
428 return spte.spte;
429}
430
431static bool __check_direct_spte_mmio_pf(u64 spte)
432{
433 union split_spte sspte = (union split_spte)spte;
434 u32 high_mmio_mask = shadow_mmio_mask >> 32;
435
436 /* It is valid if the spte is zapped. */
437 if (spte == 0ull)
438 return true;
439
440 /* It is valid if the spte is being zapped. */
441 if (sspte.spte_low == 0ull &&
442 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
443 return true;
444
445 return false;
446}
447#endif
448
449static bool spte_is_locklessly_modifiable(u64 spte)
450{
451 return !(~spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE));
452}
453
454static bool spte_has_volatile_bits(u64 spte)
455{
456 /*
457 * Always atomicly update spte if it can be updated
458 * out of mmu-lock, it can ensure dirty bit is not lost,
459 * also, it can help us to get a stable is_writable_pte()
460 * to ensure tlb flush is not missed.
461 */
462 if (spte_is_locklessly_modifiable(spte))
463 return true;
464
465 if (!shadow_accessed_mask)
466 return false;
467
468 if (!is_shadow_present_pte(spte))
469 return false;
470
471 if ((spte & shadow_accessed_mask) &&
472 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
473 return false;
474
475 return true;
476}
477
478static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
479{
480 return (old_spte & bit_mask) && !(new_spte & bit_mask);
481}
482
483/* Rules for using mmu_spte_set:
484 * Set the sptep from nonpresent to present.
485 * Note: the sptep being assigned *must* be either not present
486 * or in a state where the hardware will not attempt to update
487 * the spte.
488 */
489static void mmu_spte_set(u64 *sptep, u64 new_spte)
490{
491 WARN_ON(is_shadow_present_pte(*sptep));
492 __set_spte(sptep, new_spte);
493}
494
495/* Rules for using mmu_spte_update:
496 * Update the state bits, it means the mapped pfn is not changged.
497 *
498 * Whenever we overwrite a writable spte with a read-only one we
499 * should flush remote TLBs. Otherwise rmap_write_protect
500 * will find a read-only spte, even though the writable spte
501 * might be cached on a CPU's TLB, the return value indicates this
502 * case.
503 */
504static bool mmu_spte_update(u64 *sptep, u64 new_spte)
505{
506 u64 old_spte = *sptep;
507 bool ret = false;
508
509 WARN_ON(!is_rmap_spte(new_spte));
510
511 if (!is_shadow_present_pte(old_spte)) {
512 mmu_spte_set(sptep, new_spte);
513 return ret;
514 }
515
516 if (!spte_has_volatile_bits(old_spte))
517 __update_clear_spte_fast(sptep, new_spte);
518 else
519 old_spte = __update_clear_spte_slow(sptep, new_spte);
520
521 /*
522 * For the spte updated out of mmu-lock is safe, since
523 * we always atomicly update it, see the comments in
524 * spte_has_volatile_bits().
525 */
526 if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
527 ret = true;
528
529 if (!shadow_accessed_mask)
530 return ret;
531
532 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
533 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
534 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
535 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
536
537 return ret;
538}
539
540/*
541 * Rules for using mmu_spte_clear_track_bits:
542 * It sets the sptep from present to nonpresent, and track the
543 * state bits, it is used to clear the last level sptep.
544 */
545static int mmu_spte_clear_track_bits(u64 *sptep)
546{
547 pfn_t pfn;
548 u64 old_spte = *sptep;
549
550 if (!spte_has_volatile_bits(old_spte))
551 __update_clear_spte_fast(sptep, 0ull);
552 else
553 old_spte = __update_clear_spte_slow(sptep, 0ull);
554
555 if (!is_rmap_spte(old_spte))
556 return 0;
557
558 pfn = spte_to_pfn(old_spte);
559
560 /*
561 * KVM does not hold the refcount of the page used by
562 * kvm mmu, before reclaiming the page, we should
563 * unmap it from mmu first.
564 */
565 WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
566
567 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
568 kvm_set_pfn_accessed(pfn);
569 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
570 kvm_set_pfn_dirty(pfn);
571 return 1;
572}
573
574/*
575 * Rules for using mmu_spte_clear_no_track:
576 * Directly clear spte without caring the state bits of sptep,
577 * it is used to set the upper level spte.
578 */
579static void mmu_spte_clear_no_track(u64 *sptep)
580{
581 __update_clear_spte_fast(sptep, 0ull);
582}
583
584static u64 mmu_spte_get_lockless(u64 *sptep)
585{
586 return __get_spte_lockless(sptep);
587}
588
589static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
590{
591 /*
592 * Prevent page table teardown by making any free-er wait during
593 * kvm_flush_remote_tlbs() IPI to all active vcpus.
594 */
595 local_irq_disable();
596 vcpu->mode = READING_SHADOW_PAGE_TABLES;
597 /*
598 * Make sure a following spte read is not reordered ahead of the write
599 * to vcpu->mode.
600 */
601 smp_mb();
602}
603
604static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
605{
606 /*
607 * Make sure the write to vcpu->mode is not reordered in front of
608 * reads to sptes. If it does, kvm_commit_zap_page() can see us
609 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
610 */
611 smp_mb();
612 vcpu->mode = OUTSIDE_GUEST_MODE;
613 local_irq_enable();
614}
615
616static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
617 struct kmem_cache *base_cache, int min)
618{
619 void *obj;
620
621 if (cache->nobjs >= min)
622 return 0;
623 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
624 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
625 if (!obj)
626 return -ENOMEM;
627 cache->objects[cache->nobjs++] = obj;
628 }
629 return 0;
630}
631
632static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
633{
634 return cache->nobjs;
635}
636
637static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
638 struct kmem_cache *cache)
639{
640 while (mc->nobjs)
641 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
642}
643
644static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
645 int min)
646{
647 void *page;
648
649 if (cache->nobjs >= min)
650 return 0;
651 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
652 page = (void *)__get_free_page(GFP_KERNEL);
653 if (!page)
654 return -ENOMEM;
655 cache->objects[cache->nobjs++] = page;
656 }
657 return 0;
658}
659
660static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
661{
662 while (mc->nobjs)
663 free_page((unsigned long)mc->objects[--mc->nobjs]);
664}
665
666static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
667{
668 int r;
669
670 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
671 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
672 if (r)
673 goto out;
674 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
675 if (r)
676 goto out;
677 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
678 mmu_page_header_cache, 4);
679out:
680 return r;
681}
682
683static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
684{
685 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
686 pte_list_desc_cache);
687 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
688 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
689 mmu_page_header_cache);
690}
691
692static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
693{
694 void *p;
695
696 BUG_ON(!mc->nobjs);
697 p = mc->objects[--mc->nobjs];
698 return p;
699}
700
701static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
702{
703 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
704}
705
706static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
707{
708 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
709}
710
711static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
712{
713 if (!sp->role.direct)
714 return sp->gfns[index];
715
716 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
717}
718
719static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
720{
721 if (sp->role.direct)
722 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
723 else
724 sp->gfns[index] = gfn;
725}
726
727/*
728 * Return the pointer to the large page information for a given gfn,
729 * handling slots that are not large page aligned.
730 */
731static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
732 struct kvm_memory_slot *slot,
733 int level)
734{
735 unsigned long idx;
736
737 idx = gfn_to_index(gfn, slot->base_gfn, level);
738 return &slot->arch.lpage_info[level - 2][idx];
739}
740
741static void account_shadowed(struct kvm *kvm, gfn_t gfn)
742{
743 struct kvm_memory_slot *slot;
744 struct kvm_lpage_info *linfo;
745 int i;
746
747 slot = gfn_to_memslot(kvm, gfn);
748 for (i = PT_DIRECTORY_LEVEL;
749 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
750 linfo = lpage_info_slot(gfn, slot, i);
751 linfo->write_count += 1;
752 }
753 kvm->arch.indirect_shadow_pages++;
754}
755
756static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
757{
758 struct kvm_memory_slot *slot;
759 struct kvm_lpage_info *linfo;
760 int i;
761
762 slot = gfn_to_memslot(kvm, gfn);
763 for (i = PT_DIRECTORY_LEVEL;
764 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
765 linfo = lpage_info_slot(gfn, slot, i);
766 linfo->write_count -= 1;
767 WARN_ON(linfo->write_count < 0);
768 }
769 kvm->arch.indirect_shadow_pages--;
770}
771
772static int has_wrprotected_page(struct kvm *kvm,
773 gfn_t gfn,
774 int level)
775{
776 struct kvm_memory_slot *slot;
777 struct kvm_lpage_info *linfo;
778
779 slot = gfn_to_memslot(kvm, gfn);
780 if (slot) {
781 linfo = lpage_info_slot(gfn, slot, level);
782 return linfo->write_count;
783 }
784
785 return 1;
786}
787
788static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
789{
790 unsigned long page_size;
791 int i, ret = 0;
792
793 page_size = kvm_host_page_size(kvm, gfn);
794
795 for (i = PT_PAGE_TABLE_LEVEL;
796 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
797 if (page_size >= KVM_HPAGE_SIZE(i))
798 ret = i;
799 else
800 break;
801 }
802
803 return ret;
804}
805
806static struct kvm_memory_slot *
807gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
808 bool no_dirty_log)
809{
810 struct kvm_memory_slot *slot;
811
812 slot = gfn_to_memslot(vcpu->kvm, gfn);
813 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
814 (no_dirty_log && slot->dirty_bitmap))
815 slot = NULL;
816
817 return slot;
818}
819
820static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
821{
822 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
823}
824
825static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
826{
827 int host_level, level, max_level;
828
829 host_level = host_mapping_level(vcpu->kvm, large_gfn);
830
831 if (host_level == PT_PAGE_TABLE_LEVEL)
832 return host_level;
833
834 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
835 kvm_x86_ops->get_lpage_level() : host_level;
836
837 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
838 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
839 break;
840
841 return level - 1;
842}
843
844/*
845 * Pte mapping structures:
846 *
847 * If pte_list bit zero is zero, then pte_list point to the spte.
848 *
849 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
850 * pte_list_desc containing more mappings.
851 *
852 * Returns the number of pte entries before the spte was added or zero if
853 * the spte was not added.
854 *
855 */
856static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
857 unsigned long *pte_list)
858{
859 struct pte_list_desc *desc;
860 int i, count = 0;
861
862 if (!*pte_list) {
863 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
864 *pte_list = (unsigned long)spte;
865 } else if (!(*pte_list & 1)) {
866 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
867 desc = mmu_alloc_pte_list_desc(vcpu);
868 desc->sptes[0] = (u64 *)*pte_list;
869 desc->sptes[1] = spte;
870 *pte_list = (unsigned long)desc | 1;
871 ++count;
872 } else {
873 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
874 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
875 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
876 desc = desc->more;
877 count += PTE_LIST_EXT;
878 }
879 if (desc->sptes[PTE_LIST_EXT-1]) {
880 desc->more = mmu_alloc_pte_list_desc(vcpu);
881 desc = desc->more;
882 }
883 for (i = 0; desc->sptes[i]; ++i)
884 ++count;
885 desc->sptes[i] = spte;
886 }
887 return count;
888}
889
890static void
891pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
892 int i, struct pte_list_desc *prev_desc)
893{
894 int j;
895
896 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
897 ;
898 desc->sptes[i] = desc->sptes[j];
899 desc->sptes[j] = NULL;
900 if (j != 0)
901 return;
902 if (!prev_desc && !desc->more)
903 *pte_list = (unsigned long)desc->sptes[0];
904 else
905 if (prev_desc)
906 prev_desc->more = desc->more;
907 else
908 *pte_list = (unsigned long)desc->more | 1;
909 mmu_free_pte_list_desc(desc);
910}
911
912static void pte_list_remove(u64 *spte, unsigned long *pte_list)
913{
914 struct pte_list_desc *desc;
915 struct pte_list_desc *prev_desc;
916 int i;
917
918 if (!*pte_list) {
919 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
920 BUG();
921 } else if (!(*pte_list & 1)) {
922 rmap_printk("pte_list_remove: %p 1->0\n", spte);
923 if ((u64 *)*pte_list != spte) {
924 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
925 BUG();
926 }
927 *pte_list = 0;
928 } else {
929 rmap_printk("pte_list_remove: %p many->many\n", spte);
930 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
931 prev_desc = NULL;
932 while (desc) {
933 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
934 if (desc->sptes[i] == spte) {
935 pte_list_desc_remove_entry(pte_list,
936 desc, i,
937 prev_desc);
938 return;
939 }
940 prev_desc = desc;
941 desc = desc->more;
942 }
943 pr_err("pte_list_remove: %p many->many\n", spte);
944 BUG();
945 }
946}
947
948typedef void (*pte_list_walk_fn) (u64 *spte);
949static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
950{
951 struct pte_list_desc *desc;
952 int i;
953
954 if (!*pte_list)
955 return;
956
957 if (!(*pte_list & 1))
958 return fn((u64 *)*pte_list);
959
960 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
961 while (desc) {
962 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
963 fn(desc->sptes[i]);
964 desc = desc->more;
965 }
966}
967
968static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
969 struct kvm_memory_slot *slot)
970{
971 unsigned long idx;
972
973 idx = gfn_to_index(gfn, slot->base_gfn, level);
974 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
975}
976
977/*
978 * Take gfn and return the reverse mapping to it.
979 */
980static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
981{
982 struct kvm_memory_slot *slot;
983
984 slot = gfn_to_memslot(kvm, gfn);
985 return __gfn_to_rmap(gfn, level, slot);
986}
987
988static bool rmap_can_add(struct kvm_vcpu *vcpu)
989{
990 struct kvm_mmu_memory_cache *cache;
991
992 cache = &vcpu->arch.mmu_pte_list_desc_cache;
993 return mmu_memory_cache_free_objects(cache);
994}
995
996static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
997{
998 struct kvm_mmu_page *sp;
999 unsigned long *rmapp;
1000
1001 sp = page_header(__pa(spte));
1002 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1003 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1004 return pte_list_add(vcpu, spte, rmapp);
1005}
1006
1007static void rmap_remove(struct kvm *kvm, u64 *spte)
1008{
1009 struct kvm_mmu_page *sp;
1010 gfn_t gfn;
1011 unsigned long *rmapp;
1012
1013 sp = page_header(__pa(spte));
1014 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1015 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1016 pte_list_remove(spte, rmapp);
1017}
1018
1019/*
1020 * Used by the following functions to iterate through the sptes linked by a
1021 * rmap. All fields are private and not assumed to be used outside.
1022 */
1023struct rmap_iterator {
1024 /* private fields */
1025 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1026 int pos; /* index of the sptep */
1027};
1028
1029/*
1030 * Iteration must be started by this function. This should also be used after
1031 * removing/dropping sptes from the rmap link because in such cases the
1032 * information in the itererator may not be valid.
1033 *
1034 * Returns sptep if found, NULL otherwise.
1035 */
1036static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1037{
1038 if (!rmap)
1039 return NULL;
1040
1041 if (!(rmap & 1)) {
1042 iter->desc = NULL;
1043 return (u64 *)rmap;
1044 }
1045
1046 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1047 iter->pos = 0;
1048 return iter->desc->sptes[iter->pos];
1049}
1050
1051/*
1052 * Must be used with a valid iterator: e.g. after rmap_get_first().
1053 *
1054 * Returns sptep if found, NULL otherwise.
1055 */
1056static u64 *rmap_get_next(struct rmap_iterator *iter)
1057{
1058 if (iter->desc) {
1059 if (iter->pos < PTE_LIST_EXT - 1) {
1060 u64 *sptep;
1061
1062 ++iter->pos;
1063 sptep = iter->desc->sptes[iter->pos];
1064 if (sptep)
1065 return sptep;
1066 }
1067
1068 iter->desc = iter->desc->more;
1069
1070 if (iter->desc) {
1071 iter->pos = 0;
1072 /* desc->sptes[0] cannot be NULL */
1073 return iter->desc->sptes[iter->pos];
1074 }
1075 }
1076
1077 return NULL;
1078}
1079
1080static void drop_spte(struct kvm *kvm, u64 *sptep)
1081{
1082 if (mmu_spte_clear_track_bits(sptep))
1083 rmap_remove(kvm, sptep);
1084}
1085
1086
1087static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1088{
1089 if (is_large_pte(*sptep)) {
1090 WARN_ON(page_header(__pa(sptep))->role.level ==
1091 PT_PAGE_TABLE_LEVEL);
1092 drop_spte(kvm, sptep);
1093 --kvm->stat.lpages;
1094 return true;
1095 }
1096
1097 return false;
1098}
1099
1100static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1101{
1102 if (__drop_large_spte(vcpu->kvm, sptep))
1103 kvm_flush_remote_tlbs(vcpu->kvm);
1104}
1105
1106/*
1107 * Write-protect on the specified @sptep, @pt_protect indicates whether
1108 * spte writ-protection is caused by protecting shadow page table.
1109 * @flush indicates whether tlb need be flushed.
1110 *
1111 * Note: write protection is difference between drity logging and spte
1112 * protection:
1113 * - for dirty logging, the spte can be set to writable at anytime if
1114 * its dirty bitmap is properly set.
1115 * - for spte protection, the spte can be writable only after unsync-ing
1116 * shadow page.
1117 *
1118 * Return true if the spte is dropped.
1119 */
1120static bool
1121spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
1122{
1123 u64 spte = *sptep;
1124
1125 if (!is_writable_pte(spte) &&
1126 !(pt_protect && spte_is_locklessly_modifiable(spte)))
1127 return false;
1128
1129 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1130
1131 if (__drop_large_spte(kvm, sptep)) {
1132 *flush |= true;
1133 return true;
1134 }
1135
1136 if (pt_protect)
1137 spte &= ~SPTE_MMU_WRITEABLE;
1138 spte = spte & ~PT_WRITABLE_MASK;
1139
1140 *flush |= mmu_spte_update(sptep, spte);
1141 return false;
1142}
1143
1144static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1145 int level, bool pt_protect)
1146{
1147 u64 *sptep;
1148 struct rmap_iterator iter;
1149 bool flush = false;
1150
1151 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1152 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1153 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1154 sptep = rmap_get_first(*rmapp, &iter);
1155 continue;
1156 }
1157
1158 sptep = rmap_get_next(&iter);
1159 }
1160
1161 return flush;
1162}
1163
1164/**
1165 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1166 * @kvm: kvm instance
1167 * @slot: slot to protect
1168 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1169 * @mask: indicates which pages we should protect
1170 *
1171 * Used when we do not need to care about huge page mappings: e.g. during dirty
1172 * logging we do not have any such mappings.
1173 */
1174void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1175 struct kvm_memory_slot *slot,
1176 gfn_t gfn_offset, unsigned long mask)
1177{
1178 unsigned long *rmapp;
1179
1180 while (mask) {
1181 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1182 PT_PAGE_TABLE_LEVEL, slot);
1183 __rmap_write_protect(kvm, rmapp, PT_PAGE_TABLE_LEVEL, false);
1184
1185 /* clear the first set bit */
1186 mask &= mask - 1;
1187 }
1188}
1189
1190static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1191{
1192 struct kvm_memory_slot *slot;
1193 unsigned long *rmapp;
1194 int i;
1195 bool write_protected = false;
1196
1197 slot = gfn_to_memslot(kvm, gfn);
1198
1199 for (i = PT_PAGE_TABLE_LEVEL;
1200 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1201 rmapp = __gfn_to_rmap(gfn, i, slot);
1202 write_protected |= __rmap_write_protect(kvm, rmapp, i, true);
1203 }
1204
1205 return write_protected;
1206}
1207
1208static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1209 struct kvm_memory_slot *slot, unsigned long data)
1210{
1211 u64 *sptep;
1212 struct rmap_iterator iter;
1213 int need_tlb_flush = 0;
1214
1215 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1216 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1217 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1218
1219 drop_spte(kvm, sptep);
1220 need_tlb_flush = 1;
1221 }
1222
1223 return need_tlb_flush;
1224}
1225
1226static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1227 struct kvm_memory_slot *slot, unsigned long data)
1228{
1229 u64 *sptep;
1230 struct rmap_iterator iter;
1231 int need_flush = 0;
1232 u64 new_spte;
1233 pte_t *ptep = (pte_t *)data;
1234 pfn_t new_pfn;
1235
1236 WARN_ON(pte_huge(*ptep));
1237 new_pfn = pte_pfn(*ptep);
1238
1239 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1240 BUG_ON(!is_shadow_present_pte(*sptep));
1241 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1242
1243 need_flush = 1;
1244
1245 if (pte_write(*ptep)) {
1246 drop_spte(kvm, sptep);
1247 sptep = rmap_get_first(*rmapp, &iter);
1248 } else {
1249 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1250 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1251
1252 new_spte &= ~PT_WRITABLE_MASK;
1253 new_spte &= ~SPTE_HOST_WRITEABLE;
1254 new_spte &= ~shadow_accessed_mask;
1255
1256 mmu_spte_clear_track_bits(sptep);
1257 mmu_spte_set(sptep, new_spte);
1258 sptep = rmap_get_next(&iter);
1259 }
1260 }
1261
1262 if (need_flush)
1263 kvm_flush_remote_tlbs(kvm);
1264
1265 return 0;
1266}
1267
1268static int kvm_handle_hva_range(struct kvm *kvm,
1269 unsigned long start,
1270 unsigned long end,
1271 unsigned long data,
1272 int (*handler)(struct kvm *kvm,
1273 unsigned long *rmapp,
1274 struct kvm_memory_slot *slot,
1275 unsigned long data))
1276{
1277 int j;
1278 int ret = 0;
1279 struct kvm_memslots *slots;
1280 struct kvm_memory_slot *memslot;
1281
1282 slots = kvm_memslots(kvm);
1283
1284 kvm_for_each_memslot(memslot, slots) {
1285 unsigned long hva_start, hva_end;
1286 gfn_t gfn_start, gfn_end;
1287
1288 hva_start = max(start, memslot->userspace_addr);
1289 hva_end = min(end, memslot->userspace_addr +
1290 (memslot->npages << PAGE_SHIFT));
1291 if (hva_start >= hva_end)
1292 continue;
1293 /*
1294 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1295 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1296 */
1297 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1298 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1299
1300 for (j = PT_PAGE_TABLE_LEVEL;
1301 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1302 unsigned long idx, idx_end;
1303 unsigned long *rmapp;
1304
1305 /*
1306 * {idx(page_j) | page_j intersects with
1307 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1308 */
1309 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1310 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1311
1312 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1313
1314 for (; idx <= idx_end; ++idx)
1315 ret |= handler(kvm, rmapp++, memslot, data);
1316 }
1317 }
1318
1319 return ret;
1320}
1321
1322static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1323 unsigned long data,
1324 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1325 struct kvm_memory_slot *slot,
1326 unsigned long data))
1327{
1328 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1329}
1330
1331int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1332{
1333 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1334}
1335
1336int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1337{
1338 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1339}
1340
1341void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1342{
1343 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1344}
1345
1346static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1347 struct kvm_memory_slot *slot, unsigned long data)
1348{
1349 u64 *sptep;
1350 struct rmap_iterator uninitialized_var(iter);
1351 int young = 0;
1352
1353 /*
1354 * In case of absence of EPT Access and Dirty Bits supports,
1355 * emulate the accessed bit for EPT, by checking if this page has
1356 * an EPT mapping, and clearing it if it does. On the next access,
1357 * a new EPT mapping will be established.
1358 * This has some overhead, but not as much as the cost of swapping
1359 * out actively used pages or breaking up actively used hugepages.
1360 */
1361 if (!shadow_accessed_mask) {
1362 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1363 goto out;
1364 }
1365
1366 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1367 sptep = rmap_get_next(&iter)) {
1368 BUG_ON(!is_shadow_present_pte(*sptep));
1369
1370 if (*sptep & shadow_accessed_mask) {
1371 young = 1;
1372 clear_bit((ffs(shadow_accessed_mask) - 1),
1373 (unsigned long *)sptep);
1374 }
1375 }
1376out:
1377 /* @data has hva passed to kvm_age_hva(). */
1378 trace_kvm_age_page(data, slot, young);
1379 return young;
1380}
1381
1382static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1383 struct kvm_memory_slot *slot, unsigned long data)
1384{
1385 u64 *sptep;
1386 struct rmap_iterator iter;
1387 int young = 0;
1388
1389 /*
1390 * If there's no access bit in the secondary pte set by the
1391 * hardware it's up to gup-fast/gup to set the access bit in
1392 * the primary pte or in the page structure.
1393 */
1394 if (!shadow_accessed_mask)
1395 goto out;
1396
1397 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1398 sptep = rmap_get_next(&iter)) {
1399 BUG_ON(!is_shadow_present_pte(*sptep));
1400
1401 if (*sptep & shadow_accessed_mask) {
1402 young = 1;
1403 break;
1404 }
1405 }
1406out:
1407 return young;
1408}
1409
1410#define RMAP_RECYCLE_THRESHOLD 1000
1411
1412static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1413{
1414 unsigned long *rmapp;
1415 struct kvm_mmu_page *sp;
1416
1417 sp = page_header(__pa(spte));
1418
1419 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1420
1421 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1422 kvm_flush_remote_tlbs(vcpu->kvm);
1423}
1424
1425int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1426{
1427 return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1428}
1429
1430int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1431{
1432 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1433}
1434
1435#ifdef MMU_DEBUG
1436static int is_empty_shadow_page(u64 *spt)
1437{
1438 u64 *pos;
1439 u64 *end;
1440
1441 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1442 if (is_shadow_present_pte(*pos)) {
1443 printk(KERN_ERR "%s: %p %llx\n", __func__,
1444 pos, *pos);
1445 return 0;
1446 }
1447 return 1;
1448}
1449#endif
1450
1451/*
1452 * This value is the sum of all of the kvm instances's
1453 * kvm->arch.n_used_mmu_pages values. We need a global,
1454 * aggregate version in order to make the slab shrinker
1455 * faster
1456 */
1457static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1458{
1459 kvm->arch.n_used_mmu_pages += nr;
1460 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1461}
1462
1463/*
1464 * Remove the sp from shadow page cache, after call it,
1465 * we can not find this sp from the cache, and the shadow
1466 * page table is still valid.
1467 * It should be under the protection of mmu lock.
1468 */
1469static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
1470{
1471 ASSERT(is_empty_shadow_page(sp->spt));
1472 hlist_del(&sp->hash_link);
1473 if (!sp->role.direct)
1474 free_page((unsigned long)sp->gfns);
1475}
1476
1477/*
1478 * Free the shadow page table and the sp, we can do it
1479 * out of the protection of mmu lock.
1480 */
1481static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1482{
1483 list_del(&sp->link);
1484 free_page((unsigned long)sp->spt);
1485 kmem_cache_free(mmu_page_header_cache, sp);
1486}
1487
1488static unsigned kvm_page_table_hashfn(gfn_t gfn)
1489{
1490 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1491}
1492
1493static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1494 struct kvm_mmu_page *sp, u64 *parent_pte)
1495{
1496 if (!parent_pte)
1497 return;
1498
1499 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1500}
1501
1502static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1503 u64 *parent_pte)
1504{
1505 pte_list_remove(parent_pte, &sp->parent_ptes);
1506}
1507
1508static void drop_parent_pte(struct kvm_mmu_page *sp,
1509 u64 *parent_pte)
1510{
1511 mmu_page_remove_parent_pte(sp, parent_pte);
1512 mmu_spte_clear_no_track(parent_pte);
1513}
1514
1515static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1516 u64 *parent_pte, int direct)
1517{
1518 struct kvm_mmu_page *sp;
1519 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1520 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1521 if (!direct)
1522 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1523 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1524 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1525 bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
1526 sp->parent_ptes = 0;
1527 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1528 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1529 return sp;
1530}
1531
1532static void mark_unsync(u64 *spte);
1533static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1534{
1535 pte_list_walk(&sp->parent_ptes, mark_unsync);
1536}
1537
1538static void mark_unsync(u64 *spte)
1539{
1540 struct kvm_mmu_page *sp;
1541 unsigned int index;
1542
1543 sp = page_header(__pa(spte));
1544 index = spte - sp->spt;
1545 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1546 return;
1547 if (sp->unsync_children++)
1548 return;
1549 kvm_mmu_mark_parents_unsync(sp);
1550}
1551
1552static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1553 struct kvm_mmu_page *sp)
1554{
1555 return 1;
1556}
1557
1558static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1559{
1560}
1561
1562static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1563 struct kvm_mmu_page *sp, u64 *spte,
1564 const void *pte)
1565{
1566 WARN_ON(1);
1567}
1568
1569#define KVM_PAGE_ARRAY_NR 16
1570
1571struct kvm_mmu_pages {
1572 struct mmu_page_and_offset {
1573 struct kvm_mmu_page *sp;
1574 unsigned int idx;
1575 } page[KVM_PAGE_ARRAY_NR];
1576 unsigned int nr;
1577};
1578
1579static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1580 int idx)
1581{
1582 int i;
1583
1584 if (sp->unsync)
1585 for (i=0; i < pvec->nr; i++)
1586 if (pvec->page[i].sp == sp)
1587 return 0;
1588
1589 pvec->page[pvec->nr].sp = sp;
1590 pvec->page[pvec->nr].idx = idx;
1591 pvec->nr++;
1592 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1593}
1594
1595static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1596 struct kvm_mmu_pages *pvec)
1597{
1598 int i, ret, nr_unsync_leaf = 0;
1599
1600 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1601 struct kvm_mmu_page *child;
1602 u64 ent = sp->spt[i];
1603
1604 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1605 goto clear_child_bitmap;
1606
1607 child = page_header(ent & PT64_BASE_ADDR_MASK);
1608
1609 if (child->unsync_children) {
1610 if (mmu_pages_add(pvec, child, i))
1611 return -ENOSPC;
1612
1613 ret = __mmu_unsync_walk(child, pvec);
1614 if (!ret)
1615 goto clear_child_bitmap;
1616 else if (ret > 0)
1617 nr_unsync_leaf += ret;
1618 else
1619 return ret;
1620 } else if (child->unsync) {
1621 nr_unsync_leaf++;
1622 if (mmu_pages_add(pvec, child, i))
1623 return -ENOSPC;
1624 } else
1625 goto clear_child_bitmap;
1626
1627 continue;
1628
1629clear_child_bitmap:
1630 __clear_bit(i, sp->unsync_child_bitmap);
1631 sp->unsync_children--;
1632 WARN_ON((int)sp->unsync_children < 0);
1633 }
1634
1635
1636 return nr_unsync_leaf;
1637}
1638
1639static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1640 struct kvm_mmu_pages *pvec)
1641{
1642 if (!sp->unsync_children)
1643 return 0;
1644
1645 mmu_pages_add(pvec, sp, 0);
1646 return __mmu_unsync_walk(sp, pvec);
1647}
1648
1649static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1650{
1651 WARN_ON(!sp->unsync);
1652 trace_kvm_mmu_sync_page(sp);
1653 sp->unsync = 0;
1654 --kvm->stat.mmu_unsync;
1655}
1656
1657static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1658 struct list_head *invalid_list);
1659static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1660 struct list_head *invalid_list);
1661
1662#define for_each_gfn_sp(kvm, sp, gfn, pos) \
1663 hlist_for_each_entry(sp, pos, \
1664 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1665 if ((sp)->gfn != (gfn)) {} else
1666
1667#define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1668 hlist_for_each_entry(sp, pos, \
1669 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1670 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1671 (sp)->role.invalid) {} else
1672
1673/* @sp->gfn should be write-protected at the call site */
1674static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1675 struct list_head *invalid_list, bool clear_unsync)
1676{
1677 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1678 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1679 return 1;
1680 }
1681
1682 if (clear_unsync)
1683 kvm_unlink_unsync_page(vcpu->kvm, sp);
1684
1685 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1686 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1687 return 1;
1688 }
1689
1690 kvm_mmu_flush_tlb(vcpu);
1691 return 0;
1692}
1693
1694static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1695 struct kvm_mmu_page *sp)
1696{
1697 LIST_HEAD(invalid_list);
1698 int ret;
1699
1700 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1701 if (ret)
1702 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1703
1704 return ret;
1705}
1706
1707#ifdef CONFIG_KVM_MMU_AUDIT
1708#include "mmu_audit.c"
1709#else
1710static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1711static void mmu_audit_disable(void) { }
1712#endif
1713
1714static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1715 struct list_head *invalid_list)
1716{
1717 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1718}
1719
1720/* @gfn should be write-protected at the call site */
1721static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1722{
1723 struct kvm_mmu_page *s;
1724 struct hlist_node *node;
1725 LIST_HEAD(invalid_list);
1726 bool flush = false;
1727
1728 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1729 if (!s->unsync)
1730 continue;
1731
1732 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1733 kvm_unlink_unsync_page(vcpu->kvm, s);
1734 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1735 (vcpu->arch.mmu.sync_page(vcpu, s))) {
1736 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1737 continue;
1738 }
1739 flush = true;
1740 }
1741
1742 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1743 if (flush)
1744 kvm_mmu_flush_tlb(vcpu);
1745}
1746
1747struct mmu_page_path {
1748 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1749 unsigned int idx[PT64_ROOT_LEVEL-1];
1750};
1751
1752#define for_each_sp(pvec, sp, parents, i) \
1753 for (i = mmu_pages_next(&pvec, &parents, -1), \
1754 sp = pvec.page[i].sp; \
1755 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1756 i = mmu_pages_next(&pvec, &parents, i))
1757
1758static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1759 struct mmu_page_path *parents,
1760 int i)
1761{
1762 int n;
1763
1764 for (n = i+1; n < pvec->nr; n++) {
1765 struct kvm_mmu_page *sp = pvec->page[n].sp;
1766
1767 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1768 parents->idx[0] = pvec->page[n].idx;
1769 return n;
1770 }
1771
1772 parents->parent[sp->role.level-2] = sp;
1773 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1774 }
1775
1776 return n;
1777}
1778
1779static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1780{
1781 struct kvm_mmu_page *sp;
1782 unsigned int level = 0;
1783
1784 do {
1785 unsigned int idx = parents->idx[level];
1786
1787 sp = parents->parent[level];
1788 if (!sp)
1789 return;
1790
1791 --sp->unsync_children;
1792 WARN_ON((int)sp->unsync_children < 0);
1793 __clear_bit(idx, sp->unsync_child_bitmap);
1794 level++;
1795 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1796}
1797
1798static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1799 struct mmu_page_path *parents,
1800 struct kvm_mmu_pages *pvec)
1801{
1802 parents->parent[parent->role.level-1] = NULL;
1803 pvec->nr = 0;
1804}
1805
1806static void mmu_sync_children(struct kvm_vcpu *vcpu,
1807 struct kvm_mmu_page *parent)
1808{
1809 int i;
1810 struct kvm_mmu_page *sp;
1811 struct mmu_page_path parents;
1812 struct kvm_mmu_pages pages;
1813 LIST_HEAD(invalid_list);
1814
1815 kvm_mmu_pages_init(parent, &parents, &pages);
1816 while (mmu_unsync_walk(parent, &pages)) {
1817 bool protected = false;
1818
1819 for_each_sp(pages, sp, parents, i)
1820 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1821
1822 if (protected)
1823 kvm_flush_remote_tlbs(vcpu->kvm);
1824
1825 for_each_sp(pages, sp, parents, i) {
1826 kvm_sync_page(vcpu, sp, &invalid_list);
1827 mmu_pages_clear_parents(&parents);
1828 }
1829 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1830 cond_resched_lock(&vcpu->kvm->mmu_lock);
1831 kvm_mmu_pages_init(parent, &parents, &pages);
1832 }
1833}
1834
1835static void init_shadow_page_table(struct kvm_mmu_page *sp)
1836{
1837 int i;
1838
1839 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1840 sp->spt[i] = 0ull;
1841}
1842
1843static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1844{
1845 sp->write_flooding_count = 0;
1846}
1847
1848static void clear_sp_write_flooding_count(u64 *spte)
1849{
1850 struct kvm_mmu_page *sp = page_header(__pa(spte));
1851
1852 __clear_sp_write_flooding_count(sp);
1853}
1854
1855static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1856 gfn_t gfn,
1857 gva_t gaddr,
1858 unsigned level,
1859 int direct,
1860 unsigned access,
1861 u64 *parent_pte)
1862{
1863 union kvm_mmu_page_role role;
1864 unsigned quadrant;
1865 struct kvm_mmu_page *sp;
1866 struct hlist_node *node;
1867 bool need_sync = false;
1868
1869 role = vcpu->arch.mmu.base_role;
1870 role.level = level;
1871 role.direct = direct;
1872 if (role.direct)
1873 role.cr4_pae = 0;
1874 role.access = access;
1875 if (!vcpu->arch.mmu.direct_map
1876 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1877 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1878 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1879 role.quadrant = quadrant;
1880 }
1881 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1882 if (!need_sync && sp->unsync)
1883 need_sync = true;
1884
1885 if (sp->role.word != role.word)
1886 continue;
1887
1888 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1889 break;
1890
1891 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1892 if (sp->unsync_children) {
1893 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1894 kvm_mmu_mark_parents_unsync(sp);
1895 } else if (sp->unsync)
1896 kvm_mmu_mark_parents_unsync(sp);
1897
1898 __clear_sp_write_flooding_count(sp);
1899 trace_kvm_mmu_get_page(sp, false);
1900 return sp;
1901 }
1902 ++vcpu->kvm->stat.mmu_cache_miss;
1903 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1904 if (!sp)
1905 return sp;
1906 sp->gfn = gfn;
1907 sp->role = role;
1908 hlist_add_head(&sp->hash_link,
1909 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1910 if (!direct) {
1911 if (rmap_write_protect(vcpu->kvm, gfn))
1912 kvm_flush_remote_tlbs(vcpu->kvm);
1913 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1914 kvm_sync_pages(vcpu, gfn);
1915
1916 account_shadowed(vcpu->kvm, gfn);
1917 }
1918 init_shadow_page_table(sp);
1919 trace_kvm_mmu_get_page(sp, true);
1920 return sp;
1921}
1922
1923static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1924 struct kvm_vcpu *vcpu, u64 addr)
1925{
1926 iterator->addr = addr;
1927 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1928 iterator->level = vcpu->arch.mmu.shadow_root_level;
1929
1930 if (iterator->level == PT64_ROOT_LEVEL &&
1931 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1932 !vcpu->arch.mmu.direct_map)
1933 --iterator->level;
1934
1935 if (iterator->level == PT32E_ROOT_LEVEL) {
1936 iterator->shadow_addr
1937 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1938 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1939 --iterator->level;
1940 if (!iterator->shadow_addr)
1941 iterator->level = 0;
1942 }
1943}
1944
1945static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1946{
1947 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1948 return false;
1949
1950 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1951 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1952 return true;
1953}
1954
1955static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1956 u64 spte)
1957{
1958 if (is_last_spte(spte, iterator->level)) {
1959 iterator->level = 0;
1960 return;
1961 }
1962
1963 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
1964 --iterator->level;
1965}
1966
1967static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1968{
1969 return __shadow_walk_next(iterator, *iterator->sptep);
1970}
1971
1972static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1973{
1974 u64 spte;
1975
1976 spte = __pa(sp->spt)
1977 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1978 | PT_WRITABLE_MASK | PT_USER_MASK;
1979 mmu_spte_set(sptep, spte);
1980}
1981
1982static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1983 unsigned direct_access)
1984{
1985 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1986 struct kvm_mmu_page *child;
1987
1988 /*
1989 * For the direct sp, if the guest pte's dirty bit
1990 * changed form clean to dirty, it will corrupt the
1991 * sp's access: allow writable in the read-only sp,
1992 * so we should update the spte at this point to get
1993 * a new sp with the correct access.
1994 */
1995 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1996 if (child->role.access == direct_access)
1997 return;
1998
1999 drop_parent_pte(child, sptep);
2000 kvm_flush_remote_tlbs(vcpu->kvm);
2001 }
2002}
2003
2004static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2005 u64 *spte)
2006{
2007 u64 pte;
2008 struct kvm_mmu_page *child;
2009
2010 pte = *spte;
2011 if (is_shadow_present_pte(pte)) {
2012 if (is_last_spte(pte, sp->role.level)) {
2013 drop_spte(kvm, spte);
2014 if (is_large_pte(pte))
2015 --kvm->stat.lpages;
2016 } else {
2017 child = page_header(pte & PT64_BASE_ADDR_MASK);
2018 drop_parent_pte(child, spte);
2019 }
2020 return true;
2021 }
2022
2023 if (is_mmio_spte(pte))
2024 mmu_spte_clear_no_track(spte);
2025
2026 return false;
2027}
2028
2029static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2030 struct kvm_mmu_page *sp)
2031{
2032 unsigned i;
2033
2034 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2035 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2036}
2037
2038static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2039{
2040 mmu_page_remove_parent_pte(sp, parent_pte);
2041}
2042
2043static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2044{
2045 u64 *sptep;
2046 struct rmap_iterator iter;
2047
2048 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2049 drop_parent_pte(sp, sptep);
2050}
2051
2052static int mmu_zap_unsync_children(struct kvm *kvm,
2053 struct kvm_mmu_page *parent,
2054 struct list_head *invalid_list)
2055{
2056 int i, zapped = 0;
2057 struct mmu_page_path parents;
2058 struct kvm_mmu_pages pages;
2059
2060 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2061 return 0;
2062
2063 kvm_mmu_pages_init(parent, &parents, &pages);
2064 while (mmu_unsync_walk(parent, &pages)) {
2065 struct kvm_mmu_page *sp;
2066
2067 for_each_sp(pages, sp, parents, i) {
2068 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2069 mmu_pages_clear_parents(&parents);
2070 zapped++;
2071 }
2072 kvm_mmu_pages_init(parent, &parents, &pages);
2073 }
2074
2075 return zapped;
2076}
2077
2078static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2079 struct list_head *invalid_list)
2080{
2081 int ret;
2082
2083 trace_kvm_mmu_prepare_zap_page(sp);
2084 ++kvm->stat.mmu_shadow_zapped;
2085 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2086 kvm_mmu_page_unlink_children(kvm, sp);
2087 kvm_mmu_unlink_parents(kvm, sp);
2088 if (!sp->role.invalid && !sp->role.direct)
2089 unaccount_shadowed(kvm, sp->gfn);
2090 if (sp->unsync)
2091 kvm_unlink_unsync_page(kvm, sp);
2092 if (!sp->root_count) {
2093 /* Count self */
2094 ret++;
2095 list_move(&sp->link, invalid_list);
2096 kvm_mod_used_mmu_pages(kvm, -1);
2097 } else {
2098 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2099 kvm_reload_remote_mmus(kvm);
2100 }
2101
2102 sp->role.invalid = 1;
2103 return ret;
2104}
2105
2106static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2107 struct list_head *invalid_list)
2108{
2109 struct kvm_mmu_page *sp;
2110
2111 if (list_empty(invalid_list))
2112 return;
2113
2114 /*
2115 * wmb: make sure everyone sees our modifications to the page tables
2116 * rmb: make sure we see changes to vcpu->mode
2117 */
2118 smp_mb();
2119
2120 /*
2121 * Wait for all vcpus to exit guest mode and/or lockless shadow
2122 * page table walks.
2123 */
2124 kvm_flush_remote_tlbs(kvm);
2125
2126 do {
2127 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
2128 WARN_ON(!sp->role.invalid || sp->root_count);
2129 kvm_mmu_isolate_page(sp);
2130 kvm_mmu_free_page(sp);
2131 } while (!list_empty(invalid_list));
2132}
2133
2134/*
2135 * Changing the number of mmu pages allocated to the vm
2136 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2137 */
2138void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2139{
2140 LIST_HEAD(invalid_list);
2141 /*
2142 * If we set the number of mmu pages to be smaller be than the
2143 * number of actived pages , we must to free some mmu pages before we
2144 * change the value
2145 */
2146
2147 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2148 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
2149 !list_empty(&kvm->arch.active_mmu_pages)) {
2150 struct kvm_mmu_page *page;
2151
2152 page = container_of(kvm->arch.active_mmu_pages.prev,
2153 struct kvm_mmu_page, link);
2154 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
2155 }
2156 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2157 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2158 }
2159
2160 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2161}
2162
2163int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2164{
2165 struct kvm_mmu_page *sp;
2166 struct hlist_node *node;
2167 LIST_HEAD(invalid_list);
2168 int r;
2169
2170 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2171 r = 0;
2172 spin_lock(&kvm->mmu_lock);
2173 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
2174 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2175 sp->role.word);
2176 r = 1;
2177 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2178 }
2179 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2180 spin_unlock(&kvm->mmu_lock);
2181
2182 return r;
2183}
2184EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2185
2186static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
2187{
2188 int slot = memslot_id(kvm, gfn);
2189 struct kvm_mmu_page *sp = page_header(__pa(pte));
2190
2191 __set_bit(slot, sp->slot_bitmap);
2192}
2193
2194/*
2195 * The function is based on mtrr_type_lookup() in
2196 * arch/x86/kernel/cpu/mtrr/generic.c
2197 */
2198static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2199 u64 start, u64 end)
2200{
2201 int i;
2202 u64 base, mask;
2203 u8 prev_match, curr_match;
2204 int num_var_ranges = KVM_NR_VAR_MTRR;
2205
2206 if (!mtrr_state->enabled)
2207 return 0xFF;
2208
2209 /* Make end inclusive end, instead of exclusive */
2210 end--;
2211
2212 /* Look in fixed ranges. Just return the type as per start */
2213 if (mtrr_state->have_fixed && (start < 0x100000)) {
2214 int idx;
2215
2216 if (start < 0x80000) {
2217 idx = 0;
2218 idx += (start >> 16);
2219 return mtrr_state->fixed_ranges[idx];
2220 } else if (start < 0xC0000) {
2221 idx = 1 * 8;
2222 idx += ((start - 0x80000) >> 14);
2223 return mtrr_state->fixed_ranges[idx];
2224 } else if (start < 0x1000000) {
2225 idx = 3 * 8;
2226 idx += ((start - 0xC0000) >> 12);
2227 return mtrr_state->fixed_ranges[idx];
2228 }
2229 }
2230
2231 /*
2232 * Look in variable ranges
2233 * Look of multiple ranges matching this address and pick type
2234 * as per MTRR precedence
2235 */
2236 if (!(mtrr_state->enabled & 2))
2237 return mtrr_state->def_type;
2238
2239 prev_match = 0xFF;
2240 for (i = 0; i < num_var_ranges; ++i) {
2241 unsigned short start_state, end_state;
2242
2243 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2244 continue;
2245
2246 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2247 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2248 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2249 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2250
2251 start_state = ((start & mask) == (base & mask));
2252 end_state = ((end & mask) == (base & mask));
2253 if (start_state != end_state)
2254 return 0xFE;
2255
2256 if ((start & mask) != (base & mask))
2257 continue;
2258
2259 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2260 if (prev_match == 0xFF) {
2261 prev_match = curr_match;
2262 continue;
2263 }
2264
2265 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2266 curr_match == MTRR_TYPE_UNCACHABLE)
2267 return MTRR_TYPE_UNCACHABLE;
2268
2269 if ((prev_match == MTRR_TYPE_WRBACK &&
2270 curr_match == MTRR_TYPE_WRTHROUGH) ||
2271 (prev_match == MTRR_TYPE_WRTHROUGH &&
2272 curr_match == MTRR_TYPE_WRBACK)) {
2273 prev_match = MTRR_TYPE_WRTHROUGH;
2274 curr_match = MTRR_TYPE_WRTHROUGH;
2275 }
2276
2277 if (prev_match != curr_match)
2278 return MTRR_TYPE_UNCACHABLE;
2279 }
2280
2281 if (prev_match != 0xFF)
2282 return prev_match;
2283
2284 return mtrr_state->def_type;
2285}
2286
2287u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2288{
2289 u8 mtrr;
2290
2291 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2292 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2293 if (mtrr == 0xfe || mtrr == 0xff)
2294 mtrr = MTRR_TYPE_WRBACK;
2295 return mtrr;
2296}
2297EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2298
2299static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2300{
2301 trace_kvm_mmu_unsync_page(sp);
2302 ++vcpu->kvm->stat.mmu_unsync;
2303 sp->unsync = 1;
2304
2305 kvm_mmu_mark_parents_unsync(sp);
2306}
2307
2308static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
2309{
2310 struct kvm_mmu_page *s;
2311 struct hlist_node *node;
2312
2313 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2314 if (s->unsync)
2315 continue;
2316 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2317 __kvm_unsync_page(vcpu, s);
2318 }
2319}
2320
2321static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2322 bool can_unsync)
2323{
2324 struct kvm_mmu_page *s;
2325 struct hlist_node *node;
2326 bool need_unsync = false;
2327
2328 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2329 if (!can_unsync)
2330 return 1;
2331
2332 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2333 return 1;
2334
2335 if (!need_unsync && !s->unsync) {
2336 need_unsync = true;
2337 }
2338 }
2339 if (need_unsync)
2340 kvm_unsync_pages(vcpu, gfn);
2341 return 0;
2342}
2343
2344static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2345 unsigned pte_access, int user_fault,
2346 int write_fault, int level,
2347 gfn_t gfn, pfn_t pfn, bool speculative,
2348 bool can_unsync, bool host_writable)
2349{
2350 u64 spte;
2351 int ret = 0;
2352
2353 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2354 return 0;
2355
2356 spte = PT_PRESENT_MASK;
2357 if (!speculative)
2358 spte |= shadow_accessed_mask;
2359
2360 if (pte_access & ACC_EXEC_MASK)
2361 spte |= shadow_x_mask;
2362 else
2363 spte |= shadow_nx_mask;
2364
2365 if (pte_access & ACC_USER_MASK)
2366 spte |= shadow_user_mask;
2367
2368 if (level > PT_PAGE_TABLE_LEVEL)
2369 spte |= PT_PAGE_SIZE_MASK;
2370 if (tdp_enabled)
2371 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2372 kvm_is_mmio_pfn(pfn));
2373
2374 if (host_writable)
2375 spte |= SPTE_HOST_WRITEABLE;
2376 else
2377 pte_access &= ~ACC_WRITE_MASK;
2378
2379 spte |= (u64)pfn << PAGE_SHIFT;
2380
2381 if ((pte_access & ACC_WRITE_MASK)
2382 || (!vcpu->arch.mmu.direct_map && write_fault
2383 && !is_write_protection(vcpu) && !user_fault)) {
2384
2385 if (level > PT_PAGE_TABLE_LEVEL &&
2386 has_wrprotected_page(vcpu->kvm, gfn, level)) {
2387 ret = 1;
2388 drop_spte(vcpu->kvm, sptep);
2389 goto done;
2390 }
2391
2392 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2393
2394 if (!vcpu->arch.mmu.direct_map
2395 && !(pte_access & ACC_WRITE_MASK)) {
2396 spte &= ~PT_USER_MASK;
2397 /*
2398 * If we converted a user page to a kernel page,
2399 * so that the kernel can write to it when cr0.wp=0,
2400 * then we should prevent the kernel from executing it
2401 * if SMEP is enabled.
2402 */
2403 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2404 spte |= PT64_NX_MASK;
2405 }
2406
2407 /*
2408 * Optimization: for pte sync, if spte was writable the hash
2409 * lookup is unnecessary (and expensive). Write protection
2410 * is responsibility of mmu_get_page / kvm_sync_page.
2411 * Same reasoning can be applied to dirty page accounting.
2412 */
2413 if (!can_unsync && is_writable_pte(*sptep))
2414 goto set_pte;
2415
2416 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2417 pgprintk("%s: found shadow page for %llx, marking ro\n",
2418 __func__, gfn);
2419 ret = 1;
2420 pte_access &= ~ACC_WRITE_MASK;
2421 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2422 }
2423 }
2424
2425 if (pte_access & ACC_WRITE_MASK)
2426 mark_page_dirty(vcpu->kvm, gfn);
2427
2428set_pte:
2429 if (mmu_spte_update(sptep, spte))
2430 kvm_flush_remote_tlbs(vcpu->kvm);
2431done:
2432 return ret;
2433}
2434
2435static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2436 unsigned pt_access, unsigned pte_access,
2437 int user_fault, int write_fault,
2438 int *emulate, int level, gfn_t gfn,
2439 pfn_t pfn, bool speculative,
2440 bool host_writable)
2441{
2442 int was_rmapped = 0;
2443 int rmap_count;
2444
2445 pgprintk("%s: spte %llx access %x write_fault %d"
2446 " user_fault %d gfn %llx\n",
2447 __func__, *sptep, pt_access,
2448 write_fault, user_fault, gfn);
2449
2450 if (is_rmap_spte(*sptep)) {
2451 /*
2452 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2453 * the parent of the now unreachable PTE.
2454 */
2455 if (level > PT_PAGE_TABLE_LEVEL &&
2456 !is_large_pte(*sptep)) {
2457 struct kvm_mmu_page *child;
2458 u64 pte = *sptep;
2459
2460 child = page_header(pte & PT64_BASE_ADDR_MASK);
2461 drop_parent_pte(child, sptep);
2462 kvm_flush_remote_tlbs(vcpu->kvm);
2463 } else if (pfn != spte_to_pfn(*sptep)) {
2464 pgprintk("hfn old %llx new %llx\n",
2465 spte_to_pfn(*sptep), pfn);
2466 drop_spte(vcpu->kvm, sptep);
2467 kvm_flush_remote_tlbs(vcpu->kvm);
2468 } else
2469 was_rmapped = 1;
2470 }
2471
2472 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2473 level, gfn, pfn, speculative, true,
2474 host_writable)) {
2475 if (write_fault)
2476 *emulate = 1;
2477 kvm_mmu_flush_tlb(vcpu);
2478 }
2479
2480 if (unlikely(is_mmio_spte(*sptep) && emulate))
2481 *emulate = 1;
2482
2483 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2484 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2485 is_large_pte(*sptep)? "2MB" : "4kB",
2486 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2487 *sptep, sptep);
2488 if (!was_rmapped && is_large_pte(*sptep))
2489 ++vcpu->kvm->stat.lpages;
2490
2491 if (is_shadow_present_pte(*sptep)) {
2492 page_header_update_slot(vcpu->kvm, sptep, gfn);
2493 if (!was_rmapped) {
2494 rmap_count = rmap_add(vcpu, sptep, gfn);
2495 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2496 rmap_recycle(vcpu, sptep, gfn);
2497 }
2498 }
2499 kvm_release_pfn_clean(pfn);
2500}
2501
2502static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2503{
2504 mmu_free_roots(vcpu);
2505}
2506
2507static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2508 bool no_dirty_log)
2509{
2510 struct kvm_memory_slot *slot;
2511 unsigned long hva;
2512
2513 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2514 if (!slot)
2515 return get_fault_pfn();
2516
2517 hva = gfn_to_hva_memslot(slot, gfn);
2518
2519 return hva_to_pfn_atomic(hva);
2520}
2521
2522static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2523 struct kvm_mmu_page *sp,
2524 u64 *start, u64 *end)
2525{
2526 struct page *pages[PTE_PREFETCH_NUM];
2527 unsigned access = sp->role.access;
2528 int i, ret;
2529 gfn_t gfn;
2530
2531 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2532 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2533 return -1;
2534
2535 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2536 if (ret <= 0)
2537 return -1;
2538
2539 for (i = 0; i < ret; i++, gfn++, start++)
2540 mmu_set_spte(vcpu, start, ACC_ALL,
2541 access, 0, 0, NULL,
2542 sp->role.level, gfn,
2543 page_to_pfn(pages[i]), true, true);
2544
2545 return 0;
2546}
2547
2548static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2549 struct kvm_mmu_page *sp, u64 *sptep)
2550{
2551 u64 *spte, *start = NULL;
2552 int i;
2553
2554 WARN_ON(!sp->role.direct);
2555
2556 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2557 spte = sp->spt + i;
2558
2559 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2560 if (is_shadow_present_pte(*spte) || spte == sptep) {
2561 if (!start)
2562 continue;
2563 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2564 break;
2565 start = NULL;
2566 } else if (!start)
2567 start = spte;
2568 }
2569}
2570
2571static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2572{
2573 struct kvm_mmu_page *sp;
2574
2575 /*
2576 * Since it's no accessed bit on EPT, it's no way to
2577 * distinguish between actually accessed translations
2578 * and prefetched, so disable pte prefetch if EPT is
2579 * enabled.
2580 */
2581 if (!shadow_accessed_mask)
2582 return;
2583
2584 sp = page_header(__pa(sptep));
2585 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2586 return;
2587
2588 __direct_pte_prefetch(vcpu, sp, sptep);
2589}
2590
2591static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2592 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2593 bool prefault)
2594{
2595 struct kvm_shadow_walk_iterator iterator;
2596 struct kvm_mmu_page *sp;
2597 int emulate = 0;
2598 gfn_t pseudo_gfn;
2599
2600 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2601 if (iterator.level == level) {
2602 unsigned pte_access = ACC_ALL;
2603
2604 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2605 0, write, &emulate,
2606 level, gfn, pfn, prefault, map_writable);
2607 direct_pte_prefetch(vcpu, iterator.sptep);
2608 ++vcpu->stat.pf_fixed;
2609 break;
2610 }
2611
2612 if (!is_shadow_present_pte(*iterator.sptep)) {
2613 u64 base_addr = iterator.addr;
2614
2615 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2616 pseudo_gfn = base_addr >> PAGE_SHIFT;
2617 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2618 iterator.level - 1,
2619 1, ACC_ALL, iterator.sptep);
2620 if (!sp) {
2621 pgprintk("nonpaging_map: ENOMEM\n");
2622 kvm_release_pfn_clean(pfn);
2623 return -ENOMEM;
2624 }
2625
2626 mmu_spte_set(iterator.sptep,
2627 __pa(sp->spt)
2628 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2629 | shadow_user_mask | shadow_x_mask
2630 | shadow_accessed_mask);
2631 }
2632 }
2633 return emulate;
2634}
2635
2636static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2637{
2638 siginfo_t info;
2639
2640 info.si_signo = SIGBUS;
2641 info.si_errno = 0;
2642 info.si_code = BUS_MCEERR_AR;
2643 info.si_addr = (void __user *)address;
2644 info.si_addr_lsb = PAGE_SHIFT;
2645
2646 send_sig_info(SIGBUS, &info, tsk);
2647}
2648
2649static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2650{
2651 kvm_release_pfn_clean(pfn);
2652 if (is_hwpoison_pfn(pfn)) {
2653 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2654 return 0;
2655 }
2656
2657 return -EFAULT;
2658}
2659
2660static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2661 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2662{
2663 pfn_t pfn = *pfnp;
2664 gfn_t gfn = *gfnp;
2665 int level = *levelp;
2666
2667 /*
2668 * Check if it's a transparent hugepage. If this would be an
2669 * hugetlbfs page, level wouldn't be set to
2670 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2671 * here.
2672 */
2673 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2674 level == PT_PAGE_TABLE_LEVEL &&
2675 PageTransCompound(pfn_to_page(pfn)) &&
2676 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2677 unsigned long mask;
2678 /*
2679 * mmu_notifier_retry was successful and we hold the
2680 * mmu_lock here, so the pmd can't become splitting
2681 * from under us, and in turn
2682 * __split_huge_page_refcount() can't run from under
2683 * us and we can safely transfer the refcount from
2684 * PG_tail to PG_head as we switch the pfn to tail to
2685 * head.
2686 */
2687 *levelp = level = PT_DIRECTORY_LEVEL;
2688 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2689 VM_BUG_ON((gfn & mask) != (pfn & mask));
2690 if (pfn & mask) {
2691 gfn &= ~mask;
2692 *gfnp = gfn;
2693 kvm_release_pfn_clean(pfn);
2694 pfn &= ~mask;
2695 kvm_get_pfn(pfn);
2696 *pfnp = pfn;
2697 }
2698 }
2699}
2700
2701static bool mmu_invalid_pfn(pfn_t pfn)
2702{
2703 return unlikely(is_invalid_pfn(pfn));
2704}
2705
2706static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2707 pfn_t pfn, unsigned access, int *ret_val)
2708{
2709 bool ret = true;
2710
2711 /* The pfn is invalid, report the error! */
2712 if (unlikely(is_invalid_pfn(pfn))) {
2713 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2714 goto exit;
2715 }
2716
2717 if (unlikely(is_noslot_pfn(pfn)))
2718 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2719
2720 ret = false;
2721exit:
2722 return ret;
2723}
2724
2725static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2726{
2727 /*
2728 * #PF can be fast only if the shadow page table is present and it
2729 * is caused by write-protect, that means we just need change the
2730 * W bit of the spte which can be done out of mmu-lock.
2731 */
2732 if (!(error_code & PFERR_PRESENT_MASK) ||
2733 !(error_code & PFERR_WRITE_MASK))
2734 return false;
2735
2736 return true;
2737}
2738
2739static bool
2740fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2741{
2742 struct kvm_mmu_page *sp = page_header(__pa(sptep));
2743 gfn_t gfn;
2744
2745 WARN_ON(!sp->role.direct);
2746
2747 /*
2748 * The gfn of direct spte is stable since it is calculated
2749 * by sp->gfn.
2750 */
2751 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2752
2753 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2754 mark_page_dirty(vcpu->kvm, gfn);
2755
2756 return true;
2757}
2758
2759/*
2760 * Return value:
2761 * - true: let the vcpu to access on the same address again.
2762 * - false: let the real page fault path to fix it.
2763 */
2764static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2765 u32 error_code)
2766{
2767 struct kvm_shadow_walk_iterator iterator;
2768 bool ret = false;
2769 u64 spte = 0ull;
2770
2771 if (!page_fault_can_be_fast(vcpu, error_code))
2772 return false;
2773
2774 walk_shadow_page_lockless_begin(vcpu);
2775 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2776 if (!is_shadow_present_pte(spte) || iterator.level < level)
2777 break;
2778
2779 /*
2780 * If the mapping has been changed, let the vcpu fault on the
2781 * same address again.
2782 */
2783 if (!is_rmap_spte(spte)) {
2784 ret = true;
2785 goto exit;
2786 }
2787
2788 if (!is_last_spte(spte, level))
2789 goto exit;
2790
2791 /*
2792 * Check if it is a spurious fault caused by TLB lazily flushed.
2793 *
2794 * Need not check the access of upper level table entries since
2795 * they are always ACC_ALL.
2796 */
2797 if (is_writable_pte(spte)) {
2798 ret = true;
2799 goto exit;
2800 }
2801
2802 /*
2803 * Currently, to simplify the code, only the spte write-protected
2804 * by dirty-log can be fast fixed.
2805 */
2806 if (!spte_is_locklessly_modifiable(spte))
2807 goto exit;
2808
2809 /*
2810 * Currently, fast page fault only works for direct mapping since
2811 * the gfn is not stable for indirect shadow page.
2812 * See Documentation/virtual/kvm/locking.txt to get more detail.
2813 */
2814 ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2815exit:
2816 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2817 spte, ret);
2818 walk_shadow_page_lockless_end(vcpu);
2819
2820 return ret;
2821}
2822
2823static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2824 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2825
2826static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2827 gfn_t gfn, bool prefault)
2828{
2829 int r;
2830 int level;
2831 int force_pt_level;
2832 pfn_t pfn;
2833 unsigned long mmu_seq;
2834 bool map_writable, write = error_code & PFERR_WRITE_MASK;
2835
2836 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2837 if (likely(!force_pt_level)) {
2838 level = mapping_level(vcpu, gfn);
2839 /*
2840 * This path builds a PAE pagetable - so we can map
2841 * 2mb pages at maximum. Therefore check if the level
2842 * is larger than that.
2843 */
2844 if (level > PT_DIRECTORY_LEVEL)
2845 level = PT_DIRECTORY_LEVEL;
2846
2847 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2848 } else
2849 level = PT_PAGE_TABLE_LEVEL;
2850
2851 if (fast_page_fault(vcpu, v, level, error_code))
2852 return 0;
2853
2854 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2855 smp_rmb();
2856
2857 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2858 return 0;
2859
2860 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2861 return r;
2862
2863 spin_lock(&vcpu->kvm->mmu_lock);
2864 if (mmu_notifier_retry(vcpu, mmu_seq))
2865 goto out_unlock;
2866 kvm_mmu_free_some_pages(vcpu);
2867 if (likely(!force_pt_level))
2868 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2869 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2870 prefault);
2871 spin_unlock(&vcpu->kvm->mmu_lock);
2872
2873
2874 return r;
2875
2876out_unlock:
2877 spin_unlock(&vcpu->kvm->mmu_lock);
2878 kvm_release_pfn_clean(pfn);
2879 return 0;
2880}
2881
2882
2883static void mmu_free_roots(struct kvm_vcpu *vcpu)
2884{
2885 int i;
2886 struct kvm_mmu_page *sp;
2887 LIST_HEAD(invalid_list);
2888
2889 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2890 return;
2891 spin_lock(&vcpu->kvm->mmu_lock);
2892 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2893 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2894 vcpu->arch.mmu.direct_map)) {
2895 hpa_t root = vcpu->arch.mmu.root_hpa;
2896
2897 sp = page_header(root);
2898 --sp->root_count;
2899 if (!sp->root_count && sp->role.invalid) {
2900 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2901 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2902 }
2903 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2904 spin_unlock(&vcpu->kvm->mmu_lock);
2905 return;
2906 }
2907 for (i = 0; i < 4; ++i) {
2908 hpa_t root = vcpu->arch.mmu.pae_root[i];
2909
2910 if (root) {
2911 root &= PT64_BASE_ADDR_MASK;
2912 sp = page_header(root);
2913 --sp->root_count;
2914 if (!sp->root_count && sp->role.invalid)
2915 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2916 &invalid_list);
2917 }
2918 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2919 }
2920 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2921 spin_unlock(&vcpu->kvm->mmu_lock);
2922 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2923}
2924
2925static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2926{
2927 int ret = 0;
2928
2929 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2930 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2931 ret = 1;
2932 }
2933
2934 return ret;
2935}
2936
2937static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2938{
2939 struct kvm_mmu_page *sp;
2940 unsigned i;
2941
2942 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2943 spin_lock(&vcpu->kvm->mmu_lock);
2944 kvm_mmu_free_some_pages(vcpu);
2945 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2946 1, ACC_ALL, NULL);
2947 ++sp->root_count;
2948 spin_unlock(&vcpu->kvm->mmu_lock);
2949 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2950 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2951 for (i = 0; i < 4; ++i) {
2952 hpa_t root = vcpu->arch.mmu.pae_root[i];
2953
2954 ASSERT(!VALID_PAGE(root));
2955 spin_lock(&vcpu->kvm->mmu_lock);
2956 kvm_mmu_free_some_pages(vcpu);
2957 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2958 i << 30,
2959 PT32_ROOT_LEVEL, 1, ACC_ALL,
2960 NULL);
2961 root = __pa(sp->spt);
2962 ++sp->root_count;
2963 spin_unlock(&vcpu->kvm->mmu_lock);
2964 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2965 }
2966 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2967 } else
2968 BUG();
2969
2970 return 0;
2971}
2972
2973static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2974{
2975 struct kvm_mmu_page *sp;
2976 u64 pdptr, pm_mask;
2977 gfn_t root_gfn;
2978 int i;
2979
2980 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2981
2982 if (mmu_check_root(vcpu, root_gfn))
2983 return 1;
2984
2985 /*
2986 * Do we shadow a long mode page table? If so we need to
2987 * write-protect the guests page table root.
2988 */
2989 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2990 hpa_t root = vcpu->arch.mmu.root_hpa;
2991
2992 ASSERT(!VALID_PAGE(root));
2993
2994 spin_lock(&vcpu->kvm->mmu_lock);
2995 kvm_mmu_free_some_pages(vcpu);
2996 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2997 0, ACC_ALL, NULL);
2998 root = __pa(sp->spt);
2999 ++sp->root_count;
3000 spin_unlock(&vcpu->kvm->mmu_lock);
3001 vcpu->arch.mmu.root_hpa = root;
3002 return 0;
3003 }
3004
3005 /*
3006 * We shadow a 32 bit page table. This may be a legacy 2-level
3007 * or a PAE 3-level page table. In either case we need to be aware that
3008 * the shadow page table may be a PAE or a long mode page table.
3009 */
3010 pm_mask = PT_PRESENT_MASK;
3011 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3012 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3013
3014 for (i = 0; i < 4; ++i) {
3015 hpa_t root = vcpu->arch.mmu.pae_root[i];
3016
3017 ASSERT(!VALID_PAGE(root));
3018 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3019 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3020 if (!is_present_gpte(pdptr)) {
3021 vcpu->arch.mmu.pae_root[i] = 0;
3022 continue;
3023 }
3024 root_gfn = pdptr >> PAGE_SHIFT;
3025 if (mmu_check_root(vcpu, root_gfn))
3026 return 1;
3027 }
3028 spin_lock(&vcpu->kvm->mmu_lock);
3029 kvm_mmu_free_some_pages(vcpu);
3030 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3031 PT32_ROOT_LEVEL, 0,
3032 ACC_ALL, NULL);
3033 root = __pa(sp->spt);
3034 ++sp->root_count;
3035 spin_unlock(&vcpu->kvm->mmu_lock);
3036
3037 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3038 }
3039 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3040
3041 /*
3042 * If we shadow a 32 bit page table with a long mode page
3043 * table we enter this path.
3044 */
3045 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3046 if (vcpu->arch.mmu.lm_root == NULL) {
3047 /*
3048 * The additional page necessary for this is only
3049 * allocated on demand.
3050 */
3051
3052 u64 *lm_root;
3053
3054 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3055 if (lm_root == NULL)
3056 return 1;
3057
3058 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3059
3060 vcpu->arch.mmu.lm_root = lm_root;
3061 }
3062
3063 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3064 }
3065
3066 return 0;
3067}
3068
3069static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3070{
3071 if (vcpu->arch.mmu.direct_map)
3072 return mmu_alloc_direct_roots(vcpu);
3073 else
3074 return mmu_alloc_shadow_roots(vcpu);
3075}
3076
3077static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3078{
3079 int i;
3080 struct kvm_mmu_page *sp;
3081
3082 if (vcpu->arch.mmu.direct_map)
3083 return;
3084
3085 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3086 return;
3087
3088 vcpu_clear_mmio_info(vcpu, ~0ul);
3089 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3090 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3091 hpa_t root = vcpu->arch.mmu.root_hpa;
3092 sp = page_header(root);
3093 mmu_sync_children(vcpu, sp);
3094 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3095 return;
3096 }
3097 for (i = 0; i < 4; ++i) {
3098 hpa_t root = vcpu->arch.mmu.pae_root[i];
3099
3100 if (root && VALID_PAGE(root)) {
3101 root &= PT64_BASE_ADDR_MASK;
3102 sp = page_header(root);
3103 mmu_sync_children(vcpu, sp);
3104 }
3105 }
3106 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3107}
3108
3109void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3110{
3111 spin_lock(&vcpu->kvm->mmu_lock);
3112 mmu_sync_roots(vcpu);
3113 spin_unlock(&vcpu->kvm->mmu_lock);
3114}
3115
3116static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3117 u32 access, struct x86_exception *exception)
3118{
3119 if (exception)
3120 exception->error_code = 0;
3121 return vaddr;
3122}
3123
3124static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3125 u32 access,
3126 struct x86_exception *exception)
3127{
3128 if (exception)
3129 exception->error_code = 0;
3130 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3131}
3132
3133static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3134{
3135 if (direct)
3136 return vcpu_match_mmio_gpa(vcpu, addr);
3137
3138 return vcpu_match_mmio_gva(vcpu, addr);
3139}
3140
3141
3142/*
3143 * On direct hosts, the last spte is only allows two states
3144 * for mmio page fault:
3145 * - It is the mmio spte
3146 * - It is zapped or it is being zapped.
3147 *
3148 * This function completely checks the spte when the last spte
3149 * is not the mmio spte.
3150 */
3151static bool check_direct_spte_mmio_pf(u64 spte)
3152{
3153 return __check_direct_spte_mmio_pf(spte);
3154}
3155
3156static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3157{
3158 struct kvm_shadow_walk_iterator iterator;
3159 u64 spte = 0ull;
3160
3161 walk_shadow_page_lockless_begin(vcpu);
3162 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3163 if (!is_shadow_present_pte(spte))
3164 break;
3165 walk_shadow_page_lockless_end(vcpu);
3166
3167 return spte;
3168}
3169
3170/*
3171 * If it is a real mmio page fault, return 1 and emulat the instruction
3172 * directly, return 0 to let CPU fault again on the address, -1 is
3173 * returned if bug is detected.
3174 */
3175int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3176{
3177 u64 spte;
3178
3179 if (quickly_check_mmio_pf(vcpu, addr, direct))
3180 return 1;
3181
3182 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3183
3184 if (is_mmio_spte(spte)) {
3185 gfn_t gfn = get_mmio_spte_gfn(spte);
3186 unsigned access = get_mmio_spte_access(spte);
3187
3188 if (direct)
3189 addr = 0;
3190
3191 trace_handle_mmio_page_fault(addr, gfn, access);
3192 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3193 return 1;
3194 }
3195
3196 /*
3197 * It's ok if the gva is remapped by other cpus on shadow guest,
3198 * it's a BUG if the gfn is not a mmio page.
3199 */
3200 if (direct && !check_direct_spte_mmio_pf(spte))
3201 return -1;
3202
3203 /*
3204 * If the page table is zapped by other cpus, let CPU fault again on
3205 * the address.
3206 */
3207 return 0;
3208}
3209EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3210
3211static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3212 u32 error_code, bool direct)
3213{
3214 int ret;
3215
3216 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3217 WARN_ON(ret < 0);
3218 return ret;
3219}
3220
3221static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3222 u32 error_code, bool prefault)
3223{
3224 gfn_t gfn;
3225 int r;
3226
3227 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3228
3229 if (unlikely(error_code & PFERR_RSVD_MASK))
3230 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3231
3232 r = mmu_topup_memory_caches(vcpu);
3233 if (r)
3234 return r;
3235
3236 ASSERT(vcpu);
3237 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3238
3239 gfn = gva >> PAGE_SHIFT;
3240
3241 return nonpaging_map(vcpu, gva & PAGE_MASK,
3242 error_code, gfn, prefault);
3243}
3244
3245static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3246{
3247 struct kvm_arch_async_pf arch;
3248
3249 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3250 arch.gfn = gfn;
3251 arch.direct_map = vcpu->arch.mmu.direct_map;
3252 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3253
3254 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3255}
3256
3257static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3258{
3259 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3260 kvm_event_needs_reinjection(vcpu)))
3261 return false;
3262
3263 return kvm_x86_ops->interrupt_allowed(vcpu);
3264}
3265
3266static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3267 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3268{
3269 bool async;
3270
3271 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3272
3273 if (!async)
3274 return false; /* *pfn has correct page already */
3275
3276 kvm_release_pfn_clean(*pfn);
3277
3278 if (!prefault && can_do_async_pf(vcpu)) {
3279 trace_kvm_try_async_get_page(gva, gfn);
3280 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3281 trace_kvm_async_pf_doublefault(gva, gfn);
3282 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3283 return true;
3284 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3285 return true;
3286 }
3287
3288 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3289
3290 return false;
3291}
3292
3293static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3294 bool prefault)
3295{
3296 pfn_t pfn;
3297 int r;
3298 int level;
3299 int force_pt_level;
3300 gfn_t gfn = gpa >> PAGE_SHIFT;
3301 unsigned long mmu_seq;
3302 int write = error_code & PFERR_WRITE_MASK;
3303 bool map_writable;
3304
3305 ASSERT(vcpu);
3306 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3307
3308 if (unlikely(error_code & PFERR_RSVD_MASK))
3309 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3310
3311 r = mmu_topup_memory_caches(vcpu);
3312 if (r)
3313 return r;
3314
3315 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3316 if (likely(!force_pt_level)) {
3317 level = mapping_level(vcpu, gfn);
3318 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3319 } else
3320 level = PT_PAGE_TABLE_LEVEL;
3321
3322 if (fast_page_fault(vcpu, gpa, level, error_code))
3323 return 0;
3324
3325 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3326 smp_rmb();
3327
3328 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3329 return 0;
3330
3331 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3332 return r;
3333
3334 spin_lock(&vcpu->kvm->mmu_lock);
3335 if (mmu_notifier_retry(vcpu, mmu_seq))
3336 goto out_unlock;
3337 kvm_mmu_free_some_pages(vcpu);
3338 if (likely(!force_pt_level))
3339 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3340 r = __direct_map(vcpu, gpa, write, map_writable,
3341 level, gfn, pfn, prefault);
3342 spin_unlock(&vcpu->kvm->mmu_lock);
3343
3344 return r;
3345
3346out_unlock:
3347 spin_unlock(&vcpu->kvm->mmu_lock);
3348 kvm_release_pfn_clean(pfn);
3349 return 0;
3350}
3351
3352static void nonpaging_free(struct kvm_vcpu *vcpu)
3353{
3354 mmu_free_roots(vcpu);
3355}
3356
3357static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3358 struct kvm_mmu *context)
3359{
3360 context->new_cr3 = nonpaging_new_cr3;
3361 context->page_fault = nonpaging_page_fault;
3362 context->gva_to_gpa = nonpaging_gva_to_gpa;
3363 context->free = nonpaging_free;
3364 context->sync_page = nonpaging_sync_page;
3365 context->invlpg = nonpaging_invlpg;
3366 context->update_pte = nonpaging_update_pte;
3367 context->root_level = 0;
3368 context->shadow_root_level = PT32E_ROOT_LEVEL;
3369 context->root_hpa = INVALID_PAGE;
3370 context->direct_map = true;
3371 context->nx = false;
3372 return 0;
3373}
3374
3375void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3376{
3377 ++vcpu->stat.tlb_flush;
3378 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3379}
3380
3381static void paging_new_cr3(struct kvm_vcpu *vcpu)
3382{
3383 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3384 mmu_free_roots(vcpu);
3385}
3386
3387static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3388{
3389 return kvm_read_cr3(vcpu);
3390}
3391
3392static void inject_page_fault(struct kvm_vcpu *vcpu,
3393 struct x86_exception *fault)
3394{
3395 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3396}
3397
3398static void paging_free(struct kvm_vcpu *vcpu)
3399{
3400 nonpaging_free(vcpu);
3401}
3402
3403static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3404{
3405 int bit7;
3406
3407 bit7 = (gpte >> 7) & 1;
3408 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
3409}
3410
3411static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3412 int *nr_present)
3413{
3414 if (unlikely(is_mmio_spte(*sptep))) {
3415 if (gfn != get_mmio_spte_gfn(*sptep)) {
3416 mmu_spte_clear_no_track(sptep);
3417 return true;
3418 }
3419
3420 (*nr_present)++;
3421 mark_mmio_spte(sptep, gfn, access);
3422 return true;
3423 }
3424
3425 return false;
3426}
3427
3428#define PTTYPE 64
3429#include "paging_tmpl.h"
3430#undef PTTYPE
3431
3432#define PTTYPE 32
3433#include "paging_tmpl.h"
3434#undef PTTYPE
3435
3436static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3437 struct kvm_mmu *context)
3438{
3439 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3440 u64 exb_bit_rsvd = 0;
3441
3442 if (!context->nx)
3443 exb_bit_rsvd = rsvd_bits(63, 63);
3444 switch (context->root_level) {
3445 case PT32_ROOT_LEVEL:
3446 /* no rsvd bits for 2 level 4K page table entries */
3447 context->rsvd_bits_mask[0][1] = 0;
3448 context->rsvd_bits_mask[0][0] = 0;
3449 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3450
3451 if (!is_pse(vcpu)) {
3452 context->rsvd_bits_mask[1][1] = 0;
3453 break;
3454 }
3455
3456 if (is_cpuid_PSE36())
3457 /* 36bits PSE 4MB page */
3458 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3459 else
3460 /* 32 bits PSE 4MB page */
3461 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3462 break;
3463 case PT32E_ROOT_LEVEL:
3464 context->rsvd_bits_mask[0][2] =
3465 rsvd_bits(maxphyaddr, 63) |
3466 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
3467 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3468 rsvd_bits(maxphyaddr, 62); /* PDE */
3469 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3470 rsvd_bits(maxphyaddr, 62); /* PTE */
3471 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3472 rsvd_bits(maxphyaddr, 62) |
3473 rsvd_bits(13, 20); /* large page */
3474 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3475 break;
3476 case PT64_ROOT_LEVEL:
3477 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3478 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3479 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3480 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3481 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3482 rsvd_bits(maxphyaddr, 51);
3483 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3484 rsvd_bits(maxphyaddr, 51);
3485 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3486 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3487 rsvd_bits(maxphyaddr, 51) |
3488 rsvd_bits(13, 29);
3489 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3490 rsvd_bits(maxphyaddr, 51) |
3491 rsvd_bits(13, 20); /* large page */
3492 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3493 break;
3494 }
3495}
3496
3497static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3498 struct kvm_mmu *context,
3499 int level)
3500{
3501 context->nx = is_nx(vcpu);
3502 context->root_level = level;
3503
3504 reset_rsvds_bits_mask(vcpu, context);
3505
3506 ASSERT(is_pae(vcpu));
3507 context->new_cr3 = paging_new_cr3;
3508 context->page_fault = paging64_page_fault;
3509 context->gva_to_gpa = paging64_gva_to_gpa;
3510 context->sync_page = paging64_sync_page;
3511 context->invlpg = paging64_invlpg;
3512 context->update_pte = paging64_update_pte;
3513 context->free = paging_free;
3514 context->shadow_root_level = level;
3515 context->root_hpa = INVALID_PAGE;
3516 context->direct_map = false;
3517 return 0;
3518}
3519
3520static int paging64_init_context(struct kvm_vcpu *vcpu,
3521 struct kvm_mmu *context)
3522{
3523 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3524}
3525
3526static int paging32_init_context(struct kvm_vcpu *vcpu,
3527 struct kvm_mmu *context)
3528{
3529 context->nx = false;
3530 context->root_level = PT32_ROOT_LEVEL;
3531
3532 reset_rsvds_bits_mask(vcpu, context);
3533
3534 context->new_cr3 = paging_new_cr3;
3535 context->page_fault = paging32_page_fault;
3536 context->gva_to_gpa = paging32_gva_to_gpa;
3537 context->free = paging_free;
3538 context->sync_page = paging32_sync_page;
3539 context->invlpg = paging32_invlpg;
3540 context->update_pte = paging32_update_pte;
3541 context->shadow_root_level = PT32E_ROOT_LEVEL;
3542 context->root_hpa = INVALID_PAGE;
3543 context->direct_map = false;
3544 return 0;
3545}
3546
3547static int paging32E_init_context(struct kvm_vcpu *vcpu,
3548 struct kvm_mmu *context)
3549{
3550 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3551}
3552
3553static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3554{
3555 struct kvm_mmu *context = vcpu->arch.walk_mmu;
3556
3557 context->base_role.word = 0;
3558 context->new_cr3 = nonpaging_new_cr3;
3559 context->page_fault = tdp_page_fault;
3560 context->free = nonpaging_free;
3561 context->sync_page = nonpaging_sync_page;
3562 context->invlpg = nonpaging_invlpg;
3563 context->update_pte = nonpaging_update_pte;
3564 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3565 context->root_hpa = INVALID_PAGE;
3566 context->direct_map = true;
3567 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3568 context->get_cr3 = get_cr3;
3569 context->get_pdptr = kvm_pdptr_read;
3570 context->inject_page_fault = kvm_inject_page_fault;
3571
3572 if (!is_paging(vcpu)) {
3573 context->nx = false;
3574 context->gva_to_gpa = nonpaging_gva_to_gpa;
3575 context->root_level = 0;
3576 } else if (is_long_mode(vcpu)) {
3577 context->nx = is_nx(vcpu);
3578 context->root_level = PT64_ROOT_LEVEL;
3579 reset_rsvds_bits_mask(vcpu, context);
3580 context->gva_to_gpa = paging64_gva_to_gpa;
3581 } else if (is_pae(vcpu)) {
3582 context->nx = is_nx(vcpu);
3583 context->root_level = PT32E_ROOT_LEVEL;
3584 reset_rsvds_bits_mask(vcpu, context);
3585 context->gva_to_gpa = paging64_gva_to_gpa;
3586 } else {
3587 context->nx = false;
3588 context->root_level = PT32_ROOT_LEVEL;
3589 reset_rsvds_bits_mask(vcpu, context);
3590 context->gva_to_gpa = paging32_gva_to_gpa;
3591 }
3592
3593 return 0;
3594}
3595
3596int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3597{
3598 int r;
3599 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3600 ASSERT(vcpu);
3601 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3602
3603 if (!is_paging(vcpu))
3604 r = nonpaging_init_context(vcpu, context);
3605 else if (is_long_mode(vcpu))
3606 r = paging64_init_context(vcpu, context);
3607 else if (is_pae(vcpu))
3608 r = paging32E_init_context(vcpu, context);
3609 else
3610 r = paging32_init_context(vcpu, context);
3611
3612 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3613 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
3614 vcpu->arch.mmu.base_role.smep_andnot_wp
3615 = smep && !is_write_protection(vcpu);
3616
3617 return r;
3618}
3619EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3620
3621static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3622{
3623 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3624
3625 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3626 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
3627 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
3628 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3629
3630 return r;
3631}
3632
3633static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3634{
3635 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3636
3637 g_context->get_cr3 = get_cr3;
3638 g_context->get_pdptr = kvm_pdptr_read;
3639 g_context->inject_page_fault = kvm_inject_page_fault;
3640
3641 /*
3642 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3643 * translation of l2_gpa to l1_gpa addresses is done using the
3644 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3645 * functions between mmu and nested_mmu are swapped.
3646 */
3647 if (!is_paging(vcpu)) {
3648 g_context->nx = false;
3649 g_context->root_level = 0;
3650 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3651 } else if (is_long_mode(vcpu)) {
3652 g_context->nx = is_nx(vcpu);
3653 g_context->root_level = PT64_ROOT_LEVEL;
3654 reset_rsvds_bits_mask(vcpu, g_context);
3655 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3656 } else if (is_pae(vcpu)) {
3657 g_context->nx = is_nx(vcpu);
3658 g_context->root_level = PT32E_ROOT_LEVEL;
3659 reset_rsvds_bits_mask(vcpu, g_context);
3660 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3661 } else {
3662 g_context->nx = false;
3663 g_context->root_level = PT32_ROOT_LEVEL;
3664 reset_rsvds_bits_mask(vcpu, g_context);
3665 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3666 }
3667
3668 return 0;
3669}
3670
3671static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3672{
3673 if (mmu_is_nested(vcpu))
3674 return init_kvm_nested_mmu(vcpu);
3675 else if (tdp_enabled)
3676 return init_kvm_tdp_mmu(vcpu);
3677 else
3678 return init_kvm_softmmu(vcpu);
3679}
3680
3681static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3682{
3683 ASSERT(vcpu);
3684 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3685 /* mmu.free() should set root_hpa = INVALID_PAGE */
3686 vcpu->arch.mmu.free(vcpu);
3687}
3688
3689int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3690{
3691 destroy_kvm_mmu(vcpu);
3692 return init_kvm_mmu(vcpu);
3693}
3694EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3695
3696int kvm_mmu_load(struct kvm_vcpu *vcpu)
3697{
3698 int r;
3699
3700 r = mmu_topup_memory_caches(vcpu);
3701 if (r)
3702 goto out;
3703 r = mmu_alloc_roots(vcpu);
3704 spin_lock(&vcpu->kvm->mmu_lock);
3705 mmu_sync_roots(vcpu);
3706 spin_unlock(&vcpu->kvm->mmu_lock);
3707 if (r)
3708 goto out;
3709 /* set_cr3() should ensure TLB has been flushed */
3710 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3711out:
3712 return r;
3713}
3714EXPORT_SYMBOL_GPL(kvm_mmu_load);
3715
3716void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3717{
3718 mmu_free_roots(vcpu);
3719}
3720EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3721
3722static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3723 struct kvm_mmu_page *sp, u64 *spte,
3724 const void *new)
3725{
3726 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3727 ++vcpu->kvm->stat.mmu_pde_zapped;
3728 return;
3729 }
3730
3731 ++vcpu->kvm->stat.mmu_pte_updated;
3732 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3733}
3734
3735static bool need_remote_flush(u64 old, u64 new)
3736{
3737 if (!is_shadow_present_pte(old))
3738 return false;
3739 if (!is_shadow_present_pte(new))
3740 return true;
3741 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3742 return true;
3743 old ^= PT64_NX_MASK;
3744 new ^= PT64_NX_MASK;
3745 return (old & ~new & PT64_PERM_MASK) != 0;
3746}
3747
3748static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3749 bool remote_flush, bool local_flush)
3750{
3751 if (zap_page)
3752 return;
3753
3754 if (remote_flush)
3755 kvm_flush_remote_tlbs(vcpu->kvm);
3756 else if (local_flush)
3757 kvm_mmu_flush_tlb(vcpu);
3758}
3759
3760static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3761 const u8 *new, int *bytes)
3762{
3763 u64 gentry;
3764 int r;
3765
3766 /*
3767 * Assume that the pte write on a page table of the same type
3768 * as the current vcpu paging mode since we update the sptes only
3769 * when they have the same mode.
3770 */
3771 if (is_pae(vcpu) && *bytes == 4) {
3772 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3773 *gpa &= ~(gpa_t)7;
3774 *bytes = 8;
3775 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
3776 if (r)
3777 gentry = 0;
3778 new = (const u8 *)&gentry;
3779 }
3780
3781 switch (*bytes) {
3782 case 4:
3783 gentry = *(const u32 *)new;
3784 break;
3785 case 8:
3786 gentry = *(const u64 *)new;
3787 break;
3788 default:
3789 gentry = 0;
3790 break;
3791 }
3792
3793 return gentry;
3794}
3795
3796/*
3797 * If we're seeing too many writes to a page, it may no longer be a page table,
3798 * or we may be forking, in which case it is better to unmap the page.
3799 */
3800static bool detect_write_flooding(struct kvm_mmu_page *sp)
3801{
3802 /*
3803 * Skip write-flooding detected for the sp whose level is 1, because
3804 * it can become unsync, then the guest page is not write-protected.
3805 */
3806 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3807 return false;
3808
3809 return ++sp->write_flooding_count >= 3;
3810}
3811
3812/*
3813 * Misaligned accesses are too much trouble to fix up; also, they usually
3814 * indicate a page is not used as a page table.
3815 */
3816static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3817 int bytes)
3818{
3819 unsigned offset, pte_size, misaligned;
3820
3821 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3822 gpa, bytes, sp->role.word);
3823
3824 offset = offset_in_page(gpa);
3825 pte_size = sp->role.cr4_pae ? 8 : 4;
3826
3827 /*
3828 * Sometimes, the OS only writes the last one bytes to update status
3829 * bits, for example, in linux, andb instruction is used in clear_bit().
3830 */
3831 if (!(offset & (pte_size - 1)) && bytes == 1)
3832 return false;
3833
3834 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3835 misaligned |= bytes < 4;
3836
3837 return misaligned;
3838}
3839
3840static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3841{
3842 unsigned page_offset, quadrant;
3843 u64 *spte;
3844 int level;
3845
3846 page_offset = offset_in_page(gpa);
3847 level = sp->role.level;
3848 *nspte = 1;
3849 if (!sp->role.cr4_pae) {
3850 page_offset <<= 1; /* 32->64 */
3851 /*
3852 * A 32-bit pde maps 4MB while the shadow pdes map
3853 * only 2MB. So we need to double the offset again
3854 * and zap two pdes instead of one.
3855 */
3856 if (level == PT32_ROOT_LEVEL) {
3857 page_offset &= ~7; /* kill rounding error */
3858 page_offset <<= 1;
3859 *nspte = 2;
3860 }
3861 quadrant = page_offset >> PAGE_SHIFT;
3862 page_offset &= ~PAGE_MASK;
3863 if (quadrant != sp->role.quadrant)
3864 return NULL;
3865 }
3866
3867 spte = &sp->spt[page_offset / sizeof(*spte)];
3868 return spte;
3869}
3870
3871void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3872 const u8 *new, int bytes)
3873{
3874 gfn_t gfn = gpa >> PAGE_SHIFT;
3875 union kvm_mmu_page_role mask = { .word = 0 };
3876 struct kvm_mmu_page *sp;
3877 struct hlist_node *node;
3878 LIST_HEAD(invalid_list);
3879 u64 entry, gentry, *spte;
3880 int npte;
3881 bool remote_flush, local_flush, zap_page;
3882
3883 /*
3884 * If we don't have indirect shadow pages, it means no page is
3885 * write-protected, so we can exit simply.
3886 */
3887 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3888 return;
3889
3890 zap_page = remote_flush = local_flush = false;
3891
3892 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3893
3894 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3895
3896 /*
3897 * No need to care whether allocation memory is successful
3898 * or not since pte prefetch is skiped if it does not have
3899 * enough objects in the cache.
3900 */
3901 mmu_topup_memory_caches(vcpu);
3902
3903 spin_lock(&vcpu->kvm->mmu_lock);
3904 ++vcpu->kvm->stat.mmu_pte_write;
3905 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3906
3907 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3908 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3909 if (detect_write_misaligned(sp, gpa, bytes) ||
3910 detect_write_flooding(sp)) {
3911 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3912 &invalid_list);
3913 ++vcpu->kvm->stat.mmu_flooded;
3914 continue;
3915 }
3916
3917 spte = get_written_sptes(sp, gpa, &npte);
3918 if (!spte)
3919 continue;
3920
3921 local_flush = true;
3922 while (npte--) {
3923 entry = *spte;
3924 mmu_page_zap_pte(vcpu->kvm, sp, spte);
3925 if (gentry &&
3926 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3927 & mask.word) && rmap_can_add(vcpu))
3928 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3929 if (!remote_flush && need_remote_flush(entry, *spte))
3930 remote_flush = true;
3931 ++spte;
3932 }
3933 }
3934 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3935 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3936 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3937 spin_unlock(&vcpu->kvm->mmu_lock);
3938}
3939
3940int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3941{
3942 gpa_t gpa;
3943 int r;
3944
3945 if (vcpu->arch.mmu.direct_map)
3946 return 0;
3947
3948 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
3949
3950 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3951
3952 return r;
3953}
3954EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
3955
3956void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
3957{
3958 LIST_HEAD(invalid_list);
3959
3960 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3961 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
3962 struct kvm_mmu_page *sp;
3963
3964 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
3965 struct kvm_mmu_page, link);
3966 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3967 ++vcpu->kvm->stat.mmu_recycled;
3968 }
3969 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3970}
3971
3972static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
3973{
3974 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
3975 return vcpu_match_mmio_gpa(vcpu, addr);
3976
3977 return vcpu_match_mmio_gva(vcpu, addr);
3978}
3979
3980int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3981 void *insn, int insn_len)
3982{
3983 int r, emulation_type = EMULTYPE_RETRY;
3984 enum emulation_result er;
3985
3986 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3987 if (r < 0)
3988 goto out;
3989
3990 if (!r) {
3991 r = 1;
3992 goto out;
3993 }
3994
3995 if (is_mmio_page_fault(vcpu, cr2))
3996 emulation_type = 0;
3997
3998 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3999
4000 switch (er) {
4001 case EMULATE_DONE:
4002 return 1;
4003 case EMULATE_DO_MMIO:
4004 ++vcpu->stat.mmio_exits;
4005 /* fall through */
4006 case EMULATE_FAIL:
4007 return 0;
4008 default:
4009 BUG();
4010 }
4011out:
4012 return r;
4013}
4014EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4015
4016void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4017{
4018 vcpu->arch.mmu.invlpg(vcpu, gva);
4019 kvm_mmu_flush_tlb(vcpu);
4020 ++vcpu->stat.invlpg;
4021}
4022EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4023
4024void kvm_enable_tdp(void)
4025{
4026 tdp_enabled = true;
4027}
4028EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4029
4030void kvm_disable_tdp(void)
4031{
4032 tdp_enabled = false;
4033}
4034EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4035
4036static void free_mmu_pages(struct kvm_vcpu *vcpu)
4037{
4038 free_page((unsigned long)vcpu->arch.mmu.pae_root);
4039 if (vcpu->arch.mmu.lm_root != NULL)
4040 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4041}
4042
4043static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4044{
4045 struct page *page;
4046 int i;
4047
4048 ASSERT(vcpu);
4049
4050 /*
4051 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4052 * Therefore we need to allocate shadow page tables in the first
4053 * 4GB of memory, which happens to fit the DMA32 zone.
4054 */
4055 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4056 if (!page)
4057 return -ENOMEM;
4058
4059 vcpu->arch.mmu.pae_root = page_address(page);
4060 for (i = 0; i < 4; ++i)
4061 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4062
4063 return 0;
4064}
4065
4066int kvm_mmu_create(struct kvm_vcpu *vcpu)
4067{
4068 ASSERT(vcpu);
4069
4070 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4071 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4072 vcpu->arch.mmu.translate_gpa = translate_gpa;
4073 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4074
4075 return alloc_mmu_pages(vcpu);
4076}
4077
4078int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4079{
4080 ASSERT(vcpu);
4081 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4082
4083 return init_kvm_mmu(vcpu);
4084}
4085
4086void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4087{
4088 struct kvm_mmu_page *sp;
4089 bool flush = false;
4090
4091 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
4092 int i;
4093 u64 *pt;
4094
4095 if (!test_bit(slot, sp->slot_bitmap))
4096 continue;
4097
4098 pt = sp->spt;
4099 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
4100 if (!is_shadow_present_pte(pt[i]) ||
4101 !is_last_spte(pt[i], sp->role.level))
4102 continue;
4103
4104 spte_write_protect(kvm, &pt[i], &flush, false);
4105 }
4106 }
4107 kvm_flush_remote_tlbs(kvm);
4108}
4109
4110void kvm_mmu_zap_all(struct kvm *kvm)
4111{
4112 struct kvm_mmu_page *sp, *node;
4113 LIST_HEAD(invalid_list);
4114
4115 spin_lock(&kvm->mmu_lock);
4116restart:
4117 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
4118 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
4119 goto restart;
4120
4121 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4122 spin_unlock(&kvm->mmu_lock);
4123}
4124
4125static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
4126 struct list_head *invalid_list)
4127{
4128 struct kvm_mmu_page *page;
4129
4130 if (list_empty(&kvm->arch.active_mmu_pages))
4131 return;
4132
4133 page = container_of(kvm->arch.active_mmu_pages.prev,
4134 struct kvm_mmu_page, link);
4135 kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
4136}
4137
4138static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
4139{
4140 struct kvm *kvm;
4141 int nr_to_scan = sc->nr_to_scan;
4142
4143 if (nr_to_scan == 0)
4144 goto out;
4145
4146 raw_spin_lock(&kvm_lock);
4147
4148 list_for_each_entry(kvm, &vm_list, vm_list) {
4149 int idx;
4150 LIST_HEAD(invalid_list);
4151
4152 /*
4153 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4154 * here. We may skip a VM instance errorneosly, but we do not
4155 * want to shrink a VM that only started to populate its MMU
4156 * anyway.
4157 */
4158 if (kvm->arch.n_used_mmu_pages > 0) {
4159 if (!nr_to_scan--)
4160 break;
4161 continue;
4162 }
4163
4164 idx = srcu_read_lock(&kvm->srcu);
4165 spin_lock(&kvm->mmu_lock);
4166
4167 kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
4168 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4169
4170 spin_unlock(&kvm->mmu_lock);
4171 srcu_read_unlock(&kvm->srcu, idx);
4172
4173 list_move_tail(&kvm->vm_list, &vm_list);
4174 break;
4175 }
4176
4177 raw_spin_unlock(&kvm_lock);
4178
4179out:
4180 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4181}
4182
4183static struct shrinker mmu_shrinker = {
4184 .shrink = mmu_shrink,
4185 .seeks = DEFAULT_SEEKS * 10,
4186};
4187
4188static void mmu_destroy_caches(void)
4189{
4190 if (pte_list_desc_cache)
4191 kmem_cache_destroy(pte_list_desc_cache);
4192 if (mmu_page_header_cache)
4193 kmem_cache_destroy(mmu_page_header_cache);
4194}
4195
4196int kvm_mmu_module_init(void)
4197{
4198 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4199 sizeof(struct pte_list_desc),
4200 0, 0, NULL);
4201 if (!pte_list_desc_cache)
4202 goto nomem;
4203
4204 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4205 sizeof(struct kvm_mmu_page),
4206 0, 0, NULL);
4207 if (!mmu_page_header_cache)
4208 goto nomem;
4209
4210 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4211 goto nomem;
4212
4213 register_shrinker(&mmu_shrinker);
4214
4215 return 0;
4216
4217nomem:
4218 mmu_destroy_caches();
4219 return -ENOMEM;
4220}
4221
4222/*
4223 * Caculate mmu pages needed for kvm.
4224 */
4225unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4226{
4227 unsigned int nr_mmu_pages;
4228 unsigned int nr_pages = 0;
4229 struct kvm_memslots *slots;
4230 struct kvm_memory_slot *memslot;
4231
4232 slots = kvm_memslots(kvm);
4233
4234 kvm_for_each_memslot(memslot, slots)
4235 nr_pages += memslot->npages;
4236
4237 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4238 nr_mmu_pages = max(nr_mmu_pages,
4239 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4240
4241 return nr_mmu_pages;
4242}
4243
4244int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4245{
4246 struct kvm_shadow_walk_iterator iterator;
4247 u64 spte;
4248 int nr_sptes = 0;
4249
4250 walk_shadow_page_lockless_begin(vcpu);
4251 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4252 sptes[iterator.level-1] = spte;
4253 nr_sptes++;
4254 if (!is_shadow_present_pte(spte))
4255 break;
4256 }
4257 walk_shadow_page_lockless_end(vcpu);
4258
4259 return nr_sptes;
4260}
4261EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4262
4263void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4264{
4265 ASSERT(vcpu);
4266
4267 destroy_kvm_mmu(vcpu);
4268 free_mmu_pages(vcpu);
4269 mmu_free_memory_caches(vcpu);
4270}
4271
4272void kvm_mmu_module_exit(void)
4273{
4274 mmu_destroy_caches();
4275 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4276 unregister_shrinker(&mmu_shrinker);
4277 mmu_audit_disable();
4278}