x86, fpu: copy_process: Avoid fpu_alloc/copy if !used_math()
[linux-2.6-block.git] / arch / x86 / kernel / process.c
... / ...
CommitLineData
1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3#include <linux/errno.h>
4#include <linux/kernel.h>
5#include <linux/mm.h>
6#include <linux/smp.h>
7#include <linux/prctl.h>
8#include <linux/slab.h>
9#include <linux/sched.h>
10#include <linux/module.h>
11#include <linux/pm.h>
12#include <linux/clockchips.h>
13#include <linux/random.h>
14#include <linux/user-return-notifier.h>
15#include <linux/dmi.h>
16#include <linux/utsname.h>
17#include <linux/stackprotector.h>
18#include <linux/tick.h>
19#include <linux/cpuidle.h>
20#include <trace/events/power.h>
21#include <linux/hw_breakpoint.h>
22#include <asm/cpu.h>
23#include <asm/apic.h>
24#include <asm/syscalls.h>
25#include <asm/idle.h>
26#include <asm/uaccess.h>
27#include <asm/i387.h>
28#include <asm/fpu-internal.h>
29#include <asm/debugreg.h>
30#include <asm/nmi.h>
31
32/*
33 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
34 * no more per-task TSS's. The TSS size is kept cacheline-aligned
35 * so they are allowed to end up in the .data..cacheline_aligned
36 * section. Since TSS's are completely CPU-local, we want them
37 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
38 */
39__visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS;
40
41#ifdef CONFIG_X86_64
42static DEFINE_PER_CPU(unsigned char, is_idle);
43static ATOMIC_NOTIFIER_HEAD(idle_notifier);
44
45void idle_notifier_register(struct notifier_block *n)
46{
47 atomic_notifier_chain_register(&idle_notifier, n);
48}
49EXPORT_SYMBOL_GPL(idle_notifier_register);
50
51void idle_notifier_unregister(struct notifier_block *n)
52{
53 atomic_notifier_chain_unregister(&idle_notifier, n);
54}
55EXPORT_SYMBOL_GPL(idle_notifier_unregister);
56#endif
57
58struct kmem_cache *task_xstate_cachep;
59EXPORT_SYMBOL_GPL(task_xstate_cachep);
60
61/*
62 * this gets called so that we can store lazy state into memory and copy the
63 * current task into the new thread.
64 */
65int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
66{
67 *dst = *src;
68
69 memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
70 if (tsk_used_math(src)) {
71 int err = fpu_alloc(&dst->thread.fpu);
72 if (err)
73 return err;
74 fpu_copy(dst, src);
75 }
76 return 0;
77}
78
79void free_thread_xstate(struct task_struct *tsk)
80{
81 fpu_free(&tsk->thread.fpu);
82}
83
84void arch_release_task_struct(struct task_struct *tsk)
85{
86 free_thread_xstate(tsk);
87}
88
89void arch_task_cache_init(void)
90{
91 task_xstate_cachep =
92 kmem_cache_create("task_xstate", xstate_size,
93 __alignof__(union thread_xstate),
94 SLAB_PANIC | SLAB_NOTRACK, NULL);
95 setup_xstate_comp();
96}
97
98/*
99 * Free current thread data structures etc..
100 */
101void exit_thread(void)
102{
103 struct task_struct *me = current;
104 struct thread_struct *t = &me->thread;
105 unsigned long *bp = t->io_bitmap_ptr;
106
107 if (bp) {
108 struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
109
110 t->io_bitmap_ptr = NULL;
111 clear_thread_flag(TIF_IO_BITMAP);
112 /*
113 * Careful, clear this in the TSS too:
114 */
115 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
116 t->io_bitmap_max = 0;
117 put_cpu();
118 kfree(bp);
119 }
120
121 drop_fpu(me);
122}
123
124void flush_thread(void)
125{
126 struct task_struct *tsk = current;
127
128 flush_ptrace_hw_breakpoint(tsk);
129 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
130 drop_init_fpu(tsk);
131 /*
132 * Free the FPU state for non xsave platforms. They get reallocated
133 * lazily at the first use.
134 */
135 if (!use_eager_fpu())
136 free_thread_xstate(tsk);
137}
138
139static void hard_disable_TSC(void)
140{
141 write_cr4(read_cr4() | X86_CR4_TSD);
142}
143
144void disable_TSC(void)
145{
146 preempt_disable();
147 if (!test_and_set_thread_flag(TIF_NOTSC))
148 /*
149 * Must flip the CPU state synchronously with
150 * TIF_NOTSC in the current running context.
151 */
152 hard_disable_TSC();
153 preempt_enable();
154}
155
156static void hard_enable_TSC(void)
157{
158 write_cr4(read_cr4() & ~X86_CR4_TSD);
159}
160
161static void enable_TSC(void)
162{
163 preempt_disable();
164 if (test_and_clear_thread_flag(TIF_NOTSC))
165 /*
166 * Must flip the CPU state synchronously with
167 * TIF_NOTSC in the current running context.
168 */
169 hard_enable_TSC();
170 preempt_enable();
171}
172
173int get_tsc_mode(unsigned long adr)
174{
175 unsigned int val;
176
177 if (test_thread_flag(TIF_NOTSC))
178 val = PR_TSC_SIGSEGV;
179 else
180 val = PR_TSC_ENABLE;
181
182 return put_user(val, (unsigned int __user *)adr);
183}
184
185int set_tsc_mode(unsigned int val)
186{
187 if (val == PR_TSC_SIGSEGV)
188 disable_TSC();
189 else if (val == PR_TSC_ENABLE)
190 enable_TSC();
191 else
192 return -EINVAL;
193
194 return 0;
195}
196
197void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
198 struct tss_struct *tss)
199{
200 struct thread_struct *prev, *next;
201
202 prev = &prev_p->thread;
203 next = &next_p->thread;
204
205 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
206 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
207 unsigned long debugctl = get_debugctlmsr();
208
209 debugctl &= ~DEBUGCTLMSR_BTF;
210 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
211 debugctl |= DEBUGCTLMSR_BTF;
212
213 update_debugctlmsr(debugctl);
214 }
215
216 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
217 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
218 /* prev and next are different */
219 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
220 hard_disable_TSC();
221 else
222 hard_enable_TSC();
223 }
224
225 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
226 /*
227 * Copy the relevant range of the IO bitmap.
228 * Normally this is 128 bytes or less:
229 */
230 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
231 max(prev->io_bitmap_max, next->io_bitmap_max));
232 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
233 /*
234 * Clear any possible leftover bits:
235 */
236 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
237 }
238 propagate_user_return_notify(prev_p, next_p);
239}
240
241/*
242 * Idle related variables and functions
243 */
244unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
245EXPORT_SYMBOL(boot_option_idle_override);
246
247static void (*x86_idle)(void);
248
249#ifndef CONFIG_SMP
250static inline void play_dead(void)
251{
252 BUG();
253}
254#endif
255
256#ifdef CONFIG_X86_64
257void enter_idle(void)
258{
259 this_cpu_write(is_idle, 1);
260 atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
261}
262
263static void __exit_idle(void)
264{
265 if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
266 return;
267 atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
268}
269
270/* Called from interrupts to signify idle end */
271void exit_idle(void)
272{
273 /* idle loop has pid 0 */
274 if (current->pid)
275 return;
276 __exit_idle();
277}
278#endif
279
280void arch_cpu_idle_enter(void)
281{
282 local_touch_nmi();
283 enter_idle();
284}
285
286void arch_cpu_idle_exit(void)
287{
288 __exit_idle();
289}
290
291void arch_cpu_idle_dead(void)
292{
293 play_dead();
294}
295
296/*
297 * Called from the generic idle code.
298 */
299void arch_cpu_idle(void)
300{
301 x86_idle();
302}
303
304/*
305 * We use this if we don't have any better idle routine..
306 */
307void default_idle(void)
308{
309 trace_cpu_idle_rcuidle(1, smp_processor_id());
310 safe_halt();
311 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
312}
313#ifdef CONFIG_APM_MODULE
314EXPORT_SYMBOL(default_idle);
315#endif
316
317#ifdef CONFIG_XEN
318bool xen_set_default_idle(void)
319{
320 bool ret = !!x86_idle;
321
322 x86_idle = default_idle;
323
324 return ret;
325}
326#endif
327void stop_this_cpu(void *dummy)
328{
329 local_irq_disable();
330 /*
331 * Remove this CPU:
332 */
333 set_cpu_online(smp_processor_id(), false);
334 disable_local_APIC();
335
336 for (;;)
337 halt();
338}
339
340bool amd_e400_c1e_detected;
341EXPORT_SYMBOL(amd_e400_c1e_detected);
342
343static cpumask_var_t amd_e400_c1e_mask;
344
345void amd_e400_remove_cpu(int cpu)
346{
347 if (amd_e400_c1e_mask != NULL)
348 cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
349}
350
351/*
352 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
353 * pending message MSR. If we detect C1E, then we handle it the same
354 * way as C3 power states (local apic timer and TSC stop)
355 */
356static void amd_e400_idle(void)
357{
358 if (!amd_e400_c1e_detected) {
359 u32 lo, hi;
360
361 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
362
363 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
364 amd_e400_c1e_detected = true;
365 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
366 mark_tsc_unstable("TSC halt in AMD C1E");
367 pr_info("System has AMD C1E enabled\n");
368 }
369 }
370
371 if (amd_e400_c1e_detected) {
372 int cpu = smp_processor_id();
373
374 if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
375 cpumask_set_cpu(cpu, amd_e400_c1e_mask);
376 /*
377 * Force broadcast so ACPI can not interfere.
378 */
379 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
380 &cpu);
381 pr_info("Switch to broadcast mode on CPU%d\n", cpu);
382 }
383 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
384
385 default_idle();
386
387 /*
388 * The switch back from broadcast mode needs to be
389 * called with interrupts disabled.
390 */
391 local_irq_disable();
392 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
393 local_irq_enable();
394 } else
395 default_idle();
396}
397
398void select_idle_routine(const struct cpuinfo_x86 *c)
399{
400#ifdef CONFIG_SMP
401 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
402 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
403#endif
404 if (x86_idle || boot_option_idle_override == IDLE_POLL)
405 return;
406
407 if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
408 /* E400: APIC timer interrupt does not wake up CPU from C1e */
409 pr_info("using AMD E400 aware idle routine\n");
410 x86_idle = amd_e400_idle;
411 } else
412 x86_idle = default_idle;
413}
414
415void __init init_amd_e400_c1e_mask(void)
416{
417 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
418 if (x86_idle == amd_e400_idle)
419 zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
420}
421
422static int __init idle_setup(char *str)
423{
424 if (!str)
425 return -EINVAL;
426
427 if (!strcmp(str, "poll")) {
428 pr_info("using polling idle threads\n");
429 boot_option_idle_override = IDLE_POLL;
430 cpu_idle_poll_ctrl(true);
431 } else if (!strcmp(str, "halt")) {
432 /*
433 * When the boot option of idle=halt is added, halt is
434 * forced to be used for CPU idle. In such case CPU C2/C3
435 * won't be used again.
436 * To continue to load the CPU idle driver, don't touch
437 * the boot_option_idle_override.
438 */
439 x86_idle = default_idle;
440 boot_option_idle_override = IDLE_HALT;
441 } else if (!strcmp(str, "nomwait")) {
442 /*
443 * If the boot option of "idle=nomwait" is added,
444 * it means that mwait will be disabled for CPU C2/C3
445 * states. In such case it won't touch the variable
446 * of boot_option_idle_override.
447 */
448 boot_option_idle_override = IDLE_NOMWAIT;
449 } else
450 return -1;
451
452 return 0;
453}
454early_param("idle", idle_setup);
455
456unsigned long arch_align_stack(unsigned long sp)
457{
458 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
459 sp -= get_random_int() % 8192;
460 return sp & ~0xf;
461}
462
463unsigned long arch_randomize_brk(struct mm_struct *mm)
464{
465 unsigned long range_end = mm->brk + 0x02000000;
466 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
467}
468