lguest, x86: handle guest TS bit for lazy/non-lazy fpu host models
[linux-2.6-block.git] / arch / x86 / kernel / process.c
... / ...
CommitLineData
1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3#include <linux/errno.h>
4#include <linux/kernel.h>
5#include <linux/mm.h>
6#include <linux/smp.h>
7#include <linux/prctl.h>
8#include <linux/slab.h>
9#include <linux/sched.h>
10#include <linux/module.h>
11#include <linux/pm.h>
12#include <linux/clockchips.h>
13#include <linux/random.h>
14#include <linux/user-return-notifier.h>
15#include <linux/dmi.h>
16#include <linux/utsname.h>
17#include <linux/stackprotector.h>
18#include <linux/tick.h>
19#include <linux/cpuidle.h>
20#include <trace/events/power.h>
21#include <linux/hw_breakpoint.h>
22#include <asm/cpu.h>
23#include <asm/apic.h>
24#include <asm/syscalls.h>
25#include <asm/idle.h>
26#include <asm/uaccess.h>
27#include <asm/i387.h>
28#include <asm/fpu-internal.h>
29#include <asm/debugreg.h>
30#include <asm/nmi.h>
31
32/*
33 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
34 * no more per-task TSS's. The TSS size is kept cacheline-aligned
35 * so they are allowed to end up in the .data..cacheline_aligned
36 * section. Since TSS's are completely CPU-local, we want them
37 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
38 */
39DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS;
40
41#ifdef CONFIG_X86_64
42static DEFINE_PER_CPU(unsigned char, is_idle);
43static ATOMIC_NOTIFIER_HEAD(idle_notifier);
44
45void idle_notifier_register(struct notifier_block *n)
46{
47 atomic_notifier_chain_register(&idle_notifier, n);
48}
49EXPORT_SYMBOL_GPL(idle_notifier_register);
50
51void idle_notifier_unregister(struct notifier_block *n)
52{
53 atomic_notifier_chain_unregister(&idle_notifier, n);
54}
55EXPORT_SYMBOL_GPL(idle_notifier_unregister);
56#endif
57
58struct kmem_cache *task_xstate_cachep;
59EXPORT_SYMBOL_GPL(task_xstate_cachep);
60
61/*
62 * this gets called so that we can store lazy state into memory and copy the
63 * current task into the new thread.
64 */
65int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
66{
67 int ret;
68
69 unlazy_fpu(src);
70
71 *dst = *src;
72 if (fpu_allocated(&src->thread.fpu)) {
73 memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
74 ret = fpu_alloc(&dst->thread.fpu);
75 if (ret)
76 return ret;
77 fpu_copy(&dst->thread.fpu, &src->thread.fpu);
78 }
79 return 0;
80}
81
82void free_thread_xstate(struct task_struct *tsk)
83{
84 fpu_free(&tsk->thread.fpu);
85}
86
87void arch_release_task_struct(struct task_struct *tsk)
88{
89 free_thread_xstate(tsk);
90}
91
92void arch_task_cache_init(void)
93{
94 task_xstate_cachep =
95 kmem_cache_create("task_xstate", xstate_size,
96 __alignof__(union thread_xstate),
97 SLAB_PANIC | SLAB_NOTRACK, NULL);
98}
99
100/*
101 * Free current thread data structures etc..
102 */
103void exit_thread(void)
104{
105 struct task_struct *me = current;
106 struct thread_struct *t = &me->thread;
107 unsigned long *bp = t->io_bitmap_ptr;
108
109 if (bp) {
110 struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
111
112 t->io_bitmap_ptr = NULL;
113 clear_thread_flag(TIF_IO_BITMAP);
114 /*
115 * Careful, clear this in the TSS too:
116 */
117 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
118 t->io_bitmap_max = 0;
119 put_cpu();
120 kfree(bp);
121 }
122
123 drop_fpu(me);
124}
125
126void show_regs_common(void)
127{
128 const char *vendor, *product, *board;
129
130 vendor = dmi_get_system_info(DMI_SYS_VENDOR);
131 if (!vendor)
132 vendor = "";
133 product = dmi_get_system_info(DMI_PRODUCT_NAME);
134 if (!product)
135 product = "";
136
137 /* Board Name is optional */
138 board = dmi_get_system_info(DMI_BOARD_NAME);
139
140 printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s %s%s%s\n",
141 current->pid, current->comm, print_tainted(),
142 init_utsname()->release,
143 (int)strcspn(init_utsname()->version, " "),
144 init_utsname()->version,
145 vendor, product,
146 board ? "/" : "",
147 board ? board : "");
148}
149
150void flush_thread(void)
151{
152 struct task_struct *tsk = current;
153
154 flush_ptrace_hw_breakpoint(tsk);
155 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
156 drop_fpu(tsk);
157}
158
159static void hard_disable_TSC(void)
160{
161 write_cr4(read_cr4() | X86_CR4_TSD);
162}
163
164void disable_TSC(void)
165{
166 preempt_disable();
167 if (!test_and_set_thread_flag(TIF_NOTSC))
168 /*
169 * Must flip the CPU state synchronously with
170 * TIF_NOTSC in the current running context.
171 */
172 hard_disable_TSC();
173 preempt_enable();
174}
175
176static void hard_enable_TSC(void)
177{
178 write_cr4(read_cr4() & ~X86_CR4_TSD);
179}
180
181static void enable_TSC(void)
182{
183 preempt_disable();
184 if (test_and_clear_thread_flag(TIF_NOTSC))
185 /*
186 * Must flip the CPU state synchronously with
187 * TIF_NOTSC in the current running context.
188 */
189 hard_enable_TSC();
190 preempt_enable();
191}
192
193int get_tsc_mode(unsigned long adr)
194{
195 unsigned int val;
196
197 if (test_thread_flag(TIF_NOTSC))
198 val = PR_TSC_SIGSEGV;
199 else
200 val = PR_TSC_ENABLE;
201
202 return put_user(val, (unsigned int __user *)adr);
203}
204
205int set_tsc_mode(unsigned int val)
206{
207 if (val == PR_TSC_SIGSEGV)
208 disable_TSC();
209 else if (val == PR_TSC_ENABLE)
210 enable_TSC();
211 else
212 return -EINVAL;
213
214 return 0;
215}
216
217void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
218 struct tss_struct *tss)
219{
220 struct thread_struct *prev, *next;
221
222 prev = &prev_p->thread;
223 next = &next_p->thread;
224
225 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
226 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
227 unsigned long debugctl = get_debugctlmsr();
228
229 debugctl &= ~DEBUGCTLMSR_BTF;
230 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
231 debugctl |= DEBUGCTLMSR_BTF;
232
233 update_debugctlmsr(debugctl);
234 }
235
236 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
237 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
238 /* prev and next are different */
239 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
240 hard_disable_TSC();
241 else
242 hard_enable_TSC();
243 }
244
245 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
246 /*
247 * Copy the relevant range of the IO bitmap.
248 * Normally this is 128 bytes or less:
249 */
250 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
251 max(prev->io_bitmap_max, next->io_bitmap_max));
252 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
253 /*
254 * Clear any possible leftover bits:
255 */
256 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
257 }
258 propagate_user_return_notify(prev_p, next_p);
259}
260
261int sys_fork(struct pt_regs *regs)
262{
263 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
264}
265
266/*
267 * This is trivial, and on the face of it looks like it
268 * could equally well be done in user mode.
269 *
270 * Not so, for quite unobvious reasons - register pressure.
271 * In user mode vfork() cannot have a stack frame, and if
272 * done by calling the "clone()" system call directly, you
273 * do not have enough call-clobbered registers to hold all
274 * the information you need.
275 */
276int sys_vfork(struct pt_regs *regs)
277{
278 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
279 NULL, NULL);
280}
281
282long
283sys_clone(unsigned long clone_flags, unsigned long newsp,
284 void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
285{
286 if (!newsp)
287 newsp = regs->sp;
288 return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
289}
290
291/*
292 * This gets run with %si containing the
293 * function to call, and %di containing
294 * the "args".
295 */
296extern void kernel_thread_helper(void);
297
298/*
299 * Create a kernel thread
300 */
301int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
302{
303 struct pt_regs regs;
304
305 memset(&regs, 0, sizeof(regs));
306
307 regs.si = (unsigned long) fn;
308 regs.di = (unsigned long) arg;
309
310#ifdef CONFIG_X86_32
311 regs.ds = __USER_DS;
312 regs.es = __USER_DS;
313 regs.fs = __KERNEL_PERCPU;
314 regs.gs = __KERNEL_STACK_CANARY;
315#else
316 regs.ss = __KERNEL_DS;
317#endif
318
319 regs.orig_ax = -1;
320 regs.ip = (unsigned long) kernel_thread_helper;
321 regs.cs = __KERNEL_CS | get_kernel_rpl();
322 regs.flags = X86_EFLAGS_IF | X86_EFLAGS_BIT1;
323
324 /* Ok, create the new process.. */
325 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
326}
327EXPORT_SYMBOL(kernel_thread);
328
329/*
330 * sys_execve() executes a new program.
331 */
332long sys_execve(const char __user *name,
333 const char __user *const __user *argv,
334 const char __user *const __user *envp, struct pt_regs *regs)
335{
336 long error;
337 char *filename;
338
339 filename = getname(name);
340 error = PTR_ERR(filename);
341 if (IS_ERR(filename))
342 return error;
343 error = do_execve(filename, argv, envp, regs);
344
345#ifdef CONFIG_X86_32
346 if (error == 0) {
347 /* Make sure we don't return using sysenter.. */
348 set_thread_flag(TIF_IRET);
349 }
350#endif
351
352 putname(filename);
353 return error;
354}
355
356/*
357 * Idle related variables and functions
358 */
359unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
360EXPORT_SYMBOL(boot_option_idle_override);
361
362/*
363 * Powermanagement idle function, if any..
364 */
365void (*pm_idle)(void);
366#ifdef CONFIG_APM_MODULE
367EXPORT_SYMBOL(pm_idle);
368#endif
369
370static inline int hlt_use_halt(void)
371{
372 return 1;
373}
374
375#ifndef CONFIG_SMP
376static inline void play_dead(void)
377{
378 BUG();
379}
380#endif
381
382#ifdef CONFIG_X86_64
383void enter_idle(void)
384{
385 this_cpu_write(is_idle, 1);
386 atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
387}
388
389static void __exit_idle(void)
390{
391 if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
392 return;
393 atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
394}
395
396/* Called from interrupts to signify idle end */
397void exit_idle(void)
398{
399 /* idle loop has pid 0 */
400 if (current->pid)
401 return;
402 __exit_idle();
403}
404#endif
405
406/*
407 * The idle thread. There's no useful work to be
408 * done, so just try to conserve power and have a
409 * low exit latency (ie sit in a loop waiting for
410 * somebody to say that they'd like to reschedule)
411 */
412void cpu_idle(void)
413{
414 /*
415 * If we're the non-boot CPU, nothing set the stack canary up
416 * for us. CPU0 already has it initialized but no harm in
417 * doing it again. This is a good place for updating it, as
418 * we wont ever return from this function (so the invalid
419 * canaries already on the stack wont ever trigger).
420 */
421 boot_init_stack_canary();
422 current_thread_info()->status |= TS_POLLING;
423
424 while (1) {
425 tick_nohz_idle_enter();
426
427 while (!need_resched()) {
428 rmb();
429
430 if (cpu_is_offline(smp_processor_id()))
431 play_dead();
432
433 /*
434 * Idle routines should keep interrupts disabled
435 * from here on, until they go to idle.
436 * Otherwise, idle callbacks can misfire.
437 */
438 local_touch_nmi();
439 local_irq_disable();
440
441 enter_idle();
442
443 /* Don't trace irqs off for idle */
444 stop_critical_timings();
445
446 /* enter_idle() needs rcu for notifiers */
447 rcu_idle_enter();
448
449 if (cpuidle_idle_call())
450 pm_idle();
451
452 rcu_idle_exit();
453 start_critical_timings();
454
455 /* In many cases the interrupt that ended idle
456 has already called exit_idle. But some idle
457 loops can be woken up without interrupt. */
458 __exit_idle();
459 }
460
461 tick_nohz_idle_exit();
462 preempt_enable_no_resched();
463 schedule();
464 preempt_disable();
465 }
466}
467
468/*
469 * We use this if we don't have any better
470 * idle routine..
471 */
472void default_idle(void)
473{
474 if (hlt_use_halt()) {
475 trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
476 trace_cpu_idle_rcuidle(1, smp_processor_id());
477 current_thread_info()->status &= ~TS_POLLING;
478 /*
479 * TS_POLLING-cleared state must be visible before we
480 * test NEED_RESCHED:
481 */
482 smp_mb();
483
484 if (!need_resched())
485 safe_halt(); /* enables interrupts racelessly */
486 else
487 local_irq_enable();
488 current_thread_info()->status |= TS_POLLING;
489 trace_power_end_rcuidle(smp_processor_id());
490 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
491 } else {
492 local_irq_enable();
493 /* loop is done by the caller */
494 cpu_relax();
495 }
496}
497#ifdef CONFIG_APM_MODULE
498EXPORT_SYMBOL(default_idle);
499#endif
500
501bool set_pm_idle_to_default(void)
502{
503 bool ret = !!pm_idle;
504
505 pm_idle = default_idle;
506
507 return ret;
508}
509void stop_this_cpu(void *dummy)
510{
511 local_irq_disable();
512 /*
513 * Remove this CPU:
514 */
515 set_cpu_online(smp_processor_id(), false);
516 disable_local_APIC();
517
518 for (;;) {
519 if (hlt_works(smp_processor_id()))
520 halt();
521 }
522}
523
524/* Default MONITOR/MWAIT with no hints, used for default C1 state */
525static void mwait_idle(void)
526{
527 if (!need_resched()) {
528 trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
529 trace_cpu_idle_rcuidle(1, smp_processor_id());
530 if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR))
531 clflush((void *)&current_thread_info()->flags);
532
533 __monitor((void *)&current_thread_info()->flags, 0, 0);
534 smp_mb();
535 if (!need_resched())
536 __sti_mwait(0, 0);
537 else
538 local_irq_enable();
539 trace_power_end_rcuidle(smp_processor_id());
540 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
541 } else
542 local_irq_enable();
543}
544
545/*
546 * On SMP it's slightly faster (but much more power-consuming!)
547 * to poll the ->work.need_resched flag instead of waiting for the
548 * cross-CPU IPI to arrive. Use this option with caution.
549 */
550static void poll_idle(void)
551{
552 trace_power_start_rcuidle(POWER_CSTATE, 0, smp_processor_id());
553 trace_cpu_idle_rcuidle(0, smp_processor_id());
554 local_irq_enable();
555 while (!need_resched())
556 cpu_relax();
557 trace_power_end_rcuidle(smp_processor_id());
558 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
559}
560
561/*
562 * mwait selection logic:
563 *
564 * It depends on the CPU. For AMD CPUs that support MWAIT this is
565 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
566 * then depend on a clock divisor and current Pstate of the core. If
567 * all cores of a processor are in halt state (C1) the processor can
568 * enter the C1E (C1 enhanced) state. If mwait is used this will never
569 * happen.
570 *
571 * idle=mwait overrides this decision and forces the usage of mwait.
572 */
573
574#define MWAIT_INFO 0x05
575#define MWAIT_ECX_EXTENDED_INFO 0x01
576#define MWAIT_EDX_C1 0xf0
577
578int mwait_usable(const struct cpuinfo_x86 *c)
579{
580 u32 eax, ebx, ecx, edx;
581
582 /* Use mwait if idle=mwait boot option is given */
583 if (boot_option_idle_override == IDLE_FORCE_MWAIT)
584 return 1;
585
586 /*
587 * Any idle= boot option other than idle=mwait means that we must not
588 * use mwait. Eg: idle=halt or idle=poll or idle=nomwait
589 */
590 if (boot_option_idle_override != IDLE_NO_OVERRIDE)
591 return 0;
592
593 if (c->cpuid_level < MWAIT_INFO)
594 return 0;
595
596 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
597 /* Check, whether EDX has extended info about MWAIT */
598 if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
599 return 1;
600
601 /*
602 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
603 * C1 supports MWAIT
604 */
605 return (edx & MWAIT_EDX_C1);
606}
607
608bool amd_e400_c1e_detected;
609EXPORT_SYMBOL(amd_e400_c1e_detected);
610
611static cpumask_var_t amd_e400_c1e_mask;
612
613void amd_e400_remove_cpu(int cpu)
614{
615 if (amd_e400_c1e_mask != NULL)
616 cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
617}
618
619/*
620 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
621 * pending message MSR. If we detect C1E, then we handle it the same
622 * way as C3 power states (local apic timer and TSC stop)
623 */
624static void amd_e400_idle(void)
625{
626 if (need_resched())
627 return;
628
629 if (!amd_e400_c1e_detected) {
630 u32 lo, hi;
631
632 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
633
634 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
635 amd_e400_c1e_detected = true;
636 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
637 mark_tsc_unstable("TSC halt in AMD C1E");
638 pr_info("System has AMD C1E enabled\n");
639 }
640 }
641
642 if (amd_e400_c1e_detected) {
643 int cpu = smp_processor_id();
644
645 if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
646 cpumask_set_cpu(cpu, amd_e400_c1e_mask);
647 /*
648 * Force broadcast so ACPI can not interfere.
649 */
650 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
651 &cpu);
652 pr_info("Switch to broadcast mode on CPU%d\n", cpu);
653 }
654 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
655
656 default_idle();
657
658 /*
659 * The switch back from broadcast mode needs to be
660 * called with interrupts disabled.
661 */
662 local_irq_disable();
663 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
664 local_irq_enable();
665 } else
666 default_idle();
667}
668
669void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
670{
671#ifdef CONFIG_SMP
672 if (pm_idle == poll_idle && smp_num_siblings > 1) {
673 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
674 }
675#endif
676 if (pm_idle)
677 return;
678
679 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
680 /*
681 * One CPU supports mwait => All CPUs supports mwait
682 */
683 pr_info("using mwait in idle threads\n");
684 pm_idle = mwait_idle;
685 } else if (cpu_has_amd_erratum(amd_erratum_400)) {
686 /* E400: APIC timer interrupt does not wake up CPU from C1e */
687 pr_info("using AMD E400 aware idle routine\n");
688 pm_idle = amd_e400_idle;
689 } else
690 pm_idle = default_idle;
691}
692
693void __init init_amd_e400_c1e_mask(void)
694{
695 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
696 if (pm_idle == amd_e400_idle)
697 zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
698}
699
700static int __init idle_setup(char *str)
701{
702 if (!str)
703 return -EINVAL;
704
705 if (!strcmp(str, "poll")) {
706 pr_info("using polling idle threads\n");
707 pm_idle = poll_idle;
708 boot_option_idle_override = IDLE_POLL;
709 } else if (!strcmp(str, "mwait")) {
710 boot_option_idle_override = IDLE_FORCE_MWAIT;
711 WARN_ONCE(1, "\"idle=mwait\" will be removed in 2012\n");
712 } else if (!strcmp(str, "halt")) {
713 /*
714 * When the boot option of idle=halt is added, halt is
715 * forced to be used for CPU idle. In such case CPU C2/C3
716 * won't be used again.
717 * To continue to load the CPU idle driver, don't touch
718 * the boot_option_idle_override.
719 */
720 pm_idle = default_idle;
721 boot_option_idle_override = IDLE_HALT;
722 } else if (!strcmp(str, "nomwait")) {
723 /*
724 * If the boot option of "idle=nomwait" is added,
725 * it means that mwait will be disabled for CPU C2/C3
726 * states. In such case it won't touch the variable
727 * of boot_option_idle_override.
728 */
729 boot_option_idle_override = IDLE_NOMWAIT;
730 } else
731 return -1;
732
733 return 0;
734}
735early_param("idle", idle_setup);
736
737unsigned long arch_align_stack(unsigned long sp)
738{
739 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
740 sp -= get_random_int() % 8192;
741 return sp & ~0xf;
742}
743
744unsigned long arch_randomize_brk(struct mm_struct *mm)
745{
746 unsigned long range_end = mm->brk + 0x02000000;
747 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
748}
749