clockevents: Provide explicit broadcast oneshot control functions
[linux-2.6-block.git] / arch / x86 / kernel / process.c
... / ...
CommitLineData
1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3#include <linux/errno.h>
4#include <linux/kernel.h>
5#include <linux/mm.h>
6#include <linux/smp.h>
7#include <linux/prctl.h>
8#include <linux/slab.h>
9#include <linux/sched.h>
10#include <linux/module.h>
11#include <linux/pm.h>
12#include <linux/tick.h>
13#include <linux/random.h>
14#include <linux/user-return-notifier.h>
15#include <linux/dmi.h>
16#include <linux/utsname.h>
17#include <linux/stackprotector.h>
18#include <linux/tick.h>
19#include <linux/cpuidle.h>
20#include <trace/events/power.h>
21#include <linux/hw_breakpoint.h>
22#include <asm/cpu.h>
23#include <asm/apic.h>
24#include <asm/syscalls.h>
25#include <asm/idle.h>
26#include <asm/uaccess.h>
27#include <asm/i387.h>
28#include <asm/fpu-internal.h>
29#include <asm/debugreg.h>
30#include <asm/nmi.h>
31#include <asm/tlbflush.h>
32
33/*
34 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
35 * no more per-task TSS's. The TSS size is kept cacheline-aligned
36 * so they are allowed to end up in the .data..cacheline_aligned
37 * section. Since TSS's are completely CPU-local, we want them
38 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
39 */
40__visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS;
41
42#ifdef CONFIG_X86_64
43static DEFINE_PER_CPU(unsigned char, is_idle);
44static ATOMIC_NOTIFIER_HEAD(idle_notifier);
45
46void idle_notifier_register(struct notifier_block *n)
47{
48 atomic_notifier_chain_register(&idle_notifier, n);
49}
50EXPORT_SYMBOL_GPL(idle_notifier_register);
51
52void idle_notifier_unregister(struct notifier_block *n)
53{
54 atomic_notifier_chain_unregister(&idle_notifier, n);
55}
56EXPORT_SYMBOL_GPL(idle_notifier_unregister);
57#endif
58
59struct kmem_cache *task_xstate_cachep;
60EXPORT_SYMBOL_GPL(task_xstate_cachep);
61
62/*
63 * this gets called so that we can store lazy state into memory and copy the
64 * current task into the new thread.
65 */
66int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
67{
68 *dst = *src;
69
70 dst->thread.fpu_counter = 0;
71 dst->thread.fpu.has_fpu = 0;
72 dst->thread.fpu.last_cpu = ~0;
73 dst->thread.fpu.state = NULL;
74 if (tsk_used_math(src)) {
75 int err = fpu_alloc(&dst->thread.fpu);
76 if (err)
77 return err;
78 fpu_copy(dst, src);
79 }
80 return 0;
81}
82
83void free_thread_xstate(struct task_struct *tsk)
84{
85 fpu_free(&tsk->thread.fpu);
86}
87
88void arch_release_task_struct(struct task_struct *tsk)
89{
90 free_thread_xstate(tsk);
91}
92
93void arch_task_cache_init(void)
94{
95 task_xstate_cachep =
96 kmem_cache_create("task_xstate", xstate_size,
97 __alignof__(union thread_xstate),
98 SLAB_PANIC | SLAB_NOTRACK, NULL);
99 setup_xstate_comp();
100}
101
102/*
103 * Free current thread data structures etc..
104 */
105void exit_thread(void)
106{
107 struct task_struct *me = current;
108 struct thread_struct *t = &me->thread;
109 unsigned long *bp = t->io_bitmap_ptr;
110
111 if (bp) {
112 struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
113
114 t->io_bitmap_ptr = NULL;
115 clear_thread_flag(TIF_IO_BITMAP);
116 /*
117 * Careful, clear this in the TSS too:
118 */
119 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
120 t->io_bitmap_max = 0;
121 put_cpu();
122 kfree(bp);
123 }
124
125 drop_fpu(me);
126}
127
128void flush_thread(void)
129{
130 struct task_struct *tsk = current;
131
132 flush_ptrace_hw_breakpoint(tsk);
133 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
134 drop_init_fpu(tsk);
135 /*
136 * Free the FPU state for non xsave platforms. They get reallocated
137 * lazily at the first use.
138 */
139 if (!use_eager_fpu())
140 free_thread_xstate(tsk);
141}
142
143static void hard_disable_TSC(void)
144{
145 cr4_set_bits(X86_CR4_TSD);
146}
147
148void disable_TSC(void)
149{
150 preempt_disable();
151 if (!test_and_set_thread_flag(TIF_NOTSC))
152 /*
153 * Must flip the CPU state synchronously with
154 * TIF_NOTSC in the current running context.
155 */
156 hard_disable_TSC();
157 preempt_enable();
158}
159
160static void hard_enable_TSC(void)
161{
162 cr4_clear_bits(X86_CR4_TSD);
163}
164
165static void enable_TSC(void)
166{
167 preempt_disable();
168 if (test_and_clear_thread_flag(TIF_NOTSC))
169 /*
170 * Must flip the CPU state synchronously with
171 * TIF_NOTSC in the current running context.
172 */
173 hard_enable_TSC();
174 preempt_enable();
175}
176
177int get_tsc_mode(unsigned long adr)
178{
179 unsigned int val;
180
181 if (test_thread_flag(TIF_NOTSC))
182 val = PR_TSC_SIGSEGV;
183 else
184 val = PR_TSC_ENABLE;
185
186 return put_user(val, (unsigned int __user *)adr);
187}
188
189int set_tsc_mode(unsigned int val)
190{
191 if (val == PR_TSC_SIGSEGV)
192 disable_TSC();
193 else if (val == PR_TSC_ENABLE)
194 enable_TSC();
195 else
196 return -EINVAL;
197
198 return 0;
199}
200
201void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
202 struct tss_struct *tss)
203{
204 struct thread_struct *prev, *next;
205
206 prev = &prev_p->thread;
207 next = &next_p->thread;
208
209 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
210 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
211 unsigned long debugctl = get_debugctlmsr();
212
213 debugctl &= ~DEBUGCTLMSR_BTF;
214 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
215 debugctl |= DEBUGCTLMSR_BTF;
216
217 update_debugctlmsr(debugctl);
218 }
219
220 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
221 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
222 /* prev and next are different */
223 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
224 hard_disable_TSC();
225 else
226 hard_enable_TSC();
227 }
228
229 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
230 /*
231 * Copy the relevant range of the IO bitmap.
232 * Normally this is 128 bytes or less:
233 */
234 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
235 max(prev->io_bitmap_max, next->io_bitmap_max));
236 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
237 /*
238 * Clear any possible leftover bits:
239 */
240 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
241 }
242 propagate_user_return_notify(prev_p, next_p);
243}
244
245/*
246 * Idle related variables and functions
247 */
248unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
249EXPORT_SYMBOL(boot_option_idle_override);
250
251static void (*x86_idle)(void);
252
253#ifndef CONFIG_SMP
254static inline void play_dead(void)
255{
256 BUG();
257}
258#endif
259
260#ifdef CONFIG_X86_64
261void enter_idle(void)
262{
263 this_cpu_write(is_idle, 1);
264 atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
265}
266
267static void __exit_idle(void)
268{
269 if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
270 return;
271 atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
272}
273
274/* Called from interrupts to signify idle end */
275void exit_idle(void)
276{
277 /* idle loop has pid 0 */
278 if (current->pid)
279 return;
280 __exit_idle();
281}
282#endif
283
284void arch_cpu_idle_enter(void)
285{
286 local_touch_nmi();
287 enter_idle();
288}
289
290void arch_cpu_idle_exit(void)
291{
292 __exit_idle();
293}
294
295void arch_cpu_idle_dead(void)
296{
297 play_dead();
298}
299
300/*
301 * Called from the generic idle code.
302 */
303void arch_cpu_idle(void)
304{
305 x86_idle();
306}
307
308/*
309 * We use this if we don't have any better idle routine..
310 */
311void default_idle(void)
312{
313 trace_cpu_idle_rcuidle(1, smp_processor_id());
314 safe_halt();
315 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
316}
317#ifdef CONFIG_APM_MODULE
318EXPORT_SYMBOL(default_idle);
319#endif
320
321#ifdef CONFIG_XEN
322bool xen_set_default_idle(void)
323{
324 bool ret = !!x86_idle;
325
326 x86_idle = default_idle;
327
328 return ret;
329}
330#endif
331void stop_this_cpu(void *dummy)
332{
333 local_irq_disable();
334 /*
335 * Remove this CPU:
336 */
337 set_cpu_online(smp_processor_id(), false);
338 disable_local_APIC();
339
340 for (;;)
341 halt();
342}
343
344bool amd_e400_c1e_detected;
345EXPORT_SYMBOL(amd_e400_c1e_detected);
346
347static cpumask_var_t amd_e400_c1e_mask;
348
349void amd_e400_remove_cpu(int cpu)
350{
351 if (amd_e400_c1e_mask != NULL)
352 cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
353}
354
355/*
356 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
357 * pending message MSR. If we detect C1E, then we handle it the same
358 * way as C3 power states (local apic timer and TSC stop)
359 */
360static void amd_e400_idle(void)
361{
362 if (!amd_e400_c1e_detected) {
363 u32 lo, hi;
364
365 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
366
367 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
368 amd_e400_c1e_detected = true;
369 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
370 mark_tsc_unstable("TSC halt in AMD C1E");
371 pr_info("System has AMD C1E enabled\n");
372 }
373 }
374
375 if (amd_e400_c1e_detected) {
376 int cpu = smp_processor_id();
377
378 if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
379 cpumask_set_cpu(cpu, amd_e400_c1e_mask);
380 /* Force broadcast so ACPI can not interfere. */
381 tick_broadcast_force();
382 pr_info("Switch to broadcast mode on CPU%d\n", cpu);
383 }
384 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
385
386 default_idle();
387
388 /*
389 * The switch back from broadcast mode needs to be
390 * called with interrupts disabled.
391 */
392 local_irq_disable();
393 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
394 local_irq_enable();
395 } else
396 default_idle();
397}
398
399void select_idle_routine(const struct cpuinfo_x86 *c)
400{
401#ifdef CONFIG_SMP
402 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
403 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
404#endif
405 if (x86_idle || boot_option_idle_override == IDLE_POLL)
406 return;
407
408 if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
409 /* E400: APIC timer interrupt does not wake up CPU from C1e */
410 pr_info("using AMD E400 aware idle routine\n");
411 x86_idle = amd_e400_idle;
412 } else
413 x86_idle = default_idle;
414}
415
416void __init init_amd_e400_c1e_mask(void)
417{
418 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
419 if (x86_idle == amd_e400_idle)
420 zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
421}
422
423static int __init idle_setup(char *str)
424{
425 if (!str)
426 return -EINVAL;
427
428 if (!strcmp(str, "poll")) {
429 pr_info("using polling idle threads\n");
430 boot_option_idle_override = IDLE_POLL;
431 cpu_idle_poll_ctrl(true);
432 } else if (!strcmp(str, "halt")) {
433 /*
434 * When the boot option of idle=halt is added, halt is
435 * forced to be used for CPU idle. In such case CPU C2/C3
436 * won't be used again.
437 * To continue to load the CPU idle driver, don't touch
438 * the boot_option_idle_override.
439 */
440 x86_idle = default_idle;
441 boot_option_idle_override = IDLE_HALT;
442 } else if (!strcmp(str, "nomwait")) {
443 /*
444 * If the boot option of "idle=nomwait" is added,
445 * it means that mwait will be disabled for CPU C2/C3
446 * states. In such case it won't touch the variable
447 * of boot_option_idle_override.
448 */
449 boot_option_idle_override = IDLE_NOMWAIT;
450 } else
451 return -1;
452
453 return 0;
454}
455early_param("idle", idle_setup);
456
457unsigned long arch_align_stack(unsigned long sp)
458{
459 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
460 sp -= get_random_int() % 8192;
461 return sp & ~0xf;
462}
463
464unsigned long arch_randomize_brk(struct mm_struct *mm)
465{
466 unsigned long range_end = mm->brk + 0x02000000;
467 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
468}
469