x86/fpu: Use an explicit if/else in switch_fpu_prepare()
[linux-2.6-block.git] / arch / x86 / kernel / process.c
... / ...
CommitLineData
1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3#include <linux/errno.h>
4#include <linux/kernel.h>
5#include <linux/mm.h>
6#include <linux/smp.h>
7#include <linux/prctl.h>
8#include <linux/slab.h>
9#include <linux/sched.h>
10#include <linux/module.h>
11#include <linux/pm.h>
12#include <linux/clockchips.h>
13#include <linux/random.h>
14#include <linux/user-return-notifier.h>
15#include <linux/dmi.h>
16#include <linux/utsname.h>
17#include <linux/stackprotector.h>
18#include <linux/tick.h>
19#include <linux/cpuidle.h>
20#include <trace/events/power.h>
21#include <linux/hw_breakpoint.h>
22#include <asm/cpu.h>
23#include <asm/apic.h>
24#include <asm/syscalls.h>
25#include <asm/idle.h>
26#include <asm/uaccess.h>
27#include <asm/i387.h>
28#include <asm/fpu-internal.h>
29#include <asm/debugreg.h>
30#include <asm/nmi.h>
31
32/*
33 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
34 * no more per-task TSS's. The TSS size is kept cacheline-aligned
35 * so they are allowed to end up in the .data..cacheline_aligned
36 * section. Since TSS's are completely CPU-local, we want them
37 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
38 */
39__visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS;
40
41#ifdef CONFIG_X86_64
42static DEFINE_PER_CPU(unsigned char, is_idle);
43static ATOMIC_NOTIFIER_HEAD(idle_notifier);
44
45void idle_notifier_register(struct notifier_block *n)
46{
47 atomic_notifier_chain_register(&idle_notifier, n);
48}
49EXPORT_SYMBOL_GPL(idle_notifier_register);
50
51void idle_notifier_unregister(struct notifier_block *n)
52{
53 atomic_notifier_chain_unregister(&idle_notifier, n);
54}
55EXPORT_SYMBOL_GPL(idle_notifier_unregister);
56#endif
57
58struct kmem_cache *task_xstate_cachep;
59EXPORT_SYMBOL_GPL(task_xstate_cachep);
60
61/*
62 * this gets called so that we can store lazy state into memory and copy the
63 * current task into the new thread.
64 */
65int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
66{
67 *dst = *src;
68
69 dst->thread.fpu_counter = 0;
70 dst->thread.fpu.has_fpu = 0;
71 dst->thread.fpu.last_cpu = ~0;
72 dst->thread.fpu.state = NULL;
73 if (tsk_used_math(src)) {
74 int err = fpu_alloc(&dst->thread.fpu);
75 if (err)
76 return err;
77 fpu_copy(dst, src);
78 }
79 return 0;
80}
81
82void free_thread_xstate(struct task_struct *tsk)
83{
84 fpu_free(&tsk->thread.fpu);
85}
86
87void arch_release_task_struct(struct task_struct *tsk)
88{
89 free_thread_xstate(tsk);
90}
91
92void arch_task_cache_init(void)
93{
94 task_xstate_cachep =
95 kmem_cache_create("task_xstate", xstate_size,
96 __alignof__(union thread_xstate),
97 SLAB_PANIC | SLAB_NOTRACK, NULL);
98 setup_xstate_comp();
99}
100
101/*
102 * Free current thread data structures etc..
103 */
104void exit_thread(void)
105{
106 struct task_struct *me = current;
107 struct thread_struct *t = &me->thread;
108 unsigned long *bp = t->io_bitmap_ptr;
109
110 if (bp) {
111 struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
112
113 t->io_bitmap_ptr = NULL;
114 clear_thread_flag(TIF_IO_BITMAP);
115 /*
116 * Careful, clear this in the TSS too:
117 */
118 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
119 t->io_bitmap_max = 0;
120 put_cpu();
121 kfree(bp);
122 }
123
124 drop_fpu(me);
125}
126
127void flush_thread(void)
128{
129 struct task_struct *tsk = current;
130
131 flush_ptrace_hw_breakpoint(tsk);
132 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
133 drop_init_fpu(tsk);
134 /*
135 * Free the FPU state for non xsave platforms. They get reallocated
136 * lazily at the first use.
137 */
138 if (!use_eager_fpu())
139 free_thread_xstate(tsk);
140}
141
142static void hard_disable_TSC(void)
143{
144 write_cr4(read_cr4() | X86_CR4_TSD);
145}
146
147void disable_TSC(void)
148{
149 preempt_disable();
150 if (!test_and_set_thread_flag(TIF_NOTSC))
151 /*
152 * Must flip the CPU state synchronously with
153 * TIF_NOTSC in the current running context.
154 */
155 hard_disable_TSC();
156 preempt_enable();
157}
158
159static void hard_enable_TSC(void)
160{
161 write_cr4(read_cr4() & ~X86_CR4_TSD);
162}
163
164static void enable_TSC(void)
165{
166 preempt_disable();
167 if (test_and_clear_thread_flag(TIF_NOTSC))
168 /*
169 * Must flip the CPU state synchronously with
170 * TIF_NOTSC in the current running context.
171 */
172 hard_enable_TSC();
173 preempt_enable();
174}
175
176int get_tsc_mode(unsigned long adr)
177{
178 unsigned int val;
179
180 if (test_thread_flag(TIF_NOTSC))
181 val = PR_TSC_SIGSEGV;
182 else
183 val = PR_TSC_ENABLE;
184
185 return put_user(val, (unsigned int __user *)adr);
186}
187
188int set_tsc_mode(unsigned int val)
189{
190 if (val == PR_TSC_SIGSEGV)
191 disable_TSC();
192 else if (val == PR_TSC_ENABLE)
193 enable_TSC();
194 else
195 return -EINVAL;
196
197 return 0;
198}
199
200void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
201 struct tss_struct *tss)
202{
203 struct thread_struct *prev, *next;
204
205 prev = &prev_p->thread;
206 next = &next_p->thread;
207
208 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
209 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
210 unsigned long debugctl = get_debugctlmsr();
211
212 debugctl &= ~DEBUGCTLMSR_BTF;
213 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
214 debugctl |= DEBUGCTLMSR_BTF;
215
216 update_debugctlmsr(debugctl);
217 }
218
219 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
220 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
221 /* prev and next are different */
222 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
223 hard_disable_TSC();
224 else
225 hard_enable_TSC();
226 }
227
228 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
229 /*
230 * Copy the relevant range of the IO bitmap.
231 * Normally this is 128 bytes or less:
232 */
233 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
234 max(prev->io_bitmap_max, next->io_bitmap_max));
235 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
236 /*
237 * Clear any possible leftover bits:
238 */
239 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
240 }
241 propagate_user_return_notify(prev_p, next_p);
242}
243
244/*
245 * Idle related variables and functions
246 */
247unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
248EXPORT_SYMBOL(boot_option_idle_override);
249
250static void (*x86_idle)(void);
251
252#ifndef CONFIG_SMP
253static inline void play_dead(void)
254{
255 BUG();
256}
257#endif
258
259#ifdef CONFIG_X86_64
260void enter_idle(void)
261{
262 this_cpu_write(is_idle, 1);
263 atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
264}
265
266static void __exit_idle(void)
267{
268 if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
269 return;
270 atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
271}
272
273/* Called from interrupts to signify idle end */
274void exit_idle(void)
275{
276 /* idle loop has pid 0 */
277 if (current->pid)
278 return;
279 __exit_idle();
280}
281#endif
282
283void arch_cpu_idle_enter(void)
284{
285 local_touch_nmi();
286 enter_idle();
287}
288
289void arch_cpu_idle_exit(void)
290{
291 __exit_idle();
292}
293
294void arch_cpu_idle_dead(void)
295{
296 play_dead();
297}
298
299/*
300 * Called from the generic idle code.
301 */
302void arch_cpu_idle(void)
303{
304 x86_idle();
305}
306
307/*
308 * We use this if we don't have any better idle routine..
309 */
310void default_idle(void)
311{
312 trace_cpu_idle_rcuidle(1, smp_processor_id());
313 safe_halt();
314 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
315}
316#ifdef CONFIG_APM_MODULE
317EXPORT_SYMBOL(default_idle);
318#endif
319
320#ifdef CONFIG_XEN
321bool xen_set_default_idle(void)
322{
323 bool ret = !!x86_idle;
324
325 x86_idle = default_idle;
326
327 return ret;
328}
329#endif
330void stop_this_cpu(void *dummy)
331{
332 local_irq_disable();
333 /*
334 * Remove this CPU:
335 */
336 set_cpu_online(smp_processor_id(), false);
337 disable_local_APIC();
338
339 for (;;)
340 halt();
341}
342
343bool amd_e400_c1e_detected;
344EXPORT_SYMBOL(amd_e400_c1e_detected);
345
346static cpumask_var_t amd_e400_c1e_mask;
347
348void amd_e400_remove_cpu(int cpu)
349{
350 if (amd_e400_c1e_mask != NULL)
351 cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
352}
353
354/*
355 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
356 * pending message MSR. If we detect C1E, then we handle it the same
357 * way as C3 power states (local apic timer and TSC stop)
358 */
359static void amd_e400_idle(void)
360{
361 if (!amd_e400_c1e_detected) {
362 u32 lo, hi;
363
364 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
365
366 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
367 amd_e400_c1e_detected = true;
368 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
369 mark_tsc_unstable("TSC halt in AMD C1E");
370 pr_info("System has AMD C1E enabled\n");
371 }
372 }
373
374 if (amd_e400_c1e_detected) {
375 int cpu = smp_processor_id();
376
377 if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
378 cpumask_set_cpu(cpu, amd_e400_c1e_mask);
379 /*
380 * Force broadcast so ACPI can not interfere.
381 */
382 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
383 &cpu);
384 pr_info("Switch to broadcast mode on CPU%d\n", cpu);
385 }
386 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
387
388 default_idle();
389
390 /*
391 * The switch back from broadcast mode needs to be
392 * called with interrupts disabled.
393 */
394 local_irq_disable();
395 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
396 local_irq_enable();
397 } else
398 default_idle();
399}
400
401void select_idle_routine(const struct cpuinfo_x86 *c)
402{
403#ifdef CONFIG_SMP
404 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
405 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
406#endif
407 if (x86_idle || boot_option_idle_override == IDLE_POLL)
408 return;
409
410 if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
411 /* E400: APIC timer interrupt does not wake up CPU from C1e */
412 pr_info("using AMD E400 aware idle routine\n");
413 x86_idle = amd_e400_idle;
414 } else
415 x86_idle = default_idle;
416}
417
418void __init init_amd_e400_c1e_mask(void)
419{
420 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
421 if (x86_idle == amd_e400_idle)
422 zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
423}
424
425static int __init idle_setup(char *str)
426{
427 if (!str)
428 return -EINVAL;
429
430 if (!strcmp(str, "poll")) {
431 pr_info("using polling idle threads\n");
432 boot_option_idle_override = IDLE_POLL;
433 cpu_idle_poll_ctrl(true);
434 } else if (!strcmp(str, "halt")) {
435 /*
436 * When the boot option of idle=halt is added, halt is
437 * forced to be used for CPU idle. In such case CPU C2/C3
438 * won't be used again.
439 * To continue to load the CPU idle driver, don't touch
440 * the boot_option_idle_override.
441 */
442 x86_idle = default_idle;
443 boot_option_idle_override = IDLE_HALT;
444 } else if (!strcmp(str, "nomwait")) {
445 /*
446 * If the boot option of "idle=nomwait" is added,
447 * it means that mwait will be disabled for CPU C2/C3
448 * states. In such case it won't touch the variable
449 * of boot_option_idle_override.
450 */
451 boot_option_idle_override = IDLE_NOMWAIT;
452 } else
453 return -1;
454
455 return 0;
456}
457early_param("idle", idle_setup);
458
459unsigned long arch_align_stack(unsigned long sp)
460{
461 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
462 sp -= get_random_int() % 8192;
463 return sp & ~0xf;
464}
465
466unsigned long arch_randomize_brk(struct mm_struct *mm)
467{
468 unsigned long range_end = mm->brk + 0x02000000;
469 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
470}
471