perf: Fix LLC-* events on Intel Nehalem/Westmere
[linux-2.6-block.git] / arch / x86 / kernel / cpu / perf_event.c
... / ...
CommitLineData
1/*
2 * Performance events x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
15#include <linux/perf_event.h>
16#include <linux/capability.h>
17#include <linux/notifier.h>
18#include <linux/hardirq.h>
19#include <linux/kprobes.h>
20#include <linux/module.h>
21#include <linux/kdebug.h>
22#include <linux/sched.h>
23#include <linux/uaccess.h>
24#include <linux/slab.h>
25#include <linux/highmem.h>
26#include <linux/cpu.h>
27#include <linux/bitops.h>
28
29#include <asm/apic.h>
30#include <asm/stacktrace.h>
31#include <asm/nmi.h>
32#include <asm/compat.h>
33
34#if 0
35#undef wrmsrl
36#define wrmsrl(msr, val) \
37do { \
38 trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
39 (unsigned long)(val)); \
40 native_write_msr((msr), (u32)((u64)(val)), \
41 (u32)((u64)(val) >> 32)); \
42} while (0)
43#endif
44
45/*
46 * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
47 */
48static unsigned long
49copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
50{
51 unsigned long offset, addr = (unsigned long)from;
52 unsigned long size, len = 0;
53 struct page *page;
54 void *map;
55 int ret;
56
57 do {
58 ret = __get_user_pages_fast(addr, 1, 0, &page);
59 if (!ret)
60 break;
61
62 offset = addr & (PAGE_SIZE - 1);
63 size = min(PAGE_SIZE - offset, n - len);
64
65 map = kmap_atomic(page);
66 memcpy(to, map+offset, size);
67 kunmap_atomic(map);
68 put_page(page);
69
70 len += size;
71 to += size;
72 addr += size;
73
74 } while (len < n);
75
76 return len;
77}
78
79struct event_constraint {
80 union {
81 unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
82 u64 idxmsk64;
83 };
84 u64 code;
85 u64 cmask;
86 int weight;
87};
88
89struct amd_nb {
90 int nb_id; /* NorthBridge id */
91 int refcnt; /* reference count */
92 struct perf_event *owners[X86_PMC_IDX_MAX];
93 struct event_constraint event_constraints[X86_PMC_IDX_MAX];
94};
95
96struct intel_percore;
97
98#define MAX_LBR_ENTRIES 16
99
100struct cpu_hw_events {
101 /*
102 * Generic x86 PMC bits
103 */
104 struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */
105 unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
106 unsigned long running[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
107 int enabled;
108
109 int n_events;
110 int n_added;
111 int n_txn;
112 int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
113 u64 tags[X86_PMC_IDX_MAX];
114 struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
115
116 unsigned int group_flag;
117
118 /*
119 * Intel DebugStore bits
120 */
121 struct debug_store *ds;
122 u64 pebs_enabled;
123
124 /*
125 * Intel LBR bits
126 */
127 int lbr_users;
128 void *lbr_context;
129 struct perf_branch_stack lbr_stack;
130 struct perf_branch_entry lbr_entries[MAX_LBR_ENTRIES];
131
132 /*
133 * Intel percore register state.
134 * Coordinate shared resources between HT threads.
135 */
136 int percore_used; /* Used by this CPU? */
137 struct intel_percore *per_core;
138
139 /*
140 * AMD specific bits
141 */
142 struct amd_nb *amd_nb;
143};
144
145#define __EVENT_CONSTRAINT(c, n, m, w) {\
146 { .idxmsk64 = (n) }, \
147 .code = (c), \
148 .cmask = (m), \
149 .weight = (w), \
150}
151
152#define EVENT_CONSTRAINT(c, n, m) \
153 __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
154
155/*
156 * Constraint on the Event code.
157 */
158#define INTEL_EVENT_CONSTRAINT(c, n) \
159 EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT)
160
161/*
162 * Constraint on the Event code + UMask + fixed-mask
163 *
164 * filter mask to validate fixed counter events.
165 * the following filters disqualify for fixed counters:
166 * - inv
167 * - edge
168 * - cnt-mask
169 * The other filters are supported by fixed counters.
170 * The any-thread option is supported starting with v3.
171 */
172#define FIXED_EVENT_CONSTRAINT(c, n) \
173 EVENT_CONSTRAINT(c, (1ULL << (32+n)), X86_RAW_EVENT_MASK)
174
175/*
176 * Constraint on the Event code + UMask
177 */
178#define INTEL_UEVENT_CONSTRAINT(c, n) \
179 EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
180#define PEBS_EVENT_CONSTRAINT(c, n) \
181 INTEL_UEVENT_CONSTRAINT(c, n)
182
183#define EVENT_CONSTRAINT_END \
184 EVENT_CONSTRAINT(0, 0, 0)
185
186#define for_each_event_constraint(e, c) \
187 for ((e) = (c); (e)->weight; (e)++)
188
189/*
190 * Extra registers for specific events.
191 * Some events need large masks and require external MSRs.
192 * Define a mapping to these extra registers.
193 */
194struct extra_reg {
195 unsigned int event;
196 unsigned int msr;
197 u64 config_mask;
198 u64 valid_mask;
199};
200
201#define EVENT_EXTRA_REG(e, ms, m, vm) { \
202 .event = (e), \
203 .msr = (ms), \
204 .config_mask = (m), \
205 .valid_mask = (vm), \
206 }
207#define INTEL_EVENT_EXTRA_REG(event, msr, vm) \
208 EVENT_EXTRA_REG(event, msr, ARCH_PERFMON_EVENTSEL_EVENT, vm)
209#define EVENT_EXTRA_END EVENT_EXTRA_REG(0, 0, 0, 0)
210
211union perf_capabilities {
212 struct {
213 u64 lbr_format : 6;
214 u64 pebs_trap : 1;
215 u64 pebs_arch_reg : 1;
216 u64 pebs_format : 4;
217 u64 smm_freeze : 1;
218 };
219 u64 capabilities;
220};
221
222/*
223 * struct x86_pmu - generic x86 pmu
224 */
225struct x86_pmu {
226 /*
227 * Generic x86 PMC bits
228 */
229 const char *name;
230 int version;
231 int (*handle_irq)(struct pt_regs *);
232 void (*disable_all)(void);
233 void (*enable_all)(int added);
234 void (*enable)(struct perf_event *);
235 void (*disable)(struct perf_event *);
236 int (*hw_config)(struct perf_event *event);
237 int (*schedule_events)(struct cpu_hw_events *cpuc, int n, int *assign);
238 unsigned eventsel;
239 unsigned perfctr;
240 u64 (*event_map)(int);
241 int max_events;
242 int num_counters;
243 int num_counters_fixed;
244 int cntval_bits;
245 u64 cntval_mask;
246 int apic;
247 u64 max_period;
248 struct event_constraint *
249 (*get_event_constraints)(struct cpu_hw_events *cpuc,
250 struct perf_event *event);
251
252 void (*put_event_constraints)(struct cpu_hw_events *cpuc,
253 struct perf_event *event);
254 struct event_constraint *event_constraints;
255 struct event_constraint *percore_constraints;
256 void (*quirks)(void);
257 int perfctr_second_write;
258
259 int (*cpu_prepare)(int cpu);
260 void (*cpu_starting)(int cpu);
261 void (*cpu_dying)(int cpu);
262 void (*cpu_dead)(int cpu);
263
264 /*
265 * Intel Arch Perfmon v2+
266 */
267 u64 intel_ctrl;
268 union perf_capabilities intel_cap;
269
270 /*
271 * Intel DebugStore bits
272 */
273 int bts, pebs;
274 int bts_active, pebs_active;
275 int pebs_record_size;
276 void (*drain_pebs)(struct pt_regs *regs);
277 struct event_constraint *pebs_constraints;
278
279 /*
280 * Intel LBR
281 */
282 unsigned long lbr_tos, lbr_from, lbr_to; /* MSR base regs */
283 int lbr_nr; /* hardware stack size */
284
285 /*
286 * Extra registers for events
287 */
288 struct extra_reg *extra_regs;
289};
290
291static struct x86_pmu x86_pmu __read_mostly;
292
293static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
294 .enabled = 1,
295};
296
297static int x86_perf_event_set_period(struct perf_event *event);
298
299/*
300 * Generalized hw caching related hw_event table, filled
301 * in on a per model basis. A value of 0 means
302 * 'not supported', -1 means 'hw_event makes no sense on
303 * this CPU', any other value means the raw hw_event
304 * ID.
305 */
306
307#define C(x) PERF_COUNT_HW_CACHE_##x
308
309static u64 __read_mostly hw_cache_event_ids
310 [PERF_COUNT_HW_CACHE_MAX]
311 [PERF_COUNT_HW_CACHE_OP_MAX]
312 [PERF_COUNT_HW_CACHE_RESULT_MAX];
313static u64 __read_mostly hw_cache_extra_regs
314 [PERF_COUNT_HW_CACHE_MAX]
315 [PERF_COUNT_HW_CACHE_OP_MAX]
316 [PERF_COUNT_HW_CACHE_RESULT_MAX];
317
318/*
319 * Propagate event elapsed time into the generic event.
320 * Can only be executed on the CPU where the event is active.
321 * Returns the delta events processed.
322 */
323static u64
324x86_perf_event_update(struct perf_event *event)
325{
326 struct hw_perf_event *hwc = &event->hw;
327 int shift = 64 - x86_pmu.cntval_bits;
328 u64 prev_raw_count, new_raw_count;
329 int idx = hwc->idx;
330 s64 delta;
331
332 if (idx == X86_PMC_IDX_FIXED_BTS)
333 return 0;
334
335 /*
336 * Careful: an NMI might modify the previous event value.
337 *
338 * Our tactic to handle this is to first atomically read and
339 * exchange a new raw count - then add that new-prev delta
340 * count to the generic event atomically:
341 */
342again:
343 prev_raw_count = local64_read(&hwc->prev_count);
344 rdmsrl(hwc->event_base, new_raw_count);
345
346 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
347 new_raw_count) != prev_raw_count)
348 goto again;
349
350 /*
351 * Now we have the new raw value and have updated the prev
352 * timestamp already. We can now calculate the elapsed delta
353 * (event-)time and add that to the generic event.
354 *
355 * Careful, not all hw sign-extends above the physical width
356 * of the count.
357 */
358 delta = (new_raw_count << shift) - (prev_raw_count << shift);
359 delta >>= shift;
360
361 local64_add(delta, &event->count);
362 local64_sub(delta, &hwc->period_left);
363
364 return new_raw_count;
365}
366
367/* using X86_FEATURE_PERFCTR_CORE to later implement ALTERNATIVE() here */
368static inline int x86_pmu_addr_offset(int index)
369{
370 if (boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
371 return index << 1;
372 return index;
373}
374
375static inline unsigned int x86_pmu_config_addr(int index)
376{
377 return x86_pmu.eventsel + x86_pmu_addr_offset(index);
378}
379
380static inline unsigned int x86_pmu_event_addr(int index)
381{
382 return x86_pmu.perfctr + x86_pmu_addr_offset(index);
383}
384
385/*
386 * Find and validate any extra registers to set up.
387 */
388static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
389{
390 struct extra_reg *er;
391
392 event->hw.extra_reg = 0;
393 event->hw.extra_config = 0;
394
395 if (!x86_pmu.extra_regs)
396 return 0;
397
398 for (er = x86_pmu.extra_regs; er->msr; er++) {
399 if (er->event != (config & er->config_mask))
400 continue;
401 if (event->attr.config1 & ~er->valid_mask)
402 return -EINVAL;
403 event->hw.extra_reg = er->msr;
404 event->hw.extra_config = event->attr.config1;
405 break;
406 }
407 return 0;
408}
409
410static atomic_t active_events;
411static DEFINE_MUTEX(pmc_reserve_mutex);
412
413#ifdef CONFIG_X86_LOCAL_APIC
414
415static bool reserve_pmc_hardware(void)
416{
417 int i;
418
419 for (i = 0; i < x86_pmu.num_counters; i++) {
420 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
421 goto perfctr_fail;
422 }
423
424 for (i = 0; i < x86_pmu.num_counters; i++) {
425 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
426 goto eventsel_fail;
427 }
428
429 return true;
430
431eventsel_fail:
432 for (i--; i >= 0; i--)
433 release_evntsel_nmi(x86_pmu_config_addr(i));
434
435 i = x86_pmu.num_counters;
436
437perfctr_fail:
438 for (i--; i >= 0; i--)
439 release_perfctr_nmi(x86_pmu_event_addr(i));
440
441 return false;
442}
443
444static void release_pmc_hardware(void)
445{
446 int i;
447
448 for (i = 0; i < x86_pmu.num_counters; i++) {
449 release_perfctr_nmi(x86_pmu_event_addr(i));
450 release_evntsel_nmi(x86_pmu_config_addr(i));
451 }
452}
453
454#else
455
456static bool reserve_pmc_hardware(void) { return true; }
457static void release_pmc_hardware(void) {}
458
459#endif
460
461static bool check_hw_exists(void)
462{
463 u64 val, val_new = 0;
464 int i, reg, ret = 0;
465
466 /*
467 * Check to see if the BIOS enabled any of the counters, if so
468 * complain and bail.
469 */
470 for (i = 0; i < x86_pmu.num_counters; i++) {
471 reg = x86_pmu_config_addr(i);
472 ret = rdmsrl_safe(reg, &val);
473 if (ret)
474 goto msr_fail;
475 if (val & ARCH_PERFMON_EVENTSEL_ENABLE)
476 goto bios_fail;
477 }
478
479 if (x86_pmu.num_counters_fixed) {
480 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
481 ret = rdmsrl_safe(reg, &val);
482 if (ret)
483 goto msr_fail;
484 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
485 if (val & (0x03 << i*4))
486 goto bios_fail;
487 }
488 }
489
490 /*
491 * Now write a value and read it back to see if it matches,
492 * this is needed to detect certain hardware emulators (qemu/kvm)
493 * that don't trap on the MSR access and always return 0s.
494 */
495 val = 0xabcdUL;
496 ret = checking_wrmsrl(x86_pmu_event_addr(0), val);
497 ret |= rdmsrl_safe(x86_pmu_event_addr(0), &val_new);
498 if (ret || val != val_new)
499 goto msr_fail;
500
501 return true;
502
503bios_fail:
504 printk(KERN_CONT "Broken BIOS detected, using software events only.\n");
505 printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg, val);
506 return false;
507
508msr_fail:
509 printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
510 return false;
511}
512
513static void reserve_ds_buffers(void);
514static void release_ds_buffers(void);
515
516static void hw_perf_event_destroy(struct perf_event *event)
517{
518 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
519 release_pmc_hardware();
520 release_ds_buffers();
521 mutex_unlock(&pmc_reserve_mutex);
522 }
523}
524
525static inline int x86_pmu_initialized(void)
526{
527 return x86_pmu.handle_irq != NULL;
528}
529
530static inline int
531set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
532{
533 struct perf_event_attr *attr = &event->attr;
534 unsigned int cache_type, cache_op, cache_result;
535 u64 config, val;
536
537 config = attr->config;
538
539 cache_type = (config >> 0) & 0xff;
540 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
541 return -EINVAL;
542
543 cache_op = (config >> 8) & 0xff;
544 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
545 return -EINVAL;
546
547 cache_result = (config >> 16) & 0xff;
548 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
549 return -EINVAL;
550
551 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
552
553 if (val == 0)
554 return -ENOENT;
555
556 if (val == -1)
557 return -EINVAL;
558
559 hwc->config |= val;
560 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
561 return x86_pmu_extra_regs(val, event);
562}
563
564static int x86_setup_perfctr(struct perf_event *event)
565{
566 struct perf_event_attr *attr = &event->attr;
567 struct hw_perf_event *hwc = &event->hw;
568 u64 config;
569
570 if (!is_sampling_event(event)) {
571 hwc->sample_period = x86_pmu.max_period;
572 hwc->last_period = hwc->sample_period;
573 local64_set(&hwc->period_left, hwc->sample_period);
574 } else {
575 /*
576 * If we have a PMU initialized but no APIC
577 * interrupts, we cannot sample hardware
578 * events (user-space has to fall back and
579 * sample via a hrtimer based software event):
580 */
581 if (!x86_pmu.apic)
582 return -EOPNOTSUPP;
583 }
584
585 if (attr->type == PERF_TYPE_RAW)
586 return x86_pmu_extra_regs(event->attr.config, event);
587
588 if (attr->type == PERF_TYPE_HW_CACHE)
589 return set_ext_hw_attr(hwc, event);
590
591 if (attr->config >= x86_pmu.max_events)
592 return -EINVAL;
593
594 /*
595 * The generic map:
596 */
597 config = x86_pmu.event_map(attr->config);
598
599 if (config == 0)
600 return -ENOENT;
601
602 if (config == -1LL)
603 return -EINVAL;
604
605 /*
606 * Branch tracing:
607 */
608 if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
609 (hwc->sample_period == 1)) {
610 /* BTS is not supported by this architecture. */
611 if (!x86_pmu.bts_active)
612 return -EOPNOTSUPP;
613
614 /* BTS is currently only allowed for user-mode. */
615 if (!attr->exclude_kernel)
616 return -EOPNOTSUPP;
617 }
618
619 hwc->config |= config;
620
621 return 0;
622}
623
624static int x86_pmu_hw_config(struct perf_event *event)
625{
626 if (event->attr.precise_ip) {
627 int precise = 0;
628
629 /* Support for constant skid */
630 if (x86_pmu.pebs_active) {
631 precise++;
632
633 /* Support for IP fixup */
634 if (x86_pmu.lbr_nr)
635 precise++;
636 }
637
638 if (event->attr.precise_ip > precise)
639 return -EOPNOTSUPP;
640 }
641
642 /*
643 * Generate PMC IRQs:
644 * (keep 'enabled' bit clear for now)
645 */
646 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
647
648 /*
649 * Count user and OS events unless requested not to
650 */
651 if (!event->attr.exclude_user)
652 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
653 if (!event->attr.exclude_kernel)
654 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
655
656 if (event->attr.type == PERF_TYPE_RAW)
657 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
658
659 return x86_setup_perfctr(event);
660}
661
662/*
663 * Setup the hardware configuration for a given attr_type
664 */
665static int __x86_pmu_event_init(struct perf_event *event)
666{
667 int err;
668
669 if (!x86_pmu_initialized())
670 return -ENODEV;
671
672 err = 0;
673 if (!atomic_inc_not_zero(&active_events)) {
674 mutex_lock(&pmc_reserve_mutex);
675 if (atomic_read(&active_events) == 0) {
676 if (!reserve_pmc_hardware())
677 err = -EBUSY;
678 else
679 reserve_ds_buffers();
680 }
681 if (!err)
682 atomic_inc(&active_events);
683 mutex_unlock(&pmc_reserve_mutex);
684 }
685 if (err)
686 return err;
687
688 event->destroy = hw_perf_event_destroy;
689
690 event->hw.idx = -1;
691 event->hw.last_cpu = -1;
692 event->hw.last_tag = ~0ULL;
693
694 return x86_pmu.hw_config(event);
695}
696
697static void x86_pmu_disable_all(void)
698{
699 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
700 int idx;
701
702 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
703 u64 val;
704
705 if (!test_bit(idx, cpuc->active_mask))
706 continue;
707 rdmsrl(x86_pmu_config_addr(idx), val);
708 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
709 continue;
710 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
711 wrmsrl(x86_pmu_config_addr(idx), val);
712 }
713}
714
715static void x86_pmu_disable(struct pmu *pmu)
716{
717 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
718
719 if (!x86_pmu_initialized())
720 return;
721
722 if (!cpuc->enabled)
723 return;
724
725 cpuc->n_added = 0;
726 cpuc->enabled = 0;
727 barrier();
728
729 x86_pmu.disable_all();
730}
731
732static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc,
733 u64 enable_mask)
734{
735 if (hwc->extra_reg)
736 wrmsrl(hwc->extra_reg, hwc->extra_config);
737 wrmsrl(hwc->config_base, hwc->config | enable_mask);
738}
739
740static void x86_pmu_enable_all(int added)
741{
742 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
743 int idx;
744
745 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
746 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
747
748 if (!test_bit(idx, cpuc->active_mask))
749 continue;
750
751 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
752 }
753}
754
755static struct pmu pmu;
756
757static inline int is_x86_event(struct perf_event *event)
758{
759 return event->pmu == &pmu;
760}
761
762static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
763{
764 struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
765 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
766 int i, j, w, wmax, num = 0;
767 struct hw_perf_event *hwc;
768
769 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
770
771 for (i = 0; i < n; i++) {
772 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
773 constraints[i] = c;
774 }
775
776 /*
777 * fastpath, try to reuse previous register
778 */
779 for (i = 0; i < n; i++) {
780 hwc = &cpuc->event_list[i]->hw;
781 c = constraints[i];
782
783 /* never assigned */
784 if (hwc->idx == -1)
785 break;
786
787 /* constraint still honored */
788 if (!test_bit(hwc->idx, c->idxmsk))
789 break;
790
791 /* not already used */
792 if (test_bit(hwc->idx, used_mask))
793 break;
794
795 __set_bit(hwc->idx, used_mask);
796 if (assign)
797 assign[i] = hwc->idx;
798 }
799 if (i == n)
800 goto done;
801
802 /*
803 * begin slow path
804 */
805
806 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
807
808 /*
809 * weight = number of possible counters
810 *
811 * 1 = most constrained, only works on one counter
812 * wmax = least constrained, works on any counter
813 *
814 * assign events to counters starting with most
815 * constrained events.
816 */
817 wmax = x86_pmu.num_counters;
818
819 /*
820 * when fixed event counters are present,
821 * wmax is incremented by 1 to account
822 * for one more choice
823 */
824 if (x86_pmu.num_counters_fixed)
825 wmax++;
826
827 for (w = 1, num = n; num && w <= wmax; w++) {
828 /* for each event */
829 for (i = 0; num && i < n; i++) {
830 c = constraints[i];
831 hwc = &cpuc->event_list[i]->hw;
832
833 if (c->weight != w)
834 continue;
835
836 for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
837 if (!test_bit(j, used_mask))
838 break;
839 }
840
841 if (j == X86_PMC_IDX_MAX)
842 break;
843
844 __set_bit(j, used_mask);
845
846 if (assign)
847 assign[i] = j;
848 num--;
849 }
850 }
851done:
852 /*
853 * scheduling failed or is just a simulation,
854 * free resources if necessary
855 */
856 if (!assign || num) {
857 for (i = 0; i < n; i++) {
858 if (x86_pmu.put_event_constraints)
859 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
860 }
861 }
862 return num ? -ENOSPC : 0;
863}
864
865/*
866 * dogrp: true if must collect siblings events (group)
867 * returns total number of events and error code
868 */
869static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
870{
871 struct perf_event *event;
872 int n, max_count;
873
874 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
875
876 /* current number of events already accepted */
877 n = cpuc->n_events;
878
879 if (is_x86_event(leader)) {
880 if (n >= max_count)
881 return -ENOSPC;
882 cpuc->event_list[n] = leader;
883 n++;
884 }
885 if (!dogrp)
886 return n;
887
888 list_for_each_entry(event, &leader->sibling_list, group_entry) {
889 if (!is_x86_event(event) ||
890 event->state <= PERF_EVENT_STATE_OFF)
891 continue;
892
893 if (n >= max_count)
894 return -ENOSPC;
895
896 cpuc->event_list[n] = event;
897 n++;
898 }
899 return n;
900}
901
902static inline void x86_assign_hw_event(struct perf_event *event,
903 struct cpu_hw_events *cpuc, int i)
904{
905 struct hw_perf_event *hwc = &event->hw;
906
907 hwc->idx = cpuc->assign[i];
908 hwc->last_cpu = smp_processor_id();
909 hwc->last_tag = ++cpuc->tags[i];
910
911 if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
912 hwc->config_base = 0;
913 hwc->event_base = 0;
914 } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
915 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
916 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0;
917 } else {
918 hwc->config_base = x86_pmu_config_addr(hwc->idx);
919 hwc->event_base = x86_pmu_event_addr(hwc->idx);
920 }
921}
922
923static inline int match_prev_assignment(struct hw_perf_event *hwc,
924 struct cpu_hw_events *cpuc,
925 int i)
926{
927 return hwc->idx == cpuc->assign[i] &&
928 hwc->last_cpu == smp_processor_id() &&
929 hwc->last_tag == cpuc->tags[i];
930}
931
932static void x86_pmu_start(struct perf_event *event, int flags);
933static void x86_pmu_stop(struct perf_event *event, int flags);
934
935static void x86_pmu_enable(struct pmu *pmu)
936{
937 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
938 struct perf_event *event;
939 struct hw_perf_event *hwc;
940 int i, added = cpuc->n_added;
941
942 if (!x86_pmu_initialized())
943 return;
944
945 if (cpuc->enabled)
946 return;
947
948 if (cpuc->n_added) {
949 int n_running = cpuc->n_events - cpuc->n_added;
950 /*
951 * apply assignment obtained either from
952 * hw_perf_group_sched_in() or x86_pmu_enable()
953 *
954 * step1: save events moving to new counters
955 * step2: reprogram moved events into new counters
956 */
957 for (i = 0; i < n_running; i++) {
958 event = cpuc->event_list[i];
959 hwc = &event->hw;
960
961 /*
962 * we can avoid reprogramming counter if:
963 * - assigned same counter as last time
964 * - running on same CPU as last time
965 * - no other event has used the counter since
966 */
967 if (hwc->idx == -1 ||
968 match_prev_assignment(hwc, cpuc, i))
969 continue;
970
971 /*
972 * Ensure we don't accidentally enable a stopped
973 * counter simply because we rescheduled.
974 */
975 if (hwc->state & PERF_HES_STOPPED)
976 hwc->state |= PERF_HES_ARCH;
977
978 x86_pmu_stop(event, PERF_EF_UPDATE);
979 }
980
981 for (i = 0; i < cpuc->n_events; i++) {
982 event = cpuc->event_list[i];
983 hwc = &event->hw;
984
985 if (!match_prev_assignment(hwc, cpuc, i))
986 x86_assign_hw_event(event, cpuc, i);
987 else if (i < n_running)
988 continue;
989
990 if (hwc->state & PERF_HES_ARCH)
991 continue;
992
993 x86_pmu_start(event, PERF_EF_RELOAD);
994 }
995 cpuc->n_added = 0;
996 perf_events_lapic_init();
997 }
998
999 cpuc->enabled = 1;
1000 barrier();
1001
1002 x86_pmu.enable_all(added);
1003}
1004
1005static inline void x86_pmu_disable_event(struct perf_event *event)
1006{
1007 struct hw_perf_event *hwc = &event->hw;
1008
1009 wrmsrl(hwc->config_base, hwc->config);
1010}
1011
1012static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1013
1014/*
1015 * Set the next IRQ period, based on the hwc->period_left value.
1016 * To be called with the event disabled in hw:
1017 */
1018static int
1019x86_perf_event_set_period(struct perf_event *event)
1020{
1021 struct hw_perf_event *hwc = &event->hw;
1022 s64 left = local64_read(&hwc->period_left);
1023 s64 period = hwc->sample_period;
1024 int ret = 0, idx = hwc->idx;
1025
1026 if (idx == X86_PMC_IDX_FIXED_BTS)
1027 return 0;
1028
1029 /*
1030 * If we are way outside a reasonable range then just skip forward:
1031 */
1032 if (unlikely(left <= -period)) {
1033 left = period;
1034 local64_set(&hwc->period_left, left);
1035 hwc->last_period = period;
1036 ret = 1;
1037 }
1038
1039 if (unlikely(left <= 0)) {
1040 left += period;
1041 local64_set(&hwc->period_left, left);
1042 hwc->last_period = period;
1043 ret = 1;
1044 }
1045 /*
1046 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1047 */
1048 if (unlikely(left < 2))
1049 left = 2;
1050
1051 if (left > x86_pmu.max_period)
1052 left = x86_pmu.max_period;
1053
1054 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1055
1056 /*
1057 * The hw event starts counting from this event offset,
1058 * mark it to be able to extra future deltas:
1059 */
1060 local64_set(&hwc->prev_count, (u64)-left);
1061
1062 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1063
1064 /*
1065 * Due to erratum on certan cpu we need
1066 * a second write to be sure the register
1067 * is updated properly
1068 */
1069 if (x86_pmu.perfctr_second_write) {
1070 wrmsrl(hwc->event_base,
1071 (u64)(-left) & x86_pmu.cntval_mask);
1072 }
1073
1074 perf_event_update_userpage(event);
1075
1076 return ret;
1077}
1078
1079static void x86_pmu_enable_event(struct perf_event *event)
1080{
1081 if (__this_cpu_read(cpu_hw_events.enabled))
1082 __x86_pmu_enable_event(&event->hw,
1083 ARCH_PERFMON_EVENTSEL_ENABLE);
1084}
1085
1086/*
1087 * Add a single event to the PMU.
1088 *
1089 * The event is added to the group of enabled events
1090 * but only if it can be scehduled with existing events.
1091 */
1092static int x86_pmu_add(struct perf_event *event, int flags)
1093{
1094 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1095 struct hw_perf_event *hwc;
1096 int assign[X86_PMC_IDX_MAX];
1097 int n, n0, ret;
1098
1099 hwc = &event->hw;
1100
1101 perf_pmu_disable(event->pmu);
1102 n0 = cpuc->n_events;
1103 ret = n = collect_events(cpuc, event, false);
1104 if (ret < 0)
1105 goto out;
1106
1107 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1108 if (!(flags & PERF_EF_START))
1109 hwc->state |= PERF_HES_ARCH;
1110
1111 /*
1112 * If group events scheduling transaction was started,
1113 * skip the schedulability test here, it will be peformed
1114 * at commit time (->commit_txn) as a whole
1115 */
1116 if (cpuc->group_flag & PERF_EVENT_TXN)
1117 goto done_collect;
1118
1119 ret = x86_pmu.schedule_events(cpuc, n, assign);
1120 if (ret)
1121 goto out;
1122 /*
1123 * copy new assignment, now we know it is possible
1124 * will be used by hw_perf_enable()
1125 */
1126 memcpy(cpuc->assign, assign, n*sizeof(int));
1127
1128done_collect:
1129 cpuc->n_events = n;
1130 cpuc->n_added += n - n0;
1131 cpuc->n_txn += n - n0;
1132
1133 ret = 0;
1134out:
1135 perf_pmu_enable(event->pmu);
1136 return ret;
1137}
1138
1139static void x86_pmu_start(struct perf_event *event, int flags)
1140{
1141 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1142 int idx = event->hw.idx;
1143
1144 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1145 return;
1146
1147 if (WARN_ON_ONCE(idx == -1))
1148 return;
1149
1150 if (flags & PERF_EF_RELOAD) {
1151 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1152 x86_perf_event_set_period(event);
1153 }
1154
1155 event->hw.state = 0;
1156
1157 cpuc->events[idx] = event;
1158 __set_bit(idx, cpuc->active_mask);
1159 __set_bit(idx, cpuc->running);
1160 x86_pmu.enable(event);
1161 perf_event_update_userpage(event);
1162}
1163
1164void perf_event_print_debug(void)
1165{
1166 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1167 u64 pebs;
1168 struct cpu_hw_events *cpuc;
1169 unsigned long flags;
1170 int cpu, idx;
1171
1172 if (!x86_pmu.num_counters)
1173 return;
1174
1175 local_irq_save(flags);
1176
1177 cpu = smp_processor_id();
1178 cpuc = &per_cpu(cpu_hw_events, cpu);
1179
1180 if (x86_pmu.version >= 2) {
1181 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1182 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1183 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1184 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1185 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1186
1187 pr_info("\n");
1188 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1189 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1190 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1191 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1192 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1193 }
1194 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1195
1196 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1197 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1198 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1199
1200 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1201
1202 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1203 cpu, idx, pmc_ctrl);
1204 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1205 cpu, idx, pmc_count);
1206 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1207 cpu, idx, prev_left);
1208 }
1209 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1210 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1211
1212 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1213 cpu, idx, pmc_count);
1214 }
1215 local_irq_restore(flags);
1216}
1217
1218static void x86_pmu_stop(struct perf_event *event, int flags)
1219{
1220 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1221 struct hw_perf_event *hwc = &event->hw;
1222
1223 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1224 x86_pmu.disable(event);
1225 cpuc->events[hwc->idx] = NULL;
1226 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1227 hwc->state |= PERF_HES_STOPPED;
1228 }
1229
1230 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1231 /*
1232 * Drain the remaining delta count out of a event
1233 * that we are disabling:
1234 */
1235 x86_perf_event_update(event);
1236 hwc->state |= PERF_HES_UPTODATE;
1237 }
1238}
1239
1240static void x86_pmu_del(struct perf_event *event, int flags)
1241{
1242 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1243 int i;
1244
1245 /*
1246 * If we're called during a txn, we don't need to do anything.
1247 * The events never got scheduled and ->cancel_txn will truncate
1248 * the event_list.
1249 */
1250 if (cpuc->group_flag & PERF_EVENT_TXN)
1251 return;
1252
1253 x86_pmu_stop(event, PERF_EF_UPDATE);
1254
1255 for (i = 0; i < cpuc->n_events; i++) {
1256 if (event == cpuc->event_list[i]) {
1257
1258 if (x86_pmu.put_event_constraints)
1259 x86_pmu.put_event_constraints(cpuc, event);
1260
1261 while (++i < cpuc->n_events)
1262 cpuc->event_list[i-1] = cpuc->event_list[i];
1263
1264 --cpuc->n_events;
1265 break;
1266 }
1267 }
1268 perf_event_update_userpage(event);
1269}
1270
1271static int x86_pmu_handle_irq(struct pt_regs *regs)
1272{
1273 struct perf_sample_data data;
1274 struct cpu_hw_events *cpuc;
1275 struct perf_event *event;
1276 int idx, handled = 0;
1277 u64 val;
1278
1279 perf_sample_data_init(&data, 0);
1280
1281 cpuc = &__get_cpu_var(cpu_hw_events);
1282
1283 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1284 if (!test_bit(idx, cpuc->active_mask)) {
1285 /*
1286 * Though we deactivated the counter some cpus
1287 * might still deliver spurious interrupts still
1288 * in flight. Catch them:
1289 */
1290 if (__test_and_clear_bit(idx, cpuc->running))
1291 handled++;
1292 continue;
1293 }
1294
1295 event = cpuc->events[idx];
1296
1297 val = x86_perf_event_update(event);
1298 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1299 continue;
1300
1301 /*
1302 * event overflow
1303 */
1304 handled++;
1305 data.period = event->hw.last_period;
1306
1307 if (!x86_perf_event_set_period(event))
1308 continue;
1309
1310 if (perf_event_overflow(event, 1, &data, regs))
1311 x86_pmu_stop(event, 0);
1312 }
1313
1314 if (handled)
1315 inc_irq_stat(apic_perf_irqs);
1316
1317 return handled;
1318}
1319
1320void perf_events_lapic_init(void)
1321{
1322 if (!x86_pmu.apic || !x86_pmu_initialized())
1323 return;
1324
1325 /*
1326 * Always use NMI for PMU
1327 */
1328 apic_write(APIC_LVTPC, APIC_DM_NMI);
1329}
1330
1331struct pmu_nmi_state {
1332 unsigned int marked;
1333 int handled;
1334};
1335
1336static DEFINE_PER_CPU(struct pmu_nmi_state, pmu_nmi);
1337
1338static int __kprobes
1339perf_event_nmi_handler(struct notifier_block *self,
1340 unsigned long cmd, void *__args)
1341{
1342 struct die_args *args = __args;
1343 unsigned int this_nmi;
1344 int handled;
1345
1346 if (!atomic_read(&active_events))
1347 return NOTIFY_DONE;
1348
1349 switch (cmd) {
1350 case DIE_NMI:
1351 break;
1352 case DIE_NMIUNKNOWN:
1353 this_nmi = percpu_read(irq_stat.__nmi_count);
1354 if (this_nmi != __this_cpu_read(pmu_nmi.marked))
1355 /* let the kernel handle the unknown nmi */
1356 return NOTIFY_DONE;
1357 /*
1358 * This one is a PMU back-to-back nmi. Two events
1359 * trigger 'simultaneously' raising two back-to-back
1360 * NMIs. If the first NMI handles both, the latter
1361 * will be empty and daze the CPU. So, we drop it to
1362 * avoid false-positive 'unknown nmi' messages.
1363 */
1364 return NOTIFY_STOP;
1365 default:
1366 return NOTIFY_DONE;
1367 }
1368
1369 apic_write(APIC_LVTPC, APIC_DM_NMI);
1370
1371 handled = x86_pmu.handle_irq(args->regs);
1372 if (!handled)
1373 return NOTIFY_DONE;
1374
1375 this_nmi = percpu_read(irq_stat.__nmi_count);
1376 if ((handled > 1) ||
1377 /* the next nmi could be a back-to-back nmi */
1378 ((__this_cpu_read(pmu_nmi.marked) == this_nmi) &&
1379 (__this_cpu_read(pmu_nmi.handled) > 1))) {
1380 /*
1381 * We could have two subsequent back-to-back nmis: The
1382 * first handles more than one counter, the 2nd
1383 * handles only one counter and the 3rd handles no
1384 * counter.
1385 *
1386 * This is the 2nd nmi because the previous was
1387 * handling more than one counter. We will mark the
1388 * next (3rd) and then drop it if unhandled.
1389 */
1390 __this_cpu_write(pmu_nmi.marked, this_nmi + 1);
1391 __this_cpu_write(pmu_nmi.handled, handled);
1392 }
1393
1394 return NOTIFY_STOP;
1395}
1396
1397static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1398 .notifier_call = perf_event_nmi_handler,
1399 .next = NULL,
1400 .priority = NMI_LOCAL_LOW_PRIOR,
1401};
1402
1403static struct event_constraint unconstrained;
1404static struct event_constraint emptyconstraint;
1405
1406static struct event_constraint *
1407x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1408{
1409 struct event_constraint *c;
1410
1411 if (x86_pmu.event_constraints) {
1412 for_each_event_constraint(c, x86_pmu.event_constraints) {
1413 if ((event->hw.config & c->cmask) == c->code)
1414 return c;
1415 }
1416 }
1417
1418 return &unconstrained;
1419}
1420
1421#include "perf_event_amd.c"
1422#include "perf_event_p6.c"
1423#include "perf_event_p4.c"
1424#include "perf_event_intel_lbr.c"
1425#include "perf_event_intel_ds.c"
1426#include "perf_event_intel.c"
1427
1428static int __cpuinit
1429x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1430{
1431 unsigned int cpu = (long)hcpu;
1432 int ret = NOTIFY_OK;
1433
1434 switch (action & ~CPU_TASKS_FROZEN) {
1435 case CPU_UP_PREPARE:
1436 if (x86_pmu.cpu_prepare)
1437 ret = x86_pmu.cpu_prepare(cpu);
1438 break;
1439
1440 case CPU_STARTING:
1441 if (x86_pmu.cpu_starting)
1442 x86_pmu.cpu_starting(cpu);
1443 break;
1444
1445 case CPU_DYING:
1446 if (x86_pmu.cpu_dying)
1447 x86_pmu.cpu_dying(cpu);
1448 break;
1449
1450 case CPU_UP_CANCELED:
1451 case CPU_DEAD:
1452 if (x86_pmu.cpu_dead)
1453 x86_pmu.cpu_dead(cpu);
1454 break;
1455
1456 default:
1457 break;
1458 }
1459
1460 return ret;
1461}
1462
1463static void __init pmu_check_apic(void)
1464{
1465 if (cpu_has_apic)
1466 return;
1467
1468 x86_pmu.apic = 0;
1469 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1470 pr_info("no hardware sampling interrupt available.\n");
1471}
1472
1473static int __init init_hw_perf_events(void)
1474{
1475 struct event_constraint *c;
1476 int err;
1477
1478 pr_info("Performance Events: ");
1479
1480 switch (boot_cpu_data.x86_vendor) {
1481 case X86_VENDOR_INTEL:
1482 err = intel_pmu_init();
1483 break;
1484 case X86_VENDOR_AMD:
1485 err = amd_pmu_init();
1486 break;
1487 default:
1488 return 0;
1489 }
1490 if (err != 0) {
1491 pr_cont("no PMU driver, software events only.\n");
1492 return 0;
1493 }
1494
1495 pmu_check_apic();
1496
1497 /* sanity check that the hardware exists or is emulated */
1498 if (!check_hw_exists())
1499 return 0;
1500
1501 pr_cont("%s PMU driver.\n", x86_pmu.name);
1502
1503 if (x86_pmu.quirks)
1504 x86_pmu.quirks();
1505
1506 if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1507 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1508 x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1509 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1510 }
1511 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1512
1513 if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1514 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1515 x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1516 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1517 }
1518
1519 x86_pmu.intel_ctrl |=
1520 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1521
1522 perf_events_lapic_init();
1523 register_die_notifier(&perf_event_nmi_notifier);
1524
1525 unconstrained = (struct event_constraint)
1526 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1527 0, x86_pmu.num_counters);
1528
1529 if (x86_pmu.event_constraints) {
1530 for_each_event_constraint(c, x86_pmu.event_constraints) {
1531 if (c->cmask != X86_RAW_EVENT_MASK)
1532 continue;
1533
1534 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
1535 c->weight += x86_pmu.num_counters;
1536 }
1537 }
1538
1539 pr_info("... version: %d\n", x86_pmu.version);
1540 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1541 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1542 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1543 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1544 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1545 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1546
1547 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1548 perf_cpu_notifier(x86_pmu_notifier);
1549
1550 return 0;
1551}
1552early_initcall(init_hw_perf_events);
1553
1554static inline void x86_pmu_read(struct perf_event *event)
1555{
1556 x86_perf_event_update(event);
1557}
1558
1559/*
1560 * Start group events scheduling transaction
1561 * Set the flag to make pmu::enable() not perform the
1562 * schedulability test, it will be performed at commit time
1563 */
1564static void x86_pmu_start_txn(struct pmu *pmu)
1565{
1566 perf_pmu_disable(pmu);
1567 __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1568 __this_cpu_write(cpu_hw_events.n_txn, 0);
1569}
1570
1571/*
1572 * Stop group events scheduling transaction
1573 * Clear the flag and pmu::enable() will perform the
1574 * schedulability test.
1575 */
1576static void x86_pmu_cancel_txn(struct pmu *pmu)
1577{
1578 __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
1579 /*
1580 * Truncate the collected events.
1581 */
1582 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1583 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1584 perf_pmu_enable(pmu);
1585}
1586
1587/*
1588 * Commit group events scheduling transaction
1589 * Perform the group schedulability test as a whole
1590 * Return 0 if success
1591 */
1592static int x86_pmu_commit_txn(struct pmu *pmu)
1593{
1594 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1595 int assign[X86_PMC_IDX_MAX];
1596 int n, ret;
1597
1598 n = cpuc->n_events;
1599
1600 if (!x86_pmu_initialized())
1601 return -EAGAIN;
1602
1603 ret = x86_pmu.schedule_events(cpuc, n, assign);
1604 if (ret)
1605 return ret;
1606
1607 /*
1608 * copy new assignment, now we know it is possible
1609 * will be used by hw_perf_enable()
1610 */
1611 memcpy(cpuc->assign, assign, n*sizeof(int));
1612
1613 cpuc->group_flag &= ~PERF_EVENT_TXN;
1614 perf_pmu_enable(pmu);
1615 return 0;
1616}
1617
1618/*
1619 * validate that we can schedule this event
1620 */
1621static int validate_event(struct perf_event *event)
1622{
1623 struct cpu_hw_events *fake_cpuc;
1624 struct event_constraint *c;
1625 int ret = 0;
1626
1627 fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1628 if (!fake_cpuc)
1629 return -ENOMEM;
1630
1631 c = x86_pmu.get_event_constraints(fake_cpuc, event);
1632
1633 if (!c || !c->weight)
1634 ret = -ENOSPC;
1635
1636 if (x86_pmu.put_event_constraints)
1637 x86_pmu.put_event_constraints(fake_cpuc, event);
1638
1639 kfree(fake_cpuc);
1640
1641 return ret;
1642}
1643
1644/*
1645 * validate a single event group
1646 *
1647 * validation include:
1648 * - check events are compatible which each other
1649 * - events do not compete for the same counter
1650 * - number of events <= number of counters
1651 *
1652 * validation ensures the group can be loaded onto the
1653 * PMU if it was the only group available.
1654 */
1655static int validate_group(struct perf_event *event)
1656{
1657 struct perf_event *leader = event->group_leader;
1658 struct cpu_hw_events *fake_cpuc;
1659 int ret, n;
1660
1661 ret = -ENOMEM;
1662 fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1663 if (!fake_cpuc)
1664 goto out;
1665
1666 /*
1667 * the event is not yet connected with its
1668 * siblings therefore we must first collect
1669 * existing siblings, then add the new event
1670 * before we can simulate the scheduling
1671 */
1672 ret = -ENOSPC;
1673 n = collect_events(fake_cpuc, leader, true);
1674 if (n < 0)
1675 goto out_free;
1676
1677 fake_cpuc->n_events = n;
1678 n = collect_events(fake_cpuc, event, false);
1679 if (n < 0)
1680 goto out_free;
1681
1682 fake_cpuc->n_events = n;
1683
1684 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1685
1686out_free:
1687 kfree(fake_cpuc);
1688out:
1689 return ret;
1690}
1691
1692static int x86_pmu_event_init(struct perf_event *event)
1693{
1694 struct pmu *tmp;
1695 int err;
1696
1697 switch (event->attr.type) {
1698 case PERF_TYPE_RAW:
1699 case PERF_TYPE_HARDWARE:
1700 case PERF_TYPE_HW_CACHE:
1701 break;
1702
1703 default:
1704 return -ENOENT;
1705 }
1706
1707 err = __x86_pmu_event_init(event);
1708 if (!err) {
1709 /*
1710 * we temporarily connect event to its pmu
1711 * such that validate_group() can classify
1712 * it as an x86 event using is_x86_event()
1713 */
1714 tmp = event->pmu;
1715 event->pmu = &pmu;
1716
1717 if (event->group_leader != event)
1718 err = validate_group(event);
1719 else
1720 err = validate_event(event);
1721
1722 event->pmu = tmp;
1723 }
1724 if (err) {
1725 if (event->destroy)
1726 event->destroy(event);
1727 }
1728
1729 return err;
1730}
1731
1732static struct pmu pmu = {
1733 .pmu_enable = x86_pmu_enable,
1734 .pmu_disable = x86_pmu_disable,
1735
1736 .event_init = x86_pmu_event_init,
1737
1738 .add = x86_pmu_add,
1739 .del = x86_pmu_del,
1740 .start = x86_pmu_start,
1741 .stop = x86_pmu_stop,
1742 .read = x86_pmu_read,
1743
1744 .start_txn = x86_pmu_start_txn,
1745 .cancel_txn = x86_pmu_cancel_txn,
1746 .commit_txn = x86_pmu_commit_txn,
1747};
1748
1749/*
1750 * callchain support
1751 */
1752
1753static void
1754backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1755{
1756 /* Ignore warnings */
1757}
1758
1759static void backtrace_warning(void *data, char *msg)
1760{
1761 /* Ignore warnings */
1762}
1763
1764static int backtrace_stack(void *data, char *name)
1765{
1766 return 0;
1767}
1768
1769static void backtrace_address(void *data, unsigned long addr, int reliable)
1770{
1771 struct perf_callchain_entry *entry = data;
1772
1773 perf_callchain_store(entry, addr);
1774}
1775
1776static const struct stacktrace_ops backtrace_ops = {
1777 .warning = backtrace_warning,
1778 .warning_symbol = backtrace_warning_symbol,
1779 .stack = backtrace_stack,
1780 .address = backtrace_address,
1781 .walk_stack = print_context_stack_bp,
1782};
1783
1784void
1785perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1786{
1787 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1788 /* TODO: We don't support guest os callchain now */
1789 return;
1790 }
1791
1792 perf_callchain_store(entry, regs->ip);
1793
1794 dump_trace(NULL, regs, NULL, &backtrace_ops, entry);
1795}
1796
1797#ifdef CONFIG_COMPAT
1798static inline int
1799perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1800{
1801 /* 32-bit process in 64-bit kernel. */
1802 struct stack_frame_ia32 frame;
1803 const void __user *fp;
1804
1805 if (!test_thread_flag(TIF_IA32))
1806 return 0;
1807
1808 fp = compat_ptr(regs->bp);
1809 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1810 unsigned long bytes;
1811 frame.next_frame = 0;
1812 frame.return_address = 0;
1813
1814 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1815 if (bytes != sizeof(frame))
1816 break;
1817
1818 if (fp < compat_ptr(regs->sp))
1819 break;
1820
1821 perf_callchain_store(entry, frame.return_address);
1822 fp = compat_ptr(frame.next_frame);
1823 }
1824 return 1;
1825}
1826#else
1827static inline int
1828perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1829{
1830 return 0;
1831}
1832#endif
1833
1834void
1835perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1836{
1837 struct stack_frame frame;
1838 const void __user *fp;
1839
1840 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1841 /* TODO: We don't support guest os callchain now */
1842 return;
1843 }
1844
1845 fp = (void __user *)regs->bp;
1846
1847 perf_callchain_store(entry, regs->ip);
1848
1849 if (perf_callchain_user32(regs, entry))
1850 return;
1851
1852 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1853 unsigned long bytes;
1854 frame.next_frame = NULL;
1855 frame.return_address = 0;
1856
1857 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1858 if (bytes != sizeof(frame))
1859 break;
1860
1861 if ((unsigned long)fp < regs->sp)
1862 break;
1863
1864 perf_callchain_store(entry, frame.return_address);
1865 fp = frame.next_frame;
1866 }
1867}
1868
1869unsigned long perf_instruction_pointer(struct pt_regs *regs)
1870{
1871 unsigned long ip;
1872
1873 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1874 ip = perf_guest_cbs->get_guest_ip();
1875 else
1876 ip = instruction_pointer(regs);
1877
1878 return ip;
1879}
1880
1881unsigned long perf_misc_flags(struct pt_regs *regs)
1882{
1883 int misc = 0;
1884
1885 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1886 if (perf_guest_cbs->is_user_mode())
1887 misc |= PERF_RECORD_MISC_GUEST_USER;
1888 else
1889 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1890 } else {
1891 if (user_mode(regs))
1892 misc |= PERF_RECORD_MISC_USER;
1893 else
1894 misc |= PERF_RECORD_MISC_KERNEL;
1895 }
1896
1897 if (regs->flags & PERF_EFLAGS_EXACT)
1898 misc |= PERF_RECORD_MISC_EXACT_IP;
1899
1900 return misc;
1901}