| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | |
| 3 | #include <linux/bitops.h> |
| 4 | #include <linux/init.h> |
| 5 | #include <linux/kernel.h> |
| 6 | #include <linux/minmax.h> |
| 7 | #include <linux/smp.h> |
| 8 | #include <linux/string.h> |
| 9 | #include <linux/types.h> |
| 10 | |
| 11 | #ifdef CONFIG_X86_64 |
| 12 | #include <linux/topology.h> |
| 13 | #endif |
| 14 | |
| 15 | #include <asm/bugs.h> |
| 16 | #include <asm/cpu_device_id.h> |
| 17 | #include <asm/cpufeature.h> |
| 18 | #include <asm/cpu.h> |
| 19 | #include <asm/cpuid/api.h> |
| 20 | #include <asm/hwcap2.h> |
| 21 | #include <asm/intel-family.h> |
| 22 | #include <asm/microcode.h> |
| 23 | #include <asm/msr.h> |
| 24 | #include <asm/numa.h> |
| 25 | #include <asm/resctrl.h> |
| 26 | #include <asm/thermal.h> |
| 27 | #include <asm/uaccess.h> |
| 28 | |
| 29 | #include "cpu.h" |
| 30 | |
| 31 | /* |
| 32 | * Processors which have self-snooping capability can handle conflicting |
| 33 | * memory type across CPUs by snooping its own cache. However, there exists |
| 34 | * CPU models in which having conflicting memory types still leads to |
| 35 | * unpredictable behavior, machine check errors, or hangs. Clear this |
| 36 | * feature to prevent its use on machines with known erratas. |
| 37 | */ |
| 38 | static void check_memory_type_self_snoop_errata(struct cpuinfo_x86 *c) |
| 39 | { |
| 40 | switch (c->x86_vfm) { |
| 41 | case INTEL_CORE_YONAH: |
| 42 | case INTEL_CORE2_MEROM: |
| 43 | case INTEL_CORE2_MEROM_L: |
| 44 | case INTEL_CORE2_PENRYN: |
| 45 | case INTEL_CORE2_DUNNINGTON: |
| 46 | case INTEL_NEHALEM: |
| 47 | case INTEL_NEHALEM_G: |
| 48 | case INTEL_NEHALEM_EP: |
| 49 | case INTEL_NEHALEM_EX: |
| 50 | case INTEL_WESTMERE: |
| 51 | case INTEL_WESTMERE_EP: |
| 52 | case INTEL_SANDYBRIDGE: |
| 53 | setup_clear_cpu_cap(X86_FEATURE_SELFSNOOP); |
| 54 | } |
| 55 | } |
| 56 | |
| 57 | static bool ring3mwait_disabled __read_mostly; |
| 58 | |
| 59 | static int __init ring3mwait_disable(char *__unused) |
| 60 | { |
| 61 | ring3mwait_disabled = true; |
| 62 | return 1; |
| 63 | } |
| 64 | __setup("ring3mwait=disable", ring3mwait_disable); |
| 65 | |
| 66 | static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c) |
| 67 | { |
| 68 | /* |
| 69 | * Ring 3 MONITOR/MWAIT feature cannot be detected without |
| 70 | * cpu model and family comparison. |
| 71 | */ |
| 72 | if (c->x86 != 6) |
| 73 | return; |
| 74 | switch (c->x86_vfm) { |
| 75 | case INTEL_XEON_PHI_KNL: |
| 76 | case INTEL_XEON_PHI_KNM: |
| 77 | break; |
| 78 | default: |
| 79 | return; |
| 80 | } |
| 81 | |
| 82 | if (ring3mwait_disabled) |
| 83 | return; |
| 84 | |
| 85 | set_cpu_cap(c, X86_FEATURE_RING3MWAIT); |
| 86 | this_cpu_or(msr_misc_features_shadow, |
| 87 | 1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT); |
| 88 | |
| 89 | if (c == &boot_cpu_data) |
| 90 | ELF_HWCAP2 |= HWCAP2_RING3MWAIT; |
| 91 | } |
| 92 | |
| 93 | /* |
| 94 | * Early microcode releases for the Spectre v2 mitigation were broken. |
| 95 | * Information taken from; |
| 96 | * - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf |
| 97 | * - https://kb.vmware.com/s/article/52345 |
| 98 | * - Microcode revisions observed in the wild |
| 99 | * - Release note from 20180108 microcode release |
| 100 | */ |
| 101 | struct sku_microcode { |
| 102 | u32 vfm; |
| 103 | u8 stepping; |
| 104 | u32 microcode; |
| 105 | }; |
| 106 | static const struct sku_microcode spectre_bad_microcodes[] = { |
| 107 | { INTEL_KABYLAKE, 0x0B, 0x80 }, |
| 108 | { INTEL_KABYLAKE, 0x0A, 0x80 }, |
| 109 | { INTEL_KABYLAKE, 0x09, 0x80 }, |
| 110 | { INTEL_KABYLAKE_L, 0x0A, 0x80 }, |
| 111 | { INTEL_KABYLAKE_L, 0x09, 0x80 }, |
| 112 | { INTEL_SKYLAKE_X, 0x03, 0x0100013e }, |
| 113 | { INTEL_SKYLAKE_X, 0x04, 0x0200003c }, |
| 114 | { INTEL_BROADWELL, 0x04, 0x28 }, |
| 115 | { INTEL_BROADWELL_G, 0x01, 0x1b }, |
| 116 | { INTEL_BROADWELL_D, 0x02, 0x14 }, |
| 117 | { INTEL_BROADWELL_D, 0x03, 0x07000011 }, |
| 118 | { INTEL_BROADWELL_X, 0x01, 0x0b000025 }, |
| 119 | { INTEL_HASWELL_L, 0x01, 0x21 }, |
| 120 | { INTEL_HASWELL_G, 0x01, 0x18 }, |
| 121 | { INTEL_HASWELL, 0x03, 0x23 }, |
| 122 | { INTEL_HASWELL_X, 0x02, 0x3b }, |
| 123 | { INTEL_HASWELL_X, 0x04, 0x10 }, |
| 124 | { INTEL_IVYBRIDGE_X, 0x04, 0x42a }, |
| 125 | /* Observed in the wild */ |
| 126 | { INTEL_SANDYBRIDGE_X, 0x06, 0x61b }, |
| 127 | { INTEL_SANDYBRIDGE_X, 0x07, 0x712 }, |
| 128 | }; |
| 129 | |
| 130 | static bool bad_spectre_microcode(struct cpuinfo_x86 *c) |
| 131 | { |
| 132 | int i; |
| 133 | |
| 134 | /* |
| 135 | * We know that the hypervisor lie to us on the microcode version so |
| 136 | * we may as well hope that it is running the correct version. |
| 137 | */ |
| 138 | if (cpu_has(c, X86_FEATURE_HYPERVISOR)) |
| 139 | return false; |
| 140 | |
| 141 | for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) { |
| 142 | if (c->x86_vfm == spectre_bad_microcodes[i].vfm && |
| 143 | c->x86_stepping == spectre_bad_microcodes[i].stepping) |
| 144 | return (c->microcode <= spectre_bad_microcodes[i].microcode); |
| 145 | } |
| 146 | return false; |
| 147 | } |
| 148 | |
| 149 | #define MSR_IA32_TME_ACTIVATE 0x982 |
| 150 | |
| 151 | /* Helpers to access TME_ACTIVATE MSR */ |
| 152 | #define TME_ACTIVATE_LOCKED(x) (x & 0x1) |
| 153 | #define TME_ACTIVATE_ENABLED(x) (x & 0x2) |
| 154 | |
| 155 | #define TME_ACTIVATE_KEYID_BITS(x) ((x >> 32) & 0xf) /* Bits 35:32 */ |
| 156 | |
| 157 | static void detect_tme_early(struct cpuinfo_x86 *c) |
| 158 | { |
| 159 | u64 tme_activate; |
| 160 | int keyid_bits; |
| 161 | |
| 162 | rdmsrq(MSR_IA32_TME_ACTIVATE, tme_activate); |
| 163 | |
| 164 | if (!TME_ACTIVATE_LOCKED(tme_activate) || !TME_ACTIVATE_ENABLED(tme_activate)) { |
| 165 | pr_info_once("x86/tme: not enabled by BIOS\n"); |
| 166 | clear_cpu_cap(c, X86_FEATURE_TME); |
| 167 | return; |
| 168 | } |
| 169 | pr_info_once("x86/tme: enabled by BIOS\n"); |
| 170 | keyid_bits = TME_ACTIVATE_KEYID_BITS(tme_activate); |
| 171 | if (!keyid_bits) |
| 172 | return; |
| 173 | |
| 174 | /* |
| 175 | * KeyID bits are set by BIOS and can be present regardless |
| 176 | * of whether the kernel is using them. They effectively lower |
| 177 | * the number of physical address bits. |
| 178 | * |
| 179 | * Update cpuinfo_x86::x86_phys_bits accordingly. |
| 180 | */ |
| 181 | c->x86_phys_bits -= keyid_bits; |
| 182 | pr_info_once("x86/mktme: BIOS enabled: x86_phys_bits reduced by %d\n", |
| 183 | keyid_bits); |
| 184 | } |
| 185 | |
| 186 | void intel_unlock_cpuid_leafs(struct cpuinfo_x86 *c) |
| 187 | { |
| 188 | if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) |
| 189 | return; |
| 190 | |
| 191 | if (c->x86_vfm < INTEL_PENTIUM_M_DOTHAN) |
| 192 | return; |
| 193 | |
| 194 | /* |
| 195 | * The BIOS can have limited CPUID to leaf 2, which breaks feature |
| 196 | * enumeration. Unlock it and update the maximum leaf info. |
| 197 | */ |
| 198 | if (msr_clear_bit(MSR_IA32_MISC_ENABLE, MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) |
| 199 | c->cpuid_level = cpuid_eax(0); |
| 200 | } |
| 201 | |
| 202 | static void early_init_intel(struct cpuinfo_x86 *c) |
| 203 | { |
| 204 | u64 misc_enable; |
| 205 | |
| 206 | if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64)) |
| 207 | c->microcode = intel_get_microcode_revision(); |
| 208 | |
| 209 | /* Now if any of them are set, check the blacklist and clear the lot */ |
| 210 | if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) || |
| 211 | cpu_has(c, X86_FEATURE_INTEL_STIBP) || |
| 212 | cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) || |
| 213 | cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) { |
| 214 | pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n"); |
| 215 | setup_clear_cpu_cap(X86_FEATURE_IBRS); |
| 216 | setup_clear_cpu_cap(X86_FEATURE_IBPB); |
| 217 | setup_clear_cpu_cap(X86_FEATURE_STIBP); |
| 218 | setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL); |
| 219 | setup_clear_cpu_cap(X86_FEATURE_MSR_SPEC_CTRL); |
| 220 | setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP); |
| 221 | setup_clear_cpu_cap(X86_FEATURE_SSBD); |
| 222 | setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL_SSBD); |
| 223 | } |
| 224 | |
| 225 | /* |
| 226 | * Atom erratum AAE44/AAF40/AAG38/AAH41: |
| 227 | * |
| 228 | * A race condition between speculative fetches and invalidating |
| 229 | * a large page. This is worked around in microcode, but we |
| 230 | * need the microcode to have already been loaded... so if it is |
| 231 | * not, recommend a BIOS update and disable large pages. |
| 232 | */ |
| 233 | if (c->x86_vfm == INTEL_ATOM_BONNELL && c->x86_stepping <= 2 && |
| 234 | c->microcode < 0x20e) { |
| 235 | pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n"); |
| 236 | clear_cpu_cap(c, X86_FEATURE_PSE); |
| 237 | } |
| 238 | |
| 239 | #ifdef CONFIG_X86_64 |
| 240 | set_cpu_cap(c, X86_FEATURE_SYSENTER32); |
| 241 | #else |
| 242 | /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */ |
| 243 | if (c->x86 == 15 && c->x86_cache_alignment == 64) |
| 244 | c->x86_cache_alignment = 128; |
| 245 | #endif |
| 246 | |
| 247 | /* CPUID workaround for 0F33/0F34 CPU */ |
| 248 | if (c->x86_vfm == INTEL_P4_PRESCOTT && |
| 249 | (c->x86_stepping == 0x3 || c->x86_stepping == 0x4)) |
| 250 | c->x86_phys_bits = 36; |
| 251 | |
| 252 | /* |
| 253 | * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate |
| 254 | * with P/T states and does not stop in deep C-states. |
| 255 | * |
| 256 | * It is also reliable across cores and sockets. (but not across |
| 257 | * cabinets - we turn it off in that case explicitly.) |
| 258 | * |
| 259 | * Use a model-specific check for some older CPUs that have invariant |
| 260 | * TSC but may not report it architecturally via 8000_0007. |
| 261 | */ |
| 262 | if (c->x86_power & (1 << 8)) { |
| 263 | set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC); |
| 264 | set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC); |
| 265 | } else if ((c->x86_vfm >= INTEL_P4_PRESCOTT && c->x86_vfm <= INTEL_P4_WILLAMETTE) || |
| 266 | (c->x86_vfm >= INTEL_CORE_YONAH && c->x86_vfm <= INTEL_IVYBRIDGE)) { |
| 267 | set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC); |
| 268 | } |
| 269 | |
| 270 | /* Penwell and Cloverview have the TSC which doesn't sleep on S3 */ |
| 271 | switch (c->x86_vfm) { |
| 272 | case INTEL_ATOM_SALTWELL_MID: |
| 273 | case INTEL_ATOM_SALTWELL_TABLET: |
| 274 | case INTEL_ATOM_SILVERMONT_MID: |
| 275 | case INTEL_ATOM_AIRMONT_NP: |
| 276 | set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3); |
| 277 | break; |
| 278 | } |
| 279 | |
| 280 | /* |
| 281 | * PAT is broken on early family 6 CPUs, the last of which |
| 282 | * is "Yonah" where the erratum is named "AN7": |
| 283 | * |
| 284 | * Page with PAT (Page Attribute Table) Set to USWC |
| 285 | * (Uncacheable Speculative Write Combine) While |
| 286 | * Associated MTRR (Memory Type Range Register) Is UC |
| 287 | * (Uncacheable) May Consolidate to UC |
| 288 | * |
| 289 | * Disable PAT and fall back to MTRR on these CPUs. |
| 290 | */ |
| 291 | if (c->x86_vfm >= INTEL_PENTIUM_PRO && |
| 292 | c->x86_vfm <= INTEL_CORE_YONAH) |
| 293 | clear_cpu_cap(c, X86_FEATURE_PAT); |
| 294 | |
| 295 | /* |
| 296 | * Modern CPUs are generally expected to have a sane fast string |
| 297 | * implementation. However, BIOSes typically have a knob to tweak |
| 298 | * the architectural MISC_ENABLE.FAST_STRING enable bit. |
| 299 | * |
| 300 | * Adhere to the preference and program the Linux-defined fast |
| 301 | * string flag and enhanced fast string capabilities accordingly. |
| 302 | */ |
| 303 | if (c->x86_vfm >= INTEL_PENTIUM_M_DOTHAN) { |
| 304 | rdmsrq(MSR_IA32_MISC_ENABLE, misc_enable); |
| 305 | if (misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING) { |
| 306 | /* X86_FEATURE_ERMS is set based on CPUID */ |
| 307 | set_cpu_cap(c, X86_FEATURE_REP_GOOD); |
| 308 | } else { |
| 309 | pr_info("Disabled fast string operations\n"); |
| 310 | setup_clear_cpu_cap(X86_FEATURE_REP_GOOD); |
| 311 | setup_clear_cpu_cap(X86_FEATURE_ERMS); |
| 312 | } |
| 313 | } |
| 314 | |
| 315 | /* |
| 316 | * Intel Quark Core DevMan_001.pdf section 6.4.11 |
| 317 | * "The operating system also is required to invalidate (i.e., flush) |
| 318 | * the TLB when any changes are made to any of the page table entries. |
| 319 | * The operating system must reload CR3 to cause the TLB to be flushed" |
| 320 | * |
| 321 | * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h |
| 322 | * should be false so that __flush_tlb_all() causes CR3 instead of CR4.PGE |
| 323 | * to be modified. |
| 324 | */ |
| 325 | if (c->x86_vfm == INTEL_QUARK_X1000) { |
| 326 | pr_info("Disabling PGE capability bit\n"); |
| 327 | setup_clear_cpu_cap(X86_FEATURE_PGE); |
| 328 | } |
| 329 | |
| 330 | check_memory_type_self_snoop_errata(c); |
| 331 | |
| 332 | /* |
| 333 | * Adjust the number of physical bits early because it affects the |
| 334 | * valid bits of the MTRR mask registers. |
| 335 | */ |
| 336 | if (cpu_has(c, X86_FEATURE_TME)) |
| 337 | detect_tme_early(c); |
| 338 | } |
| 339 | |
| 340 | static void bsp_init_intel(struct cpuinfo_x86 *c) |
| 341 | { |
| 342 | resctrl_cpu_detect(c); |
| 343 | } |
| 344 | |
| 345 | #ifdef CONFIG_X86_32 |
| 346 | /* |
| 347 | * Early probe support logic for ppro memory erratum #50 |
| 348 | * |
| 349 | * This is called before we do cpu ident work |
| 350 | */ |
| 351 | |
| 352 | int ppro_with_ram_bug(void) |
| 353 | { |
| 354 | /* Uses data from early_cpu_detect now */ |
| 355 | if (boot_cpu_data.x86_vfm == INTEL_PENTIUM_PRO && |
| 356 | boot_cpu_data.x86_stepping < 8) { |
| 357 | pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n"); |
| 358 | return 1; |
| 359 | } |
| 360 | return 0; |
| 361 | } |
| 362 | |
| 363 | static void intel_smp_check(struct cpuinfo_x86 *c) |
| 364 | { |
| 365 | /* calling is from identify_secondary_cpu() ? */ |
| 366 | if (!c->cpu_index) |
| 367 | return; |
| 368 | |
| 369 | /* |
| 370 | * Mask B, Pentium, but not Pentium MMX |
| 371 | */ |
| 372 | if (c->x86_vfm >= INTEL_FAM5_START && c->x86_vfm < INTEL_PENTIUM_MMX && |
| 373 | c->x86_stepping >= 1 && c->x86_stepping <= 4) { |
| 374 | /* |
| 375 | * Remember we have B step Pentia with bugs |
| 376 | */ |
| 377 | WARN_ONCE(1, "WARNING: SMP operation may be unreliable" |
| 378 | "with B stepping processors.\n"); |
| 379 | } |
| 380 | } |
| 381 | |
| 382 | static int forcepae; |
| 383 | static int __init forcepae_setup(char *__unused) |
| 384 | { |
| 385 | forcepae = 1; |
| 386 | return 1; |
| 387 | } |
| 388 | __setup("forcepae", forcepae_setup); |
| 389 | |
| 390 | static void intel_workarounds(struct cpuinfo_x86 *c) |
| 391 | { |
| 392 | #ifdef CONFIG_X86_F00F_BUG |
| 393 | /* |
| 394 | * All models of Pentium and Pentium with MMX technology CPUs |
| 395 | * have the F0 0F bug, which lets nonprivileged users lock up the |
| 396 | * system. Announce that the fault handler will be checking for it. |
| 397 | * The Quark is also family 5, but does not have the same bug. |
| 398 | */ |
| 399 | clear_cpu_bug(c, X86_BUG_F00F); |
| 400 | if (c->x86_vfm >= INTEL_FAM5_START && c->x86_vfm < INTEL_QUARK_X1000) { |
| 401 | static int f00f_workaround_enabled; |
| 402 | |
| 403 | set_cpu_bug(c, X86_BUG_F00F); |
| 404 | if (!f00f_workaround_enabled) { |
| 405 | pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n"); |
| 406 | f00f_workaround_enabled = 1; |
| 407 | } |
| 408 | } |
| 409 | #endif |
| 410 | |
| 411 | /* |
| 412 | * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until |
| 413 | * model 3 mask 3 |
| 414 | */ |
| 415 | if ((c->x86_vfm == INTEL_PENTIUM_II_KLAMATH && c->x86_stepping < 3) || |
| 416 | c->x86_vfm < INTEL_PENTIUM_II_KLAMATH) |
| 417 | clear_cpu_cap(c, X86_FEATURE_SEP); |
| 418 | |
| 419 | /* |
| 420 | * PAE CPUID issue: many Pentium M report no PAE but may have a |
| 421 | * functionally usable PAE implementation. |
| 422 | * Forcefully enable PAE if kernel parameter "forcepae" is present. |
| 423 | */ |
| 424 | if (forcepae) { |
| 425 | pr_warn("PAE forced!\n"); |
| 426 | set_cpu_cap(c, X86_FEATURE_PAE); |
| 427 | add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE); |
| 428 | } |
| 429 | |
| 430 | /* |
| 431 | * P4 Xeon erratum 037 workaround. |
| 432 | * Hardware prefetcher may cause stale data to be loaded into the cache. |
| 433 | */ |
| 434 | if (c->x86_vfm == INTEL_P4_WILLAMETTE && c->x86_stepping == 1) { |
| 435 | if (msr_set_bit(MSR_IA32_MISC_ENABLE, |
| 436 | MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) { |
| 437 | pr_info("CPU: C0 stepping P4 Xeon detected.\n"); |
| 438 | pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n"); |
| 439 | } |
| 440 | } |
| 441 | |
| 442 | /* |
| 443 | * See if we have a good local APIC by checking for buggy Pentia, |
| 444 | * i.e. all B steppings and the C2 stepping of P54C when using their |
| 445 | * integrated APIC (see 11AP erratum in "Pentium Processor |
| 446 | * Specification Update"). |
| 447 | */ |
| 448 | if (boot_cpu_has(X86_FEATURE_APIC) && c->x86_vfm == INTEL_PENTIUM_75 && |
| 449 | (c->x86_stepping < 0x6 || c->x86_stepping == 0xb)) |
| 450 | set_cpu_bug(c, X86_BUG_11AP); |
| 451 | |
| 452 | #ifdef CONFIG_X86_INTEL_USERCOPY |
| 453 | /* |
| 454 | * MOVSL bulk memory moves can be slow when source and dest are not |
| 455 | * both 8-byte aligned. PII/PIII only like MOVSL with 8-byte alignment. |
| 456 | * |
| 457 | * Set the preferred alignment for Pentium Pro and newer processors, as |
| 458 | * it has only been tested on these. |
| 459 | */ |
| 460 | if (c->x86_vfm >= INTEL_PENTIUM_PRO) |
| 461 | movsl_mask.mask = 7; |
| 462 | #endif |
| 463 | |
| 464 | intel_smp_check(c); |
| 465 | } |
| 466 | #else |
| 467 | static void intel_workarounds(struct cpuinfo_x86 *c) |
| 468 | { |
| 469 | } |
| 470 | #endif |
| 471 | |
| 472 | static void srat_detect_node(struct cpuinfo_x86 *c) |
| 473 | { |
| 474 | #ifdef CONFIG_NUMA |
| 475 | unsigned node; |
| 476 | int cpu = smp_processor_id(); |
| 477 | |
| 478 | /* Don't do the funky fallback heuristics the AMD version employs |
| 479 | for now. */ |
| 480 | node = numa_cpu_node(cpu); |
| 481 | if (node == NUMA_NO_NODE || !node_online(node)) { |
| 482 | /* reuse the value from init_cpu_to_node() */ |
| 483 | node = cpu_to_node(cpu); |
| 484 | } |
| 485 | numa_set_node(cpu, node); |
| 486 | #endif |
| 487 | } |
| 488 | |
| 489 | static void init_cpuid_fault(struct cpuinfo_x86 *c) |
| 490 | { |
| 491 | u64 msr; |
| 492 | |
| 493 | if (!rdmsrq_safe(MSR_PLATFORM_INFO, &msr)) { |
| 494 | if (msr & MSR_PLATFORM_INFO_CPUID_FAULT) |
| 495 | set_cpu_cap(c, X86_FEATURE_CPUID_FAULT); |
| 496 | } |
| 497 | } |
| 498 | |
| 499 | static void init_intel_misc_features(struct cpuinfo_x86 *c) |
| 500 | { |
| 501 | u64 msr; |
| 502 | |
| 503 | if (rdmsrq_safe(MSR_MISC_FEATURES_ENABLES, &msr)) |
| 504 | return; |
| 505 | |
| 506 | /* Clear all MISC features */ |
| 507 | this_cpu_write(msr_misc_features_shadow, 0); |
| 508 | |
| 509 | /* Check features and update capabilities and shadow control bits */ |
| 510 | init_cpuid_fault(c); |
| 511 | probe_xeon_phi_r3mwait(c); |
| 512 | |
| 513 | msr = this_cpu_read(msr_misc_features_shadow); |
| 514 | wrmsrq(MSR_MISC_FEATURES_ENABLES, msr); |
| 515 | } |
| 516 | |
| 517 | /* |
| 518 | * This is a list of Intel CPUs that are known to suffer from downclocking when |
| 519 | * ZMM registers (512-bit vectors) are used. On these CPUs, when the kernel |
| 520 | * executes SIMD-optimized code such as cryptography functions or CRCs, it |
| 521 | * should prefer 256-bit (YMM) code to 512-bit (ZMM) code. |
| 522 | */ |
| 523 | static const struct x86_cpu_id zmm_exclusion_list[] = { |
| 524 | X86_MATCH_VFM(INTEL_SKYLAKE_X, 0), |
| 525 | X86_MATCH_VFM(INTEL_ICELAKE_X, 0), |
| 526 | X86_MATCH_VFM(INTEL_ICELAKE_D, 0), |
| 527 | X86_MATCH_VFM(INTEL_ICELAKE, 0), |
| 528 | X86_MATCH_VFM(INTEL_ICELAKE_L, 0), |
| 529 | X86_MATCH_VFM(INTEL_ICELAKE_NNPI, 0), |
| 530 | X86_MATCH_VFM(INTEL_TIGERLAKE_L, 0), |
| 531 | X86_MATCH_VFM(INTEL_TIGERLAKE, 0), |
| 532 | /* Allow Rocket Lake and later, and Sapphire Rapids and later. */ |
| 533 | {}, |
| 534 | }; |
| 535 | |
| 536 | static void init_intel(struct cpuinfo_x86 *c) |
| 537 | { |
| 538 | early_init_intel(c); |
| 539 | |
| 540 | intel_workarounds(c); |
| 541 | |
| 542 | init_intel_cacheinfo(c); |
| 543 | |
| 544 | if (c->cpuid_level > 9) { |
| 545 | unsigned eax = cpuid_eax(10); |
| 546 | /* Check for version and the number of counters */ |
| 547 | if ((eax & 0xff) && (((eax>>8) & 0xff) > 1)) |
| 548 | set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON); |
| 549 | } |
| 550 | |
| 551 | if (cpu_has(c, X86_FEATURE_XMM2)) |
| 552 | set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC); |
| 553 | |
| 554 | if (boot_cpu_has(X86_FEATURE_DS)) { |
| 555 | unsigned int l1, l2; |
| 556 | |
| 557 | rdmsr(MSR_IA32_MISC_ENABLE, l1, l2); |
| 558 | if (!(l1 & MSR_IA32_MISC_ENABLE_BTS_UNAVAIL)) |
| 559 | set_cpu_cap(c, X86_FEATURE_BTS); |
| 560 | if (!(l1 & MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL)) |
| 561 | set_cpu_cap(c, X86_FEATURE_PEBS); |
| 562 | } |
| 563 | |
| 564 | if (boot_cpu_has(X86_FEATURE_CLFLUSH) && |
| 565 | (c->x86_vfm == INTEL_CORE2_DUNNINGTON || |
| 566 | c->x86_vfm == INTEL_NEHALEM_EX || |
| 567 | c->x86_vfm == INTEL_WESTMERE_EX)) |
| 568 | set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR); |
| 569 | |
| 570 | if (boot_cpu_has(X86_FEATURE_MWAIT) && |
| 571 | (c->x86_vfm == INTEL_ATOM_GOLDMONT || |
| 572 | c->x86_vfm == INTEL_LUNARLAKE_M)) |
| 573 | set_cpu_bug(c, X86_BUG_MONITOR); |
| 574 | |
| 575 | #ifdef CONFIG_X86_64 |
| 576 | if (c->x86 == 15) |
| 577 | c->x86_cache_alignment = c->x86_clflush_size * 2; |
| 578 | #else |
| 579 | /* |
| 580 | * Names for the Pentium II/Celeron processors |
| 581 | * detectable only by also checking the cache size. |
| 582 | * Dixon is NOT a Celeron. |
| 583 | */ |
| 584 | if (c->x86 == 6) { |
| 585 | unsigned int l2 = c->x86_cache_size; |
| 586 | char *p = NULL; |
| 587 | |
| 588 | switch (c->x86_model) { |
| 589 | case 5: |
| 590 | if (l2 == 0) |
| 591 | p = "Celeron (Covington)"; |
| 592 | else if (l2 == 256) |
| 593 | p = "Mobile Pentium II (Dixon)"; |
| 594 | break; |
| 595 | |
| 596 | case 6: |
| 597 | if (l2 == 128) |
| 598 | p = "Celeron (Mendocino)"; |
| 599 | else if (c->x86_stepping == 0 || c->x86_stepping == 5) |
| 600 | p = "Celeron-A"; |
| 601 | break; |
| 602 | |
| 603 | case 8: |
| 604 | if (l2 == 128) |
| 605 | p = "Celeron (Coppermine)"; |
| 606 | break; |
| 607 | } |
| 608 | |
| 609 | if (p) |
| 610 | strcpy(c->x86_model_id, p); |
| 611 | } |
| 612 | #endif |
| 613 | |
| 614 | if (x86_match_cpu(zmm_exclusion_list)) |
| 615 | set_cpu_cap(c, X86_FEATURE_PREFER_YMM); |
| 616 | |
| 617 | /* Work around errata */ |
| 618 | srat_detect_node(c); |
| 619 | |
| 620 | init_ia32_feat_ctl(c); |
| 621 | |
| 622 | init_intel_misc_features(c); |
| 623 | |
| 624 | split_lock_init(); |
| 625 | |
| 626 | intel_init_thermal(c); |
| 627 | } |
| 628 | |
| 629 | #ifdef CONFIG_X86_32 |
| 630 | static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size) |
| 631 | { |
| 632 | /* |
| 633 | * Intel PIII Tualatin. This comes in two flavours. |
| 634 | * One has 256kb of cache, the other 512. We have no way |
| 635 | * to determine which, so we use a boottime override |
| 636 | * for the 512kb model, and assume 256 otherwise. |
| 637 | */ |
| 638 | if (c->x86_vfm == INTEL_PENTIUM_III_TUALATIN && size == 0) |
| 639 | size = 256; |
| 640 | |
| 641 | /* |
| 642 | * Intel Quark SoC X1000 contains a 4-way set associative |
| 643 | * 16K cache with a 16 byte cache line and 256 lines per tag |
| 644 | */ |
| 645 | if (c->x86_vfm == INTEL_QUARK_X1000) |
| 646 | size = 16; |
| 647 | return size; |
| 648 | } |
| 649 | #endif |
| 650 | |
| 651 | static void intel_tlb_lookup(const struct leaf_0x2_table *desc) |
| 652 | { |
| 653 | short entries = desc->entries; |
| 654 | |
| 655 | switch (desc->t_type) { |
| 656 | case STLB_4K: |
| 657 | tlb_lli_4k = max(tlb_lli_4k, entries); |
| 658 | tlb_lld_4k = max(tlb_lld_4k, entries); |
| 659 | break; |
| 660 | case STLB_4K_2M: |
| 661 | tlb_lli_4k = max(tlb_lli_4k, entries); |
| 662 | tlb_lld_4k = max(tlb_lld_4k, entries); |
| 663 | tlb_lli_2m = max(tlb_lli_2m, entries); |
| 664 | tlb_lld_2m = max(tlb_lld_2m, entries); |
| 665 | tlb_lli_4m = max(tlb_lli_4m, entries); |
| 666 | tlb_lld_4m = max(tlb_lld_4m, entries); |
| 667 | break; |
| 668 | case TLB_INST_ALL: |
| 669 | tlb_lli_4k = max(tlb_lli_4k, entries); |
| 670 | tlb_lli_2m = max(tlb_lli_2m, entries); |
| 671 | tlb_lli_4m = max(tlb_lli_4m, entries); |
| 672 | break; |
| 673 | case TLB_INST_4K: |
| 674 | tlb_lli_4k = max(tlb_lli_4k, entries); |
| 675 | break; |
| 676 | case TLB_INST_4M: |
| 677 | tlb_lli_4m = max(tlb_lli_4m, entries); |
| 678 | break; |
| 679 | case TLB_INST_2M_4M: |
| 680 | tlb_lli_2m = max(tlb_lli_2m, entries); |
| 681 | tlb_lli_4m = max(tlb_lli_4m, entries); |
| 682 | break; |
| 683 | case TLB_DATA_4K: |
| 684 | case TLB_DATA0_4K: |
| 685 | tlb_lld_4k = max(tlb_lld_4k, entries); |
| 686 | break; |
| 687 | case TLB_DATA_4M: |
| 688 | case TLB_DATA0_4M: |
| 689 | tlb_lld_4m = max(tlb_lld_4m, entries); |
| 690 | break; |
| 691 | case TLB_DATA_2M_4M: |
| 692 | case TLB_DATA0_2M_4M: |
| 693 | tlb_lld_2m = max(tlb_lld_2m, entries); |
| 694 | tlb_lld_4m = max(tlb_lld_4m, entries); |
| 695 | break; |
| 696 | case TLB_DATA_4K_4M: |
| 697 | tlb_lld_4k = max(tlb_lld_4k, entries); |
| 698 | tlb_lld_4m = max(tlb_lld_4m, entries); |
| 699 | break; |
| 700 | case TLB_DATA_1G_2M_4M: |
| 701 | tlb_lld_2m = max(tlb_lld_2m, TLB_0x63_2M_4M_ENTRIES); |
| 702 | tlb_lld_4m = max(tlb_lld_4m, TLB_0x63_2M_4M_ENTRIES); |
| 703 | fallthrough; |
| 704 | case TLB_DATA_1G: |
| 705 | tlb_lld_1g = max(tlb_lld_1g, entries); |
| 706 | break; |
| 707 | } |
| 708 | } |
| 709 | |
| 710 | static void intel_detect_tlb(struct cpuinfo_x86 *c) |
| 711 | { |
| 712 | const struct leaf_0x2_table *desc; |
| 713 | union leaf_0x2_regs regs; |
| 714 | u8 *ptr; |
| 715 | |
| 716 | if (c->cpuid_level < 2) |
| 717 | return; |
| 718 | |
| 719 | cpuid_leaf_0x2(®s); |
| 720 | for_each_cpuid_0x2_desc(regs, ptr, desc) |
| 721 | intel_tlb_lookup(desc); |
| 722 | } |
| 723 | |
| 724 | static const struct cpu_dev intel_cpu_dev = { |
| 725 | .c_vendor = "Intel", |
| 726 | .c_ident = { "GenuineIntel" }, |
| 727 | #ifdef CONFIG_X86_32 |
| 728 | .legacy_models = { |
| 729 | { .family = 4, .model_names = |
| 730 | { |
| 731 | [0] = "486 DX-25/33", |
| 732 | [1] = "486 DX-50", |
| 733 | [2] = "486 SX", |
| 734 | [3] = "486 DX/2", |
| 735 | [4] = "486 SL", |
| 736 | [5] = "486 SX/2", |
| 737 | [7] = "486 DX/2-WB", |
| 738 | [8] = "486 DX/4", |
| 739 | [9] = "486 DX/4-WB" |
| 740 | } |
| 741 | }, |
| 742 | { .family = 5, .model_names = |
| 743 | { |
| 744 | [0] = "Pentium 60/66 A-step", |
| 745 | [1] = "Pentium 60/66", |
| 746 | [2] = "Pentium 75 - 200", |
| 747 | [3] = "OverDrive PODP5V83", |
| 748 | [4] = "Pentium MMX", |
| 749 | [7] = "Mobile Pentium 75 - 200", |
| 750 | [8] = "Mobile Pentium MMX", |
| 751 | [9] = "Quark SoC X1000", |
| 752 | } |
| 753 | }, |
| 754 | { .family = 6, .model_names = |
| 755 | { |
| 756 | [0] = "Pentium Pro A-step", |
| 757 | [1] = "Pentium Pro", |
| 758 | [3] = "Pentium II (Klamath)", |
| 759 | [4] = "Pentium II (Deschutes)", |
| 760 | [5] = "Pentium II (Deschutes)", |
| 761 | [6] = "Mobile Pentium II", |
| 762 | [7] = "Pentium III (Katmai)", |
| 763 | [8] = "Pentium III (Coppermine)", |
| 764 | [10] = "Pentium III (Cascades)", |
| 765 | [11] = "Pentium III (Tualatin)", |
| 766 | } |
| 767 | }, |
| 768 | { .family = 15, .model_names = |
| 769 | { |
| 770 | [0] = "Pentium 4 (Unknown)", |
| 771 | [1] = "Pentium 4 (Willamette)", |
| 772 | [2] = "Pentium 4 (Northwood)", |
| 773 | [4] = "Pentium 4 (Foster)", |
| 774 | [5] = "Pentium 4 (Foster)", |
| 775 | } |
| 776 | }, |
| 777 | }, |
| 778 | .legacy_cache_size = intel_size_cache, |
| 779 | #endif |
| 780 | .c_detect_tlb = intel_detect_tlb, |
| 781 | .c_early_init = early_init_intel, |
| 782 | .c_bsp_init = bsp_init_intel, |
| 783 | .c_init = init_intel, |
| 784 | .c_x86_vendor = X86_VENDOR_INTEL, |
| 785 | }; |
| 786 | |
| 787 | cpu_dev_register(intel_cpu_dev); |