| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | #define pr_fmt(fmt) "SMP alternatives: " fmt |
| 3 | |
| 4 | #include <linux/mmu_context.h> |
| 5 | #include <linux/perf_event.h> |
| 6 | #include <linux/vmalloc.h> |
| 7 | #include <linux/memory.h> |
| 8 | #include <linux/execmem.h> |
| 9 | |
| 10 | #include <asm/text-patching.h> |
| 11 | #include <asm/insn.h> |
| 12 | #include <asm/ibt.h> |
| 13 | #include <asm/set_memory.h> |
| 14 | #include <asm/nmi.h> |
| 15 | |
| 16 | int __read_mostly alternatives_patched; |
| 17 | |
| 18 | EXPORT_SYMBOL_GPL(alternatives_patched); |
| 19 | |
| 20 | #define MAX_PATCH_LEN (255-1) |
| 21 | |
| 22 | #define DA_ALL (~0) |
| 23 | #define DA_ALT 0x01 |
| 24 | #define DA_RET 0x02 |
| 25 | #define DA_RETPOLINE 0x04 |
| 26 | #define DA_ENDBR 0x08 |
| 27 | #define DA_SMP 0x10 |
| 28 | |
| 29 | static unsigned int debug_alternative; |
| 30 | |
| 31 | static int __init debug_alt(char *str) |
| 32 | { |
| 33 | if (str && *str == '=') |
| 34 | str++; |
| 35 | |
| 36 | if (!str || kstrtouint(str, 0, &debug_alternative)) |
| 37 | debug_alternative = DA_ALL; |
| 38 | |
| 39 | return 1; |
| 40 | } |
| 41 | __setup("debug-alternative", debug_alt); |
| 42 | |
| 43 | static int noreplace_smp; |
| 44 | |
| 45 | static int __init setup_noreplace_smp(char *str) |
| 46 | { |
| 47 | noreplace_smp = 1; |
| 48 | return 1; |
| 49 | } |
| 50 | __setup("noreplace-smp", setup_noreplace_smp); |
| 51 | |
| 52 | #define DPRINTK(type, fmt, args...) \ |
| 53 | do { \ |
| 54 | if (debug_alternative & DA_##type) \ |
| 55 | printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args); \ |
| 56 | } while (0) |
| 57 | |
| 58 | #define DUMP_BYTES(type, buf, len, fmt, args...) \ |
| 59 | do { \ |
| 60 | if (unlikely(debug_alternative & DA_##type)) { \ |
| 61 | int j; \ |
| 62 | \ |
| 63 | if (!(len)) \ |
| 64 | break; \ |
| 65 | \ |
| 66 | printk(KERN_DEBUG pr_fmt(fmt), ##args); \ |
| 67 | for (j = 0; j < (len) - 1; j++) \ |
| 68 | printk(KERN_CONT "%02hhx ", buf[j]); \ |
| 69 | printk(KERN_CONT "%02hhx\n", buf[j]); \ |
| 70 | } \ |
| 71 | } while (0) |
| 72 | |
| 73 | static const unsigned char x86nops[] = |
| 74 | { |
| 75 | BYTES_NOP1, |
| 76 | BYTES_NOP2, |
| 77 | BYTES_NOP3, |
| 78 | BYTES_NOP4, |
| 79 | BYTES_NOP5, |
| 80 | BYTES_NOP6, |
| 81 | BYTES_NOP7, |
| 82 | BYTES_NOP8, |
| 83 | #ifdef CONFIG_64BIT |
| 84 | BYTES_NOP9, |
| 85 | BYTES_NOP10, |
| 86 | BYTES_NOP11, |
| 87 | #endif |
| 88 | }; |
| 89 | |
| 90 | const unsigned char * const x86_nops[ASM_NOP_MAX+1] = |
| 91 | { |
| 92 | NULL, |
| 93 | x86nops, |
| 94 | x86nops + 1, |
| 95 | x86nops + 1 + 2, |
| 96 | x86nops + 1 + 2 + 3, |
| 97 | x86nops + 1 + 2 + 3 + 4, |
| 98 | x86nops + 1 + 2 + 3 + 4 + 5, |
| 99 | x86nops + 1 + 2 + 3 + 4 + 5 + 6, |
| 100 | x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7, |
| 101 | #ifdef CONFIG_64BIT |
| 102 | x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8, |
| 103 | x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9, |
| 104 | x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10, |
| 105 | #endif |
| 106 | }; |
| 107 | |
| 108 | #ifdef CONFIG_FINEIBT |
| 109 | static bool cfi_paranoid __ro_after_init; |
| 110 | #endif |
| 111 | |
| 112 | #ifdef CONFIG_MITIGATION_ITS |
| 113 | |
| 114 | #ifdef CONFIG_MODULES |
| 115 | static struct module *its_mod; |
| 116 | #endif |
| 117 | static void *its_page; |
| 118 | static unsigned int its_offset; |
| 119 | struct its_array its_pages; |
| 120 | |
| 121 | static void *__its_alloc(struct its_array *pages) |
| 122 | { |
| 123 | void *page __free(execmem) = execmem_alloc_rw(EXECMEM_MODULE_TEXT, PAGE_SIZE); |
| 124 | if (!page) |
| 125 | return NULL; |
| 126 | |
| 127 | void *tmp = krealloc(pages->pages, (pages->num+1) * sizeof(void *), |
| 128 | GFP_KERNEL); |
| 129 | if (!tmp) |
| 130 | return NULL; |
| 131 | |
| 132 | pages->pages = tmp; |
| 133 | pages->pages[pages->num++] = page; |
| 134 | |
| 135 | return no_free_ptr(page); |
| 136 | } |
| 137 | |
| 138 | /* Initialize a thunk with the "jmp *reg; int3" instructions. */ |
| 139 | static void *its_init_thunk(void *thunk, int reg) |
| 140 | { |
| 141 | u8 *bytes = thunk; |
| 142 | int offset = 0; |
| 143 | int i = 0; |
| 144 | |
| 145 | #ifdef CONFIG_FINEIBT |
| 146 | if (cfi_paranoid) { |
| 147 | /* |
| 148 | * When ITS uses indirect branch thunk the fineibt_paranoid |
| 149 | * caller sequence doesn't fit in the caller site. So put the |
| 150 | * remaining part of the sequence (<ea> + JNE) into the ITS |
| 151 | * thunk. |
| 152 | */ |
| 153 | bytes[i++] = 0xea; /* invalid instruction */ |
| 154 | bytes[i++] = 0x75; /* JNE */ |
| 155 | bytes[i++] = 0xfd; |
| 156 | |
| 157 | offset = 1; |
| 158 | } |
| 159 | #endif |
| 160 | |
| 161 | if (reg >= 8) { |
| 162 | bytes[i++] = 0x41; /* REX.B prefix */ |
| 163 | reg -= 8; |
| 164 | } |
| 165 | bytes[i++] = 0xff; |
| 166 | bytes[i++] = 0xe0 + reg; /* jmp *reg */ |
| 167 | bytes[i++] = 0xcc; |
| 168 | |
| 169 | return thunk + offset; |
| 170 | } |
| 171 | |
| 172 | static void its_pages_protect(struct its_array *pages) |
| 173 | { |
| 174 | for (int i = 0; i < pages->num; i++) { |
| 175 | void *page = pages->pages[i]; |
| 176 | execmem_restore_rox(page, PAGE_SIZE); |
| 177 | } |
| 178 | } |
| 179 | |
| 180 | static void its_fini_core(void) |
| 181 | { |
| 182 | if (IS_ENABLED(CONFIG_STRICT_KERNEL_RWX)) |
| 183 | its_pages_protect(&its_pages); |
| 184 | kfree(its_pages.pages); |
| 185 | } |
| 186 | |
| 187 | #ifdef CONFIG_MODULES |
| 188 | void its_init_mod(struct module *mod) |
| 189 | { |
| 190 | if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS)) |
| 191 | return; |
| 192 | |
| 193 | mutex_lock(&text_mutex); |
| 194 | its_mod = mod; |
| 195 | its_page = NULL; |
| 196 | } |
| 197 | |
| 198 | void its_fini_mod(struct module *mod) |
| 199 | { |
| 200 | if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS)) |
| 201 | return; |
| 202 | |
| 203 | WARN_ON_ONCE(its_mod != mod); |
| 204 | |
| 205 | its_mod = NULL; |
| 206 | its_page = NULL; |
| 207 | mutex_unlock(&text_mutex); |
| 208 | |
| 209 | if (IS_ENABLED(CONFIG_STRICT_MODULE_RWX)) |
| 210 | its_pages_protect(&mod->arch.its_pages); |
| 211 | } |
| 212 | |
| 213 | void its_free_mod(struct module *mod) |
| 214 | { |
| 215 | if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS)) |
| 216 | return; |
| 217 | |
| 218 | for (int i = 0; i < mod->arch.its_pages.num; i++) { |
| 219 | void *page = mod->arch.its_pages.pages[i]; |
| 220 | execmem_free(page); |
| 221 | } |
| 222 | kfree(mod->arch.its_pages.pages); |
| 223 | } |
| 224 | #endif /* CONFIG_MODULES */ |
| 225 | |
| 226 | static void *its_alloc(void) |
| 227 | { |
| 228 | struct its_array *pages = &its_pages; |
| 229 | void *page; |
| 230 | |
| 231 | #ifdef CONFIG_MODULES |
| 232 | if (its_mod) |
| 233 | pages = &its_mod->arch.its_pages; |
| 234 | #endif |
| 235 | |
| 236 | page = __its_alloc(pages); |
| 237 | if (!page) |
| 238 | return NULL; |
| 239 | |
| 240 | if (pages == &its_pages) |
| 241 | set_memory_x((unsigned long)page, 1); |
| 242 | |
| 243 | return page; |
| 244 | } |
| 245 | |
| 246 | static void *its_allocate_thunk(int reg) |
| 247 | { |
| 248 | int size = 3 + (reg / 8); |
| 249 | void *thunk; |
| 250 | |
| 251 | #ifdef CONFIG_FINEIBT |
| 252 | /* |
| 253 | * The ITS thunk contains an indirect jump and an int3 instruction so |
| 254 | * its size is 3 or 4 bytes depending on the register used. If CFI |
| 255 | * paranoid is used then 3 extra bytes are added in the ITS thunk to |
| 256 | * complete the fineibt_paranoid caller sequence. |
| 257 | */ |
| 258 | if (cfi_paranoid) |
| 259 | size += 3; |
| 260 | #endif |
| 261 | |
| 262 | if (!its_page || (its_offset + size - 1) >= PAGE_SIZE) { |
| 263 | its_page = its_alloc(); |
| 264 | if (!its_page) { |
| 265 | pr_err("ITS page allocation failed\n"); |
| 266 | return NULL; |
| 267 | } |
| 268 | memset(its_page, INT3_INSN_OPCODE, PAGE_SIZE); |
| 269 | its_offset = 32; |
| 270 | } |
| 271 | |
| 272 | /* |
| 273 | * If the indirect branch instruction will be in the lower half |
| 274 | * of a cacheline, then update the offset to reach the upper half. |
| 275 | */ |
| 276 | if ((its_offset + size - 1) % 64 < 32) |
| 277 | its_offset = ((its_offset - 1) | 0x3F) + 33; |
| 278 | |
| 279 | thunk = its_page + its_offset; |
| 280 | its_offset += size; |
| 281 | |
| 282 | return its_init_thunk(thunk, reg); |
| 283 | } |
| 284 | |
| 285 | u8 *its_static_thunk(int reg) |
| 286 | { |
| 287 | u8 *thunk = __x86_indirect_its_thunk_array[reg]; |
| 288 | |
| 289 | #ifdef CONFIG_FINEIBT |
| 290 | /* Paranoid thunk starts 2 bytes before */ |
| 291 | if (cfi_paranoid) |
| 292 | return thunk - 2; |
| 293 | #endif |
| 294 | return thunk; |
| 295 | } |
| 296 | |
| 297 | #else |
| 298 | static inline void its_fini_core(void) {} |
| 299 | #endif /* CONFIG_MITIGATION_ITS */ |
| 300 | |
| 301 | /* |
| 302 | * Nomenclature for variable names to simplify and clarify this code and ease |
| 303 | * any potential staring at it: |
| 304 | * |
| 305 | * @instr: source address of the original instructions in the kernel text as |
| 306 | * generated by the compiler. |
| 307 | * |
| 308 | * @buf: temporary buffer on which the patching operates. This buffer is |
| 309 | * eventually text-poked into the kernel image. |
| 310 | * |
| 311 | * @replacement/@repl: pointer to the opcodes which are replacing @instr, located |
| 312 | * in the .altinstr_replacement section. |
| 313 | */ |
| 314 | |
| 315 | /* |
| 316 | * Fill the buffer with a single effective instruction of size @len. |
| 317 | * |
| 318 | * In order not to issue an ORC stack depth tracking CFI entry (Call Frame Info) |
| 319 | * for every single-byte NOP, try to generate the maximally available NOP of |
| 320 | * size <= ASM_NOP_MAX such that only a single CFI entry is generated (vs one for |
| 321 | * each single-byte NOPs). If @len to fill out is > ASM_NOP_MAX, pad with INT3 and |
| 322 | * *jump* over instead of executing long and daft NOPs. |
| 323 | */ |
| 324 | static void add_nop(u8 *buf, unsigned int len) |
| 325 | { |
| 326 | u8 *target = buf + len; |
| 327 | |
| 328 | if (!len) |
| 329 | return; |
| 330 | |
| 331 | if (len <= ASM_NOP_MAX) { |
| 332 | memcpy(buf, x86_nops[len], len); |
| 333 | return; |
| 334 | } |
| 335 | |
| 336 | if (len < 128) { |
| 337 | __text_gen_insn(buf, JMP8_INSN_OPCODE, buf, target, JMP8_INSN_SIZE); |
| 338 | buf += JMP8_INSN_SIZE; |
| 339 | } else { |
| 340 | __text_gen_insn(buf, JMP32_INSN_OPCODE, buf, target, JMP32_INSN_SIZE); |
| 341 | buf += JMP32_INSN_SIZE; |
| 342 | } |
| 343 | |
| 344 | for (;buf < target; buf++) |
| 345 | *buf = INT3_INSN_OPCODE; |
| 346 | } |
| 347 | |
| 348 | /* |
| 349 | * Matches NOP and NOPL, not any of the other possible NOPs. |
| 350 | */ |
| 351 | static bool insn_is_nop(struct insn *insn) |
| 352 | { |
| 353 | /* Anything NOP, but no REP NOP */ |
| 354 | if (insn->opcode.bytes[0] == 0x90 && |
| 355 | (!insn->prefixes.nbytes || insn->prefixes.bytes[0] != 0xF3)) |
| 356 | return true; |
| 357 | |
| 358 | /* NOPL */ |
| 359 | if (insn->opcode.bytes[0] == 0x0F && insn->opcode.bytes[1] == 0x1F) |
| 360 | return true; |
| 361 | |
| 362 | /* TODO: more nops */ |
| 363 | |
| 364 | return false; |
| 365 | } |
| 366 | |
| 367 | /* |
| 368 | * Find the offset of the first non-NOP instruction starting at @offset |
| 369 | * but no further than @len. |
| 370 | */ |
| 371 | static int skip_nops(u8 *buf, int offset, int len) |
| 372 | { |
| 373 | struct insn insn; |
| 374 | |
| 375 | for (; offset < len; offset += insn.length) { |
| 376 | if (insn_decode_kernel(&insn, &buf[offset])) |
| 377 | break; |
| 378 | |
| 379 | if (!insn_is_nop(&insn)) |
| 380 | break; |
| 381 | } |
| 382 | |
| 383 | return offset; |
| 384 | } |
| 385 | |
| 386 | /* |
| 387 | * "noinline" to cause control flow change and thus invalidate I$ and |
| 388 | * cause refetch after modification. |
| 389 | */ |
| 390 | static void noinline optimize_nops(const u8 * const instr, u8 *buf, size_t len) |
| 391 | { |
| 392 | for (int next, i = 0; i < len; i = next) { |
| 393 | struct insn insn; |
| 394 | |
| 395 | if (insn_decode_kernel(&insn, &buf[i])) |
| 396 | return; |
| 397 | |
| 398 | next = i + insn.length; |
| 399 | |
| 400 | if (insn_is_nop(&insn)) { |
| 401 | int nop = i; |
| 402 | |
| 403 | /* Has the NOP already been optimized? */ |
| 404 | if (i + insn.length == len) |
| 405 | return; |
| 406 | |
| 407 | next = skip_nops(buf, next, len); |
| 408 | |
| 409 | add_nop(buf + nop, next - nop); |
| 410 | DUMP_BYTES(ALT, buf, len, "%px: [%d:%d) optimized NOPs: ", instr, nop, next); |
| 411 | } |
| 412 | } |
| 413 | } |
| 414 | |
| 415 | /* |
| 416 | * In this context, "source" is where the instructions are placed in the |
| 417 | * section .altinstr_replacement, for example during kernel build by the |
| 418 | * toolchain. |
| 419 | * "Destination" is where the instructions are being patched in by this |
| 420 | * machinery. |
| 421 | * |
| 422 | * The source offset is: |
| 423 | * |
| 424 | * src_imm = target - src_next_ip (1) |
| 425 | * |
| 426 | * and the target offset is: |
| 427 | * |
| 428 | * dst_imm = target - dst_next_ip (2) |
| 429 | * |
| 430 | * so rework (1) as an expression for target like: |
| 431 | * |
| 432 | * target = src_imm + src_next_ip (1a) |
| 433 | * |
| 434 | * and substitute in (2) to get: |
| 435 | * |
| 436 | * dst_imm = (src_imm + src_next_ip) - dst_next_ip (3) |
| 437 | * |
| 438 | * Now, since the instruction stream is 'identical' at src and dst (it |
| 439 | * is being copied after all) it can be stated that: |
| 440 | * |
| 441 | * src_next_ip = src + ip_offset |
| 442 | * dst_next_ip = dst + ip_offset (4) |
| 443 | * |
| 444 | * Substitute (4) in (3) and observe ip_offset being cancelled out to |
| 445 | * obtain: |
| 446 | * |
| 447 | * dst_imm = src_imm + (src + ip_offset) - (dst + ip_offset) |
| 448 | * = src_imm + src - dst + ip_offset - ip_offset |
| 449 | * = src_imm + src - dst (5) |
| 450 | * |
| 451 | * IOW, only the relative displacement of the code block matters. |
| 452 | */ |
| 453 | |
| 454 | #define apply_reloc_n(n_, p_, d_) \ |
| 455 | do { \ |
| 456 | s32 v = *(s##n_ *)(p_); \ |
| 457 | v += (d_); \ |
| 458 | BUG_ON((v >> 31) != (v >> (n_-1))); \ |
| 459 | *(s##n_ *)(p_) = (s##n_)v; \ |
| 460 | } while (0) |
| 461 | |
| 462 | |
| 463 | static __always_inline |
| 464 | void apply_reloc(int n, void *ptr, uintptr_t diff) |
| 465 | { |
| 466 | switch (n) { |
| 467 | case 1: apply_reloc_n(8, ptr, diff); break; |
| 468 | case 2: apply_reloc_n(16, ptr, diff); break; |
| 469 | case 4: apply_reloc_n(32, ptr, diff); break; |
| 470 | default: BUG(); |
| 471 | } |
| 472 | } |
| 473 | |
| 474 | static __always_inline |
| 475 | bool need_reloc(unsigned long offset, u8 *src, size_t src_len) |
| 476 | { |
| 477 | u8 *target = src + offset; |
| 478 | /* |
| 479 | * If the target is inside the patched block, it's relative to the |
| 480 | * block itself and does not need relocation. |
| 481 | */ |
| 482 | return (target < src || target > src + src_len); |
| 483 | } |
| 484 | |
| 485 | static void __apply_relocation(u8 *buf, const u8 * const instr, size_t instrlen, u8 *repl, size_t repl_len) |
| 486 | { |
| 487 | for (int next, i = 0; i < instrlen; i = next) { |
| 488 | struct insn insn; |
| 489 | |
| 490 | if (WARN_ON_ONCE(insn_decode_kernel(&insn, &buf[i]))) |
| 491 | return; |
| 492 | |
| 493 | next = i + insn.length; |
| 494 | |
| 495 | switch (insn.opcode.bytes[0]) { |
| 496 | case 0x0f: |
| 497 | if (insn.opcode.bytes[1] < 0x80 || |
| 498 | insn.opcode.bytes[1] > 0x8f) |
| 499 | break; |
| 500 | |
| 501 | fallthrough; /* Jcc.d32 */ |
| 502 | case 0x70 ... 0x7f: /* Jcc.d8 */ |
| 503 | case JMP8_INSN_OPCODE: |
| 504 | case JMP32_INSN_OPCODE: |
| 505 | case CALL_INSN_OPCODE: |
| 506 | if (need_reloc(next + insn.immediate.value, repl, repl_len)) { |
| 507 | apply_reloc(insn.immediate.nbytes, |
| 508 | buf + i + insn_offset_immediate(&insn), |
| 509 | repl - instr); |
| 510 | } |
| 511 | |
| 512 | /* |
| 513 | * Where possible, convert JMP.d32 into JMP.d8. |
| 514 | */ |
| 515 | if (insn.opcode.bytes[0] == JMP32_INSN_OPCODE) { |
| 516 | s32 imm = insn.immediate.value; |
| 517 | imm += repl - instr; |
| 518 | imm += JMP32_INSN_SIZE - JMP8_INSN_SIZE; |
| 519 | if ((imm >> 31) == (imm >> 7)) { |
| 520 | buf[i+0] = JMP8_INSN_OPCODE; |
| 521 | buf[i+1] = (s8)imm; |
| 522 | |
| 523 | memset(&buf[i+2], INT3_INSN_OPCODE, insn.length - 2); |
| 524 | } |
| 525 | } |
| 526 | break; |
| 527 | } |
| 528 | |
| 529 | if (insn_rip_relative(&insn)) { |
| 530 | if (need_reloc(next + insn.displacement.value, repl, repl_len)) { |
| 531 | apply_reloc(insn.displacement.nbytes, |
| 532 | buf + i + insn_offset_displacement(&insn), |
| 533 | repl - instr); |
| 534 | } |
| 535 | } |
| 536 | } |
| 537 | } |
| 538 | |
| 539 | void text_poke_apply_relocation(u8 *buf, const u8 * const instr, size_t instrlen, u8 *repl, size_t repl_len) |
| 540 | { |
| 541 | __apply_relocation(buf, instr, instrlen, repl, repl_len); |
| 542 | optimize_nops(instr, buf, instrlen); |
| 543 | } |
| 544 | |
| 545 | /* Low-level backend functions usable from alternative code replacements. */ |
| 546 | DEFINE_ASM_FUNC(nop_func, "", .entry.text); |
| 547 | EXPORT_SYMBOL_GPL(nop_func); |
| 548 | |
| 549 | noinstr void BUG_func(void) |
| 550 | { |
| 551 | BUG(); |
| 552 | } |
| 553 | EXPORT_SYMBOL(BUG_func); |
| 554 | |
| 555 | #define CALL_RIP_REL_OPCODE 0xff |
| 556 | #define CALL_RIP_REL_MODRM 0x15 |
| 557 | |
| 558 | /* |
| 559 | * Rewrite the "call BUG_func" replacement to point to the target of the |
| 560 | * indirect pv_ops call "call *disp(%ip)". |
| 561 | */ |
| 562 | static int alt_replace_call(u8 *instr, u8 *insn_buff, struct alt_instr *a) |
| 563 | { |
| 564 | void *target, *bug = &BUG_func; |
| 565 | s32 disp; |
| 566 | |
| 567 | if (a->replacementlen != 5 || insn_buff[0] != CALL_INSN_OPCODE) { |
| 568 | pr_err("ALT_FLAG_DIRECT_CALL set for a non-call replacement instruction\n"); |
| 569 | BUG(); |
| 570 | } |
| 571 | |
| 572 | if (a->instrlen != 6 || |
| 573 | instr[0] != CALL_RIP_REL_OPCODE || |
| 574 | instr[1] != CALL_RIP_REL_MODRM) { |
| 575 | pr_err("ALT_FLAG_DIRECT_CALL set for unrecognized indirect call\n"); |
| 576 | BUG(); |
| 577 | } |
| 578 | |
| 579 | /* Skip CALL_RIP_REL_OPCODE and CALL_RIP_REL_MODRM */ |
| 580 | disp = *(s32 *)(instr + 2); |
| 581 | #ifdef CONFIG_X86_64 |
| 582 | /* ff 15 00 00 00 00 call *0x0(%rip) */ |
| 583 | /* target address is stored at "next instruction + disp". */ |
| 584 | target = *(void **)(instr + a->instrlen + disp); |
| 585 | #else |
| 586 | /* ff 15 00 00 00 00 call *0x0 */ |
| 587 | /* target address is stored at disp. */ |
| 588 | target = *(void **)disp; |
| 589 | #endif |
| 590 | if (!target) |
| 591 | target = bug; |
| 592 | |
| 593 | /* (BUG_func - .) + (target - BUG_func) := target - . */ |
| 594 | *(s32 *)(insn_buff + 1) += target - bug; |
| 595 | |
| 596 | if (target == &nop_func) |
| 597 | return 0; |
| 598 | |
| 599 | return 5; |
| 600 | } |
| 601 | |
| 602 | static inline u8 * instr_va(struct alt_instr *i) |
| 603 | { |
| 604 | return (u8 *)&i->instr_offset + i->instr_offset; |
| 605 | } |
| 606 | |
| 607 | /* |
| 608 | * Replace instructions with better alternatives for this CPU type. This runs |
| 609 | * before SMP is initialized to avoid SMP problems with self modifying code. |
| 610 | * This implies that asymmetric systems where APs have less capabilities than |
| 611 | * the boot processor are not handled. Tough. Make sure you disable such |
| 612 | * features by hand. |
| 613 | * |
| 614 | * Marked "noinline" to cause control flow change and thus insn cache |
| 615 | * to refetch changed I$ lines. |
| 616 | */ |
| 617 | void __init_or_module noinline apply_alternatives(struct alt_instr *start, |
| 618 | struct alt_instr *end) |
| 619 | { |
| 620 | u8 insn_buff[MAX_PATCH_LEN]; |
| 621 | u8 *instr, *replacement; |
| 622 | struct alt_instr *a, *b; |
| 623 | |
| 624 | DPRINTK(ALT, "alt table %px, -> %px", start, end); |
| 625 | |
| 626 | /* |
| 627 | * KASAN_SHADOW_START is defined using |
| 628 | * cpu_feature_enabled(X86_FEATURE_LA57) and is therefore patched here. |
| 629 | * During the process, KASAN becomes confused seeing partial LA57 |
| 630 | * conversion and triggers a false-positive out-of-bound report. |
| 631 | * |
| 632 | * Disable KASAN until the patching is complete. |
| 633 | */ |
| 634 | kasan_disable_current(); |
| 635 | |
| 636 | /* |
| 637 | * The scan order should be from start to end. A later scanned |
| 638 | * alternative code can overwrite previously scanned alternative code. |
| 639 | * Some kernel functions (e.g. memcpy, memset, etc) use this order to |
| 640 | * patch code. |
| 641 | * |
| 642 | * So be careful if you want to change the scan order to any other |
| 643 | * order. |
| 644 | */ |
| 645 | for (a = start; a < end; a++) { |
| 646 | int insn_buff_sz = 0; |
| 647 | |
| 648 | /* |
| 649 | * In case of nested ALTERNATIVE()s the outer alternative might |
| 650 | * add more padding. To ensure consistent patching find the max |
| 651 | * padding for all alt_instr entries for this site (nested |
| 652 | * alternatives result in consecutive entries). |
| 653 | */ |
| 654 | for (b = a+1; b < end && instr_va(b) == instr_va(a); b++) { |
| 655 | u8 len = max(a->instrlen, b->instrlen); |
| 656 | a->instrlen = b->instrlen = len; |
| 657 | } |
| 658 | |
| 659 | instr = instr_va(a); |
| 660 | replacement = (u8 *)&a->repl_offset + a->repl_offset; |
| 661 | BUG_ON(a->instrlen > sizeof(insn_buff)); |
| 662 | BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32); |
| 663 | |
| 664 | /* |
| 665 | * Patch if either: |
| 666 | * - feature is present |
| 667 | * - feature not present but ALT_FLAG_NOT is set to mean, |
| 668 | * patch if feature is *NOT* present. |
| 669 | */ |
| 670 | if (!boot_cpu_has(a->cpuid) == !(a->flags & ALT_FLAG_NOT)) { |
| 671 | memcpy(insn_buff, instr, a->instrlen); |
| 672 | optimize_nops(instr, insn_buff, a->instrlen); |
| 673 | text_poke_early(instr, insn_buff, a->instrlen); |
| 674 | continue; |
| 675 | } |
| 676 | |
| 677 | DPRINTK(ALT, "feat: %d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d) flags: 0x%x", |
| 678 | a->cpuid >> 5, |
| 679 | a->cpuid & 0x1f, |
| 680 | instr, instr, a->instrlen, |
| 681 | replacement, a->replacementlen, a->flags); |
| 682 | |
| 683 | memcpy(insn_buff, replacement, a->replacementlen); |
| 684 | insn_buff_sz = a->replacementlen; |
| 685 | |
| 686 | if (a->flags & ALT_FLAG_DIRECT_CALL) { |
| 687 | insn_buff_sz = alt_replace_call(instr, insn_buff, a); |
| 688 | if (insn_buff_sz < 0) |
| 689 | continue; |
| 690 | } |
| 691 | |
| 692 | for (; insn_buff_sz < a->instrlen; insn_buff_sz++) |
| 693 | insn_buff[insn_buff_sz] = 0x90; |
| 694 | |
| 695 | text_poke_apply_relocation(insn_buff, instr, a->instrlen, replacement, a->replacementlen); |
| 696 | |
| 697 | DUMP_BYTES(ALT, instr, a->instrlen, "%px: old_insn: ", instr); |
| 698 | DUMP_BYTES(ALT, replacement, a->replacementlen, "%px: rpl_insn: ", replacement); |
| 699 | DUMP_BYTES(ALT, insn_buff, insn_buff_sz, "%px: final_insn: ", instr); |
| 700 | |
| 701 | text_poke_early(instr, insn_buff, insn_buff_sz); |
| 702 | } |
| 703 | |
| 704 | kasan_enable_current(); |
| 705 | } |
| 706 | |
| 707 | static inline bool is_jcc32(struct insn *insn) |
| 708 | { |
| 709 | /* Jcc.d32 second opcode byte is in the range: 0x80-0x8f */ |
| 710 | return insn->opcode.bytes[0] == 0x0f && (insn->opcode.bytes[1] & 0xf0) == 0x80; |
| 711 | } |
| 712 | |
| 713 | #if defined(CONFIG_MITIGATION_RETPOLINE) && defined(CONFIG_OBJTOOL) |
| 714 | |
| 715 | /* |
| 716 | * CALL/JMP *%\reg |
| 717 | */ |
| 718 | static int emit_indirect(int op, int reg, u8 *bytes) |
| 719 | { |
| 720 | int i = 0; |
| 721 | u8 modrm; |
| 722 | |
| 723 | switch (op) { |
| 724 | case CALL_INSN_OPCODE: |
| 725 | modrm = 0x10; /* Reg = 2; CALL r/m */ |
| 726 | break; |
| 727 | |
| 728 | case JMP32_INSN_OPCODE: |
| 729 | modrm = 0x20; /* Reg = 4; JMP r/m */ |
| 730 | break; |
| 731 | |
| 732 | default: |
| 733 | WARN_ON_ONCE(1); |
| 734 | return -1; |
| 735 | } |
| 736 | |
| 737 | if (reg >= 8) { |
| 738 | bytes[i++] = 0x41; /* REX.B prefix */ |
| 739 | reg -= 8; |
| 740 | } |
| 741 | |
| 742 | modrm |= 0xc0; /* Mod = 3 */ |
| 743 | modrm += reg; |
| 744 | |
| 745 | bytes[i++] = 0xff; /* opcode */ |
| 746 | bytes[i++] = modrm; |
| 747 | |
| 748 | return i; |
| 749 | } |
| 750 | |
| 751 | static int __emit_trampoline(void *addr, struct insn *insn, u8 *bytes, |
| 752 | void *call_dest, void *jmp_dest) |
| 753 | { |
| 754 | u8 op = insn->opcode.bytes[0]; |
| 755 | int i = 0; |
| 756 | |
| 757 | /* |
| 758 | * Clang does 'weird' Jcc __x86_indirect_thunk_r11 conditional |
| 759 | * tail-calls. Deal with them. |
| 760 | */ |
| 761 | if (is_jcc32(insn)) { |
| 762 | bytes[i++] = op; |
| 763 | op = insn->opcode.bytes[1]; |
| 764 | goto clang_jcc; |
| 765 | } |
| 766 | |
| 767 | if (insn->length == 6) |
| 768 | bytes[i++] = 0x2e; /* CS-prefix */ |
| 769 | |
| 770 | switch (op) { |
| 771 | case CALL_INSN_OPCODE: |
| 772 | __text_gen_insn(bytes+i, op, addr+i, |
| 773 | call_dest, |
| 774 | CALL_INSN_SIZE); |
| 775 | i += CALL_INSN_SIZE; |
| 776 | break; |
| 777 | |
| 778 | case JMP32_INSN_OPCODE: |
| 779 | clang_jcc: |
| 780 | __text_gen_insn(bytes+i, op, addr+i, |
| 781 | jmp_dest, |
| 782 | JMP32_INSN_SIZE); |
| 783 | i += JMP32_INSN_SIZE; |
| 784 | break; |
| 785 | |
| 786 | default: |
| 787 | WARN(1, "%pS %px %*ph\n", addr, addr, 6, addr); |
| 788 | return -1; |
| 789 | } |
| 790 | |
| 791 | WARN_ON_ONCE(i != insn->length); |
| 792 | |
| 793 | return i; |
| 794 | } |
| 795 | |
| 796 | static int emit_call_track_retpoline(void *addr, struct insn *insn, int reg, u8 *bytes) |
| 797 | { |
| 798 | return __emit_trampoline(addr, insn, bytes, |
| 799 | __x86_indirect_call_thunk_array[reg], |
| 800 | __x86_indirect_jump_thunk_array[reg]); |
| 801 | } |
| 802 | |
| 803 | #ifdef CONFIG_MITIGATION_ITS |
| 804 | static int emit_its_trampoline(void *addr, struct insn *insn, int reg, u8 *bytes) |
| 805 | { |
| 806 | u8 *thunk = __x86_indirect_its_thunk_array[reg]; |
| 807 | u8 *tmp = its_allocate_thunk(reg); |
| 808 | |
| 809 | if (tmp) |
| 810 | thunk = tmp; |
| 811 | |
| 812 | return __emit_trampoline(addr, insn, bytes, thunk, thunk); |
| 813 | } |
| 814 | |
| 815 | /* Check if an indirect branch is at ITS-unsafe address */ |
| 816 | static bool cpu_wants_indirect_its_thunk_at(unsigned long addr, int reg) |
| 817 | { |
| 818 | if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS)) |
| 819 | return false; |
| 820 | |
| 821 | /* Indirect branch opcode is 2 or 3 bytes depending on reg */ |
| 822 | addr += 1 + reg / 8; |
| 823 | |
| 824 | /* Lower-half of the cacheline? */ |
| 825 | return !(addr & 0x20); |
| 826 | } |
| 827 | #else /* CONFIG_MITIGATION_ITS */ |
| 828 | |
| 829 | #ifdef CONFIG_FINEIBT |
| 830 | static bool cpu_wants_indirect_its_thunk_at(unsigned long addr, int reg) |
| 831 | { |
| 832 | return false; |
| 833 | } |
| 834 | #endif |
| 835 | |
| 836 | #endif /* CONFIG_MITIGATION_ITS */ |
| 837 | |
| 838 | /* |
| 839 | * Rewrite the compiler generated retpoline thunk calls. |
| 840 | * |
| 841 | * For spectre_v2=off (!X86_FEATURE_RETPOLINE), rewrite them into immediate |
| 842 | * indirect instructions, avoiding the extra indirection. |
| 843 | * |
| 844 | * For example, convert: |
| 845 | * |
| 846 | * CALL __x86_indirect_thunk_\reg |
| 847 | * |
| 848 | * into: |
| 849 | * |
| 850 | * CALL *%\reg |
| 851 | * |
| 852 | * It also tries to inline spectre_v2=retpoline,lfence when size permits. |
| 853 | */ |
| 854 | static int patch_retpoline(void *addr, struct insn *insn, u8 *bytes) |
| 855 | { |
| 856 | retpoline_thunk_t *target; |
| 857 | int reg, ret, i = 0; |
| 858 | u8 op, cc; |
| 859 | |
| 860 | target = addr + insn->length + insn->immediate.value; |
| 861 | reg = target - __x86_indirect_thunk_array; |
| 862 | |
| 863 | if (WARN_ON_ONCE(reg & ~0xf)) |
| 864 | return -1; |
| 865 | |
| 866 | /* If anyone ever does: CALL/JMP *%rsp, we're in deep trouble. */ |
| 867 | BUG_ON(reg == 4); |
| 868 | |
| 869 | if (cpu_feature_enabled(X86_FEATURE_RETPOLINE) && |
| 870 | !cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) { |
| 871 | if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH)) |
| 872 | return emit_call_track_retpoline(addr, insn, reg, bytes); |
| 873 | |
| 874 | return -1; |
| 875 | } |
| 876 | |
| 877 | op = insn->opcode.bytes[0]; |
| 878 | |
| 879 | /* |
| 880 | * Convert: |
| 881 | * |
| 882 | * Jcc.d32 __x86_indirect_thunk_\reg |
| 883 | * |
| 884 | * into: |
| 885 | * |
| 886 | * Jncc.d8 1f |
| 887 | * [ LFENCE ] |
| 888 | * JMP *%\reg |
| 889 | * [ NOP ] |
| 890 | * 1: |
| 891 | */ |
| 892 | if (is_jcc32(insn)) { |
| 893 | cc = insn->opcode.bytes[1] & 0xf; |
| 894 | cc ^= 1; /* invert condition */ |
| 895 | |
| 896 | bytes[i++] = 0x70 + cc; /* Jcc.d8 */ |
| 897 | bytes[i++] = insn->length - 2; /* sizeof(Jcc.d8) == 2 */ |
| 898 | |
| 899 | /* Continue as if: JMP.d32 __x86_indirect_thunk_\reg */ |
| 900 | op = JMP32_INSN_OPCODE; |
| 901 | } |
| 902 | |
| 903 | /* |
| 904 | * For RETPOLINE_LFENCE: prepend the indirect CALL/JMP with an LFENCE. |
| 905 | */ |
| 906 | if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) { |
| 907 | bytes[i++] = 0x0f; |
| 908 | bytes[i++] = 0xae; |
| 909 | bytes[i++] = 0xe8; /* LFENCE */ |
| 910 | } |
| 911 | |
| 912 | #ifdef CONFIG_MITIGATION_ITS |
| 913 | /* |
| 914 | * Check if the address of last byte of emitted-indirect is in |
| 915 | * lower-half of the cacheline. Such branches need ITS mitigation. |
| 916 | */ |
| 917 | if (cpu_wants_indirect_its_thunk_at((unsigned long)addr + i, reg)) |
| 918 | return emit_its_trampoline(addr, insn, reg, bytes); |
| 919 | #endif |
| 920 | |
| 921 | ret = emit_indirect(op, reg, bytes + i); |
| 922 | if (ret < 0) |
| 923 | return ret; |
| 924 | i += ret; |
| 925 | |
| 926 | /* |
| 927 | * The compiler is supposed to EMIT an INT3 after every unconditional |
| 928 | * JMP instruction due to AMD BTC. However, if the compiler is too old |
| 929 | * or MITIGATION_SLS isn't enabled, we still need an INT3 after |
| 930 | * indirect JMPs even on Intel. |
| 931 | */ |
| 932 | if (op == JMP32_INSN_OPCODE && i < insn->length) |
| 933 | bytes[i++] = INT3_INSN_OPCODE; |
| 934 | |
| 935 | for (; i < insn->length;) |
| 936 | bytes[i++] = BYTES_NOP1; |
| 937 | |
| 938 | return i; |
| 939 | } |
| 940 | |
| 941 | /* |
| 942 | * Generated by 'objtool --retpoline'. |
| 943 | */ |
| 944 | void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) |
| 945 | { |
| 946 | s32 *s; |
| 947 | |
| 948 | for (s = start; s < end; s++) { |
| 949 | void *addr = (void *)s + *s; |
| 950 | struct insn insn; |
| 951 | int len, ret; |
| 952 | u8 bytes[16]; |
| 953 | u8 op1, op2; |
| 954 | u8 *dest; |
| 955 | |
| 956 | ret = insn_decode_kernel(&insn, addr); |
| 957 | if (WARN_ON_ONCE(ret < 0)) |
| 958 | continue; |
| 959 | |
| 960 | op1 = insn.opcode.bytes[0]; |
| 961 | op2 = insn.opcode.bytes[1]; |
| 962 | |
| 963 | switch (op1) { |
| 964 | case 0x70 ... 0x7f: /* Jcc.d8 */ |
| 965 | /* See cfi_paranoid. */ |
| 966 | WARN_ON_ONCE(cfi_mode != CFI_FINEIBT); |
| 967 | continue; |
| 968 | |
| 969 | case CALL_INSN_OPCODE: |
| 970 | case JMP32_INSN_OPCODE: |
| 971 | /* Check for cfi_paranoid + ITS */ |
| 972 | dest = addr + insn.length + insn.immediate.value; |
| 973 | if (dest[-1] == 0xea && (dest[0] & 0xf0) == 0x70) { |
| 974 | WARN_ON_ONCE(cfi_mode != CFI_FINEIBT); |
| 975 | continue; |
| 976 | } |
| 977 | break; |
| 978 | |
| 979 | case 0x0f: /* escape */ |
| 980 | if (op2 >= 0x80 && op2 <= 0x8f) |
| 981 | break; |
| 982 | fallthrough; |
| 983 | default: |
| 984 | WARN_ON_ONCE(1); |
| 985 | continue; |
| 986 | } |
| 987 | |
| 988 | DPRINTK(RETPOLINE, "retpoline at: %pS (%px) len: %d to: %pS", |
| 989 | addr, addr, insn.length, |
| 990 | addr + insn.length + insn.immediate.value); |
| 991 | |
| 992 | len = patch_retpoline(addr, &insn, bytes); |
| 993 | if (len == insn.length) { |
| 994 | optimize_nops(addr, bytes, len); |
| 995 | DUMP_BYTES(RETPOLINE, ((u8*)addr), len, "%px: orig: ", addr); |
| 996 | DUMP_BYTES(RETPOLINE, ((u8*)bytes), len, "%px: repl: ", addr); |
| 997 | text_poke_early(addr, bytes, len); |
| 998 | } |
| 999 | } |
| 1000 | } |
| 1001 | |
| 1002 | #ifdef CONFIG_MITIGATION_RETHUNK |
| 1003 | |
| 1004 | bool cpu_wants_rethunk(void) |
| 1005 | { |
| 1006 | return cpu_feature_enabled(X86_FEATURE_RETHUNK); |
| 1007 | } |
| 1008 | |
| 1009 | bool cpu_wants_rethunk_at(void *addr) |
| 1010 | { |
| 1011 | if (!cpu_feature_enabled(X86_FEATURE_RETHUNK)) |
| 1012 | return false; |
| 1013 | if (x86_return_thunk != its_return_thunk) |
| 1014 | return true; |
| 1015 | |
| 1016 | return !((unsigned long)addr & 0x20); |
| 1017 | } |
| 1018 | |
| 1019 | /* |
| 1020 | * Rewrite the compiler generated return thunk tail-calls. |
| 1021 | * |
| 1022 | * For example, convert: |
| 1023 | * |
| 1024 | * JMP __x86_return_thunk |
| 1025 | * |
| 1026 | * into: |
| 1027 | * |
| 1028 | * RET |
| 1029 | */ |
| 1030 | static int patch_return(void *addr, struct insn *insn, u8 *bytes) |
| 1031 | { |
| 1032 | int i = 0; |
| 1033 | |
| 1034 | /* Patch the custom return thunks... */ |
| 1035 | if (cpu_wants_rethunk_at(addr)) { |
| 1036 | i = JMP32_INSN_SIZE; |
| 1037 | __text_gen_insn(bytes, JMP32_INSN_OPCODE, addr, x86_return_thunk, i); |
| 1038 | } else { |
| 1039 | /* ... or patch them out if not needed. */ |
| 1040 | bytes[i++] = RET_INSN_OPCODE; |
| 1041 | } |
| 1042 | |
| 1043 | for (; i < insn->length;) |
| 1044 | bytes[i++] = INT3_INSN_OPCODE; |
| 1045 | return i; |
| 1046 | } |
| 1047 | |
| 1048 | void __init_or_module noinline apply_returns(s32 *start, s32 *end) |
| 1049 | { |
| 1050 | s32 *s; |
| 1051 | |
| 1052 | if (cpu_wants_rethunk()) |
| 1053 | static_call_force_reinit(); |
| 1054 | |
| 1055 | for (s = start; s < end; s++) { |
| 1056 | void *dest = NULL, *addr = (void *)s + *s; |
| 1057 | struct insn insn; |
| 1058 | int len, ret; |
| 1059 | u8 bytes[16]; |
| 1060 | u8 op; |
| 1061 | |
| 1062 | ret = insn_decode_kernel(&insn, addr); |
| 1063 | if (WARN_ON_ONCE(ret < 0)) |
| 1064 | continue; |
| 1065 | |
| 1066 | op = insn.opcode.bytes[0]; |
| 1067 | if (op == JMP32_INSN_OPCODE) |
| 1068 | dest = addr + insn.length + insn.immediate.value; |
| 1069 | |
| 1070 | if (__static_call_fixup(addr, op, dest) || |
| 1071 | WARN_ONCE(dest != &__x86_return_thunk, |
| 1072 | "missing return thunk: %pS-%pS: %*ph", |
| 1073 | addr, dest, 5, addr)) |
| 1074 | continue; |
| 1075 | |
| 1076 | DPRINTK(RET, "return thunk at: %pS (%px) len: %d to: %pS", |
| 1077 | addr, addr, insn.length, |
| 1078 | addr + insn.length + insn.immediate.value); |
| 1079 | |
| 1080 | len = patch_return(addr, &insn, bytes); |
| 1081 | if (len == insn.length) { |
| 1082 | DUMP_BYTES(RET, ((u8*)addr), len, "%px: orig: ", addr); |
| 1083 | DUMP_BYTES(RET, ((u8*)bytes), len, "%px: repl: ", addr); |
| 1084 | text_poke_early(addr, bytes, len); |
| 1085 | } |
| 1086 | } |
| 1087 | } |
| 1088 | #else /* !CONFIG_MITIGATION_RETHUNK: */ |
| 1089 | void __init_or_module noinline apply_returns(s32 *start, s32 *end) { } |
| 1090 | #endif /* !CONFIG_MITIGATION_RETHUNK */ |
| 1091 | |
| 1092 | #else /* !CONFIG_MITIGATION_RETPOLINE || !CONFIG_OBJTOOL */ |
| 1093 | |
| 1094 | void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) { } |
| 1095 | void __init_or_module noinline apply_returns(s32 *start, s32 *end) { } |
| 1096 | |
| 1097 | #endif /* !CONFIG_MITIGATION_RETPOLINE || !CONFIG_OBJTOOL */ |
| 1098 | |
| 1099 | #ifdef CONFIG_X86_KERNEL_IBT |
| 1100 | |
| 1101 | __noendbr bool is_endbr(u32 *val) |
| 1102 | { |
| 1103 | u32 endbr; |
| 1104 | |
| 1105 | __get_kernel_nofault(&endbr, val, u32, Efault); |
| 1106 | return __is_endbr(endbr); |
| 1107 | |
| 1108 | Efault: |
| 1109 | return false; |
| 1110 | } |
| 1111 | |
| 1112 | #ifdef CONFIG_FINEIBT |
| 1113 | |
| 1114 | static __noendbr bool exact_endbr(u32 *val) |
| 1115 | { |
| 1116 | u32 endbr; |
| 1117 | |
| 1118 | __get_kernel_nofault(&endbr, val, u32, Efault); |
| 1119 | return endbr == gen_endbr(); |
| 1120 | |
| 1121 | Efault: |
| 1122 | return false; |
| 1123 | } |
| 1124 | |
| 1125 | #endif |
| 1126 | |
| 1127 | static void poison_cfi(void *addr); |
| 1128 | |
| 1129 | static void __init_or_module poison_endbr(void *addr) |
| 1130 | { |
| 1131 | u32 poison = gen_endbr_poison(); |
| 1132 | |
| 1133 | if (WARN_ON_ONCE(!is_endbr(addr))) |
| 1134 | return; |
| 1135 | |
| 1136 | DPRINTK(ENDBR, "ENDBR at: %pS (%px)", addr, addr); |
| 1137 | |
| 1138 | /* |
| 1139 | * When we have IBT, the lack of ENDBR will trigger #CP |
| 1140 | */ |
| 1141 | DUMP_BYTES(ENDBR, ((u8*)addr), 4, "%px: orig: ", addr); |
| 1142 | DUMP_BYTES(ENDBR, ((u8*)&poison), 4, "%px: repl: ", addr); |
| 1143 | text_poke_early(addr, &poison, 4); |
| 1144 | } |
| 1145 | |
| 1146 | /* |
| 1147 | * Generated by: objtool --ibt |
| 1148 | * |
| 1149 | * Seal the functions for indirect calls by clobbering the ENDBR instructions |
| 1150 | * and the kCFI hash value. |
| 1151 | */ |
| 1152 | void __init_or_module noinline apply_seal_endbr(s32 *start, s32 *end) |
| 1153 | { |
| 1154 | s32 *s; |
| 1155 | |
| 1156 | for (s = start; s < end; s++) { |
| 1157 | void *addr = (void *)s + *s; |
| 1158 | |
| 1159 | poison_endbr(addr); |
| 1160 | if (IS_ENABLED(CONFIG_FINEIBT)) |
| 1161 | poison_cfi(addr - 16); |
| 1162 | } |
| 1163 | } |
| 1164 | |
| 1165 | #else /* !CONFIG_X86_KERNEL_IBT: */ |
| 1166 | |
| 1167 | void __init_or_module apply_seal_endbr(s32 *start, s32 *end) { } |
| 1168 | |
| 1169 | #endif /* !CONFIG_X86_KERNEL_IBT */ |
| 1170 | |
| 1171 | #ifdef CONFIG_CFI_AUTO_DEFAULT |
| 1172 | # define __CFI_DEFAULT CFI_AUTO |
| 1173 | #elif defined(CONFIG_CFI_CLANG) |
| 1174 | # define __CFI_DEFAULT CFI_KCFI |
| 1175 | #else |
| 1176 | # define __CFI_DEFAULT CFI_OFF |
| 1177 | #endif |
| 1178 | |
| 1179 | enum cfi_mode cfi_mode __ro_after_init = __CFI_DEFAULT; |
| 1180 | |
| 1181 | #ifdef CONFIG_FINEIBT_BHI |
| 1182 | bool cfi_bhi __ro_after_init = false; |
| 1183 | #endif |
| 1184 | |
| 1185 | #ifdef CONFIG_CFI_CLANG |
| 1186 | u32 cfi_get_func_hash(void *func) |
| 1187 | { |
| 1188 | u32 hash; |
| 1189 | |
| 1190 | func -= cfi_get_offset(); |
| 1191 | switch (cfi_mode) { |
| 1192 | case CFI_FINEIBT: |
| 1193 | func += 7; |
| 1194 | break; |
| 1195 | case CFI_KCFI: |
| 1196 | func += 1; |
| 1197 | break; |
| 1198 | default: |
| 1199 | return 0; |
| 1200 | } |
| 1201 | |
| 1202 | if (get_kernel_nofault(hash, func)) |
| 1203 | return 0; |
| 1204 | |
| 1205 | return hash; |
| 1206 | } |
| 1207 | |
| 1208 | int cfi_get_func_arity(void *func) |
| 1209 | { |
| 1210 | bhi_thunk *target; |
| 1211 | s32 disp; |
| 1212 | |
| 1213 | if (cfi_mode != CFI_FINEIBT && !cfi_bhi) |
| 1214 | return 0; |
| 1215 | |
| 1216 | if (get_kernel_nofault(disp, func - 4)) |
| 1217 | return 0; |
| 1218 | |
| 1219 | target = func + disp; |
| 1220 | return target - __bhi_args; |
| 1221 | } |
| 1222 | #endif |
| 1223 | |
| 1224 | #ifdef CONFIG_FINEIBT |
| 1225 | |
| 1226 | static bool cfi_rand __ro_after_init = true; |
| 1227 | static u32 cfi_seed __ro_after_init; |
| 1228 | |
| 1229 | /* |
| 1230 | * Re-hash the CFI hash with a boot-time seed while making sure the result is |
| 1231 | * not a valid ENDBR instruction. |
| 1232 | */ |
| 1233 | static u32 cfi_rehash(u32 hash) |
| 1234 | { |
| 1235 | hash ^= cfi_seed; |
| 1236 | while (unlikely(__is_endbr(hash) || __is_endbr(-hash))) { |
| 1237 | bool lsb = hash & 1; |
| 1238 | hash >>= 1; |
| 1239 | if (lsb) |
| 1240 | hash ^= 0x80200003; |
| 1241 | } |
| 1242 | return hash; |
| 1243 | } |
| 1244 | |
| 1245 | static __init int cfi_parse_cmdline(char *str) |
| 1246 | { |
| 1247 | if (!str) |
| 1248 | return -EINVAL; |
| 1249 | |
| 1250 | while (str) { |
| 1251 | char *next = strchr(str, ','); |
| 1252 | if (next) { |
| 1253 | *next = 0; |
| 1254 | next++; |
| 1255 | } |
| 1256 | |
| 1257 | if (!strcmp(str, "auto")) { |
| 1258 | cfi_mode = CFI_AUTO; |
| 1259 | } else if (!strcmp(str, "off")) { |
| 1260 | cfi_mode = CFI_OFF; |
| 1261 | cfi_rand = false; |
| 1262 | } else if (!strcmp(str, "kcfi")) { |
| 1263 | cfi_mode = CFI_KCFI; |
| 1264 | } else if (!strcmp(str, "fineibt")) { |
| 1265 | cfi_mode = CFI_FINEIBT; |
| 1266 | } else if (!strcmp(str, "norand")) { |
| 1267 | cfi_rand = false; |
| 1268 | } else if (!strcmp(str, "warn")) { |
| 1269 | pr_alert("CFI mismatch non-fatal!\n"); |
| 1270 | cfi_warn = true; |
| 1271 | } else if (!strcmp(str, "paranoid")) { |
| 1272 | if (cfi_mode == CFI_FINEIBT) { |
| 1273 | cfi_paranoid = true; |
| 1274 | } else { |
| 1275 | pr_err("Ignoring paranoid; depends on fineibt.\n"); |
| 1276 | } |
| 1277 | } else if (!strcmp(str, "bhi")) { |
| 1278 | #ifdef CONFIG_FINEIBT_BHI |
| 1279 | if (cfi_mode == CFI_FINEIBT) { |
| 1280 | cfi_bhi = true; |
| 1281 | } else { |
| 1282 | pr_err("Ignoring bhi; depends on fineibt.\n"); |
| 1283 | } |
| 1284 | #else |
| 1285 | pr_err("Ignoring bhi; depends on FINEIBT_BHI=y.\n"); |
| 1286 | #endif |
| 1287 | } else { |
| 1288 | pr_err("Ignoring unknown cfi option (%s).", str); |
| 1289 | } |
| 1290 | |
| 1291 | str = next; |
| 1292 | } |
| 1293 | |
| 1294 | return 0; |
| 1295 | } |
| 1296 | early_param("cfi", cfi_parse_cmdline); |
| 1297 | |
| 1298 | /* |
| 1299 | * kCFI FineIBT |
| 1300 | * |
| 1301 | * __cfi_\func: __cfi_\func: |
| 1302 | * movl $0x12345678,%eax // 5 endbr64 // 4 |
| 1303 | * nop subl $0x12345678,%r10d // 7 |
| 1304 | * nop jne __cfi_\func+6 // 2 |
| 1305 | * nop nop3 // 3 |
| 1306 | * nop |
| 1307 | * nop |
| 1308 | * nop |
| 1309 | * nop |
| 1310 | * nop |
| 1311 | * nop |
| 1312 | * nop |
| 1313 | * nop |
| 1314 | * |
| 1315 | * |
| 1316 | * caller: caller: |
| 1317 | * movl $(-0x12345678),%r10d // 6 movl $0x12345678,%r10d // 6 |
| 1318 | * addl $-15(%r11),%r10d // 4 lea -0x10(%r11),%r11 // 4 |
| 1319 | * je 1f // 2 nop4 // 4 |
| 1320 | * ud2 // 2 |
| 1321 | * 1: cs call __x86_indirect_thunk_r11 // 6 call *%r11; nop3; // 6 |
| 1322 | * |
| 1323 | */ |
| 1324 | |
| 1325 | /* |
| 1326 | * <fineibt_preamble_start>: |
| 1327 | * 0: f3 0f 1e fa endbr64 |
| 1328 | * 4: 41 81 <ea> 78 56 34 12 sub $0x12345678, %r10d |
| 1329 | * b: 75 f9 jne 6 <fineibt_preamble_start+0x6> |
| 1330 | * d: 0f 1f 00 nopl (%rax) |
| 1331 | * |
| 1332 | * Note that the JNE target is the 0xEA byte inside the SUB, this decodes as |
| 1333 | * (bad) on x86_64 and raises #UD. |
| 1334 | */ |
| 1335 | asm( ".pushsection .rodata \n" |
| 1336 | "fineibt_preamble_start: \n" |
| 1337 | " endbr64 \n" |
| 1338 | " subl $0x12345678, %r10d \n" |
| 1339 | "fineibt_preamble_bhi: \n" |
| 1340 | " jne fineibt_preamble_start+6 \n" |
| 1341 | ASM_NOP3 |
| 1342 | "fineibt_preamble_end: \n" |
| 1343 | ".popsection\n" |
| 1344 | ); |
| 1345 | |
| 1346 | extern u8 fineibt_preamble_start[]; |
| 1347 | extern u8 fineibt_preamble_bhi[]; |
| 1348 | extern u8 fineibt_preamble_end[]; |
| 1349 | |
| 1350 | #define fineibt_preamble_size (fineibt_preamble_end - fineibt_preamble_start) |
| 1351 | #define fineibt_preamble_bhi (fineibt_preamble_bhi - fineibt_preamble_start) |
| 1352 | #define fineibt_preamble_ud 6 |
| 1353 | #define fineibt_preamble_hash 7 |
| 1354 | |
| 1355 | /* |
| 1356 | * <fineibt_caller_start>: |
| 1357 | * 0: 41 ba 78 56 34 12 mov $0x12345678, %r10d |
| 1358 | * 6: 4d 8d 5b f0 lea -0x10(%r11), %r11 |
| 1359 | * a: 0f 1f 40 00 nopl 0x0(%rax) |
| 1360 | */ |
| 1361 | asm( ".pushsection .rodata \n" |
| 1362 | "fineibt_caller_start: \n" |
| 1363 | " movl $0x12345678, %r10d \n" |
| 1364 | " lea -0x10(%r11), %r11 \n" |
| 1365 | ASM_NOP4 |
| 1366 | "fineibt_caller_end: \n" |
| 1367 | ".popsection \n" |
| 1368 | ); |
| 1369 | |
| 1370 | extern u8 fineibt_caller_start[]; |
| 1371 | extern u8 fineibt_caller_end[]; |
| 1372 | |
| 1373 | #define fineibt_caller_size (fineibt_caller_end - fineibt_caller_start) |
| 1374 | #define fineibt_caller_hash 2 |
| 1375 | |
| 1376 | #define fineibt_caller_jmp (fineibt_caller_size - 2) |
| 1377 | |
| 1378 | /* |
| 1379 | * Since FineIBT does hash validation on the callee side it is prone to |
| 1380 | * circumvention attacks where a 'naked' ENDBR instruction exists that |
| 1381 | * is not part of the fineibt_preamble sequence. |
| 1382 | * |
| 1383 | * Notably the x86 entry points must be ENDBR and equally cannot be |
| 1384 | * fineibt_preamble. |
| 1385 | * |
| 1386 | * The fineibt_paranoid caller sequence adds additional caller side |
| 1387 | * hash validation. This stops such circumvention attacks dead, but at the cost |
| 1388 | * of adding a load. |
| 1389 | * |
| 1390 | * <fineibt_paranoid_start>: |
| 1391 | * 0: 41 ba 78 56 34 12 mov $0x12345678, %r10d |
| 1392 | * 6: 45 3b 53 f7 cmp -0x9(%r11), %r10d |
| 1393 | * a: 4d 8d 5b <f0> lea -0x10(%r11), %r11 |
| 1394 | * e: 75 fd jne d <fineibt_paranoid_start+0xd> |
| 1395 | * 10: 41 ff d3 call *%r11 |
| 1396 | * 13: 90 nop |
| 1397 | * |
| 1398 | * Notably LEA does not modify flags and can be reordered with the CMP, |
| 1399 | * avoiding a dependency. Again, using a non-taken (backwards) branch |
| 1400 | * for the failure case, abusing LEA's immediate 0xf0 as LOCK prefix for the |
| 1401 | * Jcc.d8, causing #UD. |
| 1402 | */ |
| 1403 | asm( ".pushsection .rodata \n" |
| 1404 | "fineibt_paranoid_start: \n" |
| 1405 | " movl $0x12345678, %r10d \n" |
| 1406 | " cmpl -9(%r11), %r10d \n" |
| 1407 | " lea -0x10(%r11), %r11 \n" |
| 1408 | " jne fineibt_paranoid_start+0xd \n" |
| 1409 | "fineibt_paranoid_ind: \n" |
| 1410 | " call *%r11 \n" |
| 1411 | " nop \n" |
| 1412 | "fineibt_paranoid_end: \n" |
| 1413 | ".popsection \n" |
| 1414 | ); |
| 1415 | |
| 1416 | extern u8 fineibt_paranoid_start[]; |
| 1417 | extern u8 fineibt_paranoid_ind[]; |
| 1418 | extern u8 fineibt_paranoid_end[]; |
| 1419 | |
| 1420 | #define fineibt_paranoid_size (fineibt_paranoid_end - fineibt_paranoid_start) |
| 1421 | #define fineibt_paranoid_ind (fineibt_paranoid_ind - fineibt_paranoid_start) |
| 1422 | #define fineibt_paranoid_ud 0xd |
| 1423 | |
| 1424 | static u32 decode_preamble_hash(void *addr, int *reg) |
| 1425 | { |
| 1426 | u8 *p = addr; |
| 1427 | |
| 1428 | /* b8+reg 78 56 34 12 movl $0x12345678,\reg */ |
| 1429 | if (p[0] >= 0xb8 && p[0] < 0xc0) { |
| 1430 | if (reg) |
| 1431 | *reg = p[0] - 0xb8; |
| 1432 | return *(u32 *)(addr + 1); |
| 1433 | } |
| 1434 | |
| 1435 | return 0; /* invalid hash value */ |
| 1436 | } |
| 1437 | |
| 1438 | static u32 decode_caller_hash(void *addr) |
| 1439 | { |
| 1440 | u8 *p = addr; |
| 1441 | |
| 1442 | /* 41 ba 88 a9 cb ed mov $(-0x12345678),%r10d */ |
| 1443 | if (p[0] == 0x41 && p[1] == 0xba) |
| 1444 | return -*(u32 *)(addr + 2); |
| 1445 | |
| 1446 | /* e8 0c 88 a9 cb ed jmp.d8 +12 */ |
| 1447 | if (p[0] == JMP8_INSN_OPCODE && p[1] == fineibt_caller_jmp) |
| 1448 | return -*(u32 *)(addr + 2); |
| 1449 | |
| 1450 | return 0; /* invalid hash value */ |
| 1451 | } |
| 1452 | |
| 1453 | /* .retpoline_sites */ |
| 1454 | static int cfi_disable_callers(s32 *start, s32 *end) |
| 1455 | { |
| 1456 | /* |
| 1457 | * Disable kCFI by patching in a JMP.d8, this leaves the hash immediate |
| 1458 | * in tact for later usage. Also see decode_caller_hash() and |
| 1459 | * cfi_rewrite_callers(). |
| 1460 | */ |
| 1461 | const u8 jmp[] = { JMP8_INSN_OPCODE, fineibt_caller_jmp }; |
| 1462 | s32 *s; |
| 1463 | |
| 1464 | for (s = start; s < end; s++) { |
| 1465 | void *addr = (void *)s + *s; |
| 1466 | u32 hash; |
| 1467 | |
| 1468 | addr -= fineibt_caller_size; |
| 1469 | hash = decode_caller_hash(addr); |
| 1470 | if (!hash) /* nocfi callers */ |
| 1471 | continue; |
| 1472 | |
| 1473 | text_poke_early(addr, jmp, 2); |
| 1474 | } |
| 1475 | |
| 1476 | return 0; |
| 1477 | } |
| 1478 | |
| 1479 | static int cfi_enable_callers(s32 *start, s32 *end) |
| 1480 | { |
| 1481 | /* |
| 1482 | * Re-enable kCFI, undo what cfi_disable_callers() did. |
| 1483 | */ |
| 1484 | const u8 mov[] = { 0x41, 0xba }; |
| 1485 | s32 *s; |
| 1486 | |
| 1487 | for (s = start; s < end; s++) { |
| 1488 | void *addr = (void *)s + *s; |
| 1489 | u32 hash; |
| 1490 | |
| 1491 | addr -= fineibt_caller_size; |
| 1492 | hash = decode_caller_hash(addr); |
| 1493 | if (!hash) /* nocfi callers */ |
| 1494 | continue; |
| 1495 | |
| 1496 | text_poke_early(addr, mov, 2); |
| 1497 | } |
| 1498 | |
| 1499 | return 0; |
| 1500 | } |
| 1501 | |
| 1502 | /* .cfi_sites */ |
| 1503 | static int cfi_rand_preamble(s32 *start, s32 *end) |
| 1504 | { |
| 1505 | s32 *s; |
| 1506 | |
| 1507 | for (s = start; s < end; s++) { |
| 1508 | void *addr = (void *)s + *s; |
| 1509 | u32 hash; |
| 1510 | |
| 1511 | hash = decode_preamble_hash(addr, NULL); |
| 1512 | if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n", |
| 1513 | addr, addr, 5, addr)) |
| 1514 | return -EINVAL; |
| 1515 | |
| 1516 | hash = cfi_rehash(hash); |
| 1517 | text_poke_early(addr + 1, &hash, 4); |
| 1518 | } |
| 1519 | |
| 1520 | return 0; |
| 1521 | } |
| 1522 | |
| 1523 | static void cfi_fineibt_bhi_preamble(void *addr, int arity) |
| 1524 | { |
| 1525 | if (!arity) |
| 1526 | return; |
| 1527 | |
| 1528 | if (!cfi_warn && arity == 1) { |
| 1529 | /* |
| 1530 | * Crazy scheme to allow arity-1 inline: |
| 1531 | * |
| 1532 | * __cfi_foo: |
| 1533 | * 0: f3 0f 1e fa endbr64 |
| 1534 | * 4: 41 81 <ea> 78 56 34 12 sub 0x12345678, %r10d |
| 1535 | * b: 49 0f 45 fa cmovne %r10, %rdi |
| 1536 | * f: 75 f5 jne __cfi_foo+6 |
| 1537 | * 11: 0f 1f 00 nopl (%rax) |
| 1538 | * |
| 1539 | * Code that direct calls to foo()+0, decodes the tail end as: |
| 1540 | * |
| 1541 | * foo: |
| 1542 | * 0: f5 cmc |
| 1543 | * 1: 0f 1f 00 nopl (%rax) |
| 1544 | * |
| 1545 | * which clobbers CF, but does not affect anything ABI |
| 1546 | * wise. |
| 1547 | * |
| 1548 | * Notably, this scheme is incompatible with permissive CFI |
| 1549 | * because the CMOVcc is unconditional and RDI will have been |
| 1550 | * clobbered. |
| 1551 | */ |
| 1552 | const u8 magic[9] = { |
| 1553 | 0x49, 0x0f, 0x45, 0xfa, |
| 1554 | 0x75, 0xf5, |
| 1555 | BYTES_NOP3, |
| 1556 | }; |
| 1557 | |
| 1558 | text_poke_early(addr + fineibt_preamble_bhi, magic, 9); |
| 1559 | |
| 1560 | return; |
| 1561 | } |
| 1562 | |
| 1563 | text_poke_early(addr + fineibt_preamble_bhi, |
| 1564 | text_gen_insn(CALL_INSN_OPCODE, |
| 1565 | addr + fineibt_preamble_bhi, |
| 1566 | __bhi_args[arity]), |
| 1567 | CALL_INSN_SIZE); |
| 1568 | } |
| 1569 | |
| 1570 | static int cfi_rewrite_preamble(s32 *start, s32 *end) |
| 1571 | { |
| 1572 | s32 *s; |
| 1573 | |
| 1574 | for (s = start; s < end; s++) { |
| 1575 | void *addr = (void *)s + *s; |
| 1576 | int arity; |
| 1577 | u32 hash; |
| 1578 | |
| 1579 | /* |
| 1580 | * When the function doesn't start with ENDBR the compiler will |
| 1581 | * have determined there are no indirect calls to it and we |
| 1582 | * don't need no CFI either. |
| 1583 | */ |
| 1584 | if (!is_endbr(addr + 16)) |
| 1585 | continue; |
| 1586 | |
| 1587 | hash = decode_preamble_hash(addr, &arity); |
| 1588 | if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n", |
| 1589 | addr, addr, 5, addr)) |
| 1590 | return -EINVAL; |
| 1591 | |
| 1592 | text_poke_early(addr, fineibt_preamble_start, fineibt_preamble_size); |
| 1593 | WARN_ON(*(u32 *)(addr + fineibt_preamble_hash) != 0x12345678); |
| 1594 | text_poke_early(addr + fineibt_preamble_hash, &hash, 4); |
| 1595 | |
| 1596 | WARN_ONCE(!IS_ENABLED(CONFIG_FINEIBT_BHI) && arity, |
| 1597 | "kCFI preamble has wrong register at: %pS %*ph\n", |
| 1598 | addr, 5, addr); |
| 1599 | |
| 1600 | if (cfi_bhi) |
| 1601 | cfi_fineibt_bhi_preamble(addr, arity); |
| 1602 | } |
| 1603 | |
| 1604 | return 0; |
| 1605 | } |
| 1606 | |
| 1607 | static void cfi_rewrite_endbr(s32 *start, s32 *end) |
| 1608 | { |
| 1609 | s32 *s; |
| 1610 | |
| 1611 | for (s = start; s < end; s++) { |
| 1612 | void *addr = (void *)s + *s; |
| 1613 | |
| 1614 | if (!exact_endbr(addr + 16)) |
| 1615 | continue; |
| 1616 | |
| 1617 | poison_endbr(addr + 16); |
| 1618 | } |
| 1619 | } |
| 1620 | |
| 1621 | /* .retpoline_sites */ |
| 1622 | static int cfi_rand_callers(s32 *start, s32 *end) |
| 1623 | { |
| 1624 | s32 *s; |
| 1625 | |
| 1626 | for (s = start; s < end; s++) { |
| 1627 | void *addr = (void *)s + *s; |
| 1628 | u32 hash; |
| 1629 | |
| 1630 | addr -= fineibt_caller_size; |
| 1631 | hash = decode_caller_hash(addr); |
| 1632 | if (hash) { |
| 1633 | hash = -cfi_rehash(hash); |
| 1634 | text_poke_early(addr + 2, &hash, 4); |
| 1635 | } |
| 1636 | } |
| 1637 | |
| 1638 | return 0; |
| 1639 | } |
| 1640 | |
| 1641 | static int emit_paranoid_trampoline(void *addr, struct insn *insn, int reg, u8 *bytes) |
| 1642 | { |
| 1643 | u8 *thunk = (void *)__x86_indirect_its_thunk_array[reg] - 2; |
| 1644 | |
| 1645 | #ifdef CONFIG_MITIGATION_ITS |
| 1646 | u8 *tmp = its_allocate_thunk(reg); |
| 1647 | if (tmp) |
| 1648 | thunk = tmp; |
| 1649 | #endif |
| 1650 | |
| 1651 | return __emit_trampoline(addr, insn, bytes, thunk, thunk); |
| 1652 | } |
| 1653 | |
| 1654 | static int cfi_rewrite_callers(s32 *start, s32 *end) |
| 1655 | { |
| 1656 | s32 *s; |
| 1657 | |
| 1658 | BUG_ON(fineibt_paranoid_size != 20); |
| 1659 | |
| 1660 | for (s = start; s < end; s++) { |
| 1661 | void *addr = (void *)s + *s; |
| 1662 | struct insn insn; |
| 1663 | u8 bytes[20]; |
| 1664 | u32 hash; |
| 1665 | int ret; |
| 1666 | u8 op; |
| 1667 | |
| 1668 | addr -= fineibt_caller_size; |
| 1669 | hash = decode_caller_hash(addr); |
| 1670 | if (!hash) |
| 1671 | continue; |
| 1672 | |
| 1673 | if (!cfi_paranoid) { |
| 1674 | text_poke_early(addr, fineibt_caller_start, fineibt_caller_size); |
| 1675 | WARN_ON(*(u32 *)(addr + fineibt_caller_hash) != 0x12345678); |
| 1676 | text_poke_early(addr + fineibt_caller_hash, &hash, 4); |
| 1677 | /* rely on apply_retpolines() */ |
| 1678 | continue; |
| 1679 | } |
| 1680 | |
| 1681 | /* cfi_paranoid */ |
| 1682 | ret = insn_decode_kernel(&insn, addr + fineibt_caller_size); |
| 1683 | if (WARN_ON_ONCE(ret < 0)) |
| 1684 | continue; |
| 1685 | |
| 1686 | op = insn.opcode.bytes[0]; |
| 1687 | if (op != CALL_INSN_OPCODE && op != JMP32_INSN_OPCODE) { |
| 1688 | WARN_ON_ONCE(1); |
| 1689 | continue; |
| 1690 | } |
| 1691 | |
| 1692 | memcpy(bytes, fineibt_paranoid_start, fineibt_paranoid_size); |
| 1693 | memcpy(bytes + fineibt_caller_hash, &hash, 4); |
| 1694 | |
| 1695 | if (cpu_wants_indirect_its_thunk_at((unsigned long)addr + fineibt_paranoid_ind, 11)) { |
| 1696 | emit_paranoid_trampoline(addr + fineibt_caller_size, |
| 1697 | &insn, 11, bytes + fineibt_caller_size); |
| 1698 | } else { |
| 1699 | ret = emit_indirect(op, 11, bytes + fineibt_paranoid_ind); |
| 1700 | if (WARN_ON_ONCE(ret != 3)) |
| 1701 | continue; |
| 1702 | } |
| 1703 | |
| 1704 | text_poke_early(addr, bytes, fineibt_paranoid_size); |
| 1705 | } |
| 1706 | |
| 1707 | return 0; |
| 1708 | } |
| 1709 | |
| 1710 | static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline, |
| 1711 | s32 *start_cfi, s32 *end_cfi, bool builtin) |
| 1712 | { |
| 1713 | int ret; |
| 1714 | |
| 1715 | if (WARN_ONCE(fineibt_preamble_size != 16, |
| 1716 | "FineIBT preamble wrong size: %ld", fineibt_preamble_size)) |
| 1717 | return; |
| 1718 | |
| 1719 | if (cfi_mode == CFI_AUTO) { |
| 1720 | cfi_mode = CFI_KCFI; |
| 1721 | if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT)) { |
| 1722 | /* |
| 1723 | * FRED has much saner context on exception entry and |
| 1724 | * is less easy to take advantage of. |
| 1725 | */ |
| 1726 | if (!cpu_feature_enabled(X86_FEATURE_FRED)) |
| 1727 | cfi_paranoid = true; |
| 1728 | cfi_mode = CFI_FINEIBT; |
| 1729 | } |
| 1730 | } |
| 1731 | |
| 1732 | /* |
| 1733 | * Rewrite the callers to not use the __cfi_ stubs, such that we might |
| 1734 | * rewrite them. This disables all CFI. If this succeeds but any of the |
| 1735 | * later stages fails, we're without CFI. |
| 1736 | */ |
| 1737 | ret = cfi_disable_callers(start_retpoline, end_retpoline); |
| 1738 | if (ret) |
| 1739 | goto err; |
| 1740 | |
| 1741 | if (cfi_rand) { |
| 1742 | if (builtin) { |
| 1743 | cfi_seed = get_random_u32(); |
| 1744 | cfi_bpf_hash = cfi_rehash(cfi_bpf_hash); |
| 1745 | cfi_bpf_subprog_hash = cfi_rehash(cfi_bpf_subprog_hash); |
| 1746 | } |
| 1747 | |
| 1748 | ret = cfi_rand_preamble(start_cfi, end_cfi); |
| 1749 | if (ret) |
| 1750 | goto err; |
| 1751 | |
| 1752 | ret = cfi_rand_callers(start_retpoline, end_retpoline); |
| 1753 | if (ret) |
| 1754 | goto err; |
| 1755 | } |
| 1756 | |
| 1757 | switch (cfi_mode) { |
| 1758 | case CFI_OFF: |
| 1759 | if (builtin) |
| 1760 | pr_info("Disabling CFI\n"); |
| 1761 | return; |
| 1762 | |
| 1763 | case CFI_KCFI: |
| 1764 | ret = cfi_enable_callers(start_retpoline, end_retpoline); |
| 1765 | if (ret) |
| 1766 | goto err; |
| 1767 | |
| 1768 | if (builtin) |
| 1769 | pr_info("Using kCFI\n"); |
| 1770 | return; |
| 1771 | |
| 1772 | case CFI_FINEIBT: |
| 1773 | /* place the FineIBT preamble at func()-16 */ |
| 1774 | ret = cfi_rewrite_preamble(start_cfi, end_cfi); |
| 1775 | if (ret) |
| 1776 | goto err; |
| 1777 | |
| 1778 | /* rewrite the callers to target func()-16 */ |
| 1779 | ret = cfi_rewrite_callers(start_retpoline, end_retpoline); |
| 1780 | if (ret) |
| 1781 | goto err; |
| 1782 | |
| 1783 | /* now that nobody targets func()+0, remove ENDBR there */ |
| 1784 | cfi_rewrite_endbr(start_cfi, end_cfi); |
| 1785 | |
| 1786 | if (builtin) { |
| 1787 | pr_info("Using %sFineIBT%s CFI\n", |
| 1788 | cfi_paranoid ? "paranoid " : "", |
| 1789 | cfi_bhi ? "+BHI" : ""); |
| 1790 | } |
| 1791 | return; |
| 1792 | |
| 1793 | default: |
| 1794 | break; |
| 1795 | } |
| 1796 | |
| 1797 | err: |
| 1798 | pr_err("Something went horribly wrong trying to rewrite the CFI implementation.\n"); |
| 1799 | } |
| 1800 | |
| 1801 | static inline void poison_hash(void *addr) |
| 1802 | { |
| 1803 | *(u32 *)addr = 0; |
| 1804 | } |
| 1805 | |
| 1806 | static void poison_cfi(void *addr) |
| 1807 | { |
| 1808 | /* |
| 1809 | * Compilers manage to be inconsistent with ENDBR vs __cfi prefixes, |
| 1810 | * some (static) functions for which they can determine the address |
| 1811 | * is never taken do not get a __cfi prefix, but *DO* get an ENDBR. |
| 1812 | * |
| 1813 | * As such, these functions will get sealed, but we need to be careful |
| 1814 | * to not unconditionally scribble the previous function. |
| 1815 | */ |
| 1816 | switch (cfi_mode) { |
| 1817 | case CFI_FINEIBT: |
| 1818 | /* |
| 1819 | * FineIBT prefix should start with an ENDBR. |
| 1820 | */ |
| 1821 | if (!is_endbr(addr)) |
| 1822 | break; |
| 1823 | |
| 1824 | /* |
| 1825 | * __cfi_\func: |
| 1826 | * osp nopl (%rax) |
| 1827 | * subl $0, %r10d |
| 1828 | * jz 1f |
| 1829 | * ud2 |
| 1830 | * 1: nop |
| 1831 | */ |
| 1832 | poison_endbr(addr); |
| 1833 | poison_hash(addr + fineibt_preamble_hash); |
| 1834 | break; |
| 1835 | |
| 1836 | case CFI_KCFI: |
| 1837 | /* |
| 1838 | * kCFI prefix should start with a valid hash. |
| 1839 | */ |
| 1840 | if (!decode_preamble_hash(addr, NULL)) |
| 1841 | break; |
| 1842 | |
| 1843 | /* |
| 1844 | * __cfi_\func: |
| 1845 | * movl $0, %eax |
| 1846 | * .skip 11, 0x90 |
| 1847 | */ |
| 1848 | poison_hash(addr + 1); |
| 1849 | break; |
| 1850 | |
| 1851 | default: |
| 1852 | break; |
| 1853 | } |
| 1854 | } |
| 1855 | |
| 1856 | /* |
| 1857 | * When regs->ip points to a 0xEA byte in the FineIBT preamble, |
| 1858 | * return true and fill out target and type. |
| 1859 | * |
| 1860 | * We check the preamble by checking for the ENDBR instruction relative to the |
| 1861 | * 0xEA instruction. |
| 1862 | */ |
| 1863 | static bool decode_fineibt_preamble(struct pt_regs *regs, unsigned long *target, u32 *type) |
| 1864 | { |
| 1865 | unsigned long addr = regs->ip - fineibt_preamble_ud; |
| 1866 | u32 hash; |
| 1867 | |
| 1868 | if (!exact_endbr((void *)addr)) |
| 1869 | return false; |
| 1870 | |
| 1871 | *target = addr + fineibt_preamble_size; |
| 1872 | |
| 1873 | __get_kernel_nofault(&hash, addr + fineibt_preamble_hash, u32, Efault); |
| 1874 | *type = (u32)regs->r10 + hash; |
| 1875 | |
| 1876 | /* |
| 1877 | * Since regs->ip points to the middle of an instruction; it cannot |
| 1878 | * continue with the normal fixup. |
| 1879 | */ |
| 1880 | regs->ip = *target; |
| 1881 | |
| 1882 | return true; |
| 1883 | |
| 1884 | Efault: |
| 1885 | return false; |
| 1886 | } |
| 1887 | |
| 1888 | /* |
| 1889 | * regs->ip points to one of the UD2 in __bhi_args[]. |
| 1890 | */ |
| 1891 | static bool decode_fineibt_bhi(struct pt_regs *regs, unsigned long *target, u32 *type) |
| 1892 | { |
| 1893 | unsigned long addr; |
| 1894 | u32 hash; |
| 1895 | |
| 1896 | if (!cfi_bhi) |
| 1897 | return false; |
| 1898 | |
| 1899 | if (regs->ip < (unsigned long)__bhi_args || |
| 1900 | regs->ip >= (unsigned long)__bhi_args_end) |
| 1901 | return false; |
| 1902 | |
| 1903 | /* |
| 1904 | * Fetch the return address from the stack, this points to the |
| 1905 | * FineIBT preamble. Since the CALL instruction is in the 5 last |
| 1906 | * bytes of the preamble, the return address is in fact the target |
| 1907 | * address. |
| 1908 | */ |
| 1909 | __get_kernel_nofault(&addr, regs->sp, unsigned long, Efault); |
| 1910 | *target = addr; |
| 1911 | |
| 1912 | addr -= fineibt_preamble_size; |
| 1913 | if (!exact_endbr((void *)addr)) |
| 1914 | return false; |
| 1915 | |
| 1916 | __get_kernel_nofault(&hash, addr + fineibt_preamble_hash, u32, Efault); |
| 1917 | *type = (u32)regs->r10 + hash; |
| 1918 | |
| 1919 | /* |
| 1920 | * The UD2 sites are constructed with a RET immediately following, |
| 1921 | * as such the non-fatal case can use the regular fixup. |
| 1922 | */ |
| 1923 | return true; |
| 1924 | |
| 1925 | Efault: |
| 1926 | return false; |
| 1927 | } |
| 1928 | |
| 1929 | static bool is_paranoid_thunk(unsigned long addr) |
| 1930 | { |
| 1931 | u32 thunk; |
| 1932 | |
| 1933 | __get_kernel_nofault(&thunk, (u32 *)addr, u32, Efault); |
| 1934 | return (thunk & 0x00FFFFFF) == 0xfd75ea; |
| 1935 | |
| 1936 | Efault: |
| 1937 | return false; |
| 1938 | } |
| 1939 | |
| 1940 | /* |
| 1941 | * regs->ip points to a LOCK Jcc.d8 instruction from the fineibt_paranoid_start[] |
| 1942 | * sequence, or to an invalid instruction (0xea) + Jcc.d8 for cfi_paranoid + ITS |
| 1943 | * thunk. |
| 1944 | */ |
| 1945 | static bool decode_fineibt_paranoid(struct pt_regs *regs, unsigned long *target, u32 *type) |
| 1946 | { |
| 1947 | unsigned long addr = regs->ip - fineibt_paranoid_ud; |
| 1948 | |
| 1949 | if (!cfi_paranoid) |
| 1950 | return false; |
| 1951 | |
| 1952 | if (is_cfi_trap(addr + fineibt_caller_size - LEN_UD2)) { |
| 1953 | *target = regs->r11 + fineibt_preamble_size; |
| 1954 | *type = regs->r10; |
| 1955 | |
| 1956 | /* |
| 1957 | * Since the trapping instruction is the exact, but LOCK prefixed, |
| 1958 | * Jcc.d8 that got us here, the normal fixup will work. |
| 1959 | */ |
| 1960 | return true; |
| 1961 | } |
| 1962 | |
| 1963 | /* |
| 1964 | * The cfi_paranoid + ITS thunk combination results in: |
| 1965 | * |
| 1966 | * 0: 41 ba 78 56 34 12 mov $0x12345678, %r10d |
| 1967 | * 6: 45 3b 53 f7 cmp -0x9(%r11), %r10d |
| 1968 | * a: 4d 8d 5b f0 lea -0x10(%r11), %r11 |
| 1969 | * e: 2e e8 XX XX XX XX cs call __x86_indirect_paranoid_thunk_r11 |
| 1970 | * |
| 1971 | * Where the paranoid_thunk looks like: |
| 1972 | * |
| 1973 | * 1d: <ea> (bad) |
| 1974 | * __x86_indirect_paranoid_thunk_r11: |
| 1975 | * 1e: 75 fd jne 1d |
| 1976 | * __x86_indirect_its_thunk_r11: |
| 1977 | * 20: 41 ff eb jmp *%r11 |
| 1978 | * 23: cc int3 |
| 1979 | * |
| 1980 | */ |
| 1981 | if (is_paranoid_thunk(regs->ip)) { |
| 1982 | *target = regs->r11 + fineibt_preamble_size; |
| 1983 | *type = regs->r10; |
| 1984 | |
| 1985 | regs->ip = *target; |
| 1986 | return true; |
| 1987 | } |
| 1988 | |
| 1989 | return false; |
| 1990 | } |
| 1991 | |
| 1992 | bool decode_fineibt_insn(struct pt_regs *regs, unsigned long *target, u32 *type) |
| 1993 | { |
| 1994 | if (decode_fineibt_paranoid(regs, target, type)) |
| 1995 | return true; |
| 1996 | |
| 1997 | if (decode_fineibt_bhi(regs, target, type)) |
| 1998 | return true; |
| 1999 | |
| 2000 | return decode_fineibt_preamble(regs, target, type); |
| 2001 | } |
| 2002 | |
| 2003 | #else /* !CONFIG_FINEIBT: */ |
| 2004 | |
| 2005 | static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline, |
| 2006 | s32 *start_cfi, s32 *end_cfi, bool builtin) |
| 2007 | { |
| 2008 | } |
| 2009 | |
| 2010 | #ifdef CONFIG_X86_KERNEL_IBT |
| 2011 | static void poison_cfi(void *addr) { } |
| 2012 | #endif |
| 2013 | |
| 2014 | #endif /* !CONFIG_FINEIBT */ |
| 2015 | |
| 2016 | void apply_fineibt(s32 *start_retpoline, s32 *end_retpoline, |
| 2017 | s32 *start_cfi, s32 *end_cfi) |
| 2018 | { |
| 2019 | return __apply_fineibt(start_retpoline, end_retpoline, |
| 2020 | start_cfi, end_cfi, |
| 2021 | /* .builtin = */ false); |
| 2022 | } |
| 2023 | |
| 2024 | #ifdef CONFIG_SMP |
| 2025 | static void alternatives_smp_lock(const s32 *start, const s32 *end, |
| 2026 | u8 *text, u8 *text_end) |
| 2027 | { |
| 2028 | const s32 *poff; |
| 2029 | |
| 2030 | for (poff = start; poff < end; poff++) { |
| 2031 | u8 *ptr = (u8 *)poff + *poff; |
| 2032 | |
| 2033 | if (!*poff || ptr < text || ptr >= text_end) |
| 2034 | continue; |
| 2035 | /* turn DS segment override prefix into lock prefix */ |
| 2036 | if (*ptr == 0x3e) |
| 2037 | text_poke(ptr, ((unsigned char []){0xf0}), 1); |
| 2038 | } |
| 2039 | } |
| 2040 | |
| 2041 | static void alternatives_smp_unlock(const s32 *start, const s32 *end, |
| 2042 | u8 *text, u8 *text_end) |
| 2043 | { |
| 2044 | const s32 *poff; |
| 2045 | |
| 2046 | for (poff = start; poff < end; poff++) { |
| 2047 | u8 *ptr = (u8 *)poff + *poff; |
| 2048 | |
| 2049 | if (!*poff || ptr < text || ptr >= text_end) |
| 2050 | continue; |
| 2051 | /* turn lock prefix into DS segment override prefix */ |
| 2052 | if (*ptr == 0xf0) |
| 2053 | text_poke(ptr, ((unsigned char []){0x3E}), 1); |
| 2054 | } |
| 2055 | } |
| 2056 | |
| 2057 | struct smp_alt_module { |
| 2058 | /* what is this ??? */ |
| 2059 | struct module *mod; |
| 2060 | char *name; |
| 2061 | |
| 2062 | /* ptrs to lock prefixes */ |
| 2063 | const s32 *locks; |
| 2064 | const s32 *locks_end; |
| 2065 | |
| 2066 | /* .text segment, needed to avoid patching init code ;) */ |
| 2067 | u8 *text; |
| 2068 | u8 *text_end; |
| 2069 | |
| 2070 | struct list_head next; |
| 2071 | }; |
| 2072 | static LIST_HEAD(smp_alt_modules); |
| 2073 | static bool uniproc_patched = false; /* protected by text_mutex */ |
| 2074 | |
| 2075 | void __init_or_module alternatives_smp_module_add(struct module *mod, |
| 2076 | char *name, |
| 2077 | void *locks, void *locks_end, |
| 2078 | void *text, void *text_end) |
| 2079 | { |
| 2080 | struct smp_alt_module *smp; |
| 2081 | |
| 2082 | mutex_lock(&text_mutex); |
| 2083 | if (!uniproc_patched) |
| 2084 | goto unlock; |
| 2085 | |
| 2086 | if (num_possible_cpus() == 1) |
| 2087 | /* Don't bother remembering, we'll never have to undo it. */ |
| 2088 | goto smp_unlock; |
| 2089 | |
| 2090 | smp = kzalloc(sizeof(*smp), GFP_KERNEL); |
| 2091 | if (NULL == smp) |
| 2092 | /* we'll run the (safe but slow) SMP code then ... */ |
| 2093 | goto unlock; |
| 2094 | |
| 2095 | smp->mod = mod; |
| 2096 | smp->name = name; |
| 2097 | smp->locks = locks; |
| 2098 | smp->locks_end = locks_end; |
| 2099 | smp->text = text; |
| 2100 | smp->text_end = text_end; |
| 2101 | DPRINTK(SMP, "locks %p -> %p, text %p -> %p, name %s\n", |
| 2102 | smp->locks, smp->locks_end, |
| 2103 | smp->text, smp->text_end, smp->name); |
| 2104 | |
| 2105 | list_add_tail(&smp->next, &smp_alt_modules); |
| 2106 | smp_unlock: |
| 2107 | alternatives_smp_unlock(locks, locks_end, text, text_end); |
| 2108 | unlock: |
| 2109 | mutex_unlock(&text_mutex); |
| 2110 | } |
| 2111 | |
| 2112 | void __init_or_module alternatives_smp_module_del(struct module *mod) |
| 2113 | { |
| 2114 | struct smp_alt_module *item; |
| 2115 | |
| 2116 | mutex_lock(&text_mutex); |
| 2117 | list_for_each_entry(item, &smp_alt_modules, next) { |
| 2118 | if (mod != item->mod) |
| 2119 | continue; |
| 2120 | list_del(&item->next); |
| 2121 | kfree(item); |
| 2122 | break; |
| 2123 | } |
| 2124 | mutex_unlock(&text_mutex); |
| 2125 | } |
| 2126 | |
| 2127 | void alternatives_enable_smp(void) |
| 2128 | { |
| 2129 | struct smp_alt_module *mod; |
| 2130 | |
| 2131 | /* Why bother if there are no other CPUs? */ |
| 2132 | BUG_ON(num_possible_cpus() == 1); |
| 2133 | |
| 2134 | mutex_lock(&text_mutex); |
| 2135 | |
| 2136 | if (uniproc_patched) { |
| 2137 | pr_info("switching to SMP code\n"); |
| 2138 | BUG_ON(num_online_cpus() != 1); |
| 2139 | clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP); |
| 2140 | clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP); |
| 2141 | list_for_each_entry(mod, &smp_alt_modules, next) |
| 2142 | alternatives_smp_lock(mod->locks, mod->locks_end, |
| 2143 | mod->text, mod->text_end); |
| 2144 | uniproc_patched = false; |
| 2145 | } |
| 2146 | mutex_unlock(&text_mutex); |
| 2147 | } |
| 2148 | |
| 2149 | /* |
| 2150 | * Return 1 if the address range is reserved for SMP-alternatives. |
| 2151 | * Must hold text_mutex. |
| 2152 | */ |
| 2153 | int alternatives_text_reserved(void *start, void *end) |
| 2154 | { |
| 2155 | struct smp_alt_module *mod; |
| 2156 | const s32 *poff; |
| 2157 | u8 *text_start = start; |
| 2158 | u8 *text_end = end; |
| 2159 | |
| 2160 | lockdep_assert_held(&text_mutex); |
| 2161 | |
| 2162 | list_for_each_entry(mod, &smp_alt_modules, next) { |
| 2163 | if (mod->text > text_end || mod->text_end < text_start) |
| 2164 | continue; |
| 2165 | for (poff = mod->locks; poff < mod->locks_end; poff++) { |
| 2166 | const u8 *ptr = (const u8 *)poff + *poff; |
| 2167 | |
| 2168 | if (text_start <= ptr && text_end > ptr) |
| 2169 | return 1; |
| 2170 | } |
| 2171 | } |
| 2172 | |
| 2173 | return 0; |
| 2174 | } |
| 2175 | #endif /* CONFIG_SMP */ |
| 2176 | |
| 2177 | /* |
| 2178 | * Self-test for the INT3 based CALL emulation code. |
| 2179 | * |
| 2180 | * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up |
| 2181 | * properly and that there is a stack gap between the INT3 frame and the |
| 2182 | * previous context. Without this gap doing a virtual PUSH on the interrupted |
| 2183 | * stack would corrupt the INT3 IRET frame. |
| 2184 | * |
| 2185 | * See entry_{32,64}.S for more details. |
| 2186 | */ |
| 2187 | |
| 2188 | /* |
| 2189 | * We define the int3_magic() function in assembly to control the calling |
| 2190 | * convention such that we can 'call' it from assembly. |
| 2191 | */ |
| 2192 | |
| 2193 | extern void int3_magic(unsigned int *ptr); /* defined in asm */ |
| 2194 | |
| 2195 | asm ( |
| 2196 | " .pushsection .init.text, \"ax\", @progbits\n" |
| 2197 | " .type int3_magic, @function\n" |
| 2198 | "int3_magic:\n" |
| 2199 | ANNOTATE_NOENDBR |
| 2200 | " movl $1, (%" _ASM_ARG1 ")\n" |
| 2201 | ASM_RET |
| 2202 | " .size int3_magic, .-int3_magic\n" |
| 2203 | " .popsection\n" |
| 2204 | ); |
| 2205 | |
| 2206 | extern void int3_selftest_ip(void); /* defined in asm below */ |
| 2207 | |
| 2208 | static int __init |
| 2209 | int3_exception_notify(struct notifier_block *self, unsigned long val, void *data) |
| 2210 | { |
| 2211 | unsigned long selftest = (unsigned long)&int3_selftest_ip; |
| 2212 | struct die_args *args = data; |
| 2213 | struct pt_regs *regs = args->regs; |
| 2214 | |
| 2215 | OPTIMIZER_HIDE_VAR(selftest); |
| 2216 | |
| 2217 | if (!regs || user_mode(regs)) |
| 2218 | return NOTIFY_DONE; |
| 2219 | |
| 2220 | if (val != DIE_INT3) |
| 2221 | return NOTIFY_DONE; |
| 2222 | |
| 2223 | if (regs->ip - INT3_INSN_SIZE != selftest) |
| 2224 | return NOTIFY_DONE; |
| 2225 | |
| 2226 | int3_emulate_call(regs, (unsigned long)&int3_magic); |
| 2227 | return NOTIFY_STOP; |
| 2228 | } |
| 2229 | |
| 2230 | /* Must be noinline to ensure uniqueness of int3_selftest_ip. */ |
| 2231 | static noinline void __init int3_selftest(void) |
| 2232 | { |
| 2233 | static __initdata struct notifier_block int3_exception_nb = { |
| 2234 | .notifier_call = int3_exception_notify, |
| 2235 | .priority = INT_MAX-1, /* last */ |
| 2236 | }; |
| 2237 | unsigned int val = 0; |
| 2238 | |
| 2239 | BUG_ON(register_die_notifier(&int3_exception_nb)); |
| 2240 | |
| 2241 | /* |
| 2242 | * Basically: int3_magic(&val); but really complicated :-) |
| 2243 | * |
| 2244 | * INT3 padded with NOP to CALL_INSN_SIZE. The int3_exception_nb |
| 2245 | * notifier above will emulate CALL for us. |
| 2246 | */ |
| 2247 | asm volatile ("int3_selftest_ip:\n\t" |
| 2248 | ANNOTATE_NOENDBR |
| 2249 | " int3; nop; nop; nop; nop\n\t" |
| 2250 | : ASM_CALL_CONSTRAINT |
| 2251 | : __ASM_SEL_RAW(a, D) (&val) |
| 2252 | : "memory"); |
| 2253 | |
| 2254 | BUG_ON(val != 1); |
| 2255 | |
| 2256 | unregister_die_notifier(&int3_exception_nb); |
| 2257 | } |
| 2258 | |
| 2259 | static __initdata int __alt_reloc_selftest_addr; |
| 2260 | |
| 2261 | extern void __init __alt_reloc_selftest(void *arg); |
| 2262 | __visible noinline void __init __alt_reloc_selftest(void *arg) |
| 2263 | { |
| 2264 | WARN_ON(arg != &__alt_reloc_selftest_addr); |
| 2265 | } |
| 2266 | |
| 2267 | static noinline void __init alt_reloc_selftest(void) |
| 2268 | { |
| 2269 | /* |
| 2270 | * Tests text_poke_apply_relocation(). |
| 2271 | * |
| 2272 | * This has a relative immediate (CALL) in a place other than the first |
| 2273 | * instruction and additionally on x86_64 we get a RIP-relative LEA: |
| 2274 | * |
| 2275 | * lea 0x0(%rip),%rdi # 5d0: R_X86_64_PC32 .init.data+0x5566c |
| 2276 | * call +0 # 5d5: R_X86_64_PLT32 __alt_reloc_selftest-0x4 |
| 2277 | * |
| 2278 | * Getting this wrong will either crash and burn or tickle the WARN |
| 2279 | * above. |
| 2280 | */ |
| 2281 | asm_inline volatile ( |
| 2282 | ALTERNATIVE("", "lea %[mem], %%" _ASM_ARG1 "; call __alt_reloc_selftest;", X86_FEATURE_ALWAYS) |
| 2283 | : ASM_CALL_CONSTRAINT |
| 2284 | : [mem] "m" (__alt_reloc_selftest_addr) |
| 2285 | : _ASM_ARG1 |
| 2286 | ); |
| 2287 | } |
| 2288 | |
| 2289 | void __init alternative_instructions(void) |
| 2290 | { |
| 2291 | u64 ibt; |
| 2292 | |
| 2293 | int3_selftest(); |
| 2294 | |
| 2295 | /* |
| 2296 | * The patching is not fully atomic, so try to avoid local |
| 2297 | * interruptions that might execute the to be patched code. |
| 2298 | * Other CPUs are not running. |
| 2299 | */ |
| 2300 | stop_nmi(); |
| 2301 | |
| 2302 | /* |
| 2303 | * Don't stop machine check exceptions while patching. |
| 2304 | * MCEs only happen when something got corrupted and in this |
| 2305 | * case we must do something about the corruption. |
| 2306 | * Ignoring it is worse than an unlikely patching race. |
| 2307 | * Also machine checks tend to be broadcast and if one CPU |
| 2308 | * goes into machine check the others follow quickly, so we don't |
| 2309 | * expect a machine check to cause undue problems during to code |
| 2310 | * patching. |
| 2311 | */ |
| 2312 | |
| 2313 | /* |
| 2314 | * Make sure to set (artificial) features depending on used paravirt |
| 2315 | * functions which can later influence alternative patching. |
| 2316 | */ |
| 2317 | paravirt_set_cap(); |
| 2318 | |
| 2319 | /* Keep CET-IBT disabled until caller/callee are patched */ |
| 2320 | ibt = ibt_save(/*disable*/ true); |
| 2321 | |
| 2322 | __apply_fineibt(__retpoline_sites, __retpoline_sites_end, |
| 2323 | __cfi_sites, __cfi_sites_end, true); |
| 2324 | |
| 2325 | /* |
| 2326 | * Rewrite the retpolines, must be done before alternatives since |
| 2327 | * those can rewrite the retpoline thunks. |
| 2328 | */ |
| 2329 | apply_retpolines(__retpoline_sites, __retpoline_sites_end); |
| 2330 | apply_returns(__return_sites, __return_sites_end); |
| 2331 | |
| 2332 | its_fini_core(); |
| 2333 | |
| 2334 | /* |
| 2335 | * Adjust all CALL instructions to point to func()-10, including |
| 2336 | * those in .altinstr_replacement. |
| 2337 | */ |
| 2338 | callthunks_patch_builtin_calls(); |
| 2339 | |
| 2340 | apply_alternatives(__alt_instructions, __alt_instructions_end); |
| 2341 | |
| 2342 | /* |
| 2343 | * Seal all functions that do not have their address taken. |
| 2344 | */ |
| 2345 | apply_seal_endbr(__ibt_endbr_seal, __ibt_endbr_seal_end); |
| 2346 | |
| 2347 | ibt_restore(ibt); |
| 2348 | |
| 2349 | #ifdef CONFIG_SMP |
| 2350 | /* Patch to UP if other cpus not imminent. */ |
| 2351 | if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) { |
| 2352 | uniproc_patched = true; |
| 2353 | alternatives_smp_module_add(NULL, "core kernel", |
| 2354 | __smp_locks, __smp_locks_end, |
| 2355 | _text, _etext); |
| 2356 | } |
| 2357 | |
| 2358 | if (!uniproc_patched || num_possible_cpus() == 1) { |
| 2359 | free_init_pages("SMP alternatives", |
| 2360 | (unsigned long)__smp_locks, |
| 2361 | (unsigned long)__smp_locks_end); |
| 2362 | } |
| 2363 | #endif |
| 2364 | |
| 2365 | restart_nmi(); |
| 2366 | alternatives_patched = 1; |
| 2367 | |
| 2368 | alt_reloc_selftest(); |
| 2369 | } |
| 2370 | |
| 2371 | /** |
| 2372 | * text_poke_early - Update instructions on a live kernel at boot time |
| 2373 | * @addr: address to modify |
| 2374 | * @opcode: source of the copy |
| 2375 | * @len: length to copy |
| 2376 | * |
| 2377 | * When you use this code to patch more than one byte of an instruction |
| 2378 | * you need to make sure that other CPUs cannot execute this code in parallel. |
| 2379 | * Also no thread must be currently preempted in the middle of these |
| 2380 | * instructions. And on the local CPU you need to be protected against NMI or |
| 2381 | * MCE handlers seeing an inconsistent instruction while you patch. |
| 2382 | */ |
| 2383 | void __init_or_module text_poke_early(void *addr, const void *opcode, |
| 2384 | size_t len) |
| 2385 | { |
| 2386 | unsigned long flags; |
| 2387 | |
| 2388 | if (boot_cpu_has(X86_FEATURE_NX) && |
| 2389 | is_module_text_address((unsigned long)addr)) { |
| 2390 | /* |
| 2391 | * Modules text is marked initially as non-executable, so the |
| 2392 | * code cannot be running and speculative code-fetches are |
| 2393 | * prevented. Just change the code. |
| 2394 | */ |
| 2395 | memcpy(addr, opcode, len); |
| 2396 | } else { |
| 2397 | local_irq_save(flags); |
| 2398 | memcpy(addr, opcode, len); |
| 2399 | sync_core(); |
| 2400 | local_irq_restore(flags); |
| 2401 | |
| 2402 | /* |
| 2403 | * Could also do a CLFLUSH here to speed up CPU recovery; but |
| 2404 | * that causes hangs on some VIA CPUs. |
| 2405 | */ |
| 2406 | } |
| 2407 | } |
| 2408 | |
| 2409 | __ro_after_init struct mm_struct *text_poke_mm; |
| 2410 | __ro_after_init unsigned long text_poke_mm_addr; |
| 2411 | |
| 2412 | static void text_poke_memcpy(void *dst, const void *src, size_t len) |
| 2413 | { |
| 2414 | memcpy(dst, src, len); |
| 2415 | } |
| 2416 | |
| 2417 | static void text_poke_memset(void *dst, const void *src, size_t len) |
| 2418 | { |
| 2419 | int c = *(const int *)src; |
| 2420 | |
| 2421 | memset(dst, c, len); |
| 2422 | } |
| 2423 | |
| 2424 | typedef void text_poke_f(void *dst, const void *src, size_t len); |
| 2425 | |
| 2426 | static void *__text_poke(text_poke_f func, void *addr, const void *src, size_t len) |
| 2427 | { |
| 2428 | bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE; |
| 2429 | struct page *pages[2] = {NULL}; |
| 2430 | struct mm_struct *prev_mm; |
| 2431 | unsigned long flags; |
| 2432 | pte_t pte, *ptep; |
| 2433 | spinlock_t *ptl; |
| 2434 | pgprot_t pgprot; |
| 2435 | |
| 2436 | /* |
| 2437 | * While boot memory allocator is running we cannot use struct pages as |
| 2438 | * they are not yet initialized. There is no way to recover. |
| 2439 | */ |
| 2440 | BUG_ON(!after_bootmem); |
| 2441 | |
| 2442 | if (!core_kernel_text((unsigned long)addr)) { |
| 2443 | pages[0] = vmalloc_to_page(addr); |
| 2444 | if (cross_page_boundary) |
| 2445 | pages[1] = vmalloc_to_page(addr + PAGE_SIZE); |
| 2446 | } else { |
| 2447 | pages[0] = virt_to_page(addr); |
| 2448 | WARN_ON(!PageReserved(pages[0])); |
| 2449 | if (cross_page_boundary) |
| 2450 | pages[1] = virt_to_page(addr + PAGE_SIZE); |
| 2451 | } |
| 2452 | /* |
| 2453 | * If something went wrong, crash and burn since recovery paths are not |
| 2454 | * implemented. |
| 2455 | */ |
| 2456 | BUG_ON(!pages[0] || (cross_page_boundary && !pages[1])); |
| 2457 | |
| 2458 | /* |
| 2459 | * Map the page without the global bit, as TLB flushing is done with |
| 2460 | * flush_tlb_mm_range(), which is intended for non-global PTEs. |
| 2461 | */ |
| 2462 | pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL); |
| 2463 | |
| 2464 | /* |
| 2465 | * The lock is not really needed, but this allows to avoid open-coding. |
| 2466 | */ |
| 2467 | ptep = get_locked_pte(text_poke_mm, text_poke_mm_addr, &ptl); |
| 2468 | |
| 2469 | /* |
| 2470 | * This must not fail; preallocated in poking_init(). |
| 2471 | */ |
| 2472 | VM_BUG_ON(!ptep); |
| 2473 | |
| 2474 | local_irq_save(flags); |
| 2475 | |
| 2476 | pte = mk_pte(pages[0], pgprot); |
| 2477 | set_pte_at(text_poke_mm, text_poke_mm_addr, ptep, pte); |
| 2478 | |
| 2479 | if (cross_page_boundary) { |
| 2480 | pte = mk_pte(pages[1], pgprot); |
| 2481 | set_pte_at(text_poke_mm, text_poke_mm_addr + PAGE_SIZE, ptep + 1, pte); |
| 2482 | } |
| 2483 | |
| 2484 | /* |
| 2485 | * Loading the temporary mm behaves as a compiler barrier, which |
| 2486 | * guarantees that the PTE will be set at the time memcpy() is done. |
| 2487 | */ |
| 2488 | prev_mm = use_temporary_mm(text_poke_mm); |
| 2489 | |
| 2490 | kasan_disable_current(); |
| 2491 | func((u8 *)text_poke_mm_addr + offset_in_page(addr), src, len); |
| 2492 | kasan_enable_current(); |
| 2493 | |
| 2494 | /* |
| 2495 | * Ensure that the PTE is only cleared after the instructions of memcpy |
| 2496 | * were issued by using a compiler barrier. |
| 2497 | */ |
| 2498 | barrier(); |
| 2499 | |
| 2500 | pte_clear(text_poke_mm, text_poke_mm_addr, ptep); |
| 2501 | if (cross_page_boundary) |
| 2502 | pte_clear(text_poke_mm, text_poke_mm_addr + PAGE_SIZE, ptep + 1); |
| 2503 | |
| 2504 | /* |
| 2505 | * Loading the previous page-table hierarchy requires a serializing |
| 2506 | * instruction that already allows the core to see the updated version. |
| 2507 | * Xen-PV is assumed to serialize execution in a similar manner. |
| 2508 | */ |
| 2509 | unuse_temporary_mm(prev_mm); |
| 2510 | |
| 2511 | /* |
| 2512 | * Flushing the TLB might involve IPIs, which would require enabled |
| 2513 | * IRQs, but not if the mm is not used, as it is in this point. |
| 2514 | */ |
| 2515 | flush_tlb_mm_range(text_poke_mm, text_poke_mm_addr, text_poke_mm_addr + |
| 2516 | (cross_page_boundary ? 2 : 1) * PAGE_SIZE, |
| 2517 | PAGE_SHIFT, false); |
| 2518 | |
| 2519 | if (func == text_poke_memcpy) { |
| 2520 | /* |
| 2521 | * If the text does not match what we just wrote then something is |
| 2522 | * fundamentally screwy; there's nothing we can really do about that. |
| 2523 | */ |
| 2524 | BUG_ON(memcmp(addr, src, len)); |
| 2525 | } |
| 2526 | |
| 2527 | local_irq_restore(flags); |
| 2528 | pte_unmap_unlock(ptep, ptl); |
| 2529 | return addr; |
| 2530 | } |
| 2531 | |
| 2532 | /** |
| 2533 | * text_poke - Update instructions on a live kernel |
| 2534 | * @addr: address to modify |
| 2535 | * @opcode: source of the copy |
| 2536 | * @len: length to copy |
| 2537 | * |
| 2538 | * Only atomic text poke/set should be allowed when not doing early patching. |
| 2539 | * It means the size must be writable atomically and the address must be aligned |
| 2540 | * in a way that permits an atomic write. It also makes sure we fit on a single |
| 2541 | * page. |
| 2542 | * |
| 2543 | * Note that the caller must ensure that if the modified code is part of a |
| 2544 | * module, the module would not be removed during poking. This can be achieved |
| 2545 | * by registering a module notifier, and ordering module removal and patching |
| 2546 | * through a mutex. |
| 2547 | */ |
| 2548 | void *text_poke(void *addr, const void *opcode, size_t len) |
| 2549 | { |
| 2550 | lockdep_assert_held(&text_mutex); |
| 2551 | |
| 2552 | return __text_poke(text_poke_memcpy, addr, opcode, len); |
| 2553 | } |
| 2554 | |
| 2555 | /** |
| 2556 | * text_poke_kgdb - Update instructions on a live kernel by kgdb |
| 2557 | * @addr: address to modify |
| 2558 | * @opcode: source of the copy |
| 2559 | * @len: length to copy |
| 2560 | * |
| 2561 | * Only atomic text poke/set should be allowed when not doing early patching. |
| 2562 | * It means the size must be writable atomically and the address must be aligned |
| 2563 | * in a way that permits an atomic write. It also makes sure we fit on a single |
| 2564 | * page. |
| 2565 | * |
| 2566 | * Context: should only be used by kgdb, which ensures no other core is running, |
| 2567 | * despite the fact it does not hold the text_mutex. |
| 2568 | */ |
| 2569 | void *text_poke_kgdb(void *addr, const void *opcode, size_t len) |
| 2570 | { |
| 2571 | return __text_poke(text_poke_memcpy, addr, opcode, len); |
| 2572 | } |
| 2573 | |
| 2574 | void *text_poke_copy_locked(void *addr, const void *opcode, size_t len, |
| 2575 | bool core_ok) |
| 2576 | { |
| 2577 | unsigned long start = (unsigned long)addr; |
| 2578 | size_t patched = 0; |
| 2579 | |
| 2580 | if (WARN_ON_ONCE(!core_ok && core_kernel_text(start))) |
| 2581 | return NULL; |
| 2582 | |
| 2583 | while (patched < len) { |
| 2584 | unsigned long ptr = start + patched; |
| 2585 | size_t s; |
| 2586 | |
| 2587 | s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched); |
| 2588 | |
| 2589 | __text_poke(text_poke_memcpy, (void *)ptr, opcode + patched, s); |
| 2590 | patched += s; |
| 2591 | } |
| 2592 | return addr; |
| 2593 | } |
| 2594 | |
| 2595 | /** |
| 2596 | * text_poke_copy - Copy instructions into (an unused part of) RX memory |
| 2597 | * @addr: address to modify |
| 2598 | * @opcode: source of the copy |
| 2599 | * @len: length to copy, could be more than 2x PAGE_SIZE |
| 2600 | * |
| 2601 | * Not safe against concurrent execution; useful for JITs to dump |
| 2602 | * new code blocks into unused regions of RX memory. Can be used in |
| 2603 | * conjunction with synchronize_rcu_tasks() to wait for existing |
| 2604 | * execution to quiesce after having made sure no existing functions |
| 2605 | * pointers are live. |
| 2606 | */ |
| 2607 | void *text_poke_copy(void *addr, const void *opcode, size_t len) |
| 2608 | { |
| 2609 | mutex_lock(&text_mutex); |
| 2610 | addr = text_poke_copy_locked(addr, opcode, len, false); |
| 2611 | mutex_unlock(&text_mutex); |
| 2612 | return addr; |
| 2613 | } |
| 2614 | |
| 2615 | /** |
| 2616 | * text_poke_set - memset into (an unused part of) RX memory |
| 2617 | * @addr: address to modify |
| 2618 | * @c: the byte to fill the area with |
| 2619 | * @len: length to copy, could be more than 2x PAGE_SIZE |
| 2620 | * |
| 2621 | * This is useful to overwrite unused regions of RX memory with illegal |
| 2622 | * instructions. |
| 2623 | */ |
| 2624 | void *text_poke_set(void *addr, int c, size_t len) |
| 2625 | { |
| 2626 | unsigned long start = (unsigned long)addr; |
| 2627 | size_t patched = 0; |
| 2628 | |
| 2629 | if (WARN_ON_ONCE(core_kernel_text(start))) |
| 2630 | return NULL; |
| 2631 | |
| 2632 | mutex_lock(&text_mutex); |
| 2633 | while (patched < len) { |
| 2634 | unsigned long ptr = start + patched; |
| 2635 | size_t s; |
| 2636 | |
| 2637 | s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched); |
| 2638 | |
| 2639 | __text_poke(text_poke_memset, (void *)ptr, (void *)&c, s); |
| 2640 | patched += s; |
| 2641 | } |
| 2642 | mutex_unlock(&text_mutex); |
| 2643 | return addr; |
| 2644 | } |
| 2645 | |
| 2646 | static void do_sync_core(void *info) |
| 2647 | { |
| 2648 | sync_core(); |
| 2649 | } |
| 2650 | |
| 2651 | void smp_text_poke_sync_each_cpu(void) |
| 2652 | { |
| 2653 | on_each_cpu(do_sync_core, NULL, 1); |
| 2654 | } |
| 2655 | |
| 2656 | /* |
| 2657 | * NOTE: crazy scheme to allow patching Jcc.d32 but not increase the size of |
| 2658 | * this thing. When len == 6 everything is prefixed with 0x0f and we map |
| 2659 | * opcode to Jcc.d8, using len to distinguish. |
| 2660 | */ |
| 2661 | struct smp_text_poke_loc { |
| 2662 | /* addr := _stext + rel_addr */ |
| 2663 | s32 rel_addr; |
| 2664 | s32 disp; |
| 2665 | u8 len; |
| 2666 | u8 opcode; |
| 2667 | const u8 text[TEXT_POKE_MAX_OPCODE_SIZE]; |
| 2668 | /* see smp_text_poke_batch_finish() */ |
| 2669 | u8 old; |
| 2670 | }; |
| 2671 | |
| 2672 | #define TEXT_POKE_ARRAY_MAX (PAGE_SIZE / sizeof(struct smp_text_poke_loc)) |
| 2673 | |
| 2674 | static struct smp_text_poke_array { |
| 2675 | struct smp_text_poke_loc vec[TEXT_POKE_ARRAY_MAX]; |
| 2676 | int nr_entries; |
| 2677 | } text_poke_array; |
| 2678 | |
| 2679 | static DEFINE_PER_CPU(atomic_t, text_poke_array_refs); |
| 2680 | |
| 2681 | /* |
| 2682 | * These four __always_inline annotations imply noinstr, necessary |
| 2683 | * due to smp_text_poke_int3_handler() being noinstr: |
| 2684 | */ |
| 2685 | |
| 2686 | static __always_inline bool try_get_text_poke_array(void) |
| 2687 | { |
| 2688 | atomic_t *refs = this_cpu_ptr(&text_poke_array_refs); |
| 2689 | |
| 2690 | if (!raw_atomic_inc_not_zero(refs)) |
| 2691 | return false; |
| 2692 | |
| 2693 | return true; |
| 2694 | } |
| 2695 | |
| 2696 | static __always_inline void put_text_poke_array(void) |
| 2697 | { |
| 2698 | atomic_t *refs = this_cpu_ptr(&text_poke_array_refs); |
| 2699 | |
| 2700 | smp_mb__before_atomic(); |
| 2701 | raw_atomic_dec(refs); |
| 2702 | } |
| 2703 | |
| 2704 | static __always_inline void *text_poke_addr(const struct smp_text_poke_loc *tpl) |
| 2705 | { |
| 2706 | return _stext + tpl->rel_addr; |
| 2707 | } |
| 2708 | |
| 2709 | static __always_inline int patch_cmp(const void *tpl_a, const void *tpl_b) |
| 2710 | { |
| 2711 | if (tpl_a < text_poke_addr(tpl_b)) |
| 2712 | return -1; |
| 2713 | if (tpl_a > text_poke_addr(tpl_b)) |
| 2714 | return 1; |
| 2715 | return 0; |
| 2716 | } |
| 2717 | |
| 2718 | noinstr int smp_text_poke_int3_handler(struct pt_regs *regs) |
| 2719 | { |
| 2720 | struct smp_text_poke_loc *tpl; |
| 2721 | int ret = 0; |
| 2722 | void *ip; |
| 2723 | |
| 2724 | if (user_mode(regs)) |
| 2725 | return 0; |
| 2726 | |
| 2727 | /* |
| 2728 | * Having observed our INT3 instruction, we now must observe |
| 2729 | * text_poke_array with non-zero refcount: |
| 2730 | * |
| 2731 | * text_poke_array_refs = 1 INT3 |
| 2732 | * WMB RMB |
| 2733 | * write INT3 if (text_poke_array_refs != 0) |
| 2734 | */ |
| 2735 | smp_rmb(); |
| 2736 | |
| 2737 | if (!try_get_text_poke_array()) |
| 2738 | return 0; |
| 2739 | |
| 2740 | /* |
| 2741 | * Discount the INT3. See smp_text_poke_batch_finish(). |
| 2742 | */ |
| 2743 | ip = (void *) regs->ip - INT3_INSN_SIZE; |
| 2744 | |
| 2745 | /* |
| 2746 | * Skip the binary search if there is a single member in the vector. |
| 2747 | */ |
| 2748 | if (unlikely(text_poke_array.nr_entries > 1)) { |
| 2749 | tpl = __inline_bsearch(ip, text_poke_array.vec, text_poke_array.nr_entries, |
| 2750 | sizeof(struct smp_text_poke_loc), |
| 2751 | patch_cmp); |
| 2752 | if (!tpl) |
| 2753 | goto out_put; |
| 2754 | } else { |
| 2755 | tpl = text_poke_array.vec; |
| 2756 | if (text_poke_addr(tpl) != ip) |
| 2757 | goto out_put; |
| 2758 | } |
| 2759 | |
| 2760 | ip += tpl->len; |
| 2761 | |
| 2762 | switch (tpl->opcode) { |
| 2763 | case INT3_INSN_OPCODE: |
| 2764 | /* |
| 2765 | * Someone poked an explicit INT3, they'll want to handle it, |
| 2766 | * do not consume. |
| 2767 | */ |
| 2768 | goto out_put; |
| 2769 | |
| 2770 | case RET_INSN_OPCODE: |
| 2771 | int3_emulate_ret(regs); |
| 2772 | break; |
| 2773 | |
| 2774 | case CALL_INSN_OPCODE: |
| 2775 | int3_emulate_call(regs, (long)ip + tpl->disp); |
| 2776 | break; |
| 2777 | |
| 2778 | case JMP32_INSN_OPCODE: |
| 2779 | case JMP8_INSN_OPCODE: |
| 2780 | int3_emulate_jmp(regs, (long)ip + tpl->disp); |
| 2781 | break; |
| 2782 | |
| 2783 | case 0x70 ... 0x7f: /* Jcc */ |
| 2784 | int3_emulate_jcc(regs, tpl->opcode & 0xf, (long)ip, tpl->disp); |
| 2785 | break; |
| 2786 | |
| 2787 | default: |
| 2788 | BUG(); |
| 2789 | } |
| 2790 | |
| 2791 | ret = 1; |
| 2792 | |
| 2793 | out_put: |
| 2794 | put_text_poke_array(); |
| 2795 | return ret; |
| 2796 | } |
| 2797 | |
| 2798 | /** |
| 2799 | * smp_text_poke_batch_finish() -- update instructions on live kernel on SMP |
| 2800 | * |
| 2801 | * Input state: |
| 2802 | * text_poke_array.vec: vector of instructions to patch |
| 2803 | * text_poke_array.nr_entries: number of entries in the vector |
| 2804 | * |
| 2805 | * Modify multi-byte instructions by using INT3 breakpoints on SMP. |
| 2806 | * We completely avoid using stop_machine() here, and achieve the |
| 2807 | * synchronization using INT3 breakpoints and SMP cross-calls. |
| 2808 | * |
| 2809 | * The way it is done: |
| 2810 | * - For each entry in the vector: |
| 2811 | * - add an INT3 trap to the address that will be patched |
| 2812 | * - SMP sync all CPUs |
| 2813 | * - For each entry in the vector: |
| 2814 | * - update all but the first byte of the patched range |
| 2815 | * - SMP sync all CPUs |
| 2816 | * - For each entry in the vector: |
| 2817 | * - replace the first byte (INT3) by the first byte of the |
| 2818 | * replacing opcode |
| 2819 | * - SMP sync all CPUs |
| 2820 | */ |
| 2821 | void smp_text_poke_batch_finish(void) |
| 2822 | { |
| 2823 | unsigned char int3 = INT3_INSN_OPCODE; |
| 2824 | unsigned int i; |
| 2825 | int do_sync; |
| 2826 | |
| 2827 | if (!text_poke_array.nr_entries) |
| 2828 | return; |
| 2829 | |
| 2830 | lockdep_assert_held(&text_mutex); |
| 2831 | |
| 2832 | /* |
| 2833 | * Corresponds to the implicit memory barrier in try_get_text_poke_array() to |
| 2834 | * ensure reading a non-zero refcount provides up to date text_poke_array data. |
| 2835 | */ |
| 2836 | for_each_possible_cpu(i) |
| 2837 | atomic_set_release(per_cpu_ptr(&text_poke_array_refs, i), 1); |
| 2838 | |
| 2839 | /* |
| 2840 | * Function tracing can enable thousands of places that need to be |
| 2841 | * updated. This can take quite some time, and with full kernel debugging |
| 2842 | * enabled, this could cause the softlockup watchdog to trigger. |
| 2843 | * This function gets called every 256 entries added to be patched. |
| 2844 | * Call cond_resched() here to make sure that other tasks can get scheduled |
| 2845 | * while processing all the functions being patched. |
| 2846 | */ |
| 2847 | cond_resched(); |
| 2848 | |
| 2849 | /* |
| 2850 | * Corresponding read barrier in INT3 notifier for making sure the |
| 2851 | * text_poke_array.nr_entries and handler are correctly ordered wrt. patching. |
| 2852 | */ |
| 2853 | smp_wmb(); |
| 2854 | |
| 2855 | /* |
| 2856 | * First step: add a INT3 trap to the address that will be patched. |
| 2857 | */ |
| 2858 | for (i = 0; i < text_poke_array.nr_entries; i++) { |
| 2859 | text_poke_array.vec[i].old = *(u8 *)text_poke_addr(&text_poke_array.vec[i]); |
| 2860 | text_poke(text_poke_addr(&text_poke_array.vec[i]), &int3, INT3_INSN_SIZE); |
| 2861 | } |
| 2862 | |
| 2863 | smp_text_poke_sync_each_cpu(); |
| 2864 | |
| 2865 | /* |
| 2866 | * Second step: update all but the first byte of the patched range. |
| 2867 | */ |
| 2868 | for (do_sync = 0, i = 0; i < text_poke_array.nr_entries; i++) { |
| 2869 | u8 old[TEXT_POKE_MAX_OPCODE_SIZE+1] = { text_poke_array.vec[i].old, }; |
| 2870 | u8 _new[TEXT_POKE_MAX_OPCODE_SIZE+1]; |
| 2871 | const u8 *new = text_poke_array.vec[i].text; |
| 2872 | int len = text_poke_array.vec[i].len; |
| 2873 | |
| 2874 | if (len - INT3_INSN_SIZE > 0) { |
| 2875 | memcpy(old + INT3_INSN_SIZE, |
| 2876 | text_poke_addr(&text_poke_array.vec[i]) + INT3_INSN_SIZE, |
| 2877 | len - INT3_INSN_SIZE); |
| 2878 | |
| 2879 | if (len == 6) { |
| 2880 | _new[0] = 0x0f; |
| 2881 | memcpy(_new + 1, new, 5); |
| 2882 | new = _new; |
| 2883 | } |
| 2884 | |
| 2885 | text_poke(text_poke_addr(&text_poke_array.vec[i]) + INT3_INSN_SIZE, |
| 2886 | new + INT3_INSN_SIZE, |
| 2887 | len - INT3_INSN_SIZE); |
| 2888 | |
| 2889 | do_sync++; |
| 2890 | } |
| 2891 | |
| 2892 | /* |
| 2893 | * Emit a perf event to record the text poke, primarily to |
| 2894 | * support Intel PT decoding which must walk the executable code |
| 2895 | * to reconstruct the trace. The flow up to here is: |
| 2896 | * - write INT3 byte |
| 2897 | * - IPI-SYNC |
| 2898 | * - write instruction tail |
| 2899 | * At this point the actual control flow will be through the |
| 2900 | * INT3 and handler and not hit the old or new instruction. |
| 2901 | * Intel PT outputs FUP/TIP packets for the INT3, so the flow |
| 2902 | * can still be decoded. Subsequently: |
| 2903 | * - emit RECORD_TEXT_POKE with the new instruction |
| 2904 | * - IPI-SYNC |
| 2905 | * - write first byte |
| 2906 | * - IPI-SYNC |
| 2907 | * So before the text poke event timestamp, the decoder will see |
| 2908 | * either the old instruction flow or FUP/TIP of INT3. After the |
| 2909 | * text poke event timestamp, the decoder will see either the |
| 2910 | * new instruction flow or FUP/TIP of INT3. Thus decoders can |
| 2911 | * use the timestamp as the point at which to modify the |
| 2912 | * executable code. |
| 2913 | * The old instruction is recorded so that the event can be |
| 2914 | * processed forwards or backwards. |
| 2915 | */ |
| 2916 | perf_event_text_poke(text_poke_addr(&text_poke_array.vec[i]), old, len, new, len); |
| 2917 | } |
| 2918 | |
| 2919 | if (do_sync) { |
| 2920 | /* |
| 2921 | * According to Intel, this core syncing is very likely |
| 2922 | * not necessary and we'd be safe even without it. But |
| 2923 | * better safe than sorry (plus there's not only Intel). |
| 2924 | */ |
| 2925 | smp_text_poke_sync_each_cpu(); |
| 2926 | } |
| 2927 | |
| 2928 | /* |
| 2929 | * Third step: replace the first byte (INT3) by the first byte of the |
| 2930 | * replacing opcode. |
| 2931 | */ |
| 2932 | for (do_sync = 0, i = 0; i < text_poke_array.nr_entries; i++) { |
| 2933 | u8 byte = text_poke_array.vec[i].text[0]; |
| 2934 | |
| 2935 | if (text_poke_array.vec[i].len == 6) |
| 2936 | byte = 0x0f; |
| 2937 | |
| 2938 | if (byte == INT3_INSN_OPCODE) |
| 2939 | continue; |
| 2940 | |
| 2941 | text_poke(text_poke_addr(&text_poke_array.vec[i]), &byte, INT3_INSN_SIZE); |
| 2942 | do_sync++; |
| 2943 | } |
| 2944 | |
| 2945 | if (do_sync) |
| 2946 | smp_text_poke_sync_each_cpu(); |
| 2947 | |
| 2948 | /* |
| 2949 | * Remove and wait for refs to be zero. |
| 2950 | * |
| 2951 | * Notably, if after step-3 above the INT3 got removed, then the |
| 2952 | * smp_text_poke_sync_each_cpu() will have serialized against any running INT3 |
| 2953 | * handlers and the below spin-wait will not happen. |
| 2954 | * |
| 2955 | * IOW. unless the replacement instruction is INT3, this case goes |
| 2956 | * unused. |
| 2957 | */ |
| 2958 | for_each_possible_cpu(i) { |
| 2959 | atomic_t *refs = per_cpu_ptr(&text_poke_array_refs, i); |
| 2960 | |
| 2961 | if (unlikely(!atomic_dec_and_test(refs))) |
| 2962 | atomic_cond_read_acquire(refs, !VAL); |
| 2963 | } |
| 2964 | |
| 2965 | /* They are all completed: */ |
| 2966 | text_poke_array.nr_entries = 0; |
| 2967 | } |
| 2968 | |
| 2969 | static void __smp_text_poke_batch_add(void *addr, const void *opcode, size_t len, const void *emulate) |
| 2970 | { |
| 2971 | struct smp_text_poke_loc *tpl; |
| 2972 | struct insn insn; |
| 2973 | int ret, i = 0; |
| 2974 | |
| 2975 | tpl = &text_poke_array.vec[text_poke_array.nr_entries++]; |
| 2976 | |
| 2977 | if (len == 6) |
| 2978 | i = 1; |
| 2979 | memcpy((void *)tpl->text, opcode+i, len-i); |
| 2980 | if (!emulate) |
| 2981 | emulate = opcode; |
| 2982 | |
| 2983 | ret = insn_decode_kernel(&insn, emulate); |
| 2984 | BUG_ON(ret < 0); |
| 2985 | |
| 2986 | tpl->rel_addr = addr - (void *)_stext; |
| 2987 | tpl->len = len; |
| 2988 | tpl->opcode = insn.opcode.bytes[0]; |
| 2989 | |
| 2990 | if (is_jcc32(&insn)) { |
| 2991 | /* |
| 2992 | * Map Jcc.d32 onto Jcc.d8 and use len to distinguish. |
| 2993 | */ |
| 2994 | tpl->opcode = insn.opcode.bytes[1] - 0x10; |
| 2995 | } |
| 2996 | |
| 2997 | switch (tpl->opcode) { |
| 2998 | case RET_INSN_OPCODE: |
| 2999 | case JMP32_INSN_OPCODE: |
| 3000 | case JMP8_INSN_OPCODE: |
| 3001 | /* |
| 3002 | * Control flow instructions without implied execution of the |
| 3003 | * next instruction can be padded with INT3. |
| 3004 | */ |
| 3005 | for (i = insn.length; i < len; i++) |
| 3006 | BUG_ON(tpl->text[i] != INT3_INSN_OPCODE); |
| 3007 | break; |
| 3008 | |
| 3009 | default: |
| 3010 | BUG_ON(len != insn.length); |
| 3011 | } |
| 3012 | |
| 3013 | switch (tpl->opcode) { |
| 3014 | case INT3_INSN_OPCODE: |
| 3015 | case RET_INSN_OPCODE: |
| 3016 | break; |
| 3017 | |
| 3018 | case CALL_INSN_OPCODE: |
| 3019 | case JMP32_INSN_OPCODE: |
| 3020 | case JMP8_INSN_OPCODE: |
| 3021 | case 0x70 ... 0x7f: /* Jcc */ |
| 3022 | tpl->disp = insn.immediate.value; |
| 3023 | break; |
| 3024 | |
| 3025 | default: /* assume NOP */ |
| 3026 | switch (len) { |
| 3027 | case 2: /* NOP2 -- emulate as JMP8+0 */ |
| 3028 | BUG_ON(memcmp(emulate, x86_nops[len], len)); |
| 3029 | tpl->opcode = JMP8_INSN_OPCODE; |
| 3030 | tpl->disp = 0; |
| 3031 | break; |
| 3032 | |
| 3033 | case 5: /* NOP5 -- emulate as JMP32+0 */ |
| 3034 | BUG_ON(memcmp(emulate, x86_nops[len], len)); |
| 3035 | tpl->opcode = JMP32_INSN_OPCODE; |
| 3036 | tpl->disp = 0; |
| 3037 | break; |
| 3038 | |
| 3039 | default: /* unknown instruction */ |
| 3040 | BUG(); |
| 3041 | } |
| 3042 | break; |
| 3043 | } |
| 3044 | } |
| 3045 | |
| 3046 | /* |
| 3047 | * We hard rely on the text_poke_array.vec being ordered; ensure this is so by flushing |
| 3048 | * early if needed. |
| 3049 | */ |
| 3050 | static bool text_poke_addr_ordered(void *addr) |
| 3051 | { |
| 3052 | WARN_ON_ONCE(!addr); |
| 3053 | |
| 3054 | if (!text_poke_array.nr_entries) |
| 3055 | return true; |
| 3056 | |
| 3057 | /* |
| 3058 | * If the last current entry's address is higher than the |
| 3059 | * new entry's address we'd like to add, then ordering |
| 3060 | * is violated and we must first flush all pending patching |
| 3061 | * requests: |
| 3062 | */ |
| 3063 | if (text_poke_addr(text_poke_array.vec + text_poke_array.nr_entries-1) > addr) |
| 3064 | return false; |
| 3065 | |
| 3066 | return true; |
| 3067 | } |
| 3068 | |
| 3069 | /** |
| 3070 | * smp_text_poke_batch_add() -- update instruction on live kernel on SMP, batched |
| 3071 | * @addr: address to patch |
| 3072 | * @opcode: opcode of new instruction |
| 3073 | * @len: length to copy |
| 3074 | * @emulate: instruction to be emulated |
| 3075 | * |
| 3076 | * Add a new instruction to the current queue of to-be-patched instructions |
| 3077 | * the kernel maintains. The patching request will not be executed immediately, |
| 3078 | * but becomes part of an array of patching requests, optimized for batched |
| 3079 | * execution. All pending patching requests will be executed on the next |
| 3080 | * smp_text_poke_batch_finish() call. |
| 3081 | */ |
| 3082 | void __ref smp_text_poke_batch_add(void *addr, const void *opcode, size_t len, const void *emulate) |
| 3083 | { |
| 3084 | if (text_poke_array.nr_entries == TEXT_POKE_ARRAY_MAX || !text_poke_addr_ordered(addr)) |
| 3085 | smp_text_poke_batch_finish(); |
| 3086 | __smp_text_poke_batch_add(addr, opcode, len, emulate); |
| 3087 | } |
| 3088 | |
| 3089 | /** |
| 3090 | * smp_text_poke_single() -- update instruction on live kernel on SMP immediately |
| 3091 | * @addr: address to patch |
| 3092 | * @opcode: opcode of new instruction |
| 3093 | * @len: length to copy |
| 3094 | * @emulate: instruction to be emulated |
| 3095 | * |
| 3096 | * Update a single instruction with the vector in the stack, avoiding |
| 3097 | * dynamically allocated memory. This function should be used when it is |
| 3098 | * not possible to allocate memory for a vector. The single instruction |
| 3099 | * is patched in immediately. |
| 3100 | */ |
| 3101 | void __ref smp_text_poke_single(void *addr, const void *opcode, size_t len, const void *emulate) |
| 3102 | { |
| 3103 | smp_text_poke_batch_add(addr, opcode, len, emulate); |
| 3104 | smp_text_poke_batch_finish(); |
| 3105 | } |