| 1 | /* SPDX-License-Identifier: GPL-2.0 */ |
| 2 | #ifndef _ASM_X86_SEGMENT_H |
| 3 | #define _ASM_X86_SEGMENT_H |
| 4 | |
| 5 | #include <linux/const.h> |
| 6 | #include <asm/alternative.h> |
| 7 | #include <asm/ibt.h> |
| 8 | |
| 9 | /* |
| 10 | * Constructor for a conventional segment GDT (or LDT) entry. |
| 11 | * This is a macro so it can be used in initializers. |
| 12 | */ |
| 13 | #define GDT_ENTRY(flags, base, limit) \ |
| 14 | ((((base) & _AC(0xff000000,ULL)) << (56-24)) | \ |
| 15 | (((flags) & _AC(0x0000f0ff,ULL)) << 40) | \ |
| 16 | (((limit) & _AC(0x000f0000,ULL)) << (48-16)) | \ |
| 17 | (((base) & _AC(0x00ffffff,ULL)) << 16) | \ |
| 18 | (((limit) & _AC(0x0000ffff,ULL)))) |
| 19 | |
| 20 | /* Simple and small GDT entries for booting only: */ |
| 21 | |
| 22 | #define GDT_ENTRY_BOOT_CS 2 |
| 23 | #define GDT_ENTRY_BOOT_DS 3 |
| 24 | #define GDT_ENTRY_BOOT_TSS 4 |
| 25 | #define __BOOT_CS (GDT_ENTRY_BOOT_CS*8) |
| 26 | #define __BOOT_DS (GDT_ENTRY_BOOT_DS*8) |
| 27 | #define __BOOT_TSS (GDT_ENTRY_BOOT_TSS*8) |
| 28 | |
| 29 | /* |
| 30 | * Bottom two bits of selector give the ring |
| 31 | * privilege level |
| 32 | */ |
| 33 | #define SEGMENT_RPL_MASK 0x3 |
| 34 | |
| 35 | /* |
| 36 | * When running on Xen PV, the actual privilege level of the kernel is 1, |
| 37 | * not 0. Testing the Requested Privilege Level in a segment selector to |
| 38 | * determine whether the context is user mode or kernel mode with |
| 39 | * SEGMENT_RPL_MASK is wrong because the PV kernel's privilege level |
| 40 | * matches the 0x3 mask. |
| 41 | * |
| 42 | * Testing with USER_SEGMENT_RPL_MASK is valid for both native and Xen PV |
| 43 | * kernels because privilege level 2 is never used. |
| 44 | */ |
| 45 | #define USER_SEGMENT_RPL_MASK 0x2 |
| 46 | |
| 47 | /* User mode is privilege level 3: */ |
| 48 | #define USER_RPL 0x3 |
| 49 | |
| 50 | /* Bit 2 is Table Indicator (TI): selects between LDT or GDT */ |
| 51 | #define SEGMENT_TI_MASK 0x4 |
| 52 | /* LDT segment has TI set ... */ |
| 53 | #define SEGMENT_LDT 0x4 |
| 54 | /* ... GDT has it cleared */ |
| 55 | #define SEGMENT_GDT 0x0 |
| 56 | |
| 57 | #define GDT_ENTRY_INVALID_SEG 0 |
| 58 | |
| 59 | #if defined(CONFIG_X86_32) && !defined(BUILD_VDSO32_64) |
| 60 | /* |
| 61 | * The layout of the per-CPU GDT under Linux: |
| 62 | * |
| 63 | * 0 - null <=== cacheline #1 |
| 64 | * 1 - reserved |
| 65 | * 2 - reserved |
| 66 | * 3 - reserved |
| 67 | * |
| 68 | * 4 - unused <=== cacheline #2 |
| 69 | * 5 - unused |
| 70 | * |
| 71 | * ------- start of TLS (Thread-Local Storage) segments: |
| 72 | * |
| 73 | * 6 - TLS segment #1 [ glibc's TLS segment ] |
| 74 | * 7 - TLS segment #2 [ Wine's %fs Win32 segment ] |
| 75 | * 8 - TLS segment #3 <=== cacheline #3 |
| 76 | * 9 - reserved |
| 77 | * 10 - reserved |
| 78 | * 11 - reserved |
| 79 | * |
| 80 | * ------- start of kernel segments: |
| 81 | * |
| 82 | * 12 - kernel code segment <=== cacheline #4 |
| 83 | * 13 - kernel data segment |
| 84 | * 14 - default user CS |
| 85 | * 15 - default user DS |
| 86 | * 16 - TSS <=== cacheline #5 |
| 87 | * 17 - LDT |
| 88 | * 18 - PNPBIOS support (16->32 gate) |
| 89 | * 19 - PNPBIOS support |
| 90 | * 20 - PNPBIOS support <=== cacheline #6 |
| 91 | * 21 - PNPBIOS support |
| 92 | * 22 - PNPBIOS support |
| 93 | * 23 - APM BIOS support |
| 94 | * 24 - APM BIOS support <=== cacheline #7 |
| 95 | * 25 - APM BIOS support |
| 96 | * |
| 97 | * 26 - ESPFIX small SS |
| 98 | * 27 - per-cpu [ offset to per-cpu data area ] |
| 99 | * 28 - VDSO getcpu |
| 100 | * 29 - unused |
| 101 | * 30 - unused |
| 102 | * 31 - TSS for double fault handler |
| 103 | */ |
| 104 | #define GDT_ENTRY_TLS_MIN 6 |
| 105 | #define GDT_ENTRY_TLS_MAX (GDT_ENTRY_TLS_MIN + GDT_ENTRY_TLS_ENTRIES - 1) |
| 106 | |
| 107 | #define GDT_ENTRY_KERNEL_CS 12 |
| 108 | #define GDT_ENTRY_KERNEL_DS 13 |
| 109 | #define GDT_ENTRY_DEFAULT_USER_CS 14 |
| 110 | #define GDT_ENTRY_DEFAULT_USER_DS 15 |
| 111 | #define GDT_ENTRY_TSS 16 |
| 112 | #define GDT_ENTRY_LDT 17 |
| 113 | #define GDT_ENTRY_PNPBIOS_CS32 18 |
| 114 | #define GDT_ENTRY_PNPBIOS_CS16 19 |
| 115 | #define GDT_ENTRY_PNPBIOS_DS 20 |
| 116 | #define GDT_ENTRY_PNPBIOS_TS1 21 |
| 117 | #define GDT_ENTRY_PNPBIOS_TS2 22 |
| 118 | #define GDT_ENTRY_APMBIOS_BASE 23 |
| 119 | |
| 120 | #define GDT_ENTRY_ESPFIX_SS 26 |
| 121 | #define GDT_ENTRY_PERCPU 27 |
| 122 | #define GDT_ENTRY_CPUNODE 28 |
| 123 | |
| 124 | #define GDT_ENTRY_DOUBLEFAULT_TSS 31 |
| 125 | |
| 126 | /* |
| 127 | * Number of entries in the GDT table: |
| 128 | */ |
| 129 | #define GDT_ENTRIES 32 |
| 130 | |
| 131 | /* |
| 132 | * Segment selector values corresponding to the above entries: |
| 133 | */ |
| 134 | |
| 135 | #define __KERNEL_CS (GDT_ENTRY_KERNEL_CS*8) |
| 136 | #define __KERNEL_DS (GDT_ENTRY_KERNEL_DS*8) |
| 137 | #define __USER_DS (GDT_ENTRY_DEFAULT_USER_DS*8 + 3) |
| 138 | #define __USER_CS (GDT_ENTRY_DEFAULT_USER_CS*8 + 3) |
| 139 | #define __USER32_CS __USER_CS |
| 140 | #define __ESPFIX_SS (GDT_ENTRY_ESPFIX_SS*8) |
| 141 | |
| 142 | /* segment for calling fn: */ |
| 143 | #define PNP_CS32 (GDT_ENTRY_PNPBIOS_CS32*8) |
| 144 | /* code segment for BIOS: */ |
| 145 | #define PNP_CS16 (GDT_ENTRY_PNPBIOS_CS16*8) |
| 146 | |
| 147 | /* "Is this PNP code selector (PNP_CS32 or PNP_CS16)?" */ |
| 148 | #define SEGMENT_IS_PNP_CODE(x) (((x) & 0xf4) == PNP_CS32) |
| 149 | |
| 150 | /* data segment for BIOS: */ |
| 151 | #define PNP_DS (GDT_ENTRY_PNPBIOS_DS*8) |
| 152 | /* transfer data segment: */ |
| 153 | #define PNP_TS1 (GDT_ENTRY_PNPBIOS_TS1*8) |
| 154 | /* another data segment: */ |
| 155 | #define PNP_TS2 (GDT_ENTRY_PNPBIOS_TS2*8) |
| 156 | |
| 157 | #ifdef CONFIG_SMP |
| 158 | # define __KERNEL_PERCPU (GDT_ENTRY_PERCPU*8) |
| 159 | #else |
| 160 | # define __KERNEL_PERCPU 0 |
| 161 | #endif |
| 162 | |
| 163 | #define __CPUNODE_SEG (GDT_ENTRY_CPUNODE*8 + 3) |
| 164 | |
| 165 | #else /* 64-bit: */ |
| 166 | |
| 167 | #include <asm/cache.h> |
| 168 | |
| 169 | #define GDT_ENTRY_KERNEL32_CS 1 |
| 170 | #define GDT_ENTRY_KERNEL_CS 2 |
| 171 | #define GDT_ENTRY_KERNEL_DS 3 |
| 172 | |
| 173 | /* |
| 174 | * We cannot use the same code segment descriptor for user and kernel mode, |
| 175 | * not even in long flat mode, because of different DPL. |
| 176 | * |
| 177 | * GDT layout to get 64-bit SYSCALL/SYSRET support right. SYSRET hardcodes |
| 178 | * selectors: |
| 179 | * |
| 180 | * if returning to 32-bit userspace: cs = STAR.SYSRET_CS, |
| 181 | * if returning to 64-bit userspace: cs = STAR.SYSRET_CS+16, |
| 182 | * |
| 183 | * ss = STAR.SYSRET_CS+8 (in either case) |
| 184 | * |
| 185 | * thus USER_DS should be between 32-bit and 64-bit code selectors: |
| 186 | */ |
| 187 | #define GDT_ENTRY_DEFAULT_USER32_CS 4 |
| 188 | #define GDT_ENTRY_DEFAULT_USER_DS 5 |
| 189 | #define GDT_ENTRY_DEFAULT_USER_CS 6 |
| 190 | |
| 191 | /* Needs two entries */ |
| 192 | #define GDT_ENTRY_TSS 8 |
| 193 | /* Needs two entries */ |
| 194 | #define GDT_ENTRY_LDT 10 |
| 195 | |
| 196 | #define GDT_ENTRY_TLS_MIN 12 |
| 197 | #define GDT_ENTRY_TLS_MAX 14 |
| 198 | |
| 199 | #define GDT_ENTRY_CPUNODE 15 |
| 200 | |
| 201 | /* |
| 202 | * Number of entries in the GDT table: |
| 203 | */ |
| 204 | #define GDT_ENTRIES 16 |
| 205 | |
| 206 | /* |
| 207 | * Segment selector values corresponding to the above entries: |
| 208 | * |
| 209 | * Note, selectors also need to have a correct RPL, |
| 210 | * expressed with the +3 value for user-space selectors: |
| 211 | */ |
| 212 | #define __KERNEL32_CS (GDT_ENTRY_KERNEL32_CS*8) |
| 213 | #define __KERNEL_CS (GDT_ENTRY_KERNEL_CS*8) |
| 214 | #define __KERNEL_DS (GDT_ENTRY_KERNEL_DS*8) |
| 215 | #define __USER32_CS (GDT_ENTRY_DEFAULT_USER32_CS*8 + 3) |
| 216 | #define __USER_DS (GDT_ENTRY_DEFAULT_USER_DS*8 + 3) |
| 217 | #define __USER_CS (GDT_ENTRY_DEFAULT_USER_CS*8 + 3) |
| 218 | #define __CPUNODE_SEG (GDT_ENTRY_CPUNODE*8 + 3) |
| 219 | |
| 220 | #endif |
| 221 | |
| 222 | #define IDT_ENTRIES 256 |
| 223 | #define NUM_EXCEPTION_VECTORS 32 |
| 224 | |
| 225 | /* Bitmask of exception vectors which push an error code on the stack: */ |
| 226 | #define EXCEPTION_ERRCODE_MASK 0x20027d00 |
| 227 | |
| 228 | #define GDT_SIZE (GDT_ENTRIES*8) |
| 229 | #define GDT_ENTRY_TLS_ENTRIES 3 |
| 230 | #define TLS_SIZE (GDT_ENTRY_TLS_ENTRIES* 8) |
| 231 | |
| 232 | /* Bit size and mask of CPU number stored in the per CPU data (and TSC_AUX) */ |
| 233 | #define VDSO_CPUNODE_BITS 12 |
| 234 | #define VDSO_CPUNODE_MASK 0xfff |
| 235 | |
| 236 | #ifndef __ASSEMBLER__ |
| 237 | |
| 238 | /* Helper functions to store/load CPU and node numbers */ |
| 239 | |
| 240 | static inline unsigned long vdso_encode_cpunode(int cpu, unsigned long node) |
| 241 | { |
| 242 | return (node << VDSO_CPUNODE_BITS) | cpu; |
| 243 | } |
| 244 | |
| 245 | static inline void vdso_read_cpunode(unsigned *cpu, unsigned *node) |
| 246 | { |
| 247 | unsigned int p; |
| 248 | |
| 249 | /* |
| 250 | * Load CPU and node number from the GDT. LSL is faster than RDTSCP |
| 251 | * and works on all CPUs. This is volatile so that it orders |
| 252 | * correctly with respect to barrier() and to keep GCC from cleverly |
| 253 | * hoisting it out of the calling function. |
| 254 | * |
| 255 | * If RDPID is available, use it. |
| 256 | */ |
| 257 | alternative_io ("lsl %[seg],%[p]", |
| 258 | ".byte 0xf3,0x0f,0xc7,0xf8", /* RDPID %eax/rax */ |
| 259 | X86_FEATURE_RDPID, |
| 260 | [p] "=a" (p), [seg] "r" (__CPUNODE_SEG)); |
| 261 | |
| 262 | if (cpu) |
| 263 | *cpu = (p & VDSO_CPUNODE_MASK); |
| 264 | if (node) |
| 265 | *node = (p >> VDSO_CPUNODE_BITS); |
| 266 | } |
| 267 | |
| 268 | #endif /* !__ASSEMBLER__ */ |
| 269 | |
| 270 | #ifdef __KERNEL__ |
| 271 | |
| 272 | /* |
| 273 | * early_idt_handler_array is an array of entry points referenced in the |
| 274 | * early IDT. For simplicity, it's a real array with one entry point |
| 275 | * every nine bytes. That leaves room for an optional 'push $0' if the |
| 276 | * vector has no error code (two bytes), a 'push $vector_number' (two |
| 277 | * bytes), and a jump to the common entry code (up to five bytes). |
| 278 | */ |
| 279 | #define EARLY_IDT_HANDLER_SIZE (9 + ENDBR_INSN_SIZE) |
| 280 | |
| 281 | /* |
| 282 | * xen_early_idt_handler_array is for Xen pv guests: for each entry in |
| 283 | * early_idt_handler_array it contains a prequel in the form of |
| 284 | * pop %rcx; pop %r11; jmp early_idt_handler_array[i]; summing up to |
| 285 | * max 8 bytes. |
| 286 | */ |
| 287 | #define XEN_EARLY_IDT_HANDLER_SIZE (8 + ENDBR_INSN_SIZE) |
| 288 | |
| 289 | #ifndef __ASSEMBLER__ |
| 290 | |
| 291 | extern const char early_idt_handler_array[NUM_EXCEPTION_VECTORS][EARLY_IDT_HANDLER_SIZE]; |
| 292 | extern void early_ignore_irq(void); |
| 293 | |
| 294 | #ifdef CONFIG_XEN_PV |
| 295 | extern const char xen_early_idt_handler_array[NUM_EXCEPTION_VECTORS][XEN_EARLY_IDT_HANDLER_SIZE]; |
| 296 | #endif |
| 297 | |
| 298 | /* |
| 299 | * Load a segment. Fall back on loading the zero segment if something goes |
| 300 | * wrong. This variant assumes that loading zero fully clears the segment. |
| 301 | * This is always the case on Intel CPUs and, even on 64-bit AMD CPUs, any |
| 302 | * failure to fully clear the cached descriptor is only observable for |
| 303 | * FS and GS. |
| 304 | */ |
| 305 | #define __loadsegment_simple(seg, value) \ |
| 306 | do { \ |
| 307 | unsigned short __val = (value); \ |
| 308 | \ |
| 309 | asm volatile(" \n" \ |
| 310 | "1: movl %k0,%%" #seg " \n" \ |
| 311 | _ASM_EXTABLE_TYPE_REG(1b, 1b, EX_TYPE_ZERO_REG, %k0)\ |
| 312 | : "+r" (__val) : : "memory"); \ |
| 313 | } while (0) |
| 314 | |
| 315 | #define __loadsegment_ss(value) __loadsegment_simple(ss, (value)) |
| 316 | #define __loadsegment_ds(value) __loadsegment_simple(ds, (value)) |
| 317 | #define __loadsegment_es(value) __loadsegment_simple(es, (value)) |
| 318 | |
| 319 | #ifdef CONFIG_X86_32 |
| 320 | |
| 321 | /* |
| 322 | * On 32-bit systems, the hidden parts of FS and GS are unobservable if |
| 323 | * the selector is NULL, so there's no funny business here. |
| 324 | */ |
| 325 | #define __loadsegment_fs(value) __loadsegment_simple(fs, (value)) |
| 326 | #define __loadsegment_gs(value) __loadsegment_simple(gs, (value)) |
| 327 | |
| 328 | #else |
| 329 | |
| 330 | static inline void __loadsegment_fs(unsigned short value) |
| 331 | { |
| 332 | asm volatile(" \n" |
| 333 | "1: movw %0, %%fs \n" |
| 334 | "2: \n" |
| 335 | |
| 336 | _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_CLEAR_FS) |
| 337 | |
| 338 | : : "rm" (value) : "memory"); |
| 339 | } |
| 340 | |
| 341 | /* __loadsegment_gs is intentionally undefined. Use load_gs_index instead. */ |
| 342 | |
| 343 | #endif |
| 344 | |
| 345 | #define loadsegment(seg, value) __loadsegment_ ## seg (value) |
| 346 | |
| 347 | /* |
| 348 | * Save a segment register away: |
| 349 | */ |
| 350 | #define savesegment(seg, value) \ |
| 351 | asm("mov %%" #seg ",%0":"=r" (value) : : "memory") |
| 352 | |
| 353 | #endif /* !__ASSEMBLER__ */ |
| 354 | #endif /* __KERNEL__ */ |
| 355 | |
| 356 | #endif /* _ASM_X86_SEGMENT_H */ |