| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | #include <linux/bitops.h> |
| 3 | #include <linux/types.h> |
| 4 | #include <linux/slab.h> |
| 5 | #include <linux/sched/clock.h> |
| 6 | |
| 7 | #include <asm/cpu_entry_area.h> |
| 8 | #include <asm/debugreg.h> |
| 9 | #include <asm/perf_event.h> |
| 10 | #include <asm/tlbflush.h> |
| 11 | #include <asm/insn.h> |
| 12 | #include <asm/io.h> |
| 13 | #include <asm/msr.h> |
| 14 | #include <asm/timer.h> |
| 15 | |
| 16 | #include "../perf_event.h" |
| 17 | |
| 18 | /* Waste a full page so it can be mapped into the cpu_entry_area */ |
| 19 | DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store); |
| 20 | |
| 21 | /* The size of a BTS record in bytes: */ |
| 22 | #define BTS_RECORD_SIZE 24 |
| 23 | |
| 24 | #define PEBS_FIXUP_SIZE PAGE_SIZE |
| 25 | |
| 26 | /* |
| 27 | * pebs_record_32 for p4 and core not supported |
| 28 | |
| 29 | struct pebs_record_32 { |
| 30 | u32 flags, ip; |
| 31 | u32 ax, bc, cx, dx; |
| 32 | u32 si, di, bp, sp; |
| 33 | }; |
| 34 | |
| 35 | */ |
| 36 | |
| 37 | union intel_x86_pebs_dse { |
| 38 | u64 val; |
| 39 | struct { |
| 40 | unsigned int ld_dse:4; |
| 41 | unsigned int ld_stlb_miss:1; |
| 42 | unsigned int ld_locked:1; |
| 43 | unsigned int ld_data_blk:1; |
| 44 | unsigned int ld_addr_blk:1; |
| 45 | unsigned int ld_reserved:24; |
| 46 | }; |
| 47 | struct { |
| 48 | unsigned int st_l1d_hit:1; |
| 49 | unsigned int st_reserved1:3; |
| 50 | unsigned int st_stlb_miss:1; |
| 51 | unsigned int st_locked:1; |
| 52 | unsigned int st_reserved2:26; |
| 53 | }; |
| 54 | struct { |
| 55 | unsigned int st_lat_dse:4; |
| 56 | unsigned int st_lat_stlb_miss:1; |
| 57 | unsigned int st_lat_locked:1; |
| 58 | unsigned int ld_reserved3:26; |
| 59 | }; |
| 60 | struct { |
| 61 | unsigned int mtl_dse:5; |
| 62 | unsigned int mtl_locked:1; |
| 63 | unsigned int mtl_stlb_miss:1; |
| 64 | unsigned int mtl_fwd_blk:1; |
| 65 | unsigned int ld_reserved4:24; |
| 66 | }; |
| 67 | struct { |
| 68 | unsigned int lnc_dse:8; |
| 69 | unsigned int ld_reserved5:2; |
| 70 | unsigned int lnc_stlb_miss:1; |
| 71 | unsigned int lnc_locked:1; |
| 72 | unsigned int lnc_data_blk:1; |
| 73 | unsigned int lnc_addr_blk:1; |
| 74 | unsigned int ld_reserved6:18; |
| 75 | }; |
| 76 | }; |
| 77 | |
| 78 | |
| 79 | /* |
| 80 | * Map PEBS Load Latency Data Source encodings to generic |
| 81 | * memory data source information |
| 82 | */ |
| 83 | #define P(a, b) PERF_MEM_S(a, b) |
| 84 | #define OP_LH (P(OP, LOAD) | P(LVL, HIT)) |
| 85 | #define LEVEL(x) P(LVLNUM, x) |
| 86 | #define REM P(REMOTE, REMOTE) |
| 87 | #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS)) |
| 88 | |
| 89 | /* Version for Sandy Bridge and later */ |
| 90 | static u64 pebs_data_source[PERF_PEBS_DATA_SOURCE_MAX] = { |
| 91 | P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */ |
| 92 | OP_LH | P(LVL, L1) | LEVEL(L1) | P(SNOOP, NONE), /* 0x01: L1 local */ |
| 93 | OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */ |
| 94 | OP_LH | P(LVL, L2) | LEVEL(L2) | P(SNOOP, NONE), /* 0x03: L2 hit */ |
| 95 | OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, NONE), /* 0x04: L3 hit */ |
| 96 | OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, MISS), /* 0x05: L3 hit, snoop miss */ |
| 97 | OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT), /* 0x06: L3 hit, snoop hit */ |
| 98 | OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM), /* 0x07: L3 hit, snoop hitm */ |
| 99 | OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x08: L3 miss snoop hit */ |
| 100 | OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/ |
| 101 | OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, HIT), /* 0x0a: L3 miss, shared */ |
| 102 | OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x0b: L3 miss, shared */ |
| 103 | OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | SNOOP_NONE_MISS, /* 0x0c: L3 miss, excl */ |
| 104 | OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */ |
| 105 | OP_LH | P(LVL, IO) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */ |
| 106 | OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */ |
| 107 | }; |
| 108 | |
| 109 | /* Patch up minor differences in the bits */ |
| 110 | void __init intel_pmu_pebs_data_source_nhm(void) |
| 111 | { |
| 112 | pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT); |
| 113 | pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); |
| 114 | pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); |
| 115 | } |
| 116 | |
| 117 | static void __init __intel_pmu_pebs_data_source_skl(bool pmem, u64 *data_source) |
| 118 | { |
| 119 | u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4); |
| 120 | |
| 121 | data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT); |
| 122 | data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT); |
| 123 | data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE); |
| 124 | data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD); |
| 125 | data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM); |
| 126 | } |
| 127 | |
| 128 | void __init intel_pmu_pebs_data_source_skl(bool pmem) |
| 129 | { |
| 130 | __intel_pmu_pebs_data_source_skl(pmem, pebs_data_source); |
| 131 | } |
| 132 | |
| 133 | static void __init __intel_pmu_pebs_data_source_grt(u64 *data_source) |
| 134 | { |
| 135 | data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT); |
| 136 | data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); |
| 137 | data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD); |
| 138 | } |
| 139 | |
| 140 | void __init intel_pmu_pebs_data_source_grt(void) |
| 141 | { |
| 142 | __intel_pmu_pebs_data_source_grt(pebs_data_source); |
| 143 | } |
| 144 | |
| 145 | void __init intel_pmu_pebs_data_source_adl(void) |
| 146 | { |
| 147 | u64 *data_source; |
| 148 | |
| 149 | data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source; |
| 150 | memcpy(data_source, pebs_data_source, sizeof(pebs_data_source)); |
| 151 | __intel_pmu_pebs_data_source_skl(false, data_source); |
| 152 | |
| 153 | data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source; |
| 154 | memcpy(data_source, pebs_data_source, sizeof(pebs_data_source)); |
| 155 | __intel_pmu_pebs_data_source_grt(data_source); |
| 156 | } |
| 157 | |
| 158 | static void __init __intel_pmu_pebs_data_source_cmt(u64 *data_source) |
| 159 | { |
| 160 | data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD); |
| 161 | data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); |
| 162 | data_source[0x0a] = OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, NONE); |
| 163 | data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE); |
| 164 | data_source[0x0c] = OP_LH | LEVEL(RAM) | REM | P(SNOOPX, FWD); |
| 165 | data_source[0x0d] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, HITM); |
| 166 | } |
| 167 | |
| 168 | void __init intel_pmu_pebs_data_source_mtl(void) |
| 169 | { |
| 170 | u64 *data_source; |
| 171 | |
| 172 | data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source; |
| 173 | memcpy(data_source, pebs_data_source, sizeof(pebs_data_source)); |
| 174 | __intel_pmu_pebs_data_source_skl(false, data_source); |
| 175 | |
| 176 | data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source; |
| 177 | memcpy(data_source, pebs_data_source, sizeof(pebs_data_source)); |
| 178 | __intel_pmu_pebs_data_source_cmt(data_source); |
| 179 | } |
| 180 | |
| 181 | void __init intel_pmu_pebs_data_source_arl_h(void) |
| 182 | { |
| 183 | u64 *data_source; |
| 184 | |
| 185 | intel_pmu_pebs_data_source_lnl(); |
| 186 | |
| 187 | data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_TINY_IDX].pebs_data_source; |
| 188 | memcpy(data_source, pebs_data_source, sizeof(pebs_data_source)); |
| 189 | __intel_pmu_pebs_data_source_cmt(data_source); |
| 190 | } |
| 191 | |
| 192 | void __init intel_pmu_pebs_data_source_cmt(void) |
| 193 | { |
| 194 | __intel_pmu_pebs_data_source_cmt(pebs_data_source); |
| 195 | } |
| 196 | |
| 197 | /* Version for Lion Cove and later */ |
| 198 | static u64 lnc_pebs_data_source[PERF_PEBS_DATA_SOURCE_MAX] = { |
| 199 | P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA), /* 0x00: ukn L3 */ |
| 200 | OP_LH | P(LVL, L1) | LEVEL(L1) | P(SNOOP, NONE), /* 0x01: L1 hit */ |
| 201 | OP_LH | P(LVL, L1) | LEVEL(L1) | P(SNOOP, NONE), /* 0x02: L1 hit */ |
| 202 | OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x03: LFB/L1 Miss Handling Buffer hit */ |
| 203 | 0, /* 0x04: Reserved */ |
| 204 | OP_LH | P(LVL, L2) | LEVEL(L2) | P(SNOOP, NONE), /* 0x05: L2 Hit */ |
| 205 | OP_LH | LEVEL(L2_MHB) | P(SNOOP, NONE), /* 0x06: L2 Miss Handling Buffer Hit */ |
| 206 | 0, /* 0x07: Reserved */ |
| 207 | OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, NONE), /* 0x08: L3 Hit */ |
| 208 | 0, /* 0x09: Reserved */ |
| 209 | 0, /* 0x0a: Reserved */ |
| 210 | 0, /* 0x0b: Reserved */ |
| 211 | OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD), /* 0x0c: L3 Hit Snoop Fwd */ |
| 212 | OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM), /* 0x0d: L3 Hit Snoop HitM */ |
| 213 | 0, /* 0x0e: Reserved */ |
| 214 | P(OP, LOAD) | P(LVL, MISS) | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM), /* 0x0f: L3 Miss Snoop HitM */ |
| 215 | OP_LH | LEVEL(MSC) | P(SNOOP, NONE), /* 0x10: Memory-side Cache Hit */ |
| 216 | OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, NONE), /* 0x11: Local Memory Hit */ |
| 217 | }; |
| 218 | |
| 219 | void __init intel_pmu_pebs_data_source_lnl(void) |
| 220 | { |
| 221 | u64 *data_source; |
| 222 | |
| 223 | data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source; |
| 224 | memcpy(data_source, lnc_pebs_data_source, sizeof(lnc_pebs_data_source)); |
| 225 | |
| 226 | data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source; |
| 227 | memcpy(data_source, pebs_data_source, sizeof(pebs_data_source)); |
| 228 | __intel_pmu_pebs_data_source_cmt(data_source); |
| 229 | } |
| 230 | |
| 231 | static u64 precise_store_data(u64 status) |
| 232 | { |
| 233 | union intel_x86_pebs_dse dse; |
| 234 | u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2); |
| 235 | |
| 236 | dse.val = status; |
| 237 | |
| 238 | /* |
| 239 | * bit 4: TLB access |
| 240 | * 1 = stored missed 2nd level TLB |
| 241 | * |
| 242 | * so it either hit the walker or the OS |
| 243 | * otherwise hit 2nd level TLB |
| 244 | */ |
| 245 | if (dse.st_stlb_miss) |
| 246 | val |= P(TLB, MISS); |
| 247 | else |
| 248 | val |= P(TLB, HIT); |
| 249 | |
| 250 | /* |
| 251 | * bit 0: hit L1 data cache |
| 252 | * if not set, then all we know is that |
| 253 | * it missed L1D |
| 254 | */ |
| 255 | if (dse.st_l1d_hit) |
| 256 | val |= P(LVL, HIT); |
| 257 | else |
| 258 | val |= P(LVL, MISS); |
| 259 | |
| 260 | /* |
| 261 | * bit 5: Locked prefix |
| 262 | */ |
| 263 | if (dse.st_locked) |
| 264 | val |= P(LOCK, LOCKED); |
| 265 | |
| 266 | return val; |
| 267 | } |
| 268 | |
| 269 | static u64 precise_datala_hsw(struct perf_event *event, u64 status) |
| 270 | { |
| 271 | union perf_mem_data_src dse; |
| 272 | |
| 273 | dse.val = PERF_MEM_NA; |
| 274 | |
| 275 | if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) |
| 276 | dse.mem_op = PERF_MEM_OP_STORE; |
| 277 | else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW) |
| 278 | dse.mem_op = PERF_MEM_OP_LOAD; |
| 279 | |
| 280 | /* |
| 281 | * L1 info only valid for following events: |
| 282 | * |
| 283 | * MEM_UOPS_RETIRED.STLB_MISS_STORES |
| 284 | * MEM_UOPS_RETIRED.LOCK_STORES |
| 285 | * MEM_UOPS_RETIRED.SPLIT_STORES |
| 286 | * MEM_UOPS_RETIRED.ALL_STORES |
| 287 | */ |
| 288 | if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) { |
| 289 | if (status & 1) |
| 290 | dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT; |
| 291 | else |
| 292 | dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS; |
| 293 | } |
| 294 | return dse.val; |
| 295 | } |
| 296 | |
| 297 | static inline void pebs_set_tlb_lock(u64 *val, bool tlb, bool lock) |
| 298 | { |
| 299 | /* |
| 300 | * TLB access |
| 301 | * 0 = did not miss 2nd level TLB |
| 302 | * 1 = missed 2nd level TLB |
| 303 | */ |
| 304 | if (tlb) |
| 305 | *val |= P(TLB, MISS) | P(TLB, L2); |
| 306 | else |
| 307 | *val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2); |
| 308 | |
| 309 | /* locked prefix */ |
| 310 | if (lock) |
| 311 | *val |= P(LOCK, LOCKED); |
| 312 | } |
| 313 | |
| 314 | /* Retrieve the latency data for e-core of ADL */ |
| 315 | static u64 __grt_latency_data(struct perf_event *event, u64 status, |
| 316 | u8 dse, bool tlb, bool lock, bool blk) |
| 317 | { |
| 318 | u64 val; |
| 319 | |
| 320 | WARN_ON_ONCE(hybrid_pmu(event->pmu)->pmu_type == hybrid_big); |
| 321 | |
| 322 | dse &= PERF_PEBS_DATA_SOURCE_GRT_MASK; |
| 323 | val = hybrid_var(event->pmu, pebs_data_source)[dse]; |
| 324 | |
| 325 | pebs_set_tlb_lock(&val, tlb, lock); |
| 326 | |
| 327 | if (blk) |
| 328 | val |= P(BLK, DATA); |
| 329 | else |
| 330 | val |= P(BLK, NA); |
| 331 | |
| 332 | return val; |
| 333 | } |
| 334 | |
| 335 | u64 grt_latency_data(struct perf_event *event, u64 status) |
| 336 | { |
| 337 | union intel_x86_pebs_dse dse; |
| 338 | |
| 339 | dse.val = status; |
| 340 | |
| 341 | return __grt_latency_data(event, status, dse.ld_dse, |
| 342 | dse.ld_locked, dse.ld_stlb_miss, |
| 343 | dse.ld_data_blk); |
| 344 | } |
| 345 | |
| 346 | /* Retrieve the latency data for e-core of MTL */ |
| 347 | u64 cmt_latency_data(struct perf_event *event, u64 status) |
| 348 | { |
| 349 | union intel_x86_pebs_dse dse; |
| 350 | |
| 351 | dse.val = status; |
| 352 | |
| 353 | return __grt_latency_data(event, status, dse.mtl_dse, |
| 354 | dse.mtl_stlb_miss, dse.mtl_locked, |
| 355 | dse.mtl_fwd_blk); |
| 356 | } |
| 357 | |
| 358 | static u64 lnc_latency_data(struct perf_event *event, u64 status) |
| 359 | { |
| 360 | union intel_x86_pebs_dse dse; |
| 361 | union perf_mem_data_src src; |
| 362 | u64 val; |
| 363 | |
| 364 | dse.val = status; |
| 365 | |
| 366 | /* LNC core latency data */ |
| 367 | val = hybrid_var(event->pmu, pebs_data_source)[status & PERF_PEBS_DATA_SOURCE_MASK]; |
| 368 | if (!val) |
| 369 | val = P(OP, LOAD) | LEVEL(NA) | P(SNOOP, NA); |
| 370 | |
| 371 | if (dse.lnc_stlb_miss) |
| 372 | val |= P(TLB, MISS) | P(TLB, L2); |
| 373 | else |
| 374 | val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2); |
| 375 | |
| 376 | if (dse.lnc_locked) |
| 377 | val |= P(LOCK, LOCKED); |
| 378 | |
| 379 | if (dse.lnc_data_blk) |
| 380 | val |= P(BLK, DATA); |
| 381 | if (dse.lnc_addr_blk) |
| 382 | val |= P(BLK, ADDR); |
| 383 | if (!dse.lnc_data_blk && !dse.lnc_addr_blk) |
| 384 | val |= P(BLK, NA); |
| 385 | |
| 386 | src.val = val; |
| 387 | if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) |
| 388 | src.mem_op = P(OP, STORE); |
| 389 | |
| 390 | return src.val; |
| 391 | } |
| 392 | |
| 393 | u64 lnl_latency_data(struct perf_event *event, u64 status) |
| 394 | { |
| 395 | struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu); |
| 396 | |
| 397 | if (pmu->pmu_type == hybrid_small) |
| 398 | return cmt_latency_data(event, status); |
| 399 | |
| 400 | return lnc_latency_data(event, status); |
| 401 | } |
| 402 | |
| 403 | u64 arl_h_latency_data(struct perf_event *event, u64 status) |
| 404 | { |
| 405 | struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu); |
| 406 | |
| 407 | if (pmu->pmu_type == hybrid_tiny) |
| 408 | return cmt_latency_data(event, status); |
| 409 | |
| 410 | return lnl_latency_data(event, status); |
| 411 | } |
| 412 | |
| 413 | static u64 load_latency_data(struct perf_event *event, u64 status) |
| 414 | { |
| 415 | union intel_x86_pebs_dse dse; |
| 416 | u64 val; |
| 417 | |
| 418 | dse.val = status; |
| 419 | |
| 420 | /* |
| 421 | * use the mapping table for bit 0-3 |
| 422 | */ |
| 423 | val = hybrid_var(event->pmu, pebs_data_source)[dse.ld_dse]; |
| 424 | |
| 425 | /* |
| 426 | * Nehalem models do not support TLB, Lock infos |
| 427 | */ |
| 428 | if (x86_pmu.pebs_no_tlb) { |
| 429 | val |= P(TLB, NA) | P(LOCK, NA); |
| 430 | return val; |
| 431 | } |
| 432 | |
| 433 | pebs_set_tlb_lock(&val, dse.ld_stlb_miss, dse.ld_locked); |
| 434 | |
| 435 | /* |
| 436 | * Ice Lake and earlier models do not support block infos. |
| 437 | */ |
| 438 | if (!x86_pmu.pebs_block) { |
| 439 | val |= P(BLK, NA); |
| 440 | return val; |
| 441 | } |
| 442 | /* |
| 443 | * bit 6: load was blocked since its data could not be forwarded |
| 444 | * from a preceding store |
| 445 | */ |
| 446 | if (dse.ld_data_blk) |
| 447 | val |= P(BLK, DATA); |
| 448 | |
| 449 | /* |
| 450 | * bit 7: load was blocked due to potential address conflict with |
| 451 | * a preceding store |
| 452 | */ |
| 453 | if (dse.ld_addr_blk) |
| 454 | val |= P(BLK, ADDR); |
| 455 | |
| 456 | if (!dse.ld_data_blk && !dse.ld_addr_blk) |
| 457 | val |= P(BLK, NA); |
| 458 | |
| 459 | return val; |
| 460 | } |
| 461 | |
| 462 | static u64 store_latency_data(struct perf_event *event, u64 status) |
| 463 | { |
| 464 | union intel_x86_pebs_dse dse; |
| 465 | union perf_mem_data_src src; |
| 466 | u64 val; |
| 467 | |
| 468 | dse.val = status; |
| 469 | |
| 470 | /* |
| 471 | * use the mapping table for bit 0-3 |
| 472 | */ |
| 473 | val = hybrid_var(event->pmu, pebs_data_source)[dse.st_lat_dse]; |
| 474 | |
| 475 | pebs_set_tlb_lock(&val, dse.st_lat_stlb_miss, dse.st_lat_locked); |
| 476 | |
| 477 | val |= P(BLK, NA); |
| 478 | |
| 479 | /* |
| 480 | * the pebs_data_source table is only for loads |
| 481 | * so override the mem_op to say STORE instead |
| 482 | */ |
| 483 | src.val = val; |
| 484 | src.mem_op = P(OP,STORE); |
| 485 | |
| 486 | return src.val; |
| 487 | } |
| 488 | |
| 489 | struct pebs_record_core { |
| 490 | u64 flags, ip; |
| 491 | u64 ax, bx, cx, dx; |
| 492 | u64 si, di, bp, sp; |
| 493 | u64 r8, r9, r10, r11; |
| 494 | u64 r12, r13, r14, r15; |
| 495 | }; |
| 496 | |
| 497 | struct pebs_record_nhm { |
| 498 | u64 flags, ip; |
| 499 | u64 ax, bx, cx, dx; |
| 500 | u64 si, di, bp, sp; |
| 501 | u64 r8, r9, r10, r11; |
| 502 | u64 r12, r13, r14, r15; |
| 503 | u64 status, dla, dse, lat; |
| 504 | }; |
| 505 | |
| 506 | /* |
| 507 | * Same as pebs_record_nhm, with two additional fields. |
| 508 | */ |
| 509 | struct pebs_record_hsw { |
| 510 | u64 flags, ip; |
| 511 | u64 ax, bx, cx, dx; |
| 512 | u64 si, di, bp, sp; |
| 513 | u64 r8, r9, r10, r11; |
| 514 | u64 r12, r13, r14, r15; |
| 515 | u64 status, dla, dse, lat; |
| 516 | u64 real_ip, tsx_tuning; |
| 517 | }; |
| 518 | |
| 519 | union hsw_tsx_tuning { |
| 520 | struct { |
| 521 | u32 cycles_last_block : 32, |
| 522 | hle_abort : 1, |
| 523 | rtm_abort : 1, |
| 524 | instruction_abort : 1, |
| 525 | non_instruction_abort : 1, |
| 526 | retry : 1, |
| 527 | data_conflict : 1, |
| 528 | capacity_writes : 1, |
| 529 | capacity_reads : 1; |
| 530 | }; |
| 531 | u64 value; |
| 532 | }; |
| 533 | |
| 534 | #define PEBS_HSW_TSX_FLAGS 0xff00000000ULL |
| 535 | |
| 536 | /* Same as HSW, plus TSC */ |
| 537 | |
| 538 | struct pebs_record_skl { |
| 539 | u64 flags, ip; |
| 540 | u64 ax, bx, cx, dx; |
| 541 | u64 si, di, bp, sp; |
| 542 | u64 r8, r9, r10, r11; |
| 543 | u64 r12, r13, r14, r15; |
| 544 | u64 status, dla, dse, lat; |
| 545 | u64 real_ip, tsx_tuning; |
| 546 | u64 tsc; |
| 547 | }; |
| 548 | |
| 549 | void init_debug_store_on_cpu(int cpu) |
| 550 | { |
| 551 | struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds; |
| 552 | |
| 553 | if (!ds) |
| 554 | return; |
| 555 | |
| 556 | wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, |
| 557 | (u32)((u64)(unsigned long)ds), |
| 558 | (u32)((u64)(unsigned long)ds >> 32)); |
| 559 | } |
| 560 | |
| 561 | void fini_debug_store_on_cpu(int cpu) |
| 562 | { |
| 563 | if (!per_cpu(cpu_hw_events, cpu).ds) |
| 564 | return; |
| 565 | |
| 566 | wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0); |
| 567 | } |
| 568 | |
| 569 | static DEFINE_PER_CPU(void *, insn_buffer); |
| 570 | |
| 571 | static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot) |
| 572 | { |
| 573 | unsigned long start = (unsigned long)cea; |
| 574 | phys_addr_t pa; |
| 575 | size_t msz = 0; |
| 576 | |
| 577 | pa = virt_to_phys(addr); |
| 578 | |
| 579 | preempt_disable(); |
| 580 | for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE) |
| 581 | cea_set_pte(cea, pa, prot); |
| 582 | |
| 583 | /* |
| 584 | * This is a cross-CPU update of the cpu_entry_area, we must shoot down |
| 585 | * all TLB entries for it. |
| 586 | */ |
| 587 | flush_tlb_kernel_range(start, start + size); |
| 588 | preempt_enable(); |
| 589 | } |
| 590 | |
| 591 | static void ds_clear_cea(void *cea, size_t size) |
| 592 | { |
| 593 | unsigned long start = (unsigned long)cea; |
| 594 | size_t msz = 0; |
| 595 | |
| 596 | preempt_disable(); |
| 597 | for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE) |
| 598 | cea_set_pte(cea, 0, PAGE_NONE); |
| 599 | |
| 600 | flush_tlb_kernel_range(start, start + size); |
| 601 | preempt_enable(); |
| 602 | } |
| 603 | |
| 604 | static void *dsalloc_pages(size_t size, gfp_t flags, int cpu) |
| 605 | { |
| 606 | unsigned int order = get_order(size); |
| 607 | int node = cpu_to_node(cpu); |
| 608 | struct page *page; |
| 609 | |
| 610 | page = __alloc_pages_node(node, flags | __GFP_ZERO, order); |
| 611 | return page ? page_address(page) : NULL; |
| 612 | } |
| 613 | |
| 614 | static void dsfree_pages(const void *buffer, size_t size) |
| 615 | { |
| 616 | if (buffer) |
| 617 | free_pages((unsigned long)buffer, get_order(size)); |
| 618 | } |
| 619 | |
| 620 | static int alloc_pebs_buffer(int cpu) |
| 621 | { |
| 622 | struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); |
| 623 | struct debug_store *ds = hwev->ds; |
| 624 | size_t bsiz = x86_pmu.pebs_buffer_size; |
| 625 | int max, node = cpu_to_node(cpu); |
| 626 | void *buffer, *insn_buff, *cea; |
| 627 | |
| 628 | if (!x86_pmu.ds_pebs) |
| 629 | return 0; |
| 630 | |
| 631 | buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu); |
| 632 | if (unlikely(!buffer)) |
| 633 | return -ENOMEM; |
| 634 | |
| 635 | /* |
| 636 | * HSW+ already provides us the eventing ip; no need to allocate this |
| 637 | * buffer then. |
| 638 | */ |
| 639 | if (x86_pmu.intel_cap.pebs_format < 2) { |
| 640 | insn_buff = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node); |
| 641 | if (!insn_buff) { |
| 642 | dsfree_pages(buffer, bsiz); |
| 643 | return -ENOMEM; |
| 644 | } |
| 645 | per_cpu(insn_buffer, cpu) = insn_buff; |
| 646 | } |
| 647 | hwev->ds_pebs_vaddr = buffer; |
| 648 | /* Update the cpu entry area mapping */ |
| 649 | cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer; |
| 650 | ds->pebs_buffer_base = (unsigned long) cea; |
| 651 | ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL); |
| 652 | ds->pebs_index = ds->pebs_buffer_base; |
| 653 | max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size); |
| 654 | ds->pebs_absolute_maximum = ds->pebs_buffer_base + max; |
| 655 | return 0; |
| 656 | } |
| 657 | |
| 658 | static void release_pebs_buffer(int cpu) |
| 659 | { |
| 660 | struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); |
| 661 | void *cea; |
| 662 | |
| 663 | if (!x86_pmu.ds_pebs) |
| 664 | return; |
| 665 | |
| 666 | kfree(per_cpu(insn_buffer, cpu)); |
| 667 | per_cpu(insn_buffer, cpu) = NULL; |
| 668 | |
| 669 | /* Clear the fixmap */ |
| 670 | cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer; |
| 671 | ds_clear_cea(cea, x86_pmu.pebs_buffer_size); |
| 672 | dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size); |
| 673 | hwev->ds_pebs_vaddr = NULL; |
| 674 | } |
| 675 | |
| 676 | static int alloc_bts_buffer(int cpu) |
| 677 | { |
| 678 | struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); |
| 679 | struct debug_store *ds = hwev->ds; |
| 680 | void *buffer, *cea; |
| 681 | int max; |
| 682 | |
| 683 | if (!x86_pmu.bts) |
| 684 | return 0; |
| 685 | |
| 686 | buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu); |
| 687 | if (unlikely(!buffer)) { |
| 688 | WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__); |
| 689 | return -ENOMEM; |
| 690 | } |
| 691 | hwev->ds_bts_vaddr = buffer; |
| 692 | /* Update the fixmap */ |
| 693 | cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer; |
| 694 | ds->bts_buffer_base = (unsigned long) cea; |
| 695 | ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL); |
| 696 | ds->bts_index = ds->bts_buffer_base; |
| 697 | max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE; |
| 698 | ds->bts_absolute_maximum = ds->bts_buffer_base + |
| 699 | max * BTS_RECORD_SIZE; |
| 700 | ds->bts_interrupt_threshold = ds->bts_absolute_maximum - |
| 701 | (max / 16) * BTS_RECORD_SIZE; |
| 702 | return 0; |
| 703 | } |
| 704 | |
| 705 | static void release_bts_buffer(int cpu) |
| 706 | { |
| 707 | struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); |
| 708 | void *cea; |
| 709 | |
| 710 | if (!x86_pmu.bts) |
| 711 | return; |
| 712 | |
| 713 | /* Clear the fixmap */ |
| 714 | cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer; |
| 715 | ds_clear_cea(cea, BTS_BUFFER_SIZE); |
| 716 | dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE); |
| 717 | hwev->ds_bts_vaddr = NULL; |
| 718 | } |
| 719 | |
| 720 | static int alloc_ds_buffer(int cpu) |
| 721 | { |
| 722 | struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store; |
| 723 | |
| 724 | memset(ds, 0, sizeof(*ds)); |
| 725 | per_cpu(cpu_hw_events, cpu).ds = ds; |
| 726 | return 0; |
| 727 | } |
| 728 | |
| 729 | static void release_ds_buffer(int cpu) |
| 730 | { |
| 731 | per_cpu(cpu_hw_events, cpu).ds = NULL; |
| 732 | } |
| 733 | |
| 734 | void release_ds_buffers(void) |
| 735 | { |
| 736 | int cpu; |
| 737 | |
| 738 | if (!x86_pmu.bts && !x86_pmu.ds_pebs) |
| 739 | return; |
| 740 | |
| 741 | for_each_possible_cpu(cpu) |
| 742 | release_ds_buffer(cpu); |
| 743 | |
| 744 | for_each_possible_cpu(cpu) { |
| 745 | /* |
| 746 | * Again, ignore errors from offline CPUs, they will no longer |
| 747 | * observe cpu_hw_events.ds and not program the DS_AREA when |
| 748 | * they come up. |
| 749 | */ |
| 750 | fini_debug_store_on_cpu(cpu); |
| 751 | } |
| 752 | |
| 753 | for_each_possible_cpu(cpu) { |
| 754 | if (x86_pmu.ds_pebs) |
| 755 | release_pebs_buffer(cpu); |
| 756 | release_bts_buffer(cpu); |
| 757 | } |
| 758 | } |
| 759 | |
| 760 | void reserve_ds_buffers(void) |
| 761 | { |
| 762 | int bts_err = 0, pebs_err = 0; |
| 763 | int cpu; |
| 764 | |
| 765 | x86_pmu.bts_active = 0; |
| 766 | |
| 767 | if (x86_pmu.ds_pebs) |
| 768 | x86_pmu.pebs_active = 0; |
| 769 | |
| 770 | if (!x86_pmu.bts && !x86_pmu.ds_pebs) |
| 771 | return; |
| 772 | |
| 773 | if (!x86_pmu.bts) |
| 774 | bts_err = 1; |
| 775 | |
| 776 | if (!x86_pmu.ds_pebs) |
| 777 | pebs_err = 1; |
| 778 | |
| 779 | for_each_possible_cpu(cpu) { |
| 780 | if (alloc_ds_buffer(cpu)) { |
| 781 | bts_err = 1; |
| 782 | pebs_err = 1; |
| 783 | } |
| 784 | |
| 785 | if (!bts_err && alloc_bts_buffer(cpu)) |
| 786 | bts_err = 1; |
| 787 | |
| 788 | if (x86_pmu.ds_pebs && !pebs_err && |
| 789 | alloc_pebs_buffer(cpu)) |
| 790 | pebs_err = 1; |
| 791 | |
| 792 | if (bts_err && pebs_err) |
| 793 | break; |
| 794 | } |
| 795 | |
| 796 | if (bts_err) { |
| 797 | for_each_possible_cpu(cpu) |
| 798 | release_bts_buffer(cpu); |
| 799 | } |
| 800 | |
| 801 | if (x86_pmu.ds_pebs && pebs_err) { |
| 802 | for_each_possible_cpu(cpu) |
| 803 | release_pebs_buffer(cpu); |
| 804 | } |
| 805 | |
| 806 | if (bts_err && pebs_err) { |
| 807 | for_each_possible_cpu(cpu) |
| 808 | release_ds_buffer(cpu); |
| 809 | } else { |
| 810 | if (x86_pmu.bts && !bts_err) |
| 811 | x86_pmu.bts_active = 1; |
| 812 | |
| 813 | if (x86_pmu.ds_pebs && !pebs_err) |
| 814 | x86_pmu.pebs_active = 1; |
| 815 | |
| 816 | for_each_possible_cpu(cpu) { |
| 817 | /* |
| 818 | * Ignores wrmsr_on_cpu() errors for offline CPUs they |
| 819 | * will get this call through intel_pmu_cpu_starting(). |
| 820 | */ |
| 821 | init_debug_store_on_cpu(cpu); |
| 822 | } |
| 823 | } |
| 824 | } |
| 825 | |
| 826 | /* |
| 827 | * BTS |
| 828 | */ |
| 829 | |
| 830 | struct event_constraint bts_constraint = |
| 831 | EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0); |
| 832 | |
| 833 | void intel_pmu_enable_bts(u64 config) |
| 834 | { |
| 835 | unsigned long debugctlmsr; |
| 836 | |
| 837 | debugctlmsr = get_debugctlmsr(); |
| 838 | |
| 839 | debugctlmsr |= DEBUGCTLMSR_TR; |
| 840 | debugctlmsr |= DEBUGCTLMSR_BTS; |
| 841 | if (config & ARCH_PERFMON_EVENTSEL_INT) |
| 842 | debugctlmsr |= DEBUGCTLMSR_BTINT; |
| 843 | |
| 844 | if (!(config & ARCH_PERFMON_EVENTSEL_OS)) |
| 845 | debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS; |
| 846 | |
| 847 | if (!(config & ARCH_PERFMON_EVENTSEL_USR)) |
| 848 | debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR; |
| 849 | |
| 850 | update_debugctlmsr(debugctlmsr); |
| 851 | } |
| 852 | |
| 853 | void intel_pmu_disable_bts(void) |
| 854 | { |
| 855 | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| 856 | unsigned long debugctlmsr; |
| 857 | |
| 858 | if (!cpuc->ds) |
| 859 | return; |
| 860 | |
| 861 | debugctlmsr = get_debugctlmsr(); |
| 862 | |
| 863 | debugctlmsr &= |
| 864 | ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT | |
| 865 | DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR); |
| 866 | |
| 867 | update_debugctlmsr(debugctlmsr); |
| 868 | } |
| 869 | |
| 870 | int intel_pmu_drain_bts_buffer(void) |
| 871 | { |
| 872 | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| 873 | struct debug_store *ds = cpuc->ds; |
| 874 | struct bts_record { |
| 875 | u64 from; |
| 876 | u64 to; |
| 877 | u64 flags; |
| 878 | }; |
| 879 | struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS]; |
| 880 | struct bts_record *at, *base, *top; |
| 881 | struct perf_output_handle handle; |
| 882 | struct perf_event_header header; |
| 883 | struct perf_sample_data data; |
| 884 | unsigned long skip = 0; |
| 885 | struct pt_regs regs; |
| 886 | |
| 887 | if (!event) |
| 888 | return 0; |
| 889 | |
| 890 | if (!x86_pmu.bts_active) |
| 891 | return 0; |
| 892 | |
| 893 | base = (struct bts_record *)(unsigned long)ds->bts_buffer_base; |
| 894 | top = (struct bts_record *)(unsigned long)ds->bts_index; |
| 895 | |
| 896 | if (top <= base) |
| 897 | return 0; |
| 898 | |
| 899 | memset(®s, 0, sizeof(regs)); |
| 900 | |
| 901 | ds->bts_index = ds->bts_buffer_base; |
| 902 | |
| 903 | perf_sample_data_init(&data, 0, event->hw.last_period); |
| 904 | |
| 905 | /* |
| 906 | * BTS leaks kernel addresses in branches across the cpl boundary, |
| 907 | * such as traps or system calls, so unless the user is asking for |
| 908 | * kernel tracing (and right now it's not possible), we'd need to |
| 909 | * filter them out. But first we need to count how many of those we |
| 910 | * have in the current batch. This is an extra O(n) pass, however, |
| 911 | * it's much faster than the other one especially considering that |
| 912 | * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the |
| 913 | * alloc_bts_buffer()). |
| 914 | */ |
| 915 | for (at = base; at < top; at++) { |
| 916 | /* |
| 917 | * Note that right now *this* BTS code only works if |
| 918 | * attr::exclude_kernel is set, but let's keep this extra |
| 919 | * check here in case that changes. |
| 920 | */ |
| 921 | if (event->attr.exclude_kernel && |
| 922 | (kernel_ip(at->from) || kernel_ip(at->to))) |
| 923 | skip++; |
| 924 | } |
| 925 | |
| 926 | /* |
| 927 | * Prepare a generic sample, i.e. fill in the invariant fields. |
| 928 | * We will overwrite the from and to address before we output |
| 929 | * the sample. |
| 930 | */ |
| 931 | rcu_read_lock(); |
| 932 | perf_prepare_sample(&data, event, ®s); |
| 933 | perf_prepare_header(&header, &data, event, ®s); |
| 934 | |
| 935 | if (perf_output_begin(&handle, &data, event, |
| 936 | header.size * (top - base - skip))) |
| 937 | goto unlock; |
| 938 | |
| 939 | for (at = base; at < top; at++) { |
| 940 | /* Filter out any records that contain kernel addresses. */ |
| 941 | if (event->attr.exclude_kernel && |
| 942 | (kernel_ip(at->from) || kernel_ip(at->to))) |
| 943 | continue; |
| 944 | |
| 945 | data.ip = at->from; |
| 946 | data.addr = at->to; |
| 947 | |
| 948 | perf_output_sample(&handle, &header, &data, event); |
| 949 | } |
| 950 | |
| 951 | perf_output_end(&handle); |
| 952 | |
| 953 | /* There's new data available. */ |
| 954 | event->hw.interrupts++; |
| 955 | event->pending_kill = POLL_IN; |
| 956 | unlock: |
| 957 | rcu_read_unlock(); |
| 958 | return 1; |
| 959 | } |
| 960 | |
| 961 | void intel_pmu_drain_pebs_buffer(void) |
| 962 | { |
| 963 | struct perf_sample_data data; |
| 964 | |
| 965 | static_call(x86_pmu_drain_pebs)(NULL, &data); |
| 966 | } |
| 967 | |
| 968 | /* |
| 969 | * PEBS |
| 970 | */ |
| 971 | struct event_constraint intel_core2_pebs_event_constraints[] = { |
| 972 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */ |
| 973 | INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */ |
| 974 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */ |
| 975 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */ |
| 976 | INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */ |
| 977 | /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ |
| 978 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01), |
| 979 | EVENT_CONSTRAINT_END |
| 980 | }; |
| 981 | |
| 982 | struct event_constraint intel_atom_pebs_event_constraints[] = { |
| 983 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */ |
| 984 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */ |
| 985 | INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */ |
| 986 | /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ |
| 987 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01), |
| 988 | /* Allow all events as PEBS with no flags */ |
| 989 | INTEL_ALL_EVENT_CONSTRAINT(0, 0x1), |
| 990 | EVENT_CONSTRAINT_END |
| 991 | }; |
| 992 | |
| 993 | struct event_constraint intel_slm_pebs_event_constraints[] = { |
| 994 | /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ |
| 995 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x1), |
| 996 | /* Allow all events as PEBS with no flags */ |
| 997 | INTEL_ALL_EVENT_CONSTRAINT(0, 0x1), |
| 998 | EVENT_CONSTRAINT_END |
| 999 | }; |
| 1000 | |
| 1001 | struct event_constraint intel_glm_pebs_event_constraints[] = { |
| 1002 | /* Allow all events as PEBS with no flags */ |
| 1003 | INTEL_ALL_EVENT_CONSTRAINT(0, 0x1), |
| 1004 | EVENT_CONSTRAINT_END |
| 1005 | }; |
| 1006 | |
| 1007 | struct event_constraint intel_grt_pebs_event_constraints[] = { |
| 1008 | /* Allow all events as PEBS with no flags */ |
| 1009 | INTEL_HYBRID_LAT_CONSTRAINT(0x5d0, 0x3), |
| 1010 | INTEL_HYBRID_LAT_CONSTRAINT(0x6d0, 0xf), |
| 1011 | EVENT_CONSTRAINT_END |
| 1012 | }; |
| 1013 | |
| 1014 | struct event_constraint intel_nehalem_pebs_event_constraints[] = { |
| 1015 | INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */ |
| 1016 | INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */ |
| 1017 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */ |
| 1018 | INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INST_RETIRED.ANY */ |
| 1019 | INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */ |
| 1020 | INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */ |
| 1021 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */ |
| 1022 | INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */ |
| 1023 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */ |
| 1024 | INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */ |
| 1025 | INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */ |
| 1026 | /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ |
| 1027 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f), |
| 1028 | EVENT_CONSTRAINT_END |
| 1029 | }; |
| 1030 | |
| 1031 | struct event_constraint intel_westmere_pebs_event_constraints[] = { |
| 1032 | INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */ |
| 1033 | INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */ |
| 1034 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */ |
| 1035 | INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INSTR_RETIRED.* */ |
| 1036 | INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */ |
| 1037 | INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */ |
| 1038 | INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */ |
| 1039 | INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */ |
| 1040 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */ |
| 1041 | INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */ |
| 1042 | INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */ |
| 1043 | /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ |
| 1044 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f), |
| 1045 | EVENT_CONSTRAINT_END |
| 1046 | }; |
| 1047 | |
| 1048 | struct event_constraint intel_snb_pebs_event_constraints[] = { |
| 1049 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ |
| 1050 | INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */ |
| 1051 | INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */ |
| 1052 | /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ |
| 1053 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf), |
| 1054 | INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */ |
| 1055 | INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ |
| 1056 | INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ |
| 1057 | INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ |
| 1058 | /* Allow all events as PEBS with no flags */ |
| 1059 | INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), |
| 1060 | EVENT_CONSTRAINT_END |
| 1061 | }; |
| 1062 | |
| 1063 | struct event_constraint intel_ivb_pebs_event_constraints[] = { |
| 1064 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ |
| 1065 | INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */ |
| 1066 | INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */ |
| 1067 | /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ |
| 1068 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf), |
| 1069 | /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ |
| 1070 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2), |
| 1071 | INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */ |
| 1072 | INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ |
| 1073 | INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ |
| 1074 | INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ |
| 1075 | /* Allow all events as PEBS with no flags */ |
| 1076 | INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), |
| 1077 | EVENT_CONSTRAINT_END |
| 1078 | }; |
| 1079 | |
| 1080 | struct event_constraint intel_hsw_pebs_event_constraints[] = { |
| 1081 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ |
| 1082 | INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */ |
| 1083 | /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ |
| 1084 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf), |
| 1085 | /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ |
| 1086 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2), |
| 1087 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */ |
| 1088 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */ |
| 1089 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */ |
| 1090 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */ |
| 1091 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */ |
| 1092 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */ |
| 1093 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */ |
| 1094 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */ |
| 1095 | INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ |
| 1096 | INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */ |
| 1097 | INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */ |
| 1098 | /* Allow all events as PEBS with no flags */ |
| 1099 | INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), |
| 1100 | EVENT_CONSTRAINT_END |
| 1101 | }; |
| 1102 | |
| 1103 | struct event_constraint intel_bdw_pebs_event_constraints[] = { |
| 1104 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ |
| 1105 | INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */ |
| 1106 | /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ |
| 1107 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf), |
| 1108 | /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ |
| 1109 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2), |
| 1110 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */ |
| 1111 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */ |
| 1112 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */ |
| 1113 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */ |
| 1114 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */ |
| 1115 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */ |
| 1116 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */ |
| 1117 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */ |
| 1118 | INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ |
| 1119 | INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */ |
| 1120 | INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */ |
| 1121 | /* Allow all events as PEBS with no flags */ |
| 1122 | INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), |
| 1123 | EVENT_CONSTRAINT_END |
| 1124 | }; |
| 1125 | |
| 1126 | |
| 1127 | struct event_constraint intel_skl_pebs_event_constraints[] = { |
| 1128 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */ |
| 1129 | /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ |
| 1130 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2), |
| 1131 | /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */ |
| 1132 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f), |
| 1133 | INTEL_PLD_CONSTRAINT(0x1cd, 0xf), /* MEM_TRANS_RETIRED.* */ |
| 1134 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */ |
| 1135 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */ |
| 1136 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */ |
| 1137 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */ |
| 1138 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */ |
| 1139 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */ |
| 1140 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */ |
| 1141 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */ |
| 1142 | INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */ |
| 1143 | INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */ |
| 1144 | INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_L3_MISS_RETIRED.* */ |
| 1145 | /* Allow all events as PEBS with no flags */ |
| 1146 | INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), |
| 1147 | EVENT_CONSTRAINT_END |
| 1148 | }; |
| 1149 | |
| 1150 | struct event_constraint intel_icl_pebs_event_constraints[] = { |
| 1151 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x100000000ULL), /* old INST_RETIRED.PREC_DIST */ |
| 1152 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x0100, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */ |
| 1153 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL), /* SLOTS */ |
| 1154 | |
| 1155 | INTEL_PLD_CONSTRAINT(0x1cd, 0xff), /* MEM_TRANS_RETIRED.LOAD_LATENCY */ |
| 1156 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */ |
| 1157 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */ |
| 1158 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */ |
| 1159 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */ |
| 1160 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */ |
| 1161 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */ |
| 1162 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */ |
| 1163 | |
| 1164 | INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */ |
| 1165 | |
| 1166 | INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */ |
| 1167 | |
| 1168 | /* |
| 1169 | * Everything else is handled by PMU_FL_PEBS_ALL, because we |
| 1170 | * need the full constraints from the main table. |
| 1171 | */ |
| 1172 | |
| 1173 | EVENT_CONSTRAINT_END |
| 1174 | }; |
| 1175 | |
| 1176 | struct event_constraint intel_glc_pebs_event_constraints[] = { |
| 1177 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x100, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */ |
| 1178 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL), |
| 1179 | |
| 1180 | INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xfe), |
| 1181 | INTEL_PLD_CONSTRAINT(0x1cd, 0xfe), |
| 1182 | INTEL_PSD_CONSTRAINT(0x2cd, 0x1), |
| 1183 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */ |
| 1184 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */ |
| 1185 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */ |
| 1186 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */ |
| 1187 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */ |
| 1188 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */ |
| 1189 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */ |
| 1190 | |
| 1191 | INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), |
| 1192 | |
| 1193 | INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf), |
| 1194 | |
| 1195 | /* |
| 1196 | * Everything else is handled by PMU_FL_PEBS_ALL, because we |
| 1197 | * need the full constraints from the main table. |
| 1198 | */ |
| 1199 | |
| 1200 | EVENT_CONSTRAINT_END |
| 1201 | }; |
| 1202 | |
| 1203 | struct event_constraint intel_lnc_pebs_event_constraints[] = { |
| 1204 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x100, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */ |
| 1205 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL), |
| 1206 | |
| 1207 | INTEL_HYBRID_LDLAT_CONSTRAINT(0x1cd, 0x3fc), |
| 1208 | INTEL_HYBRID_STLAT_CONSTRAINT(0x2cd, 0x3), |
| 1209 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */ |
| 1210 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */ |
| 1211 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */ |
| 1212 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */ |
| 1213 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */ |
| 1214 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */ |
| 1215 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */ |
| 1216 | |
| 1217 | INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), |
| 1218 | |
| 1219 | INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf), |
| 1220 | |
| 1221 | /* |
| 1222 | * Everything else is handled by PMU_FL_PEBS_ALL, because we |
| 1223 | * need the full constraints from the main table. |
| 1224 | */ |
| 1225 | |
| 1226 | EVENT_CONSTRAINT_END |
| 1227 | }; |
| 1228 | |
| 1229 | struct event_constraint *intel_pebs_constraints(struct perf_event *event) |
| 1230 | { |
| 1231 | struct event_constraint *pebs_constraints = hybrid(event->pmu, pebs_constraints); |
| 1232 | struct event_constraint *c; |
| 1233 | |
| 1234 | if (!event->attr.precise_ip) |
| 1235 | return NULL; |
| 1236 | |
| 1237 | if (pebs_constraints) { |
| 1238 | for_each_event_constraint(c, pebs_constraints) { |
| 1239 | if (constraint_match(c, event->hw.config)) { |
| 1240 | event->hw.flags |= c->flags; |
| 1241 | return c; |
| 1242 | } |
| 1243 | } |
| 1244 | } |
| 1245 | |
| 1246 | /* |
| 1247 | * Extended PEBS support |
| 1248 | * Makes the PEBS code search the normal constraints. |
| 1249 | */ |
| 1250 | if (x86_pmu.flags & PMU_FL_PEBS_ALL) |
| 1251 | return NULL; |
| 1252 | |
| 1253 | return &emptyconstraint; |
| 1254 | } |
| 1255 | |
| 1256 | /* |
| 1257 | * We need the sched_task callback even for per-cpu events when we use |
| 1258 | * the large interrupt threshold, such that we can provide PID and TID |
| 1259 | * to PEBS samples. |
| 1260 | */ |
| 1261 | static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc) |
| 1262 | { |
| 1263 | if (cpuc->n_pebs == cpuc->n_pebs_via_pt) |
| 1264 | return false; |
| 1265 | |
| 1266 | return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs); |
| 1267 | } |
| 1268 | |
| 1269 | void intel_pmu_pebs_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in) |
| 1270 | { |
| 1271 | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| 1272 | |
| 1273 | if (!sched_in && pebs_needs_sched_cb(cpuc)) |
| 1274 | intel_pmu_drain_pebs_buffer(); |
| 1275 | } |
| 1276 | |
| 1277 | static inline void pebs_update_threshold(struct cpu_hw_events *cpuc) |
| 1278 | { |
| 1279 | struct debug_store *ds = cpuc->ds; |
| 1280 | int max_pebs_events = intel_pmu_max_num_pebs(cpuc->pmu); |
| 1281 | u64 threshold; |
| 1282 | int reserved; |
| 1283 | |
| 1284 | if (cpuc->n_pebs_via_pt) |
| 1285 | return; |
| 1286 | |
| 1287 | if (x86_pmu.flags & PMU_FL_PEBS_ALL) |
| 1288 | reserved = max_pebs_events + x86_pmu_max_num_counters_fixed(cpuc->pmu); |
| 1289 | else |
| 1290 | reserved = max_pebs_events; |
| 1291 | |
| 1292 | if (cpuc->n_pebs == cpuc->n_large_pebs) { |
| 1293 | threshold = ds->pebs_absolute_maximum - |
| 1294 | reserved * cpuc->pebs_record_size; |
| 1295 | } else { |
| 1296 | threshold = ds->pebs_buffer_base + cpuc->pebs_record_size; |
| 1297 | } |
| 1298 | |
| 1299 | ds->pebs_interrupt_threshold = threshold; |
| 1300 | } |
| 1301 | |
| 1302 | #define PEBS_DATACFG_CNTRS(x) \ |
| 1303 | ((x >> PEBS_DATACFG_CNTR_SHIFT) & PEBS_DATACFG_CNTR_MASK) |
| 1304 | |
| 1305 | #define PEBS_DATACFG_CNTR_BIT(x) \ |
| 1306 | (((1ULL << x) & PEBS_DATACFG_CNTR_MASK) << PEBS_DATACFG_CNTR_SHIFT) |
| 1307 | |
| 1308 | #define PEBS_DATACFG_FIX(x) \ |
| 1309 | ((x >> PEBS_DATACFG_FIX_SHIFT) & PEBS_DATACFG_FIX_MASK) |
| 1310 | |
| 1311 | #define PEBS_DATACFG_FIX_BIT(x) \ |
| 1312 | (((1ULL << (x)) & PEBS_DATACFG_FIX_MASK) \ |
| 1313 | << PEBS_DATACFG_FIX_SHIFT) |
| 1314 | |
| 1315 | static void adaptive_pebs_record_size_update(void) |
| 1316 | { |
| 1317 | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| 1318 | u64 pebs_data_cfg = cpuc->pebs_data_cfg; |
| 1319 | int sz = sizeof(struct pebs_basic); |
| 1320 | |
| 1321 | if (pebs_data_cfg & PEBS_DATACFG_MEMINFO) |
| 1322 | sz += sizeof(struct pebs_meminfo); |
| 1323 | if (pebs_data_cfg & PEBS_DATACFG_GP) |
| 1324 | sz += sizeof(struct pebs_gprs); |
| 1325 | if (pebs_data_cfg & PEBS_DATACFG_XMMS) |
| 1326 | sz += sizeof(struct pebs_xmm); |
| 1327 | if (pebs_data_cfg & PEBS_DATACFG_LBRS) |
| 1328 | sz += x86_pmu.lbr_nr * sizeof(struct lbr_entry); |
| 1329 | if (pebs_data_cfg & (PEBS_DATACFG_METRICS | PEBS_DATACFG_CNTR)) { |
| 1330 | sz += sizeof(struct pebs_cntr_header); |
| 1331 | |
| 1332 | /* Metrics base and Metrics Data */ |
| 1333 | if (pebs_data_cfg & PEBS_DATACFG_METRICS) |
| 1334 | sz += 2 * sizeof(u64); |
| 1335 | |
| 1336 | if (pebs_data_cfg & PEBS_DATACFG_CNTR) { |
| 1337 | sz += (hweight64(PEBS_DATACFG_CNTRS(pebs_data_cfg)) + |
| 1338 | hweight64(PEBS_DATACFG_FIX(pebs_data_cfg))) * |
| 1339 | sizeof(u64); |
| 1340 | } |
| 1341 | } |
| 1342 | |
| 1343 | cpuc->pebs_record_size = sz; |
| 1344 | } |
| 1345 | |
| 1346 | static void __intel_pmu_pebs_update_cfg(struct perf_event *event, |
| 1347 | int idx, u64 *pebs_data_cfg) |
| 1348 | { |
| 1349 | if (is_metric_event(event)) { |
| 1350 | *pebs_data_cfg |= PEBS_DATACFG_METRICS; |
| 1351 | return; |
| 1352 | } |
| 1353 | |
| 1354 | *pebs_data_cfg |= PEBS_DATACFG_CNTR; |
| 1355 | |
| 1356 | if (idx >= INTEL_PMC_IDX_FIXED) |
| 1357 | *pebs_data_cfg |= PEBS_DATACFG_FIX_BIT(idx - INTEL_PMC_IDX_FIXED); |
| 1358 | else |
| 1359 | *pebs_data_cfg |= PEBS_DATACFG_CNTR_BIT(idx); |
| 1360 | } |
| 1361 | |
| 1362 | |
| 1363 | void intel_pmu_pebs_late_setup(struct cpu_hw_events *cpuc) |
| 1364 | { |
| 1365 | struct perf_event *event; |
| 1366 | u64 pebs_data_cfg = 0; |
| 1367 | int i; |
| 1368 | |
| 1369 | for (i = 0; i < cpuc->n_events; i++) { |
| 1370 | event = cpuc->event_list[i]; |
| 1371 | if (!is_pebs_counter_event_group(event)) |
| 1372 | continue; |
| 1373 | __intel_pmu_pebs_update_cfg(event, cpuc->assign[i], &pebs_data_cfg); |
| 1374 | } |
| 1375 | |
| 1376 | if (pebs_data_cfg & ~cpuc->pebs_data_cfg) |
| 1377 | cpuc->pebs_data_cfg |= pebs_data_cfg | PEBS_UPDATE_DS_SW; |
| 1378 | } |
| 1379 | |
| 1380 | #define PERF_PEBS_MEMINFO_TYPE (PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC | \ |
| 1381 | PERF_SAMPLE_PHYS_ADDR | \ |
| 1382 | PERF_SAMPLE_WEIGHT_TYPE | \ |
| 1383 | PERF_SAMPLE_TRANSACTION | \ |
| 1384 | PERF_SAMPLE_DATA_PAGE_SIZE) |
| 1385 | |
| 1386 | static u64 pebs_update_adaptive_cfg(struct perf_event *event) |
| 1387 | { |
| 1388 | struct perf_event_attr *attr = &event->attr; |
| 1389 | u64 sample_type = attr->sample_type; |
| 1390 | u64 pebs_data_cfg = 0; |
| 1391 | bool gprs, tsx_weight; |
| 1392 | |
| 1393 | if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) && |
| 1394 | attr->precise_ip > 1) |
| 1395 | return pebs_data_cfg; |
| 1396 | |
| 1397 | if (sample_type & PERF_PEBS_MEMINFO_TYPE) |
| 1398 | pebs_data_cfg |= PEBS_DATACFG_MEMINFO; |
| 1399 | |
| 1400 | /* |
| 1401 | * We need GPRs when: |
| 1402 | * + user requested them |
| 1403 | * + precise_ip < 2 for the non event IP |
| 1404 | * + For RTM TSX weight we need GPRs for the abort code. |
| 1405 | */ |
| 1406 | gprs = ((sample_type & PERF_SAMPLE_REGS_INTR) && |
| 1407 | (attr->sample_regs_intr & PEBS_GP_REGS)) || |
| 1408 | ((sample_type & PERF_SAMPLE_REGS_USER) && |
| 1409 | (attr->sample_regs_user & PEBS_GP_REGS)); |
| 1410 | |
| 1411 | tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT_TYPE) && |
| 1412 | ((attr->config & INTEL_ARCH_EVENT_MASK) == |
| 1413 | x86_pmu.rtm_abort_event); |
| 1414 | |
| 1415 | if (gprs || (attr->precise_ip < 2) || tsx_weight) |
| 1416 | pebs_data_cfg |= PEBS_DATACFG_GP; |
| 1417 | |
| 1418 | if ((sample_type & PERF_SAMPLE_REGS_INTR) && |
| 1419 | (attr->sample_regs_intr & PERF_REG_EXTENDED_MASK)) |
| 1420 | pebs_data_cfg |= PEBS_DATACFG_XMMS; |
| 1421 | |
| 1422 | if (sample_type & PERF_SAMPLE_BRANCH_STACK) { |
| 1423 | /* |
| 1424 | * For now always log all LBRs. Could configure this |
| 1425 | * later. |
| 1426 | */ |
| 1427 | pebs_data_cfg |= PEBS_DATACFG_LBRS | |
| 1428 | ((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT); |
| 1429 | } |
| 1430 | |
| 1431 | return pebs_data_cfg; |
| 1432 | } |
| 1433 | |
| 1434 | static void |
| 1435 | pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc, |
| 1436 | struct perf_event *event, bool add) |
| 1437 | { |
| 1438 | struct pmu *pmu = event->pmu; |
| 1439 | |
| 1440 | /* |
| 1441 | * Make sure we get updated with the first PEBS event. |
| 1442 | * During removal, ->pebs_data_cfg is still valid for |
| 1443 | * the last PEBS event. Don't clear it. |
| 1444 | */ |
| 1445 | if ((cpuc->n_pebs == 1) && add) |
| 1446 | cpuc->pebs_data_cfg = PEBS_UPDATE_DS_SW; |
| 1447 | |
| 1448 | if (needed_cb != pebs_needs_sched_cb(cpuc)) { |
| 1449 | if (!needed_cb) |
| 1450 | perf_sched_cb_inc(pmu); |
| 1451 | else |
| 1452 | perf_sched_cb_dec(pmu); |
| 1453 | |
| 1454 | cpuc->pebs_data_cfg |= PEBS_UPDATE_DS_SW; |
| 1455 | } |
| 1456 | |
| 1457 | /* |
| 1458 | * The PEBS record doesn't shrink on pmu::del(). Doing so would require |
| 1459 | * iterating all remaining PEBS events to reconstruct the config. |
| 1460 | */ |
| 1461 | if (x86_pmu.intel_cap.pebs_baseline && add) { |
| 1462 | u64 pebs_data_cfg; |
| 1463 | |
| 1464 | pebs_data_cfg = pebs_update_adaptive_cfg(event); |
| 1465 | /* |
| 1466 | * Be sure to update the thresholds when we change the record. |
| 1467 | */ |
| 1468 | if (pebs_data_cfg & ~cpuc->pebs_data_cfg) |
| 1469 | cpuc->pebs_data_cfg |= pebs_data_cfg | PEBS_UPDATE_DS_SW; |
| 1470 | } |
| 1471 | } |
| 1472 | |
| 1473 | void intel_pmu_pebs_add(struct perf_event *event) |
| 1474 | { |
| 1475 | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| 1476 | struct hw_perf_event *hwc = &event->hw; |
| 1477 | bool needed_cb = pebs_needs_sched_cb(cpuc); |
| 1478 | |
| 1479 | cpuc->n_pebs++; |
| 1480 | if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS) |
| 1481 | cpuc->n_large_pebs++; |
| 1482 | if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT) |
| 1483 | cpuc->n_pebs_via_pt++; |
| 1484 | |
| 1485 | pebs_update_state(needed_cb, cpuc, event, true); |
| 1486 | } |
| 1487 | |
| 1488 | static void intel_pmu_pebs_via_pt_disable(struct perf_event *event) |
| 1489 | { |
| 1490 | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| 1491 | |
| 1492 | if (!is_pebs_pt(event)) |
| 1493 | return; |
| 1494 | |
| 1495 | if (!(cpuc->pebs_enabled & ~PEBS_VIA_PT_MASK)) |
| 1496 | cpuc->pebs_enabled &= ~PEBS_VIA_PT_MASK; |
| 1497 | } |
| 1498 | |
| 1499 | static void intel_pmu_pebs_via_pt_enable(struct perf_event *event) |
| 1500 | { |
| 1501 | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| 1502 | struct hw_perf_event *hwc = &event->hw; |
| 1503 | struct debug_store *ds = cpuc->ds; |
| 1504 | u64 value = ds->pebs_event_reset[hwc->idx]; |
| 1505 | u32 base = MSR_RELOAD_PMC0; |
| 1506 | unsigned int idx = hwc->idx; |
| 1507 | |
| 1508 | if (!is_pebs_pt(event)) |
| 1509 | return; |
| 1510 | |
| 1511 | if (!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS)) |
| 1512 | cpuc->pebs_enabled |= PEBS_PMI_AFTER_EACH_RECORD; |
| 1513 | |
| 1514 | cpuc->pebs_enabled |= PEBS_OUTPUT_PT; |
| 1515 | |
| 1516 | if (hwc->idx >= INTEL_PMC_IDX_FIXED) { |
| 1517 | base = MSR_RELOAD_FIXED_CTR0; |
| 1518 | idx = hwc->idx - INTEL_PMC_IDX_FIXED; |
| 1519 | if (x86_pmu.intel_cap.pebs_format < 5) |
| 1520 | value = ds->pebs_event_reset[MAX_PEBS_EVENTS_FMT4 + idx]; |
| 1521 | else |
| 1522 | value = ds->pebs_event_reset[MAX_PEBS_EVENTS + idx]; |
| 1523 | } |
| 1524 | wrmsrq(base + idx, value); |
| 1525 | } |
| 1526 | |
| 1527 | static inline void intel_pmu_drain_large_pebs(struct cpu_hw_events *cpuc) |
| 1528 | { |
| 1529 | if (cpuc->n_pebs == cpuc->n_large_pebs && |
| 1530 | cpuc->n_pebs != cpuc->n_pebs_via_pt) |
| 1531 | intel_pmu_drain_pebs_buffer(); |
| 1532 | } |
| 1533 | |
| 1534 | void intel_pmu_pebs_enable(struct perf_event *event) |
| 1535 | { |
| 1536 | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| 1537 | u64 pebs_data_cfg = cpuc->pebs_data_cfg & ~PEBS_UPDATE_DS_SW; |
| 1538 | struct hw_perf_event *hwc = &event->hw; |
| 1539 | struct debug_store *ds = cpuc->ds; |
| 1540 | unsigned int idx = hwc->idx; |
| 1541 | |
| 1542 | hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT; |
| 1543 | |
| 1544 | cpuc->pebs_enabled |= 1ULL << hwc->idx; |
| 1545 | |
| 1546 | if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5)) |
| 1547 | cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32); |
| 1548 | else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST) |
| 1549 | cpuc->pebs_enabled |= 1ULL << 63; |
| 1550 | |
| 1551 | if (x86_pmu.intel_cap.pebs_baseline) { |
| 1552 | hwc->config |= ICL_EVENTSEL_ADAPTIVE; |
| 1553 | if (pebs_data_cfg != cpuc->active_pebs_data_cfg) { |
| 1554 | /* |
| 1555 | * drain_pebs() assumes uniform record size; |
| 1556 | * hence we need to drain when changing said |
| 1557 | * size. |
| 1558 | */ |
| 1559 | intel_pmu_drain_pebs_buffer(); |
| 1560 | adaptive_pebs_record_size_update(); |
| 1561 | wrmsrq(MSR_PEBS_DATA_CFG, pebs_data_cfg); |
| 1562 | cpuc->active_pebs_data_cfg = pebs_data_cfg; |
| 1563 | } |
| 1564 | } |
| 1565 | if (cpuc->pebs_data_cfg & PEBS_UPDATE_DS_SW) { |
| 1566 | cpuc->pebs_data_cfg = pebs_data_cfg; |
| 1567 | pebs_update_threshold(cpuc); |
| 1568 | } |
| 1569 | |
| 1570 | if (idx >= INTEL_PMC_IDX_FIXED) { |
| 1571 | if (x86_pmu.intel_cap.pebs_format < 5) |
| 1572 | idx = MAX_PEBS_EVENTS_FMT4 + (idx - INTEL_PMC_IDX_FIXED); |
| 1573 | else |
| 1574 | idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED); |
| 1575 | } |
| 1576 | |
| 1577 | /* |
| 1578 | * Use auto-reload if possible to save a MSR write in the PMI. |
| 1579 | * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD. |
| 1580 | */ |
| 1581 | if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) { |
| 1582 | ds->pebs_event_reset[idx] = |
| 1583 | (u64)(-hwc->sample_period) & x86_pmu.cntval_mask; |
| 1584 | } else { |
| 1585 | ds->pebs_event_reset[idx] = 0; |
| 1586 | } |
| 1587 | |
| 1588 | intel_pmu_pebs_via_pt_enable(event); |
| 1589 | } |
| 1590 | |
| 1591 | void intel_pmu_pebs_del(struct perf_event *event) |
| 1592 | { |
| 1593 | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| 1594 | struct hw_perf_event *hwc = &event->hw; |
| 1595 | bool needed_cb = pebs_needs_sched_cb(cpuc); |
| 1596 | |
| 1597 | cpuc->n_pebs--; |
| 1598 | if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS) |
| 1599 | cpuc->n_large_pebs--; |
| 1600 | if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT) |
| 1601 | cpuc->n_pebs_via_pt--; |
| 1602 | |
| 1603 | pebs_update_state(needed_cb, cpuc, event, false); |
| 1604 | } |
| 1605 | |
| 1606 | void intel_pmu_pebs_disable(struct perf_event *event) |
| 1607 | { |
| 1608 | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| 1609 | struct hw_perf_event *hwc = &event->hw; |
| 1610 | |
| 1611 | intel_pmu_drain_large_pebs(cpuc); |
| 1612 | |
| 1613 | cpuc->pebs_enabled &= ~(1ULL << hwc->idx); |
| 1614 | |
| 1615 | if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && |
| 1616 | (x86_pmu.version < 5)) |
| 1617 | cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32)); |
| 1618 | else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST) |
| 1619 | cpuc->pebs_enabled &= ~(1ULL << 63); |
| 1620 | |
| 1621 | intel_pmu_pebs_via_pt_disable(event); |
| 1622 | |
| 1623 | if (cpuc->enabled) |
| 1624 | wrmsrq(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled); |
| 1625 | |
| 1626 | hwc->config |= ARCH_PERFMON_EVENTSEL_INT; |
| 1627 | } |
| 1628 | |
| 1629 | void intel_pmu_pebs_enable_all(void) |
| 1630 | { |
| 1631 | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| 1632 | |
| 1633 | if (cpuc->pebs_enabled) |
| 1634 | wrmsrq(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled); |
| 1635 | } |
| 1636 | |
| 1637 | void intel_pmu_pebs_disable_all(void) |
| 1638 | { |
| 1639 | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| 1640 | |
| 1641 | if (cpuc->pebs_enabled) |
| 1642 | __intel_pmu_pebs_disable_all(); |
| 1643 | } |
| 1644 | |
| 1645 | static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs) |
| 1646 | { |
| 1647 | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| 1648 | unsigned long from = cpuc->lbr_entries[0].from; |
| 1649 | unsigned long old_to, to = cpuc->lbr_entries[0].to; |
| 1650 | unsigned long ip = regs->ip; |
| 1651 | int is_64bit = 0; |
| 1652 | void *kaddr; |
| 1653 | int size; |
| 1654 | |
| 1655 | /* |
| 1656 | * We don't need to fixup if the PEBS assist is fault like |
| 1657 | */ |
| 1658 | if (!x86_pmu.intel_cap.pebs_trap) |
| 1659 | return 1; |
| 1660 | |
| 1661 | /* |
| 1662 | * No LBR entry, no basic block, no rewinding |
| 1663 | */ |
| 1664 | if (!cpuc->lbr_stack.nr || !from || !to) |
| 1665 | return 0; |
| 1666 | |
| 1667 | /* |
| 1668 | * Basic blocks should never cross user/kernel boundaries |
| 1669 | */ |
| 1670 | if (kernel_ip(ip) != kernel_ip(to)) |
| 1671 | return 0; |
| 1672 | |
| 1673 | /* |
| 1674 | * unsigned math, either ip is before the start (impossible) or |
| 1675 | * the basic block is larger than 1 page (sanity) |
| 1676 | */ |
| 1677 | if ((ip - to) > PEBS_FIXUP_SIZE) |
| 1678 | return 0; |
| 1679 | |
| 1680 | /* |
| 1681 | * We sampled a branch insn, rewind using the LBR stack |
| 1682 | */ |
| 1683 | if (ip == to) { |
| 1684 | set_linear_ip(regs, from); |
| 1685 | return 1; |
| 1686 | } |
| 1687 | |
| 1688 | size = ip - to; |
| 1689 | if (!kernel_ip(ip)) { |
| 1690 | int bytes; |
| 1691 | u8 *buf = this_cpu_read(insn_buffer); |
| 1692 | |
| 1693 | /* 'size' must fit our buffer, see above */ |
| 1694 | bytes = copy_from_user_nmi(buf, (void __user *)to, size); |
| 1695 | if (bytes != 0) |
| 1696 | return 0; |
| 1697 | |
| 1698 | kaddr = buf; |
| 1699 | } else { |
| 1700 | kaddr = (void *)to; |
| 1701 | } |
| 1702 | |
| 1703 | do { |
| 1704 | struct insn insn; |
| 1705 | |
| 1706 | old_to = to; |
| 1707 | |
| 1708 | #ifdef CONFIG_X86_64 |
| 1709 | is_64bit = kernel_ip(to) || any_64bit_mode(regs); |
| 1710 | #endif |
| 1711 | insn_init(&insn, kaddr, size, is_64bit); |
| 1712 | |
| 1713 | /* |
| 1714 | * Make sure there was not a problem decoding the instruction. |
| 1715 | * This is doubly important because we have an infinite loop if |
| 1716 | * insn.length=0. |
| 1717 | */ |
| 1718 | if (insn_get_length(&insn)) |
| 1719 | break; |
| 1720 | |
| 1721 | to += insn.length; |
| 1722 | kaddr += insn.length; |
| 1723 | size -= insn.length; |
| 1724 | } while (to < ip); |
| 1725 | |
| 1726 | if (to == ip) { |
| 1727 | set_linear_ip(regs, old_to); |
| 1728 | return 1; |
| 1729 | } |
| 1730 | |
| 1731 | /* |
| 1732 | * Even though we decoded the basic block, the instruction stream |
| 1733 | * never matched the given IP, either the TO or the IP got corrupted. |
| 1734 | */ |
| 1735 | return 0; |
| 1736 | } |
| 1737 | |
| 1738 | static inline u64 intel_get_tsx_weight(u64 tsx_tuning) |
| 1739 | { |
| 1740 | if (tsx_tuning) { |
| 1741 | union hsw_tsx_tuning tsx = { .value = tsx_tuning }; |
| 1742 | return tsx.cycles_last_block; |
| 1743 | } |
| 1744 | return 0; |
| 1745 | } |
| 1746 | |
| 1747 | static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax) |
| 1748 | { |
| 1749 | u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32; |
| 1750 | |
| 1751 | /* For RTM XABORTs also log the abort code from AX */ |
| 1752 | if ((txn & PERF_TXN_TRANSACTION) && (ax & 1)) |
| 1753 | txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT; |
| 1754 | return txn; |
| 1755 | } |
| 1756 | |
| 1757 | static inline u64 get_pebs_status(void *n) |
| 1758 | { |
| 1759 | if (x86_pmu.intel_cap.pebs_format < 4) |
| 1760 | return ((struct pebs_record_nhm *)n)->status; |
| 1761 | return ((struct pebs_basic *)n)->applicable_counters; |
| 1762 | } |
| 1763 | |
| 1764 | #define PERF_X86_EVENT_PEBS_HSW_PREC \ |
| 1765 | (PERF_X86_EVENT_PEBS_ST_HSW | \ |
| 1766 | PERF_X86_EVENT_PEBS_LD_HSW | \ |
| 1767 | PERF_X86_EVENT_PEBS_NA_HSW) |
| 1768 | |
| 1769 | static u64 get_data_src(struct perf_event *event, u64 aux) |
| 1770 | { |
| 1771 | u64 val = PERF_MEM_NA; |
| 1772 | int fl = event->hw.flags; |
| 1773 | bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC); |
| 1774 | |
| 1775 | if (fl & PERF_X86_EVENT_PEBS_LDLAT) |
| 1776 | val = load_latency_data(event, aux); |
| 1777 | else if (fl & PERF_X86_EVENT_PEBS_STLAT) |
| 1778 | val = store_latency_data(event, aux); |
| 1779 | else if (fl & PERF_X86_EVENT_PEBS_LAT_HYBRID) |
| 1780 | val = x86_pmu.pebs_latency_data(event, aux); |
| 1781 | else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC)) |
| 1782 | val = precise_datala_hsw(event, aux); |
| 1783 | else if (fst) |
| 1784 | val = precise_store_data(aux); |
| 1785 | return val; |
| 1786 | } |
| 1787 | |
| 1788 | static void setup_pebs_time(struct perf_event *event, |
| 1789 | struct perf_sample_data *data, |
| 1790 | u64 tsc) |
| 1791 | { |
| 1792 | /* Converting to a user-defined clock is not supported yet. */ |
| 1793 | if (event->attr.use_clockid != 0) |
| 1794 | return; |
| 1795 | |
| 1796 | /* |
| 1797 | * Doesn't support the conversion when the TSC is unstable. |
| 1798 | * The TSC unstable case is a corner case and very unlikely to |
| 1799 | * happen. If it happens, the TSC in a PEBS record will be |
| 1800 | * dropped and fall back to perf_event_clock(). |
| 1801 | */ |
| 1802 | if (!using_native_sched_clock() || !sched_clock_stable()) |
| 1803 | return; |
| 1804 | |
| 1805 | data->time = native_sched_clock_from_tsc(tsc) + __sched_clock_offset; |
| 1806 | data->sample_flags |= PERF_SAMPLE_TIME; |
| 1807 | } |
| 1808 | |
| 1809 | #define PERF_SAMPLE_ADDR_TYPE (PERF_SAMPLE_ADDR | \ |
| 1810 | PERF_SAMPLE_PHYS_ADDR | \ |
| 1811 | PERF_SAMPLE_DATA_PAGE_SIZE) |
| 1812 | |
| 1813 | static void setup_pebs_fixed_sample_data(struct perf_event *event, |
| 1814 | struct pt_regs *iregs, void *__pebs, |
| 1815 | struct perf_sample_data *data, |
| 1816 | struct pt_regs *regs) |
| 1817 | { |
| 1818 | /* |
| 1819 | * We cast to the biggest pebs_record but are careful not to |
| 1820 | * unconditionally access the 'extra' entries. |
| 1821 | */ |
| 1822 | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| 1823 | struct pebs_record_skl *pebs = __pebs; |
| 1824 | u64 sample_type; |
| 1825 | int fll; |
| 1826 | |
| 1827 | if (pebs == NULL) |
| 1828 | return; |
| 1829 | |
| 1830 | sample_type = event->attr.sample_type; |
| 1831 | fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT; |
| 1832 | |
| 1833 | perf_sample_data_init(data, 0, event->hw.last_period); |
| 1834 | |
| 1835 | /* |
| 1836 | * Use latency for weight (only avail with PEBS-LL) |
| 1837 | */ |
| 1838 | if (fll && (sample_type & PERF_SAMPLE_WEIGHT_TYPE)) { |
| 1839 | data->weight.full = pebs->lat; |
| 1840 | data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; |
| 1841 | } |
| 1842 | |
| 1843 | /* |
| 1844 | * data.data_src encodes the data source |
| 1845 | */ |
| 1846 | if (sample_type & PERF_SAMPLE_DATA_SRC) { |
| 1847 | data->data_src.val = get_data_src(event, pebs->dse); |
| 1848 | data->sample_flags |= PERF_SAMPLE_DATA_SRC; |
| 1849 | } |
| 1850 | |
| 1851 | /* |
| 1852 | * We must however always use iregs for the unwinder to stay sane; the |
| 1853 | * record BP,SP,IP can point into thin air when the record is from a |
| 1854 | * previous PMI context or an (I)RET happened between the record and |
| 1855 | * PMI. |
| 1856 | */ |
| 1857 | perf_sample_save_callchain(data, event, iregs); |
| 1858 | |
| 1859 | /* |
| 1860 | * We use the interrupt regs as a base because the PEBS record does not |
| 1861 | * contain a full regs set, specifically it seems to lack segment |
| 1862 | * descriptors, which get used by things like user_mode(). |
| 1863 | * |
| 1864 | * In the simple case fix up only the IP for PERF_SAMPLE_IP. |
| 1865 | */ |
| 1866 | *regs = *iregs; |
| 1867 | |
| 1868 | /* |
| 1869 | * Initialize regs_>flags from PEBS, |
| 1870 | * Clear exact bit (which uses x86 EFLAGS Reserved bit 3), |
| 1871 | * i.e., do not rely on it being zero: |
| 1872 | */ |
| 1873 | regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT; |
| 1874 | |
| 1875 | if (sample_type & PERF_SAMPLE_REGS_INTR) { |
| 1876 | regs->ax = pebs->ax; |
| 1877 | regs->bx = pebs->bx; |
| 1878 | regs->cx = pebs->cx; |
| 1879 | regs->dx = pebs->dx; |
| 1880 | regs->si = pebs->si; |
| 1881 | regs->di = pebs->di; |
| 1882 | |
| 1883 | regs->bp = pebs->bp; |
| 1884 | regs->sp = pebs->sp; |
| 1885 | |
| 1886 | #ifndef CONFIG_X86_32 |
| 1887 | regs->r8 = pebs->r8; |
| 1888 | regs->r9 = pebs->r9; |
| 1889 | regs->r10 = pebs->r10; |
| 1890 | regs->r11 = pebs->r11; |
| 1891 | regs->r12 = pebs->r12; |
| 1892 | regs->r13 = pebs->r13; |
| 1893 | regs->r14 = pebs->r14; |
| 1894 | regs->r15 = pebs->r15; |
| 1895 | #endif |
| 1896 | } |
| 1897 | |
| 1898 | if (event->attr.precise_ip > 1) { |
| 1899 | /* |
| 1900 | * Haswell and later processors have an 'eventing IP' |
| 1901 | * (real IP) which fixes the off-by-1 skid in hardware. |
| 1902 | * Use it when precise_ip >= 2 : |
| 1903 | */ |
| 1904 | if (x86_pmu.intel_cap.pebs_format >= 2) { |
| 1905 | set_linear_ip(regs, pebs->real_ip); |
| 1906 | regs->flags |= PERF_EFLAGS_EXACT; |
| 1907 | } else { |
| 1908 | /* Otherwise, use PEBS off-by-1 IP: */ |
| 1909 | set_linear_ip(regs, pebs->ip); |
| 1910 | |
| 1911 | /* |
| 1912 | * With precise_ip >= 2, try to fix up the off-by-1 IP |
| 1913 | * using the LBR. If successful, the fixup function |
| 1914 | * corrects regs->ip and calls set_linear_ip() on regs: |
| 1915 | */ |
| 1916 | if (intel_pmu_pebs_fixup_ip(regs)) |
| 1917 | regs->flags |= PERF_EFLAGS_EXACT; |
| 1918 | } |
| 1919 | } else { |
| 1920 | /* |
| 1921 | * When precise_ip == 1, return the PEBS off-by-1 IP, |
| 1922 | * no fixup attempted: |
| 1923 | */ |
| 1924 | set_linear_ip(regs, pebs->ip); |
| 1925 | } |
| 1926 | |
| 1927 | |
| 1928 | if ((sample_type & PERF_SAMPLE_ADDR_TYPE) && |
| 1929 | x86_pmu.intel_cap.pebs_format >= 1) { |
| 1930 | data->addr = pebs->dla; |
| 1931 | data->sample_flags |= PERF_SAMPLE_ADDR; |
| 1932 | } |
| 1933 | |
| 1934 | if (x86_pmu.intel_cap.pebs_format >= 2) { |
| 1935 | /* Only set the TSX weight when no memory weight. */ |
| 1936 | if ((sample_type & PERF_SAMPLE_WEIGHT_TYPE) && !fll) { |
| 1937 | data->weight.full = intel_get_tsx_weight(pebs->tsx_tuning); |
| 1938 | data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; |
| 1939 | } |
| 1940 | if (sample_type & PERF_SAMPLE_TRANSACTION) { |
| 1941 | data->txn = intel_get_tsx_transaction(pebs->tsx_tuning, |
| 1942 | pebs->ax); |
| 1943 | data->sample_flags |= PERF_SAMPLE_TRANSACTION; |
| 1944 | } |
| 1945 | } |
| 1946 | |
| 1947 | /* |
| 1948 | * v3 supplies an accurate time stamp, so we use that |
| 1949 | * for the time stamp. |
| 1950 | * |
| 1951 | * We can only do this for the default trace clock. |
| 1952 | */ |
| 1953 | if (x86_pmu.intel_cap.pebs_format >= 3) |
| 1954 | setup_pebs_time(event, data, pebs->tsc); |
| 1955 | |
| 1956 | perf_sample_save_brstack(data, event, &cpuc->lbr_stack, NULL); |
| 1957 | } |
| 1958 | |
| 1959 | static void adaptive_pebs_save_regs(struct pt_regs *regs, |
| 1960 | struct pebs_gprs *gprs) |
| 1961 | { |
| 1962 | regs->ax = gprs->ax; |
| 1963 | regs->bx = gprs->bx; |
| 1964 | regs->cx = gprs->cx; |
| 1965 | regs->dx = gprs->dx; |
| 1966 | regs->si = gprs->si; |
| 1967 | regs->di = gprs->di; |
| 1968 | regs->bp = gprs->bp; |
| 1969 | regs->sp = gprs->sp; |
| 1970 | #ifndef CONFIG_X86_32 |
| 1971 | regs->r8 = gprs->r8; |
| 1972 | regs->r9 = gprs->r9; |
| 1973 | regs->r10 = gprs->r10; |
| 1974 | regs->r11 = gprs->r11; |
| 1975 | regs->r12 = gprs->r12; |
| 1976 | regs->r13 = gprs->r13; |
| 1977 | regs->r14 = gprs->r14; |
| 1978 | regs->r15 = gprs->r15; |
| 1979 | #endif |
| 1980 | } |
| 1981 | |
| 1982 | static void intel_perf_event_update_pmc(struct perf_event *event, u64 pmc) |
| 1983 | { |
| 1984 | int shift = 64 - x86_pmu.cntval_bits; |
| 1985 | struct hw_perf_event *hwc; |
| 1986 | u64 delta, prev_pmc; |
| 1987 | |
| 1988 | /* |
| 1989 | * A recorded counter may not have an assigned event in the |
| 1990 | * following cases. The value should be dropped. |
| 1991 | * - An event is deleted. There is still an active PEBS event. |
| 1992 | * The PEBS record doesn't shrink on pmu::del(). |
| 1993 | * If the counter of the deleted event once occurred in a PEBS |
| 1994 | * record, PEBS still records the counter until the counter is |
| 1995 | * reassigned. |
| 1996 | * - An event is stopped for some reason, e.g., throttled. |
| 1997 | * During this period, another event is added and takes the |
| 1998 | * counter of the stopped event. The stopped event is assigned |
| 1999 | * to another new and uninitialized counter, since the |
| 2000 | * x86_pmu_start(RELOAD) is not invoked for a stopped event. |
| 2001 | * The PEBS__DATA_CFG is updated regardless of the event state. |
| 2002 | * The uninitialized counter can be recorded in a PEBS record. |
| 2003 | * But the cpuc->events[uninitialized_counter] is always NULL, |
| 2004 | * because the event is stopped. The uninitialized value is |
| 2005 | * safely dropped. |
| 2006 | */ |
| 2007 | if (!event) |
| 2008 | return; |
| 2009 | |
| 2010 | hwc = &event->hw; |
| 2011 | prev_pmc = local64_read(&hwc->prev_count); |
| 2012 | |
| 2013 | /* Only update the count when the PMU is disabled */ |
| 2014 | WARN_ON(this_cpu_read(cpu_hw_events.enabled)); |
| 2015 | local64_set(&hwc->prev_count, pmc); |
| 2016 | |
| 2017 | delta = (pmc << shift) - (prev_pmc << shift); |
| 2018 | delta >>= shift; |
| 2019 | |
| 2020 | local64_add(delta, &event->count); |
| 2021 | local64_sub(delta, &hwc->period_left); |
| 2022 | } |
| 2023 | |
| 2024 | static inline void __setup_pebs_counter_group(struct cpu_hw_events *cpuc, |
| 2025 | struct perf_event *event, |
| 2026 | struct pebs_cntr_header *cntr, |
| 2027 | void *next_record) |
| 2028 | { |
| 2029 | int bit; |
| 2030 | |
| 2031 | for_each_set_bit(bit, (unsigned long *)&cntr->cntr, INTEL_PMC_MAX_GENERIC) { |
| 2032 | intel_perf_event_update_pmc(cpuc->events[bit], *(u64 *)next_record); |
| 2033 | next_record += sizeof(u64); |
| 2034 | } |
| 2035 | |
| 2036 | for_each_set_bit(bit, (unsigned long *)&cntr->fixed, INTEL_PMC_MAX_FIXED) { |
| 2037 | /* The slots event will be handled with perf_metric later */ |
| 2038 | if ((cntr->metrics == INTEL_CNTR_METRICS) && |
| 2039 | (bit + INTEL_PMC_IDX_FIXED == INTEL_PMC_IDX_FIXED_SLOTS)) { |
| 2040 | next_record += sizeof(u64); |
| 2041 | continue; |
| 2042 | } |
| 2043 | intel_perf_event_update_pmc(cpuc->events[bit + INTEL_PMC_IDX_FIXED], |
| 2044 | *(u64 *)next_record); |
| 2045 | next_record += sizeof(u64); |
| 2046 | } |
| 2047 | |
| 2048 | /* HW will reload the value right after the overflow. */ |
| 2049 | if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD) |
| 2050 | local64_set(&event->hw.prev_count, (u64)-event->hw.sample_period); |
| 2051 | |
| 2052 | if (cntr->metrics == INTEL_CNTR_METRICS) { |
| 2053 | static_call(intel_pmu_update_topdown_event) |
| 2054 | (cpuc->events[INTEL_PMC_IDX_FIXED_SLOTS], |
| 2055 | (u64 *)next_record); |
| 2056 | next_record += 2 * sizeof(u64); |
| 2057 | } |
| 2058 | } |
| 2059 | |
| 2060 | #define PEBS_LATENCY_MASK 0xffff |
| 2061 | |
| 2062 | /* |
| 2063 | * With adaptive PEBS the layout depends on what fields are configured. |
| 2064 | */ |
| 2065 | static void setup_pebs_adaptive_sample_data(struct perf_event *event, |
| 2066 | struct pt_regs *iregs, void *__pebs, |
| 2067 | struct perf_sample_data *data, |
| 2068 | struct pt_regs *regs) |
| 2069 | { |
| 2070 | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| 2071 | struct pebs_basic *basic = __pebs; |
| 2072 | void *next_record = basic + 1; |
| 2073 | u64 sample_type, format_group; |
| 2074 | struct pebs_meminfo *meminfo = NULL; |
| 2075 | struct pebs_gprs *gprs = NULL; |
| 2076 | struct x86_perf_regs *perf_regs; |
| 2077 | |
| 2078 | if (basic == NULL) |
| 2079 | return; |
| 2080 | |
| 2081 | perf_regs = container_of(regs, struct x86_perf_regs, regs); |
| 2082 | perf_regs->xmm_regs = NULL; |
| 2083 | |
| 2084 | sample_type = event->attr.sample_type; |
| 2085 | format_group = basic->format_group; |
| 2086 | perf_sample_data_init(data, 0, event->hw.last_period); |
| 2087 | |
| 2088 | setup_pebs_time(event, data, basic->tsc); |
| 2089 | |
| 2090 | /* |
| 2091 | * We must however always use iregs for the unwinder to stay sane; the |
| 2092 | * record BP,SP,IP can point into thin air when the record is from a |
| 2093 | * previous PMI context or an (I)RET happened between the record and |
| 2094 | * PMI. |
| 2095 | */ |
| 2096 | perf_sample_save_callchain(data, event, iregs); |
| 2097 | |
| 2098 | *regs = *iregs; |
| 2099 | /* The ip in basic is EventingIP */ |
| 2100 | set_linear_ip(regs, basic->ip); |
| 2101 | regs->flags = PERF_EFLAGS_EXACT; |
| 2102 | |
| 2103 | if (sample_type & PERF_SAMPLE_WEIGHT_STRUCT) { |
| 2104 | if (x86_pmu.flags & PMU_FL_RETIRE_LATENCY) |
| 2105 | data->weight.var3_w = basic->retire_latency; |
| 2106 | else |
| 2107 | data->weight.var3_w = 0; |
| 2108 | } |
| 2109 | |
| 2110 | /* |
| 2111 | * The record for MEMINFO is in front of GP |
| 2112 | * But PERF_SAMPLE_TRANSACTION needs gprs->ax. |
| 2113 | * Save the pointer here but process later. |
| 2114 | */ |
| 2115 | if (format_group & PEBS_DATACFG_MEMINFO) { |
| 2116 | meminfo = next_record; |
| 2117 | next_record = meminfo + 1; |
| 2118 | } |
| 2119 | |
| 2120 | if (format_group & PEBS_DATACFG_GP) { |
| 2121 | gprs = next_record; |
| 2122 | next_record = gprs + 1; |
| 2123 | |
| 2124 | if (event->attr.precise_ip < 2) { |
| 2125 | set_linear_ip(regs, gprs->ip); |
| 2126 | regs->flags &= ~PERF_EFLAGS_EXACT; |
| 2127 | } |
| 2128 | |
| 2129 | if (sample_type & (PERF_SAMPLE_REGS_INTR | PERF_SAMPLE_REGS_USER)) |
| 2130 | adaptive_pebs_save_regs(regs, gprs); |
| 2131 | } |
| 2132 | |
| 2133 | if (format_group & PEBS_DATACFG_MEMINFO) { |
| 2134 | if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) { |
| 2135 | u64 latency = x86_pmu.flags & PMU_FL_INSTR_LATENCY ? |
| 2136 | meminfo->cache_latency : meminfo->mem_latency; |
| 2137 | |
| 2138 | if (x86_pmu.flags & PMU_FL_INSTR_LATENCY) |
| 2139 | data->weight.var2_w = meminfo->instr_latency; |
| 2140 | |
| 2141 | /* |
| 2142 | * Although meminfo::latency is defined as a u64, |
| 2143 | * only the lower 32 bits include the valid data |
| 2144 | * in practice on Ice Lake and earlier platforms. |
| 2145 | */ |
| 2146 | if (sample_type & PERF_SAMPLE_WEIGHT) { |
| 2147 | data->weight.full = latency ?: |
| 2148 | intel_get_tsx_weight(meminfo->tsx_tuning); |
| 2149 | } else { |
| 2150 | data->weight.var1_dw = (u32)latency ?: |
| 2151 | intel_get_tsx_weight(meminfo->tsx_tuning); |
| 2152 | } |
| 2153 | |
| 2154 | data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; |
| 2155 | } |
| 2156 | |
| 2157 | if (sample_type & PERF_SAMPLE_DATA_SRC) { |
| 2158 | data->data_src.val = get_data_src(event, meminfo->aux); |
| 2159 | data->sample_flags |= PERF_SAMPLE_DATA_SRC; |
| 2160 | } |
| 2161 | |
| 2162 | if (sample_type & PERF_SAMPLE_ADDR_TYPE) { |
| 2163 | data->addr = meminfo->address; |
| 2164 | data->sample_flags |= PERF_SAMPLE_ADDR; |
| 2165 | } |
| 2166 | |
| 2167 | if (sample_type & PERF_SAMPLE_TRANSACTION) { |
| 2168 | data->txn = intel_get_tsx_transaction(meminfo->tsx_tuning, |
| 2169 | gprs ? gprs->ax : 0); |
| 2170 | data->sample_flags |= PERF_SAMPLE_TRANSACTION; |
| 2171 | } |
| 2172 | } |
| 2173 | |
| 2174 | if (format_group & PEBS_DATACFG_XMMS) { |
| 2175 | struct pebs_xmm *xmm = next_record; |
| 2176 | |
| 2177 | next_record = xmm + 1; |
| 2178 | perf_regs->xmm_regs = xmm->xmm; |
| 2179 | } |
| 2180 | |
| 2181 | if (format_group & PEBS_DATACFG_LBRS) { |
| 2182 | struct lbr_entry *lbr = next_record; |
| 2183 | int num_lbr = ((format_group >> PEBS_DATACFG_LBR_SHIFT) |
| 2184 | & 0xff) + 1; |
| 2185 | next_record = next_record + num_lbr * sizeof(struct lbr_entry); |
| 2186 | |
| 2187 | if (has_branch_stack(event)) { |
| 2188 | intel_pmu_store_pebs_lbrs(lbr); |
| 2189 | intel_pmu_lbr_save_brstack(data, cpuc, event); |
| 2190 | } |
| 2191 | } |
| 2192 | |
| 2193 | if (format_group & (PEBS_DATACFG_CNTR | PEBS_DATACFG_METRICS)) { |
| 2194 | struct pebs_cntr_header *cntr = next_record; |
| 2195 | unsigned int nr; |
| 2196 | |
| 2197 | next_record += sizeof(struct pebs_cntr_header); |
| 2198 | /* |
| 2199 | * The PEBS_DATA_CFG is a global register, which is the |
| 2200 | * superset configuration for all PEBS events. |
| 2201 | * For the PEBS record of non-sample-read group, ignore |
| 2202 | * the counter snapshot fields. |
| 2203 | */ |
| 2204 | if (is_pebs_counter_event_group(event)) { |
| 2205 | __setup_pebs_counter_group(cpuc, event, cntr, next_record); |
| 2206 | data->sample_flags |= PERF_SAMPLE_READ; |
| 2207 | } |
| 2208 | |
| 2209 | nr = hweight32(cntr->cntr) + hweight32(cntr->fixed); |
| 2210 | if (cntr->metrics == INTEL_CNTR_METRICS) |
| 2211 | nr += 2; |
| 2212 | next_record += nr * sizeof(u64); |
| 2213 | } |
| 2214 | |
| 2215 | WARN_ONCE(next_record != __pebs + basic->format_size, |
| 2216 | "PEBS record size %u, expected %llu, config %llx\n", |
| 2217 | basic->format_size, |
| 2218 | (u64)(next_record - __pebs), |
| 2219 | format_group); |
| 2220 | } |
| 2221 | |
| 2222 | static inline void * |
| 2223 | get_next_pebs_record_by_bit(void *base, void *top, int bit) |
| 2224 | { |
| 2225 | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| 2226 | void *at; |
| 2227 | u64 pebs_status; |
| 2228 | |
| 2229 | /* |
| 2230 | * fmt0 does not have a status bitfield (does not use |
| 2231 | * perf_record_nhm format) |
| 2232 | */ |
| 2233 | if (x86_pmu.intel_cap.pebs_format < 1) |
| 2234 | return base; |
| 2235 | |
| 2236 | if (base == NULL) |
| 2237 | return NULL; |
| 2238 | |
| 2239 | for (at = base; at < top; at += cpuc->pebs_record_size) { |
| 2240 | unsigned long status = get_pebs_status(at); |
| 2241 | |
| 2242 | if (test_bit(bit, (unsigned long *)&status)) { |
| 2243 | /* PEBS v3 has accurate status bits */ |
| 2244 | if (x86_pmu.intel_cap.pebs_format >= 3) |
| 2245 | return at; |
| 2246 | |
| 2247 | if (status == (1 << bit)) |
| 2248 | return at; |
| 2249 | |
| 2250 | /* clear non-PEBS bit and re-check */ |
| 2251 | pebs_status = status & cpuc->pebs_enabled; |
| 2252 | pebs_status &= PEBS_COUNTER_MASK; |
| 2253 | if (pebs_status == (1 << bit)) |
| 2254 | return at; |
| 2255 | } |
| 2256 | } |
| 2257 | return NULL; |
| 2258 | } |
| 2259 | |
| 2260 | /* |
| 2261 | * Special variant of intel_pmu_save_and_restart() for auto-reload. |
| 2262 | */ |
| 2263 | static int |
| 2264 | intel_pmu_save_and_restart_reload(struct perf_event *event, int count) |
| 2265 | { |
| 2266 | struct hw_perf_event *hwc = &event->hw; |
| 2267 | int shift = 64 - x86_pmu.cntval_bits; |
| 2268 | u64 period = hwc->sample_period; |
| 2269 | u64 prev_raw_count, new_raw_count; |
| 2270 | s64 new, old; |
| 2271 | |
| 2272 | WARN_ON(!period); |
| 2273 | |
| 2274 | /* |
| 2275 | * drain_pebs() only happens when the PMU is disabled. |
| 2276 | */ |
| 2277 | WARN_ON(this_cpu_read(cpu_hw_events.enabled)); |
| 2278 | |
| 2279 | prev_raw_count = local64_read(&hwc->prev_count); |
| 2280 | new_raw_count = rdpmc(hwc->event_base_rdpmc); |
| 2281 | local64_set(&hwc->prev_count, new_raw_count); |
| 2282 | |
| 2283 | /* |
| 2284 | * Since the counter increments a negative counter value and |
| 2285 | * overflows on the sign switch, giving the interval: |
| 2286 | * |
| 2287 | * [-period, 0] |
| 2288 | * |
| 2289 | * the difference between two consecutive reads is: |
| 2290 | * |
| 2291 | * A) value2 - value1; |
| 2292 | * when no overflows have happened in between, |
| 2293 | * |
| 2294 | * B) (0 - value1) + (value2 - (-period)); |
| 2295 | * when one overflow happened in between, |
| 2296 | * |
| 2297 | * C) (0 - value1) + (n - 1) * (period) + (value2 - (-period)); |
| 2298 | * when @n overflows happened in between. |
| 2299 | * |
| 2300 | * Here A) is the obvious difference, B) is the extension to the |
| 2301 | * discrete interval, where the first term is to the top of the |
| 2302 | * interval and the second term is from the bottom of the next |
| 2303 | * interval and C) the extension to multiple intervals, where the |
| 2304 | * middle term is the whole intervals covered. |
| 2305 | * |
| 2306 | * An equivalent of C, by reduction, is: |
| 2307 | * |
| 2308 | * value2 - value1 + n * period |
| 2309 | */ |
| 2310 | new = ((s64)(new_raw_count << shift) >> shift); |
| 2311 | old = ((s64)(prev_raw_count << shift) >> shift); |
| 2312 | local64_add(new - old + count * period, &event->count); |
| 2313 | |
| 2314 | local64_set(&hwc->period_left, -new); |
| 2315 | |
| 2316 | perf_event_update_userpage(event); |
| 2317 | |
| 2318 | return 0; |
| 2319 | } |
| 2320 | |
| 2321 | typedef void (*setup_fn)(struct perf_event *, struct pt_regs *, void *, |
| 2322 | struct perf_sample_data *, struct pt_regs *); |
| 2323 | |
| 2324 | static struct pt_regs dummy_iregs; |
| 2325 | |
| 2326 | static __always_inline void |
| 2327 | __intel_pmu_pebs_event(struct perf_event *event, |
| 2328 | struct pt_regs *iregs, |
| 2329 | struct pt_regs *regs, |
| 2330 | struct perf_sample_data *data, |
| 2331 | void *at, |
| 2332 | setup_fn setup_sample) |
| 2333 | { |
| 2334 | setup_sample(event, iregs, at, data, regs); |
| 2335 | perf_event_output(event, data, regs); |
| 2336 | } |
| 2337 | |
| 2338 | static __always_inline void |
| 2339 | __intel_pmu_pebs_last_event(struct perf_event *event, |
| 2340 | struct pt_regs *iregs, |
| 2341 | struct pt_regs *regs, |
| 2342 | struct perf_sample_data *data, |
| 2343 | void *at, |
| 2344 | int count, |
| 2345 | setup_fn setup_sample) |
| 2346 | { |
| 2347 | struct hw_perf_event *hwc = &event->hw; |
| 2348 | |
| 2349 | setup_sample(event, iregs, at, data, regs); |
| 2350 | if (iregs == &dummy_iregs) { |
| 2351 | /* |
| 2352 | * The PEBS records may be drained in the non-overflow context, |
| 2353 | * e.g., large PEBS + context switch. Perf should treat the |
| 2354 | * last record the same as other PEBS records, and doesn't |
| 2355 | * invoke the generic overflow handler. |
| 2356 | */ |
| 2357 | perf_event_output(event, data, regs); |
| 2358 | } else { |
| 2359 | /* |
| 2360 | * All but the last records are processed. |
| 2361 | * The last one is left to be able to call the overflow handler. |
| 2362 | */ |
| 2363 | perf_event_overflow(event, data, regs); |
| 2364 | } |
| 2365 | |
| 2366 | if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) { |
| 2367 | if ((is_pebs_counter_event_group(event))) { |
| 2368 | /* |
| 2369 | * The value of each sample has been updated when setup |
| 2370 | * the corresponding sample data. |
| 2371 | */ |
| 2372 | perf_event_update_userpage(event); |
| 2373 | } else { |
| 2374 | /* |
| 2375 | * Now, auto-reload is only enabled in fixed period mode. |
| 2376 | * The reload value is always hwc->sample_period. |
| 2377 | * May need to change it, if auto-reload is enabled in |
| 2378 | * freq mode later. |
| 2379 | */ |
| 2380 | intel_pmu_save_and_restart_reload(event, count); |
| 2381 | } |
| 2382 | } else { |
| 2383 | /* |
| 2384 | * For a non-precise event, it's possible the |
| 2385 | * counters-snapshotting records a positive value for the |
| 2386 | * overflowed event. Then the HW auto-reload mechanism |
| 2387 | * reset the counter to 0 immediately, because the |
| 2388 | * pebs_event_reset is cleared if the PERF_X86_EVENT_AUTO_RELOAD |
| 2389 | * is not set. The counter backwards may be observed in a |
| 2390 | * PMI handler. |
| 2391 | * |
| 2392 | * Since the event value has been updated when processing the |
| 2393 | * counters-snapshotting record, only needs to set the new |
| 2394 | * period for the counter. |
| 2395 | */ |
| 2396 | if (is_pebs_counter_event_group(event)) |
| 2397 | static_call(x86_pmu_set_period)(event); |
| 2398 | else |
| 2399 | intel_pmu_save_and_restart(event); |
| 2400 | } |
| 2401 | } |
| 2402 | |
| 2403 | static __always_inline void |
| 2404 | __intel_pmu_pebs_events(struct perf_event *event, |
| 2405 | struct pt_regs *iregs, |
| 2406 | struct perf_sample_data *data, |
| 2407 | void *base, void *top, |
| 2408 | int bit, int count, |
| 2409 | setup_fn setup_sample) |
| 2410 | { |
| 2411 | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| 2412 | struct x86_perf_regs perf_regs; |
| 2413 | struct pt_regs *regs = &perf_regs.regs; |
| 2414 | void *at = get_next_pebs_record_by_bit(base, top, bit); |
| 2415 | int cnt = count; |
| 2416 | |
| 2417 | if (!iregs) |
| 2418 | iregs = &dummy_iregs; |
| 2419 | |
| 2420 | while (cnt > 1) { |
| 2421 | __intel_pmu_pebs_event(event, iregs, regs, data, at, setup_sample); |
| 2422 | at += cpuc->pebs_record_size; |
| 2423 | at = get_next_pebs_record_by_bit(at, top, bit); |
| 2424 | cnt--; |
| 2425 | } |
| 2426 | |
| 2427 | __intel_pmu_pebs_last_event(event, iregs, regs, data, at, count, setup_sample); |
| 2428 | } |
| 2429 | |
| 2430 | static void intel_pmu_drain_pebs_core(struct pt_regs *iregs, struct perf_sample_data *data) |
| 2431 | { |
| 2432 | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| 2433 | struct debug_store *ds = cpuc->ds; |
| 2434 | struct perf_event *event = cpuc->events[0]; /* PMC0 only */ |
| 2435 | struct pebs_record_core *at, *top; |
| 2436 | int n; |
| 2437 | |
| 2438 | if (!x86_pmu.pebs_active) |
| 2439 | return; |
| 2440 | |
| 2441 | at = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base; |
| 2442 | top = (struct pebs_record_core *)(unsigned long)ds->pebs_index; |
| 2443 | |
| 2444 | /* |
| 2445 | * Whatever else happens, drain the thing |
| 2446 | */ |
| 2447 | ds->pebs_index = ds->pebs_buffer_base; |
| 2448 | |
| 2449 | if (!test_bit(0, cpuc->active_mask)) |
| 2450 | return; |
| 2451 | |
| 2452 | WARN_ON_ONCE(!event); |
| 2453 | |
| 2454 | if (!event->attr.precise_ip) |
| 2455 | return; |
| 2456 | |
| 2457 | n = top - at; |
| 2458 | if (n <= 0) { |
| 2459 | if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD) |
| 2460 | intel_pmu_save_and_restart_reload(event, 0); |
| 2461 | return; |
| 2462 | } |
| 2463 | |
| 2464 | __intel_pmu_pebs_events(event, iregs, data, at, top, 0, n, |
| 2465 | setup_pebs_fixed_sample_data); |
| 2466 | } |
| 2467 | |
| 2468 | static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, u64 mask) |
| 2469 | { |
| 2470 | u64 pebs_enabled = cpuc->pebs_enabled & mask; |
| 2471 | struct perf_event *event; |
| 2472 | int bit; |
| 2473 | |
| 2474 | /* |
| 2475 | * The drain_pebs() could be called twice in a short period |
| 2476 | * for auto-reload event in pmu::read(). There are no |
| 2477 | * overflows have happened in between. |
| 2478 | * It needs to call intel_pmu_save_and_restart_reload() to |
| 2479 | * update the event->count for this case. |
| 2480 | */ |
| 2481 | for_each_set_bit(bit, (unsigned long *)&pebs_enabled, X86_PMC_IDX_MAX) { |
| 2482 | event = cpuc->events[bit]; |
| 2483 | if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD) |
| 2484 | intel_pmu_save_and_restart_reload(event, 0); |
| 2485 | } |
| 2486 | } |
| 2487 | |
| 2488 | static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs, struct perf_sample_data *data) |
| 2489 | { |
| 2490 | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| 2491 | struct debug_store *ds = cpuc->ds; |
| 2492 | struct perf_event *event; |
| 2493 | void *base, *at, *top; |
| 2494 | short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {}; |
| 2495 | short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {}; |
| 2496 | int max_pebs_events = intel_pmu_max_num_pebs(NULL); |
| 2497 | int bit, i, size; |
| 2498 | u64 mask; |
| 2499 | |
| 2500 | if (!x86_pmu.pebs_active) |
| 2501 | return; |
| 2502 | |
| 2503 | base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base; |
| 2504 | top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index; |
| 2505 | |
| 2506 | ds->pebs_index = ds->pebs_buffer_base; |
| 2507 | |
| 2508 | mask = x86_pmu.pebs_events_mask; |
| 2509 | size = max_pebs_events; |
| 2510 | if (x86_pmu.flags & PMU_FL_PEBS_ALL) { |
| 2511 | mask |= x86_pmu.fixed_cntr_mask64 << INTEL_PMC_IDX_FIXED; |
| 2512 | size = INTEL_PMC_IDX_FIXED + x86_pmu_max_num_counters_fixed(NULL); |
| 2513 | } |
| 2514 | |
| 2515 | if (unlikely(base >= top)) { |
| 2516 | intel_pmu_pebs_event_update_no_drain(cpuc, mask); |
| 2517 | return; |
| 2518 | } |
| 2519 | |
| 2520 | for (at = base; at < top; at += x86_pmu.pebs_record_size) { |
| 2521 | struct pebs_record_nhm *p = at; |
| 2522 | u64 pebs_status; |
| 2523 | |
| 2524 | pebs_status = p->status & cpuc->pebs_enabled; |
| 2525 | pebs_status &= mask; |
| 2526 | |
| 2527 | /* PEBS v3 has more accurate status bits */ |
| 2528 | if (x86_pmu.intel_cap.pebs_format >= 3) { |
| 2529 | for_each_set_bit(bit, (unsigned long *)&pebs_status, size) |
| 2530 | counts[bit]++; |
| 2531 | |
| 2532 | continue; |
| 2533 | } |
| 2534 | |
| 2535 | /* |
| 2536 | * On some CPUs the PEBS status can be zero when PEBS is |
| 2537 | * racing with clearing of GLOBAL_STATUS. |
| 2538 | * |
| 2539 | * Normally we would drop that record, but in the |
| 2540 | * case when there is only a single active PEBS event |
| 2541 | * we can assume it's for that event. |
| 2542 | */ |
| 2543 | if (!pebs_status && cpuc->pebs_enabled && |
| 2544 | !(cpuc->pebs_enabled & (cpuc->pebs_enabled-1))) |
| 2545 | pebs_status = p->status = cpuc->pebs_enabled; |
| 2546 | |
| 2547 | bit = find_first_bit((unsigned long *)&pebs_status, |
| 2548 | max_pebs_events); |
| 2549 | |
| 2550 | if (!(x86_pmu.pebs_events_mask & (1 << bit))) |
| 2551 | continue; |
| 2552 | |
| 2553 | /* |
| 2554 | * The PEBS hardware does not deal well with the situation |
| 2555 | * when events happen near to each other and multiple bits |
| 2556 | * are set. But it should happen rarely. |
| 2557 | * |
| 2558 | * If these events include one PEBS and multiple non-PEBS |
| 2559 | * events, it doesn't impact PEBS record. The record will |
| 2560 | * be handled normally. (slow path) |
| 2561 | * |
| 2562 | * If these events include two or more PEBS events, the |
| 2563 | * records for the events can be collapsed into a single |
| 2564 | * one, and it's not possible to reconstruct all events |
| 2565 | * that caused the PEBS record. It's called collision. |
| 2566 | * If collision happened, the record will be dropped. |
| 2567 | */ |
| 2568 | if (pebs_status != (1ULL << bit)) { |
| 2569 | for_each_set_bit(i, (unsigned long *)&pebs_status, size) |
| 2570 | error[i]++; |
| 2571 | continue; |
| 2572 | } |
| 2573 | |
| 2574 | counts[bit]++; |
| 2575 | } |
| 2576 | |
| 2577 | for_each_set_bit(bit, (unsigned long *)&mask, size) { |
| 2578 | if ((counts[bit] == 0) && (error[bit] == 0)) |
| 2579 | continue; |
| 2580 | |
| 2581 | event = cpuc->events[bit]; |
| 2582 | if (WARN_ON_ONCE(!event)) |
| 2583 | continue; |
| 2584 | |
| 2585 | if (WARN_ON_ONCE(!event->attr.precise_ip)) |
| 2586 | continue; |
| 2587 | |
| 2588 | /* log dropped samples number */ |
| 2589 | if (error[bit]) { |
| 2590 | perf_log_lost_samples(event, error[bit]); |
| 2591 | |
| 2592 | if (iregs) |
| 2593 | perf_event_account_interrupt(event); |
| 2594 | } |
| 2595 | |
| 2596 | if (counts[bit]) { |
| 2597 | __intel_pmu_pebs_events(event, iregs, data, base, |
| 2598 | top, bit, counts[bit], |
| 2599 | setup_pebs_fixed_sample_data); |
| 2600 | } |
| 2601 | } |
| 2602 | } |
| 2603 | |
| 2604 | static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs, struct perf_sample_data *data) |
| 2605 | { |
| 2606 | short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {}; |
| 2607 | void *last[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS]; |
| 2608 | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| 2609 | struct debug_store *ds = cpuc->ds; |
| 2610 | struct x86_perf_regs perf_regs; |
| 2611 | struct pt_regs *regs = &perf_regs.regs; |
| 2612 | struct pebs_basic *basic; |
| 2613 | struct perf_event *event; |
| 2614 | void *base, *at, *top; |
| 2615 | int bit; |
| 2616 | u64 mask; |
| 2617 | |
| 2618 | if (!x86_pmu.pebs_active) |
| 2619 | return; |
| 2620 | |
| 2621 | base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base; |
| 2622 | top = (struct pebs_basic *)(unsigned long)ds->pebs_index; |
| 2623 | |
| 2624 | ds->pebs_index = ds->pebs_buffer_base; |
| 2625 | |
| 2626 | mask = hybrid(cpuc->pmu, pebs_events_mask) | |
| 2627 | (hybrid(cpuc->pmu, fixed_cntr_mask64) << INTEL_PMC_IDX_FIXED); |
| 2628 | |
| 2629 | if (unlikely(base >= top)) { |
| 2630 | intel_pmu_pebs_event_update_no_drain(cpuc, mask); |
| 2631 | return; |
| 2632 | } |
| 2633 | |
| 2634 | if (!iregs) |
| 2635 | iregs = &dummy_iregs; |
| 2636 | |
| 2637 | /* Process all but the last event for each counter. */ |
| 2638 | for (at = base; at < top; at += basic->format_size) { |
| 2639 | u64 pebs_status; |
| 2640 | |
| 2641 | basic = at; |
| 2642 | if (basic->format_size != cpuc->pebs_record_size) |
| 2643 | continue; |
| 2644 | |
| 2645 | pebs_status = basic->applicable_counters & cpuc->pebs_enabled & mask; |
| 2646 | for_each_set_bit(bit, (unsigned long *)&pebs_status, X86_PMC_IDX_MAX) { |
| 2647 | event = cpuc->events[bit]; |
| 2648 | |
| 2649 | if (WARN_ON_ONCE(!event) || |
| 2650 | WARN_ON_ONCE(!event->attr.precise_ip)) |
| 2651 | continue; |
| 2652 | |
| 2653 | if (counts[bit]++) { |
| 2654 | __intel_pmu_pebs_event(event, iregs, regs, data, last[bit], |
| 2655 | setup_pebs_adaptive_sample_data); |
| 2656 | } |
| 2657 | last[bit] = at; |
| 2658 | } |
| 2659 | } |
| 2660 | |
| 2661 | for_each_set_bit(bit, (unsigned long *)&mask, X86_PMC_IDX_MAX) { |
| 2662 | if (!counts[bit]) |
| 2663 | continue; |
| 2664 | |
| 2665 | event = cpuc->events[bit]; |
| 2666 | |
| 2667 | __intel_pmu_pebs_last_event(event, iregs, regs, data, last[bit], |
| 2668 | counts[bit], setup_pebs_adaptive_sample_data); |
| 2669 | } |
| 2670 | } |
| 2671 | |
| 2672 | /* |
| 2673 | * PEBS probe and setup |
| 2674 | */ |
| 2675 | |
| 2676 | void __init intel_pebs_init(void) |
| 2677 | { |
| 2678 | /* |
| 2679 | * No support for 32bit formats |
| 2680 | */ |
| 2681 | if (!boot_cpu_has(X86_FEATURE_DTES64)) |
| 2682 | return; |
| 2683 | |
| 2684 | x86_pmu.ds_pebs = boot_cpu_has(X86_FEATURE_PEBS); |
| 2685 | x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE; |
| 2686 | if (x86_pmu.version <= 4) |
| 2687 | x86_pmu.pebs_no_isolation = 1; |
| 2688 | |
| 2689 | if (x86_pmu.ds_pebs) { |
| 2690 | char pebs_type = x86_pmu.intel_cap.pebs_trap ? '+' : '-'; |
| 2691 | char *pebs_qual = ""; |
| 2692 | int format = x86_pmu.intel_cap.pebs_format; |
| 2693 | |
| 2694 | if (format < 4) |
| 2695 | x86_pmu.intel_cap.pebs_baseline = 0; |
| 2696 | |
| 2697 | x86_pmu.pebs_enable = intel_pmu_pebs_enable; |
| 2698 | x86_pmu.pebs_disable = intel_pmu_pebs_disable; |
| 2699 | x86_pmu.pebs_enable_all = intel_pmu_pebs_enable_all; |
| 2700 | x86_pmu.pebs_disable_all = intel_pmu_pebs_disable_all; |
| 2701 | |
| 2702 | switch (format) { |
| 2703 | case 0: |
| 2704 | pr_cont("PEBS fmt0%c, ", pebs_type); |
| 2705 | x86_pmu.pebs_record_size = sizeof(struct pebs_record_core); |
| 2706 | /* |
| 2707 | * Using >PAGE_SIZE buffers makes the WRMSR to |
| 2708 | * PERF_GLOBAL_CTRL in intel_pmu_enable_all() |
| 2709 | * mysteriously hang on Core2. |
| 2710 | * |
| 2711 | * As a workaround, we don't do this. |
| 2712 | */ |
| 2713 | x86_pmu.pebs_buffer_size = PAGE_SIZE; |
| 2714 | x86_pmu.drain_pebs = intel_pmu_drain_pebs_core; |
| 2715 | break; |
| 2716 | |
| 2717 | case 1: |
| 2718 | pr_cont("PEBS fmt1%c, ", pebs_type); |
| 2719 | x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm); |
| 2720 | x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm; |
| 2721 | break; |
| 2722 | |
| 2723 | case 2: |
| 2724 | pr_cont("PEBS fmt2%c, ", pebs_type); |
| 2725 | x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw); |
| 2726 | x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm; |
| 2727 | break; |
| 2728 | |
| 2729 | case 3: |
| 2730 | pr_cont("PEBS fmt3%c, ", pebs_type); |
| 2731 | x86_pmu.pebs_record_size = |
| 2732 | sizeof(struct pebs_record_skl); |
| 2733 | x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm; |
| 2734 | x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME; |
| 2735 | break; |
| 2736 | |
| 2737 | case 6: |
| 2738 | if (x86_pmu.intel_cap.pebs_baseline) { |
| 2739 | x86_pmu.large_pebs_flags |= PERF_SAMPLE_READ; |
| 2740 | x86_pmu.late_setup = intel_pmu_late_setup; |
| 2741 | } |
| 2742 | fallthrough; |
| 2743 | case 5: |
| 2744 | x86_pmu.pebs_ept = 1; |
| 2745 | fallthrough; |
| 2746 | case 4: |
| 2747 | x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl; |
| 2748 | x86_pmu.pebs_record_size = sizeof(struct pebs_basic); |
| 2749 | if (x86_pmu.intel_cap.pebs_baseline) { |
| 2750 | x86_pmu.large_pebs_flags |= |
| 2751 | PERF_SAMPLE_BRANCH_STACK | |
| 2752 | PERF_SAMPLE_TIME; |
| 2753 | x86_pmu.flags |= PMU_FL_PEBS_ALL; |
| 2754 | x86_pmu.pebs_capable = ~0ULL; |
| 2755 | pebs_qual = "-baseline"; |
| 2756 | x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_EXTENDED_REGS; |
| 2757 | } else { |
| 2758 | /* Only basic record supported */ |
| 2759 | x86_pmu.large_pebs_flags &= |
| 2760 | ~(PERF_SAMPLE_ADDR | |
| 2761 | PERF_SAMPLE_TIME | |
| 2762 | PERF_SAMPLE_DATA_SRC | |
| 2763 | PERF_SAMPLE_TRANSACTION | |
| 2764 | PERF_SAMPLE_REGS_USER | |
| 2765 | PERF_SAMPLE_REGS_INTR); |
| 2766 | } |
| 2767 | pr_cont("PEBS fmt%d%c%s, ", format, pebs_type, pebs_qual); |
| 2768 | |
| 2769 | /* |
| 2770 | * The PEBS-via-PT is not supported on hybrid platforms, |
| 2771 | * because not all CPUs of a hybrid machine support it. |
| 2772 | * The global x86_pmu.intel_cap, which only contains the |
| 2773 | * common capabilities, is used to check the availability |
| 2774 | * of the feature. The per-PMU pebs_output_pt_available |
| 2775 | * in a hybrid machine should be ignored. |
| 2776 | */ |
| 2777 | if (x86_pmu.intel_cap.pebs_output_pt_available) { |
| 2778 | pr_cont("PEBS-via-PT, "); |
| 2779 | x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_AUX_OUTPUT; |
| 2780 | } |
| 2781 | |
| 2782 | break; |
| 2783 | |
| 2784 | default: |
| 2785 | pr_cont("no PEBS fmt%d%c, ", format, pebs_type); |
| 2786 | x86_pmu.ds_pebs = 0; |
| 2787 | } |
| 2788 | } |
| 2789 | } |
| 2790 | |
| 2791 | void perf_restore_debug_store(void) |
| 2792 | { |
| 2793 | struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds); |
| 2794 | |
| 2795 | if (!x86_pmu.bts && !x86_pmu.ds_pebs) |
| 2796 | return; |
| 2797 | |
| 2798 | wrmsrq(MSR_IA32_DS_AREA, (unsigned long)ds); |
| 2799 | } |