| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * kaslr.c |
| 4 | * |
| 5 | * This contains the routines needed to generate a reasonable level of |
| 6 | * entropy to choose a randomized kernel base address offset in support |
| 7 | * of Kernel Address Space Layout Randomization (KASLR). Additionally |
| 8 | * handles walking the physical memory maps (and tracking memory regions |
| 9 | * to avoid) in order to select a physical memory location that can |
| 10 | * contain the entire properly aligned running kernel image. |
| 11 | * |
| 12 | */ |
| 13 | |
| 14 | /* |
| 15 | * isspace() in linux/ctype.h is expected by next_args() to filter |
| 16 | * out "space/lf/tab". While boot/ctype.h conflicts with linux/ctype.h, |
| 17 | * since isdigit() is implemented in both of them. Hence disable it |
| 18 | * here. |
| 19 | */ |
| 20 | #define BOOT_CTYPE_H |
| 21 | |
| 22 | #include "misc.h" |
| 23 | #include "error.h" |
| 24 | #include "../string.h" |
| 25 | #include "efi.h" |
| 26 | |
| 27 | #include <generated/compile.h> |
| 28 | #include <generated/utsversion.h> |
| 29 | #include <generated/utsrelease.h> |
| 30 | |
| 31 | #define _SETUP |
| 32 | #include <asm/setup.h> /* For COMMAND_LINE_SIZE */ |
| 33 | #undef _SETUP |
| 34 | |
| 35 | extern unsigned long get_cmd_line_ptr(void); |
| 36 | |
| 37 | /* Simplified build-specific string for starting entropy. */ |
| 38 | static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@" |
| 39 | LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION; |
| 40 | |
| 41 | static unsigned long rotate_xor(unsigned long hash, const void *area, |
| 42 | size_t size) |
| 43 | { |
| 44 | size_t i; |
| 45 | unsigned long *ptr = (unsigned long *)area; |
| 46 | |
| 47 | for (i = 0; i < size / sizeof(hash); i++) { |
| 48 | /* Rotate by odd number of bits and XOR. */ |
| 49 | hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7); |
| 50 | hash ^= ptr[i]; |
| 51 | } |
| 52 | |
| 53 | return hash; |
| 54 | } |
| 55 | |
| 56 | /* Attempt to create a simple but unpredictable starting entropy. */ |
| 57 | static unsigned long get_boot_seed(void) |
| 58 | { |
| 59 | unsigned long hash = 0; |
| 60 | |
| 61 | hash = rotate_xor(hash, build_str, sizeof(build_str)); |
| 62 | hash = rotate_xor(hash, boot_params_ptr, sizeof(*boot_params_ptr)); |
| 63 | |
| 64 | return hash; |
| 65 | } |
| 66 | |
| 67 | #define KASLR_COMPRESSED_BOOT |
| 68 | #include "../../lib/kaslr.c" |
| 69 | |
| 70 | |
| 71 | /* Only supporting at most 4 unusable memmap regions with kaslr */ |
| 72 | #define MAX_MEMMAP_REGIONS 4 |
| 73 | |
| 74 | static bool memmap_too_large; |
| 75 | |
| 76 | |
| 77 | /* |
| 78 | * Store memory limit: MAXMEM on 64-bit and KERNEL_IMAGE_SIZE on 32-bit. |
| 79 | * It may be reduced by "mem=nn[KMG]" or "memmap=nn[KMG]" command line options. |
| 80 | */ |
| 81 | static u64 mem_limit; |
| 82 | |
| 83 | /* Number of immovable memory regions */ |
| 84 | static int num_immovable_mem; |
| 85 | |
| 86 | enum mem_avoid_index { |
| 87 | MEM_AVOID_ZO_RANGE = 0, |
| 88 | MEM_AVOID_INITRD, |
| 89 | MEM_AVOID_CMDLINE, |
| 90 | MEM_AVOID_BOOTPARAMS, |
| 91 | MEM_AVOID_MEMMAP_BEGIN, |
| 92 | MEM_AVOID_MEMMAP_END = MEM_AVOID_MEMMAP_BEGIN + MAX_MEMMAP_REGIONS - 1, |
| 93 | MEM_AVOID_MAX, |
| 94 | }; |
| 95 | |
| 96 | static struct mem_vector mem_avoid[MEM_AVOID_MAX]; |
| 97 | |
| 98 | static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two) |
| 99 | { |
| 100 | /* Item one is entirely before item two. */ |
| 101 | if (one->start + one->size <= two->start) |
| 102 | return false; |
| 103 | /* Item one is entirely after item two. */ |
| 104 | if (one->start >= two->start + two->size) |
| 105 | return false; |
| 106 | return true; |
| 107 | } |
| 108 | |
| 109 | char *skip_spaces(const char *str) |
| 110 | { |
| 111 | while (isspace(*str)) |
| 112 | ++str; |
| 113 | return (char *)str; |
| 114 | } |
| 115 | #include "../../../../lib/ctype.c" |
| 116 | #include "../../../../lib/cmdline.c" |
| 117 | |
| 118 | static int |
| 119 | parse_memmap(char *p, u64 *start, u64 *size) |
| 120 | { |
| 121 | char *oldp; |
| 122 | |
| 123 | if (!p) |
| 124 | return -EINVAL; |
| 125 | |
| 126 | /* We don't care about this option here */ |
| 127 | if (!strncmp(p, "exactmap", 8)) |
| 128 | return -EINVAL; |
| 129 | |
| 130 | oldp = p; |
| 131 | *size = memparse(p, &p); |
| 132 | if (p == oldp) |
| 133 | return -EINVAL; |
| 134 | |
| 135 | switch (*p) { |
| 136 | case '#': |
| 137 | case '$': |
| 138 | case '!': |
| 139 | *start = memparse(p + 1, &p); |
| 140 | return 0; |
| 141 | case '@': |
| 142 | /* |
| 143 | * memmap=nn@ss specifies usable region, should |
| 144 | * be skipped |
| 145 | */ |
| 146 | *size = 0; |
| 147 | fallthrough; |
| 148 | default: |
| 149 | /* |
| 150 | * If w/o offset, only size specified, memmap=nn[KMG] has the |
| 151 | * same behaviour as mem=nn[KMG]. It limits the max address |
| 152 | * system can use. Region above the limit should be avoided. |
| 153 | */ |
| 154 | *start = 0; |
| 155 | return 0; |
| 156 | } |
| 157 | |
| 158 | return -EINVAL; |
| 159 | } |
| 160 | |
| 161 | static void mem_avoid_memmap(char *str) |
| 162 | { |
| 163 | static int i; |
| 164 | |
| 165 | if (i >= MAX_MEMMAP_REGIONS) |
| 166 | return; |
| 167 | |
| 168 | while (str && (i < MAX_MEMMAP_REGIONS)) { |
| 169 | int rc; |
| 170 | u64 start, size; |
| 171 | char *k = strchr(str, ','); |
| 172 | |
| 173 | if (k) |
| 174 | *k++ = 0; |
| 175 | |
| 176 | rc = parse_memmap(str, &start, &size); |
| 177 | if (rc < 0) |
| 178 | break; |
| 179 | str = k; |
| 180 | |
| 181 | if (start == 0) { |
| 182 | /* Store the specified memory limit if size > 0 */ |
| 183 | if (size > 0 && size < mem_limit) |
| 184 | mem_limit = size; |
| 185 | |
| 186 | continue; |
| 187 | } |
| 188 | |
| 189 | mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].start = start; |
| 190 | mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].size = size; |
| 191 | i++; |
| 192 | } |
| 193 | |
| 194 | /* More than 4 memmaps, fail kaslr */ |
| 195 | if ((i >= MAX_MEMMAP_REGIONS) && str) |
| 196 | memmap_too_large = true; |
| 197 | } |
| 198 | |
| 199 | /* Store the number of 1GB huge pages which users specified: */ |
| 200 | static unsigned long max_gb_huge_pages; |
| 201 | |
| 202 | static void parse_gb_huge_pages(char *param, char *val) |
| 203 | { |
| 204 | static bool gbpage_sz; |
| 205 | char *p; |
| 206 | |
| 207 | if (!strcmp(param, "hugepagesz")) { |
| 208 | p = val; |
| 209 | if (memparse(p, &p) != PUD_SIZE) { |
| 210 | gbpage_sz = false; |
| 211 | return; |
| 212 | } |
| 213 | |
| 214 | if (gbpage_sz) |
| 215 | warn("Repeatedly set hugeTLB page size of 1G!\n"); |
| 216 | gbpage_sz = true; |
| 217 | return; |
| 218 | } |
| 219 | |
| 220 | if (!strcmp(param, "hugepages") && gbpage_sz) { |
| 221 | p = val; |
| 222 | max_gb_huge_pages = simple_strtoull(p, &p, 0); |
| 223 | return; |
| 224 | } |
| 225 | } |
| 226 | |
| 227 | static void handle_mem_options(void) |
| 228 | { |
| 229 | char *args = (char *)get_cmd_line_ptr(); |
| 230 | size_t len; |
| 231 | char *tmp_cmdline; |
| 232 | char *param, *val; |
| 233 | u64 mem_size; |
| 234 | |
| 235 | if (!args) |
| 236 | return; |
| 237 | |
| 238 | len = strnlen(args, COMMAND_LINE_SIZE-1); |
| 239 | tmp_cmdline = malloc(len + 1); |
| 240 | if (!tmp_cmdline) |
| 241 | error("Failed to allocate space for tmp_cmdline"); |
| 242 | |
| 243 | memcpy(tmp_cmdline, args, len); |
| 244 | tmp_cmdline[len] = 0; |
| 245 | args = tmp_cmdline; |
| 246 | |
| 247 | /* Chew leading spaces */ |
| 248 | args = skip_spaces(args); |
| 249 | |
| 250 | while (*args) { |
| 251 | args = next_arg(args, ¶m, &val); |
| 252 | /* Stop at -- */ |
| 253 | if (!val && strcmp(param, "--") == 0) |
| 254 | break; |
| 255 | |
| 256 | if (!strcmp(param, "memmap")) { |
| 257 | mem_avoid_memmap(val); |
| 258 | } else if (IS_ENABLED(CONFIG_X86_64) && strstr(param, "hugepages")) { |
| 259 | parse_gb_huge_pages(param, val); |
| 260 | } else if (!strcmp(param, "mem")) { |
| 261 | char *p = val; |
| 262 | |
| 263 | if (!strcmp(p, "nopentium")) |
| 264 | continue; |
| 265 | mem_size = memparse(p, &p); |
| 266 | if (mem_size == 0) |
| 267 | break; |
| 268 | |
| 269 | if (mem_size < mem_limit) |
| 270 | mem_limit = mem_size; |
| 271 | } |
| 272 | } |
| 273 | |
| 274 | free(tmp_cmdline); |
| 275 | return; |
| 276 | } |
| 277 | |
| 278 | /* |
| 279 | * In theory, KASLR can put the kernel anywhere in the range of [16M, MAXMEM) |
| 280 | * on 64-bit, and [16M, KERNEL_IMAGE_SIZE) on 32-bit. |
| 281 | * |
| 282 | * The mem_avoid array is used to store the ranges that need to be avoided |
| 283 | * when KASLR searches for an appropriate random address. We must avoid any |
| 284 | * regions that are unsafe to overlap with during decompression, and other |
| 285 | * things like the initrd, cmdline and boot_params. This comment seeks to |
| 286 | * explain mem_avoid as clearly as possible since incorrect mem_avoid |
| 287 | * memory ranges lead to really hard to debug boot failures. |
| 288 | * |
| 289 | * The initrd, cmdline, and boot_params are trivial to identify for |
| 290 | * avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and |
| 291 | * MEM_AVOID_BOOTPARAMS respectively below. |
| 292 | * |
| 293 | * What is not obvious how to avoid is the range of memory that is used |
| 294 | * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover |
| 295 | * the compressed kernel (ZO) and its run space, which is used to extract |
| 296 | * the uncompressed kernel (VO) and relocs. |
| 297 | * |
| 298 | * ZO's full run size sits against the end of the decompression buffer, so |
| 299 | * we can calculate where text, data, bss, etc of ZO are positioned more |
| 300 | * easily. |
| 301 | * |
| 302 | * For additional background, the decompression calculations can be found |
| 303 | * in header.S, and the memory diagram is based on the one found in misc.c. |
| 304 | * |
| 305 | * The following conditions are already enforced by the image layouts and |
| 306 | * associated code: |
| 307 | * - input + input_size >= output + output_size |
| 308 | * - kernel_total_size <= init_size |
| 309 | * - kernel_total_size <= output_size (see Note below) |
| 310 | * - output + init_size >= output + output_size |
| 311 | * |
| 312 | * (Note that kernel_total_size and output_size have no fundamental |
| 313 | * relationship, but output_size is passed to choose_random_location |
| 314 | * as a maximum of the two. The diagram is showing a case where |
| 315 | * kernel_total_size is larger than output_size, but this case is |
| 316 | * handled by bumping output_size.) |
| 317 | * |
| 318 | * The above conditions can be illustrated by a diagram: |
| 319 | * |
| 320 | * 0 output input input+input_size output+init_size |
| 321 | * | | | | | |
| 322 | * | | | | | |
| 323 | * |-----|--------|--------|--------------|-----------|--|-------------| |
| 324 | * | | | |
| 325 | * | | | |
| 326 | * output+init_size-ZO_INIT_SIZE output+output_size output+kernel_total_size |
| 327 | * |
| 328 | * [output, output+init_size) is the entire memory range used for |
| 329 | * extracting the compressed image. |
| 330 | * |
| 331 | * [output, output+kernel_total_size) is the range needed for the |
| 332 | * uncompressed kernel (VO) and its run size (bss, brk, etc). |
| 333 | * |
| 334 | * [output, output+output_size) is VO plus relocs (i.e. the entire |
| 335 | * uncompressed payload contained by ZO). This is the area of the buffer |
| 336 | * written to during decompression. |
| 337 | * |
| 338 | * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case |
| 339 | * range of the copied ZO and decompression code. (i.e. the range |
| 340 | * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.) |
| 341 | * |
| 342 | * [input, input+input_size) is the original copied compressed image (ZO) |
| 343 | * (i.e. it does not include its run size). This range must be avoided |
| 344 | * because it contains the data used for decompression. |
| 345 | * |
| 346 | * [input+input_size, output+init_size) is [_text, _end) for ZO. This |
| 347 | * range includes ZO's heap and stack, and must be avoided since it |
| 348 | * performs the decompression. |
| 349 | * |
| 350 | * Since the above two ranges need to be avoided and they are adjacent, |
| 351 | * they can be merged, resulting in: [input, output+init_size) which |
| 352 | * becomes the MEM_AVOID_ZO_RANGE below. |
| 353 | */ |
| 354 | static void mem_avoid_init(unsigned long input, unsigned long input_size, |
| 355 | unsigned long output) |
| 356 | { |
| 357 | unsigned long init_size = boot_params_ptr->hdr.init_size; |
| 358 | u64 initrd_start, initrd_size; |
| 359 | unsigned long cmd_line, cmd_line_size; |
| 360 | |
| 361 | /* |
| 362 | * Avoid the region that is unsafe to overlap during |
| 363 | * decompression. |
| 364 | */ |
| 365 | mem_avoid[MEM_AVOID_ZO_RANGE].start = input; |
| 366 | mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input; |
| 367 | |
| 368 | /* Avoid initrd. */ |
| 369 | initrd_start = (u64)boot_params_ptr->ext_ramdisk_image << 32; |
| 370 | initrd_start |= boot_params_ptr->hdr.ramdisk_image; |
| 371 | initrd_size = (u64)boot_params_ptr->ext_ramdisk_size << 32; |
| 372 | initrd_size |= boot_params_ptr->hdr.ramdisk_size; |
| 373 | mem_avoid[MEM_AVOID_INITRD].start = initrd_start; |
| 374 | mem_avoid[MEM_AVOID_INITRD].size = initrd_size; |
| 375 | /* No need to set mapping for initrd, it will be handled in VO. */ |
| 376 | |
| 377 | /* Avoid kernel command line. */ |
| 378 | cmd_line = get_cmd_line_ptr(); |
| 379 | /* Calculate size of cmd_line. */ |
| 380 | if (cmd_line) { |
| 381 | cmd_line_size = strnlen((char *)cmd_line, COMMAND_LINE_SIZE-1) + 1; |
| 382 | mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line; |
| 383 | mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size; |
| 384 | } |
| 385 | |
| 386 | /* Avoid boot parameters. */ |
| 387 | mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params_ptr; |
| 388 | mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params_ptr); |
| 389 | |
| 390 | /* We don't need to set a mapping for setup_data. */ |
| 391 | |
| 392 | /* Mark the memmap regions we need to avoid */ |
| 393 | handle_mem_options(); |
| 394 | |
| 395 | /* Enumerate the immovable memory regions */ |
| 396 | num_immovable_mem = count_immovable_mem_regions(); |
| 397 | } |
| 398 | |
| 399 | /* |
| 400 | * Does this memory vector overlap a known avoided area? If so, record the |
| 401 | * overlap region with the lowest address. |
| 402 | */ |
| 403 | static bool mem_avoid_overlap(struct mem_vector *img, |
| 404 | struct mem_vector *overlap) |
| 405 | { |
| 406 | int i; |
| 407 | struct setup_data *ptr; |
| 408 | u64 earliest = img->start + img->size; |
| 409 | bool is_overlapping = false; |
| 410 | |
| 411 | for (i = 0; i < MEM_AVOID_MAX; i++) { |
| 412 | if (mem_overlaps(img, &mem_avoid[i]) && |
| 413 | mem_avoid[i].start < earliest) { |
| 414 | *overlap = mem_avoid[i]; |
| 415 | earliest = overlap->start; |
| 416 | is_overlapping = true; |
| 417 | } |
| 418 | } |
| 419 | |
| 420 | /* Avoid all entries in the setup_data linked list. */ |
| 421 | ptr = (struct setup_data *)(unsigned long)boot_params_ptr->hdr.setup_data; |
| 422 | while (ptr) { |
| 423 | struct mem_vector avoid; |
| 424 | |
| 425 | avoid.start = (unsigned long)ptr; |
| 426 | avoid.size = sizeof(*ptr) + ptr->len; |
| 427 | |
| 428 | if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) { |
| 429 | *overlap = avoid; |
| 430 | earliest = overlap->start; |
| 431 | is_overlapping = true; |
| 432 | } |
| 433 | |
| 434 | if (ptr->type == SETUP_INDIRECT && |
| 435 | ((struct setup_indirect *)ptr->data)->type != SETUP_INDIRECT) { |
| 436 | avoid.start = ((struct setup_indirect *)ptr->data)->addr; |
| 437 | avoid.size = ((struct setup_indirect *)ptr->data)->len; |
| 438 | |
| 439 | if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) { |
| 440 | *overlap = avoid; |
| 441 | earliest = overlap->start; |
| 442 | is_overlapping = true; |
| 443 | } |
| 444 | } |
| 445 | |
| 446 | ptr = (struct setup_data *)(unsigned long)ptr->next; |
| 447 | } |
| 448 | |
| 449 | return is_overlapping; |
| 450 | } |
| 451 | |
| 452 | struct slot_area { |
| 453 | u64 addr; |
| 454 | unsigned long num; |
| 455 | }; |
| 456 | |
| 457 | #define MAX_SLOT_AREA 100 |
| 458 | |
| 459 | static struct slot_area slot_areas[MAX_SLOT_AREA]; |
| 460 | static unsigned int slot_area_index; |
| 461 | static unsigned long slot_max; |
| 462 | |
| 463 | static void store_slot_info(struct mem_vector *region, unsigned long image_size) |
| 464 | { |
| 465 | struct slot_area slot_area; |
| 466 | |
| 467 | if (slot_area_index == MAX_SLOT_AREA) |
| 468 | return; |
| 469 | |
| 470 | slot_area.addr = region->start; |
| 471 | slot_area.num = 1 + (region->size - image_size) / CONFIG_PHYSICAL_ALIGN; |
| 472 | |
| 473 | slot_areas[slot_area_index++] = slot_area; |
| 474 | slot_max += slot_area.num; |
| 475 | } |
| 476 | |
| 477 | /* |
| 478 | * Skip as many 1GB huge pages as possible in the passed region |
| 479 | * according to the number which users specified: |
| 480 | */ |
| 481 | static void |
| 482 | process_gb_huge_pages(struct mem_vector *region, unsigned long image_size) |
| 483 | { |
| 484 | u64 pud_start, pud_end; |
| 485 | unsigned long gb_huge_pages; |
| 486 | struct mem_vector tmp; |
| 487 | |
| 488 | if (!IS_ENABLED(CONFIG_X86_64) || !max_gb_huge_pages) { |
| 489 | store_slot_info(region, image_size); |
| 490 | return; |
| 491 | } |
| 492 | |
| 493 | /* Are there any 1GB pages in the region? */ |
| 494 | pud_start = ALIGN(region->start, PUD_SIZE); |
| 495 | pud_end = ALIGN_DOWN(region->start + region->size, PUD_SIZE); |
| 496 | |
| 497 | /* No good 1GB huge pages found: */ |
| 498 | if (pud_start >= pud_end) { |
| 499 | store_slot_info(region, image_size); |
| 500 | return; |
| 501 | } |
| 502 | |
| 503 | /* Check if the head part of the region is usable. */ |
| 504 | if (pud_start >= region->start + image_size) { |
| 505 | tmp.start = region->start; |
| 506 | tmp.size = pud_start - region->start; |
| 507 | store_slot_info(&tmp, image_size); |
| 508 | } |
| 509 | |
| 510 | /* Skip the good 1GB pages. */ |
| 511 | gb_huge_pages = (pud_end - pud_start) >> PUD_SHIFT; |
| 512 | if (gb_huge_pages > max_gb_huge_pages) { |
| 513 | pud_end = pud_start + (max_gb_huge_pages << PUD_SHIFT); |
| 514 | max_gb_huge_pages = 0; |
| 515 | } else { |
| 516 | max_gb_huge_pages -= gb_huge_pages; |
| 517 | } |
| 518 | |
| 519 | /* Check if the tail part of the region is usable. */ |
| 520 | if (region->start + region->size >= pud_end + image_size) { |
| 521 | tmp.start = pud_end; |
| 522 | tmp.size = region->start + region->size - pud_end; |
| 523 | store_slot_info(&tmp, image_size); |
| 524 | } |
| 525 | } |
| 526 | |
| 527 | static u64 slots_fetch_random(void) |
| 528 | { |
| 529 | unsigned long slot; |
| 530 | unsigned int i; |
| 531 | |
| 532 | /* Handle case of no slots stored. */ |
| 533 | if (slot_max == 0) |
| 534 | return 0; |
| 535 | |
| 536 | slot = kaslr_get_random_long("Physical") % slot_max; |
| 537 | |
| 538 | for (i = 0; i < slot_area_index; i++) { |
| 539 | if (slot >= slot_areas[i].num) { |
| 540 | slot -= slot_areas[i].num; |
| 541 | continue; |
| 542 | } |
| 543 | return slot_areas[i].addr + ((u64)slot * CONFIG_PHYSICAL_ALIGN); |
| 544 | } |
| 545 | |
| 546 | if (i == slot_area_index) |
| 547 | debug_putstr("slots_fetch_random() failed!?\n"); |
| 548 | return 0; |
| 549 | } |
| 550 | |
| 551 | static void __process_mem_region(struct mem_vector *entry, |
| 552 | unsigned long minimum, |
| 553 | unsigned long image_size) |
| 554 | { |
| 555 | struct mem_vector region, overlap; |
| 556 | u64 region_end; |
| 557 | |
| 558 | /* Enforce minimum and memory limit. */ |
| 559 | region.start = max_t(u64, entry->start, minimum); |
| 560 | region_end = min(entry->start + entry->size, mem_limit); |
| 561 | |
| 562 | /* Give up if slot area array is full. */ |
| 563 | while (slot_area_index < MAX_SLOT_AREA) { |
| 564 | /* Potentially raise address to meet alignment needs. */ |
| 565 | region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN); |
| 566 | |
| 567 | /* Did we raise the address above the passed in memory entry? */ |
| 568 | if (region.start > region_end) |
| 569 | return; |
| 570 | |
| 571 | /* Reduce size by any delta from the original address. */ |
| 572 | region.size = region_end - region.start; |
| 573 | |
| 574 | /* Return if region can't contain decompressed kernel */ |
| 575 | if (region.size < image_size) |
| 576 | return; |
| 577 | |
| 578 | /* If nothing overlaps, store the region and return. */ |
| 579 | if (!mem_avoid_overlap(®ion, &overlap)) { |
| 580 | process_gb_huge_pages(®ion, image_size); |
| 581 | return; |
| 582 | } |
| 583 | |
| 584 | /* Store beginning of region if holds at least image_size. */ |
| 585 | if (overlap.start >= region.start + image_size) { |
| 586 | region.size = overlap.start - region.start; |
| 587 | process_gb_huge_pages(®ion, image_size); |
| 588 | } |
| 589 | |
| 590 | /* Clip off the overlapping region and start over. */ |
| 591 | region.start = overlap.start + overlap.size; |
| 592 | } |
| 593 | } |
| 594 | |
| 595 | static bool process_mem_region(struct mem_vector *region, |
| 596 | unsigned long minimum, |
| 597 | unsigned long image_size) |
| 598 | { |
| 599 | int i; |
| 600 | /* |
| 601 | * If no immovable memory found, or MEMORY_HOTREMOVE disabled, |
| 602 | * use @region directly. |
| 603 | */ |
| 604 | if (!num_immovable_mem) { |
| 605 | __process_mem_region(region, minimum, image_size); |
| 606 | |
| 607 | if (slot_area_index == MAX_SLOT_AREA) { |
| 608 | debug_putstr("Aborted e820/efi memmap scan (slot_areas full)!\n"); |
| 609 | return true; |
| 610 | } |
| 611 | return false; |
| 612 | } |
| 613 | |
| 614 | #if defined(CONFIG_MEMORY_HOTREMOVE) && defined(CONFIG_ACPI) |
| 615 | /* |
| 616 | * If immovable memory found, filter the intersection between |
| 617 | * immovable memory and @region. |
| 618 | */ |
| 619 | for (i = 0; i < num_immovable_mem; i++) { |
| 620 | u64 start, end, entry_end, region_end; |
| 621 | struct mem_vector entry; |
| 622 | |
| 623 | if (!mem_overlaps(region, &immovable_mem[i])) |
| 624 | continue; |
| 625 | |
| 626 | start = immovable_mem[i].start; |
| 627 | end = start + immovable_mem[i].size; |
| 628 | region_end = region->start + region->size; |
| 629 | |
| 630 | entry.start = clamp(region->start, start, end); |
| 631 | entry_end = clamp(region_end, start, end); |
| 632 | entry.size = entry_end - entry.start; |
| 633 | |
| 634 | __process_mem_region(&entry, minimum, image_size); |
| 635 | |
| 636 | if (slot_area_index == MAX_SLOT_AREA) { |
| 637 | debug_putstr("Aborted e820/efi memmap scan when walking immovable regions(slot_areas full)!\n"); |
| 638 | return true; |
| 639 | } |
| 640 | } |
| 641 | #endif |
| 642 | return false; |
| 643 | } |
| 644 | |
| 645 | #ifdef CONFIG_EFI |
| 646 | |
| 647 | /* |
| 648 | * Only EFI_CONVENTIONAL_MEMORY and EFI_UNACCEPTED_MEMORY (if supported) are |
| 649 | * guaranteed to be free. |
| 650 | * |
| 651 | * Pick free memory more conservatively than the EFI spec allows: according to |
| 652 | * the spec, EFI_BOOT_SERVICES_{CODE|DATA} are also free memory and thus |
| 653 | * available to place the kernel image into, but in practice there's firmware |
| 654 | * where using that memory leads to crashes. Buggy vendor EFI code registers |
| 655 | * for an event that triggers on SetVirtualAddressMap(). The handler assumes |
| 656 | * that EFI_BOOT_SERVICES_DATA memory has not been touched by loader yet, which |
| 657 | * is probably true for Windows. |
| 658 | * |
| 659 | * Preserve EFI_BOOT_SERVICES_* regions until after SetVirtualAddressMap(). |
| 660 | */ |
| 661 | static inline bool memory_type_is_free(efi_memory_desc_t *md) |
| 662 | { |
| 663 | if (md->type == EFI_CONVENTIONAL_MEMORY) |
| 664 | return true; |
| 665 | |
| 666 | if (IS_ENABLED(CONFIG_UNACCEPTED_MEMORY) && |
| 667 | md->type == EFI_UNACCEPTED_MEMORY) |
| 668 | return true; |
| 669 | |
| 670 | return false; |
| 671 | } |
| 672 | |
| 673 | /* |
| 674 | * Returns true if we processed the EFI memmap, which we prefer over the E820 |
| 675 | * table if it is available. |
| 676 | */ |
| 677 | static bool |
| 678 | process_efi_entries(unsigned long minimum, unsigned long image_size) |
| 679 | { |
| 680 | struct efi_info *e = &boot_params_ptr->efi_info; |
| 681 | bool efi_mirror_found = false; |
| 682 | struct mem_vector region; |
| 683 | efi_memory_desc_t *md; |
| 684 | unsigned long pmap; |
| 685 | char *signature; |
| 686 | u32 nr_desc; |
| 687 | int i; |
| 688 | |
| 689 | signature = (char *)&e->efi_loader_signature; |
| 690 | if (strncmp(signature, EFI32_LOADER_SIGNATURE, 4) && |
| 691 | strncmp(signature, EFI64_LOADER_SIGNATURE, 4)) |
| 692 | return false; |
| 693 | |
| 694 | #ifdef CONFIG_X86_32 |
| 695 | /* Can't handle data above 4GB at this time */ |
| 696 | if (e->efi_memmap_hi) { |
| 697 | warn("EFI memmap is above 4GB, can't be handled now on x86_32. EFI should be disabled.\n"); |
| 698 | return false; |
| 699 | } |
| 700 | pmap = e->efi_memmap; |
| 701 | #else |
| 702 | pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32)); |
| 703 | #endif |
| 704 | |
| 705 | nr_desc = e->efi_memmap_size / e->efi_memdesc_size; |
| 706 | for (i = 0; i < nr_desc; i++) { |
| 707 | md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i); |
| 708 | if (md->attribute & EFI_MEMORY_MORE_RELIABLE) { |
| 709 | efi_mirror_found = true; |
| 710 | break; |
| 711 | } |
| 712 | } |
| 713 | |
| 714 | for (i = 0; i < nr_desc; i++) { |
| 715 | md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i); |
| 716 | |
| 717 | if (!memory_type_is_free(md)) |
| 718 | continue; |
| 719 | |
| 720 | if (efi_soft_reserve_enabled() && |
| 721 | (md->attribute & EFI_MEMORY_SP)) |
| 722 | continue; |
| 723 | |
| 724 | if (efi_mirror_found && |
| 725 | !(md->attribute & EFI_MEMORY_MORE_RELIABLE)) |
| 726 | continue; |
| 727 | |
| 728 | region.start = md->phys_addr; |
| 729 | region.size = md->num_pages << EFI_PAGE_SHIFT; |
| 730 | if (process_mem_region(®ion, minimum, image_size)) |
| 731 | break; |
| 732 | } |
| 733 | return true; |
| 734 | } |
| 735 | #else |
| 736 | static inline bool |
| 737 | process_efi_entries(unsigned long minimum, unsigned long image_size) |
| 738 | { |
| 739 | return false; |
| 740 | } |
| 741 | #endif |
| 742 | |
| 743 | static void process_e820_entries(unsigned long minimum, |
| 744 | unsigned long image_size) |
| 745 | { |
| 746 | int i; |
| 747 | struct mem_vector region; |
| 748 | struct boot_e820_entry *entry; |
| 749 | |
| 750 | /* Verify potential e820 positions, appending to slots list. */ |
| 751 | for (i = 0; i < boot_params_ptr->e820_entries; i++) { |
| 752 | entry = &boot_params_ptr->e820_table[i]; |
| 753 | /* Skip non-RAM entries. */ |
| 754 | if (entry->type != E820_TYPE_RAM) |
| 755 | continue; |
| 756 | region.start = entry->addr; |
| 757 | region.size = entry->size; |
| 758 | if (process_mem_region(®ion, minimum, image_size)) |
| 759 | break; |
| 760 | } |
| 761 | } |
| 762 | |
| 763 | /* |
| 764 | * If KHO is active, only process its scratch areas to ensure we are not |
| 765 | * stepping onto preserved memory. |
| 766 | */ |
| 767 | static bool process_kho_entries(unsigned long minimum, unsigned long image_size) |
| 768 | { |
| 769 | struct kho_scratch *kho_scratch; |
| 770 | struct setup_data *ptr; |
| 771 | struct kho_data *kho; |
| 772 | int i, nr_areas = 0; |
| 773 | |
| 774 | if (!IS_ENABLED(CONFIG_KEXEC_HANDOVER)) |
| 775 | return false; |
| 776 | |
| 777 | ptr = (struct setup_data *)(unsigned long)boot_params_ptr->hdr.setup_data; |
| 778 | while (ptr) { |
| 779 | if (ptr->type == SETUP_KEXEC_KHO) { |
| 780 | kho = (struct kho_data *)(unsigned long)ptr->data; |
| 781 | kho_scratch = (void *)(unsigned long)kho->scratch_addr; |
| 782 | nr_areas = kho->scratch_size / sizeof(*kho_scratch); |
| 783 | break; |
| 784 | } |
| 785 | |
| 786 | ptr = (struct setup_data *)(unsigned long)ptr->next; |
| 787 | } |
| 788 | |
| 789 | if (!nr_areas) |
| 790 | return false; |
| 791 | |
| 792 | for (i = 0; i < nr_areas; i++) { |
| 793 | struct kho_scratch *area = &kho_scratch[i]; |
| 794 | struct mem_vector region = { |
| 795 | .start = area->addr, |
| 796 | .size = area->size, |
| 797 | }; |
| 798 | |
| 799 | if (process_mem_region(®ion, minimum, image_size)) |
| 800 | break; |
| 801 | } |
| 802 | |
| 803 | return true; |
| 804 | } |
| 805 | |
| 806 | static unsigned long find_random_phys_addr(unsigned long minimum, |
| 807 | unsigned long image_size) |
| 808 | { |
| 809 | u64 phys_addr; |
| 810 | |
| 811 | /* Bail out early if it's impossible to succeed. */ |
| 812 | if (minimum + image_size > mem_limit) |
| 813 | return 0; |
| 814 | |
| 815 | /* Check if we had too many memmaps. */ |
| 816 | if (memmap_too_large) { |
| 817 | debug_putstr("Aborted memory entries scan (more than 4 memmap= args)!\n"); |
| 818 | return 0; |
| 819 | } |
| 820 | |
| 821 | /* |
| 822 | * During kexec handover only process KHO scratch areas that are known |
| 823 | * not to contain any data that must be preserved. |
| 824 | */ |
| 825 | if (!process_kho_entries(minimum, image_size) && |
| 826 | !process_efi_entries(minimum, image_size)) |
| 827 | process_e820_entries(minimum, image_size); |
| 828 | |
| 829 | phys_addr = slots_fetch_random(); |
| 830 | |
| 831 | /* Perform a final check to make sure the address is in range. */ |
| 832 | if (phys_addr < minimum || phys_addr + image_size > mem_limit) { |
| 833 | warn("Invalid physical address chosen!\n"); |
| 834 | return 0; |
| 835 | } |
| 836 | |
| 837 | return (unsigned long)phys_addr; |
| 838 | } |
| 839 | |
| 840 | static unsigned long find_random_virt_addr(unsigned long minimum, |
| 841 | unsigned long image_size) |
| 842 | { |
| 843 | unsigned long slots, random_addr; |
| 844 | |
| 845 | /* |
| 846 | * There are how many CONFIG_PHYSICAL_ALIGN-sized slots |
| 847 | * that can hold image_size within the range of minimum to |
| 848 | * KERNEL_IMAGE_SIZE? |
| 849 | */ |
| 850 | slots = 1 + (KERNEL_IMAGE_SIZE - minimum - image_size) / CONFIG_PHYSICAL_ALIGN; |
| 851 | |
| 852 | random_addr = kaslr_get_random_long("Virtual") % slots; |
| 853 | |
| 854 | return random_addr * CONFIG_PHYSICAL_ALIGN + minimum; |
| 855 | } |
| 856 | |
| 857 | /* |
| 858 | * Since this function examines addresses much more numerically, |
| 859 | * it takes the input and output pointers as 'unsigned long'. |
| 860 | */ |
| 861 | void choose_random_location(unsigned long input, |
| 862 | unsigned long input_size, |
| 863 | unsigned long *output, |
| 864 | unsigned long output_size, |
| 865 | unsigned long *virt_addr) |
| 866 | { |
| 867 | unsigned long random_addr, min_addr; |
| 868 | |
| 869 | if (cmdline_find_option_bool("nokaslr")) { |
| 870 | warn("KASLR disabled: 'nokaslr' on cmdline."); |
| 871 | return; |
| 872 | } |
| 873 | |
| 874 | boot_params_ptr->hdr.loadflags |= KASLR_FLAG; |
| 875 | |
| 876 | if (IS_ENABLED(CONFIG_X86_32)) |
| 877 | mem_limit = KERNEL_IMAGE_SIZE; |
| 878 | else |
| 879 | mem_limit = MAXMEM; |
| 880 | |
| 881 | /* Record the various known unsafe memory ranges. */ |
| 882 | mem_avoid_init(input, input_size, *output); |
| 883 | |
| 884 | /* |
| 885 | * Low end of the randomization range should be the |
| 886 | * smaller of 512M or the initial kernel image |
| 887 | * location: |
| 888 | */ |
| 889 | min_addr = min(*output, 512UL << 20); |
| 890 | /* Make sure minimum is aligned. */ |
| 891 | min_addr = ALIGN(min_addr, CONFIG_PHYSICAL_ALIGN); |
| 892 | |
| 893 | /* Walk available memory entries to find a random address. */ |
| 894 | random_addr = find_random_phys_addr(min_addr, output_size); |
| 895 | if (!random_addr) { |
| 896 | warn("Physical KASLR disabled: no suitable memory region!"); |
| 897 | } else { |
| 898 | /* Update the new physical address location. */ |
| 899 | if (*output != random_addr) |
| 900 | *output = random_addr; |
| 901 | } |
| 902 | |
| 903 | |
| 904 | /* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */ |
| 905 | if (IS_ENABLED(CONFIG_X86_64)) |
| 906 | random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size); |
| 907 | *virt_addr = random_addr; |
| 908 | } |