| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * srmmu.c: SRMMU specific routines for memory management. |
| 4 | * |
| 5 | * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) |
| 6 | * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com) |
| 7 | * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) |
| 8 | * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) |
| 9 | * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org) |
| 10 | */ |
| 11 | |
| 12 | #include <linux/seq_file.h> |
| 13 | #include <linux/spinlock.h> |
| 14 | #include <linux/memblock.h> |
| 15 | #include <linux/pagemap.h> |
| 16 | #include <linux/vmalloc.h> |
| 17 | #include <linux/kdebug.h> |
| 18 | #include <linux/export.h> |
| 19 | #include <linux/kernel.h> |
| 20 | #include <linux/init.h> |
| 21 | #include <linux/log2.h> |
| 22 | #include <linux/gfp.h> |
| 23 | #include <linux/fs.h> |
| 24 | #include <linux/mm.h> |
| 25 | |
| 26 | #include <asm/mmu_context.h> |
| 27 | #include <asm/cacheflush.h> |
| 28 | #include <asm/tlbflush.h> |
| 29 | #include <asm/io-unit.h> |
| 30 | #include <asm/pgalloc.h> |
| 31 | #include <asm/pgtable.h> |
| 32 | #include <asm/bitext.h> |
| 33 | #include <asm/vaddrs.h> |
| 34 | #include <asm/cache.h> |
| 35 | #include <asm/traps.h> |
| 36 | #include <asm/oplib.h> |
| 37 | #include <asm/mbus.h> |
| 38 | #include <asm/page.h> |
| 39 | #include <asm/asi.h> |
| 40 | #include <asm/smp.h> |
| 41 | #include <asm/io.h> |
| 42 | |
| 43 | /* Now the cpu specific definitions. */ |
| 44 | #include <asm/turbosparc.h> |
| 45 | #include <asm/tsunami.h> |
| 46 | #include <asm/viking.h> |
| 47 | #include <asm/swift.h> |
| 48 | #include <asm/leon.h> |
| 49 | #include <asm/mxcc.h> |
| 50 | #include <asm/ross.h> |
| 51 | |
| 52 | #include "mm_32.h" |
| 53 | |
| 54 | enum mbus_module srmmu_modtype; |
| 55 | static unsigned int hwbug_bitmask; |
| 56 | int vac_cache_size; |
| 57 | EXPORT_SYMBOL(vac_cache_size); |
| 58 | int vac_line_size; |
| 59 | |
| 60 | extern struct resource sparc_iomap; |
| 61 | |
| 62 | extern unsigned long last_valid_pfn; |
| 63 | |
| 64 | static pgd_t *srmmu_swapper_pg_dir; |
| 65 | |
| 66 | const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops; |
| 67 | EXPORT_SYMBOL(sparc32_cachetlb_ops); |
| 68 | |
| 69 | #ifdef CONFIG_SMP |
| 70 | const struct sparc32_cachetlb_ops *local_ops; |
| 71 | |
| 72 | #define FLUSH_BEGIN(mm) |
| 73 | #define FLUSH_END |
| 74 | #else |
| 75 | #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) { |
| 76 | #define FLUSH_END } |
| 77 | #endif |
| 78 | |
| 79 | int flush_page_for_dma_global = 1; |
| 80 | |
| 81 | char *srmmu_name; |
| 82 | |
| 83 | ctxd_t *srmmu_ctx_table_phys; |
| 84 | static ctxd_t *srmmu_context_table; |
| 85 | |
| 86 | int viking_mxcc_present; |
| 87 | static DEFINE_SPINLOCK(srmmu_context_spinlock); |
| 88 | |
| 89 | static int is_hypersparc; |
| 90 | |
| 91 | static int srmmu_cache_pagetables; |
| 92 | |
| 93 | /* these will be initialized in srmmu_nocache_calcsize() */ |
| 94 | static unsigned long srmmu_nocache_size; |
| 95 | static unsigned long srmmu_nocache_end; |
| 96 | |
| 97 | /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */ |
| 98 | #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4) |
| 99 | |
| 100 | /* The context table is a nocache user with the biggest alignment needs. */ |
| 101 | #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS) |
| 102 | |
| 103 | void *srmmu_nocache_pool; |
| 104 | static struct bit_map srmmu_nocache_map; |
| 105 | |
| 106 | static inline int srmmu_pmd_none(pmd_t pmd) |
| 107 | { return !(pmd_val(pmd) & 0xFFFFFFF); } |
| 108 | |
| 109 | /* XXX should we hyper_flush_whole_icache here - Anton */ |
| 110 | static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp) |
| 111 | { |
| 112 | pte_t pte; |
| 113 | |
| 114 | pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4))); |
| 115 | set_pte((pte_t *)ctxp, pte); |
| 116 | } |
| 117 | |
| 118 | /* |
| 119 | * Locations of MSI Registers. |
| 120 | */ |
| 121 | #define MSI_MBUS_ARBEN 0xe0001008 /* MBus Arbiter Enable register */ |
| 122 | |
| 123 | /* |
| 124 | * Useful bits in the MSI Registers. |
| 125 | */ |
| 126 | #define MSI_ASYNC_MODE 0x80000000 /* Operate the MSI asynchronously */ |
| 127 | |
| 128 | static void msi_set_sync(void) |
| 129 | { |
| 130 | __asm__ __volatile__ ("lda [%0] %1, %%g3\n\t" |
| 131 | "andn %%g3, %2, %%g3\n\t" |
| 132 | "sta %%g3, [%0] %1\n\t" : : |
| 133 | "r" (MSI_MBUS_ARBEN), |
| 134 | "i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3"); |
| 135 | } |
| 136 | |
| 137 | void pmd_set(pmd_t *pmdp, pte_t *ptep) |
| 138 | { |
| 139 | unsigned long ptp = __nocache_pa(ptep) >> 4; |
| 140 | set_pte((pte_t *)&pmd_val(*pmdp), __pte(SRMMU_ET_PTD | ptp)); |
| 141 | } |
| 142 | |
| 143 | /* |
| 144 | * size: bytes to allocate in the nocache area. |
| 145 | * align: bytes, number to align at. |
| 146 | * Returns the virtual address of the allocated area. |
| 147 | */ |
| 148 | static void *__srmmu_get_nocache(int size, int align) |
| 149 | { |
| 150 | int offset, minsz = 1 << SRMMU_NOCACHE_BITMAP_SHIFT; |
| 151 | unsigned long addr; |
| 152 | |
| 153 | if (size < minsz) { |
| 154 | printk(KERN_ERR "Size 0x%x too small for nocache request\n", |
| 155 | size); |
| 156 | size = minsz; |
| 157 | } |
| 158 | if (size & (minsz - 1)) { |
| 159 | printk(KERN_ERR "Size 0x%x unaligned in nocache request\n", |
| 160 | size); |
| 161 | size += minsz - 1; |
| 162 | } |
| 163 | BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX); |
| 164 | |
| 165 | offset = bit_map_string_get(&srmmu_nocache_map, |
| 166 | size >> SRMMU_NOCACHE_BITMAP_SHIFT, |
| 167 | align >> SRMMU_NOCACHE_BITMAP_SHIFT); |
| 168 | if (offset == -1) { |
| 169 | printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n", |
| 170 | size, (int) srmmu_nocache_size, |
| 171 | srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT); |
| 172 | return NULL; |
| 173 | } |
| 174 | |
| 175 | addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT); |
| 176 | return (void *)addr; |
| 177 | } |
| 178 | |
| 179 | void *srmmu_get_nocache(int size, int align) |
| 180 | { |
| 181 | void *tmp; |
| 182 | |
| 183 | tmp = __srmmu_get_nocache(size, align); |
| 184 | |
| 185 | if (tmp) |
| 186 | memset(tmp, 0, size); |
| 187 | |
| 188 | return tmp; |
| 189 | } |
| 190 | |
| 191 | void srmmu_free_nocache(void *addr, int size) |
| 192 | { |
| 193 | unsigned long vaddr; |
| 194 | int offset; |
| 195 | |
| 196 | vaddr = (unsigned long)addr; |
| 197 | if (vaddr < SRMMU_NOCACHE_VADDR) { |
| 198 | printk("Vaddr %lx is smaller than nocache base 0x%lx\n", |
| 199 | vaddr, (unsigned long)SRMMU_NOCACHE_VADDR); |
| 200 | BUG(); |
| 201 | } |
| 202 | if (vaddr + size > srmmu_nocache_end) { |
| 203 | printk("Vaddr %lx is bigger than nocache end 0x%lx\n", |
| 204 | vaddr, srmmu_nocache_end); |
| 205 | BUG(); |
| 206 | } |
| 207 | if (!is_power_of_2(size)) { |
| 208 | printk("Size 0x%x is not a power of 2\n", size); |
| 209 | BUG(); |
| 210 | } |
| 211 | if (size < SRMMU_NOCACHE_BITMAP_SHIFT) { |
| 212 | printk("Size 0x%x is too small\n", size); |
| 213 | BUG(); |
| 214 | } |
| 215 | if (vaddr & (size - 1)) { |
| 216 | printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size); |
| 217 | BUG(); |
| 218 | } |
| 219 | |
| 220 | offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT; |
| 221 | size = size >> SRMMU_NOCACHE_BITMAP_SHIFT; |
| 222 | |
| 223 | bit_map_clear(&srmmu_nocache_map, offset, size); |
| 224 | } |
| 225 | |
| 226 | static void srmmu_early_allocate_ptable_skeleton(unsigned long start, |
| 227 | unsigned long end); |
| 228 | |
| 229 | /* Return how much physical memory we have. */ |
| 230 | static unsigned long __init probe_memory(void) |
| 231 | { |
| 232 | unsigned long total = 0; |
| 233 | int i; |
| 234 | |
| 235 | for (i = 0; sp_banks[i].num_bytes; i++) |
| 236 | total += sp_banks[i].num_bytes; |
| 237 | |
| 238 | return total; |
| 239 | } |
| 240 | |
| 241 | /* |
| 242 | * Reserve nocache dynamically proportionally to the amount of |
| 243 | * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002 |
| 244 | */ |
| 245 | static void __init srmmu_nocache_calcsize(void) |
| 246 | { |
| 247 | unsigned long sysmemavail = probe_memory() / 1024; |
| 248 | int srmmu_nocache_npages; |
| 249 | |
| 250 | srmmu_nocache_npages = |
| 251 | sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256; |
| 252 | |
| 253 | /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */ |
| 254 | // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256; |
| 255 | if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES) |
| 256 | srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES; |
| 257 | |
| 258 | /* anything above 1280 blows up */ |
| 259 | if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES) |
| 260 | srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES; |
| 261 | |
| 262 | srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE; |
| 263 | srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size; |
| 264 | } |
| 265 | |
| 266 | static void __init srmmu_nocache_init(void) |
| 267 | { |
| 268 | void *srmmu_nocache_bitmap; |
| 269 | unsigned int bitmap_bits; |
| 270 | pgd_t *pgd; |
| 271 | p4d_t *p4d; |
| 272 | pud_t *pud; |
| 273 | pmd_t *pmd; |
| 274 | pte_t *pte; |
| 275 | unsigned long paddr, vaddr; |
| 276 | unsigned long pteval; |
| 277 | |
| 278 | bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT; |
| 279 | |
| 280 | srmmu_nocache_pool = memblock_alloc_or_panic(srmmu_nocache_size, |
| 281 | SRMMU_NOCACHE_ALIGN_MAX); |
| 282 | memset(srmmu_nocache_pool, 0, srmmu_nocache_size); |
| 283 | |
| 284 | srmmu_nocache_bitmap = |
| 285 | memblock_alloc_or_panic(BITS_TO_LONGS(bitmap_bits) * sizeof(long), |
| 286 | SMP_CACHE_BYTES); |
| 287 | bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits); |
| 288 | |
| 289 | srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE); |
| 290 | memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE); |
| 291 | init_mm.pgd = srmmu_swapper_pg_dir; |
| 292 | |
| 293 | srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end); |
| 294 | |
| 295 | paddr = __pa((unsigned long)srmmu_nocache_pool); |
| 296 | vaddr = SRMMU_NOCACHE_VADDR; |
| 297 | |
| 298 | while (vaddr < srmmu_nocache_end) { |
| 299 | pgd = pgd_offset_k(vaddr); |
| 300 | p4d = p4d_offset(pgd, vaddr); |
| 301 | pud = pud_offset(p4d, vaddr); |
| 302 | pmd = pmd_offset(__nocache_fix(pud), vaddr); |
| 303 | pte = pte_offset_kernel(__nocache_fix(pmd), vaddr); |
| 304 | |
| 305 | pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV); |
| 306 | |
| 307 | if (srmmu_cache_pagetables) |
| 308 | pteval |= SRMMU_CACHE; |
| 309 | |
| 310 | set_pte(__nocache_fix(pte), __pte(pteval)); |
| 311 | |
| 312 | vaddr += PAGE_SIZE; |
| 313 | paddr += PAGE_SIZE; |
| 314 | } |
| 315 | |
| 316 | flush_cache_all(); |
| 317 | flush_tlb_all(); |
| 318 | } |
| 319 | |
| 320 | pgd_t *get_pgd_fast(void) |
| 321 | { |
| 322 | pgd_t *pgd = NULL; |
| 323 | |
| 324 | pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE); |
| 325 | if (pgd) { |
| 326 | pgd_t *init = pgd_offset_k(0); |
| 327 | memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t)); |
| 328 | memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD, |
| 329 | (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t)); |
| 330 | } |
| 331 | |
| 332 | return pgd; |
| 333 | } |
| 334 | |
| 335 | /* |
| 336 | * Hardware needs alignment to 256 only, but we align to whole page size |
| 337 | * to reduce fragmentation problems due to the buddy principle. |
| 338 | * XXX Provide actual fragmentation statistics in /proc. |
| 339 | * |
| 340 | * Alignments up to the page size are the same for physical and virtual |
| 341 | * addresses of the nocache area. |
| 342 | */ |
| 343 | pgtable_t pte_alloc_one(struct mm_struct *mm) |
| 344 | { |
| 345 | pte_t *ptep; |
| 346 | struct page *page; |
| 347 | |
| 348 | if (!(ptep = pte_alloc_one_kernel(mm))) |
| 349 | return NULL; |
| 350 | page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT); |
| 351 | spin_lock(&mm->page_table_lock); |
| 352 | if (page_ref_inc_return(page) == 2 && |
| 353 | !pagetable_pte_ctor(mm, page_ptdesc(page))) { |
| 354 | page_ref_dec(page); |
| 355 | ptep = NULL; |
| 356 | } |
| 357 | spin_unlock(&mm->page_table_lock); |
| 358 | |
| 359 | return ptep; |
| 360 | } |
| 361 | |
| 362 | void pte_free(struct mm_struct *mm, pgtable_t ptep) |
| 363 | { |
| 364 | struct page *page; |
| 365 | |
| 366 | page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT); |
| 367 | spin_lock(&mm->page_table_lock); |
| 368 | if (page_ref_dec_return(page) == 1) |
| 369 | pagetable_dtor(page_ptdesc(page)); |
| 370 | spin_unlock(&mm->page_table_lock); |
| 371 | |
| 372 | srmmu_free_nocache(ptep, SRMMU_PTE_TABLE_SIZE); |
| 373 | } |
| 374 | |
| 375 | /* context handling - a dynamically sized pool is used */ |
| 376 | #define NO_CONTEXT -1 |
| 377 | |
| 378 | struct ctx_list { |
| 379 | struct ctx_list *next; |
| 380 | struct ctx_list *prev; |
| 381 | unsigned int ctx_number; |
| 382 | struct mm_struct *ctx_mm; |
| 383 | }; |
| 384 | |
| 385 | static struct ctx_list *ctx_list_pool; |
| 386 | static struct ctx_list ctx_free; |
| 387 | static struct ctx_list ctx_used; |
| 388 | |
| 389 | /* At boot time we determine the number of contexts */ |
| 390 | static int num_contexts; |
| 391 | |
| 392 | static inline void remove_from_ctx_list(struct ctx_list *entry) |
| 393 | { |
| 394 | entry->next->prev = entry->prev; |
| 395 | entry->prev->next = entry->next; |
| 396 | } |
| 397 | |
| 398 | static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry) |
| 399 | { |
| 400 | entry->next = head; |
| 401 | (entry->prev = head->prev)->next = entry; |
| 402 | head->prev = entry; |
| 403 | } |
| 404 | #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry) |
| 405 | #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry) |
| 406 | |
| 407 | |
| 408 | static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm) |
| 409 | { |
| 410 | struct ctx_list *ctxp; |
| 411 | |
| 412 | ctxp = ctx_free.next; |
| 413 | if (ctxp != &ctx_free) { |
| 414 | remove_from_ctx_list(ctxp); |
| 415 | add_to_used_ctxlist(ctxp); |
| 416 | mm->context = ctxp->ctx_number; |
| 417 | ctxp->ctx_mm = mm; |
| 418 | return; |
| 419 | } |
| 420 | ctxp = ctx_used.next; |
| 421 | if (ctxp->ctx_mm == old_mm) |
| 422 | ctxp = ctxp->next; |
| 423 | if (ctxp == &ctx_used) |
| 424 | panic("out of mmu contexts"); |
| 425 | flush_cache_mm(ctxp->ctx_mm); |
| 426 | flush_tlb_mm(ctxp->ctx_mm); |
| 427 | remove_from_ctx_list(ctxp); |
| 428 | add_to_used_ctxlist(ctxp); |
| 429 | ctxp->ctx_mm->context = NO_CONTEXT; |
| 430 | ctxp->ctx_mm = mm; |
| 431 | mm->context = ctxp->ctx_number; |
| 432 | } |
| 433 | |
| 434 | static inline void free_context(int context) |
| 435 | { |
| 436 | struct ctx_list *ctx_old; |
| 437 | |
| 438 | ctx_old = ctx_list_pool + context; |
| 439 | remove_from_ctx_list(ctx_old); |
| 440 | add_to_free_ctxlist(ctx_old); |
| 441 | } |
| 442 | |
| 443 | static void __init sparc_context_init(int numctx) |
| 444 | { |
| 445 | int ctx; |
| 446 | unsigned long size; |
| 447 | |
| 448 | size = numctx * sizeof(struct ctx_list); |
| 449 | ctx_list_pool = memblock_alloc_or_panic(size, SMP_CACHE_BYTES); |
| 450 | |
| 451 | for (ctx = 0; ctx < numctx; ctx++) { |
| 452 | struct ctx_list *clist; |
| 453 | |
| 454 | clist = (ctx_list_pool + ctx); |
| 455 | clist->ctx_number = ctx; |
| 456 | clist->ctx_mm = NULL; |
| 457 | } |
| 458 | ctx_free.next = ctx_free.prev = &ctx_free; |
| 459 | ctx_used.next = ctx_used.prev = &ctx_used; |
| 460 | for (ctx = 0; ctx < numctx; ctx++) |
| 461 | add_to_free_ctxlist(ctx_list_pool + ctx); |
| 462 | } |
| 463 | |
| 464 | void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm, |
| 465 | struct task_struct *tsk) |
| 466 | { |
| 467 | unsigned long flags; |
| 468 | |
| 469 | if (mm->context == NO_CONTEXT) { |
| 470 | spin_lock_irqsave(&srmmu_context_spinlock, flags); |
| 471 | alloc_context(old_mm, mm); |
| 472 | spin_unlock_irqrestore(&srmmu_context_spinlock, flags); |
| 473 | srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd); |
| 474 | } |
| 475 | |
| 476 | if (sparc_cpu_model == sparc_leon) |
| 477 | leon_switch_mm(); |
| 478 | |
| 479 | if (is_hypersparc) |
| 480 | hyper_flush_whole_icache(); |
| 481 | |
| 482 | srmmu_set_context(mm->context); |
| 483 | } |
| 484 | |
| 485 | /* Low level IO area allocation on the SRMMU. */ |
| 486 | static inline void srmmu_mapioaddr(unsigned long physaddr, |
| 487 | unsigned long virt_addr, int bus_type) |
| 488 | { |
| 489 | pgd_t *pgdp; |
| 490 | p4d_t *p4dp; |
| 491 | pud_t *pudp; |
| 492 | pmd_t *pmdp; |
| 493 | pte_t *ptep; |
| 494 | unsigned long tmp; |
| 495 | |
| 496 | physaddr &= PAGE_MASK; |
| 497 | pgdp = pgd_offset_k(virt_addr); |
| 498 | p4dp = p4d_offset(pgdp, virt_addr); |
| 499 | pudp = pud_offset(p4dp, virt_addr); |
| 500 | pmdp = pmd_offset(pudp, virt_addr); |
| 501 | ptep = pte_offset_kernel(pmdp, virt_addr); |
| 502 | tmp = (physaddr >> 4) | SRMMU_ET_PTE; |
| 503 | |
| 504 | /* I need to test whether this is consistent over all |
| 505 | * sun4m's. The bus_type represents the upper 4 bits of |
| 506 | * 36-bit physical address on the I/O space lines... |
| 507 | */ |
| 508 | tmp |= (bus_type << 28); |
| 509 | tmp |= SRMMU_PRIV; |
| 510 | __flush_page_to_ram(virt_addr); |
| 511 | set_pte(ptep, __pte(tmp)); |
| 512 | } |
| 513 | |
| 514 | void srmmu_mapiorange(unsigned int bus, unsigned long xpa, |
| 515 | unsigned long xva, unsigned int len) |
| 516 | { |
| 517 | while (len != 0) { |
| 518 | len -= PAGE_SIZE; |
| 519 | srmmu_mapioaddr(xpa, xva, bus); |
| 520 | xva += PAGE_SIZE; |
| 521 | xpa += PAGE_SIZE; |
| 522 | } |
| 523 | flush_tlb_all(); |
| 524 | } |
| 525 | |
| 526 | static inline void srmmu_unmapioaddr(unsigned long virt_addr) |
| 527 | { |
| 528 | pgd_t *pgdp; |
| 529 | p4d_t *p4dp; |
| 530 | pud_t *pudp; |
| 531 | pmd_t *pmdp; |
| 532 | pte_t *ptep; |
| 533 | |
| 534 | |
| 535 | pgdp = pgd_offset_k(virt_addr); |
| 536 | p4dp = p4d_offset(pgdp, virt_addr); |
| 537 | pudp = pud_offset(p4dp, virt_addr); |
| 538 | pmdp = pmd_offset(pudp, virt_addr); |
| 539 | ptep = pte_offset_kernel(pmdp, virt_addr); |
| 540 | |
| 541 | /* No need to flush uncacheable page. */ |
| 542 | __pte_clear(ptep); |
| 543 | } |
| 544 | |
| 545 | void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len) |
| 546 | { |
| 547 | while (len != 0) { |
| 548 | len -= PAGE_SIZE; |
| 549 | srmmu_unmapioaddr(virt_addr); |
| 550 | virt_addr += PAGE_SIZE; |
| 551 | } |
| 552 | flush_tlb_all(); |
| 553 | } |
| 554 | |
| 555 | /* tsunami.S */ |
| 556 | extern void tsunami_flush_cache_all(void); |
| 557 | extern void tsunami_flush_cache_mm(struct mm_struct *mm); |
| 558 | extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); |
| 559 | extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page); |
| 560 | extern void tsunami_flush_page_to_ram(unsigned long page); |
| 561 | extern void tsunami_flush_page_for_dma(unsigned long page); |
| 562 | extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); |
| 563 | extern void tsunami_flush_tlb_all(void); |
| 564 | extern void tsunami_flush_tlb_mm(struct mm_struct *mm); |
| 565 | extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); |
| 566 | extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); |
| 567 | extern void tsunami_setup_blockops(void); |
| 568 | |
| 569 | /* swift.S */ |
| 570 | extern void swift_flush_cache_all(void); |
| 571 | extern void swift_flush_cache_mm(struct mm_struct *mm); |
| 572 | extern void swift_flush_cache_range(struct vm_area_struct *vma, |
| 573 | unsigned long start, unsigned long end); |
| 574 | extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page); |
| 575 | extern void swift_flush_page_to_ram(unsigned long page); |
| 576 | extern void swift_flush_page_for_dma(unsigned long page); |
| 577 | extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); |
| 578 | extern void swift_flush_tlb_all(void); |
| 579 | extern void swift_flush_tlb_mm(struct mm_struct *mm); |
| 580 | extern void swift_flush_tlb_range(struct vm_area_struct *vma, |
| 581 | unsigned long start, unsigned long end); |
| 582 | extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); |
| 583 | |
| 584 | #if 0 /* P3: deadwood to debug precise flushes on Swift. */ |
| 585 | void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) |
| 586 | { |
| 587 | int cctx, ctx1; |
| 588 | |
| 589 | page &= PAGE_MASK; |
| 590 | if ((ctx1 = vma->vm_mm->context) != -1) { |
| 591 | cctx = srmmu_get_context(); |
| 592 | /* Is context # ever different from current context? P3 */ |
| 593 | if (cctx != ctx1) { |
| 594 | printk("flush ctx %02x curr %02x\n", ctx1, cctx); |
| 595 | srmmu_set_context(ctx1); |
| 596 | swift_flush_page(page); |
| 597 | __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : |
| 598 | "r" (page), "i" (ASI_M_FLUSH_PROBE)); |
| 599 | srmmu_set_context(cctx); |
| 600 | } else { |
| 601 | /* Rm. prot. bits from virt. c. */ |
| 602 | /* swift_flush_cache_all(); */ |
| 603 | /* swift_flush_cache_page(vma, page); */ |
| 604 | swift_flush_page(page); |
| 605 | |
| 606 | __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : |
| 607 | "r" (page), "i" (ASI_M_FLUSH_PROBE)); |
| 608 | /* same as above: srmmu_flush_tlb_page() */ |
| 609 | } |
| 610 | } |
| 611 | } |
| 612 | #endif |
| 613 | |
| 614 | /* |
| 615 | * The following are all MBUS based SRMMU modules, and therefore could |
| 616 | * be found in a multiprocessor configuration. On the whole, these |
| 617 | * chips seems to be much more touchy about DVMA and page tables |
| 618 | * with respect to cache coherency. |
| 619 | */ |
| 620 | |
| 621 | /* viking.S */ |
| 622 | extern void viking_flush_cache_all(void); |
| 623 | extern void viking_flush_cache_mm(struct mm_struct *mm); |
| 624 | extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start, |
| 625 | unsigned long end); |
| 626 | extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page); |
| 627 | extern void viking_flush_page_to_ram(unsigned long page); |
| 628 | extern void viking_flush_page_for_dma(unsigned long page); |
| 629 | extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr); |
| 630 | extern void viking_flush_page(unsigned long page); |
| 631 | extern void viking_mxcc_flush_page(unsigned long page); |
| 632 | extern void viking_flush_tlb_all(void); |
| 633 | extern void viking_flush_tlb_mm(struct mm_struct *mm); |
| 634 | extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, |
| 635 | unsigned long end); |
| 636 | extern void viking_flush_tlb_page(struct vm_area_struct *vma, |
| 637 | unsigned long page); |
| 638 | extern void sun4dsmp_flush_tlb_all(void); |
| 639 | extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm); |
| 640 | extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, |
| 641 | unsigned long end); |
| 642 | extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma, |
| 643 | unsigned long page); |
| 644 | |
| 645 | /* hypersparc.S */ |
| 646 | extern void hypersparc_flush_cache_all(void); |
| 647 | extern void hypersparc_flush_cache_mm(struct mm_struct *mm); |
| 648 | extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); |
| 649 | extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page); |
| 650 | extern void hypersparc_flush_page_to_ram(unsigned long page); |
| 651 | extern void hypersparc_flush_page_for_dma(unsigned long page); |
| 652 | extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr); |
| 653 | extern void hypersparc_flush_tlb_all(void); |
| 654 | extern void hypersparc_flush_tlb_mm(struct mm_struct *mm); |
| 655 | extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); |
| 656 | extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page); |
| 657 | extern void hypersparc_setup_blockops(void); |
| 658 | |
| 659 | /* |
| 660 | * NOTE: All of this startup code assumes the low 16mb (approx.) of |
| 661 | * kernel mappings are done with one single contiguous chunk of |
| 662 | * ram. On small ram machines (classics mainly) we only get |
| 663 | * around 8mb mapped for us. |
| 664 | */ |
| 665 | |
| 666 | static void __init early_pgtable_allocfail(char *type) |
| 667 | { |
| 668 | prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type); |
| 669 | prom_halt(); |
| 670 | } |
| 671 | |
| 672 | static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start, |
| 673 | unsigned long end) |
| 674 | { |
| 675 | pgd_t *pgdp; |
| 676 | p4d_t *p4dp; |
| 677 | pud_t *pudp; |
| 678 | pmd_t *pmdp; |
| 679 | pte_t *ptep; |
| 680 | |
| 681 | while (start < end) { |
| 682 | pgdp = pgd_offset_k(start); |
| 683 | p4dp = p4d_offset(pgdp, start); |
| 684 | pudp = pud_offset(p4dp, start); |
| 685 | if (pud_none(*__nocache_fix(pudp))) { |
| 686 | pmdp = __srmmu_get_nocache( |
| 687 | SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); |
| 688 | if (pmdp == NULL) |
| 689 | early_pgtable_allocfail("pmd"); |
| 690 | memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE); |
| 691 | pud_set(__nocache_fix(pudp), pmdp); |
| 692 | } |
| 693 | pmdp = pmd_offset(__nocache_fix(pudp), start); |
| 694 | if (srmmu_pmd_none(*__nocache_fix(pmdp))) { |
| 695 | ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE); |
| 696 | if (ptep == NULL) |
| 697 | early_pgtable_allocfail("pte"); |
| 698 | memset(__nocache_fix(ptep), 0, PTE_SIZE); |
| 699 | pmd_set(__nocache_fix(pmdp), ptep); |
| 700 | } |
| 701 | if (start > (0xffffffffUL - PMD_SIZE)) |
| 702 | break; |
| 703 | start = (start + PMD_SIZE) & PMD_MASK; |
| 704 | } |
| 705 | } |
| 706 | |
| 707 | static void __init srmmu_allocate_ptable_skeleton(unsigned long start, |
| 708 | unsigned long end) |
| 709 | { |
| 710 | pgd_t *pgdp; |
| 711 | p4d_t *p4dp; |
| 712 | pud_t *pudp; |
| 713 | pmd_t *pmdp; |
| 714 | pte_t *ptep; |
| 715 | |
| 716 | while (start < end) { |
| 717 | pgdp = pgd_offset_k(start); |
| 718 | p4dp = p4d_offset(pgdp, start); |
| 719 | pudp = pud_offset(p4dp, start); |
| 720 | if (pud_none(*pudp)) { |
| 721 | pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE); |
| 722 | if (pmdp == NULL) |
| 723 | early_pgtable_allocfail("pmd"); |
| 724 | memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE); |
| 725 | pud_set((pud_t *)pgdp, pmdp); |
| 726 | } |
| 727 | pmdp = pmd_offset(pudp, start); |
| 728 | if (srmmu_pmd_none(*pmdp)) { |
| 729 | ptep = __srmmu_get_nocache(PTE_SIZE, |
| 730 | PTE_SIZE); |
| 731 | if (ptep == NULL) |
| 732 | early_pgtable_allocfail("pte"); |
| 733 | memset(ptep, 0, PTE_SIZE); |
| 734 | pmd_set(pmdp, ptep); |
| 735 | } |
| 736 | if (start > (0xffffffffUL - PMD_SIZE)) |
| 737 | break; |
| 738 | start = (start + PMD_SIZE) & PMD_MASK; |
| 739 | } |
| 740 | } |
| 741 | |
| 742 | /* These flush types are not available on all chips... */ |
| 743 | static inline unsigned long srmmu_probe(unsigned long vaddr) |
| 744 | { |
| 745 | unsigned long retval; |
| 746 | |
| 747 | if (sparc_cpu_model != sparc_leon) { |
| 748 | |
| 749 | vaddr &= PAGE_MASK; |
| 750 | __asm__ __volatile__("lda [%1] %2, %0\n\t" : |
| 751 | "=r" (retval) : |
| 752 | "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE)); |
| 753 | } else { |
| 754 | retval = leon_swprobe(vaddr, NULL); |
| 755 | } |
| 756 | return retval; |
| 757 | } |
| 758 | |
| 759 | /* |
| 760 | * This is much cleaner than poking around physical address space |
| 761 | * looking at the prom's page table directly which is what most |
| 762 | * other OS's do. Yuck... this is much better. |
| 763 | */ |
| 764 | static void __init srmmu_inherit_prom_mappings(unsigned long start, |
| 765 | unsigned long end) |
| 766 | { |
| 767 | unsigned long probed; |
| 768 | unsigned long addr; |
| 769 | pgd_t *pgdp; |
| 770 | p4d_t *p4dp; |
| 771 | pud_t *pudp; |
| 772 | pmd_t *pmdp; |
| 773 | pte_t *ptep; |
| 774 | int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */ |
| 775 | |
| 776 | while (start <= end) { |
| 777 | if (start == 0) |
| 778 | break; /* probably wrap around */ |
| 779 | if (start == 0xfef00000) |
| 780 | start = KADB_DEBUGGER_BEGVM; |
| 781 | probed = srmmu_probe(start); |
| 782 | if (!probed) { |
| 783 | /* continue probing until we find an entry */ |
| 784 | start += PAGE_SIZE; |
| 785 | continue; |
| 786 | } |
| 787 | |
| 788 | /* A red snapper, see what it really is. */ |
| 789 | what = 0; |
| 790 | addr = start - PAGE_SIZE; |
| 791 | |
| 792 | if (!(start & ~(PMD_MASK))) { |
| 793 | if (srmmu_probe(addr + PMD_SIZE) == probed) |
| 794 | what = 1; |
| 795 | } |
| 796 | |
| 797 | if (!(start & ~(PGDIR_MASK))) { |
| 798 | if (srmmu_probe(addr + PGDIR_SIZE) == probed) |
| 799 | what = 2; |
| 800 | } |
| 801 | |
| 802 | pgdp = pgd_offset_k(start); |
| 803 | p4dp = p4d_offset(pgdp, start); |
| 804 | pudp = pud_offset(p4dp, start); |
| 805 | if (what == 2) { |
| 806 | *__nocache_fix(pgdp) = __pgd(probed); |
| 807 | start += PGDIR_SIZE; |
| 808 | continue; |
| 809 | } |
| 810 | if (pud_none(*__nocache_fix(pudp))) { |
| 811 | pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, |
| 812 | SRMMU_PMD_TABLE_SIZE); |
| 813 | if (pmdp == NULL) |
| 814 | early_pgtable_allocfail("pmd"); |
| 815 | memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE); |
| 816 | pud_set(__nocache_fix(pudp), pmdp); |
| 817 | } |
| 818 | pmdp = pmd_offset(__nocache_fix(pudp), start); |
| 819 | if (what == 1) { |
| 820 | *(pmd_t *)__nocache_fix(pmdp) = __pmd(probed); |
| 821 | start += PMD_SIZE; |
| 822 | continue; |
| 823 | } |
| 824 | if (srmmu_pmd_none(*__nocache_fix(pmdp))) { |
| 825 | ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE); |
| 826 | if (ptep == NULL) |
| 827 | early_pgtable_allocfail("pte"); |
| 828 | memset(__nocache_fix(ptep), 0, PTE_SIZE); |
| 829 | pmd_set(__nocache_fix(pmdp), ptep); |
| 830 | } |
| 831 | ptep = pte_offset_kernel(__nocache_fix(pmdp), start); |
| 832 | *__nocache_fix(ptep) = __pte(probed); |
| 833 | start += PAGE_SIZE; |
| 834 | } |
| 835 | } |
| 836 | |
| 837 | #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID) |
| 838 | |
| 839 | /* Create a third-level SRMMU 16MB page mapping. */ |
| 840 | static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base) |
| 841 | { |
| 842 | pgd_t *pgdp = pgd_offset_k(vaddr); |
| 843 | unsigned long big_pte; |
| 844 | |
| 845 | big_pte = KERNEL_PTE(phys_base >> 4); |
| 846 | *__nocache_fix(pgdp) = __pgd(big_pte); |
| 847 | } |
| 848 | |
| 849 | /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */ |
| 850 | static unsigned long __init map_spbank(unsigned long vbase, int sp_entry) |
| 851 | { |
| 852 | unsigned long pstart = (sp_banks[sp_entry].base_addr & PGDIR_MASK); |
| 853 | unsigned long vstart = (vbase & PGDIR_MASK); |
| 854 | unsigned long vend = PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes); |
| 855 | /* Map "low" memory only */ |
| 856 | const unsigned long min_vaddr = PAGE_OFFSET; |
| 857 | const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM; |
| 858 | |
| 859 | if (vstart < min_vaddr || vstart >= max_vaddr) |
| 860 | return vstart; |
| 861 | |
| 862 | if (vend > max_vaddr || vend < min_vaddr) |
| 863 | vend = max_vaddr; |
| 864 | |
| 865 | while (vstart < vend) { |
| 866 | do_large_mapping(vstart, pstart); |
| 867 | vstart += PGDIR_SIZE; pstart += PGDIR_SIZE; |
| 868 | } |
| 869 | return vstart; |
| 870 | } |
| 871 | |
| 872 | static void __init map_kernel(void) |
| 873 | { |
| 874 | int i; |
| 875 | |
| 876 | if (phys_base > 0) { |
| 877 | do_large_mapping(PAGE_OFFSET, phys_base); |
| 878 | } |
| 879 | |
| 880 | for (i = 0; sp_banks[i].num_bytes != 0; i++) { |
| 881 | map_spbank((unsigned long)__va(sp_banks[i].base_addr), i); |
| 882 | } |
| 883 | } |
| 884 | |
| 885 | void (*poke_srmmu)(void) = NULL; |
| 886 | |
| 887 | void __init srmmu_paging_init(void) |
| 888 | { |
| 889 | int i; |
| 890 | phandle cpunode; |
| 891 | char node_str[128]; |
| 892 | pgd_t *pgd; |
| 893 | p4d_t *p4d; |
| 894 | pud_t *pud; |
| 895 | pmd_t *pmd; |
| 896 | pte_t *pte; |
| 897 | unsigned long pages_avail; |
| 898 | |
| 899 | init_mm.context = (unsigned long) NO_CONTEXT; |
| 900 | sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */ |
| 901 | |
| 902 | if (sparc_cpu_model == sun4d) |
| 903 | num_contexts = 65536; /* We know it is Viking */ |
| 904 | else { |
| 905 | /* Find the number of contexts on the srmmu. */ |
| 906 | cpunode = prom_getchild(prom_root_node); |
| 907 | num_contexts = 0; |
| 908 | while (cpunode != 0) { |
| 909 | prom_getstring(cpunode, "device_type", node_str, sizeof(node_str)); |
| 910 | if (!strcmp(node_str, "cpu")) { |
| 911 | num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8); |
| 912 | break; |
| 913 | } |
| 914 | cpunode = prom_getsibling(cpunode); |
| 915 | } |
| 916 | } |
| 917 | |
| 918 | if (!num_contexts) { |
| 919 | prom_printf("Something wrong, can't find cpu node in paging_init.\n"); |
| 920 | prom_halt(); |
| 921 | } |
| 922 | |
| 923 | pages_avail = 0; |
| 924 | last_valid_pfn = bootmem_init(&pages_avail); |
| 925 | |
| 926 | srmmu_nocache_calcsize(); |
| 927 | srmmu_nocache_init(); |
| 928 | srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE)); |
| 929 | map_kernel(); |
| 930 | |
| 931 | /* ctx table has to be physically aligned to its size */ |
| 932 | srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t)); |
| 933 | srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table); |
| 934 | |
| 935 | for (i = 0; i < num_contexts; i++) |
| 936 | srmmu_ctxd_set(__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir); |
| 937 | |
| 938 | flush_cache_all(); |
| 939 | srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys); |
| 940 | #ifdef CONFIG_SMP |
| 941 | /* Stop from hanging here... */ |
| 942 | local_ops->tlb_all(); |
| 943 | #else |
| 944 | flush_tlb_all(); |
| 945 | #endif |
| 946 | poke_srmmu(); |
| 947 | |
| 948 | srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END); |
| 949 | srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END); |
| 950 | |
| 951 | srmmu_allocate_ptable_skeleton( |
| 952 | __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP); |
| 953 | srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END); |
| 954 | |
| 955 | pgd = pgd_offset_k(PKMAP_BASE); |
| 956 | p4d = p4d_offset(pgd, PKMAP_BASE); |
| 957 | pud = pud_offset(p4d, PKMAP_BASE); |
| 958 | pmd = pmd_offset(pud, PKMAP_BASE); |
| 959 | pte = pte_offset_kernel(pmd, PKMAP_BASE); |
| 960 | pkmap_page_table = pte; |
| 961 | |
| 962 | flush_cache_all(); |
| 963 | flush_tlb_all(); |
| 964 | |
| 965 | sparc_context_init(num_contexts); |
| 966 | |
| 967 | { |
| 968 | unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0 }; |
| 969 | |
| 970 | max_zone_pfn[ZONE_DMA] = max_low_pfn; |
| 971 | max_zone_pfn[ZONE_NORMAL] = max_low_pfn; |
| 972 | max_zone_pfn[ZONE_HIGHMEM] = highend_pfn; |
| 973 | |
| 974 | free_area_init(max_zone_pfn); |
| 975 | } |
| 976 | } |
| 977 | |
| 978 | void mmu_info(struct seq_file *m) |
| 979 | { |
| 980 | seq_printf(m, |
| 981 | "MMU type\t: %s\n" |
| 982 | "contexts\t: %d\n" |
| 983 | "nocache total\t: %ld\n" |
| 984 | "nocache used\t: %d\n", |
| 985 | srmmu_name, |
| 986 | num_contexts, |
| 987 | srmmu_nocache_size, |
| 988 | srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT); |
| 989 | } |
| 990 | |
| 991 | int init_new_context(struct task_struct *tsk, struct mm_struct *mm) |
| 992 | { |
| 993 | mm->context = NO_CONTEXT; |
| 994 | return 0; |
| 995 | } |
| 996 | |
| 997 | void destroy_context(struct mm_struct *mm) |
| 998 | { |
| 999 | unsigned long flags; |
| 1000 | |
| 1001 | if (mm->context != NO_CONTEXT) { |
| 1002 | flush_cache_mm(mm); |
| 1003 | srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir); |
| 1004 | flush_tlb_mm(mm); |
| 1005 | spin_lock_irqsave(&srmmu_context_spinlock, flags); |
| 1006 | free_context(mm->context); |
| 1007 | spin_unlock_irqrestore(&srmmu_context_spinlock, flags); |
| 1008 | mm->context = NO_CONTEXT; |
| 1009 | } |
| 1010 | } |
| 1011 | |
| 1012 | /* Init various srmmu chip types. */ |
| 1013 | static void __init srmmu_is_bad(void) |
| 1014 | { |
| 1015 | prom_printf("Could not determine SRMMU chip type.\n"); |
| 1016 | prom_halt(); |
| 1017 | } |
| 1018 | |
| 1019 | static void __init init_vac_layout(void) |
| 1020 | { |
| 1021 | phandle nd; |
| 1022 | int cache_lines; |
| 1023 | char node_str[128]; |
| 1024 | #ifdef CONFIG_SMP |
| 1025 | int cpu = 0; |
| 1026 | unsigned long max_size = 0; |
| 1027 | unsigned long min_line_size = 0x10000000; |
| 1028 | #endif |
| 1029 | |
| 1030 | nd = prom_getchild(prom_root_node); |
| 1031 | while ((nd = prom_getsibling(nd)) != 0) { |
| 1032 | prom_getstring(nd, "device_type", node_str, sizeof(node_str)); |
| 1033 | if (!strcmp(node_str, "cpu")) { |
| 1034 | vac_line_size = prom_getint(nd, "cache-line-size"); |
| 1035 | if (vac_line_size == -1) { |
| 1036 | prom_printf("can't determine cache-line-size, halting.\n"); |
| 1037 | prom_halt(); |
| 1038 | } |
| 1039 | cache_lines = prom_getint(nd, "cache-nlines"); |
| 1040 | if (cache_lines == -1) { |
| 1041 | prom_printf("can't determine cache-nlines, halting.\n"); |
| 1042 | prom_halt(); |
| 1043 | } |
| 1044 | |
| 1045 | vac_cache_size = cache_lines * vac_line_size; |
| 1046 | #ifdef CONFIG_SMP |
| 1047 | if (vac_cache_size > max_size) |
| 1048 | max_size = vac_cache_size; |
| 1049 | if (vac_line_size < min_line_size) |
| 1050 | min_line_size = vac_line_size; |
| 1051 | //FIXME: cpus not contiguous!! |
| 1052 | cpu++; |
| 1053 | if (cpu >= nr_cpu_ids || !cpu_online(cpu)) |
| 1054 | break; |
| 1055 | #else |
| 1056 | break; |
| 1057 | #endif |
| 1058 | } |
| 1059 | } |
| 1060 | if (nd == 0) { |
| 1061 | prom_printf("No CPU nodes found, halting.\n"); |
| 1062 | prom_halt(); |
| 1063 | } |
| 1064 | #ifdef CONFIG_SMP |
| 1065 | vac_cache_size = max_size; |
| 1066 | vac_line_size = min_line_size; |
| 1067 | #endif |
| 1068 | printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n", |
| 1069 | (int)vac_cache_size, (int)vac_line_size); |
| 1070 | } |
| 1071 | |
| 1072 | static void poke_hypersparc(void) |
| 1073 | { |
| 1074 | volatile unsigned long clear; |
| 1075 | unsigned long mreg = srmmu_get_mmureg(); |
| 1076 | |
| 1077 | hyper_flush_unconditional_combined(); |
| 1078 | |
| 1079 | mreg &= ~(HYPERSPARC_CWENABLE); |
| 1080 | mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE); |
| 1081 | mreg |= (HYPERSPARC_CMODE); |
| 1082 | |
| 1083 | srmmu_set_mmureg(mreg); |
| 1084 | |
| 1085 | #if 0 /* XXX I think this is bad news... -DaveM */ |
| 1086 | hyper_clear_all_tags(); |
| 1087 | #endif |
| 1088 | |
| 1089 | put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE); |
| 1090 | hyper_flush_whole_icache(); |
| 1091 | clear = srmmu_get_faddr(); |
| 1092 | clear = srmmu_get_fstatus(); |
| 1093 | } |
| 1094 | |
| 1095 | static const struct sparc32_cachetlb_ops hypersparc_ops = { |
| 1096 | .cache_all = hypersparc_flush_cache_all, |
| 1097 | .cache_mm = hypersparc_flush_cache_mm, |
| 1098 | .cache_page = hypersparc_flush_cache_page, |
| 1099 | .cache_range = hypersparc_flush_cache_range, |
| 1100 | .tlb_all = hypersparc_flush_tlb_all, |
| 1101 | .tlb_mm = hypersparc_flush_tlb_mm, |
| 1102 | .tlb_page = hypersparc_flush_tlb_page, |
| 1103 | .tlb_range = hypersparc_flush_tlb_range, |
| 1104 | .page_to_ram = hypersparc_flush_page_to_ram, |
| 1105 | .sig_insns = hypersparc_flush_sig_insns, |
| 1106 | .page_for_dma = hypersparc_flush_page_for_dma, |
| 1107 | }; |
| 1108 | |
| 1109 | static void __init init_hypersparc(void) |
| 1110 | { |
| 1111 | srmmu_name = "ROSS HyperSparc"; |
| 1112 | srmmu_modtype = HyperSparc; |
| 1113 | |
| 1114 | init_vac_layout(); |
| 1115 | |
| 1116 | is_hypersparc = 1; |
| 1117 | sparc32_cachetlb_ops = &hypersparc_ops; |
| 1118 | |
| 1119 | poke_srmmu = poke_hypersparc; |
| 1120 | |
| 1121 | hypersparc_setup_blockops(); |
| 1122 | } |
| 1123 | |
| 1124 | static void poke_swift(void) |
| 1125 | { |
| 1126 | unsigned long mreg; |
| 1127 | |
| 1128 | /* Clear any crap from the cache or else... */ |
| 1129 | swift_flush_cache_all(); |
| 1130 | |
| 1131 | /* Enable I & D caches */ |
| 1132 | mreg = srmmu_get_mmureg(); |
| 1133 | mreg |= (SWIFT_IE | SWIFT_DE); |
| 1134 | /* |
| 1135 | * The Swift branch folding logic is completely broken. At |
| 1136 | * trap time, if things are just right, if can mistakenly |
| 1137 | * think that a trap is coming from kernel mode when in fact |
| 1138 | * it is coming from user mode (it mis-executes the branch in |
| 1139 | * the trap code). So you see things like crashme completely |
| 1140 | * hosing your machine which is completely unacceptable. Turn |
| 1141 | * this shit off... nice job Fujitsu. |
| 1142 | */ |
| 1143 | mreg &= ~(SWIFT_BF); |
| 1144 | srmmu_set_mmureg(mreg); |
| 1145 | } |
| 1146 | |
| 1147 | static const struct sparc32_cachetlb_ops swift_ops = { |
| 1148 | .cache_all = swift_flush_cache_all, |
| 1149 | .cache_mm = swift_flush_cache_mm, |
| 1150 | .cache_page = swift_flush_cache_page, |
| 1151 | .cache_range = swift_flush_cache_range, |
| 1152 | .tlb_all = swift_flush_tlb_all, |
| 1153 | .tlb_mm = swift_flush_tlb_mm, |
| 1154 | .tlb_page = swift_flush_tlb_page, |
| 1155 | .tlb_range = swift_flush_tlb_range, |
| 1156 | .page_to_ram = swift_flush_page_to_ram, |
| 1157 | .sig_insns = swift_flush_sig_insns, |
| 1158 | .page_for_dma = swift_flush_page_for_dma, |
| 1159 | }; |
| 1160 | |
| 1161 | #define SWIFT_MASKID_ADDR 0x10003018 |
| 1162 | static void __init init_swift(void) |
| 1163 | { |
| 1164 | unsigned long swift_rev; |
| 1165 | |
| 1166 | __asm__ __volatile__("lda [%1] %2, %0\n\t" |
| 1167 | "srl %0, 0x18, %0\n\t" : |
| 1168 | "=r" (swift_rev) : |
| 1169 | "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS)); |
| 1170 | srmmu_name = "Fujitsu Swift"; |
| 1171 | switch (swift_rev) { |
| 1172 | case 0x11: |
| 1173 | case 0x20: |
| 1174 | case 0x23: |
| 1175 | case 0x30: |
| 1176 | srmmu_modtype = Swift_lots_o_bugs; |
| 1177 | hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN); |
| 1178 | /* |
| 1179 | * Gee george, I wonder why Sun is so hush hush about |
| 1180 | * this hardware bug... really braindamage stuff going |
| 1181 | * on here. However I think we can find a way to avoid |
| 1182 | * all of the workaround overhead under Linux. Basically, |
| 1183 | * any page fault can cause kernel pages to become user |
| 1184 | * accessible (the mmu gets confused and clears some of |
| 1185 | * the ACC bits in kernel ptes). Aha, sounds pretty |
| 1186 | * horrible eh? But wait, after extensive testing it appears |
| 1187 | * that if you use pgd_t level large kernel pte's (like the |
| 1188 | * 4MB pages on the Pentium) the bug does not get tripped |
| 1189 | * at all. This avoids almost all of the major overhead. |
| 1190 | * Welcome to a world where your vendor tells you to, |
| 1191 | * "apply this kernel patch" instead of "sorry for the |
| 1192 | * broken hardware, send it back and we'll give you |
| 1193 | * properly functioning parts" |
| 1194 | */ |
| 1195 | break; |
| 1196 | case 0x25: |
| 1197 | case 0x31: |
| 1198 | srmmu_modtype = Swift_bad_c; |
| 1199 | hwbug_bitmask |= HWBUG_KERN_CBITBROKEN; |
| 1200 | /* |
| 1201 | * You see Sun allude to this hardware bug but never |
| 1202 | * admit things directly, they'll say things like, |
| 1203 | * "the Swift chip cache problems" or similar. |
| 1204 | */ |
| 1205 | break; |
| 1206 | default: |
| 1207 | srmmu_modtype = Swift_ok; |
| 1208 | break; |
| 1209 | } |
| 1210 | |
| 1211 | sparc32_cachetlb_ops = &swift_ops; |
| 1212 | flush_page_for_dma_global = 0; |
| 1213 | |
| 1214 | /* |
| 1215 | * Are you now convinced that the Swift is one of the |
| 1216 | * biggest VLSI abortions of all time? Bravo Fujitsu! |
| 1217 | * Fujitsu, the !#?!%$'d up processor people. I bet if |
| 1218 | * you examined the microcode of the Swift you'd find |
| 1219 | * XXX's all over the place. |
| 1220 | */ |
| 1221 | poke_srmmu = poke_swift; |
| 1222 | } |
| 1223 | |
| 1224 | static void turbosparc_flush_cache_all(void) |
| 1225 | { |
| 1226 | flush_user_windows(); |
| 1227 | turbosparc_idflash_clear(); |
| 1228 | } |
| 1229 | |
| 1230 | static void turbosparc_flush_cache_mm(struct mm_struct *mm) |
| 1231 | { |
| 1232 | FLUSH_BEGIN(mm) |
| 1233 | flush_user_windows(); |
| 1234 | turbosparc_idflash_clear(); |
| 1235 | FLUSH_END |
| 1236 | } |
| 1237 | |
| 1238 | static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) |
| 1239 | { |
| 1240 | FLUSH_BEGIN(vma->vm_mm) |
| 1241 | flush_user_windows(); |
| 1242 | turbosparc_idflash_clear(); |
| 1243 | FLUSH_END |
| 1244 | } |
| 1245 | |
| 1246 | static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page) |
| 1247 | { |
| 1248 | FLUSH_BEGIN(vma->vm_mm) |
| 1249 | flush_user_windows(); |
| 1250 | if (vma->vm_flags & VM_EXEC) |
| 1251 | turbosparc_flush_icache(); |
| 1252 | turbosparc_flush_dcache(); |
| 1253 | FLUSH_END |
| 1254 | } |
| 1255 | |
| 1256 | /* TurboSparc is copy-back, if we turn it on, but this does not work. */ |
| 1257 | static void turbosparc_flush_page_to_ram(unsigned long page) |
| 1258 | { |
| 1259 | #ifdef TURBOSPARC_WRITEBACK |
| 1260 | volatile unsigned long clear; |
| 1261 | |
| 1262 | if (srmmu_probe(page)) |
| 1263 | turbosparc_flush_page_cache(page); |
| 1264 | clear = srmmu_get_fstatus(); |
| 1265 | #endif |
| 1266 | } |
| 1267 | |
| 1268 | static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) |
| 1269 | { |
| 1270 | } |
| 1271 | |
| 1272 | static void turbosparc_flush_page_for_dma(unsigned long page) |
| 1273 | { |
| 1274 | turbosparc_flush_dcache(); |
| 1275 | } |
| 1276 | |
| 1277 | static void turbosparc_flush_tlb_all(void) |
| 1278 | { |
| 1279 | srmmu_flush_whole_tlb(); |
| 1280 | } |
| 1281 | |
| 1282 | static void turbosparc_flush_tlb_mm(struct mm_struct *mm) |
| 1283 | { |
| 1284 | FLUSH_BEGIN(mm) |
| 1285 | srmmu_flush_whole_tlb(); |
| 1286 | FLUSH_END |
| 1287 | } |
| 1288 | |
| 1289 | static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) |
| 1290 | { |
| 1291 | FLUSH_BEGIN(vma->vm_mm) |
| 1292 | srmmu_flush_whole_tlb(); |
| 1293 | FLUSH_END |
| 1294 | } |
| 1295 | |
| 1296 | static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) |
| 1297 | { |
| 1298 | FLUSH_BEGIN(vma->vm_mm) |
| 1299 | srmmu_flush_whole_tlb(); |
| 1300 | FLUSH_END |
| 1301 | } |
| 1302 | |
| 1303 | |
| 1304 | static void poke_turbosparc(void) |
| 1305 | { |
| 1306 | unsigned long mreg = srmmu_get_mmureg(); |
| 1307 | unsigned long ccreg; |
| 1308 | |
| 1309 | /* Clear any crap from the cache or else... */ |
| 1310 | turbosparc_flush_cache_all(); |
| 1311 | /* Temporarily disable I & D caches */ |
| 1312 | mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); |
| 1313 | mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */ |
| 1314 | srmmu_set_mmureg(mreg); |
| 1315 | |
| 1316 | ccreg = turbosparc_get_ccreg(); |
| 1317 | |
| 1318 | #ifdef TURBOSPARC_WRITEBACK |
| 1319 | ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */ |
| 1320 | ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE); |
| 1321 | /* Write-back D-cache, emulate VLSI |
| 1322 | * abortion number three, not number one */ |
| 1323 | #else |
| 1324 | /* For now let's play safe, optimize later */ |
| 1325 | ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE); |
| 1326 | /* Do DVMA snooping in Dcache, Write-thru D-cache */ |
| 1327 | ccreg &= ~(TURBOSPARC_uS2); |
| 1328 | /* Emulate VLSI abortion number three, not number one */ |
| 1329 | #endif |
| 1330 | |
| 1331 | switch (ccreg & 7) { |
| 1332 | case 0: /* No SE cache */ |
| 1333 | case 7: /* Test mode */ |
| 1334 | break; |
| 1335 | default: |
| 1336 | ccreg |= (TURBOSPARC_SCENABLE); |
| 1337 | } |
| 1338 | turbosparc_set_ccreg(ccreg); |
| 1339 | |
| 1340 | mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */ |
| 1341 | mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */ |
| 1342 | srmmu_set_mmureg(mreg); |
| 1343 | } |
| 1344 | |
| 1345 | static const struct sparc32_cachetlb_ops turbosparc_ops = { |
| 1346 | .cache_all = turbosparc_flush_cache_all, |
| 1347 | .cache_mm = turbosparc_flush_cache_mm, |
| 1348 | .cache_page = turbosparc_flush_cache_page, |
| 1349 | .cache_range = turbosparc_flush_cache_range, |
| 1350 | .tlb_all = turbosparc_flush_tlb_all, |
| 1351 | .tlb_mm = turbosparc_flush_tlb_mm, |
| 1352 | .tlb_page = turbosparc_flush_tlb_page, |
| 1353 | .tlb_range = turbosparc_flush_tlb_range, |
| 1354 | .page_to_ram = turbosparc_flush_page_to_ram, |
| 1355 | .sig_insns = turbosparc_flush_sig_insns, |
| 1356 | .page_for_dma = turbosparc_flush_page_for_dma, |
| 1357 | }; |
| 1358 | |
| 1359 | static void __init init_turbosparc(void) |
| 1360 | { |
| 1361 | srmmu_name = "Fujitsu TurboSparc"; |
| 1362 | srmmu_modtype = TurboSparc; |
| 1363 | sparc32_cachetlb_ops = &turbosparc_ops; |
| 1364 | poke_srmmu = poke_turbosparc; |
| 1365 | } |
| 1366 | |
| 1367 | static void poke_tsunami(void) |
| 1368 | { |
| 1369 | unsigned long mreg = srmmu_get_mmureg(); |
| 1370 | |
| 1371 | tsunami_flush_icache(); |
| 1372 | tsunami_flush_dcache(); |
| 1373 | mreg &= ~TSUNAMI_ITD; |
| 1374 | mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB); |
| 1375 | srmmu_set_mmureg(mreg); |
| 1376 | } |
| 1377 | |
| 1378 | static const struct sparc32_cachetlb_ops tsunami_ops = { |
| 1379 | .cache_all = tsunami_flush_cache_all, |
| 1380 | .cache_mm = tsunami_flush_cache_mm, |
| 1381 | .cache_page = tsunami_flush_cache_page, |
| 1382 | .cache_range = tsunami_flush_cache_range, |
| 1383 | .tlb_all = tsunami_flush_tlb_all, |
| 1384 | .tlb_mm = tsunami_flush_tlb_mm, |
| 1385 | .tlb_page = tsunami_flush_tlb_page, |
| 1386 | .tlb_range = tsunami_flush_tlb_range, |
| 1387 | .page_to_ram = tsunami_flush_page_to_ram, |
| 1388 | .sig_insns = tsunami_flush_sig_insns, |
| 1389 | .page_for_dma = tsunami_flush_page_for_dma, |
| 1390 | }; |
| 1391 | |
| 1392 | static void __init init_tsunami(void) |
| 1393 | { |
| 1394 | /* |
| 1395 | * Tsunami's pretty sane, Sun and TI actually got it |
| 1396 | * somewhat right this time. Fujitsu should have |
| 1397 | * taken some lessons from them. |
| 1398 | */ |
| 1399 | |
| 1400 | srmmu_name = "TI Tsunami"; |
| 1401 | srmmu_modtype = Tsunami; |
| 1402 | sparc32_cachetlb_ops = &tsunami_ops; |
| 1403 | poke_srmmu = poke_tsunami; |
| 1404 | |
| 1405 | tsunami_setup_blockops(); |
| 1406 | } |
| 1407 | |
| 1408 | static void poke_viking(void) |
| 1409 | { |
| 1410 | unsigned long mreg = srmmu_get_mmureg(); |
| 1411 | static int smp_catch; |
| 1412 | |
| 1413 | if (viking_mxcc_present) { |
| 1414 | unsigned long mxcc_control = mxcc_get_creg(); |
| 1415 | |
| 1416 | mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE); |
| 1417 | mxcc_control &= ~(MXCC_CTL_RRC); |
| 1418 | mxcc_set_creg(mxcc_control); |
| 1419 | |
| 1420 | /* |
| 1421 | * We don't need memory parity checks. |
| 1422 | * XXX This is a mess, have to dig out later. ecd. |
| 1423 | viking_mxcc_turn_off_parity(&mreg, &mxcc_control); |
| 1424 | */ |
| 1425 | |
| 1426 | /* We do cache ptables on MXCC. */ |
| 1427 | mreg |= VIKING_TCENABLE; |
| 1428 | } else { |
| 1429 | unsigned long bpreg; |
| 1430 | |
| 1431 | mreg &= ~(VIKING_TCENABLE); |
| 1432 | if (smp_catch++) { |
| 1433 | /* Must disable mixed-cmd mode here for other cpu's. */ |
| 1434 | bpreg = viking_get_bpreg(); |
| 1435 | bpreg &= ~(VIKING_ACTION_MIX); |
| 1436 | viking_set_bpreg(bpreg); |
| 1437 | |
| 1438 | /* Just in case PROM does something funny. */ |
| 1439 | msi_set_sync(); |
| 1440 | } |
| 1441 | } |
| 1442 | |
| 1443 | mreg |= VIKING_SPENABLE; |
| 1444 | mreg |= (VIKING_ICENABLE | VIKING_DCENABLE); |
| 1445 | mreg |= VIKING_SBENABLE; |
| 1446 | mreg &= ~(VIKING_ACENABLE); |
| 1447 | srmmu_set_mmureg(mreg); |
| 1448 | } |
| 1449 | |
| 1450 | static struct sparc32_cachetlb_ops viking_ops __ro_after_init = { |
| 1451 | .cache_all = viking_flush_cache_all, |
| 1452 | .cache_mm = viking_flush_cache_mm, |
| 1453 | .cache_page = viking_flush_cache_page, |
| 1454 | .cache_range = viking_flush_cache_range, |
| 1455 | .tlb_all = viking_flush_tlb_all, |
| 1456 | .tlb_mm = viking_flush_tlb_mm, |
| 1457 | .tlb_page = viking_flush_tlb_page, |
| 1458 | .tlb_range = viking_flush_tlb_range, |
| 1459 | .page_to_ram = viking_flush_page_to_ram, |
| 1460 | .sig_insns = viking_flush_sig_insns, |
| 1461 | .page_for_dma = viking_flush_page_for_dma, |
| 1462 | }; |
| 1463 | |
| 1464 | #ifdef CONFIG_SMP |
| 1465 | /* On sun4d the cpu broadcasts local TLB flushes, so we can just |
| 1466 | * perform the local TLB flush and all the other cpus will see it. |
| 1467 | * But, unfortunately, there is a bug in the sun4d XBUS backplane |
| 1468 | * that requires that we add some synchronization to these flushes. |
| 1469 | * |
| 1470 | * The bug is that the fifo which keeps track of all the pending TLB |
| 1471 | * broadcasts in the system is an entry or two too small, so if we |
| 1472 | * have too many going at once we'll overflow that fifo and lose a TLB |
| 1473 | * flush resulting in corruption. |
| 1474 | * |
| 1475 | * Our workaround is to take a global spinlock around the TLB flushes, |
| 1476 | * which guarentees we won't ever have too many pending. It's a big |
| 1477 | * hammer, but a semaphore like system to make sure we only have N TLB |
| 1478 | * flushes going at once will require SMP locking anyways so there's |
| 1479 | * no real value in trying any harder than this. |
| 1480 | */ |
| 1481 | static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = { |
| 1482 | .cache_all = viking_flush_cache_all, |
| 1483 | .cache_mm = viking_flush_cache_mm, |
| 1484 | .cache_page = viking_flush_cache_page, |
| 1485 | .cache_range = viking_flush_cache_range, |
| 1486 | .tlb_all = sun4dsmp_flush_tlb_all, |
| 1487 | .tlb_mm = sun4dsmp_flush_tlb_mm, |
| 1488 | .tlb_page = sun4dsmp_flush_tlb_page, |
| 1489 | .tlb_range = sun4dsmp_flush_tlb_range, |
| 1490 | .page_to_ram = viking_flush_page_to_ram, |
| 1491 | .sig_insns = viking_flush_sig_insns, |
| 1492 | .page_for_dma = viking_flush_page_for_dma, |
| 1493 | }; |
| 1494 | #endif |
| 1495 | |
| 1496 | static void __init init_viking(void) |
| 1497 | { |
| 1498 | unsigned long mreg = srmmu_get_mmureg(); |
| 1499 | |
| 1500 | /* Ahhh, the viking. SRMMU VLSI abortion number two... */ |
| 1501 | if (mreg & VIKING_MMODE) { |
| 1502 | srmmu_name = "TI Viking"; |
| 1503 | viking_mxcc_present = 0; |
| 1504 | msi_set_sync(); |
| 1505 | |
| 1506 | /* |
| 1507 | * We need this to make sure old viking takes no hits |
| 1508 | * on its cache for dma snoops to workaround the |
| 1509 | * "load from non-cacheable memory" interrupt bug. |
| 1510 | * This is only necessary because of the new way in |
| 1511 | * which we use the IOMMU. |
| 1512 | */ |
| 1513 | viking_ops.page_for_dma = viking_flush_page; |
| 1514 | #ifdef CONFIG_SMP |
| 1515 | viking_sun4d_smp_ops.page_for_dma = viking_flush_page; |
| 1516 | #endif |
| 1517 | flush_page_for_dma_global = 0; |
| 1518 | } else { |
| 1519 | srmmu_name = "TI Viking/MXCC"; |
| 1520 | viking_mxcc_present = 1; |
| 1521 | srmmu_cache_pagetables = 1; |
| 1522 | } |
| 1523 | |
| 1524 | sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *) |
| 1525 | &viking_ops; |
| 1526 | #ifdef CONFIG_SMP |
| 1527 | if (sparc_cpu_model == sun4d) |
| 1528 | sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *) |
| 1529 | &viking_sun4d_smp_ops; |
| 1530 | #endif |
| 1531 | |
| 1532 | poke_srmmu = poke_viking; |
| 1533 | } |
| 1534 | |
| 1535 | /* Probe for the srmmu chip version. */ |
| 1536 | static void __init get_srmmu_type(void) |
| 1537 | { |
| 1538 | unsigned long mreg, psr; |
| 1539 | unsigned long mod_typ, mod_rev, psr_typ, psr_vers; |
| 1540 | |
| 1541 | srmmu_modtype = SRMMU_INVAL_MOD; |
| 1542 | hwbug_bitmask = 0; |
| 1543 | |
| 1544 | mreg = srmmu_get_mmureg(); psr = get_psr(); |
| 1545 | mod_typ = (mreg & 0xf0000000) >> 28; |
| 1546 | mod_rev = (mreg & 0x0f000000) >> 24; |
| 1547 | psr_typ = (psr >> 28) & 0xf; |
| 1548 | psr_vers = (psr >> 24) & 0xf; |
| 1549 | |
| 1550 | /* First, check for sparc-leon. */ |
| 1551 | if (sparc_cpu_model == sparc_leon) { |
| 1552 | init_leon(); |
| 1553 | return; |
| 1554 | } |
| 1555 | |
| 1556 | /* Second, check for HyperSparc or Cypress. */ |
| 1557 | if (mod_typ == 1) { |
| 1558 | switch (mod_rev) { |
| 1559 | case 7: |
| 1560 | /* UP or MP Hypersparc */ |
| 1561 | init_hypersparc(); |
| 1562 | break; |
| 1563 | case 0: |
| 1564 | case 2: |
| 1565 | case 10: |
| 1566 | case 11: |
| 1567 | case 12: |
| 1568 | case 13: |
| 1569 | case 14: |
| 1570 | case 15: |
| 1571 | default: |
| 1572 | prom_printf("Sparc-Linux Cypress support does not longer exit.\n"); |
| 1573 | prom_halt(); |
| 1574 | break; |
| 1575 | } |
| 1576 | return; |
| 1577 | } |
| 1578 | |
| 1579 | /* Now Fujitsu TurboSparc. It might happen that it is |
| 1580 | * in Swift emulation mode, so we will check later... |
| 1581 | */ |
| 1582 | if (psr_typ == 0 && psr_vers == 5) { |
| 1583 | init_turbosparc(); |
| 1584 | return; |
| 1585 | } |
| 1586 | |
| 1587 | /* Next check for Fujitsu Swift. */ |
| 1588 | if (psr_typ == 0 && psr_vers == 4) { |
| 1589 | phandle cpunode; |
| 1590 | char node_str[128]; |
| 1591 | |
| 1592 | /* Look if it is not a TurboSparc emulating Swift... */ |
| 1593 | cpunode = prom_getchild(prom_root_node); |
| 1594 | while ((cpunode = prom_getsibling(cpunode)) != 0) { |
| 1595 | prom_getstring(cpunode, "device_type", node_str, sizeof(node_str)); |
| 1596 | if (!strcmp(node_str, "cpu")) { |
| 1597 | if (!prom_getintdefault(cpunode, "psr-implementation", 1) && |
| 1598 | prom_getintdefault(cpunode, "psr-version", 1) == 5) { |
| 1599 | init_turbosparc(); |
| 1600 | return; |
| 1601 | } |
| 1602 | break; |
| 1603 | } |
| 1604 | } |
| 1605 | |
| 1606 | init_swift(); |
| 1607 | return; |
| 1608 | } |
| 1609 | |
| 1610 | /* Now the Viking family of srmmu. */ |
| 1611 | if (psr_typ == 4 && |
| 1612 | ((psr_vers == 0) || |
| 1613 | ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) { |
| 1614 | init_viking(); |
| 1615 | return; |
| 1616 | } |
| 1617 | |
| 1618 | /* Finally the Tsunami. */ |
| 1619 | if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) { |
| 1620 | init_tsunami(); |
| 1621 | return; |
| 1622 | } |
| 1623 | |
| 1624 | /* Oh well */ |
| 1625 | srmmu_is_bad(); |
| 1626 | } |
| 1627 | |
| 1628 | #ifdef CONFIG_SMP |
| 1629 | /* Local cross-calls. */ |
| 1630 | static void smp_flush_page_for_dma(unsigned long page) |
| 1631 | { |
| 1632 | xc1(local_ops->page_for_dma, page); |
| 1633 | local_ops->page_for_dma(page); |
| 1634 | } |
| 1635 | |
| 1636 | static void smp_flush_cache_all(void) |
| 1637 | { |
| 1638 | xc0(local_ops->cache_all); |
| 1639 | local_ops->cache_all(); |
| 1640 | } |
| 1641 | |
| 1642 | static void smp_flush_tlb_all(void) |
| 1643 | { |
| 1644 | xc0(local_ops->tlb_all); |
| 1645 | local_ops->tlb_all(); |
| 1646 | } |
| 1647 | |
| 1648 | static bool any_other_mm_cpus(struct mm_struct *mm) |
| 1649 | { |
| 1650 | return cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids; |
| 1651 | } |
| 1652 | |
| 1653 | static void smp_flush_cache_mm(struct mm_struct *mm) |
| 1654 | { |
| 1655 | if (mm->context != NO_CONTEXT) { |
| 1656 | if (any_other_mm_cpus(mm)) |
| 1657 | xc1(local_ops->cache_mm, (unsigned long)mm); |
| 1658 | local_ops->cache_mm(mm); |
| 1659 | } |
| 1660 | } |
| 1661 | |
| 1662 | static void smp_flush_tlb_mm(struct mm_struct *mm) |
| 1663 | { |
| 1664 | if (mm->context != NO_CONTEXT) { |
| 1665 | if (any_other_mm_cpus(mm)) { |
| 1666 | xc1(local_ops->tlb_mm, (unsigned long)mm); |
| 1667 | if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm) |
| 1668 | cpumask_copy(mm_cpumask(mm), |
| 1669 | cpumask_of(smp_processor_id())); |
| 1670 | } |
| 1671 | local_ops->tlb_mm(mm); |
| 1672 | } |
| 1673 | } |
| 1674 | |
| 1675 | static void smp_flush_cache_range(struct vm_area_struct *vma, |
| 1676 | unsigned long start, |
| 1677 | unsigned long end) |
| 1678 | { |
| 1679 | struct mm_struct *mm = vma->vm_mm; |
| 1680 | |
| 1681 | if (mm->context != NO_CONTEXT) { |
| 1682 | if (any_other_mm_cpus(mm)) |
| 1683 | xc3(local_ops->cache_range, (unsigned long)vma, start, |
| 1684 | end); |
| 1685 | local_ops->cache_range(vma, start, end); |
| 1686 | } |
| 1687 | } |
| 1688 | |
| 1689 | static void smp_flush_tlb_range(struct vm_area_struct *vma, |
| 1690 | unsigned long start, |
| 1691 | unsigned long end) |
| 1692 | { |
| 1693 | struct mm_struct *mm = vma->vm_mm; |
| 1694 | |
| 1695 | if (mm->context != NO_CONTEXT) { |
| 1696 | if (any_other_mm_cpus(mm)) |
| 1697 | xc3(local_ops->tlb_range, (unsigned long)vma, start, |
| 1698 | end); |
| 1699 | local_ops->tlb_range(vma, start, end); |
| 1700 | } |
| 1701 | } |
| 1702 | |
| 1703 | static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page) |
| 1704 | { |
| 1705 | struct mm_struct *mm = vma->vm_mm; |
| 1706 | |
| 1707 | if (mm->context != NO_CONTEXT) { |
| 1708 | if (any_other_mm_cpus(mm)) |
| 1709 | xc2(local_ops->cache_page, (unsigned long)vma, page); |
| 1710 | local_ops->cache_page(vma, page); |
| 1711 | } |
| 1712 | } |
| 1713 | |
| 1714 | static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) |
| 1715 | { |
| 1716 | struct mm_struct *mm = vma->vm_mm; |
| 1717 | |
| 1718 | if (mm->context != NO_CONTEXT) { |
| 1719 | if (any_other_mm_cpus(mm)) |
| 1720 | xc2(local_ops->tlb_page, (unsigned long)vma, page); |
| 1721 | local_ops->tlb_page(vma, page); |
| 1722 | } |
| 1723 | } |
| 1724 | |
| 1725 | static void smp_flush_page_to_ram(unsigned long page) |
| 1726 | { |
| 1727 | /* Current theory is that those who call this are the one's |
| 1728 | * who have just dirtied their cache with the pages contents |
| 1729 | * in kernel space, therefore we only run this on local cpu. |
| 1730 | * |
| 1731 | * XXX This experiment failed, research further... -DaveM |
| 1732 | */ |
| 1733 | #if 1 |
| 1734 | xc1(local_ops->page_to_ram, page); |
| 1735 | #endif |
| 1736 | local_ops->page_to_ram(page); |
| 1737 | } |
| 1738 | |
| 1739 | static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) |
| 1740 | { |
| 1741 | if (any_other_mm_cpus(mm)) |
| 1742 | xc2(local_ops->sig_insns, (unsigned long)mm, insn_addr); |
| 1743 | local_ops->sig_insns(mm, insn_addr); |
| 1744 | } |
| 1745 | |
| 1746 | static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = { |
| 1747 | .cache_all = smp_flush_cache_all, |
| 1748 | .cache_mm = smp_flush_cache_mm, |
| 1749 | .cache_page = smp_flush_cache_page, |
| 1750 | .cache_range = smp_flush_cache_range, |
| 1751 | .tlb_all = smp_flush_tlb_all, |
| 1752 | .tlb_mm = smp_flush_tlb_mm, |
| 1753 | .tlb_page = smp_flush_tlb_page, |
| 1754 | .tlb_range = smp_flush_tlb_range, |
| 1755 | .page_to_ram = smp_flush_page_to_ram, |
| 1756 | .sig_insns = smp_flush_sig_insns, |
| 1757 | .page_for_dma = smp_flush_page_for_dma, |
| 1758 | }; |
| 1759 | #endif |
| 1760 | |
| 1761 | /* Load up routines and constants for sun4m and sun4d mmu */ |
| 1762 | void __init load_mmu(void) |
| 1763 | { |
| 1764 | /* Functions */ |
| 1765 | get_srmmu_type(); |
| 1766 | |
| 1767 | #ifdef CONFIG_SMP |
| 1768 | /* El switcheroo... */ |
| 1769 | local_ops = sparc32_cachetlb_ops; |
| 1770 | |
| 1771 | if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) { |
| 1772 | smp_cachetlb_ops.tlb_all = local_ops->tlb_all; |
| 1773 | smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm; |
| 1774 | smp_cachetlb_ops.tlb_range = local_ops->tlb_range; |
| 1775 | smp_cachetlb_ops.tlb_page = local_ops->tlb_page; |
| 1776 | } |
| 1777 | |
| 1778 | if (poke_srmmu == poke_viking) { |
| 1779 | /* Avoid unnecessary cross calls. */ |
| 1780 | smp_cachetlb_ops.cache_all = local_ops->cache_all; |
| 1781 | smp_cachetlb_ops.cache_mm = local_ops->cache_mm; |
| 1782 | smp_cachetlb_ops.cache_range = local_ops->cache_range; |
| 1783 | smp_cachetlb_ops.cache_page = local_ops->cache_page; |
| 1784 | |
| 1785 | smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram; |
| 1786 | smp_cachetlb_ops.sig_insns = local_ops->sig_insns; |
| 1787 | smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma; |
| 1788 | } |
| 1789 | |
| 1790 | /* It really is const after this point. */ |
| 1791 | sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *) |
| 1792 | &smp_cachetlb_ops; |
| 1793 | #endif |
| 1794 | |
| 1795 | if (sparc_cpu_model != sun4d) |
| 1796 | ld_mmu_iommu(); |
| 1797 | #ifdef CONFIG_SMP |
| 1798 | if (sparc_cpu_model == sun4d) |
| 1799 | sun4d_init_smp(); |
| 1800 | else if (sparc_cpu_model == sparc_leon) |
| 1801 | leon_init_smp(); |
| 1802 | else |
| 1803 | sun4m_init_smp(); |
| 1804 | #endif |
| 1805 | } |