| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Interrupt request handling routines. On the |
| 4 | * Sparc the IRQs are basically 'cast in stone' |
| 5 | * and you are supposed to probe the prom's device |
| 6 | * node trees to find out who's got which IRQ. |
| 7 | * |
| 8 | * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) |
| 9 | * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx) |
| 10 | * Copyright (C) 1995,2002 Pete A. Zaitcev (zaitcev@yahoo.com) |
| 11 | * Copyright (C) 1996 Dave Redman (djhr@tadpole.co.uk) |
| 12 | * Copyright (C) 1998-2000 Anton Blanchard (anton@samba.org) |
| 13 | */ |
| 14 | |
| 15 | #include <linux/kernel_stat.h> |
| 16 | #include <linux/seq_file.h> |
| 17 | #include <linux/export.h> |
| 18 | |
| 19 | #include <asm/cacheflush.h> |
| 20 | #include <asm/cpudata.h> |
| 21 | #include <asm/setup.h> |
| 22 | #include <asm/pcic.h> |
| 23 | #include <asm/leon.h> |
| 24 | |
| 25 | #include "kernel.h" |
| 26 | #include "irq.h" |
| 27 | |
| 28 | /* platform specific irq setup */ |
| 29 | struct sparc_config sparc_config; |
| 30 | |
| 31 | unsigned long arch_local_irq_save(void) |
| 32 | { |
| 33 | unsigned long retval; |
| 34 | unsigned long tmp; |
| 35 | |
| 36 | __asm__ __volatile__( |
| 37 | "rd %%psr, %0\n\t" |
| 38 | "or %0, %2, %1\n\t" |
| 39 | "wr %1, 0, %%psr\n\t" |
| 40 | "nop; nop; nop\n" |
| 41 | : "=&r" (retval), "=r" (tmp) |
| 42 | : "i" (PSR_PIL) |
| 43 | : "memory"); |
| 44 | |
| 45 | return retval; |
| 46 | } |
| 47 | EXPORT_SYMBOL(arch_local_irq_save); |
| 48 | |
| 49 | void arch_local_irq_enable(void) |
| 50 | { |
| 51 | unsigned long tmp; |
| 52 | |
| 53 | __asm__ __volatile__( |
| 54 | "rd %%psr, %0\n\t" |
| 55 | "andn %0, %1, %0\n\t" |
| 56 | "wr %0, 0, %%psr\n\t" |
| 57 | "nop; nop; nop\n" |
| 58 | : "=&r" (tmp) |
| 59 | : "i" (PSR_PIL) |
| 60 | : "memory"); |
| 61 | } |
| 62 | EXPORT_SYMBOL(arch_local_irq_enable); |
| 63 | |
| 64 | void arch_local_irq_restore(unsigned long old_psr) |
| 65 | { |
| 66 | unsigned long tmp; |
| 67 | |
| 68 | __asm__ __volatile__( |
| 69 | "rd %%psr, %0\n\t" |
| 70 | "and %2, %1, %2\n\t" |
| 71 | "andn %0, %1, %0\n\t" |
| 72 | "wr %0, %2, %%psr\n\t" |
| 73 | "nop; nop; nop\n" |
| 74 | : "=&r" (tmp) |
| 75 | : "i" (PSR_PIL), "r" (old_psr) |
| 76 | : "memory"); |
| 77 | } |
| 78 | EXPORT_SYMBOL(arch_local_irq_restore); |
| 79 | |
| 80 | /* |
| 81 | * Dave Redman (djhr@tadpole.co.uk) |
| 82 | * |
| 83 | * IRQ numbers.. These are no longer restricted to 15.. |
| 84 | * |
| 85 | * this is done to enable SBUS cards and onboard IO to be masked |
| 86 | * correctly. using the interrupt level isn't good enough. |
| 87 | * |
| 88 | * For example: |
| 89 | * A device interrupting at sbus level6 and the Floppy both come in |
| 90 | * at IRQ11, but enabling and disabling them requires writing to |
| 91 | * different bits in the SLAVIO/SEC. |
| 92 | * |
| 93 | * As a result of these changes sun4m machines could now support |
| 94 | * directed CPU interrupts using the existing enable/disable irq code |
| 95 | * with tweaks. |
| 96 | * |
| 97 | * Sun4d complicates things even further. IRQ numbers are arbitrary |
| 98 | * 32-bit values in that case. Since this is similar to sparc64, |
| 99 | * we adopt a virtual IRQ numbering scheme as is done there. |
| 100 | * Virutal interrupt numbers are allocated by build_irq(). So NR_IRQS |
| 101 | * just becomes a limit of how many interrupt sources we can handle in |
| 102 | * a single system. Even fully loaded SS2000 machines top off at |
| 103 | * about 32 interrupt sources or so, therefore a NR_IRQS value of 64 |
| 104 | * is more than enough. |
| 105 | * |
| 106 | * We keep a map of per-PIL enable interrupts. These get wired |
| 107 | * up via the irq_chip->startup() method which gets invoked by |
| 108 | * the generic IRQ layer during request_irq(). |
| 109 | */ |
| 110 | |
| 111 | |
| 112 | /* Table of allocated irqs. Unused entries has irq == 0 */ |
| 113 | static struct irq_bucket irq_table[NR_IRQS]; |
| 114 | /* Protect access to irq_table */ |
| 115 | static DEFINE_SPINLOCK(irq_table_lock); |
| 116 | |
| 117 | /* Map between the irq identifier used in hw to the irq_bucket. */ |
| 118 | struct irq_bucket *irq_map[SUN4D_MAX_IRQ]; |
| 119 | /* Protect access to irq_map */ |
| 120 | static DEFINE_SPINLOCK(irq_map_lock); |
| 121 | |
| 122 | /* Allocate a new irq from the irq_table */ |
| 123 | unsigned int irq_alloc(unsigned int real_irq, unsigned int pil) |
| 124 | { |
| 125 | unsigned long flags; |
| 126 | unsigned int i; |
| 127 | |
| 128 | spin_lock_irqsave(&irq_table_lock, flags); |
| 129 | for (i = 1; i < NR_IRQS; i++) { |
| 130 | if (irq_table[i].real_irq == real_irq && irq_table[i].pil == pil) |
| 131 | goto found; |
| 132 | } |
| 133 | |
| 134 | for (i = 1; i < NR_IRQS; i++) { |
| 135 | if (!irq_table[i].irq) |
| 136 | break; |
| 137 | } |
| 138 | |
| 139 | if (i < NR_IRQS) { |
| 140 | irq_table[i].real_irq = real_irq; |
| 141 | irq_table[i].irq = i; |
| 142 | irq_table[i].pil = pil; |
| 143 | } else { |
| 144 | printk(KERN_ERR "IRQ: Out of virtual IRQs.\n"); |
| 145 | i = 0; |
| 146 | } |
| 147 | found: |
| 148 | spin_unlock_irqrestore(&irq_table_lock, flags); |
| 149 | |
| 150 | return i; |
| 151 | } |
| 152 | |
| 153 | /* Based on a single pil handler_irq may need to call several |
| 154 | * interrupt handlers. Use irq_map as entry to irq_table, |
| 155 | * and let each entry in irq_table point to the next entry. |
| 156 | */ |
| 157 | void irq_link(unsigned int irq) |
| 158 | { |
| 159 | struct irq_bucket *p; |
| 160 | unsigned long flags; |
| 161 | unsigned int pil; |
| 162 | |
| 163 | BUG_ON(irq >= NR_IRQS); |
| 164 | |
| 165 | spin_lock_irqsave(&irq_map_lock, flags); |
| 166 | |
| 167 | p = &irq_table[irq]; |
| 168 | pil = p->pil; |
| 169 | BUG_ON(pil >= SUN4D_MAX_IRQ); |
| 170 | p->next = irq_map[pil]; |
| 171 | irq_map[pil] = p; |
| 172 | |
| 173 | spin_unlock_irqrestore(&irq_map_lock, flags); |
| 174 | } |
| 175 | |
| 176 | void irq_unlink(unsigned int irq) |
| 177 | { |
| 178 | struct irq_bucket *p, **pnext; |
| 179 | unsigned long flags; |
| 180 | |
| 181 | BUG_ON(irq >= NR_IRQS); |
| 182 | |
| 183 | spin_lock_irqsave(&irq_map_lock, flags); |
| 184 | |
| 185 | p = &irq_table[irq]; |
| 186 | BUG_ON(p->pil >= SUN4D_MAX_IRQ); |
| 187 | pnext = &irq_map[p->pil]; |
| 188 | while (*pnext != p) |
| 189 | pnext = &(*pnext)->next; |
| 190 | *pnext = p->next; |
| 191 | |
| 192 | spin_unlock_irqrestore(&irq_map_lock, flags); |
| 193 | } |
| 194 | |
| 195 | |
| 196 | /* /proc/interrupts printing */ |
| 197 | int arch_show_interrupts(struct seq_file *p, int prec) |
| 198 | { |
| 199 | int j; |
| 200 | |
| 201 | #ifdef CONFIG_SMP |
| 202 | seq_printf(p, "RES:"); |
| 203 | for_each_online_cpu(j) |
| 204 | seq_put_decimal_ull_width(p, " ", cpu_data(j).irq_resched_count, 10); |
| 205 | seq_printf(p, " IPI rescheduling interrupts\n"); |
| 206 | seq_printf(p, "CAL:"); |
| 207 | for_each_online_cpu(j) |
| 208 | seq_put_decimal_ull_width(p, " ", cpu_data(j).irq_call_count, 10); |
| 209 | seq_printf(p, " IPI function call interrupts\n"); |
| 210 | #endif |
| 211 | seq_printf(p, "NMI:"); |
| 212 | for_each_online_cpu(j) |
| 213 | seq_put_decimal_ull_width(p, " ", cpu_data(j).counter, 10); |
| 214 | seq_printf(p, " Non-maskable interrupts\n"); |
| 215 | return 0; |
| 216 | } |
| 217 | |
| 218 | void handler_irq(unsigned int pil, struct pt_regs *regs) |
| 219 | { |
| 220 | struct pt_regs *old_regs; |
| 221 | struct irq_bucket *p; |
| 222 | |
| 223 | BUG_ON(pil > 15); |
| 224 | old_regs = set_irq_regs(regs); |
| 225 | irq_enter(); |
| 226 | |
| 227 | p = irq_map[pil]; |
| 228 | while (p) { |
| 229 | struct irq_bucket *next = p->next; |
| 230 | |
| 231 | generic_handle_irq(p->irq); |
| 232 | p = next; |
| 233 | } |
| 234 | irq_exit(); |
| 235 | set_irq_regs(old_regs); |
| 236 | } |
| 237 | |
| 238 | #if defined(CONFIG_BLK_DEV_FD) || defined(CONFIG_BLK_DEV_FD_MODULE) |
| 239 | static unsigned int floppy_irq; |
| 240 | |
| 241 | int sparc_floppy_request_irq(unsigned int irq, irq_handler_t irq_handler) |
| 242 | { |
| 243 | unsigned int cpu_irq; |
| 244 | int err; |
| 245 | |
| 246 | |
| 247 | err = request_irq(irq, irq_handler, 0, "floppy", NULL); |
| 248 | if (err) |
| 249 | return -1; |
| 250 | |
| 251 | /* Save for later use in floppy interrupt handler */ |
| 252 | floppy_irq = irq; |
| 253 | |
| 254 | cpu_irq = (irq & (NR_IRQS - 1)); |
| 255 | |
| 256 | /* Dork with trap table if we get this far. */ |
| 257 | #define INSTANTIATE(table) \ |
| 258 | table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_one = SPARC_RD_PSR_L0; \ |
| 259 | table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two = \ |
| 260 | SPARC_BRANCH((unsigned long) floppy_hardint, \ |
| 261 | (unsigned long) &table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two);\ |
| 262 | table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_three = SPARC_RD_WIM_L3; \ |
| 263 | table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_four = SPARC_NOP; |
| 264 | |
| 265 | INSTANTIATE(sparc_ttable) |
| 266 | |
| 267 | #if defined CONFIG_SMP |
| 268 | if (sparc_cpu_model != sparc_leon) { |
| 269 | struct tt_entry *trap_table; |
| 270 | |
| 271 | trap_table = &trapbase_cpu1[0]; |
| 272 | INSTANTIATE(trap_table) |
| 273 | trap_table = &trapbase_cpu2[0]; |
| 274 | INSTANTIATE(trap_table) |
| 275 | trap_table = &trapbase_cpu3[0]; |
| 276 | INSTANTIATE(trap_table) |
| 277 | } |
| 278 | #endif |
| 279 | #undef INSTANTIATE |
| 280 | /* |
| 281 | * XXX Correct thing whould be to flush only I- and D-cache lines |
| 282 | * which contain the handler in question. But as of time of the |
| 283 | * writing we have no CPU-neutral interface to fine-grained flushes. |
| 284 | */ |
| 285 | flush_cache_all(); |
| 286 | return 0; |
| 287 | } |
| 288 | EXPORT_SYMBOL(sparc_floppy_request_irq); |
| 289 | |
| 290 | /* |
| 291 | * These variables are used to access state from the assembler |
| 292 | * interrupt handler, floppy_hardint, so we cannot put these in |
| 293 | * the floppy driver image because that would not work in the |
| 294 | * modular case. |
| 295 | */ |
| 296 | volatile unsigned char *fdc_status; |
| 297 | EXPORT_SYMBOL(fdc_status); |
| 298 | |
| 299 | char *pdma_vaddr; |
| 300 | EXPORT_SYMBOL(pdma_vaddr); |
| 301 | |
| 302 | unsigned long pdma_size; |
| 303 | EXPORT_SYMBOL(pdma_size); |
| 304 | |
| 305 | volatile int doing_pdma; |
| 306 | EXPORT_SYMBOL(doing_pdma); |
| 307 | |
| 308 | char *pdma_base; |
| 309 | EXPORT_SYMBOL(pdma_base); |
| 310 | |
| 311 | unsigned long pdma_areasize; |
| 312 | EXPORT_SYMBOL(pdma_areasize); |
| 313 | |
| 314 | /* Use the generic irq support to call floppy_interrupt |
| 315 | * which was setup using request_irq() in sparc_floppy_request_irq(). |
| 316 | * We only have one floppy interrupt so we do not need to check |
| 317 | * for additional handlers being wired up by irq_link() |
| 318 | */ |
| 319 | void sparc_floppy_irq(int irq, void *dev_id, struct pt_regs *regs) |
| 320 | { |
| 321 | struct pt_regs *old_regs; |
| 322 | |
| 323 | old_regs = set_irq_regs(regs); |
| 324 | irq_enter(); |
| 325 | generic_handle_irq(floppy_irq); |
| 326 | irq_exit(); |
| 327 | set_irq_regs(old_regs); |
| 328 | } |
| 329 | #endif |
| 330 | |
| 331 | /* djhr |
| 332 | * This could probably be made indirect too and assigned in the CPU |
| 333 | * bits of the code. That would be much nicer I think and would also |
| 334 | * fit in with the idea of being able to tune your kernel for your machine |
| 335 | * by removing unrequired machine and device support. |
| 336 | * |
| 337 | */ |
| 338 | |
| 339 | void __init init_IRQ(void) |
| 340 | { |
| 341 | switch (sparc_cpu_model) { |
| 342 | case sun4m: |
| 343 | pcic_probe(); |
| 344 | if (pcic_present()) |
| 345 | sun4m_pci_init_IRQ(); |
| 346 | else |
| 347 | sun4m_init_IRQ(); |
| 348 | break; |
| 349 | |
| 350 | case sun4d: |
| 351 | sun4d_init_IRQ(); |
| 352 | break; |
| 353 | |
| 354 | case sparc_leon: |
| 355 | leon_init_IRQ(); |
| 356 | break; |
| 357 | |
| 358 | default: |
| 359 | prom_printf("Cannot initialize IRQs on this Sun machine..."); |
| 360 | break; |
| 361 | } |
| 362 | } |
| 363 | |