| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * guest access functions |
| 4 | * |
| 5 | * Copyright IBM Corp. 2014 |
| 6 | * |
| 7 | */ |
| 8 | |
| 9 | #include <linux/vmalloc.h> |
| 10 | #include <linux/mm_types.h> |
| 11 | #include <linux/err.h> |
| 12 | #include <linux/pgtable.h> |
| 13 | #include <linux/bitfield.h> |
| 14 | #include <asm/access-regs.h> |
| 15 | #include <asm/fault.h> |
| 16 | #include <asm/gmap.h> |
| 17 | #include <asm/dat-bits.h> |
| 18 | #include "kvm-s390.h" |
| 19 | #include "gaccess.h" |
| 20 | |
| 21 | #define GMAP_SHADOW_FAKE_TABLE 1ULL |
| 22 | |
| 23 | /* |
| 24 | * vaddress union in order to easily decode a virtual address into its |
| 25 | * region first index, region second index etc. parts. |
| 26 | */ |
| 27 | union vaddress { |
| 28 | unsigned long addr; |
| 29 | struct { |
| 30 | unsigned long rfx : 11; |
| 31 | unsigned long rsx : 11; |
| 32 | unsigned long rtx : 11; |
| 33 | unsigned long sx : 11; |
| 34 | unsigned long px : 8; |
| 35 | unsigned long bx : 12; |
| 36 | }; |
| 37 | struct { |
| 38 | unsigned long rfx01 : 2; |
| 39 | unsigned long : 9; |
| 40 | unsigned long rsx01 : 2; |
| 41 | unsigned long : 9; |
| 42 | unsigned long rtx01 : 2; |
| 43 | unsigned long : 9; |
| 44 | unsigned long sx01 : 2; |
| 45 | unsigned long : 29; |
| 46 | }; |
| 47 | }; |
| 48 | |
| 49 | /* |
| 50 | * raddress union which will contain the result (real or absolute address) |
| 51 | * after a page table walk. The rfaa, sfaa and pfra members are used to |
| 52 | * simply assign them the value of a region, segment or page table entry. |
| 53 | */ |
| 54 | union raddress { |
| 55 | unsigned long addr; |
| 56 | unsigned long rfaa : 33; /* Region-Frame Absolute Address */ |
| 57 | unsigned long sfaa : 44; /* Segment-Frame Absolute Address */ |
| 58 | unsigned long pfra : 52; /* Page-Frame Real Address */ |
| 59 | }; |
| 60 | |
| 61 | union alet { |
| 62 | u32 val; |
| 63 | struct { |
| 64 | u32 reserved : 7; |
| 65 | u32 p : 1; |
| 66 | u32 alesn : 8; |
| 67 | u32 alen : 16; |
| 68 | }; |
| 69 | }; |
| 70 | |
| 71 | union ald { |
| 72 | u32 val; |
| 73 | struct { |
| 74 | u32 : 1; |
| 75 | u32 alo : 24; |
| 76 | u32 all : 7; |
| 77 | }; |
| 78 | }; |
| 79 | |
| 80 | struct ale { |
| 81 | unsigned long i : 1; /* ALEN-Invalid Bit */ |
| 82 | unsigned long : 5; |
| 83 | unsigned long fo : 1; /* Fetch-Only Bit */ |
| 84 | unsigned long p : 1; /* Private Bit */ |
| 85 | unsigned long alesn : 8; /* Access-List-Entry Sequence Number */ |
| 86 | unsigned long aleax : 16; /* Access-List-Entry Authorization Index */ |
| 87 | unsigned long : 32; |
| 88 | unsigned long : 1; |
| 89 | unsigned long asteo : 25; /* ASN-Second-Table-Entry Origin */ |
| 90 | unsigned long : 6; |
| 91 | unsigned long astesn : 32; /* ASTE Sequence Number */ |
| 92 | }; |
| 93 | |
| 94 | struct aste { |
| 95 | unsigned long i : 1; /* ASX-Invalid Bit */ |
| 96 | unsigned long ato : 29; /* Authority-Table Origin */ |
| 97 | unsigned long : 1; |
| 98 | unsigned long b : 1; /* Base-Space Bit */ |
| 99 | unsigned long ax : 16; /* Authorization Index */ |
| 100 | unsigned long atl : 12; /* Authority-Table Length */ |
| 101 | unsigned long : 2; |
| 102 | unsigned long ca : 1; /* Controlled-ASN Bit */ |
| 103 | unsigned long ra : 1; /* Reusable-ASN Bit */ |
| 104 | unsigned long asce : 64; /* Address-Space-Control Element */ |
| 105 | unsigned long ald : 32; |
| 106 | unsigned long astesn : 32; |
| 107 | /* .. more fields there */ |
| 108 | }; |
| 109 | |
| 110 | int ipte_lock_held(struct kvm *kvm) |
| 111 | { |
| 112 | if (sclp.has_siif) { |
| 113 | int rc; |
| 114 | |
| 115 | read_lock(&kvm->arch.sca_lock); |
| 116 | rc = kvm_s390_get_ipte_control(kvm)->kh != 0; |
| 117 | read_unlock(&kvm->arch.sca_lock); |
| 118 | return rc; |
| 119 | } |
| 120 | return kvm->arch.ipte_lock_count != 0; |
| 121 | } |
| 122 | |
| 123 | static void ipte_lock_simple(struct kvm *kvm) |
| 124 | { |
| 125 | union ipte_control old, new, *ic; |
| 126 | |
| 127 | mutex_lock(&kvm->arch.ipte_mutex); |
| 128 | kvm->arch.ipte_lock_count++; |
| 129 | if (kvm->arch.ipte_lock_count > 1) |
| 130 | goto out; |
| 131 | retry: |
| 132 | read_lock(&kvm->arch.sca_lock); |
| 133 | ic = kvm_s390_get_ipte_control(kvm); |
| 134 | old = READ_ONCE(*ic); |
| 135 | do { |
| 136 | if (old.k) { |
| 137 | read_unlock(&kvm->arch.sca_lock); |
| 138 | cond_resched(); |
| 139 | goto retry; |
| 140 | } |
| 141 | new = old; |
| 142 | new.k = 1; |
| 143 | } while (!try_cmpxchg(&ic->val, &old.val, new.val)); |
| 144 | read_unlock(&kvm->arch.sca_lock); |
| 145 | out: |
| 146 | mutex_unlock(&kvm->arch.ipte_mutex); |
| 147 | } |
| 148 | |
| 149 | static void ipte_unlock_simple(struct kvm *kvm) |
| 150 | { |
| 151 | union ipte_control old, new, *ic; |
| 152 | |
| 153 | mutex_lock(&kvm->arch.ipte_mutex); |
| 154 | kvm->arch.ipte_lock_count--; |
| 155 | if (kvm->arch.ipte_lock_count) |
| 156 | goto out; |
| 157 | read_lock(&kvm->arch.sca_lock); |
| 158 | ic = kvm_s390_get_ipte_control(kvm); |
| 159 | old = READ_ONCE(*ic); |
| 160 | do { |
| 161 | new = old; |
| 162 | new.k = 0; |
| 163 | } while (!try_cmpxchg(&ic->val, &old.val, new.val)); |
| 164 | read_unlock(&kvm->arch.sca_lock); |
| 165 | wake_up(&kvm->arch.ipte_wq); |
| 166 | out: |
| 167 | mutex_unlock(&kvm->arch.ipte_mutex); |
| 168 | } |
| 169 | |
| 170 | static void ipte_lock_siif(struct kvm *kvm) |
| 171 | { |
| 172 | union ipte_control old, new, *ic; |
| 173 | |
| 174 | retry: |
| 175 | read_lock(&kvm->arch.sca_lock); |
| 176 | ic = kvm_s390_get_ipte_control(kvm); |
| 177 | old = READ_ONCE(*ic); |
| 178 | do { |
| 179 | if (old.kg) { |
| 180 | read_unlock(&kvm->arch.sca_lock); |
| 181 | cond_resched(); |
| 182 | goto retry; |
| 183 | } |
| 184 | new = old; |
| 185 | new.k = 1; |
| 186 | new.kh++; |
| 187 | } while (!try_cmpxchg(&ic->val, &old.val, new.val)); |
| 188 | read_unlock(&kvm->arch.sca_lock); |
| 189 | } |
| 190 | |
| 191 | static void ipte_unlock_siif(struct kvm *kvm) |
| 192 | { |
| 193 | union ipte_control old, new, *ic; |
| 194 | |
| 195 | read_lock(&kvm->arch.sca_lock); |
| 196 | ic = kvm_s390_get_ipte_control(kvm); |
| 197 | old = READ_ONCE(*ic); |
| 198 | do { |
| 199 | new = old; |
| 200 | new.kh--; |
| 201 | if (!new.kh) |
| 202 | new.k = 0; |
| 203 | } while (!try_cmpxchg(&ic->val, &old.val, new.val)); |
| 204 | read_unlock(&kvm->arch.sca_lock); |
| 205 | if (!new.kh) |
| 206 | wake_up(&kvm->arch.ipte_wq); |
| 207 | } |
| 208 | |
| 209 | void ipte_lock(struct kvm *kvm) |
| 210 | { |
| 211 | if (sclp.has_siif) |
| 212 | ipte_lock_siif(kvm); |
| 213 | else |
| 214 | ipte_lock_simple(kvm); |
| 215 | } |
| 216 | |
| 217 | void ipte_unlock(struct kvm *kvm) |
| 218 | { |
| 219 | if (sclp.has_siif) |
| 220 | ipte_unlock_siif(kvm); |
| 221 | else |
| 222 | ipte_unlock_simple(kvm); |
| 223 | } |
| 224 | |
| 225 | static int ar_translation(struct kvm_vcpu *vcpu, union asce *asce, u8 ar, |
| 226 | enum gacc_mode mode) |
| 227 | { |
| 228 | union alet alet; |
| 229 | struct ale ale; |
| 230 | struct aste aste; |
| 231 | unsigned long ald_addr, authority_table_addr; |
| 232 | union ald ald; |
| 233 | int eax, rc; |
| 234 | u8 authority_table; |
| 235 | |
| 236 | if (ar >= NUM_ACRS) |
| 237 | return -EINVAL; |
| 238 | |
| 239 | if (vcpu->arch.acrs_loaded) |
| 240 | save_access_regs(vcpu->run->s.regs.acrs); |
| 241 | alet.val = vcpu->run->s.regs.acrs[ar]; |
| 242 | |
| 243 | if (ar == 0 || alet.val == 0) { |
| 244 | asce->val = vcpu->arch.sie_block->gcr[1]; |
| 245 | return 0; |
| 246 | } else if (alet.val == 1) { |
| 247 | asce->val = vcpu->arch.sie_block->gcr[7]; |
| 248 | return 0; |
| 249 | } |
| 250 | |
| 251 | if (alet.reserved) |
| 252 | return PGM_ALET_SPECIFICATION; |
| 253 | |
| 254 | if (alet.p) |
| 255 | ald_addr = vcpu->arch.sie_block->gcr[5]; |
| 256 | else |
| 257 | ald_addr = vcpu->arch.sie_block->gcr[2]; |
| 258 | ald_addr &= 0x7fffffc0; |
| 259 | |
| 260 | rc = read_guest_real(vcpu, ald_addr + 16, &ald.val, sizeof(union ald)); |
| 261 | if (rc) |
| 262 | return rc; |
| 263 | |
| 264 | if (alet.alen / 8 > ald.all) |
| 265 | return PGM_ALEN_TRANSLATION; |
| 266 | |
| 267 | if (0x7fffffff - ald.alo * 128 < alet.alen * 16) |
| 268 | return PGM_ADDRESSING; |
| 269 | |
| 270 | rc = read_guest_real(vcpu, ald.alo * 128 + alet.alen * 16, &ale, |
| 271 | sizeof(struct ale)); |
| 272 | if (rc) |
| 273 | return rc; |
| 274 | |
| 275 | if (ale.i == 1) |
| 276 | return PGM_ALEN_TRANSLATION; |
| 277 | if (ale.alesn != alet.alesn) |
| 278 | return PGM_ALE_SEQUENCE; |
| 279 | |
| 280 | rc = read_guest_real(vcpu, ale.asteo * 64, &aste, sizeof(struct aste)); |
| 281 | if (rc) |
| 282 | return rc; |
| 283 | |
| 284 | if (aste.i) |
| 285 | return PGM_ASTE_VALIDITY; |
| 286 | if (aste.astesn != ale.astesn) |
| 287 | return PGM_ASTE_SEQUENCE; |
| 288 | |
| 289 | if (ale.p == 1) { |
| 290 | eax = (vcpu->arch.sie_block->gcr[8] >> 16) & 0xffff; |
| 291 | if (ale.aleax != eax) { |
| 292 | if (eax / 16 > aste.atl) |
| 293 | return PGM_EXTENDED_AUTHORITY; |
| 294 | |
| 295 | authority_table_addr = aste.ato * 4 + eax / 4; |
| 296 | |
| 297 | rc = read_guest_real(vcpu, authority_table_addr, |
| 298 | &authority_table, |
| 299 | sizeof(u8)); |
| 300 | if (rc) |
| 301 | return rc; |
| 302 | |
| 303 | if ((authority_table & (0x40 >> ((eax & 3) * 2))) == 0) |
| 304 | return PGM_EXTENDED_AUTHORITY; |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | if (ale.fo == 1 && mode == GACC_STORE) |
| 309 | return PGM_PROTECTION; |
| 310 | |
| 311 | asce->val = aste.asce; |
| 312 | return 0; |
| 313 | } |
| 314 | |
| 315 | enum prot_type { |
| 316 | PROT_TYPE_LA = 0, |
| 317 | PROT_TYPE_KEYC = 1, |
| 318 | PROT_TYPE_ALC = 2, |
| 319 | PROT_TYPE_DAT = 3, |
| 320 | PROT_TYPE_IEP = 4, |
| 321 | /* Dummy value for passing an initialized value when code != PGM_PROTECTION */ |
| 322 | PROT_TYPE_DUMMY, |
| 323 | }; |
| 324 | |
| 325 | static int trans_exc_ending(struct kvm_vcpu *vcpu, int code, unsigned long gva, u8 ar, |
| 326 | enum gacc_mode mode, enum prot_type prot, bool terminate) |
| 327 | { |
| 328 | struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm; |
| 329 | union teid *teid; |
| 330 | |
| 331 | memset(pgm, 0, sizeof(*pgm)); |
| 332 | pgm->code = code; |
| 333 | teid = (union teid *)&pgm->trans_exc_code; |
| 334 | |
| 335 | switch (code) { |
| 336 | case PGM_PROTECTION: |
| 337 | switch (prot) { |
| 338 | case PROT_TYPE_DUMMY: |
| 339 | /* We should never get here, acts like termination */ |
| 340 | WARN_ON_ONCE(1); |
| 341 | break; |
| 342 | case PROT_TYPE_IEP: |
| 343 | teid->b61 = 1; |
| 344 | fallthrough; |
| 345 | case PROT_TYPE_LA: |
| 346 | teid->b56 = 1; |
| 347 | break; |
| 348 | case PROT_TYPE_KEYC: |
| 349 | teid->b60 = 1; |
| 350 | break; |
| 351 | case PROT_TYPE_ALC: |
| 352 | teid->b60 = 1; |
| 353 | fallthrough; |
| 354 | case PROT_TYPE_DAT: |
| 355 | teid->b61 = 1; |
| 356 | break; |
| 357 | } |
| 358 | if (terminate) { |
| 359 | teid->b56 = 0; |
| 360 | teid->b60 = 0; |
| 361 | teid->b61 = 0; |
| 362 | } |
| 363 | fallthrough; |
| 364 | case PGM_ASCE_TYPE: |
| 365 | case PGM_PAGE_TRANSLATION: |
| 366 | case PGM_REGION_FIRST_TRANS: |
| 367 | case PGM_REGION_SECOND_TRANS: |
| 368 | case PGM_REGION_THIRD_TRANS: |
| 369 | case PGM_SEGMENT_TRANSLATION: |
| 370 | /* |
| 371 | * op_access_id only applies to MOVE_PAGE -> set bit 61 |
| 372 | * exc_access_id has to be set to 0 for some instructions. Both |
| 373 | * cases have to be handled by the caller. |
| 374 | */ |
| 375 | teid->addr = gva >> PAGE_SHIFT; |
| 376 | teid->fsi = mode == GACC_STORE ? TEID_FSI_STORE : TEID_FSI_FETCH; |
| 377 | teid->as = psw_bits(vcpu->arch.sie_block->gpsw).as; |
| 378 | fallthrough; |
| 379 | case PGM_ALEN_TRANSLATION: |
| 380 | case PGM_ALE_SEQUENCE: |
| 381 | case PGM_ASTE_VALIDITY: |
| 382 | case PGM_ASTE_SEQUENCE: |
| 383 | case PGM_EXTENDED_AUTHORITY: |
| 384 | /* |
| 385 | * We can always store exc_access_id, as it is |
| 386 | * undefined for non-ar cases. It is undefined for |
| 387 | * most DAT protection exceptions. |
| 388 | */ |
| 389 | pgm->exc_access_id = ar; |
| 390 | break; |
| 391 | } |
| 392 | return code; |
| 393 | } |
| 394 | |
| 395 | static int trans_exc(struct kvm_vcpu *vcpu, int code, unsigned long gva, u8 ar, |
| 396 | enum gacc_mode mode, enum prot_type prot) |
| 397 | { |
| 398 | return trans_exc_ending(vcpu, code, gva, ar, mode, prot, false); |
| 399 | } |
| 400 | |
| 401 | static int get_vcpu_asce(struct kvm_vcpu *vcpu, union asce *asce, |
| 402 | unsigned long ga, u8 ar, enum gacc_mode mode) |
| 403 | { |
| 404 | int rc; |
| 405 | struct psw_bits psw = psw_bits(vcpu->arch.sie_block->gpsw); |
| 406 | |
| 407 | if (!psw.dat) { |
| 408 | asce->val = 0; |
| 409 | asce->r = 1; |
| 410 | return 0; |
| 411 | } |
| 412 | |
| 413 | if ((mode == GACC_IFETCH) && (psw.as != PSW_BITS_AS_HOME)) |
| 414 | psw.as = PSW_BITS_AS_PRIMARY; |
| 415 | |
| 416 | switch (psw.as) { |
| 417 | case PSW_BITS_AS_PRIMARY: |
| 418 | asce->val = vcpu->arch.sie_block->gcr[1]; |
| 419 | return 0; |
| 420 | case PSW_BITS_AS_SECONDARY: |
| 421 | asce->val = vcpu->arch.sie_block->gcr[7]; |
| 422 | return 0; |
| 423 | case PSW_BITS_AS_HOME: |
| 424 | asce->val = vcpu->arch.sie_block->gcr[13]; |
| 425 | return 0; |
| 426 | case PSW_BITS_AS_ACCREG: |
| 427 | rc = ar_translation(vcpu, asce, ar, mode); |
| 428 | if (rc > 0) |
| 429 | return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_ALC); |
| 430 | return rc; |
| 431 | } |
| 432 | return 0; |
| 433 | } |
| 434 | |
| 435 | static int deref_table(struct kvm *kvm, unsigned long gpa, unsigned long *val) |
| 436 | { |
| 437 | return kvm_read_guest(kvm, gpa, val, sizeof(*val)); |
| 438 | } |
| 439 | |
| 440 | /** |
| 441 | * guest_translate - translate a guest virtual into a guest absolute address |
| 442 | * @vcpu: virtual cpu |
| 443 | * @gva: guest virtual address |
| 444 | * @gpa: points to where guest physical (absolute) address should be stored |
| 445 | * @asce: effective asce |
| 446 | * @mode: indicates the access mode to be used |
| 447 | * @prot: returns the type for protection exceptions |
| 448 | * |
| 449 | * Translate a guest virtual address into a guest absolute address by means |
| 450 | * of dynamic address translation as specified by the architecture. |
| 451 | * If the resulting absolute address is not available in the configuration |
| 452 | * an addressing exception is indicated and @gpa will not be changed. |
| 453 | * |
| 454 | * Returns: - zero on success; @gpa contains the resulting absolute address |
| 455 | * - a negative value if guest access failed due to e.g. broken |
| 456 | * guest mapping |
| 457 | * - a positive value if an access exception happened. In this case |
| 458 | * the returned value is the program interruption code as defined |
| 459 | * by the architecture |
| 460 | */ |
| 461 | static unsigned long guest_translate(struct kvm_vcpu *vcpu, unsigned long gva, |
| 462 | unsigned long *gpa, const union asce asce, |
| 463 | enum gacc_mode mode, enum prot_type *prot) |
| 464 | { |
| 465 | union vaddress vaddr = {.addr = gva}; |
| 466 | union raddress raddr = {.addr = gva}; |
| 467 | union page_table_entry pte; |
| 468 | int dat_protection = 0; |
| 469 | int iep_protection = 0; |
| 470 | union ctlreg0 ctlreg0; |
| 471 | unsigned long ptr; |
| 472 | int edat1, edat2, iep; |
| 473 | |
| 474 | ctlreg0.val = vcpu->arch.sie_block->gcr[0]; |
| 475 | edat1 = ctlreg0.edat && test_kvm_facility(vcpu->kvm, 8); |
| 476 | edat2 = edat1 && test_kvm_facility(vcpu->kvm, 78); |
| 477 | iep = ctlreg0.iep && test_kvm_facility(vcpu->kvm, 130); |
| 478 | if (asce.r) |
| 479 | goto real_address; |
| 480 | ptr = asce.rsto * PAGE_SIZE; |
| 481 | switch (asce.dt) { |
| 482 | case ASCE_TYPE_REGION1: |
| 483 | if (vaddr.rfx01 > asce.tl) |
| 484 | return PGM_REGION_FIRST_TRANS; |
| 485 | ptr += vaddr.rfx * 8; |
| 486 | break; |
| 487 | case ASCE_TYPE_REGION2: |
| 488 | if (vaddr.rfx) |
| 489 | return PGM_ASCE_TYPE; |
| 490 | if (vaddr.rsx01 > asce.tl) |
| 491 | return PGM_REGION_SECOND_TRANS; |
| 492 | ptr += vaddr.rsx * 8; |
| 493 | break; |
| 494 | case ASCE_TYPE_REGION3: |
| 495 | if (vaddr.rfx || vaddr.rsx) |
| 496 | return PGM_ASCE_TYPE; |
| 497 | if (vaddr.rtx01 > asce.tl) |
| 498 | return PGM_REGION_THIRD_TRANS; |
| 499 | ptr += vaddr.rtx * 8; |
| 500 | break; |
| 501 | case ASCE_TYPE_SEGMENT: |
| 502 | if (vaddr.rfx || vaddr.rsx || vaddr.rtx) |
| 503 | return PGM_ASCE_TYPE; |
| 504 | if (vaddr.sx01 > asce.tl) |
| 505 | return PGM_SEGMENT_TRANSLATION; |
| 506 | ptr += vaddr.sx * 8; |
| 507 | break; |
| 508 | } |
| 509 | switch (asce.dt) { |
| 510 | case ASCE_TYPE_REGION1: { |
| 511 | union region1_table_entry rfte; |
| 512 | |
| 513 | if (!kvm_is_gpa_in_memslot(vcpu->kvm, ptr)) |
| 514 | return PGM_ADDRESSING; |
| 515 | if (deref_table(vcpu->kvm, ptr, &rfte.val)) |
| 516 | return -EFAULT; |
| 517 | if (rfte.i) |
| 518 | return PGM_REGION_FIRST_TRANS; |
| 519 | if (rfte.tt != TABLE_TYPE_REGION1) |
| 520 | return PGM_TRANSLATION_SPEC; |
| 521 | if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl) |
| 522 | return PGM_REGION_SECOND_TRANS; |
| 523 | if (edat1) |
| 524 | dat_protection |= rfte.p; |
| 525 | ptr = rfte.rto * PAGE_SIZE + vaddr.rsx * 8; |
| 526 | } |
| 527 | fallthrough; |
| 528 | case ASCE_TYPE_REGION2: { |
| 529 | union region2_table_entry rste; |
| 530 | |
| 531 | if (!kvm_is_gpa_in_memslot(vcpu->kvm, ptr)) |
| 532 | return PGM_ADDRESSING; |
| 533 | if (deref_table(vcpu->kvm, ptr, &rste.val)) |
| 534 | return -EFAULT; |
| 535 | if (rste.i) |
| 536 | return PGM_REGION_SECOND_TRANS; |
| 537 | if (rste.tt != TABLE_TYPE_REGION2) |
| 538 | return PGM_TRANSLATION_SPEC; |
| 539 | if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl) |
| 540 | return PGM_REGION_THIRD_TRANS; |
| 541 | if (edat1) |
| 542 | dat_protection |= rste.p; |
| 543 | ptr = rste.rto * PAGE_SIZE + vaddr.rtx * 8; |
| 544 | } |
| 545 | fallthrough; |
| 546 | case ASCE_TYPE_REGION3: { |
| 547 | union region3_table_entry rtte; |
| 548 | |
| 549 | if (!kvm_is_gpa_in_memslot(vcpu->kvm, ptr)) |
| 550 | return PGM_ADDRESSING; |
| 551 | if (deref_table(vcpu->kvm, ptr, &rtte.val)) |
| 552 | return -EFAULT; |
| 553 | if (rtte.i) |
| 554 | return PGM_REGION_THIRD_TRANS; |
| 555 | if (rtte.tt != TABLE_TYPE_REGION3) |
| 556 | return PGM_TRANSLATION_SPEC; |
| 557 | if (rtte.cr && asce.p && edat2) |
| 558 | return PGM_TRANSLATION_SPEC; |
| 559 | if (rtte.fc && edat2) { |
| 560 | dat_protection |= rtte.fc1.p; |
| 561 | iep_protection = rtte.fc1.iep; |
| 562 | raddr.rfaa = rtte.fc1.rfaa; |
| 563 | goto absolute_address; |
| 564 | } |
| 565 | if (vaddr.sx01 < rtte.fc0.tf) |
| 566 | return PGM_SEGMENT_TRANSLATION; |
| 567 | if (vaddr.sx01 > rtte.fc0.tl) |
| 568 | return PGM_SEGMENT_TRANSLATION; |
| 569 | if (edat1) |
| 570 | dat_protection |= rtte.fc0.p; |
| 571 | ptr = rtte.fc0.sto * PAGE_SIZE + vaddr.sx * 8; |
| 572 | } |
| 573 | fallthrough; |
| 574 | case ASCE_TYPE_SEGMENT: { |
| 575 | union segment_table_entry ste; |
| 576 | |
| 577 | if (!kvm_is_gpa_in_memslot(vcpu->kvm, ptr)) |
| 578 | return PGM_ADDRESSING; |
| 579 | if (deref_table(vcpu->kvm, ptr, &ste.val)) |
| 580 | return -EFAULT; |
| 581 | if (ste.i) |
| 582 | return PGM_SEGMENT_TRANSLATION; |
| 583 | if (ste.tt != TABLE_TYPE_SEGMENT) |
| 584 | return PGM_TRANSLATION_SPEC; |
| 585 | if (ste.cs && asce.p) |
| 586 | return PGM_TRANSLATION_SPEC; |
| 587 | if (ste.fc && edat1) { |
| 588 | dat_protection |= ste.fc1.p; |
| 589 | iep_protection = ste.fc1.iep; |
| 590 | raddr.sfaa = ste.fc1.sfaa; |
| 591 | goto absolute_address; |
| 592 | } |
| 593 | dat_protection |= ste.fc0.p; |
| 594 | ptr = ste.fc0.pto * (PAGE_SIZE / 2) + vaddr.px * 8; |
| 595 | } |
| 596 | } |
| 597 | if (!kvm_is_gpa_in_memslot(vcpu->kvm, ptr)) |
| 598 | return PGM_ADDRESSING; |
| 599 | if (deref_table(vcpu->kvm, ptr, &pte.val)) |
| 600 | return -EFAULT; |
| 601 | if (pte.i) |
| 602 | return PGM_PAGE_TRANSLATION; |
| 603 | if (pte.z) |
| 604 | return PGM_TRANSLATION_SPEC; |
| 605 | dat_protection |= pte.p; |
| 606 | iep_protection = pte.iep; |
| 607 | raddr.pfra = pte.pfra; |
| 608 | real_address: |
| 609 | raddr.addr = kvm_s390_real_to_abs(vcpu, raddr.addr); |
| 610 | absolute_address: |
| 611 | if (mode == GACC_STORE && dat_protection) { |
| 612 | *prot = PROT_TYPE_DAT; |
| 613 | return PGM_PROTECTION; |
| 614 | } |
| 615 | if (mode == GACC_IFETCH && iep_protection && iep) { |
| 616 | *prot = PROT_TYPE_IEP; |
| 617 | return PGM_PROTECTION; |
| 618 | } |
| 619 | if (!kvm_is_gpa_in_memslot(vcpu->kvm, raddr.addr)) |
| 620 | return PGM_ADDRESSING; |
| 621 | *gpa = raddr.addr; |
| 622 | return 0; |
| 623 | } |
| 624 | |
| 625 | static inline int is_low_address(unsigned long ga) |
| 626 | { |
| 627 | /* Check for address ranges 0..511 and 4096..4607 */ |
| 628 | return (ga & ~0x11fful) == 0; |
| 629 | } |
| 630 | |
| 631 | static int low_address_protection_enabled(struct kvm_vcpu *vcpu, |
| 632 | const union asce asce) |
| 633 | { |
| 634 | union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]}; |
| 635 | psw_t *psw = &vcpu->arch.sie_block->gpsw; |
| 636 | |
| 637 | if (!ctlreg0.lap) |
| 638 | return 0; |
| 639 | if (psw_bits(*psw).dat && asce.p) |
| 640 | return 0; |
| 641 | return 1; |
| 642 | } |
| 643 | |
| 644 | static int vm_check_access_key(struct kvm *kvm, u8 access_key, |
| 645 | enum gacc_mode mode, gpa_t gpa) |
| 646 | { |
| 647 | u8 storage_key, access_control; |
| 648 | bool fetch_protected; |
| 649 | unsigned long hva; |
| 650 | int r; |
| 651 | |
| 652 | if (access_key == 0) |
| 653 | return 0; |
| 654 | |
| 655 | hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); |
| 656 | if (kvm_is_error_hva(hva)) |
| 657 | return PGM_ADDRESSING; |
| 658 | |
| 659 | mmap_read_lock(current->mm); |
| 660 | r = get_guest_storage_key(current->mm, hva, &storage_key); |
| 661 | mmap_read_unlock(current->mm); |
| 662 | if (r) |
| 663 | return r; |
| 664 | access_control = FIELD_GET(_PAGE_ACC_BITS, storage_key); |
| 665 | if (access_control == access_key) |
| 666 | return 0; |
| 667 | fetch_protected = storage_key & _PAGE_FP_BIT; |
| 668 | if ((mode == GACC_FETCH || mode == GACC_IFETCH) && !fetch_protected) |
| 669 | return 0; |
| 670 | return PGM_PROTECTION; |
| 671 | } |
| 672 | |
| 673 | static bool fetch_prot_override_applicable(struct kvm_vcpu *vcpu, enum gacc_mode mode, |
| 674 | union asce asce) |
| 675 | { |
| 676 | psw_t *psw = &vcpu->arch.sie_block->gpsw; |
| 677 | unsigned long override; |
| 678 | |
| 679 | if (mode == GACC_FETCH || mode == GACC_IFETCH) { |
| 680 | /* check if fetch protection override enabled */ |
| 681 | override = vcpu->arch.sie_block->gcr[0]; |
| 682 | override &= CR0_FETCH_PROTECTION_OVERRIDE; |
| 683 | /* not applicable if subject to DAT && private space */ |
| 684 | override = override && !(psw_bits(*psw).dat && asce.p); |
| 685 | return override; |
| 686 | } |
| 687 | return false; |
| 688 | } |
| 689 | |
| 690 | static bool fetch_prot_override_applies(unsigned long ga, unsigned int len) |
| 691 | { |
| 692 | return ga < 2048 && ga + len <= 2048; |
| 693 | } |
| 694 | |
| 695 | static bool storage_prot_override_applicable(struct kvm_vcpu *vcpu) |
| 696 | { |
| 697 | /* check if storage protection override enabled */ |
| 698 | return vcpu->arch.sie_block->gcr[0] & CR0_STORAGE_PROTECTION_OVERRIDE; |
| 699 | } |
| 700 | |
| 701 | static bool storage_prot_override_applies(u8 access_control) |
| 702 | { |
| 703 | /* matches special storage protection override key (9) -> allow */ |
| 704 | return access_control == PAGE_SPO_ACC; |
| 705 | } |
| 706 | |
| 707 | static int vcpu_check_access_key(struct kvm_vcpu *vcpu, u8 access_key, |
| 708 | enum gacc_mode mode, union asce asce, gpa_t gpa, |
| 709 | unsigned long ga, unsigned int len) |
| 710 | { |
| 711 | u8 storage_key, access_control; |
| 712 | unsigned long hva; |
| 713 | int r; |
| 714 | |
| 715 | /* access key 0 matches any storage key -> allow */ |
| 716 | if (access_key == 0) |
| 717 | return 0; |
| 718 | /* |
| 719 | * caller needs to ensure that gfn is accessible, so we can |
| 720 | * assume that this cannot fail |
| 721 | */ |
| 722 | hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(gpa)); |
| 723 | mmap_read_lock(current->mm); |
| 724 | r = get_guest_storage_key(current->mm, hva, &storage_key); |
| 725 | mmap_read_unlock(current->mm); |
| 726 | if (r) |
| 727 | return r; |
| 728 | access_control = FIELD_GET(_PAGE_ACC_BITS, storage_key); |
| 729 | /* access key matches storage key -> allow */ |
| 730 | if (access_control == access_key) |
| 731 | return 0; |
| 732 | if (mode == GACC_FETCH || mode == GACC_IFETCH) { |
| 733 | /* it is a fetch and fetch protection is off -> allow */ |
| 734 | if (!(storage_key & _PAGE_FP_BIT)) |
| 735 | return 0; |
| 736 | if (fetch_prot_override_applicable(vcpu, mode, asce) && |
| 737 | fetch_prot_override_applies(ga, len)) |
| 738 | return 0; |
| 739 | } |
| 740 | if (storage_prot_override_applicable(vcpu) && |
| 741 | storage_prot_override_applies(access_control)) |
| 742 | return 0; |
| 743 | return PGM_PROTECTION; |
| 744 | } |
| 745 | |
| 746 | /** |
| 747 | * guest_range_to_gpas() - Calculate guest physical addresses of page fragments |
| 748 | * covering a logical range |
| 749 | * @vcpu: virtual cpu |
| 750 | * @ga: guest address, start of range |
| 751 | * @ar: access register |
| 752 | * @gpas: output argument, may be NULL |
| 753 | * @len: length of range in bytes |
| 754 | * @asce: address-space-control element to use for translation |
| 755 | * @mode: access mode |
| 756 | * @access_key: access key to mach the range's storage keys against |
| 757 | * |
| 758 | * Translate a logical range to a series of guest absolute addresses, |
| 759 | * such that the concatenation of page fragments starting at each gpa make up |
| 760 | * the whole range. |
| 761 | * The translation is performed as if done by the cpu for the given @asce, @ar, |
| 762 | * @mode and state of the @vcpu. |
| 763 | * If the translation causes an exception, its program interruption code is |
| 764 | * returned and the &struct kvm_s390_pgm_info pgm member of @vcpu is modified |
| 765 | * such that a subsequent call to kvm_s390_inject_prog_vcpu() will inject |
| 766 | * a correct exception into the guest. |
| 767 | * The resulting gpas are stored into @gpas, unless it is NULL. |
| 768 | * |
| 769 | * Note: All fragments except the first one start at the beginning of a page. |
| 770 | * When deriving the boundaries of a fragment from a gpa, all but the last |
| 771 | * fragment end at the end of the page. |
| 772 | * |
| 773 | * Return: |
| 774 | * * 0 - success |
| 775 | * * <0 - translation could not be performed, for example if guest |
| 776 | * memory could not be accessed |
| 777 | * * >0 - an access exception occurred. In this case the returned value |
| 778 | * is the program interruption code and the contents of pgm may |
| 779 | * be used to inject an exception into the guest. |
| 780 | */ |
| 781 | static int guest_range_to_gpas(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar, |
| 782 | unsigned long *gpas, unsigned long len, |
| 783 | const union asce asce, enum gacc_mode mode, |
| 784 | u8 access_key) |
| 785 | { |
| 786 | psw_t *psw = &vcpu->arch.sie_block->gpsw; |
| 787 | unsigned int offset = offset_in_page(ga); |
| 788 | unsigned int fragment_len; |
| 789 | int lap_enabled, rc = 0; |
| 790 | enum prot_type prot; |
| 791 | unsigned long gpa; |
| 792 | |
| 793 | lap_enabled = low_address_protection_enabled(vcpu, asce); |
| 794 | while (min(PAGE_SIZE - offset, len) > 0) { |
| 795 | fragment_len = min(PAGE_SIZE - offset, len); |
| 796 | ga = kvm_s390_logical_to_effective(vcpu, ga); |
| 797 | if (mode == GACC_STORE && lap_enabled && is_low_address(ga)) |
| 798 | return trans_exc(vcpu, PGM_PROTECTION, ga, ar, mode, |
| 799 | PROT_TYPE_LA); |
| 800 | if (psw_bits(*psw).dat) { |
| 801 | rc = guest_translate(vcpu, ga, &gpa, asce, mode, &prot); |
| 802 | if (rc < 0) |
| 803 | return rc; |
| 804 | } else { |
| 805 | gpa = kvm_s390_real_to_abs(vcpu, ga); |
| 806 | if (!kvm_is_gpa_in_memslot(vcpu->kvm, gpa)) { |
| 807 | rc = PGM_ADDRESSING; |
| 808 | prot = PROT_TYPE_DUMMY; |
| 809 | } |
| 810 | } |
| 811 | if (rc) |
| 812 | return trans_exc(vcpu, rc, ga, ar, mode, prot); |
| 813 | rc = vcpu_check_access_key(vcpu, access_key, mode, asce, gpa, ga, |
| 814 | fragment_len); |
| 815 | if (rc) |
| 816 | return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_KEYC); |
| 817 | if (gpas) |
| 818 | *gpas++ = gpa; |
| 819 | offset = 0; |
| 820 | ga += fragment_len; |
| 821 | len -= fragment_len; |
| 822 | } |
| 823 | return 0; |
| 824 | } |
| 825 | |
| 826 | static int access_guest_page(struct kvm *kvm, enum gacc_mode mode, gpa_t gpa, |
| 827 | void *data, unsigned int len) |
| 828 | { |
| 829 | const unsigned int offset = offset_in_page(gpa); |
| 830 | const gfn_t gfn = gpa_to_gfn(gpa); |
| 831 | int rc; |
| 832 | |
| 833 | if (!gfn_to_memslot(kvm, gfn)) |
| 834 | return PGM_ADDRESSING; |
| 835 | if (mode == GACC_STORE) |
| 836 | rc = kvm_write_guest_page(kvm, gfn, data, offset, len); |
| 837 | else |
| 838 | rc = kvm_read_guest_page(kvm, gfn, data, offset, len); |
| 839 | return rc; |
| 840 | } |
| 841 | |
| 842 | static int |
| 843 | access_guest_page_with_key(struct kvm *kvm, enum gacc_mode mode, gpa_t gpa, |
| 844 | void *data, unsigned int len, u8 access_key) |
| 845 | { |
| 846 | struct kvm_memory_slot *slot; |
| 847 | bool writable; |
| 848 | gfn_t gfn; |
| 849 | hva_t hva; |
| 850 | int rc; |
| 851 | |
| 852 | gfn = gpa >> PAGE_SHIFT; |
| 853 | slot = gfn_to_memslot(kvm, gfn); |
| 854 | hva = gfn_to_hva_memslot_prot(slot, gfn, &writable); |
| 855 | |
| 856 | if (kvm_is_error_hva(hva)) |
| 857 | return PGM_ADDRESSING; |
| 858 | /* |
| 859 | * Check if it's a ro memslot, even tho that can't occur (they're unsupported). |
| 860 | * Don't try to actually handle that case. |
| 861 | */ |
| 862 | if (!writable && mode == GACC_STORE) |
| 863 | return -EOPNOTSUPP; |
| 864 | hva += offset_in_page(gpa); |
| 865 | if (mode == GACC_STORE) |
| 866 | rc = copy_to_user_key((void __user *)hva, data, len, access_key); |
| 867 | else |
| 868 | rc = copy_from_user_key(data, (void __user *)hva, len, access_key); |
| 869 | if (rc) |
| 870 | return PGM_PROTECTION; |
| 871 | if (mode == GACC_STORE) |
| 872 | mark_page_dirty_in_slot(kvm, slot, gfn); |
| 873 | return 0; |
| 874 | } |
| 875 | |
| 876 | int access_guest_abs_with_key(struct kvm *kvm, gpa_t gpa, void *data, |
| 877 | unsigned long len, enum gacc_mode mode, u8 access_key) |
| 878 | { |
| 879 | int offset = offset_in_page(gpa); |
| 880 | int fragment_len; |
| 881 | int rc; |
| 882 | |
| 883 | while (min(PAGE_SIZE - offset, len) > 0) { |
| 884 | fragment_len = min(PAGE_SIZE - offset, len); |
| 885 | rc = access_guest_page_with_key(kvm, mode, gpa, data, fragment_len, access_key); |
| 886 | if (rc) |
| 887 | return rc; |
| 888 | offset = 0; |
| 889 | len -= fragment_len; |
| 890 | data += fragment_len; |
| 891 | gpa += fragment_len; |
| 892 | } |
| 893 | return 0; |
| 894 | } |
| 895 | |
| 896 | int access_guest_with_key(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar, |
| 897 | void *data, unsigned long len, enum gacc_mode mode, |
| 898 | u8 access_key) |
| 899 | { |
| 900 | psw_t *psw = &vcpu->arch.sie_block->gpsw; |
| 901 | unsigned long nr_pages, idx; |
| 902 | unsigned long gpa_array[2]; |
| 903 | unsigned int fragment_len; |
| 904 | unsigned long *gpas; |
| 905 | enum prot_type prot; |
| 906 | int need_ipte_lock; |
| 907 | union asce asce; |
| 908 | bool try_storage_prot_override; |
| 909 | bool try_fetch_prot_override; |
| 910 | int rc; |
| 911 | |
| 912 | if (!len) |
| 913 | return 0; |
| 914 | ga = kvm_s390_logical_to_effective(vcpu, ga); |
| 915 | rc = get_vcpu_asce(vcpu, &asce, ga, ar, mode); |
| 916 | if (rc) |
| 917 | return rc; |
| 918 | nr_pages = (((ga & ~PAGE_MASK) + len - 1) >> PAGE_SHIFT) + 1; |
| 919 | gpas = gpa_array; |
| 920 | if (nr_pages > ARRAY_SIZE(gpa_array)) |
| 921 | gpas = vmalloc(array_size(nr_pages, sizeof(unsigned long))); |
| 922 | if (!gpas) |
| 923 | return -ENOMEM; |
| 924 | try_fetch_prot_override = fetch_prot_override_applicable(vcpu, mode, asce); |
| 925 | try_storage_prot_override = storage_prot_override_applicable(vcpu); |
| 926 | need_ipte_lock = psw_bits(*psw).dat && !asce.r; |
| 927 | if (need_ipte_lock) |
| 928 | ipte_lock(vcpu->kvm); |
| 929 | /* |
| 930 | * Since we do the access further down ultimately via a move instruction |
| 931 | * that does key checking and returns an error in case of a protection |
| 932 | * violation, we don't need to do the check during address translation. |
| 933 | * Skip it by passing access key 0, which matches any storage key, |
| 934 | * obviating the need for any further checks. As a result the check is |
| 935 | * handled entirely in hardware on access, we only need to take care to |
| 936 | * forego key protection checking if fetch protection override applies or |
| 937 | * retry with the special key 9 in case of storage protection override. |
| 938 | */ |
| 939 | rc = guest_range_to_gpas(vcpu, ga, ar, gpas, len, asce, mode, 0); |
| 940 | if (rc) |
| 941 | goto out_unlock; |
| 942 | for (idx = 0; idx < nr_pages; idx++) { |
| 943 | fragment_len = min(PAGE_SIZE - offset_in_page(gpas[idx]), len); |
| 944 | if (try_fetch_prot_override && fetch_prot_override_applies(ga, fragment_len)) { |
| 945 | rc = access_guest_page(vcpu->kvm, mode, gpas[idx], |
| 946 | data, fragment_len); |
| 947 | } else { |
| 948 | rc = access_guest_page_with_key(vcpu->kvm, mode, gpas[idx], |
| 949 | data, fragment_len, access_key); |
| 950 | } |
| 951 | if (rc == PGM_PROTECTION && try_storage_prot_override) |
| 952 | rc = access_guest_page_with_key(vcpu->kvm, mode, gpas[idx], |
| 953 | data, fragment_len, PAGE_SPO_ACC); |
| 954 | if (rc) |
| 955 | break; |
| 956 | len -= fragment_len; |
| 957 | data += fragment_len; |
| 958 | ga = kvm_s390_logical_to_effective(vcpu, ga + fragment_len); |
| 959 | } |
| 960 | if (rc > 0) { |
| 961 | bool terminate = (mode == GACC_STORE) && (idx > 0); |
| 962 | |
| 963 | if (rc == PGM_PROTECTION) |
| 964 | prot = PROT_TYPE_KEYC; |
| 965 | else |
| 966 | prot = PROT_TYPE_DUMMY; |
| 967 | rc = trans_exc_ending(vcpu, rc, ga, ar, mode, prot, terminate); |
| 968 | } |
| 969 | out_unlock: |
| 970 | if (need_ipte_lock) |
| 971 | ipte_unlock(vcpu->kvm); |
| 972 | if (nr_pages > ARRAY_SIZE(gpa_array)) |
| 973 | vfree(gpas); |
| 974 | return rc; |
| 975 | } |
| 976 | |
| 977 | int access_guest_real(struct kvm_vcpu *vcpu, unsigned long gra, |
| 978 | void *data, unsigned long len, enum gacc_mode mode) |
| 979 | { |
| 980 | unsigned int fragment_len; |
| 981 | unsigned long gpa; |
| 982 | int rc = 0; |
| 983 | |
| 984 | while (len && !rc) { |
| 985 | gpa = kvm_s390_real_to_abs(vcpu, gra); |
| 986 | fragment_len = min(PAGE_SIZE - offset_in_page(gpa), len); |
| 987 | rc = access_guest_page(vcpu->kvm, mode, gpa, data, fragment_len); |
| 988 | len -= fragment_len; |
| 989 | gra += fragment_len; |
| 990 | data += fragment_len; |
| 991 | } |
| 992 | if (rc > 0) |
| 993 | vcpu->arch.pgm.code = rc; |
| 994 | return rc; |
| 995 | } |
| 996 | |
| 997 | /** |
| 998 | * cmpxchg_guest_abs_with_key() - Perform cmpxchg on guest absolute address. |
| 999 | * @kvm: Virtual machine instance. |
| 1000 | * @gpa: Absolute guest address of the location to be changed. |
| 1001 | * @len: Operand length of the cmpxchg, required: 1 <= len <= 16. Providing a |
| 1002 | * non power of two will result in failure. |
| 1003 | * @old_addr: Pointer to old value. If the location at @gpa contains this value, |
| 1004 | * the exchange will succeed. After calling cmpxchg_guest_abs_with_key() |
| 1005 | * *@old_addr contains the value at @gpa before the attempt to |
| 1006 | * exchange the value. |
| 1007 | * @new: The value to place at @gpa. |
| 1008 | * @access_key: The access key to use for the guest access. |
| 1009 | * @success: output value indicating if an exchange occurred. |
| 1010 | * |
| 1011 | * Atomically exchange the value at @gpa by @new, if it contains *@old. |
| 1012 | * Honors storage keys. |
| 1013 | * |
| 1014 | * Return: * 0: successful exchange |
| 1015 | * * >0: a program interruption code indicating the reason cmpxchg could |
| 1016 | * not be attempted |
| 1017 | * * -EINVAL: address misaligned or len not power of two |
| 1018 | * * -EAGAIN: transient failure (len 1 or 2) |
| 1019 | * * -EOPNOTSUPP: read-only memslot (should never occur) |
| 1020 | */ |
| 1021 | int cmpxchg_guest_abs_with_key(struct kvm *kvm, gpa_t gpa, int len, |
| 1022 | __uint128_t *old_addr, __uint128_t new, |
| 1023 | u8 access_key, bool *success) |
| 1024 | { |
| 1025 | gfn_t gfn = gpa_to_gfn(gpa); |
| 1026 | struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); |
| 1027 | bool writable; |
| 1028 | hva_t hva; |
| 1029 | int ret; |
| 1030 | |
| 1031 | if (!IS_ALIGNED(gpa, len)) |
| 1032 | return -EINVAL; |
| 1033 | |
| 1034 | hva = gfn_to_hva_memslot_prot(slot, gfn, &writable); |
| 1035 | if (kvm_is_error_hva(hva)) |
| 1036 | return PGM_ADDRESSING; |
| 1037 | /* |
| 1038 | * Check if it's a read-only memslot, even though that cannot occur |
| 1039 | * since those are unsupported. |
| 1040 | * Don't try to actually handle that case. |
| 1041 | */ |
| 1042 | if (!writable) |
| 1043 | return -EOPNOTSUPP; |
| 1044 | |
| 1045 | hva += offset_in_page(gpa); |
| 1046 | /* |
| 1047 | * The cmpxchg_user_key macro depends on the type of "old", so we need |
| 1048 | * a case for each valid length and get some code duplication as long |
| 1049 | * as we don't introduce a new macro. |
| 1050 | */ |
| 1051 | switch (len) { |
| 1052 | case 1: { |
| 1053 | u8 old; |
| 1054 | |
| 1055 | ret = cmpxchg_user_key((u8 __user *)hva, &old, *old_addr, new, access_key); |
| 1056 | *success = !ret && old == *old_addr; |
| 1057 | *old_addr = old; |
| 1058 | break; |
| 1059 | } |
| 1060 | case 2: { |
| 1061 | u16 old; |
| 1062 | |
| 1063 | ret = cmpxchg_user_key((u16 __user *)hva, &old, *old_addr, new, access_key); |
| 1064 | *success = !ret && old == *old_addr; |
| 1065 | *old_addr = old; |
| 1066 | break; |
| 1067 | } |
| 1068 | case 4: { |
| 1069 | u32 old; |
| 1070 | |
| 1071 | ret = cmpxchg_user_key((u32 __user *)hva, &old, *old_addr, new, access_key); |
| 1072 | *success = !ret && old == *old_addr; |
| 1073 | *old_addr = old; |
| 1074 | break; |
| 1075 | } |
| 1076 | case 8: { |
| 1077 | u64 old; |
| 1078 | |
| 1079 | ret = cmpxchg_user_key((u64 __user *)hva, &old, *old_addr, new, access_key); |
| 1080 | *success = !ret && old == *old_addr; |
| 1081 | *old_addr = old; |
| 1082 | break; |
| 1083 | } |
| 1084 | case 16: { |
| 1085 | __uint128_t old; |
| 1086 | |
| 1087 | ret = cmpxchg_user_key((__uint128_t __user *)hva, &old, *old_addr, new, access_key); |
| 1088 | *success = !ret && old == *old_addr; |
| 1089 | *old_addr = old; |
| 1090 | break; |
| 1091 | } |
| 1092 | default: |
| 1093 | return -EINVAL; |
| 1094 | } |
| 1095 | if (*success) |
| 1096 | mark_page_dirty_in_slot(kvm, slot, gfn); |
| 1097 | /* |
| 1098 | * Assume that the fault is caused by protection, either key protection |
| 1099 | * or user page write protection. |
| 1100 | */ |
| 1101 | if (ret == -EFAULT) |
| 1102 | ret = PGM_PROTECTION; |
| 1103 | return ret; |
| 1104 | } |
| 1105 | |
| 1106 | /** |
| 1107 | * guest_translate_address_with_key - translate guest logical into guest absolute address |
| 1108 | * @vcpu: virtual cpu |
| 1109 | * @gva: Guest virtual address |
| 1110 | * @ar: Access register |
| 1111 | * @gpa: Guest physical address |
| 1112 | * @mode: Translation access mode |
| 1113 | * @access_key: access key to mach the storage key with |
| 1114 | * |
| 1115 | * Parameter semantics are the same as the ones from guest_translate. |
| 1116 | * The memory contents at the guest address are not changed. |
| 1117 | * |
| 1118 | * Note: The IPTE lock is not taken during this function, so the caller |
| 1119 | * has to take care of this. |
| 1120 | */ |
| 1121 | int guest_translate_address_with_key(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar, |
| 1122 | unsigned long *gpa, enum gacc_mode mode, |
| 1123 | u8 access_key) |
| 1124 | { |
| 1125 | union asce asce; |
| 1126 | int rc; |
| 1127 | |
| 1128 | gva = kvm_s390_logical_to_effective(vcpu, gva); |
| 1129 | rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode); |
| 1130 | if (rc) |
| 1131 | return rc; |
| 1132 | return guest_range_to_gpas(vcpu, gva, ar, gpa, 1, asce, mode, |
| 1133 | access_key); |
| 1134 | } |
| 1135 | |
| 1136 | /** |
| 1137 | * check_gva_range - test a range of guest virtual addresses for accessibility |
| 1138 | * @vcpu: virtual cpu |
| 1139 | * @gva: Guest virtual address |
| 1140 | * @ar: Access register |
| 1141 | * @length: Length of test range |
| 1142 | * @mode: Translation access mode |
| 1143 | * @access_key: access key to mach the storage keys with |
| 1144 | */ |
| 1145 | int check_gva_range(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar, |
| 1146 | unsigned long length, enum gacc_mode mode, u8 access_key) |
| 1147 | { |
| 1148 | union asce asce; |
| 1149 | int rc = 0; |
| 1150 | |
| 1151 | rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode); |
| 1152 | if (rc) |
| 1153 | return rc; |
| 1154 | ipte_lock(vcpu->kvm); |
| 1155 | rc = guest_range_to_gpas(vcpu, gva, ar, NULL, length, asce, mode, |
| 1156 | access_key); |
| 1157 | ipte_unlock(vcpu->kvm); |
| 1158 | |
| 1159 | return rc; |
| 1160 | } |
| 1161 | |
| 1162 | /** |
| 1163 | * check_gpa_range - test a range of guest physical addresses for accessibility |
| 1164 | * @kvm: virtual machine instance |
| 1165 | * @gpa: guest physical address |
| 1166 | * @length: length of test range |
| 1167 | * @mode: access mode to test, relevant for storage keys |
| 1168 | * @access_key: access key to mach the storage keys with |
| 1169 | */ |
| 1170 | int check_gpa_range(struct kvm *kvm, unsigned long gpa, unsigned long length, |
| 1171 | enum gacc_mode mode, u8 access_key) |
| 1172 | { |
| 1173 | unsigned int fragment_len; |
| 1174 | int rc = 0; |
| 1175 | |
| 1176 | while (length && !rc) { |
| 1177 | fragment_len = min(PAGE_SIZE - offset_in_page(gpa), length); |
| 1178 | rc = vm_check_access_key(kvm, access_key, mode, gpa); |
| 1179 | length -= fragment_len; |
| 1180 | gpa += fragment_len; |
| 1181 | } |
| 1182 | return rc; |
| 1183 | } |
| 1184 | |
| 1185 | /** |
| 1186 | * kvm_s390_check_low_addr_prot_real - check for low-address protection |
| 1187 | * @vcpu: virtual cpu |
| 1188 | * @gra: Guest real address |
| 1189 | * |
| 1190 | * Checks whether an address is subject to low-address protection and set |
| 1191 | * up vcpu->arch.pgm accordingly if necessary. |
| 1192 | * |
| 1193 | * Return: 0 if no protection exception, or PGM_PROTECTION if protected. |
| 1194 | */ |
| 1195 | int kvm_s390_check_low_addr_prot_real(struct kvm_vcpu *vcpu, unsigned long gra) |
| 1196 | { |
| 1197 | union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]}; |
| 1198 | |
| 1199 | if (!ctlreg0.lap || !is_low_address(gra)) |
| 1200 | return 0; |
| 1201 | return trans_exc(vcpu, PGM_PROTECTION, gra, 0, GACC_STORE, PROT_TYPE_LA); |
| 1202 | } |
| 1203 | |
| 1204 | /** |
| 1205 | * kvm_s390_shadow_tables - walk the guest page table and create shadow tables |
| 1206 | * @sg: pointer to the shadow guest address space structure |
| 1207 | * @saddr: faulting address in the shadow gmap |
| 1208 | * @pgt: pointer to the beginning of the page table for the given address if |
| 1209 | * successful (return value 0), or to the first invalid DAT entry in |
| 1210 | * case of exceptions (return value > 0) |
| 1211 | * @dat_protection: referenced memory is write protected |
| 1212 | * @fake: pgt references contiguous guest memory block, not a pgtable |
| 1213 | */ |
| 1214 | static int kvm_s390_shadow_tables(struct gmap *sg, unsigned long saddr, |
| 1215 | unsigned long *pgt, int *dat_protection, |
| 1216 | int *fake) |
| 1217 | { |
| 1218 | struct kvm *kvm; |
| 1219 | struct gmap *parent; |
| 1220 | union asce asce; |
| 1221 | union vaddress vaddr; |
| 1222 | unsigned long ptr; |
| 1223 | int rc; |
| 1224 | |
| 1225 | *fake = 0; |
| 1226 | *dat_protection = 0; |
| 1227 | kvm = sg->private; |
| 1228 | parent = sg->parent; |
| 1229 | vaddr.addr = saddr; |
| 1230 | asce.val = sg->orig_asce; |
| 1231 | ptr = asce.rsto * PAGE_SIZE; |
| 1232 | if (asce.r) { |
| 1233 | *fake = 1; |
| 1234 | ptr = 0; |
| 1235 | asce.dt = ASCE_TYPE_REGION1; |
| 1236 | } |
| 1237 | switch (asce.dt) { |
| 1238 | case ASCE_TYPE_REGION1: |
| 1239 | if (vaddr.rfx01 > asce.tl && !*fake) |
| 1240 | return PGM_REGION_FIRST_TRANS; |
| 1241 | break; |
| 1242 | case ASCE_TYPE_REGION2: |
| 1243 | if (vaddr.rfx) |
| 1244 | return PGM_ASCE_TYPE; |
| 1245 | if (vaddr.rsx01 > asce.tl) |
| 1246 | return PGM_REGION_SECOND_TRANS; |
| 1247 | break; |
| 1248 | case ASCE_TYPE_REGION3: |
| 1249 | if (vaddr.rfx || vaddr.rsx) |
| 1250 | return PGM_ASCE_TYPE; |
| 1251 | if (vaddr.rtx01 > asce.tl) |
| 1252 | return PGM_REGION_THIRD_TRANS; |
| 1253 | break; |
| 1254 | case ASCE_TYPE_SEGMENT: |
| 1255 | if (vaddr.rfx || vaddr.rsx || vaddr.rtx) |
| 1256 | return PGM_ASCE_TYPE; |
| 1257 | if (vaddr.sx01 > asce.tl) |
| 1258 | return PGM_SEGMENT_TRANSLATION; |
| 1259 | break; |
| 1260 | } |
| 1261 | |
| 1262 | switch (asce.dt) { |
| 1263 | case ASCE_TYPE_REGION1: { |
| 1264 | union region1_table_entry rfte; |
| 1265 | |
| 1266 | if (*fake) { |
| 1267 | ptr += vaddr.rfx * _REGION1_SIZE; |
| 1268 | rfte.val = ptr; |
| 1269 | goto shadow_r2t; |
| 1270 | } |
| 1271 | *pgt = ptr + vaddr.rfx * 8; |
| 1272 | rc = gmap_read_table(parent, ptr + vaddr.rfx * 8, &rfte.val); |
| 1273 | if (rc) |
| 1274 | return rc; |
| 1275 | if (rfte.i) |
| 1276 | return PGM_REGION_FIRST_TRANS; |
| 1277 | if (rfte.tt != TABLE_TYPE_REGION1) |
| 1278 | return PGM_TRANSLATION_SPEC; |
| 1279 | if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl) |
| 1280 | return PGM_REGION_SECOND_TRANS; |
| 1281 | if (sg->edat_level >= 1) |
| 1282 | *dat_protection |= rfte.p; |
| 1283 | ptr = rfte.rto * PAGE_SIZE; |
| 1284 | shadow_r2t: |
| 1285 | rc = gmap_shadow_r2t(sg, saddr, rfte.val, *fake); |
| 1286 | if (rc) |
| 1287 | return rc; |
| 1288 | kvm->stat.gmap_shadow_r1_entry++; |
| 1289 | } |
| 1290 | fallthrough; |
| 1291 | case ASCE_TYPE_REGION2: { |
| 1292 | union region2_table_entry rste; |
| 1293 | |
| 1294 | if (*fake) { |
| 1295 | ptr += vaddr.rsx * _REGION2_SIZE; |
| 1296 | rste.val = ptr; |
| 1297 | goto shadow_r3t; |
| 1298 | } |
| 1299 | *pgt = ptr + vaddr.rsx * 8; |
| 1300 | rc = gmap_read_table(parent, ptr + vaddr.rsx * 8, &rste.val); |
| 1301 | if (rc) |
| 1302 | return rc; |
| 1303 | if (rste.i) |
| 1304 | return PGM_REGION_SECOND_TRANS; |
| 1305 | if (rste.tt != TABLE_TYPE_REGION2) |
| 1306 | return PGM_TRANSLATION_SPEC; |
| 1307 | if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl) |
| 1308 | return PGM_REGION_THIRD_TRANS; |
| 1309 | if (sg->edat_level >= 1) |
| 1310 | *dat_protection |= rste.p; |
| 1311 | ptr = rste.rto * PAGE_SIZE; |
| 1312 | shadow_r3t: |
| 1313 | rste.p |= *dat_protection; |
| 1314 | rc = gmap_shadow_r3t(sg, saddr, rste.val, *fake); |
| 1315 | if (rc) |
| 1316 | return rc; |
| 1317 | kvm->stat.gmap_shadow_r2_entry++; |
| 1318 | } |
| 1319 | fallthrough; |
| 1320 | case ASCE_TYPE_REGION3: { |
| 1321 | union region3_table_entry rtte; |
| 1322 | |
| 1323 | if (*fake) { |
| 1324 | ptr += vaddr.rtx * _REGION3_SIZE; |
| 1325 | rtte.val = ptr; |
| 1326 | goto shadow_sgt; |
| 1327 | } |
| 1328 | *pgt = ptr + vaddr.rtx * 8; |
| 1329 | rc = gmap_read_table(parent, ptr + vaddr.rtx * 8, &rtte.val); |
| 1330 | if (rc) |
| 1331 | return rc; |
| 1332 | if (rtte.i) |
| 1333 | return PGM_REGION_THIRD_TRANS; |
| 1334 | if (rtte.tt != TABLE_TYPE_REGION3) |
| 1335 | return PGM_TRANSLATION_SPEC; |
| 1336 | if (rtte.cr && asce.p && sg->edat_level >= 2) |
| 1337 | return PGM_TRANSLATION_SPEC; |
| 1338 | if (rtte.fc && sg->edat_level >= 2) { |
| 1339 | *dat_protection |= rtte.fc0.p; |
| 1340 | *fake = 1; |
| 1341 | ptr = rtte.fc1.rfaa * _REGION3_SIZE; |
| 1342 | rtte.val = ptr; |
| 1343 | goto shadow_sgt; |
| 1344 | } |
| 1345 | if (vaddr.sx01 < rtte.fc0.tf || vaddr.sx01 > rtte.fc0.tl) |
| 1346 | return PGM_SEGMENT_TRANSLATION; |
| 1347 | if (sg->edat_level >= 1) |
| 1348 | *dat_protection |= rtte.fc0.p; |
| 1349 | ptr = rtte.fc0.sto * PAGE_SIZE; |
| 1350 | shadow_sgt: |
| 1351 | rtte.fc0.p |= *dat_protection; |
| 1352 | rc = gmap_shadow_sgt(sg, saddr, rtte.val, *fake); |
| 1353 | if (rc) |
| 1354 | return rc; |
| 1355 | kvm->stat.gmap_shadow_r3_entry++; |
| 1356 | } |
| 1357 | fallthrough; |
| 1358 | case ASCE_TYPE_SEGMENT: { |
| 1359 | union segment_table_entry ste; |
| 1360 | |
| 1361 | if (*fake) { |
| 1362 | ptr += vaddr.sx * _SEGMENT_SIZE; |
| 1363 | ste.val = ptr; |
| 1364 | goto shadow_pgt; |
| 1365 | } |
| 1366 | *pgt = ptr + vaddr.sx * 8; |
| 1367 | rc = gmap_read_table(parent, ptr + vaddr.sx * 8, &ste.val); |
| 1368 | if (rc) |
| 1369 | return rc; |
| 1370 | if (ste.i) |
| 1371 | return PGM_SEGMENT_TRANSLATION; |
| 1372 | if (ste.tt != TABLE_TYPE_SEGMENT) |
| 1373 | return PGM_TRANSLATION_SPEC; |
| 1374 | if (ste.cs && asce.p) |
| 1375 | return PGM_TRANSLATION_SPEC; |
| 1376 | *dat_protection |= ste.fc0.p; |
| 1377 | if (ste.fc && sg->edat_level >= 1) { |
| 1378 | *fake = 1; |
| 1379 | ptr = ste.fc1.sfaa * _SEGMENT_SIZE; |
| 1380 | ste.val = ptr; |
| 1381 | goto shadow_pgt; |
| 1382 | } |
| 1383 | ptr = ste.fc0.pto * (PAGE_SIZE / 2); |
| 1384 | shadow_pgt: |
| 1385 | ste.fc0.p |= *dat_protection; |
| 1386 | rc = gmap_shadow_pgt(sg, saddr, ste.val, *fake); |
| 1387 | if (rc) |
| 1388 | return rc; |
| 1389 | kvm->stat.gmap_shadow_sg_entry++; |
| 1390 | } |
| 1391 | } |
| 1392 | /* Return the parent address of the page table */ |
| 1393 | *pgt = ptr; |
| 1394 | return 0; |
| 1395 | } |
| 1396 | |
| 1397 | /** |
| 1398 | * shadow_pgt_lookup() - find a shadow page table |
| 1399 | * @sg: pointer to the shadow guest address space structure |
| 1400 | * @saddr: the address in the shadow aguest address space |
| 1401 | * @pgt: parent gmap address of the page table to get shadowed |
| 1402 | * @dat_protection: if the pgtable is marked as protected by dat |
| 1403 | * @fake: pgt references contiguous guest memory block, not a pgtable |
| 1404 | * |
| 1405 | * Returns 0 if the shadow page table was found and -EAGAIN if the page |
| 1406 | * table was not found. |
| 1407 | * |
| 1408 | * Called with sg->mm->mmap_lock in read. |
| 1409 | */ |
| 1410 | static int shadow_pgt_lookup(struct gmap *sg, unsigned long saddr, unsigned long *pgt, |
| 1411 | int *dat_protection, int *fake) |
| 1412 | { |
| 1413 | unsigned long pt_index; |
| 1414 | unsigned long *table; |
| 1415 | struct page *page; |
| 1416 | int rc; |
| 1417 | |
| 1418 | spin_lock(&sg->guest_table_lock); |
| 1419 | table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */ |
| 1420 | if (table && !(*table & _SEGMENT_ENTRY_INVALID)) { |
| 1421 | /* Shadow page tables are full pages (pte+pgste) */ |
| 1422 | page = pfn_to_page(*table >> PAGE_SHIFT); |
| 1423 | pt_index = gmap_pgste_get_pgt_addr(page_to_virt(page)); |
| 1424 | *pgt = pt_index & ~GMAP_SHADOW_FAKE_TABLE; |
| 1425 | *dat_protection = !!(*table & _SEGMENT_ENTRY_PROTECT); |
| 1426 | *fake = !!(pt_index & GMAP_SHADOW_FAKE_TABLE); |
| 1427 | rc = 0; |
| 1428 | } else { |
| 1429 | rc = -EAGAIN; |
| 1430 | } |
| 1431 | spin_unlock(&sg->guest_table_lock); |
| 1432 | return rc; |
| 1433 | } |
| 1434 | |
| 1435 | /** |
| 1436 | * kvm_s390_shadow_fault - handle fault on a shadow page table |
| 1437 | * @vcpu: virtual cpu |
| 1438 | * @sg: pointer to the shadow guest address space structure |
| 1439 | * @saddr: faulting address in the shadow gmap |
| 1440 | * @datptr: will contain the address of the faulting DAT table entry, or of |
| 1441 | * the valid leaf, plus some flags |
| 1442 | * |
| 1443 | * Returns: - 0 if the shadow fault was successfully resolved |
| 1444 | * - > 0 (pgm exception code) on exceptions while faulting |
| 1445 | * - -EAGAIN if the caller can retry immediately |
| 1446 | * - -EFAULT when accessing invalid guest addresses |
| 1447 | * - -ENOMEM if out of memory |
| 1448 | */ |
| 1449 | int kvm_s390_shadow_fault(struct kvm_vcpu *vcpu, struct gmap *sg, |
| 1450 | unsigned long saddr, unsigned long *datptr) |
| 1451 | { |
| 1452 | union vaddress vaddr; |
| 1453 | union page_table_entry pte; |
| 1454 | unsigned long pgt = 0; |
| 1455 | int dat_protection, fake; |
| 1456 | int rc; |
| 1457 | |
| 1458 | if (KVM_BUG_ON(!gmap_is_shadow(sg), vcpu->kvm)) |
| 1459 | return -EFAULT; |
| 1460 | |
| 1461 | mmap_read_lock(sg->mm); |
| 1462 | /* |
| 1463 | * We don't want any guest-2 tables to change - so the parent |
| 1464 | * tables/pointers we read stay valid - unshadowing is however |
| 1465 | * always possible - only guest_table_lock protects us. |
| 1466 | */ |
| 1467 | ipte_lock(vcpu->kvm); |
| 1468 | |
| 1469 | rc = shadow_pgt_lookup(sg, saddr, &pgt, &dat_protection, &fake); |
| 1470 | if (rc) |
| 1471 | rc = kvm_s390_shadow_tables(sg, saddr, &pgt, &dat_protection, |
| 1472 | &fake); |
| 1473 | |
| 1474 | vaddr.addr = saddr; |
| 1475 | if (fake) { |
| 1476 | pte.val = pgt + vaddr.px * PAGE_SIZE; |
| 1477 | goto shadow_page; |
| 1478 | } |
| 1479 | |
| 1480 | switch (rc) { |
| 1481 | case PGM_SEGMENT_TRANSLATION: |
| 1482 | case PGM_REGION_THIRD_TRANS: |
| 1483 | case PGM_REGION_SECOND_TRANS: |
| 1484 | case PGM_REGION_FIRST_TRANS: |
| 1485 | pgt |= PEI_NOT_PTE; |
| 1486 | break; |
| 1487 | case 0: |
| 1488 | pgt += vaddr.px * 8; |
| 1489 | rc = gmap_read_table(sg->parent, pgt, &pte.val); |
| 1490 | } |
| 1491 | if (datptr) |
| 1492 | *datptr = pgt | dat_protection * PEI_DAT_PROT; |
| 1493 | if (!rc && pte.i) |
| 1494 | rc = PGM_PAGE_TRANSLATION; |
| 1495 | if (!rc && pte.z) |
| 1496 | rc = PGM_TRANSLATION_SPEC; |
| 1497 | shadow_page: |
| 1498 | pte.p |= dat_protection; |
| 1499 | if (!rc) |
| 1500 | rc = gmap_shadow_page(sg, saddr, __pte(pte.val)); |
| 1501 | vcpu->kvm->stat.gmap_shadow_pg_entry++; |
| 1502 | ipte_unlock(vcpu->kvm); |
| 1503 | mmap_read_unlock(sg->mm); |
| 1504 | return rc; |
| 1505 | } |