| 1 | // SPDX-License-Identifier: GPL-2.0+ |
| 2 | /* |
| 3 | * Kernel Probes (KProbes) |
| 4 | * |
| 5 | * Copyright IBM Corp. 2002, 2006 |
| 6 | * |
| 7 | * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com> |
| 8 | */ |
| 9 | |
| 10 | #define pr_fmt(fmt) "kprobes: " fmt |
| 11 | |
| 12 | #include <linux/kprobes.h> |
| 13 | #include <linux/ptrace.h> |
| 14 | #include <linux/preempt.h> |
| 15 | #include <linux/stop_machine.h> |
| 16 | #include <linux/cpufeature.h> |
| 17 | #include <linux/kdebug.h> |
| 18 | #include <linux/uaccess.h> |
| 19 | #include <linux/extable.h> |
| 20 | #include <linux/module.h> |
| 21 | #include <linux/slab.h> |
| 22 | #include <linux/hardirq.h> |
| 23 | #include <linux/ftrace.h> |
| 24 | #include <linux/execmem.h> |
| 25 | #include <asm/text-patching.h> |
| 26 | #include <asm/set_memory.h> |
| 27 | #include <asm/sections.h> |
| 28 | #include <asm/dis.h> |
| 29 | #include "entry.h" |
| 30 | |
| 31 | DEFINE_PER_CPU(struct kprobe *, current_kprobe); |
| 32 | DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); |
| 33 | |
| 34 | struct kretprobe_blackpoint kretprobe_blacklist[] = { }; |
| 35 | |
| 36 | void *alloc_insn_page(void) |
| 37 | { |
| 38 | void *page; |
| 39 | |
| 40 | page = execmem_alloc(EXECMEM_KPROBES, PAGE_SIZE); |
| 41 | if (!page) |
| 42 | return NULL; |
| 43 | set_memory_rox((unsigned long)page, 1); |
| 44 | return page; |
| 45 | } |
| 46 | |
| 47 | static void copy_instruction(struct kprobe *p) |
| 48 | { |
| 49 | kprobe_opcode_t insn[MAX_INSN_SIZE]; |
| 50 | s64 disp, new_disp; |
| 51 | u64 addr, new_addr; |
| 52 | unsigned int len; |
| 53 | |
| 54 | len = insn_length(*p->addr >> 8); |
| 55 | memcpy(&insn, p->addr, len); |
| 56 | p->opcode = insn[0]; |
| 57 | if (probe_is_insn_relative_long(&insn[0])) { |
| 58 | /* |
| 59 | * For pc-relative instructions in RIL-b or RIL-c format patch |
| 60 | * the RI2 displacement field. The insn slot for the to be |
| 61 | * patched instruction is within the same 4GB area like the |
| 62 | * original instruction. Therefore the new displacement will |
| 63 | * always fit. |
| 64 | */ |
| 65 | disp = *(s32 *)&insn[1]; |
| 66 | addr = (u64)(unsigned long)p->addr; |
| 67 | new_addr = (u64)(unsigned long)p->ainsn.insn; |
| 68 | new_disp = ((addr + (disp * 2)) - new_addr) / 2; |
| 69 | *(s32 *)&insn[1] = new_disp; |
| 70 | } |
| 71 | s390_kernel_write(p->ainsn.insn, &insn, len); |
| 72 | } |
| 73 | NOKPROBE_SYMBOL(copy_instruction); |
| 74 | |
| 75 | /* Check if paddr is at an instruction boundary */ |
| 76 | static bool can_probe(unsigned long paddr) |
| 77 | { |
| 78 | unsigned long addr, offset = 0; |
| 79 | kprobe_opcode_t insn; |
| 80 | struct kprobe *kp; |
| 81 | |
| 82 | if (paddr & 0x01) |
| 83 | return false; |
| 84 | |
| 85 | if (!kallsyms_lookup_size_offset(paddr, NULL, &offset)) |
| 86 | return false; |
| 87 | |
| 88 | /* Decode instructions */ |
| 89 | addr = paddr - offset; |
| 90 | while (addr < paddr) { |
| 91 | if (copy_from_kernel_nofault(&insn, (void *)addr, sizeof(insn))) |
| 92 | return false; |
| 93 | |
| 94 | if (insn >> 8 == 0) { |
| 95 | if (insn != BREAKPOINT_INSTRUCTION) { |
| 96 | /* |
| 97 | * Note that QEMU inserts opcode 0x0000 to implement |
| 98 | * software breakpoints for guests. Since the size of |
| 99 | * the original instruction is unknown, stop following |
| 100 | * instructions and prevent setting a kprobe. |
| 101 | */ |
| 102 | return false; |
| 103 | } |
| 104 | /* |
| 105 | * Check if the instruction has been modified by another |
| 106 | * kprobe, in which case the original instruction is |
| 107 | * decoded. |
| 108 | */ |
| 109 | kp = get_kprobe((void *)addr); |
| 110 | if (!kp) { |
| 111 | /* not a kprobe */ |
| 112 | return false; |
| 113 | } |
| 114 | insn = kp->opcode; |
| 115 | } |
| 116 | addr += insn_length(insn >> 8); |
| 117 | } |
| 118 | return addr == paddr; |
| 119 | } |
| 120 | |
| 121 | int arch_prepare_kprobe(struct kprobe *p) |
| 122 | { |
| 123 | if (!can_probe((unsigned long)p->addr)) |
| 124 | return -EINVAL; |
| 125 | /* Make sure the probe isn't going on a difficult instruction */ |
| 126 | if (probe_is_prohibited_opcode(p->addr)) |
| 127 | return -EINVAL; |
| 128 | p->ainsn.insn = get_insn_slot(); |
| 129 | if (!p->ainsn.insn) |
| 130 | return -ENOMEM; |
| 131 | copy_instruction(p); |
| 132 | return 0; |
| 133 | } |
| 134 | NOKPROBE_SYMBOL(arch_prepare_kprobe); |
| 135 | |
| 136 | struct swap_insn_args { |
| 137 | struct kprobe *p; |
| 138 | unsigned int arm_kprobe : 1; |
| 139 | }; |
| 140 | |
| 141 | static int swap_instruction(void *data) |
| 142 | { |
| 143 | struct swap_insn_args *args = data; |
| 144 | struct kprobe *p = args->p; |
| 145 | u16 opc; |
| 146 | |
| 147 | opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode; |
| 148 | s390_kernel_write(p->addr, &opc, sizeof(opc)); |
| 149 | return 0; |
| 150 | } |
| 151 | NOKPROBE_SYMBOL(swap_instruction); |
| 152 | |
| 153 | void arch_arm_kprobe(struct kprobe *p) |
| 154 | { |
| 155 | struct swap_insn_args args = {.p = p, .arm_kprobe = 1}; |
| 156 | |
| 157 | if (cpu_has_seq_insn()) { |
| 158 | swap_instruction(&args); |
| 159 | text_poke_sync(); |
| 160 | } else { |
| 161 | stop_machine_cpuslocked(swap_instruction, &args, NULL); |
| 162 | } |
| 163 | } |
| 164 | NOKPROBE_SYMBOL(arch_arm_kprobe); |
| 165 | |
| 166 | void arch_disarm_kprobe(struct kprobe *p) |
| 167 | { |
| 168 | struct swap_insn_args args = {.p = p, .arm_kprobe = 0}; |
| 169 | |
| 170 | if (cpu_has_seq_insn()) { |
| 171 | swap_instruction(&args); |
| 172 | text_poke_sync(); |
| 173 | } else { |
| 174 | stop_machine_cpuslocked(swap_instruction, &args, NULL); |
| 175 | } |
| 176 | } |
| 177 | NOKPROBE_SYMBOL(arch_disarm_kprobe); |
| 178 | |
| 179 | void arch_remove_kprobe(struct kprobe *p) |
| 180 | { |
| 181 | if (!p->ainsn.insn) |
| 182 | return; |
| 183 | free_insn_slot(p->ainsn.insn, 0); |
| 184 | p->ainsn.insn = NULL; |
| 185 | } |
| 186 | NOKPROBE_SYMBOL(arch_remove_kprobe); |
| 187 | |
| 188 | static void enable_singlestep(struct kprobe_ctlblk *kcb, |
| 189 | struct pt_regs *regs, |
| 190 | unsigned long ip) |
| 191 | { |
| 192 | union { |
| 193 | struct ctlreg regs[3]; |
| 194 | struct { |
| 195 | struct ctlreg control; |
| 196 | struct ctlreg start; |
| 197 | struct ctlreg end; |
| 198 | }; |
| 199 | } per_kprobe; |
| 200 | |
| 201 | /* Set up the PER control registers %cr9-%cr11 */ |
| 202 | per_kprobe.control.val = PER_EVENT_IFETCH; |
| 203 | per_kprobe.start.val = ip; |
| 204 | per_kprobe.end.val = ip; |
| 205 | |
| 206 | /* Save control regs and psw mask */ |
| 207 | __local_ctl_store(9, 11, kcb->kprobe_saved_ctl); |
| 208 | kcb->kprobe_saved_imask = regs->psw.mask & |
| 209 | (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT); |
| 210 | |
| 211 | /* Set PER control regs, turns on single step for the given address */ |
| 212 | __local_ctl_load(9, 11, per_kprobe.regs); |
| 213 | regs->psw.mask |= PSW_MASK_PER; |
| 214 | regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT); |
| 215 | regs->psw.addr = ip; |
| 216 | } |
| 217 | NOKPROBE_SYMBOL(enable_singlestep); |
| 218 | |
| 219 | static void disable_singlestep(struct kprobe_ctlblk *kcb, |
| 220 | struct pt_regs *regs, |
| 221 | unsigned long ip) |
| 222 | { |
| 223 | /* Restore control regs and psw mask, set new psw address */ |
| 224 | __local_ctl_load(9, 11, kcb->kprobe_saved_ctl); |
| 225 | regs->psw.mask &= ~PSW_MASK_PER; |
| 226 | regs->psw.mask |= kcb->kprobe_saved_imask; |
| 227 | regs->psw.addr = ip; |
| 228 | } |
| 229 | NOKPROBE_SYMBOL(disable_singlestep); |
| 230 | |
| 231 | /* |
| 232 | * Activate a kprobe by storing its pointer to current_kprobe. The |
| 233 | * previous kprobe is stored in kcb->prev_kprobe. A stack of up to |
| 234 | * two kprobes can be active, see KPROBE_REENTER. |
| 235 | */ |
| 236 | static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p) |
| 237 | { |
| 238 | kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe); |
| 239 | kcb->prev_kprobe.status = kcb->kprobe_status; |
| 240 | __this_cpu_write(current_kprobe, p); |
| 241 | } |
| 242 | NOKPROBE_SYMBOL(push_kprobe); |
| 243 | |
| 244 | /* |
| 245 | * Deactivate a kprobe by backing up to the previous state. If the |
| 246 | * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL, |
| 247 | * for any other state prev_kprobe.kp will be NULL. |
| 248 | */ |
| 249 | static void pop_kprobe(struct kprobe_ctlblk *kcb) |
| 250 | { |
| 251 | __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); |
| 252 | kcb->kprobe_status = kcb->prev_kprobe.status; |
| 253 | kcb->prev_kprobe.kp = NULL; |
| 254 | } |
| 255 | NOKPROBE_SYMBOL(pop_kprobe); |
| 256 | |
| 257 | static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p) |
| 258 | { |
| 259 | switch (kcb->kprobe_status) { |
| 260 | case KPROBE_HIT_SSDONE: |
| 261 | case KPROBE_HIT_ACTIVE: |
| 262 | kprobes_inc_nmissed_count(p); |
| 263 | break; |
| 264 | case KPROBE_HIT_SS: |
| 265 | case KPROBE_REENTER: |
| 266 | default: |
| 267 | /* |
| 268 | * A kprobe on the code path to single step an instruction |
| 269 | * is a BUG. The code path resides in the .kprobes.text |
| 270 | * section and is executed with interrupts disabled. |
| 271 | */ |
| 272 | pr_err("Failed to recover from reentered kprobes.\n"); |
| 273 | dump_kprobe(p); |
| 274 | BUG(); |
| 275 | } |
| 276 | } |
| 277 | NOKPROBE_SYMBOL(kprobe_reenter_check); |
| 278 | |
| 279 | static int kprobe_handler(struct pt_regs *regs) |
| 280 | { |
| 281 | struct kprobe_ctlblk *kcb; |
| 282 | struct kprobe *p; |
| 283 | |
| 284 | /* |
| 285 | * We want to disable preemption for the entire duration of kprobe |
| 286 | * processing. That includes the calls to the pre/post handlers |
| 287 | * and single stepping the kprobe instruction. |
| 288 | */ |
| 289 | preempt_disable(); |
| 290 | kcb = get_kprobe_ctlblk(); |
| 291 | p = get_kprobe((void *)(regs->psw.addr - 2)); |
| 292 | |
| 293 | if (p) { |
| 294 | if (kprobe_running()) { |
| 295 | /* |
| 296 | * We have hit a kprobe while another is still |
| 297 | * active. This can happen in the pre and post |
| 298 | * handler. Single step the instruction of the |
| 299 | * new probe but do not call any handler function |
| 300 | * of this secondary kprobe. |
| 301 | * push_kprobe and pop_kprobe saves and restores |
| 302 | * the currently active kprobe. |
| 303 | */ |
| 304 | kprobe_reenter_check(kcb, p); |
| 305 | push_kprobe(kcb, p); |
| 306 | kcb->kprobe_status = KPROBE_REENTER; |
| 307 | } else { |
| 308 | /* |
| 309 | * If we have no pre-handler or it returned 0, we |
| 310 | * continue with single stepping. If we have a |
| 311 | * pre-handler and it returned non-zero, it prepped |
| 312 | * for changing execution path, so get out doing |
| 313 | * nothing more here. |
| 314 | */ |
| 315 | push_kprobe(kcb, p); |
| 316 | kcb->kprobe_status = KPROBE_HIT_ACTIVE; |
| 317 | if (p->pre_handler && p->pre_handler(p, regs)) { |
| 318 | pop_kprobe(kcb); |
| 319 | preempt_enable_no_resched(); |
| 320 | return 1; |
| 321 | } |
| 322 | kcb->kprobe_status = KPROBE_HIT_SS; |
| 323 | } |
| 324 | enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn); |
| 325 | return 1; |
| 326 | } /* else: |
| 327 | * No kprobe at this address and no active kprobe. The trap has |
| 328 | * not been caused by a kprobe breakpoint. The race of breakpoint |
| 329 | * vs. kprobe remove does not exist because on s390 as we use |
| 330 | * stop_machine to arm/disarm the breakpoints. |
| 331 | */ |
| 332 | preempt_enable_no_resched(); |
| 333 | return 0; |
| 334 | } |
| 335 | NOKPROBE_SYMBOL(kprobe_handler); |
| 336 | |
| 337 | /* |
| 338 | * Called after single-stepping. p->addr is the address of the |
| 339 | * instruction whose first byte has been replaced by the "breakpoint" |
| 340 | * instruction. To avoid the SMP problems that can occur when we |
| 341 | * temporarily put back the original opcode to single-step, we |
| 342 | * single-stepped a copy of the instruction. The address of this |
| 343 | * copy is p->ainsn.insn. |
| 344 | */ |
| 345 | static void resume_execution(struct kprobe *p, struct pt_regs *regs) |
| 346 | { |
| 347 | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| 348 | unsigned long ip = regs->psw.addr; |
| 349 | int fixup = probe_get_fixup_type(p->ainsn.insn); |
| 350 | |
| 351 | if (fixup & FIXUP_PSW_NORMAL) |
| 352 | ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn; |
| 353 | |
| 354 | if (fixup & FIXUP_BRANCH_NOT_TAKEN) { |
| 355 | int ilen = insn_length(p->ainsn.insn[0] >> 8); |
| 356 | if (ip - (unsigned long) p->ainsn.insn == ilen) |
| 357 | ip = (unsigned long) p->addr + ilen; |
| 358 | } |
| 359 | |
| 360 | if (fixup & FIXUP_RETURN_REGISTER) { |
| 361 | int reg = (p->ainsn.insn[0] & 0xf0) >> 4; |
| 362 | regs->gprs[reg] += (unsigned long) p->addr - |
| 363 | (unsigned long) p->ainsn.insn; |
| 364 | } |
| 365 | |
| 366 | disable_singlestep(kcb, regs, ip); |
| 367 | } |
| 368 | NOKPROBE_SYMBOL(resume_execution); |
| 369 | |
| 370 | static int post_kprobe_handler(struct pt_regs *regs) |
| 371 | { |
| 372 | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| 373 | struct kprobe *p = kprobe_running(); |
| 374 | |
| 375 | if (!p) |
| 376 | return 0; |
| 377 | |
| 378 | resume_execution(p, regs); |
| 379 | if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) { |
| 380 | kcb->kprobe_status = KPROBE_HIT_SSDONE; |
| 381 | p->post_handler(p, regs, 0); |
| 382 | } |
| 383 | pop_kprobe(kcb); |
| 384 | preempt_enable_no_resched(); |
| 385 | |
| 386 | /* |
| 387 | * if somebody else is singlestepping across a probe point, psw mask |
| 388 | * will have PER set, in which case, continue the remaining processing |
| 389 | * of do_single_step, as if this is not a probe hit. |
| 390 | */ |
| 391 | if (regs->psw.mask & PSW_MASK_PER) |
| 392 | return 0; |
| 393 | |
| 394 | return 1; |
| 395 | } |
| 396 | NOKPROBE_SYMBOL(post_kprobe_handler); |
| 397 | |
| 398 | static int kprobe_trap_handler(struct pt_regs *regs, int trapnr) |
| 399 | { |
| 400 | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| 401 | struct kprobe *p = kprobe_running(); |
| 402 | |
| 403 | switch(kcb->kprobe_status) { |
| 404 | case KPROBE_HIT_SS: |
| 405 | case KPROBE_REENTER: |
| 406 | /* |
| 407 | * We are here because the instruction being single |
| 408 | * stepped caused a page fault. We reset the current |
| 409 | * kprobe and the nip points back to the probe address |
| 410 | * and allow the page fault handler to continue as a |
| 411 | * normal page fault. |
| 412 | */ |
| 413 | disable_singlestep(kcb, regs, (unsigned long) p->addr); |
| 414 | pop_kprobe(kcb); |
| 415 | preempt_enable_no_resched(); |
| 416 | break; |
| 417 | case KPROBE_HIT_ACTIVE: |
| 418 | case KPROBE_HIT_SSDONE: |
| 419 | /* |
| 420 | * In case the user-specified fault handler returned |
| 421 | * zero, try to fix up. |
| 422 | */ |
| 423 | if (fixup_exception(regs)) |
| 424 | return 1; |
| 425 | /* |
| 426 | * fixup_exception() could not handle it, |
| 427 | * Let do_page_fault() fix it. |
| 428 | */ |
| 429 | break; |
| 430 | default: |
| 431 | break; |
| 432 | } |
| 433 | return 0; |
| 434 | } |
| 435 | NOKPROBE_SYMBOL(kprobe_trap_handler); |
| 436 | |
| 437 | int kprobe_fault_handler(struct pt_regs *regs, int trapnr) |
| 438 | { |
| 439 | int ret; |
| 440 | |
| 441 | if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) |
| 442 | local_irq_disable(); |
| 443 | ret = kprobe_trap_handler(regs, trapnr); |
| 444 | if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) |
| 445 | local_irq_restore(regs->psw.mask & ~PSW_MASK_PER); |
| 446 | return ret; |
| 447 | } |
| 448 | NOKPROBE_SYMBOL(kprobe_fault_handler); |
| 449 | |
| 450 | /* |
| 451 | * Wrapper routine to for handling exceptions. |
| 452 | */ |
| 453 | int kprobe_exceptions_notify(struct notifier_block *self, |
| 454 | unsigned long val, void *data) |
| 455 | { |
| 456 | struct die_args *args = (struct die_args *) data; |
| 457 | struct pt_regs *regs = args->regs; |
| 458 | int ret = NOTIFY_DONE; |
| 459 | |
| 460 | if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) |
| 461 | local_irq_disable(); |
| 462 | |
| 463 | switch (val) { |
| 464 | case DIE_BPT: |
| 465 | if (kprobe_handler(regs)) |
| 466 | ret = NOTIFY_STOP; |
| 467 | break; |
| 468 | case DIE_SSTEP: |
| 469 | if (post_kprobe_handler(regs)) |
| 470 | ret = NOTIFY_STOP; |
| 471 | break; |
| 472 | case DIE_TRAP: |
| 473 | if (!preemptible() && kprobe_running() && |
| 474 | kprobe_trap_handler(regs, args->trapnr)) |
| 475 | ret = NOTIFY_STOP; |
| 476 | break; |
| 477 | default: |
| 478 | break; |
| 479 | } |
| 480 | |
| 481 | if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) |
| 482 | local_irq_restore(regs->psw.mask & ~PSW_MASK_PER); |
| 483 | |
| 484 | return ret; |
| 485 | } |
| 486 | NOKPROBE_SYMBOL(kprobe_exceptions_notify); |
| 487 | |
| 488 | int __init arch_init_kprobes(void) |
| 489 | { |
| 490 | return 0; |
| 491 | } |
| 492 | |
| 493 | int __init arch_populate_kprobe_blacklist(void) |
| 494 | { |
| 495 | return kprobe_add_area_blacklist((unsigned long)__irqentry_text_start, |
| 496 | (unsigned long)__irqentry_text_end); |
| 497 | } |
| 498 | |
| 499 | int arch_trampoline_kprobe(struct kprobe *p) |
| 500 | { |
| 501 | return 0; |
| 502 | } |
| 503 | NOKPROBE_SYMBOL(arch_trampoline_kprobe); |