Merge branch 'for-5.14/google' into for-linus
[linux-2.6-block.git] / arch / powerpc / kvm / book3s_hv.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5 *
6 * Authors:
7 * Paul Mackerras <paulus@au1.ibm.com>
8 * Alexander Graf <agraf@suse.de>
9 * Kevin Wolf <mail@kevin-wolf.de>
10 *
11 * Description: KVM functions specific to running on Book 3S
12 * processors in hypervisor mode (specifically POWER7 and later).
13 *
14 * This file is derived from arch/powerpc/kvm/book3s.c,
15 * by Alexander Graf <agraf@suse.de>.
16 */
17
18#include <linux/kvm_host.h>
19#include <linux/kernel.h>
20#include <linux/err.h>
21#include <linux/slab.h>
22#include <linux/preempt.h>
23#include <linux/sched/signal.h>
24#include <linux/sched/stat.h>
25#include <linux/delay.h>
26#include <linux/export.h>
27#include <linux/fs.h>
28#include <linux/anon_inodes.h>
29#include <linux/cpu.h>
30#include <linux/cpumask.h>
31#include <linux/spinlock.h>
32#include <linux/page-flags.h>
33#include <linux/srcu.h>
34#include <linux/miscdevice.h>
35#include <linux/debugfs.h>
36#include <linux/gfp.h>
37#include <linux/vmalloc.h>
38#include <linux/highmem.h>
39#include <linux/hugetlb.h>
40#include <linux/kvm_irqfd.h>
41#include <linux/irqbypass.h>
42#include <linux/module.h>
43#include <linux/compiler.h>
44#include <linux/of.h>
45
46#include <asm/ftrace.h>
47#include <asm/reg.h>
48#include <asm/ppc-opcode.h>
49#include <asm/asm-prototypes.h>
50#include <asm/archrandom.h>
51#include <asm/debug.h>
52#include <asm/disassemble.h>
53#include <asm/cputable.h>
54#include <asm/cacheflush.h>
55#include <linux/uaccess.h>
56#include <asm/interrupt.h>
57#include <asm/io.h>
58#include <asm/kvm_ppc.h>
59#include <asm/kvm_book3s.h>
60#include <asm/mmu_context.h>
61#include <asm/lppaca.h>
62#include <asm/processor.h>
63#include <asm/cputhreads.h>
64#include <asm/page.h>
65#include <asm/hvcall.h>
66#include <asm/switch_to.h>
67#include <asm/smp.h>
68#include <asm/dbell.h>
69#include <asm/hmi.h>
70#include <asm/pnv-pci.h>
71#include <asm/mmu.h>
72#include <asm/opal.h>
73#include <asm/xics.h>
74#include <asm/xive.h>
75#include <asm/hw_breakpoint.h>
76#include <asm/kvm_book3s_uvmem.h>
77#include <asm/ultravisor.h>
78#include <asm/dtl.h>
79
80#include "book3s.h"
81
82#define CREATE_TRACE_POINTS
83#include "trace_hv.h"
84
85/* #define EXIT_DEBUG */
86/* #define EXIT_DEBUG_SIMPLE */
87/* #define EXIT_DEBUG_INT */
88
89/* Used to indicate that a guest page fault needs to be handled */
90#define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
91/* Used to indicate that a guest passthrough interrupt needs to be handled */
92#define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2)
93
94/* Used as a "null" value for timebase values */
95#define TB_NIL (~(u64)0)
96
97static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
98
99static int dynamic_mt_modes = 6;
100module_param(dynamic_mt_modes, int, 0644);
101MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
102static int target_smt_mode;
103module_param(target_smt_mode, int, 0644);
104MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
105
106static bool indep_threads_mode = true;
107module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
108MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
109
110static bool one_vm_per_core;
111module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
112MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)");
113
114#ifdef CONFIG_KVM_XICS
115static const struct kernel_param_ops module_param_ops = {
116 .set = param_set_int,
117 .get = param_get_int,
118};
119
120module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
121MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
122
123module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
124MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
125#endif
126
127/* If set, guests are allowed to create and control nested guests */
128static bool nested = true;
129module_param(nested, bool, S_IRUGO | S_IWUSR);
130MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
131
132static inline bool nesting_enabled(struct kvm *kvm)
133{
134 return kvm->arch.nested_enable && kvm_is_radix(kvm);
135}
136
137/* If set, the threads on each CPU core have to be in the same MMU mode */
138static bool no_mixing_hpt_and_radix __read_mostly;
139
140static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
141
142/*
143 * RWMR values for POWER8. These control the rate at which PURR
144 * and SPURR count and should be set according to the number of
145 * online threads in the vcore being run.
146 */
147#define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL
148#define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL
149#define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL
150#define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL
151#define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL
152#define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL
153#define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL
154#define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL
155
156static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
157 RWMR_RPA_P8_1THREAD,
158 RWMR_RPA_P8_1THREAD,
159 RWMR_RPA_P8_2THREAD,
160 RWMR_RPA_P8_3THREAD,
161 RWMR_RPA_P8_4THREAD,
162 RWMR_RPA_P8_5THREAD,
163 RWMR_RPA_P8_6THREAD,
164 RWMR_RPA_P8_7THREAD,
165 RWMR_RPA_P8_8THREAD,
166};
167
168static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
169 int *ip)
170{
171 int i = *ip;
172 struct kvm_vcpu *vcpu;
173
174 while (++i < MAX_SMT_THREADS) {
175 vcpu = READ_ONCE(vc->runnable_threads[i]);
176 if (vcpu) {
177 *ip = i;
178 return vcpu;
179 }
180 }
181 return NULL;
182}
183
184/* Used to traverse the list of runnable threads for a given vcore */
185#define for_each_runnable_thread(i, vcpu, vc) \
186 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
187
188static bool kvmppc_ipi_thread(int cpu)
189{
190 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
191
192 /* If we're a nested hypervisor, fall back to ordinary IPIs for now */
193 if (kvmhv_on_pseries())
194 return false;
195
196 /* On POWER9 we can use msgsnd to IPI any cpu */
197 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
198 msg |= get_hard_smp_processor_id(cpu);
199 smp_mb();
200 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
201 return true;
202 }
203
204 /* On POWER8 for IPIs to threads in the same core, use msgsnd */
205 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
206 preempt_disable();
207 if (cpu_first_thread_sibling(cpu) ==
208 cpu_first_thread_sibling(smp_processor_id())) {
209 msg |= cpu_thread_in_core(cpu);
210 smp_mb();
211 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
212 preempt_enable();
213 return true;
214 }
215 preempt_enable();
216 }
217
218#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
219 if (cpu >= 0 && cpu < nr_cpu_ids) {
220 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
221 xics_wake_cpu(cpu);
222 return true;
223 }
224 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
225 return true;
226 }
227#endif
228
229 return false;
230}
231
232static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
233{
234 int cpu;
235 struct rcuwait *waitp;
236
237 waitp = kvm_arch_vcpu_get_wait(vcpu);
238 if (rcuwait_wake_up(waitp))
239 ++vcpu->stat.halt_wakeup;
240
241 cpu = READ_ONCE(vcpu->arch.thread_cpu);
242 if (cpu >= 0 && kvmppc_ipi_thread(cpu))
243 return;
244
245 /* CPU points to the first thread of the core */
246 cpu = vcpu->cpu;
247 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
248 smp_send_reschedule(cpu);
249}
250
251/*
252 * We use the vcpu_load/put functions to measure stolen time.
253 * Stolen time is counted as time when either the vcpu is able to
254 * run as part of a virtual core, but the task running the vcore
255 * is preempted or sleeping, or when the vcpu needs something done
256 * in the kernel by the task running the vcpu, but that task is
257 * preempted or sleeping. Those two things have to be counted
258 * separately, since one of the vcpu tasks will take on the job
259 * of running the core, and the other vcpu tasks in the vcore will
260 * sleep waiting for it to do that, but that sleep shouldn't count
261 * as stolen time.
262 *
263 * Hence we accumulate stolen time when the vcpu can run as part of
264 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
265 * needs its task to do other things in the kernel (for example,
266 * service a page fault) in busy_stolen. We don't accumulate
267 * stolen time for a vcore when it is inactive, or for a vcpu
268 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
269 * a misnomer; it means that the vcpu task is not executing in
270 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
271 * the kernel. We don't have any way of dividing up that time
272 * between time that the vcpu is genuinely stopped, time that
273 * the task is actively working on behalf of the vcpu, and time
274 * that the task is preempted, so we don't count any of it as
275 * stolen.
276 *
277 * Updates to busy_stolen are protected by arch.tbacct_lock;
278 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
279 * lock. The stolen times are measured in units of timebase ticks.
280 * (Note that the != TB_NIL checks below are purely defensive;
281 * they should never fail.)
282 */
283
284static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
285{
286 unsigned long flags;
287
288 spin_lock_irqsave(&vc->stoltb_lock, flags);
289 vc->preempt_tb = mftb();
290 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
291}
292
293static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
294{
295 unsigned long flags;
296
297 spin_lock_irqsave(&vc->stoltb_lock, flags);
298 if (vc->preempt_tb != TB_NIL) {
299 vc->stolen_tb += mftb() - vc->preempt_tb;
300 vc->preempt_tb = TB_NIL;
301 }
302 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
303}
304
305static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
306{
307 struct kvmppc_vcore *vc = vcpu->arch.vcore;
308 unsigned long flags;
309
310 /*
311 * We can test vc->runner without taking the vcore lock,
312 * because only this task ever sets vc->runner to this
313 * vcpu, and once it is set to this vcpu, only this task
314 * ever sets it to NULL.
315 */
316 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
317 kvmppc_core_end_stolen(vc);
318
319 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
320 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
321 vcpu->arch.busy_preempt != TB_NIL) {
322 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
323 vcpu->arch.busy_preempt = TB_NIL;
324 }
325 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
326}
327
328static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
329{
330 struct kvmppc_vcore *vc = vcpu->arch.vcore;
331 unsigned long flags;
332
333 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
334 kvmppc_core_start_stolen(vc);
335
336 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
337 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
338 vcpu->arch.busy_preempt = mftb();
339 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
340}
341
342static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
343{
344 vcpu->arch.pvr = pvr;
345}
346
347/* Dummy value used in computing PCR value below */
348#define PCR_ARCH_31 (PCR_ARCH_300 << 1)
349
350static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
351{
352 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
353 struct kvmppc_vcore *vc = vcpu->arch.vcore;
354
355 /* We can (emulate) our own architecture version and anything older */
356 if (cpu_has_feature(CPU_FTR_ARCH_31))
357 host_pcr_bit = PCR_ARCH_31;
358 else if (cpu_has_feature(CPU_FTR_ARCH_300))
359 host_pcr_bit = PCR_ARCH_300;
360 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
361 host_pcr_bit = PCR_ARCH_207;
362 else if (cpu_has_feature(CPU_FTR_ARCH_206))
363 host_pcr_bit = PCR_ARCH_206;
364 else
365 host_pcr_bit = PCR_ARCH_205;
366
367 /* Determine lowest PCR bit needed to run guest in given PVR level */
368 guest_pcr_bit = host_pcr_bit;
369 if (arch_compat) {
370 switch (arch_compat) {
371 case PVR_ARCH_205:
372 guest_pcr_bit = PCR_ARCH_205;
373 break;
374 case PVR_ARCH_206:
375 case PVR_ARCH_206p:
376 guest_pcr_bit = PCR_ARCH_206;
377 break;
378 case PVR_ARCH_207:
379 guest_pcr_bit = PCR_ARCH_207;
380 break;
381 case PVR_ARCH_300:
382 guest_pcr_bit = PCR_ARCH_300;
383 break;
384 case PVR_ARCH_31:
385 guest_pcr_bit = PCR_ARCH_31;
386 break;
387 default:
388 return -EINVAL;
389 }
390 }
391
392 /* Check requested PCR bits don't exceed our capabilities */
393 if (guest_pcr_bit > host_pcr_bit)
394 return -EINVAL;
395
396 spin_lock(&vc->lock);
397 vc->arch_compat = arch_compat;
398 /*
399 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
400 * Also set all reserved PCR bits
401 */
402 vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
403 spin_unlock(&vc->lock);
404
405 return 0;
406}
407
408static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
409{
410 int r;
411
412 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
413 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
414 vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
415 for (r = 0; r < 16; ++r)
416 pr_err("r%2d = %.16lx r%d = %.16lx\n",
417 r, kvmppc_get_gpr(vcpu, r),
418 r+16, kvmppc_get_gpr(vcpu, r+16));
419 pr_err("ctr = %.16lx lr = %.16lx\n",
420 vcpu->arch.regs.ctr, vcpu->arch.regs.link);
421 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
422 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
423 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
424 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
425 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
426 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
427 pr_err("cr = %.8lx xer = %.16lx dsisr = %.8x\n",
428 vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
429 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
430 pr_err("fault dar = %.16lx dsisr = %.8x\n",
431 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
432 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
433 for (r = 0; r < vcpu->arch.slb_max; ++r)
434 pr_err(" ESID = %.16llx VSID = %.16llx\n",
435 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
436 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
437 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
438 vcpu->arch.last_inst);
439}
440
441static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
442{
443 return kvm_get_vcpu_by_id(kvm, id);
444}
445
446static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
447{
448 vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
449 vpa->yield_count = cpu_to_be32(1);
450}
451
452static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
453 unsigned long addr, unsigned long len)
454{
455 /* check address is cacheline aligned */
456 if (addr & (L1_CACHE_BYTES - 1))
457 return -EINVAL;
458 spin_lock(&vcpu->arch.vpa_update_lock);
459 if (v->next_gpa != addr || v->len != len) {
460 v->next_gpa = addr;
461 v->len = addr ? len : 0;
462 v->update_pending = 1;
463 }
464 spin_unlock(&vcpu->arch.vpa_update_lock);
465 return 0;
466}
467
468/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
469struct reg_vpa {
470 u32 dummy;
471 union {
472 __be16 hword;
473 __be32 word;
474 } length;
475};
476
477static int vpa_is_registered(struct kvmppc_vpa *vpap)
478{
479 if (vpap->update_pending)
480 return vpap->next_gpa != 0;
481 return vpap->pinned_addr != NULL;
482}
483
484static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
485 unsigned long flags,
486 unsigned long vcpuid, unsigned long vpa)
487{
488 struct kvm *kvm = vcpu->kvm;
489 unsigned long len, nb;
490 void *va;
491 struct kvm_vcpu *tvcpu;
492 int err;
493 int subfunc;
494 struct kvmppc_vpa *vpap;
495
496 tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
497 if (!tvcpu)
498 return H_PARAMETER;
499
500 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
501 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
502 subfunc == H_VPA_REG_SLB) {
503 /* Registering new area - address must be cache-line aligned */
504 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
505 return H_PARAMETER;
506
507 /* convert logical addr to kernel addr and read length */
508 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
509 if (va == NULL)
510 return H_PARAMETER;
511 if (subfunc == H_VPA_REG_VPA)
512 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
513 else
514 len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
515 kvmppc_unpin_guest_page(kvm, va, vpa, false);
516
517 /* Check length */
518 if (len > nb || len < sizeof(struct reg_vpa))
519 return H_PARAMETER;
520 } else {
521 vpa = 0;
522 len = 0;
523 }
524
525 err = H_PARAMETER;
526 vpap = NULL;
527 spin_lock(&tvcpu->arch.vpa_update_lock);
528
529 switch (subfunc) {
530 case H_VPA_REG_VPA: /* register VPA */
531 /*
532 * The size of our lppaca is 1kB because of the way we align
533 * it for the guest to avoid crossing a 4kB boundary. We only
534 * use 640 bytes of the structure though, so we should accept
535 * clients that set a size of 640.
536 */
537 BUILD_BUG_ON(sizeof(struct lppaca) != 640);
538 if (len < sizeof(struct lppaca))
539 break;
540 vpap = &tvcpu->arch.vpa;
541 err = 0;
542 break;
543
544 case H_VPA_REG_DTL: /* register DTL */
545 if (len < sizeof(struct dtl_entry))
546 break;
547 len -= len % sizeof(struct dtl_entry);
548
549 /* Check that they have previously registered a VPA */
550 err = H_RESOURCE;
551 if (!vpa_is_registered(&tvcpu->arch.vpa))
552 break;
553
554 vpap = &tvcpu->arch.dtl;
555 err = 0;
556 break;
557
558 case H_VPA_REG_SLB: /* register SLB shadow buffer */
559 /* Check that they have previously registered a VPA */
560 err = H_RESOURCE;
561 if (!vpa_is_registered(&tvcpu->arch.vpa))
562 break;
563
564 vpap = &tvcpu->arch.slb_shadow;
565 err = 0;
566 break;
567
568 case H_VPA_DEREG_VPA: /* deregister VPA */
569 /* Check they don't still have a DTL or SLB buf registered */
570 err = H_RESOURCE;
571 if (vpa_is_registered(&tvcpu->arch.dtl) ||
572 vpa_is_registered(&tvcpu->arch.slb_shadow))
573 break;
574
575 vpap = &tvcpu->arch.vpa;
576 err = 0;
577 break;
578
579 case H_VPA_DEREG_DTL: /* deregister DTL */
580 vpap = &tvcpu->arch.dtl;
581 err = 0;
582 break;
583
584 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
585 vpap = &tvcpu->arch.slb_shadow;
586 err = 0;
587 break;
588 }
589
590 if (vpap) {
591 vpap->next_gpa = vpa;
592 vpap->len = len;
593 vpap->update_pending = 1;
594 }
595
596 spin_unlock(&tvcpu->arch.vpa_update_lock);
597
598 return err;
599}
600
601static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
602{
603 struct kvm *kvm = vcpu->kvm;
604 void *va;
605 unsigned long nb;
606 unsigned long gpa;
607
608 /*
609 * We need to pin the page pointed to by vpap->next_gpa,
610 * but we can't call kvmppc_pin_guest_page under the lock
611 * as it does get_user_pages() and down_read(). So we
612 * have to drop the lock, pin the page, then get the lock
613 * again and check that a new area didn't get registered
614 * in the meantime.
615 */
616 for (;;) {
617 gpa = vpap->next_gpa;
618 spin_unlock(&vcpu->arch.vpa_update_lock);
619 va = NULL;
620 nb = 0;
621 if (gpa)
622 va = kvmppc_pin_guest_page(kvm, gpa, &nb);
623 spin_lock(&vcpu->arch.vpa_update_lock);
624 if (gpa == vpap->next_gpa)
625 break;
626 /* sigh... unpin that one and try again */
627 if (va)
628 kvmppc_unpin_guest_page(kvm, va, gpa, false);
629 }
630
631 vpap->update_pending = 0;
632 if (va && nb < vpap->len) {
633 /*
634 * If it's now too short, it must be that userspace
635 * has changed the mappings underlying guest memory,
636 * so unregister the region.
637 */
638 kvmppc_unpin_guest_page(kvm, va, gpa, false);
639 va = NULL;
640 }
641 if (vpap->pinned_addr)
642 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
643 vpap->dirty);
644 vpap->gpa = gpa;
645 vpap->pinned_addr = va;
646 vpap->dirty = false;
647 if (va)
648 vpap->pinned_end = va + vpap->len;
649}
650
651static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
652{
653 if (!(vcpu->arch.vpa.update_pending ||
654 vcpu->arch.slb_shadow.update_pending ||
655 vcpu->arch.dtl.update_pending))
656 return;
657
658 spin_lock(&vcpu->arch.vpa_update_lock);
659 if (vcpu->arch.vpa.update_pending) {
660 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
661 if (vcpu->arch.vpa.pinned_addr)
662 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
663 }
664 if (vcpu->arch.dtl.update_pending) {
665 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
666 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
667 vcpu->arch.dtl_index = 0;
668 }
669 if (vcpu->arch.slb_shadow.update_pending)
670 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
671 spin_unlock(&vcpu->arch.vpa_update_lock);
672}
673
674/*
675 * Return the accumulated stolen time for the vcore up until `now'.
676 * The caller should hold the vcore lock.
677 */
678static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
679{
680 u64 p;
681 unsigned long flags;
682
683 spin_lock_irqsave(&vc->stoltb_lock, flags);
684 p = vc->stolen_tb;
685 if (vc->vcore_state != VCORE_INACTIVE &&
686 vc->preempt_tb != TB_NIL)
687 p += now - vc->preempt_tb;
688 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
689 return p;
690}
691
692static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
693 struct kvmppc_vcore *vc)
694{
695 struct dtl_entry *dt;
696 struct lppaca *vpa;
697 unsigned long stolen;
698 unsigned long core_stolen;
699 u64 now;
700 unsigned long flags;
701
702 dt = vcpu->arch.dtl_ptr;
703 vpa = vcpu->arch.vpa.pinned_addr;
704 now = mftb();
705 core_stolen = vcore_stolen_time(vc, now);
706 stolen = core_stolen - vcpu->arch.stolen_logged;
707 vcpu->arch.stolen_logged = core_stolen;
708 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
709 stolen += vcpu->arch.busy_stolen;
710 vcpu->arch.busy_stolen = 0;
711 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
712 if (!dt || !vpa)
713 return;
714 memset(dt, 0, sizeof(struct dtl_entry));
715 dt->dispatch_reason = 7;
716 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
717 dt->timebase = cpu_to_be64(now + vc->tb_offset);
718 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
719 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
720 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
721 ++dt;
722 if (dt == vcpu->arch.dtl.pinned_end)
723 dt = vcpu->arch.dtl.pinned_addr;
724 vcpu->arch.dtl_ptr = dt;
725 /* order writing *dt vs. writing vpa->dtl_idx */
726 smp_wmb();
727 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
728 vcpu->arch.dtl.dirty = true;
729}
730
731/* See if there is a doorbell interrupt pending for a vcpu */
732static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
733{
734 int thr;
735 struct kvmppc_vcore *vc;
736
737 if (vcpu->arch.doorbell_request)
738 return true;
739 /*
740 * Ensure that the read of vcore->dpdes comes after the read
741 * of vcpu->doorbell_request. This barrier matches the
742 * smp_wmb() in kvmppc_guest_entry_inject().
743 */
744 smp_rmb();
745 vc = vcpu->arch.vcore;
746 thr = vcpu->vcpu_id - vc->first_vcpuid;
747 return !!(vc->dpdes & (1 << thr));
748}
749
750static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
751{
752 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
753 return true;
754 if ((!vcpu->arch.vcore->arch_compat) &&
755 cpu_has_feature(CPU_FTR_ARCH_207S))
756 return true;
757 return false;
758}
759
760static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
761 unsigned long resource, unsigned long value1,
762 unsigned long value2)
763{
764 switch (resource) {
765 case H_SET_MODE_RESOURCE_SET_CIABR:
766 if (!kvmppc_power8_compatible(vcpu))
767 return H_P2;
768 if (value2)
769 return H_P4;
770 if (mflags)
771 return H_UNSUPPORTED_FLAG_START;
772 /* Guests can't breakpoint the hypervisor */
773 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
774 return H_P3;
775 vcpu->arch.ciabr = value1;
776 return H_SUCCESS;
777 case H_SET_MODE_RESOURCE_SET_DAWR0:
778 if (!kvmppc_power8_compatible(vcpu))
779 return H_P2;
780 if (!ppc_breakpoint_available())
781 return H_P2;
782 if (mflags)
783 return H_UNSUPPORTED_FLAG_START;
784 if (value2 & DABRX_HYP)
785 return H_P4;
786 vcpu->arch.dawr0 = value1;
787 vcpu->arch.dawrx0 = value2;
788 return H_SUCCESS;
789 case H_SET_MODE_RESOURCE_SET_DAWR1:
790 if (!kvmppc_power8_compatible(vcpu))
791 return H_P2;
792 if (!ppc_breakpoint_available())
793 return H_P2;
794 if (!cpu_has_feature(CPU_FTR_DAWR1))
795 return H_P2;
796 if (!vcpu->kvm->arch.dawr1_enabled)
797 return H_FUNCTION;
798 if (mflags)
799 return H_UNSUPPORTED_FLAG_START;
800 if (value2 & DABRX_HYP)
801 return H_P4;
802 vcpu->arch.dawr1 = value1;
803 vcpu->arch.dawrx1 = value2;
804 return H_SUCCESS;
805 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
806 /*
807 * KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved.
808 * Keep this in synch with kvmppc_filter_guest_lpcr_hv.
809 */
810 if (mflags != 0 && mflags != 3)
811 return H_UNSUPPORTED_FLAG_START;
812 return H_TOO_HARD;
813 default:
814 return H_TOO_HARD;
815 }
816}
817
818/* Copy guest memory in place - must reside within a single memslot */
819static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
820 unsigned long len)
821{
822 struct kvm_memory_slot *to_memslot = NULL;
823 struct kvm_memory_slot *from_memslot = NULL;
824 unsigned long to_addr, from_addr;
825 int r;
826
827 /* Get HPA for from address */
828 from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
829 if (!from_memslot)
830 return -EFAULT;
831 if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
832 << PAGE_SHIFT))
833 return -EINVAL;
834 from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
835 if (kvm_is_error_hva(from_addr))
836 return -EFAULT;
837 from_addr |= (from & (PAGE_SIZE - 1));
838
839 /* Get HPA for to address */
840 to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
841 if (!to_memslot)
842 return -EFAULT;
843 if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
844 << PAGE_SHIFT))
845 return -EINVAL;
846 to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
847 if (kvm_is_error_hva(to_addr))
848 return -EFAULT;
849 to_addr |= (to & (PAGE_SIZE - 1));
850
851 /* Perform copy */
852 r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
853 len);
854 if (r)
855 return -EFAULT;
856 mark_page_dirty(kvm, to >> PAGE_SHIFT);
857 return 0;
858}
859
860static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
861 unsigned long dest, unsigned long src)
862{
863 u64 pg_sz = SZ_4K; /* 4K page size */
864 u64 pg_mask = SZ_4K - 1;
865 int ret;
866
867 /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
868 if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
869 H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
870 return H_PARAMETER;
871
872 /* dest (and src if copy_page flag set) must be page aligned */
873 if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
874 return H_PARAMETER;
875
876 /* zero and/or copy the page as determined by the flags */
877 if (flags & H_COPY_PAGE) {
878 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
879 if (ret < 0)
880 return H_PARAMETER;
881 } else if (flags & H_ZERO_PAGE) {
882 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
883 if (ret < 0)
884 return H_PARAMETER;
885 }
886
887 /* We can ignore the remaining flags */
888
889 return H_SUCCESS;
890}
891
892static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
893{
894 struct kvmppc_vcore *vcore = target->arch.vcore;
895
896 /*
897 * We expect to have been called by the real mode handler
898 * (kvmppc_rm_h_confer()) which would have directly returned
899 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
900 * have useful work to do and should not confer) so we don't
901 * recheck that here.
902 */
903
904 spin_lock(&vcore->lock);
905 if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
906 vcore->vcore_state != VCORE_INACTIVE &&
907 vcore->runner)
908 target = vcore->runner;
909 spin_unlock(&vcore->lock);
910
911 return kvm_vcpu_yield_to(target);
912}
913
914static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
915{
916 int yield_count = 0;
917 struct lppaca *lppaca;
918
919 spin_lock(&vcpu->arch.vpa_update_lock);
920 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
921 if (lppaca)
922 yield_count = be32_to_cpu(lppaca->yield_count);
923 spin_unlock(&vcpu->arch.vpa_update_lock);
924 return yield_count;
925}
926
927int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
928{
929 unsigned long req = kvmppc_get_gpr(vcpu, 3);
930 unsigned long target, ret = H_SUCCESS;
931 int yield_count;
932 struct kvm_vcpu *tvcpu;
933 int idx, rc;
934
935 if (req <= MAX_HCALL_OPCODE &&
936 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
937 return RESUME_HOST;
938
939 switch (req) {
940 case H_CEDE:
941 break;
942 case H_PROD:
943 target = kvmppc_get_gpr(vcpu, 4);
944 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
945 if (!tvcpu) {
946 ret = H_PARAMETER;
947 break;
948 }
949 tvcpu->arch.prodded = 1;
950 smp_mb();
951 if (tvcpu->arch.ceded)
952 kvmppc_fast_vcpu_kick_hv(tvcpu);
953 break;
954 case H_CONFER:
955 target = kvmppc_get_gpr(vcpu, 4);
956 if (target == -1)
957 break;
958 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
959 if (!tvcpu) {
960 ret = H_PARAMETER;
961 break;
962 }
963 yield_count = kvmppc_get_gpr(vcpu, 5);
964 if (kvmppc_get_yield_count(tvcpu) != yield_count)
965 break;
966 kvm_arch_vcpu_yield_to(tvcpu);
967 break;
968 case H_REGISTER_VPA:
969 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
970 kvmppc_get_gpr(vcpu, 5),
971 kvmppc_get_gpr(vcpu, 6));
972 break;
973 case H_RTAS:
974 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
975 return RESUME_HOST;
976
977 idx = srcu_read_lock(&vcpu->kvm->srcu);
978 rc = kvmppc_rtas_hcall(vcpu);
979 srcu_read_unlock(&vcpu->kvm->srcu, idx);
980
981 if (rc == -ENOENT)
982 return RESUME_HOST;
983 else if (rc == 0)
984 break;
985
986 /* Send the error out to userspace via KVM_RUN */
987 return rc;
988 case H_LOGICAL_CI_LOAD:
989 ret = kvmppc_h_logical_ci_load(vcpu);
990 if (ret == H_TOO_HARD)
991 return RESUME_HOST;
992 break;
993 case H_LOGICAL_CI_STORE:
994 ret = kvmppc_h_logical_ci_store(vcpu);
995 if (ret == H_TOO_HARD)
996 return RESUME_HOST;
997 break;
998 case H_SET_MODE:
999 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
1000 kvmppc_get_gpr(vcpu, 5),
1001 kvmppc_get_gpr(vcpu, 6),
1002 kvmppc_get_gpr(vcpu, 7));
1003 if (ret == H_TOO_HARD)
1004 return RESUME_HOST;
1005 break;
1006 case H_XIRR:
1007 case H_CPPR:
1008 case H_EOI:
1009 case H_IPI:
1010 case H_IPOLL:
1011 case H_XIRR_X:
1012 if (kvmppc_xics_enabled(vcpu)) {
1013 if (xics_on_xive()) {
1014 ret = H_NOT_AVAILABLE;
1015 return RESUME_GUEST;
1016 }
1017 ret = kvmppc_xics_hcall(vcpu, req);
1018 break;
1019 }
1020 return RESUME_HOST;
1021 case H_SET_DABR:
1022 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
1023 break;
1024 case H_SET_XDABR:
1025 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1026 kvmppc_get_gpr(vcpu, 5));
1027 break;
1028#ifdef CONFIG_SPAPR_TCE_IOMMU
1029 case H_GET_TCE:
1030 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1031 kvmppc_get_gpr(vcpu, 5));
1032 if (ret == H_TOO_HARD)
1033 return RESUME_HOST;
1034 break;
1035 case H_PUT_TCE:
1036 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1037 kvmppc_get_gpr(vcpu, 5),
1038 kvmppc_get_gpr(vcpu, 6));
1039 if (ret == H_TOO_HARD)
1040 return RESUME_HOST;
1041 break;
1042 case H_PUT_TCE_INDIRECT:
1043 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1044 kvmppc_get_gpr(vcpu, 5),
1045 kvmppc_get_gpr(vcpu, 6),
1046 kvmppc_get_gpr(vcpu, 7));
1047 if (ret == H_TOO_HARD)
1048 return RESUME_HOST;
1049 break;
1050 case H_STUFF_TCE:
1051 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1052 kvmppc_get_gpr(vcpu, 5),
1053 kvmppc_get_gpr(vcpu, 6),
1054 kvmppc_get_gpr(vcpu, 7));
1055 if (ret == H_TOO_HARD)
1056 return RESUME_HOST;
1057 break;
1058#endif
1059 case H_RANDOM:
1060 if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4]))
1061 ret = H_HARDWARE;
1062 break;
1063
1064 case H_SET_PARTITION_TABLE:
1065 ret = H_FUNCTION;
1066 if (nesting_enabled(vcpu->kvm))
1067 ret = kvmhv_set_partition_table(vcpu);
1068 break;
1069 case H_ENTER_NESTED:
1070 ret = H_FUNCTION;
1071 if (!nesting_enabled(vcpu->kvm))
1072 break;
1073 ret = kvmhv_enter_nested_guest(vcpu);
1074 if (ret == H_INTERRUPT) {
1075 kvmppc_set_gpr(vcpu, 3, 0);
1076 vcpu->arch.hcall_needed = 0;
1077 return -EINTR;
1078 } else if (ret == H_TOO_HARD) {
1079 kvmppc_set_gpr(vcpu, 3, 0);
1080 vcpu->arch.hcall_needed = 0;
1081 return RESUME_HOST;
1082 }
1083 break;
1084 case H_TLB_INVALIDATE:
1085 ret = H_FUNCTION;
1086 if (nesting_enabled(vcpu->kvm))
1087 ret = kvmhv_do_nested_tlbie(vcpu);
1088 break;
1089 case H_COPY_TOFROM_GUEST:
1090 ret = H_FUNCTION;
1091 if (nesting_enabled(vcpu->kvm))
1092 ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1093 break;
1094 case H_PAGE_INIT:
1095 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1096 kvmppc_get_gpr(vcpu, 5),
1097 kvmppc_get_gpr(vcpu, 6));
1098 break;
1099 case H_SVM_PAGE_IN:
1100 ret = H_UNSUPPORTED;
1101 if (kvmppc_get_srr1(vcpu) & MSR_S)
1102 ret = kvmppc_h_svm_page_in(vcpu->kvm,
1103 kvmppc_get_gpr(vcpu, 4),
1104 kvmppc_get_gpr(vcpu, 5),
1105 kvmppc_get_gpr(vcpu, 6));
1106 break;
1107 case H_SVM_PAGE_OUT:
1108 ret = H_UNSUPPORTED;
1109 if (kvmppc_get_srr1(vcpu) & MSR_S)
1110 ret = kvmppc_h_svm_page_out(vcpu->kvm,
1111 kvmppc_get_gpr(vcpu, 4),
1112 kvmppc_get_gpr(vcpu, 5),
1113 kvmppc_get_gpr(vcpu, 6));
1114 break;
1115 case H_SVM_INIT_START:
1116 ret = H_UNSUPPORTED;
1117 if (kvmppc_get_srr1(vcpu) & MSR_S)
1118 ret = kvmppc_h_svm_init_start(vcpu->kvm);
1119 break;
1120 case H_SVM_INIT_DONE:
1121 ret = H_UNSUPPORTED;
1122 if (kvmppc_get_srr1(vcpu) & MSR_S)
1123 ret = kvmppc_h_svm_init_done(vcpu->kvm);
1124 break;
1125 case H_SVM_INIT_ABORT:
1126 /*
1127 * Even if that call is made by the Ultravisor, the SSR1 value
1128 * is the guest context one, with the secure bit clear as it has
1129 * not yet been secured. So we can't check it here.
1130 * Instead the kvm->arch.secure_guest flag is checked inside
1131 * kvmppc_h_svm_init_abort().
1132 */
1133 ret = kvmppc_h_svm_init_abort(vcpu->kvm);
1134 break;
1135
1136 default:
1137 return RESUME_HOST;
1138 }
1139 kvmppc_set_gpr(vcpu, 3, ret);
1140 vcpu->arch.hcall_needed = 0;
1141 return RESUME_GUEST;
1142}
1143
1144/*
1145 * Handle H_CEDE in the nested virtualization case where we haven't
1146 * called the real-mode hcall handlers in book3s_hv_rmhandlers.S.
1147 * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1148 * that the cede logic in kvmppc_run_single_vcpu() works properly.
1149 */
1150static void kvmppc_nested_cede(struct kvm_vcpu *vcpu)
1151{
1152 vcpu->arch.shregs.msr |= MSR_EE;
1153 vcpu->arch.ceded = 1;
1154 smp_mb();
1155 if (vcpu->arch.prodded) {
1156 vcpu->arch.prodded = 0;
1157 smp_mb();
1158 vcpu->arch.ceded = 0;
1159 }
1160}
1161
1162static int kvmppc_hcall_impl_hv(unsigned long cmd)
1163{
1164 switch (cmd) {
1165 case H_CEDE:
1166 case H_PROD:
1167 case H_CONFER:
1168 case H_REGISTER_VPA:
1169 case H_SET_MODE:
1170 case H_LOGICAL_CI_LOAD:
1171 case H_LOGICAL_CI_STORE:
1172#ifdef CONFIG_KVM_XICS
1173 case H_XIRR:
1174 case H_CPPR:
1175 case H_EOI:
1176 case H_IPI:
1177 case H_IPOLL:
1178 case H_XIRR_X:
1179#endif
1180 case H_PAGE_INIT:
1181 return 1;
1182 }
1183
1184 /* See if it's in the real-mode table */
1185 return kvmppc_hcall_impl_hv_realmode(cmd);
1186}
1187
1188static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu)
1189{
1190 u32 last_inst;
1191
1192 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1193 EMULATE_DONE) {
1194 /*
1195 * Fetch failed, so return to guest and
1196 * try executing it again.
1197 */
1198 return RESUME_GUEST;
1199 }
1200
1201 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
1202 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
1203 vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu);
1204 return RESUME_HOST;
1205 } else {
1206 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1207 return RESUME_GUEST;
1208 }
1209}
1210
1211static void do_nothing(void *x)
1212{
1213}
1214
1215static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1216{
1217 int thr, cpu, pcpu, nthreads;
1218 struct kvm_vcpu *v;
1219 unsigned long dpdes;
1220
1221 nthreads = vcpu->kvm->arch.emul_smt_mode;
1222 dpdes = 0;
1223 cpu = vcpu->vcpu_id & ~(nthreads - 1);
1224 for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1225 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1226 if (!v)
1227 continue;
1228 /*
1229 * If the vcpu is currently running on a physical cpu thread,
1230 * interrupt it in order to pull it out of the guest briefly,
1231 * which will update its vcore->dpdes value.
1232 */
1233 pcpu = READ_ONCE(v->cpu);
1234 if (pcpu >= 0)
1235 smp_call_function_single(pcpu, do_nothing, NULL, 1);
1236 if (kvmppc_doorbell_pending(v))
1237 dpdes |= 1 << thr;
1238 }
1239 return dpdes;
1240}
1241
1242/*
1243 * On POWER9, emulate doorbell-related instructions in order to
1244 * give the guest the illusion of running on a multi-threaded core.
1245 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1246 * and mfspr DPDES.
1247 */
1248static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1249{
1250 u32 inst, rb, thr;
1251 unsigned long arg;
1252 struct kvm *kvm = vcpu->kvm;
1253 struct kvm_vcpu *tvcpu;
1254
1255 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1256 return RESUME_GUEST;
1257 if (get_op(inst) != 31)
1258 return EMULATE_FAIL;
1259 rb = get_rb(inst);
1260 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1261 switch (get_xop(inst)) {
1262 case OP_31_XOP_MSGSNDP:
1263 arg = kvmppc_get_gpr(vcpu, rb);
1264 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1265 break;
1266 arg &= 0x7f;
1267 if (arg >= kvm->arch.emul_smt_mode)
1268 break;
1269 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1270 if (!tvcpu)
1271 break;
1272 if (!tvcpu->arch.doorbell_request) {
1273 tvcpu->arch.doorbell_request = 1;
1274 kvmppc_fast_vcpu_kick_hv(tvcpu);
1275 }
1276 break;
1277 case OP_31_XOP_MSGCLRP:
1278 arg = kvmppc_get_gpr(vcpu, rb);
1279 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1280 break;
1281 vcpu->arch.vcore->dpdes = 0;
1282 vcpu->arch.doorbell_request = 0;
1283 break;
1284 case OP_31_XOP_MFSPR:
1285 switch (get_sprn(inst)) {
1286 case SPRN_TIR:
1287 arg = thr;
1288 break;
1289 case SPRN_DPDES:
1290 arg = kvmppc_read_dpdes(vcpu);
1291 break;
1292 default:
1293 return EMULATE_FAIL;
1294 }
1295 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1296 break;
1297 default:
1298 return EMULATE_FAIL;
1299 }
1300 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1301 return RESUME_GUEST;
1302}
1303
1304static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu,
1305 struct task_struct *tsk)
1306{
1307 struct kvm_run *run = vcpu->run;
1308 int r = RESUME_HOST;
1309
1310 vcpu->stat.sum_exits++;
1311
1312 /*
1313 * This can happen if an interrupt occurs in the last stages
1314 * of guest entry or the first stages of guest exit (i.e. after
1315 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1316 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1317 * That can happen due to a bug, or due to a machine check
1318 * occurring at just the wrong time.
1319 */
1320 if (vcpu->arch.shregs.msr & MSR_HV) {
1321 printk(KERN_EMERG "KVM trap in HV mode!\n");
1322 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1323 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1324 vcpu->arch.shregs.msr);
1325 kvmppc_dump_regs(vcpu);
1326 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1327 run->hw.hardware_exit_reason = vcpu->arch.trap;
1328 return RESUME_HOST;
1329 }
1330 run->exit_reason = KVM_EXIT_UNKNOWN;
1331 run->ready_for_interrupt_injection = 1;
1332 switch (vcpu->arch.trap) {
1333 /* We're good on these - the host merely wanted to get our attention */
1334 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1335 vcpu->stat.dec_exits++;
1336 r = RESUME_GUEST;
1337 break;
1338 case BOOK3S_INTERRUPT_EXTERNAL:
1339 case BOOK3S_INTERRUPT_H_DOORBELL:
1340 case BOOK3S_INTERRUPT_H_VIRT:
1341 vcpu->stat.ext_intr_exits++;
1342 r = RESUME_GUEST;
1343 break;
1344 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1345 case BOOK3S_INTERRUPT_HMI:
1346 case BOOK3S_INTERRUPT_PERFMON:
1347 case BOOK3S_INTERRUPT_SYSTEM_RESET:
1348 r = RESUME_GUEST;
1349 break;
1350 case BOOK3S_INTERRUPT_MACHINE_CHECK: {
1351 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1352 DEFAULT_RATELIMIT_BURST);
1353 /*
1354 * Print the MCE event to host console. Ratelimit so the guest
1355 * can't flood the host log.
1356 */
1357 if (__ratelimit(&rs))
1358 machine_check_print_event_info(&vcpu->arch.mce_evt,false, true);
1359
1360 /*
1361 * If the guest can do FWNMI, exit to userspace so it can
1362 * deliver a FWNMI to the guest.
1363 * Otherwise we synthesize a machine check for the guest
1364 * so that it knows that the machine check occurred.
1365 */
1366 if (!vcpu->kvm->arch.fwnmi_enabled) {
1367 ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
1368 kvmppc_core_queue_machine_check(vcpu, flags);
1369 r = RESUME_GUEST;
1370 break;
1371 }
1372
1373 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1374 run->exit_reason = KVM_EXIT_NMI;
1375 run->hw.hardware_exit_reason = vcpu->arch.trap;
1376 /* Clear out the old NMI status from run->flags */
1377 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1378 /* Now set the NMI status */
1379 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1380 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1381 else
1382 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1383
1384 r = RESUME_HOST;
1385 break;
1386 }
1387 case BOOK3S_INTERRUPT_PROGRAM:
1388 {
1389 ulong flags;
1390 /*
1391 * Normally program interrupts are delivered directly
1392 * to the guest by the hardware, but we can get here
1393 * as a result of a hypervisor emulation interrupt
1394 * (e40) getting turned into a 700 by BML RTAS.
1395 */
1396 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1397 kvmppc_core_queue_program(vcpu, flags);
1398 r = RESUME_GUEST;
1399 break;
1400 }
1401 case BOOK3S_INTERRUPT_SYSCALL:
1402 {
1403 /* hcall - punt to userspace */
1404 int i;
1405
1406 /* hypercall with MSR_PR has already been handled in rmode,
1407 * and never reaches here.
1408 */
1409
1410 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1411 for (i = 0; i < 9; ++i)
1412 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1413 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1414 vcpu->arch.hcall_needed = 1;
1415 r = RESUME_HOST;
1416 break;
1417 }
1418 /*
1419 * We get these next two if the guest accesses a page which it thinks
1420 * it has mapped but which is not actually present, either because
1421 * it is for an emulated I/O device or because the corresonding
1422 * host page has been paged out. Any other HDSI/HISI interrupts
1423 * have been handled already.
1424 */
1425 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1426 r = RESUME_PAGE_FAULT;
1427 break;
1428 case BOOK3S_INTERRUPT_H_INST_STORAGE:
1429 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1430 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1431 DSISR_SRR1_MATCH_64S;
1432 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1433 vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1434 r = RESUME_PAGE_FAULT;
1435 break;
1436 /*
1437 * This occurs if the guest executes an illegal instruction.
1438 * If the guest debug is disabled, generate a program interrupt
1439 * to the guest. If guest debug is enabled, we need to check
1440 * whether the instruction is a software breakpoint instruction.
1441 * Accordingly return to Guest or Host.
1442 */
1443 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1444 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1445 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1446 swab32(vcpu->arch.emul_inst) :
1447 vcpu->arch.emul_inst;
1448 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1449 r = kvmppc_emulate_debug_inst(vcpu);
1450 } else {
1451 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1452 r = RESUME_GUEST;
1453 }
1454 break;
1455 /*
1456 * This occurs if the guest (kernel or userspace), does something that
1457 * is prohibited by HFSCR.
1458 * On POWER9, this could be a doorbell instruction that we need
1459 * to emulate.
1460 * Otherwise, we just generate a program interrupt to the guest.
1461 */
1462 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1463 r = EMULATE_FAIL;
1464 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1465 cpu_has_feature(CPU_FTR_ARCH_300))
1466 r = kvmppc_emulate_doorbell_instr(vcpu);
1467 if (r == EMULATE_FAIL) {
1468 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1469 r = RESUME_GUEST;
1470 }
1471 break;
1472
1473#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1474 case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1475 /*
1476 * This occurs for various TM-related instructions that
1477 * we need to emulate on POWER9 DD2.2. We have already
1478 * handled the cases where the guest was in real-suspend
1479 * mode and was transitioning to transactional state.
1480 */
1481 r = kvmhv_p9_tm_emulation(vcpu);
1482 break;
1483#endif
1484
1485 case BOOK3S_INTERRUPT_HV_RM_HARD:
1486 r = RESUME_PASSTHROUGH;
1487 break;
1488 default:
1489 kvmppc_dump_regs(vcpu);
1490 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1491 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1492 vcpu->arch.shregs.msr);
1493 run->hw.hardware_exit_reason = vcpu->arch.trap;
1494 r = RESUME_HOST;
1495 break;
1496 }
1497
1498 return r;
1499}
1500
1501static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
1502{
1503 int r;
1504 int srcu_idx;
1505
1506 vcpu->stat.sum_exits++;
1507
1508 /*
1509 * This can happen if an interrupt occurs in the last stages
1510 * of guest entry or the first stages of guest exit (i.e. after
1511 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1512 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1513 * That can happen due to a bug, or due to a machine check
1514 * occurring at just the wrong time.
1515 */
1516 if (vcpu->arch.shregs.msr & MSR_HV) {
1517 pr_emerg("KVM trap in HV mode while nested!\n");
1518 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1519 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1520 vcpu->arch.shregs.msr);
1521 kvmppc_dump_regs(vcpu);
1522 return RESUME_HOST;
1523 }
1524 switch (vcpu->arch.trap) {
1525 /* We're good on these - the host merely wanted to get our attention */
1526 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1527 vcpu->stat.dec_exits++;
1528 r = RESUME_GUEST;
1529 break;
1530 case BOOK3S_INTERRUPT_EXTERNAL:
1531 vcpu->stat.ext_intr_exits++;
1532 r = RESUME_HOST;
1533 break;
1534 case BOOK3S_INTERRUPT_H_DOORBELL:
1535 case BOOK3S_INTERRUPT_H_VIRT:
1536 vcpu->stat.ext_intr_exits++;
1537 r = RESUME_GUEST;
1538 break;
1539 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1540 case BOOK3S_INTERRUPT_HMI:
1541 case BOOK3S_INTERRUPT_PERFMON:
1542 case BOOK3S_INTERRUPT_SYSTEM_RESET:
1543 r = RESUME_GUEST;
1544 break;
1545 case BOOK3S_INTERRUPT_MACHINE_CHECK:
1546 {
1547 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1548 DEFAULT_RATELIMIT_BURST);
1549 /* Pass the machine check to the L1 guest */
1550 r = RESUME_HOST;
1551 /* Print the MCE event to host console. */
1552 if (__ratelimit(&rs))
1553 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1554 break;
1555 }
1556 /*
1557 * We get these next two if the guest accesses a page which it thinks
1558 * it has mapped but which is not actually present, either because
1559 * it is for an emulated I/O device or because the corresonding
1560 * host page has been paged out.
1561 */
1562 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1563 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1564 r = kvmhv_nested_page_fault(vcpu);
1565 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1566 break;
1567 case BOOK3S_INTERRUPT_H_INST_STORAGE:
1568 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1569 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1570 DSISR_SRR1_MATCH_64S;
1571 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1572 vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1573 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1574 r = kvmhv_nested_page_fault(vcpu);
1575 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1576 break;
1577
1578#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1579 case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1580 /*
1581 * This occurs for various TM-related instructions that
1582 * we need to emulate on POWER9 DD2.2. We have already
1583 * handled the cases where the guest was in real-suspend
1584 * mode and was transitioning to transactional state.
1585 */
1586 r = kvmhv_p9_tm_emulation(vcpu);
1587 break;
1588#endif
1589
1590 case BOOK3S_INTERRUPT_HV_RM_HARD:
1591 vcpu->arch.trap = 0;
1592 r = RESUME_GUEST;
1593 if (!xics_on_xive())
1594 kvmppc_xics_rm_complete(vcpu, 0);
1595 break;
1596 default:
1597 r = RESUME_HOST;
1598 break;
1599 }
1600
1601 return r;
1602}
1603
1604static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1605 struct kvm_sregs *sregs)
1606{
1607 int i;
1608
1609 memset(sregs, 0, sizeof(struct kvm_sregs));
1610 sregs->pvr = vcpu->arch.pvr;
1611 for (i = 0; i < vcpu->arch.slb_max; i++) {
1612 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1613 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1614 }
1615
1616 return 0;
1617}
1618
1619static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1620 struct kvm_sregs *sregs)
1621{
1622 int i, j;
1623
1624 /* Only accept the same PVR as the host's, since we can't spoof it */
1625 if (sregs->pvr != vcpu->arch.pvr)
1626 return -EINVAL;
1627
1628 j = 0;
1629 for (i = 0; i < vcpu->arch.slb_nr; i++) {
1630 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1631 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1632 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1633 ++j;
1634 }
1635 }
1636 vcpu->arch.slb_max = j;
1637
1638 return 0;
1639}
1640
1641/*
1642 * Enforce limits on guest LPCR values based on hardware availability,
1643 * guest configuration, and possibly hypervisor support and security
1644 * concerns.
1645 */
1646unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr)
1647{
1648 /* LPCR_TC only applies to HPT guests */
1649 if (kvm_is_radix(kvm))
1650 lpcr &= ~LPCR_TC;
1651
1652 /* On POWER8 and above, userspace can modify AIL */
1653 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1654 lpcr &= ~LPCR_AIL;
1655 if ((lpcr & LPCR_AIL) != LPCR_AIL_3)
1656 lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */
1657
1658 /*
1659 * On POWER9, allow userspace to enable large decrementer for the
1660 * guest, whether or not the host has it enabled.
1661 */
1662 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1663 lpcr &= ~LPCR_LD;
1664
1665 return lpcr;
1666}
1667
1668static void verify_lpcr(struct kvm *kvm, unsigned long lpcr)
1669{
1670 if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) {
1671 WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n",
1672 lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr));
1673 }
1674}
1675
1676static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1677 bool preserve_top32)
1678{
1679 struct kvm *kvm = vcpu->kvm;
1680 struct kvmppc_vcore *vc = vcpu->arch.vcore;
1681 u64 mask;
1682
1683 spin_lock(&vc->lock);
1684
1685 /*
1686 * Userspace can only modify
1687 * DPFD (default prefetch depth), ILE (interrupt little-endian),
1688 * TC (translation control), AIL (alternate interrupt location),
1689 * LD (large decrementer).
1690 * These are subject to restrictions from kvmppc_filter_lcpr_hv().
1691 */
1692 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD;
1693
1694 /* Broken 32-bit version of LPCR must not clear top bits */
1695 if (preserve_top32)
1696 mask &= 0xFFFFFFFF;
1697
1698 new_lpcr = kvmppc_filter_lpcr_hv(kvm,
1699 (vc->lpcr & ~mask) | (new_lpcr & mask));
1700
1701 /*
1702 * If ILE (interrupt little-endian) has changed, update the
1703 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1704 */
1705 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1706 struct kvm_vcpu *vcpu;
1707 int i;
1708
1709 kvm_for_each_vcpu(i, vcpu, kvm) {
1710 if (vcpu->arch.vcore != vc)
1711 continue;
1712 if (new_lpcr & LPCR_ILE)
1713 vcpu->arch.intr_msr |= MSR_LE;
1714 else
1715 vcpu->arch.intr_msr &= ~MSR_LE;
1716 }
1717 }
1718
1719 vc->lpcr = new_lpcr;
1720
1721 spin_unlock(&vc->lock);
1722}
1723
1724static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1725 union kvmppc_one_reg *val)
1726{
1727 int r = 0;
1728 long int i;
1729
1730 switch (id) {
1731 case KVM_REG_PPC_DEBUG_INST:
1732 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1733 break;
1734 case KVM_REG_PPC_HIOR:
1735 *val = get_reg_val(id, 0);
1736 break;
1737 case KVM_REG_PPC_DABR:
1738 *val = get_reg_val(id, vcpu->arch.dabr);
1739 break;
1740 case KVM_REG_PPC_DABRX:
1741 *val = get_reg_val(id, vcpu->arch.dabrx);
1742 break;
1743 case KVM_REG_PPC_DSCR:
1744 *val = get_reg_val(id, vcpu->arch.dscr);
1745 break;
1746 case KVM_REG_PPC_PURR:
1747 *val = get_reg_val(id, vcpu->arch.purr);
1748 break;
1749 case KVM_REG_PPC_SPURR:
1750 *val = get_reg_val(id, vcpu->arch.spurr);
1751 break;
1752 case KVM_REG_PPC_AMR:
1753 *val = get_reg_val(id, vcpu->arch.amr);
1754 break;
1755 case KVM_REG_PPC_UAMOR:
1756 *val = get_reg_val(id, vcpu->arch.uamor);
1757 break;
1758 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
1759 i = id - KVM_REG_PPC_MMCR0;
1760 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1761 break;
1762 case KVM_REG_PPC_MMCR2:
1763 *val = get_reg_val(id, vcpu->arch.mmcr[2]);
1764 break;
1765 case KVM_REG_PPC_MMCRA:
1766 *val = get_reg_val(id, vcpu->arch.mmcra);
1767 break;
1768 case KVM_REG_PPC_MMCRS:
1769 *val = get_reg_val(id, vcpu->arch.mmcrs);
1770 break;
1771 case KVM_REG_PPC_MMCR3:
1772 *val = get_reg_val(id, vcpu->arch.mmcr[3]);
1773 break;
1774 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1775 i = id - KVM_REG_PPC_PMC1;
1776 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1777 break;
1778 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1779 i = id - KVM_REG_PPC_SPMC1;
1780 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1781 break;
1782 case KVM_REG_PPC_SIAR:
1783 *val = get_reg_val(id, vcpu->arch.siar);
1784 break;
1785 case KVM_REG_PPC_SDAR:
1786 *val = get_reg_val(id, vcpu->arch.sdar);
1787 break;
1788 case KVM_REG_PPC_SIER:
1789 *val = get_reg_val(id, vcpu->arch.sier[0]);
1790 break;
1791 case KVM_REG_PPC_SIER2:
1792 *val = get_reg_val(id, vcpu->arch.sier[1]);
1793 break;
1794 case KVM_REG_PPC_SIER3:
1795 *val = get_reg_val(id, vcpu->arch.sier[2]);
1796 break;
1797 case KVM_REG_PPC_IAMR:
1798 *val = get_reg_val(id, vcpu->arch.iamr);
1799 break;
1800 case KVM_REG_PPC_PSPB:
1801 *val = get_reg_val(id, vcpu->arch.pspb);
1802 break;
1803 case KVM_REG_PPC_DPDES:
1804 /*
1805 * On POWER9, where we are emulating msgsndp etc.,
1806 * we return 1 bit for each vcpu, which can come from
1807 * either vcore->dpdes or doorbell_request.
1808 * On POWER8, doorbell_request is 0.
1809 */
1810 *val = get_reg_val(id, vcpu->arch.vcore->dpdes |
1811 vcpu->arch.doorbell_request);
1812 break;
1813 case KVM_REG_PPC_VTB:
1814 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1815 break;
1816 case KVM_REG_PPC_DAWR:
1817 *val = get_reg_val(id, vcpu->arch.dawr0);
1818 break;
1819 case KVM_REG_PPC_DAWRX:
1820 *val = get_reg_val(id, vcpu->arch.dawrx0);
1821 break;
1822 case KVM_REG_PPC_DAWR1:
1823 *val = get_reg_val(id, vcpu->arch.dawr1);
1824 break;
1825 case KVM_REG_PPC_DAWRX1:
1826 *val = get_reg_val(id, vcpu->arch.dawrx1);
1827 break;
1828 case KVM_REG_PPC_CIABR:
1829 *val = get_reg_val(id, vcpu->arch.ciabr);
1830 break;
1831 case KVM_REG_PPC_CSIGR:
1832 *val = get_reg_val(id, vcpu->arch.csigr);
1833 break;
1834 case KVM_REG_PPC_TACR:
1835 *val = get_reg_val(id, vcpu->arch.tacr);
1836 break;
1837 case KVM_REG_PPC_TCSCR:
1838 *val = get_reg_val(id, vcpu->arch.tcscr);
1839 break;
1840 case KVM_REG_PPC_PID:
1841 *val = get_reg_val(id, vcpu->arch.pid);
1842 break;
1843 case KVM_REG_PPC_ACOP:
1844 *val = get_reg_val(id, vcpu->arch.acop);
1845 break;
1846 case KVM_REG_PPC_WORT:
1847 *val = get_reg_val(id, vcpu->arch.wort);
1848 break;
1849 case KVM_REG_PPC_TIDR:
1850 *val = get_reg_val(id, vcpu->arch.tid);
1851 break;
1852 case KVM_REG_PPC_PSSCR:
1853 *val = get_reg_val(id, vcpu->arch.psscr);
1854 break;
1855 case KVM_REG_PPC_VPA_ADDR:
1856 spin_lock(&vcpu->arch.vpa_update_lock);
1857 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1858 spin_unlock(&vcpu->arch.vpa_update_lock);
1859 break;
1860 case KVM_REG_PPC_VPA_SLB:
1861 spin_lock(&vcpu->arch.vpa_update_lock);
1862 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1863 val->vpaval.length = vcpu->arch.slb_shadow.len;
1864 spin_unlock(&vcpu->arch.vpa_update_lock);
1865 break;
1866 case KVM_REG_PPC_VPA_DTL:
1867 spin_lock(&vcpu->arch.vpa_update_lock);
1868 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1869 val->vpaval.length = vcpu->arch.dtl.len;
1870 spin_unlock(&vcpu->arch.vpa_update_lock);
1871 break;
1872 case KVM_REG_PPC_TB_OFFSET:
1873 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1874 break;
1875 case KVM_REG_PPC_LPCR:
1876 case KVM_REG_PPC_LPCR_64:
1877 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1878 break;
1879 case KVM_REG_PPC_PPR:
1880 *val = get_reg_val(id, vcpu->arch.ppr);
1881 break;
1882#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1883 case KVM_REG_PPC_TFHAR:
1884 *val = get_reg_val(id, vcpu->arch.tfhar);
1885 break;
1886 case KVM_REG_PPC_TFIAR:
1887 *val = get_reg_val(id, vcpu->arch.tfiar);
1888 break;
1889 case KVM_REG_PPC_TEXASR:
1890 *val = get_reg_val(id, vcpu->arch.texasr);
1891 break;
1892 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1893 i = id - KVM_REG_PPC_TM_GPR0;
1894 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1895 break;
1896 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1897 {
1898 int j;
1899 i = id - KVM_REG_PPC_TM_VSR0;
1900 if (i < 32)
1901 for (j = 0; j < TS_FPRWIDTH; j++)
1902 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1903 else {
1904 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1905 val->vval = vcpu->arch.vr_tm.vr[i-32];
1906 else
1907 r = -ENXIO;
1908 }
1909 break;
1910 }
1911 case KVM_REG_PPC_TM_CR:
1912 *val = get_reg_val(id, vcpu->arch.cr_tm);
1913 break;
1914 case KVM_REG_PPC_TM_XER:
1915 *val = get_reg_val(id, vcpu->arch.xer_tm);
1916 break;
1917 case KVM_REG_PPC_TM_LR:
1918 *val = get_reg_val(id, vcpu->arch.lr_tm);
1919 break;
1920 case KVM_REG_PPC_TM_CTR:
1921 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1922 break;
1923 case KVM_REG_PPC_TM_FPSCR:
1924 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1925 break;
1926 case KVM_REG_PPC_TM_AMR:
1927 *val = get_reg_val(id, vcpu->arch.amr_tm);
1928 break;
1929 case KVM_REG_PPC_TM_PPR:
1930 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1931 break;
1932 case KVM_REG_PPC_TM_VRSAVE:
1933 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1934 break;
1935 case KVM_REG_PPC_TM_VSCR:
1936 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1937 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1938 else
1939 r = -ENXIO;
1940 break;
1941 case KVM_REG_PPC_TM_DSCR:
1942 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1943 break;
1944 case KVM_REG_PPC_TM_TAR:
1945 *val = get_reg_val(id, vcpu->arch.tar_tm);
1946 break;
1947#endif
1948 case KVM_REG_PPC_ARCH_COMPAT:
1949 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1950 break;
1951 case KVM_REG_PPC_DEC_EXPIRY:
1952 *val = get_reg_val(id, vcpu->arch.dec_expires +
1953 vcpu->arch.vcore->tb_offset);
1954 break;
1955 case KVM_REG_PPC_ONLINE:
1956 *val = get_reg_val(id, vcpu->arch.online);
1957 break;
1958 case KVM_REG_PPC_PTCR:
1959 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
1960 break;
1961 default:
1962 r = -EINVAL;
1963 break;
1964 }
1965
1966 return r;
1967}
1968
1969static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1970 union kvmppc_one_reg *val)
1971{
1972 int r = 0;
1973 long int i;
1974 unsigned long addr, len;
1975
1976 switch (id) {
1977 case KVM_REG_PPC_HIOR:
1978 /* Only allow this to be set to zero */
1979 if (set_reg_val(id, *val))
1980 r = -EINVAL;
1981 break;
1982 case KVM_REG_PPC_DABR:
1983 vcpu->arch.dabr = set_reg_val(id, *val);
1984 break;
1985 case KVM_REG_PPC_DABRX:
1986 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1987 break;
1988 case KVM_REG_PPC_DSCR:
1989 vcpu->arch.dscr = set_reg_val(id, *val);
1990 break;
1991 case KVM_REG_PPC_PURR:
1992 vcpu->arch.purr = set_reg_val(id, *val);
1993 break;
1994 case KVM_REG_PPC_SPURR:
1995 vcpu->arch.spurr = set_reg_val(id, *val);
1996 break;
1997 case KVM_REG_PPC_AMR:
1998 vcpu->arch.amr = set_reg_val(id, *val);
1999 break;
2000 case KVM_REG_PPC_UAMOR:
2001 vcpu->arch.uamor = set_reg_val(id, *val);
2002 break;
2003 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2004 i = id - KVM_REG_PPC_MMCR0;
2005 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
2006 break;
2007 case KVM_REG_PPC_MMCR2:
2008 vcpu->arch.mmcr[2] = set_reg_val(id, *val);
2009 break;
2010 case KVM_REG_PPC_MMCRA:
2011 vcpu->arch.mmcra = set_reg_val(id, *val);
2012 break;
2013 case KVM_REG_PPC_MMCRS:
2014 vcpu->arch.mmcrs = set_reg_val(id, *val);
2015 break;
2016 case KVM_REG_PPC_MMCR3:
2017 *val = get_reg_val(id, vcpu->arch.mmcr[3]);
2018 break;
2019 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2020 i = id - KVM_REG_PPC_PMC1;
2021 vcpu->arch.pmc[i] = set_reg_val(id, *val);
2022 break;
2023 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2024 i = id - KVM_REG_PPC_SPMC1;
2025 vcpu->arch.spmc[i] = set_reg_val(id, *val);
2026 break;
2027 case KVM_REG_PPC_SIAR:
2028 vcpu->arch.siar = set_reg_val(id, *val);
2029 break;
2030 case KVM_REG_PPC_SDAR:
2031 vcpu->arch.sdar = set_reg_val(id, *val);
2032 break;
2033 case KVM_REG_PPC_SIER:
2034 vcpu->arch.sier[0] = set_reg_val(id, *val);
2035 break;
2036 case KVM_REG_PPC_SIER2:
2037 vcpu->arch.sier[1] = set_reg_val(id, *val);
2038 break;
2039 case KVM_REG_PPC_SIER3:
2040 vcpu->arch.sier[2] = set_reg_val(id, *val);
2041 break;
2042 case KVM_REG_PPC_IAMR:
2043 vcpu->arch.iamr = set_reg_val(id, *val);
2044 break;
2045 case KVM_REG_PPC_PSPB:
2046 vcpu->arch.pspb = set_reg_val(id, *val);
2047 break;
2048 case KVM_REG_PPC_DPDES:
2049 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
2050 break;
2051 case KVM_REG_PPC_VTB:
2052 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
2053 break;
2054 case KVM_REG_PPC_DAWR:
2055 vcpu->arch.dawr0 = set_reg_val(id, *val);
2056 break;
2057 case KVM_REG_PPC_DAWRX:
2058 vcpu->arch.dawrx0 = set_reg_val(id, *val) & ~DAWRX_HYP;
2059 break;
2060 case KVM_REG_PPC_DAWR1:
2061 vcpu->arch.dawr1 = set_reg_val(id, *val);
2062 break;
2063 case KVM_REG_PPC_DAWRX1:
2064 vcpu->arch.dawrx1 = set_reg_val(id, *val) & ~DAWRX_HYP;
2065 break;
2066 case KVM_REG_PPC_CIABR:
2067 vcpu->arch.ciabr = set_reg_val(id, *val);
2068 /* Don't allow setting breakpoints in hypervisor code */
2069 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
2070 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */
2071 break;
2072 case KVM_REG_PPC_CSIGR:
2073 vcpu->arch.csigr = set_reg_val(id, *val);
2074 break;
2075 case KVM_REG_PPC_TACR:
2076 vcpu->arch.tacr = set_reg_val(id, *val);
2077 break;
2078 case KVM_REG_PPC_TCSCR:
2079 vcpu->arch.tcscr = set_reg_val(id, *val);
2080 break;
2081 case KVM_REG_PPC_PID:
2082 vcpu->arch.pid = set_reg_val(id, *val);
2083 break;
2084 case KVM_REG_PPC_ACOP:
2085 vcpu->arch.acop = set_reg_val(id, *val);
2086 break;
2087 case KVM_REG_PPC_WORT:
2088 vcpu->arch.wort = set_reg_val(id, *val);
2089 break;
2090 case KVM_REG_PPC_TIDR:
2091 vcpu->arch.tid = set_reg_val(id, *val);
2092 break;
2093 case KVM_REG_PPC_PSSCR:
2094 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
2095 break;
2096 case KVM_REG_PPC_VPA_ADDR:
2097 addr = set_reg_val(id, *val);
2098 r = -EINVAL;
2099 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
2100 vcpu->arch.dtl.next_gpa))
2101 break;
2102 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
2103 break;
2104 case KVM_REG_PPC_VPA_SLB:
2105 addr = val->vpaval.addr;
2106 len = val->vpaval.length;
2107 r = -EINVAL;
2108 if (addr && !vcpu->arch.vpa.next_gpa)
2109 break;
2110 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
2111 break;
2112 case KVM_REG_PPC_VPA_DTL:
2113 addr = val->vpaval.addr;
2114 len = val->vpaval.length;
2115 r = -EINVAL;
2116 if (addr && (len < sizeof(struct dtl_entry) ||
2117 !vcpu->arch.vpa.next_gpa))
2118 break;
2119 len -= len % sizeof(struct dtl_entry);
2120 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
2121 break;
2122 case KVM_REG_PPC_TB_OFFSET:
2123 /* round up to multiple of 2^24 */
2124 vcpu->arch.vcore->tb_offset =
2125 ALIGN(set_reg_val(id, *val), 1UL << 24);
2126 break;
2127 case KVM_REG_PPC_LPCR:
2128 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
2129 break;
2130 case KVM_REG_PPC_LPCR_64:
2131 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
2132 break;
2133 case KVM_REG_PPC_PPR:
2134 vcpu->arch.ppr = set_reg_val(id, *val);
2135 break;
2136#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2137 case KVM_REG_PPC_TFHAR:
2138 vcpu->arch.tfhar = set_reg_val(id, *val);
2139 break;
2140 case KVM_REG_PPC_TFIAR:
2141 vcpu->arch.tfiar = set_reg_val(id, *val);
2142 break;
2143 case KVM_REG_PPC_TEXASR:
2144 vcpu->arch.texasr = set_reg_val(id, *val);
2145 break;
2146 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2147 i = id - KVM_REG_PPC_TM_GPR0;
2148 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2149 break;
2150 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2151 {
2152 int j;
2153 i = id - KVM_REG_PPC_TM_VSR0;
2154 if (i < 32)
2155 for (j = 0; j < TS_FPRWIDTH; j++)
2156 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2157 else
2158 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2159 vcpu->arch.vr_tm.vr[i-32] = val->vval;
2160 else
2161 r = -ENXIO;
2162 break;
2163 }
2164 case KVM_REG_PPC_TM_CR:
2165 vcpu->arch.cr_tm = set_reg_val(id, *val);
2166 break;
2167 case KVM_REG_PPC_TM_XER:
2168 vcpu->arch.xer_tm = set_reg_val(id, *val);
2169 break;
2170 case KVM_REG_PPC_TM_LR:
2171 vcpu->arch.lr_tm = set_reg_val(id, *val);
2172 break;
2173 case KVM_REG_PPC_TM_CTR:
2174 vcpu->arch.ctr_tm = set_reg_val(id, *val);
2175 break;
2176 case KVM_REG_PPC_TM_FPSCR:
2177 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2178 break;
2179 case KVM_REG_PPC_TM_AMR:
2180 vcpu->arch.amr_tm = set_reg_val(id, *val);
2181 break;
2182 case KVM_REG_PPC_TM_PPR:
2183 vcpu->arch.ppr_tm = set_reg_val(id, *val);
2184 break;
2185 case KVM_REG_PPC_TM_VRSAVE:
2186 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2187 break;
2188 case KVM_REG_PPC_TM_VSCR:
2189 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2190 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2191 else
2192 r = - ENXIO;
2193 break;
2194 case KVM_REG_PPC_TM_DSCR:
2195 vcpu->arch.dscr_tm = set_reg_val(id, *val);
2196 break;
2197 case KVM_REG_PPC_TM_TAR:
2198 vcpu->arch.tar_tm = set_reg_val(id, *val);
2199 break;
2200#endif
2201 case KVM_REG_PPC_ARCH_COMPAT:
2202 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2203 break;
2204 case KVM_REG_PPC_DEC_EXPIRY:
2205 vcpu->arch.dec_expires = set_reg_val(id, *val) -
2206 vcpu->arch.vcore->tb_offset;
2207 break;
2208 case KVM_REG_PPC_ONLINE:
2209 i = set_reg_val(id, *val);
2210 if (i && !vcpu->arch.online)
2211 atomic_inc(&vcpu->arch.vcore->online_count);
2212 else if (!i && vcpu->arch.online)
2213 atomic_dec(&vcpu->arch.vcore->online_count);
2214 vcpu->arch.online = i;
2215 break;
2216 case KVM_REG_PPC_PTCR:
2217 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2218 break;
2219 default:
2220 r = -EINVAL;
2221 break;
2222 }
2223
2224 return r;
2225}
2226
2227/*
2228 * On POWER9, threads are independent and can be in different partitions.
2229 * Therefore we consider each thread to be a subcore.
2230 * There is a restriction that all threads have to be in the same
2231 * MMU mode (radix or HPT), unfortunately, but since we only support
2232 * HPT guests on a HPT host so far, that isn't an impediment yet.
2233 */
2234static int threads_per_vcore(struct kvm *kvm)
2235{
2236 if (kvm->arch.threads_indep)
2237 return 1;
2238 return threads_per_subcore;
2239}
2240
2241static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2242{
2243 struct kvmppc_vcore *vcore;
2244
2245 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2246
2247 if (vcore == NULL)
2248 return NULL;
2249
2250 spin_lock_init(&vcore->lock);
2251 spin_lock_init(&vcore->stoltb_lock);
2252 rcuwait_init(&vcore->wait);
2253 vcore->preempt_tb = TB_NIL;
2254 vcore->lpcr = kvm->arch.lpcr;
2255 vcore->first_vcpuid = id;
2256 vcore->kvm = kvm;
2257 INIT_LIST_HEAD(&vcore->preempt_list);
2258
2259 return vcore;
2260}
2261
2262#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2263static struct debugfs_timings_element {
2264 const char *name;
2265 size_t offset;
2266} timings[] = {
2267 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)},
2268 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)},
2269 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)},
2270 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)},
2271 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)},
2272};
2273
2274#define N_TIMINGS (ARRAY_SIZE(timings))
2275
2276struct debugfs_timings_state {
2277 struct kvm_vcpu *vcpu;
2278 unsigned int buflen;
2279 char buf[N_TIMINGS * 100];
2280};
2281
2282static int debugfs_timings_open(struct inode *inode, struct file *file)
2283{
2284 struct kvm_vcpu *vcpu = inode->i_private;
2285 struct debugfs_timings_state *p;
2286
2287 p = kzalloc(sizeof(*p), GFP_KERNEL);
2288 if (!p)
2289 return -ENOMEM;
2290
2291 kvm_get_kvm(vcpu->kvm);
2292 p->vcpu = vcpu;
2293 file->private_data = p;
2294
2295 return nonseekable_open(inode, file);
2296}
2297
2298static int debugfs_timings_release(struct inode *inode, struct file *file)
2299{
2300 struct debugfs_timings_state *p = file->private_data;
2301
2302 kvm_put_kvm(p->vcpu->kvm);
2303 kfree(p);
2304 return 0;
2305}
2306
2307static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2308 size_t len, loff_t *ppos)
2309{
2310 struct debugfs_timings_state *p = file->private_data;
2311 struct kvm_vcpu *vcpu = p->vcpu;
2312 char *s, *buf_end;
2313 struct kvmhv_tb_accumulator tb;
2314 u64 count;
2315 loff_t pos;
2316 ssize_t n;
2317 int i, loops;
2318 bool ok;
2319
2320 if (!p->buflen) {
2321 s = p->buf;
2322 buf_end = s + sizeof(p->buf);
2323 for (i = 0; i < N_TIMINGS; ++i) {
2324 struct kvmhv_tb_accumulator *acc;
2325
2326 acc = (struct kvmhv_tb_accumulator *)
2327 ((unsigned long)vcpu + timings[i].offset);
2328 ok = false;
2329 for (loops = 0; loops < 1000; ++loops) {
2330 count = acc->seqcount;
2331 if (!(count & 1)) {
2332 smp_rmb();
2333 tb = *acc;
2334 smp_rmb();
2335 if (count == acc->seqcount) {
2336 ok = true;
2337 break;
2338 }
2339 }
2340 udelay(1);
2341 }
2342 if (!ok)
2343 snprintf(s, buf_end - s, "%s: stuck\n",
2344 timings[i].name);
2345 else
2346 snprintf(s, buf_end - s,
2347 "%s: %llu %llu %llu %llu\n",
2348 timings[i].name, count / 2,
2349 tb_to_ns(tb.tb_total),
2350 tb_to_ns(tb.tb_min),
2351 tb_to_ns(tb.tb_max));
2352 s += strlen(s);
2353 }
2354 p->buflen = s - p->buf;
2355 }
2356
2357 pos = *ppos;
2358 if (pos >= p->buflen)
2359 return 0;
2360 if (len > p->buflen - pos)
2361 len = p->buflen - pos;
2362 n = copy_to_user(buf, p->buf + pos, len);
2363 if (n) {
2364 if (n == len)
2365 return -EFAULT;
2366 len -= n;
2367 }
2368 *ppos = pos + len;
2369 return len;
2370}
2371
2372static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2373 size_t len, loff_t *ppos)
2374{
2375 return -EACCES;
2376}
2377
2378static const struct file_operations debugfs_timings_ops = {
2379 .owner = THIS_MODULE,
2380 .open = debugfs_timings_open,
2381 .release = debugfs_timings_release,
2382 .read = debugfs_timings_read,
2383 .write = debugfs_timings_write,
2384 .llseek = generic_file_llseek,
2385};
2386
2387/* Create a debugfs directory for the vcpu */
2388static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2389{
2390 char buf[16];
2391 struct kvm *kvm = vcpu->kvm;
2392
2393 snprintf(buf, sizeof(buf), "vcpu%u", id);
2394 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
2395 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, vcpu,
2396 &debugfs_timings_ops);
2397}
2398
2399#else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2400static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2401{
2402}
2403#endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2404
2405static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
2406{
2407 int err;
2408 int core;
2409 struct kvmppc_vcore *vcore;
2410 struct kvm *kvm;
2411 unsigned int id;
2412
2413 kvm = vcpu->kvm;
2414 id = vcpu->vcpu_id;
2415
2416 vcpu->arch.shared = &vcpu->arch.shregs;
2417#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2418 /*
2419 * The shared struct is never shared on HV,
2420 * so we can always use host endianness
2421 */
2422#ifdef __BIG_ENDIAN__
2423 vcpu->arch.shared_big_endian = true;
2424#else
2425 vcpu->arch.shared_big_endian = false;
2426#endif
2427#endif
2428 vcpu->arch.mmcr[0] = MMCR0_FC;
2429 vcpu->arch.ctrl = CTRL_RUNLATCH;
2430 /* default to host PVR, since we can't spoof it */
2431 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2432 spin_lock_init(&vcpu->arch.vpa_update_lock);
2433 spin_lock_init(&vcpu->arch.tbacct_lock);
2434 vcpu->arch.busy_preempt = TB_NIL;
2435 vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2436
2437 /*
2438 * Set the default HFSCR for the guest from the host value.
2439 * This value is only used on POWER9.
2440 * On POWER9, we want to virtualize the doorbell facility, so we
2441 * don't set the HFSCR_MSGP bit, and that causes those instructions
2442 * to trap and then we emulate them.
2443 */
2444 vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2445 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP | HFSCR_PREFIX;
2446 if (cpu_has_feature(CPU_FTR_HVMODE)) {
2447 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2448 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2449 vcpu->arch.hfscr |= HFSCR_TM;
2450 }
2451 if (cpu_has_feature(CPU_FTR_TM_COMP))
2452 vcpu->arch.hfscr |= HFSCR_TM;
2453
2454 kvmppc_mmu_book3s_hv_init(vcpu);
2455
2456 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2457
2458 init_waitqueue_head(&vcpu->arch.cpu_run);
2459
2460 mutex_lock(&kvm->lock);
2461 vcore = NULL;
2462 err = -EINVAL;
2463 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2464 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2465 pr_devel("KVM: VCPU ID too high\n");
2466 core = KVM_MAX_VCORES;
2467 } else {
2468 BUG_ON(kvm->arch.smt_mode != 1);
2469 core = kvmppc_pack_vcpu_id(kvm, id);
2470 }
2471 } else {
2472 core = id / kvm->arch.smt_mode;
2473 }
2474 if (core < KVM_MAX_VCORES) {
2475 vcore = kvm->arch.vcores[core];
2476 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2477 pr_devel("KVM: collision on id %u", id);
2478 vcore = NULL;
2479 } else if (!vcore) {
2480 /*
2481 * Take mmu_setup_lock for mutual exclusion
2482 * with kvmppc_update_lpcr().
2483 */
2484 err = -ENOMEM;
2485 vcore = kvmppc_vcore_create(kvm,
2486 id & ~(kvm->arch.smt_mode - 1));
2487 mutex_lock(&kvm->arch.mmu_setup_lock);
2488 kvm->arch.vcores[core] = vcore;
2489 kvm->arch.online_vcores++;
2490 mutex_unlock(&kvm->arch.mmu_setup_lock);
2491 }
2492 }
2493 mutex_unlock(&kvm->lock);
2494
2495 if (!vcore)
2496 return err;
2497
2498 spin_lock(&vcore->lock);
2499 ++vcore->num_threads;
2500 spin_unlock(&vcore->lock);
2501 vcpu->arch.vcore = vcore;
2502 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2503 vcpu->arch.thread_cpu = -1;
2504 vcpu->arch.prev_cpu = -1;
2505
2506 vcpu->arch.cpu_type = KVM_CPU_3S_64;
2507 kvmppc_sanity_check(vcpu);
2508
2509 debugfs_vcpu_init(vcpu, id);
2510
2511 return 0;
2512}
2513
2514static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2515 unsigned long flags)
2516{
2517 int err;
2518 int esmt = 0;
2519
2520 if (flags)
2521 return -EINVAL;
2522 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2523 return -EINVAL;
2524 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2525 /*
2526 * On POWER8 (or POWER7), the threading mode is "strict",
2527 * so we pack smt_mode vcpus per vcore.
2528 */
2529 if (smt_mode > threads_per_subcore)
2530 return -EINVAL;
2531 } else {
2532 /*
2533 * On POWER9, the threading mode is "loose",
2534 * so each vcpu gets its own vcore.
2535 */
2536 esmt = smt_mode;
2537 smt_mode = 1;
2538 }
2539 mutex_lock(&kvm->lock);
2540 err = -EBUSY;
2541 if (!kvm->arch.online_vcores) {
2542 kvm->arch.smt_mode = smt_mode;
2543 kvm->arch.emul_smt_mode = esmt;
2544 err = 0;
2545 }
2546 mutex_unlock(&kvm->lock);
2547
2548 return err;
2549}
2550
2551static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2552{
2553 if (vpa->pinned_addr)
2554 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2555 vpa->dirty);
2556}
2557
2558static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2559{
2560 spin_lock(&vcpu->arch.vpa_update_lock);
2561 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2562 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2563 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2564 spin_unlock(&vcpu->arch.vpa_update_lock);
2565}
2566
2567static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2568{
2569 /* Indicate we want to get back into the guest */
2570 return 1;
2571}
2572
2573static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2574{
2575 unsigned long dec_nsec, now;
2576
2577 now = get_tb();
2578 if (now > vcpu->arch.dec_expires) {
2579 /* decrementer has already gone negative */
2580 kvmppc_core_queue_dec(vcpu);
2581 kvmppc_core_prepare_to_enter(vcpu);
2582 return;
2583 }
2584 dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now);
2585 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2586 vcpu->arch.timer_running = 1;
2587}
2588
2589extern int __kvmppc_vcore_entry(void);
2590
2591static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2592 struct kvm_vcpu *vcpu)
2593{
2594 u64 now;
2595
2596 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2597 return;
2598 spin_lock_irq(&vcpu->arch.tbacct_lock);
2599 now = mftb();
2600 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2601 vcpu->arch.stolen_logged;
2602 vcpu->arch.busy_preempt = now;
2603 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2604 spin_unlock_irq(&vcpu->arch.tbacct_lock);
2605 --vc->n_runnable;
2606 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2607}
2608
2609static int kvmppc_grab_hwthread(int cpu)
2610{
2611 struct paca_struct *tpaca;
2612 long timeout = 10000;
2613
2614 tpaca = paca_ptrs[cpu];
2615
2616 /* Ensure the thread won't go into the kernel if it wakes */
2617 tpaca->kvm_hstate.kvm_vcpu = NULL;
2618 tpaca->kvm_hstate.kvm_vcore = NULL;
2619 tpaca->kvm_hstate.napping = 0;
2620 smp_wmb();
2621 tpaca->kvm_hstate.hwthread_req = 1;
2622
2623 /*
2624 * If the thread is already executing in the kernel (e.g. handling
2625 * a stray interrupt), wait for it to get back to nap mode.
2626 * The smp_mb() is to ensure that our setting of hwthread_req
2627 * is visible before we look at hwthread_state, so if this
2628 * races with the code at system_reset_pSeries and the thread
2629 * misses our setting of hwthread_req, we are sure to see its
2630 * setting of hwthread_state, and vice versa.
2631 */
2632 smp_mb();
2633 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2634 if (--timeout <= 0) {
2635 pr_err("KVM: couldn't grab cpu %d\n", cpu);
2636 return -EBUSY;
2637 }
2638 udelay(1);
2639 }
2640 return 0;
2641}
2642
2643static void kvmppc_release_hwthread(int cpu)
2644{
2645 struct paca_struct *tpaca;
2646
2647 tpaca = paca_ptrs[cpu];
2648 tpaca->kvm_hstate.hwthread_req = 0;
2649 tpaca->kvm_hstate.kvm_vcpu = NULL;
2650 tpaca->kvm_hstate.kvm_vcore = NULL;
2651 tpaca->kvm_hstate.kvm_split_mode = NULL;
2652}
2653
2654static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2655{
2656 struct kvm_nested_guest *nested = vcpu->arch.nested;
2657 cpumask_t *cpu_in_guest;
2658 int i;
2659
2660 cpu = cpu_first_thread_sibling(cpu);
2661 if (nested) {
2662 cpumask_set_cpu(cpu, &nested->need_tlb_flush);
2663 cpu_in_guest = &nested->cpu_in_guest;
2664 } else {
2665 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2666 cpu_in_guest = &kvm->arch.cpu_in_guest;
2667 }
2668 /*
2669 * Make sure setting of bit in need_tlb_flush precedes
2670 * testing of cpu_in_guest bits. The matching barrier on
2671 * the other side is the first smp_mb() in kvmppc_run_core().
2672 */
2673 smp_mb();
2674 for (i = 0; i < threads_per_core; ++i)
2675 if (cpumask_test_cpu(cpu + i, cpu_in_guest))
2676 smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2677}
2678
2679static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2680{
2681 struct kvm_nested_guest *nested = vcpu->arch.nested;
2682 struct kvm *kvm = vcpu->kvm;
2683 int prev_cpu;
2684
2685 if (!cpu_has_feature(CPU_FTR_HVMODE))
2686 return;
2687
2688 if (nested)
2689 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
2690 else
2691 prev_cpu = vcpu->arch.prev_cpu;
2692
2693 /*
2694 * With radix, the guest can do TLB invalidations itself,
2695 * and it could choose to use the local form (tlbiel) if
2696 * it is invalidating a translation that has only ever been
2697 * used on one vcpu. However, that doesn't mean it has
2698 * only ever been used on one physical cpu, since vcpus
2699 * can move around between pcpus. To cope with this, when
2700 * a vcpu moves from one pcpu to another, we need to tell
2701 * any vcpus running on the same core as this vcpu previously
2702 * ran to flush the TLB. The TLB is shared between threads,
2703 * so we use a single bit in .need_tlb_flush for all 4 threads.
2704 */
2705 if (prev_cpu != pcpu) {
2706 if (prev_cpu >= 0 &&
2707 cpu_first_thread_sibling(prev_cpu) !=
2708 cpu_first_thread_sibling(pcpu))
2709 radix_flush_cpu(kvm, prev_cpu, vcpu);
2710 if (nested)
2711 nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
2712 else
2713 vcpu->arch.prev_cpu = pcpu;
2714 }
2715}
2716
2717static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2718{
2719 int cpu;
2720 struct paca_struct *tpaca;
2721 struct kvm *kvm = vc->kvm;
2722
2723 cpu = vc->pcpu;
2724 if (vcpu) {
2725 if (vcpu->arch.timer_running) {
2726 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2727 vcpu->arch.timer_running = 0;
2728 }
2729 cpu += vcpu->arch.ptid;
2730 vcpu->cpu = vc->pcpu;
2731 vcpu->arch.thread_cpu = cpu;
2732 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2733 }
2734 tpaca = paca_ptrs[cpu];
2735 tpaca->kvm_hstate.kvm_vcpu = vcpu;
2736 tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2737 tpaca->kvm_hstate.fake_suspend = 0;
2738 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2739 smp_wmb();
2740 tpaca->kvm_hstate.kvm_vcore = vc;
2741 if (cpu != smp_processor_id())
2742 kvmppc_ipi_thread(cpu);
2743}
2744
2745static void kvmppc_wait_for_nap(int n_threads)
2746{
2747 int cpu = smp_processor_id();
2748 int i, loops;
2749
2750 if (n_threads <= 1)
2751 return;
2752 for (loops = 0; loops < 1000000; ++loops) {
2753 /*
2754 * Check if all threads are finished.
2755 * We set the vcore pointer when starting a thread
2756 * and the thread clears it when finished, so we look
2757 * for any threads that still have a non-NULL vcore ptr.
2758 */
2759 for (i = 1; i < n_threads; ++i)
2760 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2761 break;
2762 if (i == n_threads) {
2763 HMT_medium();
2764 return;
2765 }
2766 HMT_low();
2767 }
2768 HMT_medium();
2769 for (i = 1; i < n_threads; ++i)
2770 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2771 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2772}
2773
2774/*
2775 * Check that we are on thread 0 and that any other threads in
2776 * this core are off-line. Then grab the threads so they can't
2777 * enter the kernel.
2778 */
2779static int on_primary_thread(void)
2780{
2781 int cpu = smp_processor_id();
2782 int thr;
2783
2784 /* Are we on a primary subcore? */
2785 if (cpu_thread_in_subcore(cpu))
2786 return 0;
2787
2788 thr = 0;
2789 while (++thr < threads_per_subcore)
2790 if (cpu_online(cpu + thr))
2791 return 0;
2792
2793 /* Grab all hw threads so they can't go into the kernel */
2794 for (thr = 1; thr < threads_per_subcore; ++thr) {
2795 if (kvmppc_grab_hwthread(cpu + thr)) {
2796 /* Couldn't grab one; let the others go */
2797 do {
2798 kvmppc_release_hwthread(cpu + thr);
2799 } while (--thr > 0);
2800 return 0;
2801 }
2802 }
2803 return 1;
2804}
2805
2806/*
2807 * A list of virtual cores for each physical CPU.
2808 * These are vcores that could run but their runner VCPU tasks are
2809 * (or may be) preempted.
2810 */
2811struct preempted_vcore_list {
2812 struct list_head list;
2813 spinlock_t lock;
2814};
2815
2816static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2817
2818static void init_vcore_lists(void)
2819{
2820 int cpu;
2821
2822 for_each_possible_cpu(cpu) {
2823 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2824 spin_lock_init(&lp->lock);
2825 INIT_LIST_HEAD(&lp->list);
2826 }
2827}
2828
2829static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2830{
2831 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2832
2833 vc->vcore_state = VCORE_PREEMPT;
2834 vc->pcpu = smp_processor_id();
2835 if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2836 spin_lock(&lp->lock);
2837 list_add_tail(&vc->preempt_list, &lp->list);
2838 spin_unlock(&lp->lock);
2839 }
2840
2841 /* Start accumulating stolen time */
2842 kvmppc_core_start_stolen(vc);
2843}
2844
2845static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2846{
2847 struct preempted_vcore_list *lp;
2848
2849 kvmppc_core_end_stolen(vc);
2850 if (!list_empty(&vc->preempt_list)) {
2851 lp = &per_cpu(preempted_vcores, vc->pcpu);
2852 spin_lock(&lp->lock);
2853 list_del_init(&vc->preempt_list);
2854 spin_unlock(&lp->lock);
2855 }
2856 vc->vcore_state = VCORE_INACTIVE;
2857}
2858
2859/*
2860 * This stores information about the virtual cores currently
2861 * assigned to a physical core.
2862 */
2863struct core_info {
2864 int n_subcores;
2865 int max_subcore_threads;
2866 int total_threads;
2867 int subcore_threads[MAX_SUBCORES];
2868 struct kvmppc_vcore *vc[MAX_SUBCORES];
2869};
2870
2871/*
2872 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2873 * respectively in 2-way micro-threading (split-core) mode on POWER8.
2874 */
2875static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2876
2877static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2878{
2879 memset(cip, 0, sizeof(*cip));
2880 cip->n_subcores = 1;
2881 cip->max_subcore_threads = vc->num_threads;
2882 cip->total_threads = vc->num_threads;
2883 cip->subcore_threads[0] = vc->num_threads;
2884 cip->vc[0] = vc;
2885}
2886
2887static bool subcore_config_ok(int n_subcores, int n_threads)
2888{
2889 /*
2890 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2891 * split-core mode, with one thread per subcore.
2892 */
2893 if (cpu_has_feature(CPU_FTR_ARCH_300))
2894 return n_subcores <= 4 && n_threads == 1;
2895
2896 /* On POWER8, can only dynamically split if unsplit to begin with */
2897 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2898 return false;
2899 if (n_subcores > MAX_SUBCORES)
2900 return false;
2901 if (n_subcores > 1) {
2902 if (!(dynamic_mt_modes & 2))
2903 n_subcores = 4;
2904 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2905 return false;
2906 }
2907
2908 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2909}
2910
2911static void init_vcore_to_run(struct kvmppc_vcore *vc)
2912{
2913 vc->entry_exit_map = 0;
2914 vc->in_guest = 0;
2915 vc->napping_threads = 0;
2916 vc->conferring_threads = 0;
2917 vc->tb_offset_applied = 0;
2918}
2919
2920static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2921{
2922 int n_threads = vc->num_threads;
2923 int sub;
2924
2925 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2926 return false;
2927
2928 /* In one_vm_per_core mode, require all vcores to be from the same vm */
2929 if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
2930 return false;
2931
2932 if (n_threads < cip->max_subcore_threads)
2933 n_threads = cip->max_subcore_threads;
2934 if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2935 return false;
2936 cip->max_subcore_threads = n_threads;
2937
2938 sub = cip->n_subcores;
2939 ++cip->n_subcores;
2940 cip->total_threads += vc->num_threads;
2941 cip->subcore_threads[sub] = vc->num_threads;
2942 cip->vc[sub] = vc;
2943 init_vcore_to_run(vc);
2944 list_del_init(&vc->preempt_list);
2945
2946 return true;
2947}
2948
2949/*
2950 * Work out whether it is possible to piggyback the execution of
2951 * vcore *pvc onto the execution of the other vcores described in *cip.
2952 */
2953static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2954 int target_threads)
2955{
2956 if (cip->total_threads + pvc->num_threads > target_threads)
2957 return false;
2958
2959 return can_dynamic_split(pvc, cip);
2960}
2961
2962static void prepare_threads(struct kvmppc_vcore *vc)
2963{
2964 int i;
2965 struct kvm_vcpu *vcpu;
2966
2967 for_each_runnable_thread(i, vcpu, vc) {
2968 if (signal_pending(vcpu->arch.run_task))
2969 vcpu->arch.ret = -EINTR;
2970 else if (no_mixing_hpt_and_radix &&
2971 kvm_is_radix(vc->kvm) != radix_enabled())
2972 vcpu->arch.ret = -EINVAL;
2973 else if (vcpu->arch.vpa.update_pending ||
2974 vcpu->arch.slb_shadow.update_pending ||
2975 vcpu->arch.dtl.update_pending)
2976 vcpu->arch.ret = RESUME_GUEST;
2977 else
2978 continue;
2979 kvmppc_remove_runnable(vc, vcpu);
2980 wake_up(&vcpu->arch.cpu_run);
2981 }
2982}
2983
2984static void collect_piggybacks(struct core_info *cip, int target_threads)
2985{
2986 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2987 struct kvmppc_vcore *pvc, *vcnext;
2988
2989 spin_lock(&lp->lock);
2990 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2991 if (!spin_trylock(&pvc->lock))
2992 continue;
2993 prepare_threads(pvc);
2994 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
2995 list_del_init(&pvc->preempt_list);
2996 if (pvc->runner == NULL) {
2997 pvc->vcore_state = VCORE_INACTIVE;
2998 kvmppc_core_end_stolen(pvc);
2999 }
3000 spin_unlock(&pvc->lock);
3001 continue;
3002 }
3003 if (!can_piggyback(pvc, cip, target_threads)) {
3004 spin_unlock(&pvc->lock);
3005 continue;
3006 }
3007 kvmppc_core_end_stolen(pvc);
3008 pvc->vcore_state = VCORE_PIGGYBACK;
3009 if (cip->total_threads >= target_threads)
3010 break;
3011 }
3012 spin_unlock(&lp->lock);
3013}
3014
3015static bool recheck_signals_and_mmu(struct core_info *cip)
3016{
3017 int sub, i;
3018 struct kvm_vcpu *vcpu;
3019 struct kvmppc_vcore *vc;
3020
3021 for (sub = 0; sub < cip->n_subcores; ++sub) {
3022 vc = cip->vc[sub];
3023 if (!vc->kvm->arch.mmu_ready)
3024 return true;
3025 for_each_runnable_thread(i, vcpu, vc)
3026 if (signal_pending(vcpu->arch.run_task))
3027 return true;
3028 }
3029 return false;
3030}
3031
3032static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
3033{
3034 int still_running = 0, i;
3035 u64 now;
3036 long ret;
3037 struct kvm_vcpu *vcpu;
3038
3039 spin_lock(&vc->lock);
3040 now = get_tb();
3041 for_each_runnable_thread(i, vcpu, vc) {
3042 /*
3043 * It's safe to unlock the vcore in the loop here, because
3044 * for_each_runnable_thread() is safe against removal of
3045 * the vcpu, and the vcore state is VCORE_EXITING here,
3046 * so any vcpus becoming runnable will have their arch.trap
3047 * set to zero and can't actually run in the guest.
3048 */
3049 spin_unlock(&vc->lock);
3050 /* cancel pending dec exception if dec is positive */
3051 if (now < vcpu->arch.dec_expires &&
3052 kvmppc_core_pending_dec(vcpu))
3053 kvmppc_core_dequeue_dec(vcpu);
3054
3055 trace_kvm_guest_exit(vcpu);
3056
3057 ret = RESUME_GUEST;
3058 if (vcpu->arch.trap)
3059 ret = kvmppc_handle_exit_hv(vcpu,
3060 vcpu->arch.run_task);
3061
3062 vcpu->arch.ret = ret;
3063 vcpu->arch.trap = 0;
3064
3065 spin_lock(&vc->lock);
3066 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
3067 if (vcpu->arch.pending_exceptions)
3068 kvmppc_core_prepare_to_enter(vcpu);
3069 if (vcpu->arch.ceded)
3070 kvmppc_set_timer(vcpu);
3071 else
3072 ++still_running;
3073 } else {
3074 kvmppc_remove_runnable(vc, vcpu);
3075 wake_up(&vcpu->arch.cpu_run);
3076 }
3077 }
3078 if (!is_master) {
3079 if (still_running > 0) {
3080 kvmppc_vcore_preempt(vc);
3081 } else if (vc->runner) {
3082 vc->vcore_state = VCORE_PREEMPT;
3083 kvmppc_core_start_stolen(vc);
3084 } else {
3085 vc->vcore_state = VCORE_INACTIVE;
3086 }
3087 if (vc->n_runnable > 0 && vc->runner == NULL) {
3088 /* make sure there's a candidate runner awake */
3089 i = -1;
3090 vcpu = next_runnable_thread(vc, &i);
3091 wake_up(&vcpu->arch.cpu_run);
3092 }
3093 }
3094 spin_unlock(&vc->lock);
3095}
3096
3097/*
3098 * Clear core from the list of active host cores as we are about to
3099 * enter the guest. Only do this if it is the primary thread of the
3100 * core (not if a subcore) that is entering the guest.
3101 */
3102static inline int kvmppc_clear_host_core(unsigned int cpu)
3103{
3104 int core;
3105
3106 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3107 return 0;
3108 /*
3109 * Memory barrier can be omitted here as we will do a smp_wmb()
3110 * later in kvmppc_start_thread and we need ensure that state is
3111 * visible to other CPUs only after we enter guest.
3112 */
3113 core = cpu >> threads_shift;
3114 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
3115 return 0;
3116}
3117
3118/*
3119 * Advertise this core as an active host core since we exited the guest
3120 * Only need to do this if it is the primary thread of the core that is
3121 * exiting.
3122 */
3123static inline int kvmppc_set_host_core(unsigned int cpu)
3124{
3125 int core;
3126
3127 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3128 return 0;
3129
3130 /*
3131 * Memory barrier can be omitted here because we do a spin_unlock
3132 * immediately after this which provides the memory barrier.
3133 */
3134 core = cpu >> threads_shift;
3135 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3136 return 0;
3137}
3138
3139static void set_irq_happened(int trap)
3140{
3141 switch (trap) {
3142 case BOOK3S_INTERRUPT_EXTERNAL:
3143 local_paca->irq_happened |= PACA_IRQ_EE;
3144 break;
3145 case BOOK3S_INTERRUPT_H_DOORBELL:
3146 local_paca->irq_happened |= PACA_IRQ_DBELL;
3147 break;
3148 case BOOK3S_INTERRUPT_HMI:
3149 local_paca->irq_happened |= PACA_IRQ_HMI;
3150 break;
3151 case BOOK3S_INTERRUPT_SYSTEM_RESET:
3152 replay_system_reset();
3153 break;
3154 }
3155}
3156
3157/*
3158 * Run a set of guest threads on a physical core.
3159 * Called with vc->lock held.
3160 */
3161static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3162{
3163 struct kvm_vcpu *vcpu;
3164 int i;
3165 int srcu_idx;
3166 struct core_info core_info;
3167 struct kvmppc_vcore *pvc;
3168 struct kvm_split_mode split_info, *sip;
3169 int split, subcore_size, active;
3170 int sub;
3171 bool thr0_done;
3172 unsigned long cmd_bit, stat_bit;
3173 int pcpu, thr;
3174 int target_threads;
3175 int controlled_threads;
3176 int trap;
3177 bool is_power8;
3178
3179 /*
3180 * Remove from the list any threads that have a signal pending
3181 * or need a VPA update done
3182 */
3183 prepare_threads(vc);
3184
3185 /* if the runner is no longer runnable, let the caller pick a new one */
3186 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3187 return;
3188
3189 /*
3190 * Initialize *vc.
3191 */
3192 init_vcore_to_run(vc);
3193 vc->preempt_tb = TB_NIL;
3194
3195 /*
3196 * Number of threads that we will be controlling: the same as
3197 * the number of threads per subcore, except on POWER9,
3198 * where it's 1 because the threads are (mostly) independent.
3199 */
3200 controlled_threads = threads_per_vcore(vc->kvm);
3201
3202 /*
3203 * Make sure we are running on primary threads, and that secondary
3204 * threads are offline. Also check if the number of threads in this
3205 * guest are greater than the current system threads per guest.
3206 * On POWER9, we need to be not in independent-threads mode if
3207 * this is a HPT guest on a radix host machine where the
3208 * CPU threads may not be in different MMU modes.
3209 */
3210 if ((controlled_threads > 1) &&
3211 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
3212 for_each_runnable_thread(i, vcpu, vc) {
3213 vcpu->arch.ret = -EBUSY;
3214 kvmppc_remove_runnable(vc, vcpu);
3215 wake_up(&vcpu->arch.cpu_run);
3216 }
3217 goto out;
3218 }
3219
3220 /*
3221 * See if we could run any other vcores on the physical core
3222 * along with this one.
3223 */
3224 init_core_info(&core_info, vc);
3225 pcpu = smp_processor_id();
3226 target_threads = controlled_threads;
3227 if (target_smt_mode && target_smt_mode < target_threads)
3228 target_threads = target_smt_mode;
3229 if (vc->num_threads < target_threads)
3230 collect_piggybacks(&core_info, target_threads);
3231
3232 /*
3233 * On radix, arrange for TLB flushing if necessary.
3234 * This has to be done before disabling interrupts since
3235 * it uses smp_call_function().
3236 */
3237 pcpu = smp_processor_id();
3238 if (kvm_is_radix(vc->kvm)) {
3239 for (sub = 0; sub < core_info.n_subcores; ++sub)
3240 for_each_runnable_thread(i, vcpu, core_info.vc[sub])
3241 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
3242 }
3243
3244 /*
3245 * Hard-disable interrupts, and check resched flag and signals.
3246 * If we need to reschedule or deliver a signal, clean up
3247 * and return without going into the guest(s).
3248 * If the mmu_ready flag has been cleared, don't go into the
3249 * guest because that means a HPT resize operation is in progress.
3250 */
3251 local_irq_disable();
3252 hard_irq_disable();
3253 if (lazy_irq_pending() || need_resched() ||
3254 recheck_signals_and_mmu(&core_info)) {
3255 local_irq_enable();
3256 vc->vcore_state = VCORE_INACTIVE;
3257 /* Unlock all except the primary vcore */
3258 for (sub = 1; sub < core_info.n_subcores; ++sub) {
3259 pvc = core_info.vc[sub];
3260 /* Put back on to the preempted vcores list */
3261 kvmppc_vcore_preempt(pvc);
3262 spin_unlock(&pvc->lock);
3263 }
3264 for (i = 0; i < controlled_threads; ++i)
3265 kvmppc_release_hwthread(pcpu + i);
3266 return;
3267 }
3268
3269 kvmppc_clear_host_core(pcpu);
3270
3271 /* Decide on micro-threading (split-core) mode */
3272 subcore_size = threads_per_subcore;
3273 cmd_bit = stat_bit = 0;
3274 split = core_info.n_subcores;
3275 sip = NULL;
3276 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
3277 && !cpu_has_feature(CPU_FTR_ARCH_300);
3278
3279 if (split > 1) {
3280 sip = &split_info;
3281 memset(&split_info, 0, sizeof(split_info));
3282 for (sub = 0; sub < core_info.n_subcores; ++sub)
3283 split_info.vc[sub] = core_info.vc[sub];
3284
3285 if (is_power8) {
3286 if (split == 2 && (dynamic_mt_modes & 2)) {
3287 cmd_bit = HID0_POWER8_1TO2LPAR;
3288 stat_bit = HID0_POWER8_2LPARMODE;
3289 } else {
3290 split = 4;
3291 cmd_bit = HID0_POWER8_1TO4LPAR;
3292 stat_bit = HID0_POWER8_4LPARMODE;
3293 }
3294 subcore_size = MAX_SMT_THREADS / split;
3295 split_info.rpr = mfspr(SPRN_RPR);
3296 split_info.pmmar = mfspr(SPRN_PMMAR);
3297 split_info.ldbar = mfspr(SPRN_LDBAR);
3298 split_info.subcore_size = subcore_size;
3299 } else {
3300 split_info.subcore_size = 1;
3301 }
3302
3303 /* order writes to split_info before kvm_split_mode pointer */
3304 smp_wmb();
3305 }
3306
3307 for (thr = 0; thr < controlled_threads; ++thr) {
3308 struct paca_struct *paca = paca_ptrs[pcpu + thr];
3309
3310 paca->kvm_hstate.napping = 0;
3311 paca->kvm_hstate.kvm_split_mode = sip;
3312 }
3313
3314 /* Initiate micro-threading (split-core) on POWER8 if required */
3315 if (cmd_bit) {
3316 unsigned long hid0 = mfspr(SPRN_HID0);
3317
3318 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3319 mb();
3320 mtspr(SPRN_HID0, hid0);
3321 isync();
3322 for (;;) {
3323 hid0 = mfspr(SPRN_HID0);
3324 if (hid0 & stat_bit)
3325 break;
3326 cpu_relax();
3327 }
3328 }
3329
3330 /*
3331 * On POWER8, set RWMR register.
3332 * Since it only affects PURR and SPURR, it doesn't affect
3333 * the host, so we don't save/restore the host value.
3334 */
3335 if (is_power8) {
3336 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3337 int n_online = atomic_read(&vc->online_count);
3338
3339 /*
3340 * Use the 8-thread value if we're doing split-core
3341 * or if the vcore's online count looks bogus.
3342 */
3343 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3344 n_online >= 1 && n_online <= MAX_SMT_THREADS)
3345 rwmr_val = p8_rwmr_values[n_online];
3346 mtspr(SPRN_RWMR, rwmr_val);
3347 }
3348
3349 /* Start all the threads */
3350 active = 0;
3351 for (sub = 0; sub < core_info.n_subcores; ++sub) {
3352 thr = is_power8 ? subcore_thread_map[sub] : sub;
3353 thr0_done = false;
3354 active |= 1 << thr;
3355 pvc = core_info.vc[sub];
3356 pvc->pcpu = pcpu + thr;
3357 for_each_runnable_thread(i, vcpu, pvc) {
3358 kvmppc_start_thread(vcpu, pvc);
3359 kvmppc_create_dtl_entry(vcpu, pvc);
3360 trace_kvm_guest_enter(vcpu);
3361 if (!vcpu->arch.ptid)
3362 thr0_done = true;
3363 active |= 1 << (thr + vcpu->arch.ptid);
3364 }
3365 /*
3366 * We need to start the first thread of each subcore
3367 * even if it doesn't have a vcpu.
3368 */
3369 if (!thr0_done)
3370 kvmppc_start_thread(NULL, pvc);
3371 }
3372
3373 /*
3374 * Ensure that split_info.do_nap is set after setting
3375 * the vcore pointer in the PACA of the secondaries.
3376 */
3377 smp_mb();
3378
3379 /*
3380 * When doing micro-threading, poke the inactive threads as well.
3381 * This gets them to the nap instruction after kvm_do_nap,
3382 * which reduces the time taken to unsplit later.
3383 */
3384 if (cmd_bit) {
3385 split_info.do_nap = 1; /* ask secondaries to nap when done */
3386 for (thr = 1; thr < threads_per_subcore; ++thr)
3387 if (!(active & (1 << thr)))
3388 kvmppc_ipi_thread(pcpu + thr);
3389 }
3390
3391 vc->vcore_state = VCORE_RUNNING;
3392 preempt_disable();
3393
3394 trace_kvmppc_run_core(vc, 0);
3395
3396 for (sub = 0; sub < core_info.n_subcores; ++sub)
3397 spin_unlock(&core_info.vc[sub]->lock);
3398
3399 guest_enter_irqoff();
3400
3401 srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3402
3403 this_cpu_disable_ftrace();
3404
3405 /*
3406 * Interrupts will be enabled once we get into the guest,
3407 * so tell lockdep that we're about to enable interrupts.
3408 */
3409 trace_hardirqs_on();
3410
3411 trap = __kvmppc_vcore_entry();
3412
3413 trace_hardirqs_off();
3414
3415 this_cpu_enable_ftrace();
3416
3417 srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3418
3419 set_irq_happened(trap);
3420
3421 spin_lock(&vc->lock);
3422 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
3423 vc->vcore_state = VCORE_EXITING;
3424
3425 /* wait for secondary threads to finish writing their state to memory */
3426 kvmppc_wait_for_nap(controlled_threads);
3427
3428 /* Return to whole-core mode if we split the core earlier */
3429 if (cmd_bit) {
3430 unsigned long hid0 = mfspr(SPRN_HID0);
3431 unsigned long loops = 0;
3432
3433 hid0 &= ~HID0_POWER8_DYNLPARDIS;
3434 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3435 mb();
3436 mtspr(SPRN_HID0, hid0);
3437 isync();
3438 for (;;) {
3439 hid0 = mfspr(SPRN_HID0);
3440 if (!(hid0 & stat_bit))
3441 break;
3442 cpu_relax();
3443 ++loops;
3444 }
3445 split_info.do_nap = 0;
3446 }
3447
3448 kvmppc_set_host_core(pcpu);
3449
3450 guest_exit_irqoff();
3451
3452 local_irq_enable();
3453
3454 /* Let secondaries go back to the offline loop */
3455 for (i = 0; i < controlled_threads; ++i) {
3456 kvmppc_release_hwthread(pcpu + i);
3457 if (sip && sip->napped[i])
3458 kvmppc_ipi_thread(pcpu + i);
3459 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3460 }
3461
3462 spin_unlock(&vc->lock);
3463
3464 /* make sure updates to secondary vcpu structs are visible now */
3465 smp_mb();
3466
3467 preempt_enable();
3468
3469 for (sub = 0; sub < core_info.n_subcores; ++sub) {
3470 pvc = core_info.vc[sub];
3471 post_guest_process(pvc, pvc == vc);
3472 }
3473
3474 spin_lock(&vc->lock);
3475
3476 out:
3477 vc->vcore_state = VCORE_INACTIVE;
3478 trace_kvmppc_run_core(vc, 1);
3479}
3480
3481/*
3482 * Load up hypervisor-mode registers on P9.
3483 */
3484static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit,
3485 unsigned long lpcr)
3486{
3487 struct kvmppc_vcore *vc = vcpu->arch.vcore;
3488 s64 hdec;
3489 u64 tb, purr, spurr;
3490 int trap;
3491 unsigned long host_hfscr = mfspr(SPRN_HFSCR);
3492 unsigned long host_ciabr = mfspr(SPRN_CIABR);
3493 unsigned long host_dawr0 = mfspr(SPRN_DAWR0);
3494 unsigned long host_dawrx0 = mfspr(SPRN_DAWRX0);
3495 unsigned long host_psscr = mfspr(SPRN_PSSCR);
3496 unsigned long host_pidr = mfspr(SPRN_PID);
3497 unsigned long host_dawr1 = 0;
3498 unsigned long host_dawrx1 = 0;
3499
3500 if (cpu_has_feature(CPU_FTR_DAWR1)) {
3501 host_dawr1 = mfspr(SPRN_DAWR1);
3502 host_dawrx1 = mfspr(SPRN_DAWRX1);
3503 }
3504
3505 /*
3506 * P8 and P9 suppress the HDEC exception when LPCR[HDICE] = 0,
3507 * so set HDICE before writing HDEC.
3508 */
3509 mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr | LPCR_HDICE);
3510 isync();
3511
3512 hdec = time_limit - mftb();
3513 if (hdec < 0) {
3514 mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);
3515 isync();
3516 return BOOK3S_INTERRUPT_HV_DECREMENTER;
3517 }
3518 mtspr(SPRN_HDEC, hdec);
3519
3520 if (vc->tb_offset) {
3521 u64 new_tb = mftb() + vc->tb_offset;
3522 mtspr(SPRN_TBU40, new_tb);
3523 tb = mftb();
3524 if ((tb & 0xffffff) < (new_tb & 0xffffff))
3525 mtspr(SPRN_TBU40, new_tb + 0x1000000);
3526 vc->tb_offset_applied = vc->tb_offset;
3527 }
3528
3529 if (vc->pcr)
3530 mtspr(SPRN_PCR, vc->pcr | PCR_MASK);
3531 mtspr(SPRN_DPDES, vc->dpdes);
3532 mtspr(SPRN_VTB, vc->vtb);
3533
3534 local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR);
3535 local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR);
3536 mtspr(SPRN_PURR, vcpu->arch.purr);
3537 mtspr(SPRN_SPURR, vcpu->arch.spurr);
3538
3539 if (dawr_enabled()) {
3540 mtspr(SPRN_DAWR0, vcpu->arch.dawr0);
3541 mtspr(SPRN_DAWRX0, vcpu->arch.dawrx0);
3542 if (cpu_has_feature(CPU_FTR_DAWR1)) {
3543 mtspr(SPRN_DAWR1, vcpu->arch.dawr1);
3544 mtspr(SPRN_DAWRX1, vcpu->arch.dawrx1);
3545 }
3546 }
3547 mtspr(SPRN_CIABR, vcpu->arch.ciabr);
3548 mtspr(SPRN_IC, vcpu->arch.ic);
3549 mtspr(SPRN_PID, vcpu->arch.pid);
3550
3551 mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC |
3552 (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3553
3554 mtspr(SPRN_HFSCR, vcpu->arch.hfscr);
3555
3556 mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0);
3557 mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1);
3558 mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2);
3559 mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3);
3560
3561 mtspr(SPRN_AMOR, ~0UL);
3562
3563 mtspr(SPRN_LPCR, lpcr);
3564 isync();
3565
3566 kvmppc_xive_push_vcpu(vcpu);
3567
3568 mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0);
3569 mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1);
3570
3571 trap = __kvmhv_vcpu_entry_p9(vcpu);
3572
3573 /* Advance host PURR/SPURR by the amount used by guest */
3574 purr = mfspr(SPRN_PURR);
3575 spurr = mfspr(SPRN_SPURR);
3576 mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr +
3577 purr - vcpu->arch.purr);
3578 mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr +
3579 spurr - vcpu->arch.spurr);
3580 vcpu->arch.purr = purr;
3581 vcpu->arch.spurr = spurr;
3582
3583 vcpu->arch.ic = mfspr(SPRN_IC);
3584 vcpu->arch.pid = mfspr(SPRN_PID);
3585 vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS;
3586
3587 vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0);
3588 vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1);
3589 vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2);
3590 vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3);
3591
3592 /* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */
3593 mtspr(SPRN_PSSCR, host_psscr |
3594 (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3595 mtspr(SPRN_HFSCR, host_hfscr);
3596 mtspr(SPRN_CIABR, host_ciabr);
3597 mtspr(SPRN_DAWR0, host_dawr0);
3598 mtspr(SPRN_DAWRX0, host_dawrx0);
3599 if (cpu_has_feature(CPU_FTR_DAWR1)) {
3600 mtspr(SPRN_DAWR1, host_dawr1);
3601 mtspr(SPRN_DAWRX1, host_dawrx1);
3602 }
3603 mtspr(SPRN_PID, host_pidr);
3604
3605 /*
3606 * Since this is radix, do a eieio; tlbsync; ptesync sequence in
3607 * case we interrupted the guest between a tlbie and a ptesync.
3608 */
3609 asm volatile("eieio; tlbsync; ptesync");
3610
3611 /*
3612 * cp_abort is required if the processor supports local copy-paste
3613 * to clear the copy buffer that was under control of the guest.
3614 */
3615 if (cpu_has_feature(CPU_FTR_ARCH_31))
3616 asm volatile(PPC_CP_ABORT);
3617
3618 mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid); /* restore host LPID */
3619 isync();
3620
3621 vc->dpdes = mfspr(SPRN_DPDES);
3622 vc->vtb = mfspr(SPRN_VTB);
3623 mtspr(SPRN_DPDES, 0);
3624 if (vc->pcr)
3625 mtspr(SPRN_PCR, PCR_MASK);
3626
3627 if (vc->tb_offset_applied) {
3628 u64 new_tb = mftb() - vc->tb_offset_applied;
3629 mtspr(SPRN_TBU40, new_tb);
3630 tb = mftb();
3631 if ((tb & 0xffffff) < (new_tb & 0xffffff))
3632 mtspr(SPRN_TBU40, new_tb + 0x1000000);
3633 vc->tb_offset_applied = 0;
3634 }
3635
3636 mtspr(SPRN_HDEC, 0x7fffffff);
3637 mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);
3638
3639 return trap;
3640}
3641
3642/*
3643 * Virtual-mode guest entry for POWER9 and later when the host and
3644 * guest are both using the radix MMU. The LPIDR has already been set.
3645 */
3646static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
3647 unsigned long lpcr)
3648{
3649 struct kvmppc_vcore *vc = vcpu->arch.vcore;
3650 unsigned long host_dscr = mfspr(SPRN_DSCR);
3651 unsigned long host_tidr = mfspr(SPRN_TIDR);
3652 unsigned long host_iamr = mfspr(SPRN_IAMR);
3653 unsigned long host_amr = mfspr(SPRN_AMR);
3654 unsigned long host_fscr = mfspr(SPRN_FSCR);
3655 s64 dec;
3656 u64 tb;
3657 int trap, save_pmu;
3658
3659 dec = mfspr(SPRN_DEC);
3660 tb = mftb();
3661 if (dec < 0)
3662 return BOOK3S_INTERRUPT_HV_DECREMENTER;
3663 local_paca->kvm_hstate.dec_expires = dec + tb;
3664 if (local_paca->kvm_hstate.dec_expires < time_limit)
3665 time_limit = local_paca->kvm_hstate.dec_expires;
3666
3667 vcpu->arch.ceded = 0;
3668
3669 kvmhv_save_host_pmu(); /* saves it to PACA kvm_hstate */
3670
3671 kvmppc_subcore_enter_guest();
3672
3673 vc->entry_exit_map = 1;
3674 vc->in_guest = 1;
3675
3676 if (vcpu->arch.vpa.pinned_addr) {
3677 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3678 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3679 lp->yield_count = cpu_to_be32(yield_count);
3680 vcpu->arch.vpa.dirty = 1;
3681 }
3682
3683 if (cpu_has_feature(CPU_FTR_TM) ||
3684 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3685 kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3686
3687 kvmhv_load_guest_pmu(vcpu);
3688
3689 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3690 load_fp_state(&vcpu->arch.fp);
3691#ifdef CONFIG_ALTIVEC
3692 load_vr_state(&vcpu->arch.vr);
3693#endif
3694 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
3695
3696 mtspr(SPRN_DSCR, vcpu->arch.dscr);
3697 mtspr(SPRN_IAMR, vcpu->arch.iamr);
3698 mtspr(SPRN_PSPB, vcpu->arch.pspb);
3699 mtspr(SPRN_FSCR, vcpu->arch.fscr);
3700 mtspr(SPRN_TAR, vcpu->arch.tar);
3701 mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
3702 mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
3703 mtspr(SPRN_BESCR, vcpu->arch.bescr);
3704 mtspr(SPRN_WORT, vcpu->arch.wort);
3705 mtspr(SPRN_TIDR, vcpu->arch.tid);
3706 mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
3707 mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
3708 mtspr(SPRN_AMR, vcpu->arch.amr);
3709 mtspr(SPRN_UAMOR, vcpu->arch.uamor);
3710
3711 if (!(vcpu->arch.ctrl & 1))
3712 mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);
3713
3714 mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());
3715
3716 if (kvmhv_on_pseries()) {
3717 /*
3718 * We need to save and restore the guest visible part of the
3719 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
3720 * doesn't do this for us. Note only required if pseries since
3721 * this is done in kvmhv_load_hv_regs_and_go() below otherwise.
3722 */
3723 unsigned long host_psscr;
3724 /* call our hypervisor to load up HV regs and go */
3725 struct hv_guest_state hvregs;
3726
3727 host_psscr = mfspr(SPRN_PSSCR_PR);
3728 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
3729 kvmhv_save_hv_regs(vcpu, &hvregs);
3730 hvregs.lpcr = lpcr;
3731 vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
3732 hvregs.version = HV_GUEST_STATE_VERSION;
3733 if (vcpu->arch.nested) {
3734 hvregs.lpid = vcpu->arch.nested->shadow_lpid;
3735 hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
3736 } else {
3737 hvregs.lpid = vcpu->kvm->arch.lpid;
3738 hvregs.vcpu_token = vcpu->vcpu_id;
3739 }
3740 hvregs.hdec_expiry = time_limit;
3741 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
3742 __pa(&vcpu->arch.regs));
3743 kvmhv_restore_hv_return_state(vcpu, &hvregs);
3744 vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
3745 vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
3746 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
3747 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
3748 mtspr(SPRN_PSSCR_PR, host_psscr);
3749
3750 /* H_CEDE has to be handled now, not later */
3751 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
3752 kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
3753 kvmppc_nested_cede(vcpu);
3754 kvmppc_set_gpr(vcpu, 3, 0);
3755 trap = 0;
3756 }
3757 } else {
3758 trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr);
3759 }
3760
3761 vcpu->arch.slb_max = 0;
3762 dec = mfspr(SPRN_DEC);
3763 if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
3764 dec = (s32) dec;
3765 tb = mftb();
3766 vcpu->arch.dec_expires = dec + tb;
3767 vcpu->cpu = -1;
3768 vcpu->arch.thread_cpu = -1;
3769 /* Save guest CTRL register, set runlatch to 1 */
3770 vcpu->arch.ctrl = mfspr(SPRN_CTRLF);
3771 if (!(vcpu->arch.ctrl & 1))
3772 mtspr(SPRN_CTRLT, vcpu->arch.ctrl | 1);
3773
3774 vcpu->arch.iamr = mfspr(SPRN_IAMR);
3775 vcpu->arch.pspb = mfspr(SPRN_PSPB);
3776 vcpu->arch.fscr = mfspr(SPRN_FSCR);
3777 vcpu->arch.tar = mfspr(SPRN_TAR);
3778 vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
3779 vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
3780 vcpu->arch.bescr = mfspr(SPRN_BESCR);
3781 vcpu->arch.wort = mfspr(SPRN_WORT);
3782 vcpu->arch.tid = mfspr(SPRN_TIDR);
3783 vcpu->arch.amr = mfspr(SPRN_AMR);
3784 vcpu->arch.uamor = mfspr(SPRN_UAMOR);
3785 vcpu->arch.dscr = mfspr(SPRN_DSCR);
3786
3787 mtspr(SPRN_PSPB, 0);
3788 mtspr(SPRN_WORT, 0);
3789 mtspr(SPRN_UAMOR, 0);
3790 mtspr(SPRN_DSCR, host_dscr);
3791 mtspr(SPRN_TIDR, host_tidr);
3792 mtspr(SPRN_IAMR, host_iamr);
3793
3794 if (host_amr != vcpu->arch.amr)
3795 mtspr(SPRN_AMR, host_amr);
3796
3797 if (host_fscr != vcpu->arch.fscr)
3798 mtspr(SPRN_FSCR, host_fscr);
3799
3800 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3801 store_fp_state(&vcpu->arch.fp);
3802#ifdef CONFIG_ALTIVEC
3803 store_vr_state(&vcpu->arch.vr);
3804#endif
3805 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
3806
3807 if (cpu_has_feature(CPU_FTR_TM) ||
3808 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3809 kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3810
3811 save_pmu = 1;
3812 if (vcpu->arch.vpa.pinned_addr) {
3813 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3814 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3815 lp->yield_count = cpu_to_be32(yield_count);
3816 vcpu->arch.vpa.dirty = 1;
3817 save_pmu = lp->pmcregs_in_use;
3818 }
3819 /* Must save pmu if this guest is capable of running nested guests */
3820 save_pmu |= nesting_enabled(vcpu->kvm);
3821
3822 kvmhv_save_guest_pmu(vcpu, save_pmu);
3823
3824 vc->entry_exit_map = 0x101;
3825 vc->in_guest = 0;
3826
3827 mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());
3828 mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso);
3829
3830 kvmhv_load_host_pmu();
3831
3832 kvmppc_subcore_exit_guest();
3833
3834 return trap;
3835}
3836
3837/*
3838 * Wait for some other vcpu thread to execute us, and
3839 * wake us up when we need to handle something in the host.
3840 */
3841static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
3842 struct kvm_vcpu *vcpu, int wait_state)
3843{
3844 DEFINE_WAIT(wait);
3845
3846 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3847 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3848 spin_unlock(&vc->lock);
3849 schedule();
3850 spin_lock(&vc->lock);
3851 }
3852 finish_wait(&vcpu->arch.cpu_run, &wait);
3853}
3854
3855static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
3856{
3857 if (!halt_poll_ns_grow)
3858 return;
3859
3860 vc->halt_poll_ns *= halt_poll_ns_grow;
3861 if (vc->halt_poll_ns < halt_poll_ns_grow_start)
3862 vc->halt_poll_ns = halt_poll_ns_grow_start;
3863}
3864
3865static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
3866{
3867 if (halt_poll_ns_shrink == 0)
3868 vc->halt_poll_ns = 0;
3869 else
3870 vc->halt_poll_ns /= halt_poll_ns_shrink;
3871}
3872
3873#ifdef CONFIG_KVM_XICS
3874static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3875{
3876 if (!xics_on_xive())
3877 return false;
3878 return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3879 vcpu->arch.xive_saved_state.cppr;
3880}
3881#else
3882static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3883{
3884 return false;
3885}
3886#endif /* CONFIG_KVM_XICS */
3887
3888static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3889{
3890 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3891 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3892 return true;
3893
3894 return false;
3895}
3896
3897/*
3898 * Check to see if any of the runnable vcpus on the vcore have pending
3899 * exceptions or are no longer ceded
3900 */
3901static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3902{
3903 struct kvm_vcpu *vcpu;
3904 int i;
3905
3906 for_each_runnable_thread(i, vcpu, vc) {
3907 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3908 return 1;
3909 }
3910
3911 return 0;
3912}
3913
3914/*
3915 * All the vcpus in this vcore are idle, so wait for a decrementer
3916 * or external interrupt to one of the vcpus. vc->lock is held.
3917 */
3918static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3919{
3920 ktime_t cur, start_poll, start_wait;
3921 int do_sleep = 1;
3922 u64 block_ns;
3923
3924 /* Poll for pending exceptions and ceded state */
3925 cur = start_poll = ktime_get();
3926 if (vc->halt_poll_ns) {
3927 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3928 ++vc->runner->stat.halt_attempted_poll;
3929
3930 vc->vcore_state = VCORE_POLLING;
3931 spin_unlock(&vc->lock);
3932
3933 do {
3934 if (kvmppc_vcore_check_block(vc)) {
3935 do_sleep = 0;
3936 break;
3937 }
3938 cur = ktime_get();
3939 } while (kvm_vcpu_can_poll(cur, stop));
3940
3941 spin_lock(&vc->lock);
3942 vc->vcore_state = VCORE_INACTIVE;
3943
3944 if (!do_sleep) {
3945 ++vc->runner->stat.halt_successful_poll;
3946 goto out;
3947 }
3948 }
3949
3950 prepare_to_rcuwait(&vc->wait);
3951 set_current_state(TASK_INTERRUPTIBLE);
3952 if (kvmppc_vcore_check_block(vc)) {
3953 finish_rcuwait(&vc->wait);
3954 do_sleep = 0;
3955 /* If we polled, count this as a successful poll */
3956 if (vc->halt_poll_ns)
3957 ++vc->runner->stat.halt_successful_poll;
3958 goto out;
3959 }
3960
3961 start_wait = ktime_get();
3962
3963 vc->vcore_state = VCORE_SLEEPING;
3964 trace_kvmppc_vcore_blocked(vc, 0);
3965 spin_unlock(&vc->lock);
3966 schedule();
3967 finish_rcuwait(&vc->wait);
3968 spin_lock(&vc->lock);
3969 vc->vcore_state = VCORE_INACTIVE;
3970 trace_kvmppc_vcore_blocked(vc, 1);
3971 ++vc->runner->stat.halt_successful_wait;
3972
3973 cur = ktime_get();
3974
3975out:
3976 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3977
3978 /* Attribute wait time */
3979 if (do_sleep) {
3980 vc->runner->stat.halt_wait_ns +=
3981 ktime_to_ns(cur) - ktime_to_ns(start_wait);
3982 /* Attribute failed poll time */
3983 if (vc->halt_poll_ns)
3984 vc->runner->stat.halt_poll_fail_ns +=
3985 ktime_to_ns(start_wait) -
3986 ktime_to_ns(start_poll);
3987 } else {
3988 /* Attribute successful poll time */
3989 if (vc->halt_poll_ns)
3990 vc->runner->stat.halt_poll_success_ns +=
3991 ktime_to_ns(cur) -
3992 ktime_to_ns(start_poll);
3993 }
3994
3995 /* Adjust poll time */
3996 if (halt_poll_ns) {
3997 if (block_ns <= vc->halt_poll_ns)
3998 ;
3999 /* We slept and blocked for longer than the max halt time */
4000 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
4001 shrink_halt_poll_ns(vc);
4002 /* We slept and our poll time is too small */
4003 else if (vc->halt_poll_ns < halt_poll_ns &&
4004 block_ns < halt_poll_ns)
4005 grow_halt_poll_ns(vc);
4006 if (vc->halt_poll_ns > halt_poll_ns)
4007 vc->halt_poll_ns = halt_poll_ns;
4008 } else
4009 vc->halt_poll_ns = 0;
4010
4011 trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
4012}
4013
4014/*
4015 * This never fails for a radix guest, as none of the operations it does
4016 * for a radix guest can fail or have a way to report failure.
4017 * kvmhv_run_single_vcpu() relies on this fact.
4018 */
4019static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
4020{
4021 int r = 0;
4022 struct kvm *kvm = vcpu->kvm;
4023
4024 mutex_lock(&kvm->arch.mmu_setup_lock);
4025 if (!kvm->arch.mmu_ready) {
4026 if (!kvm_is_radix(kvm))
4027 r = kvmppc_hv_setup_htab_rma(vcpu);
4028 if (!r) {
4029 if (cpu_has_feature(CPU_FTR_ARCH_300))
4030 kvmppc_setup_partition_table(kvm);
4031 kvm->arch.mmu_ready = 1;
4032 }
4033 }
4034 mutex_unlock(&kvm->arch.mmu_setup_lock);
4035 return r;
4036}
4037
4038static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu)
4039{
4040 struct kvm_run *run = vcpu->run;
4041 int n_ceded, i, r;
4042 struct kvmppc_vcore *vc;
4043 struct kvm_vcpu *v;
4044
4045 trace_kvmppc_run_vcpu_enter(vcpu);
4046
4047 run->exit_reason = 0;
4048 vcpu->arch.ret = RESUME_GUEST;
4049 vcpu->arch.trap = 0;
4050 kvmppc_update_vpas(vcpu);
4051
4052 /*
4053 * Synchronize with other threads in this virtual core
4054 */
4055 vc = vcpu->arch.vcore;
4056 spin_lock(&vc->lock);
4057 vcpu->arch.ceded = 0;
4058 vcpu->arch.run_task = current;
4059 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4060 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4061 vcpu->arch.busy_preempt = TB_NIL;
4062 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
4063 ++vc->n_runnable;
4064
4065 /*
4066 * This happens the first time this is called for a vcpu.
4067 * If the vcore is already running, we may be able to start
4068 * this thread straight away and have it join in.
4069 */
4070 if (!signal_pending(current)) {
4071 if ((vc->vcore_state == VCORE_PIGGYBACK ||
4072 vc->vcore_state == VCORE_RUNNING) &&
4073 !VCORE_IS_EXITING(vc)) {
4074 kvmppc_create_dtl_entry(vcpu, vc);
4075 kvmppc_start_thread(vcpu, vc);
4076 trace_kvm_guest_enter(vcpu);
4077 } else if (vc->vcore_state == VCORE_SLEEPING) {
4078 rcuwait_wake_up(&vc->wait);
4079 }
4080
4081 }
4082
4083 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4084 !signal_pending(current)) {
4085 /* See if the MMU is ready to go */
4086 if (!vcpu->kvm->arch.mmu_ready) {
4087 spin_unlock(&vc->lock);
4088 r = kvmhv_setup_mmu(vcpu);
4089 spin_lock(&vc->lock);
4090 if (r) {
4091 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4092 run->fail_entry.
4093 hardware_entry_failure_reason = 0;
4094 vcpu->arch.ret = r;
4095 break;
4096 }
4097 }
4098
4099 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4100 kvmppc_vcore_end_preempt(vc);
4101
4102 if (vc->vcore_state != VCORE_INACTIVE) {
4103 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
4104 continue;
4105 }
4106 for_each_runnable_thread(i, v, vc) {
4107 kvmppc_core_prepare_to_enter(v);
4108 if (signal_pending(v->arch.run_task)) {
4109 kvmppc_remove_runnable(vc, v);
4110 v->stat.signal_exits++;
4111 v->run->exit_reason = KVM_EXIT_INTR;
4112 v->arch.ret = -EINTR;
4113 wake_up(&v->arch.cpu_run);
4114 }
4115 }
4116 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
4117 break;
4118 n_ceded = 0;
4119 for_each_runnable_thread(i, v, vc) {
4120 if (!kvmppc_vcpu_woken(v))
4121 n_ceded += v->arch.ceded;
4122 else
4123 v->arch.ceded = 0;
4124 }
4125 vc->runner = vcpu;
4126 if (n_ceded == vc->n_runnable) {
4127 kvmppc_vcore_blocked(vc);
4128 } else if (need_resched()) {
4129 kvmppc_vcore_preempt(vc);
4130 /* Let something else run */
4131 cond_resched_lock(&vc->lock);
4132 if (vc->vcore_state == VCORE_PREEMPT)
4133 kvmppc_vcore_end_preempt(vc);
4134 } else {
4135 kvmppc_run_core(vc);
4136 }
4137 vc->runner = NULL;
4138 }
4139
4140 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4141 (vc->vcore_state == VCORE_RUNNING ||
4142 vc->vcore_state == VCORE_EXITING ||
4143 vc->vcore_state == VCORE_PIGGYBACK))
4144 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4145
4146 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4147 kvmppc_vcore_end_preempt(vc);
4148
4149 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4150 kvmppc_remove_runnable(vc, vcpu);
4151 vcpu->stat.signal_exits++;
4152 run->exit_reason = KVM_EXIT_INTR;
4153 vcpu->arch.ret = -EINTR;
4154 }
4155
4156 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4157 /* Wake up some vcpu to run the core */
4158 i = -1;
4159 v = next_runnable_thread(vc, &i);
4160 wake_up(&v->arch.cpu_run);
4161 }
4162
4163 trace_kvmppc_run_vcpu_exit(vcpu);
4164 spin_unlock(&vc->lock);
4165 return vcpu->arch.ret;
4166}
4167
4168int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit,
4169 unsigned long lpcr)
4170{
4171 struct kvm_run *run = vcpu->run;
4172 int trap, r, pcpu;
4173 int srcu_idx, lpid;
4174 struct kvmppc_vcore *vc;
4175 struct kvm *kvm = vcpu->kvm;
4176 struct kvm_nested_guest *nested = vcpu->arch.nested;
4177
4178 trace_kvmppc_run_vcpu_enter(vcpu);
4179
4180 run->exit_reason = 0;
4181 vcpu->arch.ret = RESUME_GUEST;
4182 vcpu->arch.trap = 0;
4183
4184 vc = vcpu->arch.vcore;
4185 vcpu->arch.ceded = 0;
4186 vcpu->arch.run_task = current;
4187 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4188 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4189 vcpu->arch.busy_preempt = TB_NIL;
4190 vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4191 vc->runnable_threads[0] = vcpu;
4192 vc->n_runnable = 1;
4193 vc->runner = vcpu;
4194
4195 /* See if the MMU is ready to go */
4196 if (!kvm->arch.mmu_ready)
4197 kvmhv_setup_mmu(vcpu);
4198
4199 if (need_resched())
4200 cond_resched();
4201
4202 kvmppc_update_vpas(vcpu);
4203
4204 init_vcore_to_run(vc);
4205 vc->preempt_tb = TB_NIL;
4206
4207 preempt_disable();
4208 pcpu = smp_processor_id();
4209 vc->pcpu = pcpu;
4210 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4211
4212 local_irq_disable();
4213 hard_irq_disable();
4214 if (signal_pending(current))
4215 goto sigpend;
4216 if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
4217 goto out;
4218
4219 if (!nested) {
4220 kvmppc_core_prepare_to_enter(vcpu);
4221 if (vcpu->arch.doorbell_request) {
4222 vc->dpdes = 1;
4223 smp_wmb();
4224 vcpu->arch.doorbell_request = 0;
4225 }
4226 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4227 &vcpu->arch.pending_exceptions))
4228 lpcr |= LPCR_MER;
4229 } else if (vcpu->arch.pending_exceptions ||
4230 vcpu->arch.doorbell_request ||
4231 xive_interrupt_pending(vcpu)) {
4232 vcpu->arch.ret = RESUME_HOST;
4233 goto out;
4234 }
4235
4236 kvmppc_clear_host_core(pcpu);
4237
4238 local_paca->kvm_hstate.napping = 0;
4239 local_paca->kvm_hstate.kvm_split_mode = NULL;
4240 kvmppc_start_thread(vcpu, vc);
4241 kvmppc_create_dtl_entry(vcpu, vc);
4242 trace_kvm_guest_enter(vcpu);
4243
4244 vc->vcore_state = VCORE_RUNNING;
4245 trace_kvmppc_run_core(vc, 0);
4246
4247 if (cpu_has_feature(CPU_FTR_HVMODE)) {
4248 lpid = nested ? nested->shadow_lpid : kvm->arch.lpid;
4249 mtspr(SPRN_LPID, lpid);
4250 isync();
4251 kvmppc_check_need_tlb_flush(kvm, pcpu, nested);
4252 }
4253
4254 guest_enter_irqoff();
4255
4256 srcu_idx = srcu_read_lock(&kvm->srcu);
4257
4258 this_cpu_disable_ftrace();
4259
4260 /* Tell lockdep that we're about to enable interrupts */
4261 trace_hardirqs_on();
4262
4263 trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr);
4264 vcpu->arch.trap = trap;
4265
4266 trace_hardirqs_off();
4267
4268 this_cpu_enable_ftrace();
4269
4270 srcu_read_unlock(&kvm->srcu, srcu_idx);
4271
4272 if (cpu_has_feature(CPU_FTR_HVMODE)) {
4273 mtspr(SPRN_LPID, kvm->arch.host_lpid);
4274 isync();
4275 }
4276
4277 set_irq_happened(trap);
4278
4279 kvmppc_set_host_core(pcpu);
4280
4281 guest_exit_irqoff();
4282
4283 local_irq_enable();
4284
4285 cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);
4286
4287 preempt_enable();
4288
4289 /*
4290 * cancel pending decrementer exception if DEC is now positive, or if
4291 * entering a nested guest in which case the decrementer is now owned
4292 * by L2 and the L1 decrementer is provided in hdec_expires
4293 */
4294 if (kvmppc_core_pending_dec(vcpu) &&
4295 ((get_tb() < vcpu->arch.dec_expires) ||
4296 (trap == BOOK3S_INTERRUPT_SYSCALL &&
4297 kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4298 kvmppc_core_dequeue_dec(vcpu);
4299
4300 trace_kvm_guest_exit(vcpu);
4301 r = RESUME_GUEST;
4302 if (trap) {
4303 if (!nested)
4304 r = kvmppc_handle_exit_hv(vcpu, current);
4305 else
4306 r = kvmppc_handle_nested_exit(vcpu);
4307 }
4308 vcpu->arch.ret = r;
4309
4310 if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
4311 !kvmppc_vcpu_woken(vcpu)) {
4312 kvmppc_set_timer(vcpu);
4313 while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
4314 if (signal_pending(current)) {
4315 vcpu->stat.signal_exits++;
4316 run->exit_reason = KVM_EXIT_INTR;
4317 vcpu->arch.ret = -EINTR;
4318 break;
4319 }
4320 spin_lock(&vc->lock);
4321 kvmppc_vcore_blocked(vc);
4322 spin_unlock(&vc->lock);
4323 }
4324 }
4325 vcpu->arch.ceded = 0;
4326
4327 vc->vcore_state = VCORE_INACTIVE;
4328 trace_kvmppc_run_core(vc, 1);
4329
4330 done:
4331 kvmppc_remove_runnable(vc, vcpu);
4332 trace_kvmppc_run_vcpu_exit(vcpu);
4333
4334 return vcpu->arch.ret;
4335
4336 sigpend:
4337 vcpu->stat.signal_exits++;
4338 run->exit_reason = KVM_EXIT_INTR;
4339 vcpu->arch.ret = -EINTR;
4340 out:
4341 local_irq_enable();
4342 preempt_enable();
4343 goto done;
4344}
4345
4346static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu)
4347{
4348 struct kvm_run *run = vcpu->run;
4349 int r;
4350 int srcu_idx;
4351 unsigned long ebb_regs[3] = {}; /* shut up GCC */
4352 unsigned long user_tar = 0;
4353 unsigned int user_vrsave;
4354 struct kvm *kvm;
4355
4356 if (!vcpu->arch.sane) {
4357 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4358 return -EINVAL;
4359 }
4360
4361 /*
4362 * Don't allow entry with a suspended transaction, because
4363 * the guest entry/exit code will lose it.
4364 * If the guest has TM enabled, save away their TM-related SPRs
4365 * (they will get restored by the TM unavailable interrupt).
4366 */
4367#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4368 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4369 (current->thread.regs->msr & MSR_TM)) {
4370 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4371 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4372 run->fail_entry.hardware_entry_failure_reason = 0;
4373 return -EINVAL;
4374 }
4375 /* Enable TM so we can read the TM SPRs */
4376 mtmsr(mfmsr() | MSR_TM);
4377 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
4378 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
4379 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
4380 current->thread.regs->msr &= ~MSR_TM;
4381 }
4382#endif
4383
4384 /*
4385 * Force online to 1 for the sake of old userspace which doesn't
4386 * set it.
4387 */
4388 if (!vcpu->arch.online) {
4389 atomic_inc(&vcpu->arch.vcore->online_count);
4390 vcpu->arch.online = 1;
4391 }
4392
4393 kvmppc_core_prepare_to_enter(vcpu);
4394
4395 /* No need to go into the guest when all we'll do is come back out */
4396 if (signal_pending(current)) {
4397 run->exit_reason = KVM_EXIT_INTR;
4398 return -EINTR;
4399 }
4400
4401 kvm = vcpu->kvm;
4402 atomic_inc(&kvm->arch.vcpus_running);
4403 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4404 smp_mb();
4405
4406 flush_all_to_thread(current);
4407
4408 /* Save userspace EBB and other register values */
4409 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4410 ebb_regs[0] = mfspr(SPRN_EBBHR);
4411 ebb_regs[1] = mfspr(SPRN_EBBRR);
4412 ebb_regs[2] = mfspr(SPRN_BESCR);
4413 user_tar = mfspr(SPRN_TAR);
4414 }
4415 user_vrsave = mfspr(SPRN_VRSAVE);
4416
4417 vcpu->arch.waitp = &vcpu->arch.vcore->wait;
4418 vcpu->arch.pgdir = kvm->mm->pgd;
4419 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4420
4421 do {
4422 /*
4423 * The TLB prefetch bug fixup is only in the kvmppc_run_vcpu
4424 * path, which also handles hash and dependent threads mode.
4425 */
4426 if (kvm->arch.threads_indep && kvm_is_radix(kvm) &&
4427 !cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG))
4428 r = kvmhv_run_single_vcpu(vcpu, ~(u64)0,
4429 vcpu->arch.vcore->lpcr);
4430 else
4431 r = kvmppc_run_vcpu(vcpu);
4432
4433 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
4434 !(vcpu->arch.shregs.msr & MSR_PR)) {
4435 trace_kvm_hcall_enter(vcpu);
4436 r = kvmppc_pseries_do_hcall(vcpu);
4437 trace_kvm_hcall_exit(vcpu, r);
4438 kvmppc_core_prepare_to_enter(vcpu);
4439 } else if (r == RESUME_PAGE_FAULT) {
4440 srcu_idx = srcu_read_lock(&kvm->srcu);
4441 r = kvmppc_book3s_hv_page_fault(vcpu,
4442 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4443 srcu_read_unlock(&kvm->srcu, srcu_idx);
4444 } else if (r == RESUME_PASSTHROUGH) {
4445 if (WARN_ON(xics_on_xive()))
4446 r = H_SUCCESS;
4447 else
4448 r = kvmppc_xics_rm_complete(vcpu, 0);
4449 }
4450 } while (is_kvmppc_resume_guest(r));
4451
4452 /* Restore userspace EBB and other register values */
4453 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4454 mtspr(SPRN_EBBHR, ebb_regs[0]);
4455 mtspr(SPRN_EBBRR, ebb_regs[1]);
4456 mtspr(SPRN_BESCR, ebb_regs[2]);
4457 mtspr(SPRN_TAR, user_tar);
4458 mtspr(SPRN_FSCR, current->thread.fscr);
4459 }
4460 mtspr(SPRN_VRSAVE, user_vrsave);
4461
4462 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4463 atomic_dec(&kvm->arch.vcpus_running);
4464 return r;
4465}
4466
4467static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4468 int shift, int sllp)
4469{
4470 (*sps)->page_shift = shift;
4471 (*sps)->slb_enc = sllp;
4472 (*sps)->enc[0].page_shift = shift;
4473 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4474 /*
4475 * Add 16MB MPSS support (may get filtered out by userspace)
4476 */
4477 if (shift != 24) {
4478 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4479 if (penc != -1) {
4480 (*sps)->enc[1].page_shift = 24;
4481 (*sps)->enc[1].pte_enc = penc;
4482 }
4483 }
4484 (*sps)++;
4485}
4486
4487static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4488 struct kvm_ppc_smmu_info *info)
4489{
4490 struct kvm_ppc_one_seg_page_size *sps;
4491
4492 /*
4493 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4494 * POWER7 doesn't support keys for instruction accesses,
4495 * POWER8 and POWER9 do.
4496 */
4497 info->data_keys = 32;
4498 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4499
4500 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4501 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4502 info->slb_size = 32;
4503
4504 /* We only support these sizes for now, and no muti-size segments */
4505 sps = &info->sps[0];
4506 kvmppc_add_seg_page_size(&sps, 12, 0);
4507 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4508 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4509
4510 /* If running as a nested hypervisor, we don't support HPT guests */
4511 if (kvmhv_on_pseries())
4512 info->flags |= KVM_PPC_NO_HASH;
4513
4514 return 0;
4515}
4516
4517/*
4518 * Get (and clear) the dirty memory log for a memory slot.
4519 */
4520static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4521 struct kvm_dirty_log *log)
4522{
4523 struct kvm_memslots *slots;
4524 struct kvm_memory_slot *memslot;
4525 int i, r;
4526 unsigned long n;
4527 unsigned long *buf, *p;
4528 struct kvm_vcpu *vcpu;
4529
4530 mutex_lock(&kvm->slots_lock);
4531
4532 r = -EINVAL;
4533 if (log->slot >= KVM_USER_MEM_SLOTS)
4534 goto out;
4535
4536 slots = kvm_memslots(kvm);
4537 memslot = id_to_memslot(slots, log->slot);
4538 r = -ENOENT;
4539 if (!memslot || !memslot->dirty_bitmap)
4540 goto out;
4541
4542 /*
4543 * Use second half of bitmap area because both HPT and radix
4544 * accumulate bits in the first half.
4545 */
4546 n = kvm_dirty_bitmap_bytes(memslot);
4547 buf = memslot->dirty_bitmap + n / sizeof(long);
4548 memset(buf, 0, n);
4549
4550 if (kvm_is_radix(kvm))
4551 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4552 else
4553 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4554 if (r)
4555 goto out;
4556
4557 /*
4558 * We accumulate dirty bits in the first half of the
4559 * memslot's dirty_bitmap area, for when pages are paged
4560 * out or modified by the host directly. Pick up these
4561 * bits and add them to the map.
4562 */
4563 p = memslot->dirty_bitmap;
4564 for (i = 0; i < n / sizeof(long); ++i)
4565 buf[i] |= xchg(&p[i], 0);
4566
4567 /* Harvest dirty bits from VPA and DTL updates */
4568 /* Note: we never modify the SLB shadow buffer areas */
4569 kvm_for_each_vcpu(i, vcpu, kvm) {
4570 spin_lock(&vcpu->arch.vpa_update_lock);
4571 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4572 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4573 spin_unlock(&vcpu->arch.vpa_update_lock);
4574 }
4575
4576 r = -EFAULT;
4577 if (copy_to_user(log->dirty_bitmap, buf, n))
4578 goto out;
4579
4580 r = 0;
4581out:
4582 mutex_unlock(&kvm->slots_lock);
4583 return r;
4584}
4585
4586static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
4587{
4588 vfree(slot->arch.rmap);
4589 slot->arch.rmap = NULL;
4590}
4591
4592static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
4593 struct kvm_memory_slot *slot,
4594 const struct kvm_userspace_memory_region *mem,
4595 enum kvm_mr_change change)
4596{
4597 unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4598
4599 if (change == KVM_MR_CREATE) {
4600 slot->arch.rmap = vzalloc(array_size(npages,
4601 sizeof(*slot->arch.rmap)));
4602 if (!slot->arch.rmap)
4603 return -ENOMEM;
4604 }
4605
4606 return 0;
4607}
4608
4609static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4610 const struct kvm_userspace_memory_region *mem,
4611 const struct kvm_memory_slot *old,
4612 const struct kvm_memory_slot *new,
4613 enum kvm_mr_change change)
4614{
4615 unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4616
4617 /*
4618 * If we are making a new memslot, it might make
4619 * some address that was previously cached as emulated
4620 * MMIO be no longer emulated MMIO, so invalidate
4621 * all the caches of emulated MMIO translations.
4622 */
4623 if (npages)
4624 atomic64_inc(&kvm->arch.mmio_update);
4625
4626 /*
4627 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
4628 * have already called kvm_arch_flush_shadow_memslot() to
4629 * flush shadow mappings. For KVM_MR_CREATE we have no
4630 * previous mappings. So the only case to handle is
4631 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
4632 * has been changed.
4633 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
4634 * to get rid of any THP PTEs in the partition-scoped page tables
4635 * so we can track dirtiness at the page level; we flush when
4636 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
4637 * using THP PTEs.
4638 */
4639 if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
4640 ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
4641 kvmppc_radix_flush_memslot(kvm, old);
4642 /*
4643 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
4644 */
4645 if (!kvm->arch.secure_guest)
4646 return;
4647
4648 switch (change) {
4649 case KVM_MR_CREATE:
4650 /*
4651 * @TODO kvmppc_uvmem_memslot_create() can fail and
4652 * return error. Fix this.
4653 */
4654 kvmppc_uvmem_memslot_create(kvm, new);
4655 break;
4656 case KVM_MR_DELETE:
4657 kvmppc_uvmem_memslot_delete(kvm, old);
4658 break;
4659 default:
4660 /* TODO: Handle KVM_MR_MOVE */
4661 break;
4662 }
4663}
4664
4665/*
4666 * Update LPCR values in kvm->arch and in vcores.
4667 * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
4668 * of kvm->arch.lpcr update).
4669 */
4670void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
4671{
4672 long int i;
4673 u32 cores_done = 0;
4674
4675 if ((kvm->arch.lpcr & mask) == lpcr)
4676 return;
4677
4678 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
4679
4680 for (i = 0; i < KVM_MAX_VCORES; ++i) {
4681 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
4682 if (!vc)
4683 continue;
4684
4685 spin_lock(&vc->lock);
4686 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
4687 verify_lpcr(kvm, vc->lpcr);
4688 spin_unlock(&vc->lock);
4689 if (++cores_done >= kvm->arch.online_vcores)
4690 break;
4691 }
4692}
4693
4694void kvmppc_setup_partition_table(struct kvm *kvm)
4695{
4696 unsigned long dw0, dw1;
4697
4698 if (!kvm_is_radix(kvm)) {
4699 /* PS field - page size for VRMA */
4700 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
4701 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
4702 /* HTABSIZE and HTABORG fields */
4703 dw0 |= kvm->arch.sdr1;
4704
4705 /* Second dword as set by userspace */
4706 dw1 = kvm->arch.process_table;
4707 } else {
4708 dw0 = PATB_HR | radix__get_tree_size() |
4709 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
4710 dw1 = PATB_GR | kvm->arch.process_table;
4711 }
4712 kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
4713}
4714
4715/*
4716 * Set up HPT (hashed page table) and RMA (real-mode area).
4717 * Must be called with kvm->arch.mmu_setup_lock held.
4718 */
4719static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4720{
4721 int err = 0;
4722 struct kvm *kvm = vcpu->kvm;
4723 unsigned long hva;
4724 struct kvm_memory_slot *memslot;
4725 struct vm_area_struct *vma;
4726 unsigned long lpcr = 0, senc;
4727 unsigned long psize, porder;
4728 int srcu_idx;
4729
4730 /* Allocate hashed page table (if not done already) and reset it */
4731 if (!kvm->arch.hpt.virt) {
4732 int order = KVM_DEFAULT_HPT_ORDER;
4733 struct kvm_hpt_info info;
4734
4735 err = kvmppc_allocate_hpt(&info, order);
4736 /* If we get here, it means userspace didn't specify a
4737 * size explicitly. So, try successively smaller
4738 * sizes if the default failed. */
4739 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
4740 err = kvmppc_allocate_hpt(&info, order);
4741
4742 if (err < 0) {
4743 pr_err("KVM: Couldn't alloc HPT\n");
4744 goto out;
4745 }
4746
4747 kvmppc_set_hpt(kvm, &info);
4748 }
4749
4750 /* Look up the memslot for guest physical address 0 */
4751 srcu_idx = srcu_read_lock(&kvm->srcu);
4752 memslot = gfn_to_memslot(kvm, 0);
4753
4754 /* We must have some memory at 0 by now */
4755 err = -EINVAL;
4756 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
4757 goto out_srcu;
4758
4759 /* Look up the VMA for the start of this memory slot */
4760 hva = memslot->userspace_addr;
4761 mmap_read_lock(kvm->mm);
4762 vma = find_vma(kvm->mm, hva);
4763 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
4764 goto up_out;
4765
4766 psize = vma_kernel_pagesize(vma);
4767
4768 mmap_read_unlock(kvm->mm);
4769
4770 /* We can handle 4k, 64k or 16M pages in the VRMA */
4771 if (psize >= 0x1000000)
4772 psize = 0x1000000;
4773 else if (psize >= 0x10000)
4774 psize = 0x10000;
4775 else
4776 psize = 0x1000;
4777 porder = __ilog2(psize);
4778
4779 senc = slb_pgsize_encoding(psize);
4780 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
4781 (VRMA_VSID << SLB_VSID_SHIFT_1T);
4782 /* Create HPTEs in the hash page table for the VRMA */
4783 kvmppc_map_vrma(vcpu, memslot, porder);
4784
4785 /* Update VRMASD field in the LPCR */
4786 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
4787 /* the -4 is to account for senc values starting at 0x10 */
4788 lpcr = senc << (LPCR_VRMASD_SH - 4);
4789 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
4790 }
4791
4792 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
4793 smp_wmb();
4794 err = 0;
4795 out_srcu:
4796 srcu_read_unlock(&kvm->srcu, srcu_idx);
4797 out:
4798 return err;
4799
4800 up_out:
4801 mmap_read_unlock(kvm->mm);
4802 goto out_srcu;
4803}
4804
4805/*
4806 * Must be called with kvm->arch.mmu_setup_lock held and
4807 * mmu_ready = 0 and no vcpus running.
4808 */
4809int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
4810{
4811 if (nesting_enabled(kvm))
4812 kvmhv_release_all_nested(kvm);
4813 kvmppc_rmap_reset(kvm);
4814 kvm->arch.process_table = 0;
4815 /* Mutual exclusion with kvm_unmap_gfn_range etc. */
4816 spin_lock(&kvm->mmu_lock);
4817 kvm->arch.radix = 0;
4818 spin_unlock(&kvm->mmu_lock);
4819 kvmppc_free_radix(kvm);
4820 kvmppc_update_lpcr(kvm, LPCR_VPM1,
4821 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4822 return 0;
4823}
4824
4825/*
4826 * Must be called with kvm->arch.mmu_setup_lock held and
4827 * mmu_ready = 0 and no vcpus running.
4828 */
4829int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
4830{
4831 int err;
4832
4833 err = kvmppc_init_vm_radix(kvm);
4834 if (err)
4835 return err;
4836 kvmppc_rmap_reset(kvm);
4837 /* Mutual exclusion with kvm_unmap_gfn_range etc. */
4838 spin_lock(&kvm->mmu_lock);
4839 kvm->arch.radix = 1;
4840 spin_unlock(&kvm->mmu_lock);
4841 kvmppc_free_hpt(&kvm->arch.hpt);
4842 kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
4843 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4844 return 0;
4845}
4846
4847#ifdef CONFIG_KVM_XICS
4848/*
4849 * Allocate a per-core structure for managing state about which cores are
4850 * running in the host versus the guest and for exchanging data between
4851 * real mode KVM and CPU running in the host.
4852 * This is only done for the first VM.
4853 * The allocated structure stays even if all VMs have stopped.
4854 * It is only freed when the kvm-hv module is unloaded.
4855 * It's OK for this routine to fail, we just don't support host
4856 * core operations like redirecting H_IPI wakeups.
4857 */
4858void kvmppc_alloc_host_rm_ops(void)
4859{
4860 struct kvmppc_host_rm_ops *ops;
4861 unsigned long l_ops;
4862 int cpu, core;
4863 int size;
4864
4865 /* Not the first time here ? */
4866 if (kvmppc_host_rm_ops_hv != NULL)
4867 return;
4868
4869 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
4870 if (!ops)
4871 return;
4872
4873 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
4874 ops->rm_core = kzalloc(size, GFP_KERNEL);
4875
4876 if (!ops->rm_core) {
4877 kfree(ops);
4878 return;
4879 }
4880
4881 cpus_read_lock();
4882
4883 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
4884 if (!cpu_online(cpu))
4885 continue;
4886
4887 core = cpu >> threads_shift;
4888 ops->rm_core[core].rm_state.in_host = 1;
4889 }
4890
4891 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
4892
4893 /*
4894 * Make the contents of the kvmppc_host_rm_ops structure visible
4895 * to other CPUs before we assign it to the global variable.
4896 * Do an atomic assignment (no locks used here), but if someone
4897 * beats us to it, just free our copy and return.
4898 */
4899 smp_wmb();
4900 l_ops = (unsigned long) ops;
4901
4902 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
4903 cpus_read_unlock();
4904 kfree(ops->rm_core);
4905 kfree(ops);
4906 return;
4907 }
4908
4909 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
4910 "ppc/kvm_book3s:prepare",
4911 kvmppc_set_host_core,
4912 kvmppc_clear_host_core);
4913 cpus_read_unlock();
4914}
4915
4916void kvmppc_free_host_rm_ops(void)
4917{
4918 if (kvmppc_host_rm_ops_hv) {
4919 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
4920 kfree(kvmppc_host_rm_ops_hv->rm_core);
4921 kfree(kvmppc_host_rm_ops_hv);
4922 kvmppc_host_rm_ops_hv = NULL;
4923 }
4924}
4925#endif
4926
4927static int kvmppc_core_init_vm_hv(struct kvm *kvm)
4928{
4929 unsigned long lpcr, lpid;
4930 char buf[32];
4931 int ret;
4932
4933 mutex_init(&kvm->arch.uvmem_lock);
4934 INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
4935 mutex_init(&kvm->arch.mmu_setup_lock);
4936
4937 /* Allocate the guest's logical partition ID */
4938
4939 lpid = kvmppc_alloc_lpid();
4940 if ((long)lpid < 0)
4941 return -ENOMEM;
4942 kvm->arch.lpid = lpid;
4943
4944 kvmppc_alloc_host_rm_ops();
4945
4946 kvmhv_vm_nested_init(kvm);
4947
4948 /*
4949 * Since we don't flush the TLB when tearing down a VM,
4950 * and this lpid might have previously been used,
4951 * make sure we flush on each core before running the new VM.
4952 * On POWER9, the tlbie in mmu_partition_table_set_entry()
4953 * does this flush for us.
4954 */
4955 if (!cpu_has_feature(CPU_FTR_ARCH_300))
4956 cpumask_setall(&kvm->arch.need_tlb_flush);
4957
4958 /* Start out with the default set of hcalls enabled */
4959 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
4960 sizeof(kvm->arch.enabled_hcalls));
4961
4962 if (!cpu_has_feature(CPU_FTR_ARCH_300))
4963 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
4964
4965 /* Init LPCR for virtual RMA mode */
4966 if (cpu_has_feature(CPU_FTR_HVMODE)) {
4967 kvm->arch.host_lpid = mfspr(SPRN_LPID);
4968 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
4969 lpcr &= LPCR_PECE | LPCR_LPES;
4970 } else {
4971 lpcr = 0;
4972 }
4973 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
4974 LPCR_VPM0 | LPCR_VPM1;
4975 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
4976 (VRMA_VSID << SLB_VSID_SHIFT_1T);
4977 /* On POWER8 turn on online bit to enable PURR/SPURR */
4978 if (cpu_has_feature(CPU_FTR_ARCH_207S))
4979 lpcr |= LPCR_ONL;
4980 /*
4981 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
4982 * Set HVICE bit to enable hypervisor virtualization interrupts.
4983 * Set HEIC to prevent OS interrupts to go to hypervisor (should
4984 * be unnecessary but better safe than sorry in case we re-enable
4985 * EE in HV mode with this LPCR still set)
4986 */
4987 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4988 lpcr &= ~LPCR_VPM0;
4989 lpcr |= LPCR_HVICE | LPCR_HEIC;
4990
4991 /*
4992 * If xive is enabled, we route 0x500 interrupts directly
4993 * to the guest.
4994 */
4995 if (xics_on_xive())
4996 lpcr |= LPCR_LPES;
4997 }
4998
4999 /*
5000 * If the host uses radix, the guest starts out as radix.
5001 */
5002 if (radix_enabled()) {
5003 kvm->arch.radix = 1;
5004 kvm->arch.mmu_ready = 1;
5005 lpcr &= ~LPCR_VPM1;
5006 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5007 ret = kvmppc_init_vm_radix(kvm);
5008 if (ret) {
5009 kvmppc_free_lpid(kvm->arch.lpid);
5010 return ret;
5011 }
5012 kvmppc_setup_partition_table(kvm);
5013 }
5014
5015 verify_lpcr(kvm, lpcr);
5016 kvm->arch.lpcr = lpcr;
5017
5018 /* Initialization for future HPT resizes */
5019 kvm->arch.resize_hpt = NULL;
5020
5021 /*
5022 * Work out how many sets the TLB has, for the use of
5023 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
5024 */
5025 if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5026 /*
5027 * P10 will flush all the congruence class with a single tlbiel
5028 */
5029 kvm->arch.tlb_sets = 1;
5030 } else if (radix_enabled())
5031 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */
5032 else if (cpu_has_feature(CPU_FTR_ARCH_300))
5033 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */
5034 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
5035 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */
5036 else
5037 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */
5038
5039 /*
5040 * Track that we now have a HV mode VM active. This blocks secondary
5041 * CPU threads from coming online.
5042 * On POWER9, we only need to do this if the "indep_threads_mode"
5043 * module parameter has been set to N.
5044 */
5045 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5046 if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) {
5047 pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n");
5048 kvm->arch.threads_indep = true;
5049 } else {
5050 kvm->arch.threads_indep = indep_threads_mode;
5051 }
5052 }
5053 if (!kvm->arch.threads_indep)
5054 kvm_hv_vm_activated();
5055
5056 /*
5057 * Initialize smt_mode depending on processor.
5058 * POWER8 and earlier have to use "strict" threading, where
5059 * all vCPUs in a vcore have to run on the same (sub)core,
5060 * whereas on POWER9 the threads can each run a different
5061 * guest.
5062 */
5063 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5064 kvm->arch.smt_mode = threads_per_subcore;
5065 else
5066 kvm->arch.smt_mode = 1;
5067 kvm->arch.emul_smt_mode = 1;
5068
5069 /*
5070 * Create a debugfs directory for the VM
5071 */
5072 snprintf(buf, sizeof(buf), "vm%d", current->pid);
5073 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
5074 kvmppc_mmu_debugfs_init(kvm);
5075 if (radix_enabled())
5076 kvmhv_radix_debugfs_init(kvm);
5077
5078 return 0;
5079}
5080
5081static void kvmppc_free_vcores(struct kvm *kvm)
5082{
5083 long int i;
5084
5085 for (i = 0; i < KVM_MAX_VCORES; ++i)
5086 kfree(kvm->arch.vcores[i]);
5087 kvm->arch.online_vcores = 0;
5088}
5089
5090static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
5091{
5092 debugfs_remove_recursive(kvm->arch.debugfs_dir);
5093
5094 if (!kvm->arch.threads_indep)
5095 kvm_hv_vm_deactivated();
5096
5097 kvmppc_free_vcores(kvm);
5098
5099
5100 if (kvm_is_radix(kvm))
5101 kvmppc_free_radix(kvm);
5102 else
5103 kvmppc_free_hpt(&kvm->arch.hpt);
5104
5105 /* Perform global invalidation and return lpid to the pool */
5106 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5107 if (nesting_enabled(kvm))
5108 kvmhv_release_all_nested(kvm);
5109 kvm->arch.process_table = 0;
5110 if (kvm->arch.secure_guest)
5111 uv_svm_terminate(kvm->arch.lpid);
5112 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
5113 }
5114
5115 kvmppc_free_lpid(kvm->arch.lpid);
5116
5117 kvmppc_free_pimap(kvm);
5118}
5119
5120/* We don't need to emulate any privileged instructions or dcbz */
5121static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu,
5122 unsigned int inst, int *advance)
5123{
5124 return EMULATE_FAIL;
5125}
5126
5127static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
5128 ulong spr_val)
5129{
5130 return EMULATE_FAIL;
5131}
5132
5133static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
5134 ulong *spr_val)
5135{
5136 return EMULATE_FAIL;
5137}
5138
5139static int kvmppc_core_check_processor_compat_hv(void)
5140{
5141 if (cpu_has_feature(CPU_FTR_HVMODE) &&
5142 cpu_has_feature(CPU_FTR_ARCH_206))
5143 return 0;
5144
5145 /* POWER9 in radix mode is capable of being a nested hypervisor. */
5146 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5147 return 0;
5148
5149 return -EIO;
5150}
5151
5152#ifdef CONFIG_KVM_XICS
5153
5154void kvmppc_free_pimap(struct kvm *kvm)
5155{
5156 kfree(kvm->arch.pimap);
5157}
5158
5159static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5160{
5161 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5162}
5163
5164static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5165{
5166 struct irq_desc *desc;
5167 struct kvmppc_irq_map *irq_map;
5168 struct kvmppc_passthru_irqmap *pimap;
5169 struct irq_chip *chip;
5170 int i, rc = 0;
5171
5172 if (!kvm_irq_bypass)
5173 return 1;
5174
5175 desc = irq_to_desc(host_irq);
5176 if (!desc)
5177 return -EIO;
5178
5179 mutex_lock(&kvm->lock);
5180
5181 pimap = kvm->arch.pimap;
5182 if (pimap == NULL) {
5183 /* First call, allocate structure to hold IRQ map */
5184 pimap = kvmppc_alloc_pimap();
5185 if (pimap == NULL) {
5186 mutex_unlock(&kvm->lock);
5187 return -ENOMEM;
5188 }
5189 kvm->arch.pimap = pimap;
5190 }
5191
5192 /*
5193 * For now, we only support interrupts for which the EOI operation
5194 * is an OPAL call followed by a write to XIRR, since that's
5195 * what our real-mode EOI code does, or a XIVE interrupt
5196 */
5197 chip = irq_data_get_irq_chip(&desc->irq_data);
5198 if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
5199 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5200 host_irq, guest_gsi);
5201 mutex_unlock(&kvm->lock);
5202 return -ENOENT;
5203 }
5204
5205 /*
5206 * See if we already have an entry for this guest IRQ number.
5207 * If it's mapped to a hardware IRQ number, that's an error,
5208 * otherwise re-use this entry.
5209 */
5210 for (i = 0; i < pimap->n_mapped; i++) {
5211 if (guest_gsi == pimap->mapped[i].v_hwirq) {
5212 if (pimap->mapped[i].r_hwirq) {
5213 mutex_unlock(&kvm->lock);
5214 return -EINVAL;
5215 }
5216 break;
5217 }
5218 }
5219
5220 if (i == KVMPPC_PIRQ_MAPPED) {
5221 mutex_unlock(&kvm->lock);
5222 return -EAGAIN; /* table is full */
5223 }
5224
5225 irq_map = &pimap->mapped[i];
5226
5227 irq_map->v_hwirq = guest_gsi;
5228 irq_map->desc = desc;
5229
5230 /*
5231 * Order the above two stores before the next to serialize with
5232 * the KVM real mode handler.
5233 */
5234 smp_wmb();
5235 irq_map->r_hwirq = desc->irq_data.hwirq;
5236
5237 if (i == pimap->n_mapped)
5238 pimap->n_mapped++;
5239
5240 if (xics_on_xive())
5241 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
5242 else
5243 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
5244 if (rc)
5245 irq_map->r_hwirq = 0;
5246
5247 mutex_unlock(&kvm->lock);
5248
5249 return 0;
5250}
5251
5252static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5253{
5254 struct irq_desc *desc;
5255 struct kvmppc_passthru_irqmap *pimap;
5256 int i, rc = 0;
5257
5258 if (!kvm_irq_bypass)
5259 return 0;
5260
5261 desc = irq_to_desc(host_irq);
5262 if (!desc)
5263 return -EIO;
5264
5265 mutex_lock(&kvm->lock);
5266 if (!kvm->arch.pimap)
5267 goto unlock;
5268
5269 pimap = kvm->arch.pimap;
5270
5271 for (i = 0; i < pimap->n_mapped; i++) {
5272 if (guest_gsi == pimap->mapped[i].v_hwirq)
5273 break;
5274 }
5275
5276 if (i == pimap->n_mapped) {
5277 mutex_unlock(&kvm->lock);
5278 return -ENODEV;
5279 }
5280
5281 if (xics_on_xive())
5282 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
5283 else
5284 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5285
5286 /* invalidate the entry (what do do on error from the above ?) */
5287 pimap->mapped[i].r_hwirq = 0;
5288
5289 /*
5290 * We don't free this structure even when the count goes to
5291 * zero. The structure is freed when we destroy the VM.
5292 */
5293 unlock:
5294 mutex_unlock(&kvm->lock);
5295 return rc;
5296}
5297
5298static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5299 struct irq_bypass_producer *prod)
5300{
5301 int ret = 0;
5302 struct kvm_kernel_irqfd *irqfd =
5303 container_of(cons, struct kvm_kernel_irqfd, consumer);
5304
5305 irqfd->producer = prod;
5306
5307 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5308 if (ret)
5309 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5310 prod->irq, irqfd->gsi, ret);
5311
5312 return ret;
5313}
5314
5315static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5316 struct irq_bypass_producer *prod)
5317{
5318 int ret;
5319 struct kvm_kernel_irqfd *irqfd =
5320 container_of(cons, struct kvm_kernel_irqfd, consumer);
5321
5322 irqfd->producer = NULL;
5323
5324 /*
5325 * When producer of consumer is unregistered, we change back to
5326 * default external interrupt handling mode - KVM real mode
5327 * will switch back to host.
5328 */
5329 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5330 if (ret)
5331 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5332 prod->irq, irqfd->gsi, ret);
5333}
5334#endif
5335
5336static long kvm_arch_vm_ioctl_hv(struct file *filp,
5337 unsigned int ioctl, unsigned long arg)
5338{
5339 struct kvm *kvm __maybe_unused = filp->private_data;
5340 void __user *argp = (void __user *)arg;
5341 long r;
5342
5343 switch (ioctl) {
5344
5345 case KVM_PPC_ALLOCATE_HTAB: {
5346 u32 htab_order;
5347
5348 /* If we're a nested hypervisor, we currently only support radix */
5349 if (kvmhv_on_pseries()) {
5350 r = -EOPNOTSUPP;
5351 break;
5352 }
5353
5354 r = -EFAULT;
5355 if (get_user(htab_order, (u32 __user *)argp))
5356 break;
5357 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5358 if (r)
5359 break;
5360 r = 0;
5361 break;
5362 }
5363
5364 case KVM_PPC_GET_HTAB_FD: {
5365 struct kvm_get_htab_fd ghf;
5366
5367 r = -EFAULT;
5368 if (copy_from_user(&ghf, argp, sizeof(ghf)))
5369 break;
5370 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5371 break;
5372 }
5373
5374 case KVM_PPC_RESIZE_HPT_PREPARE: {
5375 struct kvm_ppc_resize_hpt rhpt;
5376
5377 r = -EFAULT;
5378 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5379 break;
5380
5381 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5382 break;
5383 }
5384
5385 case KVM_PPC_RESIZE_HPT_COMMIT: {
5386 struct kvm_ppc_resize_hpt rhpt;
5387
5388 r = -EFAULT;
5389 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5390 break;
5391
5392 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5393 break;
5394 }
5395
5396 default:
5397 r = -ENOTTY;
5398 }
5399
5400 return r;
5401}
5402
5403/*
5404 * List of hcall numbers to enable by default.
5405 * For compatibility with old userspace, we enable by default
5406 * all hcalls that were implemented before the hcall-enabling
5407 * facility was added. Note this list should not include H_RTAS.
5408 */
5409static unsigned int default_hcall_list[] = {
5410 H_REMOVE,
5411 H_ENTER,
5412 H_READ,
5413 H_PROTECT,
5414 H_BULK_REMOVE,
5415#ifdef CONFIG_SPAPR_TCE_IOMMU
5416 H_GET_TCE,
5417 H_PUT_TCE,
5418#endif
5419 H_SET_DABR,
5420 H_SET_XDABR,
5421 H_CEDE,
5422 H_PROD,
5423 H_CONFER,
5424 H_REGISTER_VPA,
5425#ifdef CONFIG_KVM_XICS
5426 H_EOI,
5427 H_CPPR,
5428 H_IPI,
5429 H_IPOLL,
5430 H_XIRR,
5431 H_XIRR_X,
5432#endif
5433 0
5434};
5435
5436static void init_default_hcalls(void)
5437{
5438 int i;
5439 unsigned int hcall;
5440
5441 for (i = 0; default_hcall_list[i]; ++i) {
5442 hcall = default_hcall_list[i];
5443 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5444 __set_bit(hcall / 4, default_enabled_hcalls);
5445 }
5446}
5447
5448static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5449{
5450 unsigned long lpcr;
5451 int radix;
5452 int err;
5453
5454 /* If not on a POWER9, reject it */
5455 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5456 return -ENODEV;
5457
5458 /* If any unknown flags set, reject it */
5459 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5460 return -EINVAL;
5461
5462 /* GR (guest radix) bit in process_table field must match */
5463 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5464 if (!!(cfg->process_table & PATB_GR) != radix)
5465 return -EINVAL;
5466
5467 /* Process table size field must be reasonable, i.e. <= 24 */
5468 if ((cfg->process_table & PRTS_MASK) > 24)
5469 return -EINVAL;
5470
5471 /* We can change a guest to/from radix now, if the host is radix */
5472 if (radix && !radix_enabled())
5473 return -EINVAL;
5474
5475 /* If we're a nested hypervisor, we currently only support radix */
5476 if (kvmhv_on_pseries() && !radix)
5477 return -EINVAL;
5478
5479 mutex_lock(&kvm->arch.mmu_setup_lock);
5480 if (radix != kvm_is_radix(kvm)) {
5481 if (kvm->arch.mmu_ready) {
5482 kvm->arch.mmu_ready = 0;
5483 /* order mmu_ready vs. vcpus_running */
5484 smp_mb();
5485 if (atomic_read(&kvm->arch.vcpus_running)) {
5486 kvm->arch.mmu_ready = 1;
5487 err = -EBUSY;
5488 goto out_unlock;
5489 }
5490 }
5491 if (radix)
5492 err = kvmppc_switch_mmu_to_radix(kvm);
5493 else
5494 err = kvmppc_switch_mmu_to_hpt(kvm);
5495 if (err)
5496 goto out_unlock;
5497 }
5498
5499 kvm->arch.process_table = cfg->process_table;
5500 kvmppc_setup_partition_table(kvm);
5501
5502 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5503 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5504 err = 0;
5505
5506 out_unlock:
5507 mutex_unlock(&kvm->arch.mmu_setup_lock);
5508 return err;
5509}
5510
5511static int kvmhv_enable_nested(struct kvm *kvm)
5512{
5513 if (!nested)
5514 return -EPERM;
5515 if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix)
5516 return -ENODEV;
5517
5518 /* kvm == NULL means the caller is testing if the capability exists */
5519 if (kvm)
5520 kvm->arch.nested_enable = true;
5521 return 0;
5522}
5523
5524static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5525 int size)
5526{
5527 int rc = -EINVAL;
5528
5529 if (kvmhv_vcpu_is_radix(vcpu)) {
5530 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5531
5532 if (rc > 0)
5533 rc = -EINVAL;
5534 }
5535
5536 /* For now quadrants are the only way to access nested guest memory */
5537 if (rc && vcpu->arch.nested)
5538 rc = -EAGAIN;
5539
5540 return rc;
5541}
5542
5543static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5544 int size)
5545{
5546 int rc = -EINVAL;
5547
5548 if (kvmhv_vcpu_is_radix(vcpu)) {
5549 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
5550
5551 if (rc > 0)
5552 rc = -EINVAL;
5553 }
5554
5555 /* For now quadrants are the only way to access nested guest memory */
5556 if (rc && vcpu->arch.nested)
5557 rc = -EAGAIN;
5558
5559 return rc;
5560}
5561
5562static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
5563{
5564 unpin_vpa(kvm, vpa);
5565 vpa->gpa = 0;
5566 vpa->pinned_addr = NULL;
5567 vpa->dirty = false;
5568 vpa->update_pending = 0;
5569}
5570
5571/*
5572 * Enable a guest to become a secure VM, or test whether
5573 * that could be enabled.
5574 * Called when the KVM_CAP_PPC_SECURE_GUEST capability is
5575 * tested (kvm == NULL) or enabled (kvm != NULL).
5576 */
5577static int kvmhv_enable_svm(struct kvm *kvm)
5578{
5579 if (!kvmppc_uvmem_available())
5580 return -EINVAL;
5581 if (kvm)
5582 kvm->arch.svm_enabled = 1;
5583 return 0;
5584}
5585
5586/*
5587 * IOCTL handler to turn off secure mode of guest
5588 *
5589 * - Release all device pages
5590 * - Issue ucall to terminate the guest on the UV side
5591 * - Unpin the VPA pages.
5592 * - Reinit the partition scoped page tables
5593 */
5594static int kvmhv_svm_off(struct kvm *kvm)
5595{
5596 struct kvm_vcpu *vcpu;
5597 int mmu_was_ready;
5598 int srcu_idx;
5599 int ret = 0;
5600 int i;
5601
5602 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
5603 return ret;
5604
5605 mutex_lock(&kvm->arch.mmu_setup_lock);
5606 mmu_was_ready = kvm->arch.mmu_ready;
5607 if (kvm->arch.mmu_ready) {
5608 kvm->arch.mmu_ready = 0;
5609 /* order mmu_ready vs. vcpus_running */
5610 smp_mb();
5611 if (atomic_read(&kvm->arch.vcpus_running)) {
5612 kvm->arch.mmu_ready = 1;
5613 ret = -EBUSY;
5614 goto out;
5615 }
5616 }
5617
5618 srcu_idx = srcu_read_lock(&kvm->srcu);
5619 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5620 struct kvm_memory_slot *memslot;
5621 struct kvm_memslots *slots = __kvm_memslots(kvm, i);
5622
5623 if (!slots)
5624 continue;
5625
5626 kvm_for_each_memslot(memslot, slots) {
5627 kvmppc_uvmem_drop_pages(memslot, kvm, true);
5628 uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
5629 }
5630 }
5631 srcu_read_unlock(&kvm->srcu, srcu_idx);
5632
5633 ret = uv_svm_terminate(kvm->arch.lpid);
5634 if (ret != U_SUCCESS) {
5635 ret = -EINVAL;
5636 goto out;
5637 }
5638
5639 /*
5640 * When secure guest is reset, all the guest pages are sent
5641 * to UV via UV_PAGE_IN before the non-boot vcpus get a
5642 * chance to run and unpin their VPA pages. Unpinning of all
5643 * VPA pages is done here explicitly so that VPA pages
5644 * can be migrated to the secure side.
5645 *
5646 * This is required to for the secure SMP guest to reboot
5647 * correctly.
5648 */
5649 kvm_for_each_vcpu(i, vcpu, kvm) {
5650 spin_lock(&vcpu->arch.vpa_update_lock);
5651 unpin_vpa_reset(kvm, &vcpu->arch.dtl);
5652 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
5653 unpin_vpa_reset(kvm, &vcpu->arch.vpa);
5654 spin_unlock(&vcpu->arch.vpa_update_lock);
5655 }
5656
5657 kvmppc_setup_partition_table(kvm);
5658 kvm->arch.secure_guest = 0;
5659 kvm->arch.mmu_ready = mmu_was_ready;
5660out:
5661 mutex_unlock(&kvm->arch.mmu_setup_lock);
5662 return ret;
5663}
5664
5665static int kvmhv_enable_dawr1(struct kvm *kvm)
5666{
5667 if (!cpu_has_feature(CPU_FTR_DAWR1))
5668 return -ENODEV;
5669
5670 /* kvm == NULL means the caller is testing if the capability exists */
5671 if (kvm)
5672 kvm->arch.dawr1_enabled = true;
5673 return 0;
5674}
5675
5676static bool kvmppc_hash_v3_possible(void)
5677{
5678 if (radix_enabled() && no_mixing_hpt_and_radix)
5679 return false;
5680
5681 return cpu_has_feature(CPU_FTR_ARCH_300) &&
5682 cpu_has_feature(CPU_FTR_HVMODE);
5683}
5684
5685static struct kvmppc_ops kvm_ops_hv = {
5686 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
5687 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
5688 .get_one_reg = kvmppc_get_one_reg_hv,
5689 .set_one_reg = kvmppc_set_one_reg_hv,
5690 .vcpu_load = kvmppc_core_vcpu_load_hv,
5691 .vcpu_put = kvmppc_core_vcpu_put_hv,
5692 .inject_interrupt = kvmppc_inject_interrupt_hv,
5693 .set_msr = kvmppc_set_msr_hv,
5694 .vcpu_run = kvmppc_vcpu_run_hv,
5695 .vcpu_create = kvmppc_core_vcpu_create_hv,
5696 .vcpu_free = kvmppc_core_vcpu_free_hv,
5697 .check_requests = kvmppc_core_check_requests_hv,
5698 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
5699 .flush_memslot = kvmppc_core_flush_memslot_hv,
5700 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
5701 .commit_memory_region = kvmppc_core_commit_memory_region_hv,
5702 .unmap_gfn_range = kvm_unmap_gfn_range_hv,
5703 .age_gfn = kvm_age_gfn_hv,
5704 .test_age_gfn = kvm_test_age_gfn_hv,
5705 .set_spte_gfn = kvm_set_spte_gfn_hv,
5706 .free_memslot = kvmppc_core_free_memslot_hv,
5707 .init_vm = kvmppc_core_init_vm_hv,
5708 .destroy_vm = kvmppc_core_destroy_vm_hv,
5709 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
5710 .emulate_op = kvmppc_core_emulate_op_hv,
5711 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
5712 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
5713 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
5714 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
5715 .hcall_implemented = kvmppc_hcall_impl_hv,
5716#ifdef CONFIG_KVM_XICS
5717 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
5718 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
5719#endif
5720 .configure_mmu = kvmhv_configure_mmu,
5721 .get_rmmu_info = kvmhv_get_rmmu_info,
5722 .set_smt_mode = kvmhv_set_smt_mode,
5723 .enable_nested = kvmhv_enable_nested,
5724 .load_from_eaddr = kvmhv_load_from_eaddr,
5725 .store_to_eaddr = kvmhv_store_to_eaddr,
5726 .enable_svm = kvmhv_enable_svm,
5727 .svm_off = kvmhv_svm_off,
5728 .enable_dawr1 = kvmhv_enable_dawr1,
5729 .hash_v3_possible = kvmppc_hash_v3_possible,
5730};
5731
5732static int kvm_init_subcore_bitmap(void)
5733{
5734 int i, j;
5735 int nr_cores = cpu_nr_cores();
5736 struct sibling_subcore_state *sibling_subcore_state;
5737
5738 for (i = 0; i < nr_cores; i++) {
5739 int first_cpu = i * threads_per_core;
5740 int node = cpu_to_node(first_cpu);
5741
5742 /* Ignore if it is already allocated. */
5743 if (paca_ptrs[first_cpu]->sibling_subcore_state)
5744 continue;
5745
5746 sibling_subcore_state =
5747 kzalloc_node(sizeof(struct sibling_subcore_state),
5748 GFP_KERNEL, node);
5749 if (!sibling_subcore_state)
5750 return -ENOMEM;
5751
5752
5753 for (j = 0; j < threads_per_core; j++) {
5754 int cpu = first_cpu + j;
5755
5756 paca_ptrs[cpu]->sibling_subcore_state =
5757 sibling_subcore_state;
5758 }
5759 }
5760 return 0;
5761}
5762
5763static int kvmppc_radix_possible(void)
5764{
5765 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
5766}
5767
5768static int kvmppc_book3s_init_hv(void)
5769{
5770 int r;
5771
5772 if (!tlbie_capable) {
5773 pr_err("KVM-HV: Host does not support TLBIE\n");
5774 return -ENODEV;
5775 }
5776
5777 /*
5778 * FIXME!! Do we need to check on all cpus ?
5779 */
5780 r = kvmppc_core_check_processor_compat_hv();
5781 if (r < 0)
5782 return -ENODEV;
5783
5784 r = kvmhv_nested_init();
5785 if (r)
5786 return r;
5787
5788 r = kvm_init_subcore_bitmap();
5789 if (r)
5790 return r;
5791
5792 /*
5793 * We need a way of accessing the XICS interrupt controller,
5794 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
5795 * indirectly, via OPAL.
5796 */
5797#ifdef CONFIG_SMP
5798 if (!xics_on_xive() && !kvmhv_on_pseries() &&
5799 !local_paca->kvm_hstate.xics_phys) {
5800 struct device_node *np;
5801
5802 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
5803 if (!np) {
5804 pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
5805 return -ENODEV;
5806 }
5807 /* presence of intc confirmed - node can be dropped again */
5808 of_node_put(np);
5809 }
5810#endif
5811
5812 kvm_ops_hv.owner = THIS_MODULE;
5813 kvmppc_hv_ops = &kvm_ops_hv;
5814
5815 init_default_hcalls();
5816
5817 init_vcore_lists();
5818
5819 r = kvmppc_mmu_hv_init();
5820 if (r)
5821 return r;
5822
5823 if (kvmppc_radix_possible())
5824 r = kvmppc_radix_init();
5825
5826 /*
5827 * POWER9 chips before version 2.02 can't have some threads in
5828 * HPT mode and some in radix mode on the same core.
5829 */
5830 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5831 unsigned int pvr = mfspr(SPRN_PVR);
5832 if ((pvr >> 16) == PVR_POWER9 &&
5833 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
5834 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
5835 no_mixing_hpt_and_radix = true;
5836 }
5837
5838 r = kvmppc_uvmem_init();
5839 if (r < 0)
5840 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
5841
5842 return r;
5843}
5844
5845static void kvmppc_book3s_exit_hv(void)
5846{
5847 kvmppc_uvmem_free();
5848 kvmppc_free_host_rm_ops();
5849 if (kvmppc_radix_possible())
5850 kvmppc_radix_exit();
5851 kvmppc_hv_ops = NULL;
5852 kvmhv_nested_exit();
5853}
5854
5855module_init(kvmppc_book3s_init_hv);
5856module_exit(kvmppc_book3s_exit_hv);
5857MODULE_LICENSE("GPL");
5858MODULE_ALIAS_MISCDEV(KVM_MINOR);
5859MODULE_ALIAS("devname:kvm");