powerpc/64s: Set reserved PCR bits
[linux-2.6-block.git] / arch / powerpc / kvm / book3s_hv.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5 *
6 * Authors:
7 * Paul Mackerras <paulus@au1.ibm.com>
8 * Alexander Graf <agraf@suse.de>
9 * Kevin Wolf <mail@kevin-wolf.de>
10 *
11 * Description: KVM functions specific to running on Book 3S
12 * processors in hypervisor mode (specifically POWER7 and later).
13 *
14 * This file is derived from arch/powerpc/kvm/book3s.c,
15 * by Alexander Graf <agraf@suse.de>.
16 */
17
18#include <linux/kvm_host.h>
19#include <linux/kernel.h>
20#include <linux/err.h>
21#include <linux/slab.h>
22#include <linux/preempt.h>
23#include <linux/sched/signal.h>
24#include <linux/sched/stat.h>
25#include <linux/delay.h>
26#include <linux/export.h>
27#include <linux/fs.h>
28#include <linux/anon_inodes.h>
29#include <linux/cpu.h>
30#include <linux/cpumask.h>
31#include <linux/spinlock.h>
32#include <linux/page-flags.h>
33#include <linux/srcu.h>
34#include <linux/miscdevice.h>
35#include <linux/debugfs.h>
36#include <linux/gfp.h>
37#include <linux/vmalloc.h>
38#include <linux/highmem.h>
39#include <linux/hugetlb.h>
40#include <linux/kvm_irqfd.h>
41#include <linux/irqbypass.h>
42#include <linux/module.h>
43#include <linux/compiler.h>
44#include <linux/of.h>
45
46#include <asm/ftrace.h>
47#include <asm/reg.h>
48#include <asm/ppc-opcode.h>
49#include <asm/asm-prototypes.h>
50#include <asm/archrandom.h>
51#include <asm/debug.h>
52#include <asm/disassemble.h>
53#include <asm/cputable.h>
54#include <asm/cacheflush.h>
55#include <linux/uaccess.h>
56#include <asm/io.h>
57#include <asm/kvm_ppc.h>
58#include <asm/kvm_book3s.h>
59#include <asm/mmu_context.h>
60#include <asm/lppaca.h>
61#include <asm/processor.h>
62#include <asm/cputhreads.h>
63#include <asm/page.h>
64#include <asm/hvcall.h>
65#include <asm/switch_to.h>
66#include <asm/smp.h>
67#include <asm/dbell.h>
68#include <asm/hmi.h>
69#include <asm/pnv-pci.h>
70#include <asm/mmu.h>
71#include <asm/opal.h>
72#include <asm/xics.h>
73#include <asm/xive.h>
74#include <asm/hw_breakpoint.h>
75
76#include "book3s.h"
77
78#define CREATE_TRACE_POINTS
79#include "trace_hv.h"
80
81/* #define EXIT_DEBUG */
82/* #define EXIT_DEBUG_SIMPLE */
83/* #define EXIT_DEBUG_INT */
84
85/* Used to indicate that a guest page fault needs to be handled */
86#define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
87/* Used to indicate that a guest passthrough interrupt needs to be handled */
88#define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2)
89
90/* Used as a "null" value for timebase values */
91#define TB_NIL (~(u64)0)
92
93static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
94
95static int dynamic_mt_modes = 6;
96module_param(dynamic_mt_modes, int, 0644);
97MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
98static int target_smt_mode;
99module_param(target_smt_mode, int, 0644);
100MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
101
102static bool indep_threads_mode = true;
103module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
104MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
105
106static bool one_vm_per_core;
107module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
108MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)");
109
110#ifdef CONFIG_KVM_XICS
111static struct kernel_param_ops module_param_ops = {
112 .set = param_set_int,
113 .get = param_get_int,
114};
115
116module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
117MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
118
119module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
120MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
121#endif
122
123/* If set, guests are allowed to create and control nested guests */
124static bool nested = true;
125module_param(nested, bool, S_IRUGO | S_IWUSR);
126MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
127
128static inline bool nesting_enabled(struct kvm *kvm)
129{
130 return kvm->arch.nested_enable && kvm_is_radix(kvm);
131}
132
133/* If set, the threads on each CPU core have to be in the same MMU mode */
134static bool no_mixing_hpt_and_radix;
135
136static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
137static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
138
139/*
140 * RWMR values for POWER8. These control the rate at which PURR
141 * and SPURR count and should be set according to the number of
142 * online threads in the vcore being run.
143 */
144#define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL
145#define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL
146#define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL
147#define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL
148#define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL
149#define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL
150#define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL
151#define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL
152
153static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
154 RWMR_RPA_P8_1THREAD,
155 RWMR_RPA_P8_1THREAD,
156 RWMR_RPA_P8_2THREAD,
157 RWMR_RPA_P8_3THREAD,
158 RWMR_RPA_P8_4THREAD,
159 RWMR_RPA_P8_5THREAD,
160 RWMR_RPA_P8_6THREAD,
161 RWMR_RPA_P8_7THREAD,
162 RWMR_RPA_P8_8THREAD,
163};
164
165static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
166 int *ip)
167{
168 int i = *ip;
169 struct kvm_vcpu *vcpu;
170
171 while (++i < MAX_SMT_THREADS) {
172 vcpu = READ_ONCE(vc->runnable_threads[i]);
173 if (vcpu) {
174 *ip = i;
175 return vcpu;
176 }
177 }
178 return NULL;
179}
180
181/* Used to traverse the list of runnable threads for a given vcore */
182#define for_each_runnable_thread(i, vcpu, vc) \
183 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
184
185static bool kvmppc_ipi_thread(int cpu)
186{
187 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
188
189 /* If we're a nested hypervisor, fall back to ordinary IPIs for now */
190 if (kvmhv_on_pseries())
191 return false;
192
193 /* On POWER9 we can use msgsnd to IPI any cpu */
194 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
195 msg |= get_hard_smp_processor_id(cpu);
196 smp_mb();
197 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
198 return true;
199 }
200
201 /* On POWER8 for IPIs to threads in the same core, use msgsnd */
202 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
203 preempt_disable();
204 if (cpu_first_thread_sibling(cpu) ==
205 cpu_first_thread_sibling(smp_processor_id())) {
206 msg |= cpu_thread_in_core(cpu);
207 smp_mb();
208 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
209 preempt_enable();
210 return true;
211 }
212 preempt_enable();
213 }
214
215#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
216 if (cpu >= 0 && cpu < nr_cpu_ids) {
217 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
218 xics_wake_cpu(cpu);
219 return true;
220 }
221 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
222 return true;
223 }
224#endif
225
226 return false;
227}
228
229static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
230{
231 int cpu;
232 struct swait_queue_head *wqp;
233
234 wqp = kvm_arch_vcpu_wq(vcpu);
235 if (swq_has_sleeper(wqp)) {
236 swake_up_one(wqp);
237 ++vcpu->stat.halt_wakeup;
238 }
239
240 cpu = READ_ONCE(vcpu->arch.thread_cpu);
241 if (cpu >= 0 && kvmppc_ipi_thread(cpu))
242 return;
243
244 /* CPU points to the first thread of the core */
245 cpu = vcpu->cpu;
246 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
247 smp_send_reschedule(cpu);
248}
249
250/*
251 * We use the vcpu_load/put functions to measure stolen time.
252 * Stolen time is counted as time when either the vcpu is able to
253 * run as part of a virtual core, but the task running the vcore
254 * is preempted or sleeping, or when the vcpu needs something done
255 * in the kernel by the task running the vcpu, but that task is
256 * preempted or sleeping. Those two things have to be counted
257 * separately, since one of the vcpu tasks will take on the job
258 * of running the core, and the other vcpu tasks in the vcore will
259 * sleep waiting for it to do that, but that sleep shouldn't count
260 * as stolen time.
261 *
262 * Hence we accumulate stolen time when the vcpu can run as part of
263 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
264 * needs its task to do other things in the kernel (for example,
265 * service a page fault) in busy_stolen. We don't accumulate
266 * stolen time for a vcore when it is inactive, or for a vcpu
267 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
268 * a misnomer; it means that the vcpu task is not executing in
269 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
270 * the kernel. We don't have any way of dividing up that time
271 * between time that the vcpu is genuinely stopped, time that
272 * the task is actively working on behalf of the vcpu, and time
273 * that the task is preempted, so we don't count any of it as
274 * stolen.
275 *
276 * Updates to busy_stolen are protected by arch.tbacct_lock;
277 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
278 * lock. The stolen times are measured in units of timebase ticks.
279 * (Note that the != TB_NIL checks below are purely defensive;
280 * they should never fail.)
281 */
282
283static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
284{
285 unsigned long flags;
286
287 spin_lock_irqsave(&vc->stoltb_lock, flags);
288 vc->preempt_tb = mftb();
289 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
290}
291
292static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
293{
294 unsigned long flags;
295
296 spin_lock_irqsave(&vc->stoltb_lock, flags);
297 if (vc->preempt_tb != TB_NIL) {
298 vc->stolen_tb += mftb() - vc->preempt_tb;
299 vc->preempt_tb = TB_NIL;
300 }
301 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
302}
303
304static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
305{
306 struct kvmppc_vcore *vc = vcpu->arch.vcore;
307 unsigned long flags;
308
309 /*
310 * We can test vc->runner without taking the vcore lock,
311 * because only this task ever sets vc->runner to this
312 * vcpu, and once it is set to this vcpu, only this task
313 * ever sets it to NULL.
314 */
315 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
316 kvmppc_core_end_stolen(vc);
317
318 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
319 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
320 vcpu->arch.busy_preempt != TB_NIL) {
321 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
322 vcpu->arch.busy_preempt = TB_NIL;
323 }
324 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
325}
326
327static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
328{
329 struct kvmppc_vcore *vc = vcpu->arch.vcore;
330 unsigned long flags;
331
332 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
333 kvmppc_core_start_stolen(vc);
334
335 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
336 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
337 vcpu->arch.busy_preempt = mftb();
338 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
339}
340
341static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
342{
343 /*
344 * Check for illegal transactional state bit combination
345 * and if we find it, force the TS field to a safe state.
346 */
347 if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
348 msr &= ~MSR_TS_MASK;
349 vcpu->arch.shregs.msr = msr;
350 kvmppc_end_cede(vcpu);
351}
352
353static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
354{
355 vcpu->arch.pvr = pvr;
356}
357
358/* Dummy value used in computing PCR value below */
359#define PCR_ARCH_300 (PCR_ARCH_207 << 1)
360
361static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
362{
363 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
364 struct kvmppc_vcore *vc = vcpu->arch.vcore;
365
366 /* We can (emulate) our own architecture version and anything older */
367 if (cpu_has_feature(CPU_FTR_ARCH_300))
368 host_pcr_bit = PCR_ARCH_300;
369 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
370 host_pcr_bit = PCR_ARCH_207;
371 else if (cpu_has_feature(CPU_FTR_ARCH_206))
372 host_pcr_bit = PCR_ARCH_206;
373 else
374 host_pcr_bit = PCR_ARCH_205;
375
376 /* Determine lowest PCR bit needed to run guest in given PVR level */
377 guest_pcr_bit = host_pcr_bit;
378 if (arch_compat) {
379 switch (arch_compat) {
380 case PVR_ARCH_205:
381 guest_pcr_bit = PCR_ARCH_205;
382 break;
383 case PVR_ARCH_206:
384 case PVR_ARCH_206p:
385 guest_pcr_bit = PCR_ARCH_206;
386 break;
387 case PVR_ARCH_207:
388 guest_pcr_bit = PCR_ARCH_207;
389 break;
390 case PVR_ARCH_300:
391 guest_pcr_bit = PCR_ARCH_300;
392 break;
393 default:
394 return -EINVAL;
395 }
396 }
397
398 /* Check requested PCR bits don't exceed our capabilities */
399 if (guest_pcr_bit > host_pcr_bit)
400 return -EINVAL;
401
402 spin_lock(&vc->lock);
403 vc->arch_compat = arch_compat;
404 /*
405 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
406 * Also set all reserved PCR bits
407 */
408 vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
409 spin_unlock(&vc->lock);
410
411 return 0;
412}
413
414static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
415{
416 int r;
417
418 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
419 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
420 vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
421 for (r = 0; r < 16; ++r)
422 pr_err("r%2d = %.16lx r%d = %.16lx\n",
423 r, kvmppc_get_gpr(vcpu, r),
424 r+16, kvmppc_get_gpr(vcpu, r+16));
425 pr_err("ctr = %.16lx lr = %.16lx\n",
426 vcpu->arch.regs.ctr, vcpu->arch.regs.link);
427 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
428 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
429 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
430 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
431 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
432 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
433 pr_err("cr = %.8lx xer = %.16lx dsisr = %.8x\n",
434 vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
435 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
436 pr_err("fault dar = %.16lx dsisr = %.8x\n",
437 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
438 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
439 for (r = 0; r < vcpu->arch.slb_max; ++r)
440 pr_err(" ESID = %.16llx VSID = %.16llx\n",
441 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
442 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
443 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
444 vcpu->arch.last_inst);
445}
446
447static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
448{
449 return kvm_get_vcpu_by_id(kvm, id);
450}
451
452static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
453{
454 vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
455 vpa->yield_count = cpu_to_be32(1);
456}
457
458static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
459 unsigned long addr, unsigned long len)
460{
461 /* check address is cacheline aligned */
462 if (addr & (L1_CACHE_BYTES - 1))
463 return -EINVAL;
464 spin_lock(&vcpu->arch.vpa_update_lock);
465 if (v->next_gpa != addr || v->len != len) {
466 v->next_gpa = addr;
467 v->len = addr ? len : 0;
468 v->update_pending = 1;
469 }
470 spin_unlock(&vcpu->arch.vpa_update_lock);
471 return 0;
472}
473
474/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
475struct reg_vpa {
476 u32 dummy;
477 union {
478 __be16 hword;
479 __be32 word;
480 } length;
481};
482
483static int vpa_is_registered(struct kvmppc_vpa *vpap)
484{
485 if (vpap->update_pending)
486 return vpap->next_gpa != 0;
487 return vpap->pinned_addr != NULL;
488}
489
490static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
491 unsigned long flags,
492 unsigned long vcpuid, unsigned long vpa)
493{
494 struct kvm *kvm = vcpu->kvm;
495 unsigned long len, nb;
496 void *va;
497 struct kvm_vcpu *tvcpu;
498 int err;
499 int subfunc;
500 struct kvmppc_vpa *vpap;
501
502 tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
503 if (!tvcpu)
504 return H_PARAMETER;
505
506 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
507 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
508 subfunc == H_VPA_REG_SLB) {
509 /* Registering new area - address must be cache-line aligned */
510 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
511 return H_PARAMETER;
512
513 /* convert logical addr to kernel addr and read length */
514 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
515 if (va == NULL)
516 return H_PARAMETER;
517 if (subfunc == H_VPA_REG_VPA)
518 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
519 else
520 len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
521 kvmppc_unpin_guest_page(kvm, va, vpa, false);
522
523 /* Check length */
524 if (len > nb || len < sizeof(struct reg_vpa))
525 return H_PARAMETER;
526 } else {
527 vpa = 0;
528 len = 0;
529 }
530
531 err = H_PARAMETER;
532 vpap = NULL;
533 spin_lock(&tvcpu->arch.vpa_update_lock);
534
535 switch (subfunc) {
536 case H_VPA_REG_VPA: /* register VPA */
537 /*
538 * The size of our lppaca is 1kB because of the way we align
539 * it for the guest to avoid crossing a 4kB boundary. We only
540 * use 640 bytes of the structure though, so we should accept
541 * clients that set a size of 640.
542 */
543 BUILD_BUG_ON(sizeof(struct lppaca) != 640);
544 if (len < sizeof(struct lppaca))
545 break;
546 vpap = &tvcpu->arch.vpa;
547 err = 0;
548 break;
549
550 case H_VPA_REG_DTL: /* register DTL */
551 if (len < sizeof(struct dtl_entry))
552 break;
553 len -= len % sizeof(struct dtl_entry);
554
555 /* Check that they have previously registered a VPA */
556 err = H_RESOURCE;
557 if (!vpa_is_registered(&tvcpu->arch.vpa))
558 break;
559
560 vpap = &tvcpu->arch.dtl;
561 err = 0;
562 break;
563
564 case H_VPA_REG_SLB: /* register SLB shadow buffer */
565 /* Check that they have previously registered a VPA */
566 err = H_RESOURCE;
567 if (!vpa_is_registered(&tvcpu->arch.vpa))
568 break;
569
570 vpap = &tvcpu->arch.slb_shadow;
571 err = 0;
572 break;
573
574 case H_VPA_DEREG_VPA: /* deregister VPA */
575 /* Check they don't still have a DTL or SLB buf registered */
576 err = H_RESOURCE;
577 if (vpa_is_registered(&tvcpu->arch.dtl) ||
578 vpa_is_registered(&tvcpu->arch.slb_shadow))
579 break;
580
581 vpap = &tvcpu->arch.vpa;
582 err = 0;
583 break;
584
585 case H_VPA_DEREG_DTL: /* deregister DTL */
586 vpap = &tvcpu->arch.dtl;
587 err = 0;
588 break;
589
590 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
591 vpap = &tvcpu->arch.slb_shadow;
592 err = 0;
593 break;
594 }
595
596 if (vpap) {
597 vpap->next_gpa = vpa;
598 vpap->len = len;
599 vpap->update_pending = 1;
600 }
601
602 spin_unlock(&tvcpu->arch.vpa_update_lock);
603
604 return err;
605}
606
607static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
608{
609 struct kvm *kvm = vcpu->kvm;
610 void *va;
611 unsigned long nb;
612 unsigned long gpa;
613
614 /*
615 * We need to pin the page pointed to by vpap->next_gpa,
616 * but we can't call kvmppc_pin_guest_page under the lock
617 * as it does get_user_pages() and down_read(). So we
618 * have to drop the lock, pin the page, then get the lock
619 * again and check that a new area didn't get registered
620 * in the meantime.
621 */
622 for (;;) {
623 gpa = vpap->next_gpa;
624 spin_unlock(&vcpu->arch.vpa_update_lock);
625 va = NULL;
626 nb = 0;
627 if (gpa)
628 va = kvmppc_pin_guest_page(kvm, gpa, &nb);
629 spin_lock(&vcpu->arch.vpa_update_lock);
630 if (gpa == vpap->next_gpa)
631 break;
632 /* sigh... unpin that one and try again */
633 if (va)
634 kvmppc_unpin_guest_page(kvm, va, gpa, false);
635 }
636
637 vpap->update_pending = 0;
638 if (va && nb < vpap->len) {
639 /*
640 * If it's now too short, it must be that userspace
641 * has changed the mappings underlying guest memory,
642 * so unregister the region.
643 */
644 kvmppc_unpin_guest_page(kvm, va, gpa, false);
645 va = NULL;
646 }
647 if (vpap->pinned_addr)
648 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
649 vpap->dirty);
650 vpap->gpa = gpa;
651 vpap->pinned_addr = va;
652 vpap->dirty = false;
653 if (va)
654 vpap->pinned_end = va + vpap->len;
655}
656
657static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
658{
659 if (!(vcpu->arch.vpa.update_pending ||
660 vcpu->arch.slb_shadow.update_pending ||
661 vcpu->arch.dtl.update_pending))
662 return;
663
664 spin_lock(&vcpu->arch.vpa_update_lock);
665 if (vcpu->arch.vpa.update_pending) {
666 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
667 if (vcpu->arch.vpa.pinned_addr)
668 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
669 }
670 if (vcpu->arch.dtl.update_pending) {
671 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
672 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
673 vcpu->arch.dtl_index = 0;
674 }
675 if (vcpu->arch.slb_shadow.update_pending)
676 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
677 spin_unlock(&vcpu->arch.vpa_update_lock);
678}
679
680/*
681 * Return the accumulated stolen time for the vcore up until `now'.
682 * The caller should hold the vcore lock.
683 */
684static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
685{
686 u64 p;
687 unsigned long flags;
688
689 spin_lock_irqsave(&vc->stoltb_lock, flags);
690 p = vc->stolen_tb;
691 if (vc->vcore_state != VCORE_INACTIVE &&
692 vc->preempt_tb != TB_NIL)
693 p += now - vc->preempt_tb;
694 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
695 return p;
696}
697
698static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
699 struct kvmppc_vcore *vc)
700{
701 struct dtl_entry *dt;
702 struct lppaca *vpa;
703 unsigned long stolen;
704 unsigned long core_stolen;
705 u64 now;
706 unsigned long flags;
707
708 dt = vcpu->arch.dtl_ptr;
709 vpa = vcpu->arch.vpa.pinned_addr;
710 now = mftb();
711 core_stolen = vcore_stolen_time(vc, now);
712 stolen = core_stolen - vcpu->arch.stolen_logged;
713 vcpu->arch.stolen_logged = core_stolen;
714 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
715 stolen += vcpu->arch.busy_stolen;
716 vcpu->arch.busy_stolen = 0;
717 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
718 if (!dt || !vpa)
719 return;
720 memset(dt, 0, sizeof(struct dtl_entry));
721 dt->dispatch_reason = 7;
722 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
723 dt->timebase = cpu_to_be64(now + vc->tb_offset);
724 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
725 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
726 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
727 ++dt;
728 if (dt == vcpu->arch.dtl.pinned_end)
729 dt = vcpu->arch.dtl.pinned_addr;
730 vcpu->arch.dtl_ptr = dt;
731 /* order writing *dt vs. writing vpa->dtl_idx */
732 smp_wmb();
733 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
734 vcpu->arch.dtl.dirty = true;
735}
736
737/* See if there is a doorbell interrupt pending for a vcpu */
738static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
739{
740 int thr;
741 struct kvmppc_vcore *vc;
742
743 if (vcpu->arch.doorbell_request)
744 return true;
745 /*
746 * Ensure that the read of vcore->dpdes comes after the read
747 * of vcpu->doorbell_request. This barrier matches the
748 * smp_wmb() in kvmppc_guest_entry_inject().
749 */
750 smp_rmb();
751 vc = vcpu->arch.vcore;
752 thr = vcpu->vcpu_id - vc->first_vcpuid;
753 return !!(vc->dpdes & (1 << thr));
754}
755
756static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
757{
758 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
759 return true;
760 if ((!vcpu->arch.vcore->arch_compat) &&
761 cpu_has_feature(CPU_FTR_ARCH_207S))
762 return true;
763 return false;
764}
765
766static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
767 unsigned long resource, unsigned long value1,
768 unsigned long value2)
769{
770 switch (resource) {
771 case H_SET_MODE_RESOURCE_SET_CIABR:
772 if (!kvmppc_power8_compatible(vcpu))
773 return H_P2;
774 if (value2)
775 return H_P4;
776 if (mflags)
777 return H_UNSUPPORTED_FLAG_START;
778 /* Guests can't breakpoint the hypervisor */
779 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
780 return H_P3;
781 vcpu->arch.ciabr = value1;
782 return H_SUCCESS;
783 case H_SET_MODE_RESOURCE_SET_DAWR:
784 if (!kvmppc_power8_compatible(vcpu))
785 return H_P2;
786 if (!ppc_breakpoint_available())
787 return H_P2;
788 if (mflags)
789 return H_UNSUPPORTED_FLAG_START;
790 if (value2 & DABRX_HYP)
791 return H_P4;
792 vcpu->arch.dawr = value1;
793 vcpu->arch.dawrx = value2;
794 return H_SUCCESS;
795 default:
796 return H_TOO_HARD;
797 }
798}
799
800/* Copy guest memory in place - must reside within a single memslot */
801static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
802 unsigned long len)
803{
804 struct kvm_memory_slot *to_memslot = NULL;
805 struct kvm_memory_slot *from_memslot = NULL;
806 unsigned long to_addr, from_addr;
807 int r;
808
809 /* Get HPA for from address */
810 from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
811 if (!from_memslot)
812 return -EFAULT;
813 if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
814 << PAGE_SHIFT))
815 return -EINVAL;
816 from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
817 if (kvm_is_error_hva(from_addr))
818 return -EFAULT;
819 from_addr |= (from & (PAGE_SIZE - 1));
820
821 /* Get HPA for to address */
822 to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
823 if (!to_memslot)
824 return -EFAULT;
825 if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
826 << PAGE_SHIFT))
827 return -EINVAL;
828 to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
829 if (kvm_is_error_hva(to_addr))
830 return -EFAULT;
831 to_addr |= (to & (PAGE_SIZE - 1));
832
833 /* Perform copy */
834 r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
835 len);
836 if (r)
837 return -EFAULT;
838 mark_page_dirty(kvm, to >> PAGE_SHIFT);
839 return 0;
840}
841
842static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
843 unsigned long dest, unsigned long src)
844{
845 u64 pg_sz = SZ_4K; /* 4K page size */
846 u64 pg_mask = SZ_4K - 1;
847 int ret;
848
849 /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
850 if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
851 H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
852 return H_PARAMETER;
853
854 /* dest (and src if copy_page flag set) must be page aligned */
855 if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
856 return H_PARAMETER;
857
858 /* zero and/or copy the page as determined by the flags */
859 if (flags & H_COPY_PAGE) {
860 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
861 if (ret < 0)
862 return H_PARAMETER;
863 } else if (flags & H_ZERO_PAGE) {
864 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
865 if (ret < 0)
866 return H_PARAMETER;
867 }
868
869 /* We can ignore the remaining flags */
870
871 return H_SUCCESS;
872}
873
874static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
875{
876 struct kvmppc_vcore *vcore = target->arch.vcore;
877
878 /*
879 * We expect to have been called by the real mode handler
880 * (kvmppc_rm_h_confer()) which would have directly returned
881 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
882 * have useful work to do and should not confer) so we don't
883 * recheck that here.
884 */
885
886 spin_lock(&vcore->lock);
887 if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
888 vcore->vcore_state != VCORE_INACTIVE &&
889 vcore->runner)
890 target = vcore->runner;
891 spin_unlock(&vcore->lock);
892
893 return kvm_vcpu_yield_to(target);
894}
895
896static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
897{
898 int yield_count = 0;
899 struct lppaca *lppaca;
900
901 spin_lock(&vcpu->arch.vpa_update_lock);
902 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
903 if (lppaca)
904 yield_count = be32_to_cpu(lppaca->yield_count);
905 spin_unlock(&vcpu->arch.vpa_update_lock);
906 return yield_count;
907}
908
909int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
910{
911 unsigned long req = kvmppc_get_gpr(vcpu, 3);
912 unsigned long target, ret = H_SUCCESS;
913 int yield_count;
914 struct kvm_vcpu *tvcpu;
915 int idx, rc;
916
917 if (req <= MAX_HCALL_OPCODE &&
918 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
919 return RESUME_HOST;
920
921 switch (req) {
922 case H_CEDE:
923 break;
924 case H_PROD:
925 target = kvmppc_get_gpr(vcpu, 4);
926 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
927 if (!tvcpu) {
928 ret = H_PARAMETER;
929 break;
930 }
931 tvcpu->arch.prodded = 1;
932 smp_mb();
933 if (tvcpu->arch.ceded)
934 kvmppc_fast_vcpu_kick_hv(tvcpu);
935 break;
936 case H_CONFER:
937 target = kvmppc_get_gpr(vcpu, 4);
938 if (target == -1)
939 break;
940 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
941 if (!tvcpu) {
942 ret = H_PARAMETER;
943 break;
944 }
945 yield_count = kvmppc_get_gpr(vcpu, 5);
946 if (kvmppc_get_yield_count(tvcpu) != yield_count)
947 break;
948 kvm_arch_vcpu_yield_to(tvcpu);
949 break;
950 case H_REGISTER_VPA:
951 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
952 kvmppc_get_gpr(vcpu, 5),
953 kvmppc_get_gpr(vcpu, 6));
954 break;
955 case H_RTAS:
956 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
957 return RESUME_HOST;
958
959 idx = srcu_read_lock(&vcpu->kvm->srcu);
960 rc = kvmppc_rtas_hcall(vcpu);
961 srcu_read_unlock(&vcpu->kvm->srcu, idx);
962
963 if (rc == -ENOENT)
964 return RESUME_HOST;
965 else if (rc == 0)
966 break;
967
968 /* Send the error out to userspace via KVM_RUN */
969 return rc;
970 case H_LOGICAL_CI_LOAD:
971 ret = kvmppc_h_logical_ci_load(vcpu);
972 if (ret == H_TOO_HARD)
973 return RESUME_HOST;
974 break;
975 case H_LOGICAL_CI_STORE:
976 ret = kvmppc_h_logical_ci_store(vcpu);
977 if (ret == H_TOO_HARD)
978 return RESUME_HOST;
979 break;
980 case H_SET_MODE:
981 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
982 kvmppc_get_gpr(vcpu, 5),
983 kvmppc_get_gpr(vcpu, 6),
984 kvmppc_get_gpr(vcpu, 7));
985 if (ret == H_TOO_HARD)
986 return RESUME_HOST;
987 break;
988 case H_XIRR:
989 case H_CPPR:
990 case H_EOI:
991 case H_IPI:
992 case H_IPOLL:
993 case H_XIRR_X:
994 if (kvmppc_xics_enabled(vcpu)) {
995 if (xics_on_xive()) {
996 ret = H_NOT_AVAILABLE;
997 return RESUME_GUEST;
998 }
999 ret = kvmppc_xics_hcall(vcpu, req);
1000 break;
1001 }
1002 return RESUME_HOST;
1003 case H_SET_DABR:
1004 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
1005 break;
1006 case H_SET_XDABR:
1007 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1008 kvmppc_get_gpr(vcpu, 5));
1009 break;
1010#ifdef CONFIG_SPAPR_TCE_IOMMU
1011 case H_GET_TCE:
1012 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1013 kvmppc_get_gpr(vcpu, 5));
1014 if (ret == H_TOO_HARD)
1015 return RESUME_HOST;
1016 break;
1017 case H_PUT_TCE:
1018 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1019 kvmppc_get_gpr(vcpu, 5),
1020 kvmppc_get_gpr(vcpu, 6));
1021 if (ret == H_TOO_HARD)
1022 return RESUME_HOST;
1023 break;
1024 case H_PUT_TCE_INDIRECT:
1025 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1026 kvmppc_get_gpr(vcpu, 5),
1027 kvmppc_get_gpr(vcpu, 6),
1028 kvmppc_get_gpr(vcpu, 7));
1029 if (ret == H_TOO_HARD)
1030 return RESUME_HOST;
1031 break;
1032 case H_STUFF_TCE:
1033 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1034 kvmppc_get_gpr(vcpu, 5),
1035 kvmppc_get_gpr(vcpu, 6),
1036 kvmppc_get_gpr(vcpu, 7));
1037 if (ret == H_TOO_HARD)
1038 return RESUME_HOST;
1039 break;
1040#endif
1041 case H_RANDOM:
1042 if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4]))
1043 ret = H_HARDWARE;
1044 break;
1045
1046 case H_SET_PARTITION_TABLE:
1047 ret = H_FUNCTION;
1048 if (nesting_enabled(vcpu->kvm))
1049 ret = kvmhv_set_partition_table(vcpu);
1050 break;
1051 case H_ENTER_NESTED:
1052 ret = H_FUNCTION;
1053 if (!nesting_enabled(vcpu->kvm))
1054 break;
1055 ret = kvmhv_enter_nested_guest(vcpu);
1056 if (ret == H_INTERRUPT) {
1057 kvmppc_set_gpr(vcpu, 3, 0);
1058 vcpu->arch.hcall_needed = 0;
1059 return -EINTR;
1060 } else if (ret == H_TOO_HARD) {
1061 kvmppc_set_gpr(vcpu, 3, 0);
1062 vcpu->arch.hcall_needed = 0;
1063 return RESUME_HOST;
1064 }
1065 break;
1066 case H_TLB_INVALIDATE:
1067 ret = H_FUNCTION;
1068 if (nesting_enabled(vcpu->kvm))
1069 ret = kvmhv_do_nested_tlbie(vcpu);
1070 break;
1071 case H_COPY_TOFROM_GUEST:
1072 ret = H_FUNCTION;
1073 if (nesting_enabled(vcpu->kvm))
1074 ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1075 break;
1076 case H_PAGE_INIT:
1077 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1078 kvmppc_get_gpr(vcpu, 5),
1079 kvmppc_get_gpr(vcpu, 6));
1080 break;
1081 default:
1082 return RESUME_HOST;
1083 }
1084 kvmppc_set_gpr(vcpu, 3, ret);
1085 vcpu->arch.hcall_needed = 0;
1086 return RESUME_GUEST;
1087}
1088
1089/*
1090 * Handle H_CEDE in the nested virtualization case where we haven't
1091 * called the real-mode hcall handlers in book3s_hv_rmhandlers.S.
1092 * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1093 * that the cede logic in kvmppc_run_single_vcpu() works properly.
1094 */
1095static void kvmppc_nested_cede(struct kvm_vcpu *vcpu)
1096{
1097 vcpu->arch.shregs.msr |= MSR_EE;
1098 vcpu->arch.ceded = 1;
1099 smp_mb();
1100 if (vcpu->arch.prodded) {
1101 vcpu->arch.prodded = 0;
1102 smp_mb();
1103 vcpu->arch.ceded = 0;
1104 }
1105}
1106
1107static int kvmppc_hcall_impl_hv(unsigned long cmd)
1108{
1109 switch (cmd) {
1110 case H_CEDE:
1111 case H_PROD:
1112 case H_CONFER:
1113 case H_REGISTER_VPA:
1114 case H_SET_MODE:
1115 case H_LOGICAL_CI_LOAD:
1116 case H_LOGICAL_CI_STORE:
1117#ifdef CONFIG_KVM_XICS
1118 case H_XIRR:
1119 case H_CPPR:
1120 case H_EOI:
1121 case H_IPI:
1122 case H_IPOLL:
1123 case H_XIRR_X:
1124#endif
1125 case H_PAGE_INIT:
1126 return 1;
1127 }
1128
1129 /* See if it's in the real-mode table */
1130 return kvmppc_hcall_impl_hv_realmode(cmd);
1131}
1132
1133static int kvmppc_emulate_debug_inst(struct kvm_run *run,
1134 struct kvm_vcpu *vcpu)
1135{
1136 u32 last_inst;
1137
1138 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1139 EMULATE_DONE) {
1140 /*
1141 * Fetch failed, so return to guest and
1142 * try executing it again.
1143 */
1144 return RESUME_GUEST;
1145 }
1146
1147 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
1148 run->exit_reason = KVM_EXIT_DEBUG;
1149 run->debug.arch.address = kvmppc_get_pc(vcpu);
1150 return RESUME_HOST;
1151 } else {
1152 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1153 return RESUME_GUEST;
1154 }
1155}
1156
1157static void do_nothing(void *x)
1158{
1159}
1160
1161static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1162{
1163 int thr, cpu, pcpu, nthreads;
1164 struct kvm_vcpu *v;
1165 unsigned long dpdes;
1166
1167 nthreads = vcpu->kvm->arch.emul_smt_mode;
1168 dpdes = 0;
1169 cpu = vcpu->vcpu_id & ~(nthreads - 1);
1170 for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1171 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1172 if (!v)
1173 continue;
1174 /*
1175 * If the vcpu is currently running on a physical cpu thread,
1176 * interrupt it in order to pull it out of the guest briefly,
1177 * which will update its vcore->dpdes value.
1178 */
1179 pcpu = READ_ONCE(v->cpu);
1180 if (pcpu >= 0)
1181 smp_call_function_single(pcpu, do_nothing, NULL, 1);
1182 if (kvmppc_doorbell_pending(v))
1183 dpdes |= 1 << thr;
1184 }
1185 return dpdes;
1186}
1187
1188/*
1189 * On POWER9, emulate doorbell-related instructions in order to
1190 * give the guest the illusion of running on a multi-threaded core.
1191 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1192 * and mfspr DPDES.
1193 */
1194static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1195{
1196 u32 inst, rb, thr;
1197 unsigned long arg;
1198 struct kvm *kvm = vcpu->kvm;
1199 struct kvm_vcpu *tvcpu;
1200
1201 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1202 return RESUME_GUEST;
1203 if (get_op(inst) != 31)
1204 return EMULATE_FAIL;
1205 rb = get_rb(inst);
1206 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1207 switch (get_xop(inst)) {
1208 case OP_31_XOP_MSGSNDP:
1209 arg = kvmppc_get_gpr(vcpu, rb);
1210 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1211 break;
1212 arg &= 0x3f;
1213 if (arg >= kvm->arch.emul_smt_mode)
1214 break;
1215 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1216 if (!tvcpu)
1217 break;
1218 if (!tvcpu->arch.doorbell_request) {
1219 tvcpu->arch.doorbell_request = 1;
1220 kvmppc_fast_vcpu_kick_hv(tvcpu);
1221 }
1222 break;
1223 case OP_31_XOP_MSGCLRP:
1224 arg = kvmppc_get_gpr(vcpu, rb);
1225 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1226 break;
1227 vcpu->arch.vcore->dpdes = 0;
1228 vcpu->arch.doorbell_request = 0;
1229 break;
1230 case OP_31_XOP_MFSPR:
1231 switch (get_sprn(inst)) {
1232 case SPRN_TIR:
1233 arg = thr;
1234 break;
1235 case SPRN_DPDES:
1236 arg = kvmppc_read_dpdes(vcpu);
1237 break;
1238 default:
1239 return EMULATE_FAIL;
1240 }
1241 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1242 break;
1243 default:
1244 return EMULATE_FAIL;
1245 }
1246 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1247 return RESUME_GUEST;
1248}
1249
1250static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1251 struct task_struct *tsk)
1252{
1253 int r = RESUME_HOST;
1254
1255 vcpu->stat.sum_exits++;
1256
1257 /*
1258 * This can happen if an interrupt occurs in the last stages
1259 * of guest entry or the first stages of guest exit (i.e. after
1260 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1261 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1262 * That can happen due to a bug, or due to a machine check
1263 * occurring at just the wrong time.
1264 */
1265 if (vcpu->arch.shregs.msr & MSR_HV) {
1266 printk(KERN_EMERG "KVM trap in HV mode!\n");
1267 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1268 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1269 vcpu->arch.shregs.msr);
1270 kvmppc_dump_regs(vcpu);
1271 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1272 run->hw.hardware_exit_reason = vcpu->arch.trap;
1273 return RESUME_HOST;
1274 }
1275 run->exit_reason = KVM_EXIT_UNKNOWN;
1276 run->ready_for_interrupt_injection = 1;
1277 switch (vcpu->arch.trap) {
1278 /* We're good on these - the host merely wanted to get our attention */
1279 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1280 vcpu->stat.dec_exits++;
1281 r = RESUME_GUEST;
1282 break;
1283 case BOOK3S_INTERRUPT_EXTERNAL:
1284 case BOOK3S_INTERRUPT_H_DOORBELL:
1285 case BOOK3S_INTERRUPT_H_VIRT:
1286 vcpu->stat.ext_intr_exits++;
1287 r = RESUME_GUEST;
1288 break;
1289 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1290 case BOOK3S_INTERRUPT_HMI:
1291 case BOOK3S_INTERRUPT_PERFMON:
1292 case BOOK3S_INTERRUPT_SYSTEM_RESET:
1293 r = RESUME_GUEST;
1294 break;
1295 case BOOK3S_INTERRUPT_MACHINE_CHECK:
1296 /* Print the MCE event to host console. */
1297 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1298
1299 /*
1300 * If the guest can do FWNMI, exit to userspace so it can
1301 * deliver a FWNMI to the guest.
1302 * Otherwise we synthesize a machine check for the guest
1303 * so that it knows that the machine check occurred.
1304 */
1305 if (!vcpu->kvm->arch.fwnmi_enabled) {
1306 ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
1307 kvmppc_core_queue_machine_check(vcpu, flags);
1308 r = RESUME_GUEST;
1309 break;
1310 }
1311
1312 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1313 run->exit_reason = KVM_EXIT_NMI;
1314 run->hw.hardware_exit_reason = vcpu->arch.trap;
1315 /* Clear out the old NMI status from run->flags */
1316 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1317 /* Now set the NMI status */
1318 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1319 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1320 else
1321 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1322
1323 r = RESUME_HOST;
1324 break;
1325 case BOOK3S_INTERRUPT_PROGRAM:
1326 {
1327 ulong flags;
1328 /*
1329 * Normally program interrupts are delivered directly
1330 * to the guest by the hardware, but we can get here
1331 * as a result of a hypervisor emulation interrupt
1332 * (e40) getting turned into a 700 by BML RTAS.
1333 */
1334 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1335 kvmppc_core_queue_program(vcpu, flags);
1336 r = RESUME_GUEST;
1337 break;
1338 }
1339 case BOOK3S_INTERRUPT_SYSCALL:
1340 {
1341 /* hcall - punt to userspace */
1342 int i;
1343
1344 /* hypercall with MSR_PR has already been handled in rmode,
1345 * and never reaches here.
1346 */
1347
1348 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1349 for (i = 0; i < 9; ++i)
1350 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1351 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1352 vcpu->arch.hcall_needed = 1;
1353 r = RESUME_HOST;
1354 break;
1355 }
1356 /*
1357 * We get these next two if the guest accesses a page which it thinks
1358 * it has mapped but which is not actually present, either because
1359 * it is for an emulated I/O device or because the corresonding
1360 * host page has been paged out. Any other HDSI/HISI interrupts
1361 * have been handled already.
1362 */
1363 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1364 r = RESUME_PAGE_FAULT;
1365 break;
1366 case BOOK3S_INTERRUPT_H_INST_STORAGE:
1367 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1368 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1369 DSISR_SRR1_MATCH_64S;
1370 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1371 vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1372 r = RESUME_PAGE_FAULT;
1373 break;
1374 /*
1375 * This occurs if the guest executes an illegal instruction.
1376 * If the guest debug is disabled, generate a program interrupt
1377 * to the guest. If guest debug is enabled, we need to check
1378 * whether the instruction is a software breakpoint instruction.
1379 * Accordingly return to Guest or Host.
1380 */
1381 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1382 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1383 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1384 swab32(vcpu->arch.emul_inst) :
1385 vcpu->arch.emul_inst;
1386 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1387 r = kvmppc_emulate_debug_inst(run, vcpu);
1388 } else {
1389 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1390 r = RESUME_GUEST;
1391 }
1392 break;
1393 /*
1394 * This occurs if the guest (kernel or userspace), does something that
1395 * is prohibited by HFSCR.
1396 * On POWER9, this could be a doorbell instruction that we need
1397 * to emulate.
1398 * Otherwise, we just generate a program interrupt to the guest.
1399 */
1400 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1401 r = EMULATE_FAIL;
1402 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1403 cpu_has_feature(CPU_FTR_ARCH_300))
1404 r = kvmppc_emulate_doorbell_instr(vcpu);
1405 if (r == EMULATE_FAIL) {
1406 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1407 r = RESUME_GUEST;
1408 }
1409 break;
1410
1411#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1412 case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1413 /*
1414 * This occurs for various TM-related instructions that
1415 * we need to emulate on POWER9 DD2.2. We have already
1416 * handled the cases where the guest was in real-suspend
1417 * mode and was transitioning to transactional state.
1418 */
1419 r = kvmhv_p9_tm_emulation(vcpu);
1420 break;
1421#endif
1422
1423 case BOOK3S_INTERRUPT_HV_RM_HARD:
1424 r = RESUME_PASSTHROUGH;
1425 break;
1426 default:
1427 kvmppc_dump_regs(vcpu);
1428 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1429 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1430 vcpu->arch.shregs.msr);
1431 run->hw.hardware_exit_reason = vcpu->arch.trap;
1432 r = RESUME_HOST;
1433 break;
1434 }
1435
1436 return r;
1437}
1438
1439static int kvmppc_handle_nested_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1440{
1441 int r;
1442 int srcu_idx;
1443
1444 vcpu->stat.sum_exits++;
1445
1446 /*
1447 * This can happen if an interrupt occurs in the last stages
1448 * of guest entry or the first stages of guest exit (i.e. after
1449 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1450 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1451 * That can happen due to a bug, or due to a machine check
1452 * occurring at just the wrong time.
1453 */
1454 if (vcpu->arch.shregs.msr & MSR_HV) {
1455 pr_emerg("KVM trap in HV mode while nested!\n");
1456 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1457 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1458 vcpu->arch.shregs.msr);
1459 kvmppc_dump_regs(vcpu);
1460 return RESUME_HOST;
1461 }
1462 switch (vcpu->arch.trap) {
1463 /* We're good on these - the host merely wanted to get our attention */
1464 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1465 vcpu->stat.dec_exits++;
1466 r = RESUME_GUEST;
1467 break;
1468 case BOOK3S_INTERRUPT_EXTERNAL:
1469 vcpu->stat.ext_intr_exits++;
1470 r = RESUME_HOST;
1471 break;
1472 case BOOK3S_INTERRUPT_H_DOORBELL:
1473 case BOOK3S_INTERRUPT_H_VIRT:
1474 vcpu->stat.ext_intr_exits++;
1475 r = RESUME_GUEST;
1476 break;
1477 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1478 case BOOK3S_INTERRUPT_HMI:
1479 case BOOK3S_INTERRUPT_PERFMON:
1480 case BOOK3S_INTERRUPT_SYSTEM_RESET:
1481 r = RESUME_GUEST;
1482 break;
1483 case BOOK3S_INTERRUPT_MACHINE_CHECK:
1484 /* Pass the machine check to the L1 guest */
1485 r = RESUME_HOST;
1486 /* Print the MCE event to host console. */
1487 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1488 break;
1489 /*
1490 * We get these next two if the guest accesses a page which it thinks
1491 * it has mapped but which is not actually present, either because
1492 * it is for an emulated I/O device or because the corresonding
1493 * host page has been paged out.
1494 */
1495 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1496 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1497 r = kvmhv_nested_page_fault(run, vcpu);
1498 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1499 break;
1500 case BOOK3S_INTERRUPT_H_INST_STORAGE:
1501 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1502 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1503 DSISR_SRR1_MATCH_64S;
1504 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1505 vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1506 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1507 r = kvmhv_nested_page_fault(run, vcpu);
1508 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1509 break;
1510
1511#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1512 case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1513 /*
1514 * This occurs for various TM-related instructions that
1515 * we need to emulate on POWER9 DD2.2. We have already
1516 * handled the cases where the guest was in real-suspend
1517 * mode and was transitioning to transactional state.
1518 */
1519 r = kvmhv_p9_tm_emulation(vcpu);
1520 break;
1521#endif
1522
1523 case BOOK3S_INTERRUPT_HV_RM_HARD:
1524 vcpu->arch.trap = 0;
1525 r = RESUME_GUEST;
1526 if (!xics_on_xive())
1527 kvmppc_xics_rm_complete(vcpu, 0);
1528 break;
1529 default:
1530 r = RESUME_HOST;
1531 break;
1532 }
1533
1534 return r;
1535}
1536
1537static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1538 struct kvm_sregs *sregs)
1539{
1540 int i;
1541
1542 memset(sregs, 0, sizeof(struct kvm_sregs));
1543 sregs->pvr = vcpu->arch.pvr;
1544 for (i = 0; i < vcpu->arch.slb_max; i++) {
1545 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1546 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1547 }
1548
1549 return 0;
1550}
1551
1552static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1553 struct kvm_sregs *sregs)
1554{
1555 int i, j;
1556
1557 /* Only accept the same PVR as the host's, since we can't spoof it */
1558 if (sregs->pvr != vcpu->arch.pvr)
1559 return -EINVAL;
1560
1561 j = 0;
1562 for (i = 0; i < vcpu->arch.slb_nr; i++) {
1563 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1564 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1565 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1566 ++j;
1567 }
1568 }
1569 vcpu->arch.slb_max = j;
1570
1571 return 0;
1572}
1573
1574static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1575 bool preserve_top32)
1576{
1577 struct kvm *kvm = vcpu->kvm;
1578 struct kvmppc_vcore *vc = vcpu->arch.vcore;
1579 u64 mask;
1580
1581 spin_lock(&vc->lock);
1582 /*
1583 * If ILE (interrupt little-endian) has changed, update the
1584 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1585 */
1586 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1587 struct kvm_vcpu *vcpu;
1588 int i;
1589
1590 kvm_for_each_vcpu(i, vcpu, kvm) {
1591 if (vcpu->arch.vcore != vc)
1592 continue;
1593 if (new_lpcr & LPCR_ILE)
1594 vcpu->arch.intr_msr |= MSR_LE;
1595 else
1596 vcpu->arch.intr_msr &= ~MSR_LE;
1597 }
1598 }
1599
1600 /*
1601 * Userspace can only modify DPFD (default prefetch depth),
1602 * ILE (interrupt little-endian) and TC (translation control).
1603 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1604 */
1605 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1606 if (cpu_has_feature(CPU_FTR_ARCH_207S))
1607 mask |= LPCR_AIL;
1608 /*
1609 * On POWER9, allow userspace to enable large decrementer for the
1610 * guest, whether or not the host has it enabled.
1611 */
1612 if (cpu_has_feature(CPU_FTR_ARCH_300))
1613 mask |= LPCR_LD;
1614
1615 /* Broken 32-bit version of LPCR must not clear top bits */
1616 if (preserve_top32)
1617 mask &= 0xFFFFFFFF;
1618 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1619 spin_unlock(&vc->lock);
1620}
1621
1622static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1623 union kvmppc_one_reg *val)
1624{
1625 int r = 0;
1626 long int i;
1627
1628 switch (id) {
1629 case KVM_REG_PPC_DEBUG_INST:
1630 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1631 break;
1632 case KVM_REG_PPC_HIOR:
1633 *val = get_reg_val(id, 0);
1634 break;
1635 case KVM_REG_PPC_DABR:
1636 *val = get_reg_val(id, vcpu->arch.dabr);
1637 break;
1638 case KVM_REG_PPC_DABRX:
1639 *val = get_reg_val(id, vcpu->arch.dabrx);
1640 break;
1641 case KVM_REG_PPC_DSCR:
1642 *val = get_reg_val(id, vcpu->arch.dscr);
1643 break;
1644 case KVM_REG_PPC_PURR:
1645 *val = get_reg_val(id, vcpu->arch.purr);
1646 break;
1647 case KVM_REG_PPC_SPURR:
1648 *val = get_reg_val(id, vcpu->arch.spurr);
1649 break;
1650 case KVM_REG_PPC_AMR:
1651 *val = get_reg_val(id, vcpu->arch.amr);
1652 break;
1653 case KVM_REG_PPC_UAMOR:
1654 *val = get_reg_val(id, vcpu->arch.uamor);
1655 break;
1656 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1657 i = id - KVM_REG_PPC_MMCR0;
1658 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1659 break;
1660 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1661 i = id - KVM_REG_PPC_PMC1;
1662 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1663 break;
1664 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1665 i = id - KVM_REG_PPC_SPMC1;
1666 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1667 break;
1668 case KVM_REG_PPC_SIAR:
1669 *val = get_reg_val(id, vcpu->arch.siar);
1670 break;
1671 case KVM_REG_PPC_SDAR:
1672 *val = get_reg_val(id, vcpu->arch.sdar);
1673 break;
1674 case KVM_REG_PPC_SIER:
1675 *val = get_reg_val(id, vcpu->arch.sier);
1676 break;
1677 case KVM_REG_PPC_IAMR:
1678 *val = get_reg_val(id, vcpu->arch.iamr);
1679 break;
1680 case KVM_REG_PPC_PSPB:
1681 *val = get_reg_val(id, vcpu->arch.pspb);
1682 break;
1683 case KVM_REG_PPC_DPDES:
1684 /*
1685 * On POWER9, where we are emulating msgsndp etc.,
1686 * we return 1 bit for each vcpu, which can come from
1687 * either vcore->dpdes or doorbell_request.
1688 * On POWER8, doorbell_request is 0.
1689 */
1690 *val = get_reg_val(id, vcpu->arch.vcore->dpdes |
1691 vcpu->arch.doorbell_request);
1692 break;
1693 case KVM_REG_PPC_VTB:
1694 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1695 break;
1696 case KVM_REG_PPC_DAWR:
1697 *val = get_reg_val(id, vcpu->arch.dawr);
1698 break;
1699 case KVM_REG_PPC_DAWRX:
1700 *val = get_reg_val(id, vcpu->arch.dawrx);
1701 break;
1702 case KVM_REG_PPC_CIABR:
1703 *val = get_reg_val(id, vcpu->arch.ciabr);
1704 break;
1705 case KVM_REG_PPC_CSIGR:
1706 *val = get_reg_val(id, vcpu->arch.csigr);
1707 break;
1708 case KVM_REG_PPC_TACR:
1709 *val = get_reg_val(id, vcpu->arch.tacr);
1710 break;
1711 case KVM_REG_PPC_TCSCR:
1712 *val = get_reg_val(id, vcpu->arch.tcscr);
1713 break;
1714 case KVM_REG_PPC_PID:
1715 *val = get_reg_val(id, vcpu->arch.pid);
1716 break;
1717 case KVM_REG_PPC_ACOP:
1718 *val = get_reg_val(id, vcpu->arch.acop);
1719 break;
1720 case KVM_REG_PPC_WORT:
1721 *val = get_reg_val(id, vcpu->arch.wort);
1722 break;
1723 case KVM_REG_PPC_TIDR:
1724 *val = get_reg_val(id, vcpu->arch.tid);
1725 break;
1726 case KVM_REG_PPC_PSSCR:
1727 *val = get_reg_val(id, vcpu->arch.psscr);
1728 break;
1729 case KVM_REG_PPC_VPA_ADDR:
1730 spin_lock(&vcpu->arch.vpa_update_lock);
1731 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1732 spin_unlock(&vcpu->arch.vpa_update_lock);
1733 break;
1734 case KVM_REG_PPC_VPA_SLB:
1735 spin_lock(&vcpu->arch.vpa_update_lock);
1736 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1737 val->vpaval.length = vcpu->arch.slb_shadow.len;
1738 spin_unlock(&vcpu->arch.vpa_update_lock);
1739 break;
1740 case KVM_REG_PPC_VPA_DTL:
1741 spin_lock(&vcpu->arch.vpa_update_lock);
1742 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1743 val->vpaval.length = vcpu->arch.dtl.len;
1744 spin_unlock(&vcpu->arch.vpa_update_lock);
1745 break;
1746 case KVM_REG_PPC_TB_OFFSET:
1747 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1748 break;
1749 case KVM_REG_PPC_LPCR:
1750 case KVM_REG_PPC_LPCR_64:
1751 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1752 break;
1753 case KVM_REG_PPC_PPR:
1754 *val = get_reg_val(id, vcpu->arch.ppr);
1755 break;
1756#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1757 case KVM_REG_PPC_TFHAR:
1758 *val = get_reg_val(id, vcpu->arch.tfhar);
1759 break;
1760 case KVM_REG_PPC_TFIAR:
1761 *val = get_reg_val(id, vcpu->arch.tfiar);
1762 break;
1763 case KVM_REG_PPC_TEXASR:
1764 *val = get_reg_val(id, vcpu->arch.texasr);
1765 break;
1766 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1767 i = id - KVM_REG_PPC_TM_GPR0;
1768 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1769 break;
1770 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1771 {
1772 int j;
1773 i = id - KVM_REG_PPC_TM_VSR0;
1774 if (i < 32)
1775 for (j = 0; j < TS_FPRWIDTH; j++)
1776 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1777 else {
1778 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1779 val->vval = vcpu->arch.vr_tm.vr[i-32];
1780 else
1781 r = -ENXIO;
1782 }
1783 break;
1784 }
1785 case KVM_REG_PPC_TM_CR:
1786 *val = get_reg_val(id, vcpu->arch.cr_tm);
1787 break;
1788 case KVM_REG_PPC_TM_XER:
1789 *val = get_reg_val(id, vcpu->arch.xer_tm);
1790 break;
1791 case KVM_REG_PPC_TM_LR:
1792 *val = get_reg_val(id, vcpu->arch.lr_tm);
1793 break;
1794 case KVM_REG_PPC_TM_CTR:
1795 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1796 break;
1797 case KVM_REG_PPC_TM_FPSCR:
1798 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1799 break;
1800 case KVM_REG_PPC_TM_AMR:
1801 *val = get_reg_val(id, vcpu->arch.amr_tm);
1802 break;
1803 case KVM_REG_PPC_TM_PPR:
1804 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1805 break;
1806 case KVM_REG_PPC_TM_VRSAVE:
1807 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1808 break;
1809 case KVM_REG_PPC_TM_VSCR:
1810 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1811 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1812 else
1813 r = -ENXIO;
1814 break;
1815 case KVM_REG_PPC_TM_DSCR:
1816 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1817 break;
1818 case KVM_REG_PPC_TM_TAR:
1819 *val = get_reg_val(id, vcpu->arch.tar_tm);
1820 break;
1821#endif
1822 case KVM_REG_PPC_ARCH_COMPAT:
1823 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1824 break;
1825 case KVM_REG_PPC_DEC_EXPIRY:
1826 *val = get_reg_val(id, vcpu->arch.dec_expires +
1827 vcpu->arch.vcore->tb_offset);
1828 break;
1829 case KVM_REG_PPC_ONLINE:
1830 *val = get_reg_val(id, vcpu->arch.online);
1831 break;
1832 case KVM_REG_PPC_PTCR:
1833 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
1834 break;
1835 default:
1836 r = -EINVAL;
1837 break;
1838 }
1839
1840 return r;
1841}
1842
1843static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1844 union kvmppc_one_reg *val)
1845{
1846 int r = 0;
1847 long int i;
1848 unsigned long addr, len;
1849
1850 switch (id) {
1851 case KVM_REG_PPC_HIOR:
1852 /* Only allow this to be set to zero */
1853 if (set_reg_val(id, *val))
1854 r = -EINVAL;
1855 break;
1856 case KVM_REG_PPC_DABR:
1857 vcpu->arch.dabr = set_reg_val(id, *val);
1858 break;
1859 case KVM_REG_PPC_DABRX:
1860 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1861 break;
1862 case KVM_REG_PPC_DSCR:
1863 vcpu->arch.dscr = set_reg_val(id, *val);
1864 break;
1865 case KVM_REG_PPC_PURR:
1866 vcpu->arch.purr = set_reg_val(id, *val);
1867 break;
1868 case KVM_REG_PPC_SPURR:
1869 vcpu->arch.spurr = set_reg_val(id, *val);
1870 break;
1871 case KVM_REG_PPC_AMR:
1872 vcpu->arch.amr = set_reg_val(id, *val);
1873 break;
1874 case KVM_REG_PPC_UAMOR:
1875 vcpu->arch.uamor = set_reg_val(id, *val);
1876 break;
1877 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1878 i = id - KVM_REG_PPC_MMCR0;
1879 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1880 break;
1881 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1882 i = id - KVM_REG_PPC_PMC1;
1883 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1884 break;
1885 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1886 i = id - KVM_REG_PPC_SPMC1;
1887 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1888 break;
1889 case KVM_REG_PPC_SIAR:
1890 vcpu->arch.siar = set_reg_val(id, *val);
1891 break;
1892 case KVM_REG_PPC_SDAR:
1893 vcpu->arch.sdar = set_reg_val(id, *val);
1894 break;
1895 case KVM_REG_PPC_SIER:
1896 vcpu->arch.sier = set_reg_val(id, *val);
1897 break;
1898 case KVM_REG_PPC_IAMR:
1899 vcpu->arch.iamr = set_reg_val(id, *val);
1900 break;
1901 case KVM_REG_PPC_PSPB:
1902 vcpu->arch.pspb = set_reg_val(id, *val);
1903 break;
1904 case KVM_REG_PPC_DPDES:
1905 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1906 break;
1907 case KVM_REG_PPC_VTB:
1908 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1909 break;
1910 case KVM_REG_PPC_DAWR:
1911 vcpu->arch.dawr = set_reg_val(id, *val);
1912 break;
1913 case KVM_REG_PPC_DAWRX:
1914 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1915 break;
1916 case KVM_REG_PPC_CIABR:
1917 vcpu->arch.ciabr = set_reg_val(id, *val);
1918 /* Don't allow setting breakpoints in hypervisor code */
1919 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1920 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */
1921 break;
1922 case KVM_REG_PPC_CSIGR:
1923 vcpu->arch.csigr = set_reg_val(id, *val);
1924 break;
1925 case KVM_REG_PPC_TACR:
1926 vcpu->arch.tacr = set_reg_val(id, *val);
1927 break;
1928 case KVM_REG_PPC_TCSCR:
1929 vcpu->arch.tcscr = set_reg_val(id, *val);
1930 break;
1931 case KVM_REG_PPC_PID:
1932 vcpu->arch.pid = set_reg_val(id, *val);
1933 break;
1934 case KVM_REG_PPC_ACOP:
1935 vcpu->arch.acop = set_reg_val(id, *val);
1936 break;
1937 case KVM_REG_PPC_WORT:
1938 vcpu->arch.wort = set_reg_val(id, *val);
1939 break;
1940 case KVM_REG_PPC_TIDR:
1941 vcpu->arch.tid = set_reg_val(id, *val);
1942 break;
1943 case KVM_REG_PPC_PSSCR:
1944 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1945 break;
1946 case KVM_REG_PPC_VPA_ADDR:
1947 addr = set_reg_val(id, *val);
1948 r = -EINVAL;
1949 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1950 vcpu->arch.dtl.next_gpa))
1951 break;
1952 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1953 break;
1954 case KVM_REG_PPC_VPA_SLB:
1955 addr = val->vpaval.addr;
1956 len = val->vpaval.length;
1957 r = -EINVAL;
1958 if (addr && !vcpu->arch.vpa.next_gpa)
1959 break;
1960 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1961 break;
1962 case KVM_REG_PPC_VPA_DTL:
1963 addr = val->vpaval.addr;
1964 len = val->vpaval.length;
1965 r = -EINVAL;
1966 if (addr && (len < sizeof(struct dtl_entry) ||
1967 !vcpu->arch.vpa.next_gpa))
1968 break;
1969 len -= len % sizeof(struct dtl_entry);
1970 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1971 break;
1972 case KVM_REG_PPC_TB_OFFSET:
1973 /* round up to multiple of 2^24 */
1974 vcpu->arch.vcore->tb_offset =
1975 ALIGN(set_reg_val(id, *val), 1UL << 24);
1976 break;
1977 case KVM_REG_PPC_LPCR:
1978 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1979 break;
1980 case KVM_REG_PPC_LPCR_64:
1981 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1982 break;
1983 case KVM_REG_PPC_PPR:
1984 vcpu->arch.ppr = set_reg_val(id, *val);
1985 break;
1986#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1987 case KVM_REG_PPC_TFHAR:
1988 vcpu->arch.tfhar = set_reg_val(id, *val);
1989 break;
1990 case KVM_REG_PPC_TFIAR:
1991 vcpu->arch.tfiar = set_reg_val(id, *val);
1992 break;
1993 case KVM_REG_PPC_TEXASR:
1994 vcpu->arch.texasr = set_reg_val(id, *val);
1995 break;
1996 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1997 i = id - KVM_REG_PPC_TM_GPR0;
1998 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1999 break;
2000 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2001 {
2002 int j;
2003 i = id - KVM_REG_PPC_TM_VSR0;
2004 if (i < 32)
2005 for (j = 0; j < TS_FPRWIDTH; j++)
2006 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2007 else
2008 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2009 vcpu->arch.vr_tm.vr[i-32] = val->vval;
2010 else
2011 r = -ENXIO;
2012 break;
2013 }
2014 case KVM_REG_PPC_TM_CR:
2015 vcpu->arch.cr_tm = set_reg_val(id, *val);
2016 break;
2017 case KVM_REG_PPC_TM_XER:
2018 vcpu->arch.xer_tm = set_reg_val(id, *val);
2019 break;
2020 case KVM_REG_PPC_TM_LR:
2021 vcpu->arch.lr_tm = set_reg_val(id, *val);
2022 break;
2023 case KVM_REG_PPC_TM_CTR:
2024 vcpu->arch.ctr_tm = set_reg_val(id, *val);
2025 break;
2026 case KVM_REG_PPC_TM_FPSCR:
2027 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2028 break;
2029 case KVM_REG_PPC_TM_AMR:
2030 vcpu->arch.amr_tm = set_reg_val(id, *val);
2031 break;
2032 case KVM_REG_PPC_TM_PPR:
2033 vcpu->arch.ppr_tm = set_reg_val(id, *val);
2034 break;
2035 case KVM_REG_PPC_TM_VRSAVE:
2036 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2037 break;
2038 case KVM_REG_PPC_TM_VSCR:
2039 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2040 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2041 else
2042 r = - ENXIO;
2043 break;
2044 case KVM_REG_PPC_TM_DSCR:
2045 vcpu->arch.dscr_tm = set_reg_val(id, *val);
2046 break;
2047 case KVM_REG_PPC_TM_TAR:
2048 vcpu->arch.tar_tm = set_reg_val(id, *val);
2049 break;
2050#endif
2051 case KVM_REG_PPC_ARCH_COMPAT:
2052 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2053 break;
2054 case KVM_REG_PPC_DEC_EXPIRY:
2055 vcpu->arch.dec_expires = set_reg_val(id, *val) -
2056 vcpu->arch.vcore->tb_offset;
2057 break;
2058 case KVM_REG_PPC_ONLINE:
2059 i = set_reg_val(id, *val);
2060 if (i && !vcpu->arch.online)
2061 atomic_inc(&vcpu->arch.vcore->online_count);
2062 else if (!i && vcpu->arch.online)
2063 atomic_dec(&vcpu->arch.vcore->online_count);
2064 vcpu->arch.online = i;
2065 break;
2066 case KVM_REG_PPC_PTCR:
2067 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2068 break;
2069 default:
2070 r = -EINVAL;
2071 break;
2072 }
2073
2074 return r;
2075}
2076
2077/*
2078 * On POWER9, threads are independent and can be in different partitions.
2079 * Therefore we consider each thread to be a subcore.
2080 * There is a restriction that all threads have to be in the same
2081 * MMU mode (radix or HPT), unfortunately, but since we only support
2082 * HPT guests on a HPT host so far, that isn't an impediment yet.
2083 */
2084static int threads_per_vcore(struct kvm *kvm)
2085{
2086 if (kvm->arch.threads_indep)
2087 return 1;
2088 return threads_per_subcore;
2089}
2090
2091static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2092{
2093 struct kvmppc_vcore *vcore;
2094
2095 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2096
2097 if (vcore == NULL)
2098 return NULL;
2099
2100 spin_lock_init(&vcore->lock);
2101 spin_lock_init(&vcore->stoltb_lock);
2102 init_swait_queue_head(&vcore->wq);
2103 vcore->preempt_tb = TB_NIL;
2104 vcore->lpcr = kvm->arch.lpcr;
2105 vcore->first_vcpuid = id;
2106 vcore->kvm = kvm;
2107 INIT_LIST_HEAD(&vcore->preempt_list);
2108
2109 return vcore;
2110}
2111
2112#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2113static struct debugfs_timings_element {
2114 const char *name;
2115 size_t offset;
2116} timings[] = {
2117 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)},
2118 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)},
2119 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)},
2120 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)},
2121 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)},
2122};
2123
2124#define N_TIMINGS (ARRAY_SIZE(timings))
2125
2126struct debugfs_timings_state {
2127 struct kvm_vcpu *vcpu;
2128 unsigned int buflen;
2129 char buf[N_TIMINGS * 100];
2130};
2131
2132static int debugfs_timings_open(struct inode *inode, struct file *file)
2133{
2134 struct kvm_vcpu *vcpu = inode->i_private;
2135 struct debugfs_timings_state *p;
2136
2137 p = kzalloc(sizeof(*p), GFP_KERNEL);
2138 if (!p)
2139 return -ENOMEM;
2140
2141 kvm_get_kvm(vcpu->kvm);
2142 p->vcpu = vcpu;
2143 file->private_data = p;
2144
2145 return nonseekable_open(inode, file);
2146}
2147
2148static int debugfs_timings_release(struct inode *inode, struct file *file)
2149{
2150 struct debugfs_timings_state *p = file->private_data;
2151
2152 kvm_put_kvm(p->vcpu->kvm);
2153 kfree(p);
2154 return 0;
2155}
2156
2157static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2158 size_t len, loff_t *ppos)
2159{
2160 struct debugfs_timings_state *p = file->private_data;
2161 struct kvm_vcpu *vcpu = p->vcpu;
2162 char *s, *buf_end;
2163 struct kvmhv_tb_accumulator tb;
2164 u64 count;
2165 loff_t pos;
2166 ssize_t n;
2167 int i, loops;
2168 bool ok;
2169
2170 if (!p->buflen) {
2171 s = p->buf;
2172 buf_end = s + sizeof(p->buf);
2173 for (i = 0; i < N_TIMINGS; ++i) {
2174 struct kvmhv_tb_accumulator *acc;
2175
2176 acc = (struct kvmhv_tb_accumulator *)
2177 ((unsigned long)vcpu + timings[i].offset);
2178 ok = false;
2179 for (loops = 0; loops < 1000; ++loops) {
2180 count = acc->seqcount;
2181 if (!(count & 1)) {
2182 smp_rmb();
2183 tb = *acc;
2184 smp_rmb();
2185 if (count == acc->seqcount) {
2186 ok = true;
2187 break;
2188 }
2189 }
2190 udelay(1);
2191 }
2192 if (!ok)
2193 snprintf(s, buf_end - s, "%s: stuck\n",
2194 timings[i].name);
2195 else
2196 snprintf(s, buf_end - s,
2197 "%s: %llu %llu %llu %llu\n",
2198 timings[i].name, count / 2,
2199 tb_to_ns(tb.tb_total),
2200 tb_to_ns(tb.tb_min),
2201 tb_to_ns(tb.tb_max));
2202 s += strlen(s);
2203 }
2204 p->buflen = s - p->buf;
2205 }
2206
2207 pos = *ppos;
2208 if (pos >= p->buflen)
2209 return 0;
2210 if (len > p->buflen - pos)
2211 len = p->buflen - pos;
2212 n = copy_to_user(buf, p->buf + pos, len);
2213 if (n) {
2214 if (n == len)
2215 return -EFAULT;
2216 len -= n;
2217 }
2218 *ppos = pos + len;
2219 return len;
2220}
2221
2222static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2223 size_t len, loff_t *ppos)
2224{
2225 return -EACCES;
2226}
2227
2228static const struct file_operations debugfs_timings_ops = {
2229 .owner = THIS_MODULE,
2230 .open = debugfs_timings_open,
2231 .release = debugfs_timings_release,
2232 .read = debugfs_timings_read,
2233 .write = debugfs_timings_write,
2234 .llseek = generic_file_llseek,
2235};
2236
2237/* Create a debugfs directory for the vcpu */
2238static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2239{
2240 char buf[16];
2241 struct kvm *kvm = vcpu->kvm;
2242
2243 snprintf(buf, sizeof(buf), "vcpu%u", id);
2244 if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
2245 return;
2246 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
2247 if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
2248 return;
2249 vcpu->arch.debugfs_timings =
2250 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
2251 vcpu, &debugfs_timings_ops);
2252}
2253
2254#else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2255static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2256{
2257}
2258#endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2259
2260static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
2261 unsigned int id)
2262{
2263 struct kvm_vcpu *vcpu;
2264 int err;
2265 int core;
2266 struct kvmppc_vcore *vcore;
2267
2268 err = -ENOMEM;
2269 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2270 if (!vcpu)
2271 goto out;
2272
2273 err = kvm_vcpu_init(vcpu, kvm, id);
2274 if (err)
2275 goto free_vcpu;
2276
2277 vcpu->arch.shared = &vcpu->arch.shregs;
2278#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2279 /*
2280 * The shared struct is never shared on HV,
2281 * so we can always use host endianness
2282 */
2283#ifdef __BIG_ENDIAN__
2284 vcpu->arch.shared_big_endian = true;
2285#else
2286 vcpu->arch.shared_big_endian = false;
2287#endif
2288#endif
2289 vcpu->arch.mmcr[0] = MMCR0_FC;
2290 vcpu->arch.ctrl = CTRL_RUNLATCH;
2291 /* default to host PVR, since we can't spoof it */
2292 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2293 spin_lock_init(&vcpu->arch.vpa_update_lock);
2294 spin_lock_init(&vcpu->arch.tbacct_lock);
2295 vcpu->arch.busy_preempt = TB_NIL;
2296 vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2297
2298 /*
2299 * Set the default HFSCR for the guest from the host value.
2300 * This value is only used on POWER9.
2301 * On POWER9, we want to virtualize the doorbell facility, so we
2302 * don't set the HFSCR_MSGP bit, and that causes those instructions
2303 * to trap and then we emulate them.
2304 */
2305 vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2306 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP;
2307 if (cpu_has_feature(CPU_FTR_HVMODE)) {
2308 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2309 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2310 vcpu->arch.hfscr |= HFSCR_TM;
2311 }
2312 if (cpu_has_feature(CPU_FTR_TM_COMP))
2313 vcpu->arch.hfscr |= HFSCR_TM;
2314
2315 kvmppc_mmu_book3s_hv_init(vcpu);
2316
2317 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2318
2319 init_waitqueue_head(&vcpu->arch.cpu_run);
2320
2321 mutex_lock(&kvm->lock);
2322 vcore = NULL;
2323 err = -EINVAL;
2324 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2325 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2326 pr_devel("KVM: VCPU ID too high\n");
2327 core = KVM_MAX_VCORES;
2328 } else {
2329 BUG_ON(kvm->arch.smt_mode != 1);
2330 core = kvmppc_pack_vcpu_id(kvm, id);
2331 }
2332 } else {
2333 core = id / kvm->arch.smt_mode;
2334 }
2335 if (core < KVM_MAX_VCORES) {
2336 vcore = kvm->arch.vcores[core];
2337 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2338 pr_devel("KVM: collision on id %u", id);
2339 vcore = NULL;
2340 } else if (!vcore) {
2341 /*
2342 * Take mmu_setup_lock for mutual exclusion
2343 * with kvmppc_update_lpcr().
2344 */
2345 err = -ENOMEM;
2346 vcore = kvmppc_vcore_create(kvm,
2347 id & ~(kvm->arch.smt_mode - 1));
2348 mutex_lock(&kvm->arch.mmu_setup_lock);
2349 kvm->arch.vcores[core] = vcore;
2350 kvm->arch.online_vcores++;
2351 mutex_unlock(&kvm->arch.mmu_setup_lock);
2352 }
2353 }
2354 mutex_unlock(&kvm->lock);
2355
2356 if (!vcore)
2357 goto free_vcpu;
2358
2359 spin_lock(&vcore->lock);
2360 ++vcore->num_threads;
2361 spin_unlock(&vcore->lock);
2362 vcpu->arch.vcore = vcore;
2363 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2364 vcpu->arch.thread_cpu = -1;
2365 vcpu->arch.prev_cpu = -1;
2366
2367 vcpu->arch.cpu_type = KVM_CPU_3S_64;
2368 kvmppc_sanity_check(vcpu);
2369
2370 debugfs_vcpu_init(vcpu, id);
2371
2372 return vcpu;
2373
2374free_vcpu:
2375 kmem_cache_free(kvm_vcpu_cache, vcpu);
2376out:
2377 return ERR_PTR(err);
2378}
2379
2380static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2381 unsigned long flags)
2382{
2383 int err;
2384 int esmt = 0;
2385
2386 if (flags)
2387 return -EINVAL;
2388 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2389 return -EINVAL;
2390 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2391 /*
2392 * On POWER8 (or POWER7), the threading mode is "strict",
2393 * so we pack smt_mode vcpus per vcore.
2394 */
2395 if (smt_mode > threads_per_subcore)
2396 return -EINVAL;
2397 } else {
2398 /*
2399 * On POWER9, the threading mode is "loose",
2400 * so each vcpu gets its own vcore.
2401 */
2402 esmt = smt_mode;
2403 smt_mode = 1;
2404 }
2405 mutex_lock(&kvm->lock);
2406 err = -EBUSY;
2407 if (!kvm->arch.online_vcores) {
2408 kvm->arch.smt_mode = smt_mode;
2409 kvm->arch.emul_smt_mode = esmt;
2410 err = 0;
2411 }
2412 mutex_unlock(&kvm->lock);
2413
2414 return err;
2415}
2416
2417static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2418{
2419 if (vpa->pinned_addr)
2420 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2421 vpa->dirty);
2422}
2423
2424static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2425{
2426 spin_lock(&vcpu->arch.vpa_update_lock);
2427 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2428 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2429 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2430 spin_unlock(&vcpu->arch.vpa_update_lock);
2431 kvm_vcpu_uninit(vcpu);
2432 kmem_cache_free(kvm_vcpu_cache, vcpu);
2433}
2434
2435static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2436{
2437 /* Indicate we want to get back into the guest */
2438 return 1;
2439}
2440
2441static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2442{
2443 unsigned long dec_nsec, now;
2444
2445 now = get_tb();
2446 if (now > vcpu->arch.dec_expires) {
2447 /* decrementer has already gone negative */
2448 kvmppc_core_queue_dec(vcpu);
2449 kvmppc_core_prepare_to_enter(vcpu);
2450 return;
2451 }
2452 dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now);
2453 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2454 vcpu->arch.timer_running = 1;
2455}
2456
2457static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2458{
2459 vcpu->arch.ceded = 0;
2460 if (vcpu->arch.timer_running) {
2461 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2462 vcpu->arch.timer_running = 0;
2463 }
2464}
2465
2466extern int __kvmppc_vcore_entry(void);
2467
2468static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2469 struct kvm_vcpu *vcpu)
2470{
2471 u64 now;
2472
2473 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2474 return;
2475 spin_lock_irq(&vcpu->arch.tbacct_lock);
2476 now = mftb();
2477 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2478 vcpu->arch.stolen_logged;
2479 vcpu->arch.busy_preempt = now;
2480 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2481 spin_unlock_irq(&vcpu->arch.tbacct_lock);
2482 --vc->n_runnable;
2483 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2484}
2485
2486static int kvmppc_grab_hwthread(int cpu)
2487{
2488 struct paca_struct *tpaca;
2489 long timeout = 10000;
2490
2491 tpaca = paca_ptrs[cpu];
2492
2493 /* Ensure the thread won't go into the kernel if it wakes */
2494 tpaca->kvm_hstate.kvm_vcpu = NULL;
2495 tpaca->kvm_hstate.kvm_vcore = NULL;
2496 tpaca->kvm_hstate.napping = 0;
2497 smp_wmb();
2498 tpaca->kvm_hstate.hwthread_req = 1;
2499
2500 /*
2501 * If the thread is already executing in the kernel (e.g. handling
2502 * a stray interrupt), wait for it to get back to nap mode.
2503 * The smp_mb() is to ensure that our setting of hwthread_req
2504 * is visible before we look at hwthread_state, so if this
2505 * races with the code at system_reset_pSeries and the thread
2506 * misses our setting of hwthread_req, we are sure to see its
2507 * setting of hwthread_state, and vice versa.
2508 */
2509 smp_mb();
2510 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2511 if (--timeout <= 0) {
2512 pr_err("KVM: couldn't grab cpu %d\n", cpu);
2513 return -EBUSY;
2514 }
2515 udelay(1);
2516 }
2517 return 0;
2518}
2519
2520static void kvmppc_release_hwthread(int cpu)
2521{
2522 struct paca_struct *tpaca;
2523
2524 tpaca = paca_ptrs[cpu];
2525 tpaca->kvm_hstate.hwthread_req = 0;
2526 tpaca->kvm_hstate.kvm_vcpu = NULL;
2527 tpaca->kvm_hstate.kvm_vcore = NULL;
2528 tpaca->kvm_hstate.kvm_split_mode = NULL;
2529}
2530
2531static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2532{
2533 struct kvm_nested_guest *nested = vcpu->arch.nested;
2534 cpumask_t *cpu_in_guest;
2535 int i;
2536
2537 cpu = cpu_first_thread_sibling(cpu);
2538 if (nested) {
2539 cpumask_set_cpu(cpu, &nested->need_tlb_flush);
2540 cpu_in_guest = &nested->cpu_in_guest;
2541 } else {
2542 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2543 cpu_in_guest = &kvm->arch.cpu_in_guest;
2544 }
2545 /*
2546 * Make sure setting of bit in need_tlb_flush precedes
2547 * testing of cpu_in_guest bits. The matching barrier on
2548 * the other side is the first smp_mb() in kvmppc_run_core().
2549 */
2550 smp_mb();
2551 for (i = 0; i < threads_per_core; ++i)
2552 if (cpumask_test_cpu(cpu + i, cpu_in_guest))
2553 smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2554}
2555
2556static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2557{
2558 struct kvm_nested_guest *nested = vcpu->arch.nested;
2559 struct kvm *kvm = vcpu->kvm;
2560 int prev_cpu;
2561
2562 if (!cpu_has_feature(CPU_FTR_HVMODE))
2563 return;
2564
2565 if (nested)
2566 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
2567 else
2568 prev_cpu = vcpu->arch.prev_cpu;
2569
2570 /*
2571 * With radix, the guest can do TLB invalidations itself,
2572 * and it could choose to use the local form (tlbiel) if
2573 * it is invalidating a translation that has only ever been
2574 * used on one vcpu. However, that doesn't mean it has
2575 * only ever been used on one physical cpu, since vcpus
2576 * can move around between pcpus. To cope with this, when
2577 * a vcpu moves from one pcpu to another, we need to tell
2578 * any vcpus running on the same core as this vcpu previously
2579 * ran to flush the TLB. The TLB is shared between threads,
2580 * so we use a single bit in .need_tlb_flush for all 4 threads.
2581 */
2582 if (prev_cpu != pcpu) {
2583 if (prev_cpu >= 0 &&
2584 cpu_first_thread_sibling(prev_cpu) !=
2585 cpu_first_thread_sibling(pcpu))
2586 radix_flush_cpu(kvm, prev_cpu, vcpu);
2587 if (nested)
2588 nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
2589 else
2590 vcpu->arch.prev_cpu = pcpu;
2591 }
2592}
2593
2594static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2595{
2596 int cpu;
2597 struct paca_struct *tpaca;
2598 struct kvm *kvm = vc->kvm;
2599
2600 cpu = vc->pcpu;
2601 if (vcpu) {
2602 if (vcpu->arch.timer_running) {
2603 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2604 vcpu->arch.timer_running = 0;
2605 }
2606 cpu += vcpu->arch.ptid;
2607 vcpu->cpu = vc->pcpu;
2608 vcpu->arch.thread_cpu = cpu;
2609 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2610 }
2611 tpaca = paca_ptrs[cpu];
2612 tpaca->kvm_hstate.kvm_vcpu = vcpu;
2613 tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2614 tpaca->kvm_hstate.fake_suspend = 0;
2615 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2616 smp_wmb();
2617 tpaca->kvm_hstate.kvm_vcore = vc;
2618 if (cpu != smp_processor_id())
2619 kvmppc_ipi_thread(cpu);
2620}
2621
2622static void kvmppc_wait_for_nap(int n_threads)
2623{
2624 int cpu = smp_processor_id();
2625 int i, loops;
2626
2627 if (n_threads <= 1)
2628 return;
2629 for (loops = 0; loops < 1000000; ++loops) {
2630 /*
2631 * Check if all threads are finished.
2632 * We set the vcore pointer when starting a thread
2633 * and the thread clears it when finished, so we look
2634 * for any threads that still have a non-NULL vcore ptr.
2635 */
2636 for (i = 1; i < n_threads; ++i)
2637 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2638 break;
2639 if (i == n_threads) {
2640 HMT_medium();
2641 return;
2642 }
2643 HMT_low();
2644 }
2645 HMT_medium();
2646 for (i = 1; i < n_threads; ++i)
2647 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2648 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2649}
2650
2651/*
2652 * Check that we are on thread 0 and that any other threads in
2653 * this core are off-line. Then grab the threads so they can't
2654 * enter the kernel.
2655 */
2656static int on_primary_thread(void)
2657{
2658 int cpu = smp_processor_id();
2659 int thr;
2660
2661 /* Are we on a primary subcore? */
2662 if (cpu_thread_in_subcore(cpu))
2663 return 0;
2664
2665 thr = 0;
2666 while (++thr < threads_per_subcore)
2667 if (cpu_online(cpu + thr))
2668 return 0;
2669
2670 /* Grab all hw threads so they can't go into the kernel */
2671 for (thr = 1; thr < threads_per_subcore; ++thr) {
2672 if (kvmppc_grab_hwthread(cpu + thr)) {
2673 /* Couldn't grab one; let the others go */
2674 do {
2675 kvmppc_release_hwthread(cpu + thr);
2676 } while (--thr > 0);
2677 return 0;
2678 }
2679 }
2680 return 1;
2681}
2682
2683/*
2684 * A list of virtual cores for each physical CPU.
2685 * These are vcores that could run but their runner VCPU tasks are
2686 * (or may be) preempted.
2687 */
2688struct preempted_vcore_list {
2689 struct list_head list;
2690 spinlock_t lock;
2691};
2692
2693static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2694
2695static void init_vcore_lists(void)
2696{
2697 int cpu;
2698
2699 for_each_possible_cpu(cpu) {
2700 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2701 spin_lock_init(&lp->lock);
2702 INIT_LIST_HEAD(&lp->list);
2703 }
2704}
2705
2706static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2707{
2708 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2709
2710 vc->vcore_state = VCORE_PREEMPT;
2711 vc->pcpu = smp_processor_id();
2712 if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2713 spin_lock(&lp->lock);
2714 list_add_tail(&vc->preempt_list, &lp->list);
2715 spin_unlock(&lp->lock);
2716 }
2717
2718 /* Start accumulating stolen time */
2719 kvmppc_core_start_stolen(vc);
2720}
2721
2722static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2723{
2724 struct preempted_vcore_list *lp;
2725
2726 kvmppc_core_end_stolen(vc);
2727 if (!list_empty(&vc->preempt_list)) {
2728 lp = &per_cpu(preempted_vcores, vc->pcpu);
2729 spin_lock(&lp->lock);
2730 list_del_init(&vc->preempt_list);
2731 spin_unlock(&lp->lock);
2732 }
2733 vc->vcore_state = VCORE_INACTIVE;
2734}
2735
2736/*
2737 * This stores information about the virtual cores currently
2738 * assigned to a physical core.
2739 */
2740struct core_info {
2741 int n_subcores;
2742 int max_subcore_threads;
2743 int total_threads;
2744 int subcore_threads[MAX_SUBCORES];
2745 struct kvmppc_vcore *vc[MAX_SUBCORES];
2746};
2747
2748/*
2749 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2750 * respectively in 2-way micro-threading (split-core) mode on POWER8.
2751 */
2752static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2753
2754static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2755{
2756 memset(cip, 0, sizeof(*cip));
2757 cip->n_subcores = 1;
2758 cip->max_subcore_threads = vc->num_threads;
2759 cip->total_threads = vc->num_threads;
2760 cip->subcore_threads[0] = vc->num_threads;
2761 cip->vc[0] = vc;
2762}
2763
2764static bool subcore_config_ok(int n_subcores, int n_threads)
2765{
2766 /*
2767 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2768 * split-core mode, with one thread per subcore.
2769 */
2770 if (cpu_has_feature(CPU_FTR_ARCH_300))
2771 return n_subcores <= 4 && n_threads == 1;
2772
2773 /* On POWER8, can only dynamically split if unsplit to begin with */
2774 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2775 return false;
2776 if (n_subcores > MAX_SUBCORES)
2777 return false;
2778 if (n_subcores > 1) {
2779 if (!(dynamic_mt_modes & 2))
2780 n_subcores = 4;
2781 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2782 return false;
2783 }
2784
2785 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2786}
2787
2788static void init_vcore_to_run(struct kvmppc_vcore *vc)
2789{
2790 vc->entry_exit_map = 0;
2791 vc->in_guest = 0;
2792 vc->napping_threads = 0;
2793 vc->conferring_threads = 0;
2794 vc->tb_offset_applied = 0;
2795}
2796
2797static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2798{
2799 int n_threads = vc->num_threads;
2800 int sub;
2801
2802 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2803 return false;
2804
2805 /* In one_vm_per_core mode, require all vcores to be from the same vm */
2806 if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
2807 return false;
2808
2809 /* Some POWER9 chips require all threads to be in the same MMU mode */
2810 if (no_mixing_hpt_and_radix &&
2811 kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2812 return false;
2813
2814 if (n_threads < cip->max_subcore_threads)
2815 n_threads = cip->max_subcore_threads;
2816 if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2817 return false;
2818 cip->max_subcore_threads = n_threads;
2819
2820 sub = cip->n_subcores;
2821 ++cip->n_subcores;
2822 cip->total_threads += vc->num_threads;
2823 cip->subcore_threads[sub] = vc->num_threads;
2824 cip->vc[sub] = vc;
2825 init_vcore_to_run(vc);
2826 list_del_init(&vc->preempt_list);
2827
2828 return true;
2829}
2830
2831/*
2832 * Work out whether it is possible to piggyback the execution of
2833 * vcore *pvc onto the execution of the other vcores described in *cip.
2834 */
2835static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2836 int target_threads)
2837{
2838 if (cip->total_threads + pvc->num_threads > target_threads)
2839 return false;
2840
2841 return can_dynamic_split(pvc, cip);
2842}
2843
2844static void prepare_threads(struct kvmppc_vcore *vc)
2845{
2846 int i;
2847 struct kvm_vcpu *vcpu;
2848
2849 for_each_runnable_thread(i, vcpu, vc) {
2850 if (signal_pending(vcpu->arch.run_task))
2851 vcpu->arch.ret = -EINTR;
2852 else if (vcpu->arch.vpa.update_pending ||
2853 vcpu->arch.slb_shadow.update_pending ||
2854 vcpu->arch.dtl.update_pending)
2855 vcpu->arch.ret = RESUME_GUEST;
2856 else
2857 continue;
2858 kvmppc_remove_runnable(vc, vcpu);
2859 wake_up(&vcpu->arch.cpu_run);
2860 }
2861}
2862
2863static void collect_piggybacks(struct core_info *cip, int target_threads)
2864{
2865 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2866 struct kvmppc_vcore *pvc, *vcnext;
2867
2868 spin_lock(&lp->lock);
2869 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2870 if (!spin_trylock(&pvc->lock))
2871 continue;
2872 prepare_threads(pvc);
2873 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
2874 list_del_init(&pvc->preempt_list);
2875 if (pvc->runner == NULL) {
2876 pvc->vcore_state = VCORE_INACTIVE;
2877 kvmppc_core_end_stolen(pvc);
2878 }
2879 spin_unlock(&pvc->lock);
2880 continue;
2881 }
2882 if (!can_piggyback(pvc, cip, target_threads)) {
2883 spin_unlock(&pvc->lock);
2884 continue;
2885 }
2886 kvmppc_core_end_stolen(pvc);
2887 pvc->vcore_state = VCORE_PIGGYBACK;
2888 if (cip->total_threads >= target_threads)
2889 break;
2890 }
2891 spin_unlock(&lp->lock);
2892}
2893
2894static bool recheck_signals_and_mmu(struct core_info *cip)
2895{
2896 int sub, i;
2897 struct kvm_vcpu *vcpu;
2898 struct kvmppc_vcore *vc;
2899
2900 for (sub = 0; sub < cip->n_subcores; ++sub) {
2901 vc = cip->vc[sub];
2902 if (!vc->kvm->arch.mmu_ready)
2903 return true;
2904 for_each_runnable_thread(i, vcpu, vc)
2905 if (signal_pending(vcpu->arch.run_task))
2906 return true;
2907 }
2908 return false;
2909}
2910
2911static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2912{
2913 int still_running = 0, i;
2914 u64 now;
2915 long ret;
2916 struct kvm_vcpu *vcpu;
2917
2918 spin_lock(&vc->lock);
2919 now = get_tb();
2920 for_each_runnable_thread(i, vcpu, vc) {
2921 /*
2922 * It's safe to unlock the vcore in the loop here, because
2923 * for_each_runnable_thread() is safe against removal of
2924 * the vcpu, and the vcore state is VCORE_EXITING here,
2925 * so any vcpus becoming runnable will have their arch.trap
2926 * set to zero and can't actually run in the guest.
2927 */
2928 spin_unlock(&vc->lock);
2929 /* cancel pending dec exception if dec is positive */
2930 if (now < vcpu->arch.dec_expires &&
2931 kvmppc_core_pending_dec(vcpu))
2932 kvmppc_core_dequeue_dec(vcpu);
2933
2934 trace_kvm_guest_exit(vcpu);
2935
2936 ret = RESUME_GUEST;
2937 if (vcpu->arch.trap)
2938 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2939 vcpu->arch.run_task);
2940
2941 vcpu->arch.ret = ret;
2942 vcpu->arch.trap = 0;
2943
2944 spin_lock(&vc->lock);
2945 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2946 if (vcpu->arch.pending_exceptions)
2947 kvmppc_core_prepare_to_enter(vcpu);
2948 if (vcpu->arch.ceded)
2949 kvmppc_set_timer(vcpu);
2950 else
2951 ++still_running;
2952 } else {
2953 kvmppc_remove_runnable(vc, vcpu);
2954 wake_up(&vcpu->arch.cpu_run);
2955 }
2956 }
2957 if (!is_master) {
2958 if (still_running > 0) {
2959 kvmppc_vcore_preempt(vc);
2960 } else if (vc->runner) {
2961 vc->vcore_state = VCORE_PREEMPT;
2962 kvmppc_core_start_stolen(vc);
2963 } else {
2964 vc->vcore_state = VCORE_INACTIVE;
2965 }
2966 if (vc->n_runnable > 0 && vc->runner == NULL) {
2967 /* make sure there's a candidate runner awake */
2968 i = -1;
2969 vcpu = next_runnable_thread(vc, &i);
2970 wake_up(&vcpu->arch.cpu_run);
2971 }
2972 }
2973 spin_unlock(&vc->lock);
2974}
2975
2976/*
2977 * Clear core from the list of active host cores as we are about to
2978 * enter the guest. Only do this if it is the primary thread of the
2979 * core (not if a subcore) that is entering the guest.
2980 */
2981static inline int kvmppc_clear_host_core(unsigned int cpu)
2982{
2983 int core;
2984
2985 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2986 return 0;
2987 /*
2988 * Memory barrier can be omitted here as we will do a smp_wmb()
2989 * later in kvmppc_start_thread and we need ensure that state is
2990 * visible to other CPUs only after we enter guest.
2991 */
2992 core = cpu >> threads_shift;
2993 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2994 return 0;
2995}
2996
2997/*
2998 * Advertise this core as an active host core since we exited the guest
2999 * Only need to do this if it is the primary thread of the core that is
3000 * exiting.
3001 */
3002static inline int kvmppc_set_host_core(unsigned int cpu)
3003{
3004 int core;
3005
3006 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3007 return 0;
3008
3009 /*
3010 * Memory barrier can be omitted here because we do a spin_unlock
3011 * immediately after this which provides the memory barrier.
3012 */
3013 core = cpu >> threads_shift;
3014 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3015 return 0;
3016}
3017
3018static void set_irq_happened(int trap)
3019{
3020 switch (trap) {
3021 case BOOK3S_INTERRUPT_EXTERNAL:
3022 local_paca->irq_happened |= PACA_IRQ_EE;
3023 break;
3024 case BOOK3S_INTERRUPT_H_DOORBELL:
3025 local_paca->irq_happened |= PACA_IRQ_DBELL;
3026 break;
3027 case BOOK3S_INTERRUPT_HMI:
3028 local_paca->irq_happened |= PACA_IRQ_HMI;
3029 break;
3030 case BOOK3S_INTERRUPT_SYSTEM_RESET:
3031 replay_system_reset();
3032 break;
3033 }
3034}
3035
3036/*
3037 * Run a set of guest threads on a physical core.
3038 * Called with vc->lock held.
3039 */
3040static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3041{
3042 struct kvm_vcpu *vcpu;
3043 int i;
3044 int srcu_idx;
3045 struct core_info core_info;
3046 struct kvmppc_vcore *pvc;
3047 struct kvm_split_mode split_info, *sip;
3048 int split, subcore_size, active;
3049 int sub;
3050 bool thr0_done;
3051 unsigned long cmd_bit, stat_bit;
3052 int pcpu, thr;
3053 int target_threads;
3054 int controlled_threads;
3055 int trap;
3056 bool is_power8;
3057 bool hpt_on_radix;
3058
3059 /*
3060 * Remove from the list any threads that have a signal pending
3061 * or need a VPA update done
3062 */
3063 prepare_threads(vc);
3064
3065 /* if the runner is no longer runnable, let the caller pick a new one */
3066 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3067 return;
3068
3069 /*
3070 * Initialize *vc.
3071 */
3072 init_vcore_to_run(vc);
3073 vc->preempt_tb = TB_NIL;
3074
3075 /*
3076 * Number of threads that we will be controlling: the same as
3077 * the number of threads per subcore, except on POWER9,
3078 * where it's 1 because the threads are (mostly) independent.
3079 */
3080 controlled_threads = threads_per_vcore(vc->kvm);
3081
3082 /*
3083 * Make sure we are running on primary threads, and that secondary
3084 * threads are offline. Also check if the number of threads in this
3085 * guest are greater than the current system threads per guest.
3086 * On POWER9, we need to be not in independent-threads mode if
3087 * this is a HPT guest on a radix host machine where the
3088 * CPU threads may not be in different MMU modes.
3089 */
3090 hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
3091 !kvm_is_radix(vc->kvm);
3092 if (((controlled_threads > 1) &&
3093 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
3094 (hpt_on_radix && vc->kvm->arch.threads_indep)) {
3095 for_each_runnable_thread(i, vcpu, vc) {
3096 vcpu->arch.ret = -EBUSY;
3097 kvmppc_remove_runnable(vc, vcpu);
3098 wake_up(&vcpu->arch.cpu_run);
3099 }
3100 goto out;
3101 }
3102
3103 /*
3104 * See if we could run any other vcores on the physical core
3105 * along with this one.
3106 */
3107 init_core_info(&core_info, vc);
3108 pcpu = smp_processor_id();
3109 target_threads = controlled_threads;
3110 if (target_smt_mode && target_smt_mode < target_threads)
3111 target_threads = target_smt_mode;
3112 if (vc->num_threads < target_threads)
3113 collect_piggybacks(&core_info, target_threads);
3114
3115 /*
3116 * On radix, arrange for TLB flushing if necessary.
3117 * This has to be done before disabling interrupts since
3118 * it uses smp_call_function().
3119 */
3120 pcpu = smp_processor_id();
3121 if (kvm_is_radix(vc->kvm)) {
3122 for (sub = 0; sub < core_info.n_subcores; ++sub)
3123 for_each_runnable_thread(i, vcpu, core_info.vc[sub])
3124 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
3125 }
3126
3127 /*
3128 * Hard-disable interrupts, and check resched flag and signals.
3129 * If we need to reschedule or deliver a signal, clean up
3130 * and return without going into the guest(s).
3131 * If the mmu_ready flag has been cleared, don't go into the
3132 * guest because that means a HPT resize operation is in progress.
3133 */
3134 local_irq_disable();
3135 hard_irq_disable();
3136 if (lazy_irq_pending() || need_resched() ||
3137 recheck_signals_and_mmu(&core_info)) {
3138 local_irq_enable();
3139 vc->vcore_state = VCORE_INACTIVE;
3140 /* Unlock all except the primary vcore */
3141 for (sub = 1; sub < core_info.n_subcores; ++sub) {
3142 pvc = core_info.vc[sub];
3143 /* Put back on to the preempted vcores list */
3144 kvmppc_vcore_preempt(pvc);
3145 spin_unlock(&pvc->lock);
3146 }
3147 for (i = 0; i < controlled_threads; ++i)
3148 kvmppc_release_hwthread(pcpu + i);
3149 return;
3150 }
3151
3152 kvmppc_clear_host_core(pcpu);
3153
3154 /* Decide on micro-threading (split-core) mode */
3155 subcore_size = threads_per_subcore;
3156 cmd_bit = stat_bit = 0;
3157 split = core_info.n_subcores;
3158 sip = NULL;
3159 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
3160 && !cpu_has_feature(CPU_FTR_ARCH_300);
3161
3162 if (split > 1 || hpt_on_radix) {
3163 sip = &split_info;
3164 memset(&split_info, 0, sizeof(split_info));
3165 for (sub = 0; sub < core_info.n_subcores; ++sub)
3166 split_info.vc[sub] = core_info.vc[sub];
3167
3168 if (is_power8) {
3169 if (split == 2 && (dynamic_mt_modes & 2)) {
3170 cmd_bit = HID0_POWER8_1TO2LPAR;
3171 stat_bit = HID0_POWER8_2LPARMODE;
3172 } else {
3173 split = 4;
3174 cmd_bit = HID0_POWER8_1TO4LPAR;
3175 stat_bit = HID0_POWER8_4LPARMODE;
3176 }
3177 subcore_size = MAX_SMT_THREADS / split;
3178 split_info.rpr = mfspr(SPRN_RPR);
3179 split_info.pmmar = mfspr(SPRN_PMMAR);
3180 split_info.ldbar = mfspr(SPRN_LDBAR);
3181 split_info.subcore_size = subcore_size;
3182 } else {
3183 split_info.subcore_size = 1;
3184 if (hpt_on_radix) {
3185 /* Use the split_info for LPCR/LPIDR changes */
3186 split_info.lpcr_req = vc->lpcr;
3187 split_info.lpidr_req = vc->kvm->arch.lpid;
3188 split_info.host_lpcr = vc->kvm->arch.host_lpcr;
3189 split_info.do_set = 1;
3190 }
3191 }
3192
3193 /* order writes to split_info before kvm_split_mode pointer */
3194 smp_wmb();
3195 }
3196
3197 for (thr = 0; thr < controlled_threads; ++thr) {
3198 struct paca_struct *paca = paca_ptrs[pcpu + thr];
3199
3200 paca->kvm_hstate.tid = thr;
3201 paca->kvm_hstate.napping = 0;
3202 paca->kvm_hstate.kvm_split_mode = sip;
3203 }
3204
3205 /* Initiate micro-threading (split-core) on POWER8 if required */
3206 if (cmd_bit) {
3207 unsigned long hid0 = mfspr(SPRN_HID0);
3208
3209 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3210 mb();
3211 mtspr(SPRN_HID0, hid0);
3212 isync();
3213 for (;;) {
3214 hid0 = mfspr(SPRN_HID0);
3215 if (hid0 & stat_bit)
3216 break;
3217 cpu_relax();
3218 }
3219 }
3220
3221 /*
3222 * On POWER8, set RWMR register.
3223 * Since it only affects PURR and SPURR, it doesn't affect
3224 * the host, so we don't save/restore the host value.
3225 */
3226 if (is_power8) {
3227 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3228 int n_online = atomic_read(&vc->online_count);
3229
3230 /*
3231 * Use the 8-thread value if we're doing split-core
3232 * or if the vcore's online count looks bogus.
3233 */
3234 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3235 n_online >= 1 && n_online <= MAX_SMT_THREADS)
3236 rwmr_val = p8_rwmr_values[n_online];
3237 mtspr(SPRN_RWMR, rwmr_val);
3238 }
3239
3240 /* Start all the threads */
3241 active = 0;
3242 for (sub = 0; sub < core_info.n_subcores; ++sub) {
3243 thr = is_power8 ? subcore_thread_map[sub] : sub;
3244 thr0_done = false;
3245 active |= 1 << thr;
3246 pvc = core_info.vc[sub];
3247 pvc->pcpu = pcpu + thr;
3248 for_each_runnable_thread(i, vcpu, pvc) {
3249 kvmppc_start_thread(vcpu, pvc);
3250 kvmppc_create_dtl_entry(vcpu, pvc);
3251 trace_kvm_guest_enter(vcpu);
3252 if (!vcpu->arch.ptid)
3253 thr0_done = true;
3254 active |= 1 << (thr + vcpu->arch.ptid);
3255 }
3256 /*
3257 * We need to start the first thread of each subcore
3258 * even if it doesn't have a vcpu.
3259 */
3260 if (!thr0_done)
3261 kvmppc_start_thread(NULL, pvc);
3262 }
3263
3264 /*
3265 * Ensure that split_info.do_nap is set after setting
3266 * the vcore pointer in the PACA of the secondaries.
3267 */
3268 smp_mb();
3269
3270 /*
3271 * When doing micro-threading, poke the inactive threads as well.
3272 * This gets them to the nap instruction after kvm_do_nap,
3273 * which reduces the time taken to unsplit later.
3274 * For POWER9 HPT guest on radix host, we need all the secondary
3275 * threads woken up so they can do the LPCR/LPIDR change.
3276 */
3277 if (cmd_bit || hpt_on_radix) {
3278 split_info.do_nap = 1; /* ask secondaries to nap when done */
3279 for (thr = 1; thr < threads_per_subcore; ++thr)
3280 if (!(active & (1 << thr)))
3281 kvmppc_ipi_thread(pcpu + thr);
3282 }
3283
3284 vc->vcore_state = VCORE_RUNNING;
3285 preempt_disable();
3286
3287 trace_kvmppc_run_core(vc, 0);
3288
3289 for (sub = 0; sub < core_info.n_subcores; ++sub)
3290 spin_unlock(&core_info.vc[sub]->lock);
3291
3292 guest_enter_irqoff();
3293
3294 srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3295
3296 this_cpu_disable_ftrace();
3297
3298 /*
3299 * Interrupts will be enabled once we get into the guest,
3300 * so tell lockdep that we're about to enable interrupts.
3301 */
3302 trace_hardirqs_on();
3303
3304 trap = __kvmppc_vcore_entry();
3305
3306 trace_hardirqs_off();
3307
3308 this_cpu_enable_ftrace();
3309
3310 srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3311
3312 set_irq_happened(trap);
3313
3314 spin_lock(&vc->lock);
3315 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
3316 vc->vcore_state = VCORE_EXITING;
3317
3318 /* wait for secondary threads to finish writing their state to memory */
3319 kvmppc_wait_for_nap(controlled_threads);
3320
3321 /* Return to whole-core mode if we split the core earlier */
3322 if (cmd_bit) {
3323 unsigned long hid0 = mfspr(SPRN_HID0);
3324 unsigned long loops = 0;
3325
3326 hid0 &= ~HID0_POWER8_DYNLPARDIS;
3327 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3328 mb();
3329 mtspr(SPRN_HID0, hid0);
3330 isync();
3331 for (;;) {
3332 hid0 = mfspr(SPRN_HID0);
3333 if (!(hid0 & stat_bit))
3334 break;
3335 cpu_relax();
3336 ++loops;
3337 }
3338 } else if (hpt_on_radix) {
3339 /* Wait for all threads to have seen final sync */
3340 for (thr = 1; thr < controlled_threads; ++thr) {
3341 struct paca_struct *paca = paca_ptrs[pcpu + thr];
3342
3343 while (paca->kvm_hstate.kvm_split_mode) {
3344 HMT_low();
3345 barrier();
3346 }
3347 HMT_medium();
3348 }
3349 }
3350 split_info.do_nap = 0;
3351
3352 kvmppc_set_host_core(pcpu);
3353
3354 local_irq_enable();
3355 guest_exit();
3356
3357 /* Let secondaries go back to the offline loop */
3358 for (i = 0; i < controlled_threads; ++i) {
3359 kvmppc_release_hwthread(pcpu + i);
3360 if (sip && sip->napped[i])
3361 kvmppc_ipi_thread(pcpu + i);
3362 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3363 }
3364
3365 spin_unlock(&vc->lock);
3366
3367 /* make sure updates to secondary vcpu structs are visible now */
3368 smp_mb();
3369
3370 preempt_enable();
3371
3372 for (sub = 0; sub < core_info.n_subcores; ++sub) {
3373 pvc = core_info.vc[sub];
3374 post_guest_process(pvc, pvc == vc);
3375 }
3376
3377 spin_lock(&vc->lock);
3378
3379 out:
3380 vc->vcore_state = VCORE_INACTIVE;
3381 trace_kvmppc_run_core(vc, 1);
3382}
3383
3384/*
3385 * Load up hypervisor-mode registers on P9.
3386 */
3387static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit,
3388 unsigned long lpcr)
3389{
3390 struct kvmppc_vcore *vc = vcpu->arch.vcore;
3391 s64 hdec;
3392 u64 tb, purr, spurr;
3393 int trap;
3394 unsigned long host_hfscr = mfspr(SPRN_HFSCR);
3395 unsigned long host_ciabr = mfspr(SPRN_CIABR);
3396 unsigned long host_dawr = mfspr(SPRN_DAWR);
3397 unsigned long host_dawrx = mfspr(SPRN_DAWRX);
3398 unsigned long host_psscr = mfspr(SPRN_PSSCR);
3399 unsigned long host_pidr = mfspr(SPRN_PID);
3400
3401 hdec = time_limit - mftb();
3402 if (hdec < 0)
3403 return BOOK3S_INTERRUPT_HV_DECREMENTER;
3404 mtspr(SPRN_HDEC, hdec);
3405
3406 if (vc->tb_offset) {
3407 u64 new_tb = mftb() + vc->tb_offset;
3408 mtspr(SPRN_TBU40, new_tb);
3409 tb = mftb();
3410 if ((tb & 0xffffff) < (new_tb & 0xffffff))
3411 mtspr(SPRN_TBU40, new_tb + 0x1000000);
3412 vc->tb_offset_applied = vc->tb_offset;
3413 }
3414
3415 if (vc->pcr)
3416 mtspr(SPRN_PCR, vc->pcr | PCR_MASK);
3417 mtspr(SPRN_DPDES, vc->dpdes);
3418 mtspr(SPRN_VTB, vc->vtb);
3419
3420 local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR);
3421 local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR);
3422 mtspr(SPRN_PURR, vcpu->arch.purr);
3423 mtspr(SPRN_SPURR, vcpu->arch.spurr);
3424
3425 if (dawr_enabled()) {
3426 mtspr(SPRN_DAWR, vcpu->arch.dawr);
3427 mtspr(SPRN_DAWRX, vcpu->arch.dawrx);
3428 }
3429 mtspr(SPRN_CIABR, vcpu->arch.ciabr);
3430 mtspr(SPRN_IC, vcpu->arch.ic);
3431 mtspr(SPRN_PID, vcpu->arch.pid);
3432
3433 mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC |
3434 (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3435
3436 mtspr(SPRN_HFSCR, vcpu->arch.hfscr);
3437
3438 mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0);
3439 mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1);
3440 mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2);
3441 mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3);
3442
3443 mtspr(SPRN_AMOR, ~0UL);
3444
3445 mtspr(SPRN_LPCR, lpcr);
3446 isync();
3447
3448 kvmppc_xive_push_vcpu(vcpu);
3449
3450 mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0);
3451 mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1);
3452
3453 trap = __kvmhv_vcpu_entry_p9(vcpu);
3454
3455 /* Advance host PURR/SPURR by the amount used by guest */
3456 purr = mfspr(SPRN_PURR);
3457 spurr = mfspr(SPRN_SPURR);
3458 mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr +
3459 purr - vcpu->arch.purr);
3460 mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr +
3461 spurr - vcpu->arch.spurr);
3462 vcpu->arch.purr = purr;
3463 vcpu->arch.spurr = spurr;
3464
3465 vcpu->arch.ic = mfspr(SPRN_IC);
3466 vcpu->arch.pid = mfspr(SPRN_PID);
3467 vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS;
3468
3469 vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0);
3470 vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1);
3471 vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2);
3472 vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3);
3473
3474 /* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */
3475 mtspr(SPRN_PSSCR, host_psscr |
3476 (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3477 mtspr(SPRN_HFSCR, host_hfscr);
3478 mtspr(SPRN_CIABR, host_ciabr);
3479 mtspr(SPRN_DAWR, host_dawr);
3480 mtspr(SPRN_DAWRX, host_dawrx);
3481 mtspr(SPRN_PID, host_pidr);
3482
3483 /*
3484 * Since this is radix, do a eieio; tlbsync; ptesync sequence in
3485 * case we interrupted the guest between a tlbie and a ptesync.
3486 */
3487 asm volatile("eieio; tlbsync; ptesync");
3488
3489 mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid); /* restore host LPID */
3490 isync();
3491
3492 vc->dpdes = mfspr(SPRN_DPDES);
3493 vc->vtb = mfspr(SPRN_VTB);
3494 mtspr(SPRN_DPDES, 0);
3495 if (vc->pcr)
3496 mtspr(SPRN_PCR, PCR_MASK);
3497
3498 if (vc->tb_offset_applied) {
3499 u64 new_tb = mftb() - vc->tb_offset_applied;
3500 mtspr(SPRN_TBU40, new_tb);
3501 tb = mftb();
3502 if ((tb & 0xffffff) < (new_tb & 0xffffff))
3503 mtspr(SPRN_TBU40, new_tb + 0x1000000);
3504 vc->tb_offset_applied = 0;
3505 }
3506
3507 mtspr(SPRN_HDEC, 0x7fffffff);
3508 mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);
3509
3510 return trap;
3511}
3512
3513/*
3514 * Virtual-mode guest entry for POWER9 and later when the host and
3515 * guest are both using the radix MMU. The LPIDR has already been set.
3516 */
3517int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
3518 unsigned long lpcr)
3519{
3520 struct kvmppc_vcore *vc = vcpu->arch.vcore;
3521 unsigned long host_dscr = mfspr(SPRN_DSCR);
3522 unsigned long host_tidr = mfspr(SPRN_TIDR);
3523 unsigned long host_iamr = mfspr(SPRN_IAMR);
3524 unsigned long host_amr = mfspr(SPRN_AMR);
3525 s64 dec;
3526 u64 tb;
3527 int trap, save_pmu;
3528
3529 dec = mfspr(SPRN_DEC);
3530 tb = mftb();
3531 if (dec < 512)
3532 return BOOK3S_INTERRUPT_HV_DECREMENTER;
3533 local_paca->kvm_hstate.dec_expires = dec + tb;
3534 if (local_paca->kvm_hstate.dec_expires < time_limit)
3535 time_limit = local_paca->kvm_hstate.dec_expires;
3536
3537 vcpu->arch.ceded = 0;
3538
3539 kvmhv_save_host_pmu(); /* saves it to PACA kvm_hstate */
3540
3541 kvmppc_subcore_enter_guest();
3542
3543 vc->entry_exit_map = 1;
3544 vc->in_guest = 1;
3545
3546 if (vcpu->arch.vpa.pinned_addr) {
3547 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3548 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3549 lp->yield_count = cpu_to_be32(yield_count);
3550 vcpu->arch.vpa.dirty = 1;
3551 }
3552
3553 if (cpu_has_feature(CPU_FTR_TM) ||
3554 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3555 kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3556
3557 kvmhv_load_guest_pmu(vcpu);
3558
3559 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3560 load_fp_state(&vcpu->arch.fp);
3561#ifdef CONFIG_ALTIVEC
3562 load_vr_state(&vcpu->arch.vr);
3563#endif
3564 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
3565
3566 mtspr(SPRN_DSCR, vcpu->arch.dscr);
3567 mtspr(SPRN_IAMR, vcpu->arch.iamr);
3568 mtspr(SPRN_PSPB, vcpu->arch.pspb);
3569 mtspr(SPRN_FSCR, vcpu->arch.fscr);
3570 mtspr(SPRN_TAR, vcpu->arch.tar);
3571 mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
3572 mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
3573 mtspr(SPRN_BESCR, vcpu->arch.bescr);
3574 mtspr(SPRN_WORT, vcpu->arch.wort);
3575 mtspr(SPRN_TIDR, vcpu->arch.tid);
3576 mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
3577 mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
3578 mtspr(SPRN_AMR, vcpu->arch.amr);
3579 mtspr(SPRN_UAMOR, vcpu->arch.uamor);
3580
3581 if (!(vcpu->arch.ctrl & 1))
3582 mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);
3583
3584 mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());
3585
3586 if (kvmhv_on_pseries()) {
3587 /*
3588 * We need to save and restore the guest visible part of the
3589 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
3590 * doesn't do this for us. Note only required if pseries since
3591 * this is done in kvmhv_load_hv_regs_and_go() below otherwise.
3592 */
3593 unsigned long host_psscr;
3594 /* call our hypervisor to load up HV regs and go */
3595 struct hv_guest_state hvregs;
3596
3597 host_psscr = mfspr(SPRN_PSSCR_PR);
3598 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
3599 kvmhv_save_hv_regs(vcpu, &hvregs);
3600 hvregs.lpcr = lpcr;
3601 vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
3602 hvregs.version = HV_GUEST_STATE_VERSION;
3603 if (vcpu->arch.nested) {
3604 hvregs.lpid = vcpu->arch.nested->shadow_lpid;
3605 hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
3606 } else {
3607 hvregs.lpid = vcpu->kvm->arch.lpid;
3608 hvregs.vcpu_token = vcpu->vcpu_id;
3609 }
3610 hvregs.hdec_expiry = time_limit;
3611 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
3612 __pa(&vcpu->arch.regs));
3613 kvmhv_restore_hv_return_state(vcpu, &hvregs);
3614 vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
3615 vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
3616 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
3617 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
3618 mtspr(SPRN_PSSCR_PR, host_psscr);
3619
3620 /* H_CEDE has to be handled now, not later */
3621 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
3622 kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
3623 kvmppc_nested_cede(vcpu);
3624 trap = 0;
3625 }
3626 } else {
3627 trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr);
3628 }
3629
3630 vcpu->arch.slb_max = 0;
3631 dec = mfspr(SPRN_DEC);
3632 if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
3633 dec = (s32) dec;
3634 tb = mftb();
3635 vcpu->arch.dec_expires = dec + tb;
3636 vcpu->cpu = -1;
3637 vcpu->arch.thread_cpu = -1;
3638 vcpu->arch.ctrl = mfspr(SPRN_CTRLF);
3639
3640 vcpu->arch.iamr = mfspr(SPRN_IAMR);
3641 vcpu->arch.pspb = mfspr(SPRN_PSPB);
3642 vcpu->arch.fscr = mfspr(SPRN_FSCR);
3643 vcpu->arch.tar = mfspr(SPRN_TAR);
3644 vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
3645 vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
3646 vcpu->arch.bescr = mfspr(SPRN_BESCR);
3647 vcpu->arch.wort = mfspr(SPRN_WORT);
3648 vcpu->arch.tid = mfspr(SPRN_TIDR);
3649 vcpu->arch.amr = mfspr(SPRN_AMR);
3650 vcpu->arch.uamor = mfspr(SPRN_UAMOR);
3651 vcpu->arch.dscr = mfspr(SPRN_DSCR);
3652
3653 mtspr(SPRN_PSPB, 0);
3654 mtspr(SPRN_WORT, 0);
3655 mtspr(SPRN_UAMOR, 0);
3656 mtspr(SPRN_DSCR, host_dscr);
3657 mtspr(SPRN_TIDR, host_tidr);
3658 mtspr(SPRN_IAMR, host_iamr);
3659 mtspr(SPRN_PSPB, 0);
3660
3661 if (host_amr != vcpu->arch.amr)
3662 mtspr(SPRN_AMR, host_amr);
3663
3664 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3665 store_fp_state(&vcpu->arch.fp);
3666#ifdef CONFIG_ALTIVEC
3667 store_vr_state(&vcpu->arch.vr);
3668#endif
3669 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
3670
3671 if (cpu_has_feature(CPU_FTR_TM) ||
3672 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3673 kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3674
3675 save_pmu = 1;
3676 if (vcpu->arch.vpa.pinned_addr) {
3677 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3678 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3679 lp->yield_count = cpu_to_be32(yield_count);
3680 vcpu->arch.vpa.dirty = 1;
3681 save_pmu = lp->pmcregs_in_use;
3682 }
3683 /* Must save pmu if this guest is capable of running nested guests */
3684 save_pmu |= nesting_enabled(vcpu->kvm);
3685
3686 kvmhv_save_guest_pmu(vcpu, save_pmu);
3687
3688 vc->entry_exit_map = 0x101;
3689 vc->in_guest = 0;
3690
3691 mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());
3692 mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso);
3693
3694 kvmhv_load_host_pmu();
3695
3696 kvmppc_subcore_exit_guest();
3697
3698 return trap;
3699}
3700
3701/*
3702 * Wait for some other vcpu thread to execute us, and
3703 * wake us up when we need to handle something in the host.
3704 */
3705static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
3706 struct kvm_vcpu *vcpu, int wait_state)
3707{
3708 DEFINE_WAIT(wait);
3709
3710 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3711 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3712 spin_unlock(&vc->lock);
3713 schedule();
3714 spin_lock(&vc->lock);
3715 }
3716 finish_wait(&vcpu->arch.cpu_run, &wait);
3717}
3718
3719static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
3720{
3721 if (!halt_poll_ns_grow)
3722 return;
3723
3724 vc->halt_poll_ns *= halt_poll_ns_grow;
3725 if (vc->halt_poll_ns < halt_poll_ns_grow_start)
3726 vc->halt_poll_ns = halt_poll_ns_grow_start;
3727}
3728
3729static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
3730{
3731 if (halt_poll_ns_shrink == 0)
3732 vc->halt_poll_ns = 0;
3733 else
3734 vc->halt_poll_ns /= halt_poll_ns_shrink;
3735}
3736
3737#ifdef CONFIG_KVM_XICS
3738static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3739{
3740 if (!xics_on_xive())
3741 return false;
3742 return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3743 vcpu->arch.xive_saved_state.cppr;
3744}
3745#else
3746static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3747{
3748 return false;
3749}
3750#endif /* CONFIG_KVM_XICS */
3751
3752static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3753{
3754 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3755 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3756 return true;
3757
3758 return false;
3759}
3760
3761/*
3762 * Check to see if any of the runnable vcpus on the vcore have pending
3763 * exceptions or are no longer ceded
3764 */
3765static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3766{
3767 struct kvm_vcpu *vcpu;
3768 int i;
3769
3770 for_each_runnable_thread(i, vcpu, vc) {
3771 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3772 return 1;
3773 }
3774
3775 return 0;
3776}
3777
3778/*
3779 * All the vcpus in this vcore are idle, so wait for a decrementer
3780 * or external interrupt to one of the vcpus. vc->lock is held.
3781 */
3782static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3783{
3784 ktime_t cur, start_poll, start_wait;
3785 int do_sleep = 1;
3786 u64 block_ns;
3787 DECLARE_SWAITQUEUE(wait);
3788
3789 /* Poll for pending exceptions and ceded state */
3790 cur = start_poll = ktime_get();
3791 if (vc->halt_poll_ns) {
3792 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3793 ++vc->runner->stat.halt_attempted_poll;
3794
3795 vc->vcore_state = VCORE_POLLING;
3796 spin_unlock(&vc->lock);
3797
3798 do {
3799 if (kvmppc_vcore_check_block(vc)) {
3800 do_sleep = 0;
3801 break;
3802 }
3803 cur = ktime_get();
3804 } while (single_task_running() && ktime_before(cur, stop));
3805
3806 spin_lock(&vc->lock);
3807 vc->vcore_state = VCORE_INACTIVE;
3808
3809 if (!do_sleep) {
3810 ++vc->runner->stat.halt_successful_poll;
3811 goto out;
3812 }
3813 }
3814
3815 prepare_to_swait_exclusive(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3816
3817 if (kvmppc_vcore_check_block(vc)) {
3818 finish_swait(&vc->wq, &wait);
3819 do_sleep = 0;
3820 /* If we polled, count this as a successful poll */
3821 if (vc->halt_poll_ns)
3822 ++vc->runner->stat.halt_successful_poll;
3823 goto out;
3824 }
3825
3826 start_wait = ktime_get();
3827
3828 vc->vcore_state = VCORE_SLEEPING;
3829 trace_kvmppc_vcore_blocked(vc, 0);
3830 spin_unlock(&vc->lock);
3831 schedule();
3832 finish_swait(&vc->wq, &wait);
3833 spin_lock(&vc->lock);
3834 vc->vcore_state = VCORE_INACTIVE;
3835 trace_kvmppc_vcore_blocked(vc, 1);
3836 ++vc->runner->stat.halt_successful_wait;
3837
3838 cur = ktime_get();
3839
3840out:
3841 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3842
3843 /* Attribute wait time */
3844 if (do_sleep) {
3845 vc->runner->stat.halt_wait_ns +=
3846 ktime_to_ns(cur) - ktime_to_ns(start_wait);
3847 /* Attribute failed poll time */
3848 if (vc->halt_poll_ns)
3849 vc->runner->stat.halt_poll_fail_ns +=
3850 ktime_to_ns(start_wait) -
3851 ktime_to_ns(start_poll);
3852 } else {
3853 /* Attribute successful poll time */
3854 if (vc->halt_poll_ns)
3855 vc->runner->stat.halt_poll_success_ns +=
3856 ktime_to_ns(cur) -
3857 ktime_to_ns(start_poll);
3858 }
3859
3860 /* Adjust poll time */
3861 if (halt_poll_ns) {
3862 if (block_ns <= vc->halt_poll_ns)
3863 ;
3864 /* We slept and blocked for longer than the max halt time */
3865 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3866 shrink_halt_poll_ns(vc);
3867 /* We slept and our poll time is too small */
3868 else if (vc->halt_poll_ns < halt_poll_ns &&
3869 block_ns < halt_poll_ns)
3870 grow_halt_poll_ns(vc);
3871 if (vc->halt_poll_ns > halt_poll_ns)
3872 vc->halt_poll_ns = halt_poll_ns;
3873 } else
3874 vc->halt_poll_ns = 0;
3875
3876 trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3877}
3878
3879/*
3880 * This never fails for a radix guest, as none of the operations it does
3881 * for a radix guest can fail or have a way to report failure.
3882 * kvmhv_run_single_vcpu() relies on this fact.
3883 */
3884static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3885{
3886 int r = 0;
3887 struct kvm *kvm = vcpu->kvm;
3888
3889 mutex_lock(&kvm->arch.mmu_setup_lock);
3890 if (!kvm->arch.mmu_ready) {
3891 if (!kvm_is_radix(kvm))
3892 r = kvmppc_hv_setup_htab_rma(vcpu);
3893 if (!r) {
3894 if (cpu_has_feature(CPU_FTR_ARCH_300))
3895 kvmppc_setup_partition_table(kvm);
3896 kvm->arch.mmu_ready = 1;
3897 }
3898 }
3899 mutex_unlock(&kvm->arch.mmu_setup_lock);
3900 return r;
3901}
3902
3903static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3904{
3905 int n_ceded, i, r;
3906 struct kvmppc_vcore *vc;
3907 struct kvm_vcpu *v;
3908
3909 trace_kvmppc_run_vcpu_enter(vcpu);
3910
3911 kvm_run->exit_reason = 0;
3912 vcpu->arch.ret = RESUME_GUEST;
3913 vcpu->arch.trap = 0;
3914 kvmppc_update_vpas(vcpu);
3915
3916 /*
3917 * Synchronize with other threads in this virtual core
3918 */
3919 vc = vcpu->arch.vcore;
3920 spin_lock(&vc->lock);
3921 vcpu->arch.ceded = 0;
3922 vcpu->arch.run_task = current;
3923 vcpu->arch.kvm_run = kvm_run;
3924 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3925 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3926 vcpu->arch.busy_preempt = TB_NIL;
3927 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3928 ++vc->n_runnable;
3929
3930 /*
3931 * This happens the first time this is called for a vcpu.
3932 * If the vcore is already running, we may be able to start
3933 * this thread straight away and have it join in.
3934 */
3935 if (!signal_pending(current)) {
3936 if ((vc->vcore_state == VCORE_PIGGYBACK ||
3937 vc->vcore_state == VCORE_RUNNING) &&
3938 !VCORE_IS_EXITING(vc)) {
3939 kvmppc_create_dtl_entry(vcpu, vc);
3940 kvmppc_start_thread(vcpu, vc);
3941 trace_kvm_guest_enter(vcpu);
3942 } else if (vc->vcore_state == VCORE_SLEEPING) {
3943 swake_up_one(&vc->wq);
3944 }
3945
3946 }
3947
3948 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3949 !signal_pending(current)) {
3950 /* See if the MMU is ready to go */
3951 if (!vcpu->kvm->arch.mmu_ready) {
3952 spin_unlock(&vc->lock);
3953 r = kvmhv_setup_mmu(vcpu);
3954 spin_lock(&vc->lock);
3955 if (r) {
3956 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3957 kvm_run->fail_entry.
3958 hardware_entry_failure_reason = 0;
3959 vcpu->arch.ret = r;
3960 break;
3961 }
3962 }
3963
3964 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3965 kvmppc_vcore_end_preempt(vc);
3966
3967 if (vc->vcore_state != VCORE_INACTIVE) {
3968 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3969 continue;
3970 }
3971 for_each_runnable_thread(i, v, vc) {
3972 kvmppc_core_prepare_to_enter(v);
3973 if (signal_pending(v->arch.run_task)) {
3974 kvmppc_remove_runnable(vc, v);
3975 v->stat.signal_exits++;
3976 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3977 v->arch.ret = -EINTR;
3978 wake_up(&v->arch.cpu_run);
3979 }
3980 }
3981 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3982 break;
3983 n_ceded = 0;
3984 for_each_runnable_thread(i, v, vc) {
3985 if (!kvmppc_vcpu_woken(v))
3986 n_ceded += v->arch.ceded;
3987 else
3988 v->arch.ceded = 0;
3989 }
3990 vc->runner = vcpu;
3991 if (n_ceded == vc->n_runnable) {
3992 kvmppc_vcore_blocked(vc);
3993 } else if (need_resched()) {
3994 kvmppc_vcore_preempt(vc);
3995 /* Let something else run */
3996 cond_resched_lock(&vc->lock);
3997 if (vc->vcore_state == VCORE_PREEMPT)
3998 kvmppc_vcore_end_preempt(vc);
3999 } else {
4000 kvmppc_run_core(vc);
4001 }
4002 vc->runner = NULL;
4003 }
4004
4005 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4006 (vc->vcore_state == VCORE_RUNNING ||
4007 vc->vcore_state == VCORE_EXITING ||
4008 vc->vcore_state == VCORE_PIGGYBACK))
4009 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4010
4011 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4012 kvmppc_vcore_end_preempt(vc);
4013
4014 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4015 kvmppc_remove_runnable(vc, vcpu);
4016 vcpu->stat.signal_exits++;
4017 kvm_run->exit_reason = KVM_EXIT_INTR;
4018 vcpu->arch.ret = -EINTR;
4019 }
4020
4021 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4022 /* Wake up some vcpu to run the core */
4023 i = -1;
4024 v = next_runnable_thread(vc, &i);
4025 wake_up(&v->arch.cpu_run);
4026 }
4027
4028 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
4029 spin_unlock(&vc->lock);
4030 return vcpu->arch.ret;
4031}
4032
4033int kvmhv_run_single_vcpu(struct kvm_run *kvm_run,
4034 struct kvm_vcpu *vcpu, u64 time_limit,
4035 unsigned long lpcr)
4036{
4037 int trap, r, pcpu;
4038 int srcu_idx, lpid;
4039 struct kvmppc_vcore *vc;
4040 struct kvm *kvm = vcpu->kvm;
4041 struct kvm_nested_guest *nested = vcpu->arch.nested;
4042
4043 trace_kvmppc_run_vcpu_enter(vcpu);
4044
4045 kvm_run->exit_reason = 0;
4046 vcpu->arch.ret = RESUME_GUEST;
4047 vcpu->arch.trap = 0;
4048
4049 vc = vcpu->arch.vcore;
4050 vcpu->arch.ceded = 0;
4051 vcpu->arch.run_task = current;
4052 vcpu->arch.kvm_run = kvm_run;
4053 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4054 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4055 vcpu->arch.busy_preempt = TB_NIL;
4056 vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4057 vc->runnable_threads[0] = vcpu;
4058 vc->n_runnable = 1;
4059 vc->runner = vcpu;
4060
4061 /* See if the MMU is ready to go */
4062 if (!kvm->arch.mmu_ready)
4063 kvmhv_setup_mmu(vcpu);
4064
4065 if (need_resched())
4066 cond_resched();
4067
4068 kvmppc_update_vpas(vcpu);
4069
4070 init_vcore_to_run(vc);
4071 vc->preempt_tb = TB_NIL;
4072
4073 preempt_disable();
4074 pcpu = smp_processor_id();
4075 vc->pcpu = pcpu;
4076 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4077
4078 local_irq_disable();
4079 hard_irq_disable();
4080 if (signal_pending(current))
4081 goto sigpend;
4082 if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
4083 goto out;
4084
4085 if (!nested) {
4086 kvmppc_core_prepare_to_enter(vcpu);
4087 if (vcpu->arch.doorbell_request) {
4088 vc->dpdes = 1;
4089 smp_wmb();
4090 vcpu->arch.doorbell_request = 0;
4091 }
4092 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4093 &vcpu->arch.pending_exceptions))
4094 lpcr |= LPCR_MER;
4095 } else if (vcpu->arch.pending_exceptions ||
4096 vcpu->arch.doorbell_request ||
4097 xive_interrupt_pending(vcpu)) {
4098 vcpu->arch.ret = RESUME_HOST;
4099 goto out;
4100 }
4101
4102 kvmppc_clear_host_core(pcpu);
4103
4104 local_paca->kvm_hstate.tid = 0;
4105 local_paca->kvm_hstate.napping = 0;
4106 local_paca->kvm_hstate.kvm_split_mode = NULL;
4107 kvmppc_start_thread(vcpu, vc);
4108 kvmppc_create_dtl_entry(vcpu, vc);
4109 trace_kvm_guest_enter(vcpu);
4110
4111 vc->vcore_state = VCORE_RUNNING;
4112 trace_kvmppc_run_core(vc, 0);
4113
4114 if (cpu_has_feature(CPU_FTR_HVMODE)) {
4115 lpid = nested ? nested->shadow_lpid : kvm->arch.lpid;
4116 mtspr(SPRN_LPID, lpid);
4117 isync();
4118 kvmppc_check_need_tlb_flush(kvm, pcpu, nested);
4119 }
4120
4121 guest_enter_irqoff();
4122
4123 srcu_idx = srcu_read_lock(&kvm->srcu);
4124
4125 this_cpu_disable_ftrace();
4126
4127 /* Tell lockdep that we're about to enable interrupts */
4128 trace_hardirqs_on();
4129
4130 trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr);
4131 vcpu->arch.trap = trap;
4132
4133 trace_hardirqs_off();
4134
4135 this_cpu_enable_ftrace();
4136
4137 srcu_read_unlock(&kvm->srcu, srcu_idx);
4138
4139 if (cpu_has_feature(CPU_FTR_HVMODE)) {
4140 mtspr(SPRN_LPID, kvm->arch.host_lpid);
4141 isync();
4142 }
4143
4144 set_irq_happened(trap);
4145
4146 kvmppc_set_host_core(pcpu);
4147
4148 local_irq_enable();
4149 guest_exit();
4150
4151 cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);
4152
4153 preempt_enable();
4154
4155 /*
4156 * cancel pending decrementer exception if DEC is now positive, or if
4157 * entering a nested guest in which case the decrementer is now owned
4158 * by L2 and the L1 decrementer is provided in hdec_expires
4159 */
4160 if (kvmppc_core_pending_dec(vcpu) &&
4161 ((get_tb() < vcpu->arch.dec_expires) ||
4162 (trap == BOOK3S_INTERRUPT_SYSCALL &&
4163 kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4164 kvmppc_core_dequeue_dec(vcpu);
4165
4166 trace_kvm_guest_exit(vcpu);
4167 r = RESUME_GUEST;
4168 if (trap) {
4169 if (!nested)
4170 r = kvmppc_handle_exit_hv(kvm_run, vcpu, current);
4171 else
4172 r = kvmppc_handle_nested_exit(kvm_run, vcpu);
4173 }
4174 vcpu->arch.ret = r;
4175
4176 if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
4177 !kvmppc_vcpu_woken(vcpu)) {
4178 kvmppc_set_timer(vcpu);
4179 while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
4180 if (signal_pending(current)) {
4181 vcpu->stat.signal_exits++;
4182 kvm_run->exit_reason = KVM_EXIT_INTR;
4183 vcpu->arch.ret = -EINTR;
4184 break;
4185 }
4186 spin_lock(&vc->lock);
4187 kvmppc_vcore_blocked(vc);
4188 spin_unlock(&vc->lock);
4189 }
4190 }
4191 vcpu->arch.ceded = 0;
4192
4193 vc->vcore_state = VCORE_INACTIVE;
4194 trace_kvmppc_run_core(vc, 1);
4195
4196 done:
4197 kvmppc_remove_runnable(vc, vcpu);
4198 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
4199
4200 return vcpu->arch.ret;
4201
4202 sigpend:
4203 vcpu->stat.signal_exits++;
4204 kvm_run->exit_reason = KVM_EXIT_INTR;
4205 vcpu->arch.ret = -EINTR;
4206 out:
4207 local_irq_enable();
4208 preempt_enable();
4209 goto done;
4210}
4211
4212static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
4213{
4214 int r;
4215 int srcu_idx;
4216 unsigned long ebb_regs[3] = {}; /* shut up GCC */
4217 unsigned long user_tar = 0;
4218 unsigned int user_vrsave;
4219 struct kvm *kvm;
4220
4221 if (!vcpu->arch.sane) {
4222 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4223 return -EINVAL;
4224 }
4225
4226 /*
4227 * Don't allow entry with a suspended transaction, because
4228 * the guest entry/exit code will lose it.
4229 * If the guest has TM enabled, save away their TM-related SPRs
4230 * (they will get restored by the TM unavailable interrupt).
4231 */
4232#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4233 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4234 (current->thread.regs->msr & MSR_TM)) {
4235 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4236 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4237 run->fail_entry.hardware_entry_failure_reason = 0;
4238 return -EINVAL;
4239 }
4240 /* Enable TM so we can read the TM SPRs */
4241 mtmsr(mfmsr() | MSR_TM);
4242 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
4243 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
4244 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
4245 current->thread.regs->msr &= ~MSR_TM;
4246 }
4247#endif
4248
4249 /*
4250 * Force online to 1 for the sake of old userspace which doesn't
4251 * set it.
4252 */
4253 if (!vcpu->arch.online) {
4254 atomic_inc(&vcpu->arch.vcore->online_count);
4255 vcpu->arch.online = 1;
4256 }
4257
4258 kvmppc_core_prepare_to_enter(vcpu);
4259
4260 /* No need to go into the guest when all we'll do is come back out */
4261 if (signal_pending(current)) {
4262 run->exit_reason = KVM_EXIT_INTR;
4263 return -EINTR;
4264 }
4265
4266 kvm = vcpu->kvm;
4267 atomic_inc(&kvm->arch.vcpus_running);
4268 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4269 smp_mb();
4270
4271 flush_all_to_thread(current);
4272
4273 /* Save userspace EBB and other register values */
4274 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4275 ebb_regs[0] = mfspr(SPRN_EBBHR);
4276 ebb_regs[1] = mfspr(SPRN_EBBRR);
4277 ebb_regs[2] = mfspr(SPRN_BESCR);
4278 user_tar = mfspr(SPRN_TAR);
4279 }
4280 user_vrsave = mfspr(SPRN_VRSAVE);
4281
4282 vcpu->arch.wqp = &vcpu->arch.vcore->wq;
4283 vcpu->arch.pgdir = current->mm->pgd;
4284 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4285
4286 do {
4287 /*
4288 * The early POWER9 chips that can't mix radix and HPT threads
4289 * on the same core also need the workaround for the problem
4290 * where the TLB would prefetch entries in the guest exit path
4291 * for radix guests using the guest PIDR value and LPID 0.
4292 * The workaround is in the old path (kvmppc_run_vcpu())
4293 * but not the new path (kvmhv_run_single_vcpu()).
4294 */
4295 if (kvm->arch.threads_indep && kvm_is_radix(kvm) &&
4296 !no_mixing_hpt_and_radix)
4297 r = kvmhv_run_single_vcpu(run, vcpu, ~(u64)0,
4298 vcpu->arch.vcore->lpcr);
4299 else
4300 r = kvmppc_run_vcpu(run, vcpu);
4301
4302 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
4303 !(vcpu->arch.shregs.msr & MSR_PR)) {
4304 trace_kvm_hcall_enter(vcpu);
4305 r = kvmppc_pseries_do_hcall(vcpu);
4306 trace_kvm_hcall_exit(vcpu, r);
4307 kvmppc_core_prepare_to_enter(vcpu);
4308 } else if (r == RESUME_PAGE_FAULT) {
4309 srcu_idx = srcu_read_lock(&kvm->srcu);
4310 r = kvmppc_book3s_hv_page_fault(run, vcpu,
4311 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4312 srcu_read_unlock(&kvm->srcu, srcu_idx);
4313 } else if (r == RESUME_PASSTHROUGH) {
4314 if (WARN_ON(xics_on_xive()))
4315 r = H_SUCCESS;
4316 else
4317 r = kvmppc_xics_rm_complete(vcpu, 0);
4318 }
4319 } while (is_kvmppc_resume_guest(r));
4320
4321 /* Restore userspace EBB and other register values */
4322 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4323 mtspr(SPRN_EBBHR, ebb_regs[0]);
4324 mtspr(SPRN_EBBRR, ebb_regs[1]);
4325 mtspr(SPRN_BESCR, ebb_regs[2]);
4326 mtspr(SPRN_TAR, user_tar);
4327 mtspr(SPRN_FSCR, current->thread.fscr);
4328 }
4329 mtspr(SPRN_VRSAVE, user_vrsave);
4330
4331 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4332 atomic_dec(&kvm->arch.vcpus_running);
4333 return r;
4334}
4335
4336static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4337 int shift, int sllp)
4338{
4339 (*sps)->page_shift = shift;
4340 (*sps)->slb_enc = sllp;
4341 (*sps)->enc[0].page_shift = shift;
4342 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4343 /*
4344 * Add 16MB MPSS support (may get filtered out by userspace)
4345 */
4346 if (shift != 24) {
4347 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4348 if (penc != -1) {
4349 (*sps)->enc[1].page_shift = 24;
4350 (*sps)->enc[1].pte_enc = penc;
4351 }
4352 }
4353 (*sps)++;
4354}
4355
4356static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4357 struct kvm_ppc_smmu_info *info)
4358{
4359 struct kvm_ppc_one_seg_page_size *sps;
4360
4361 /*
4362 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4363 * POWER7 doesn't support keys for instruction accesses,
4364 * POWER8 and POWER9 do.
4365 */
4366 info->data_keys = 32;
4367 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4368
4369 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4370 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4371 info->slb_size = 32;
4372
4373 /* We only support these sizes for now, and no muti-size segments */
4374 sps = &info->sps[0];
4375 kvmppc_add_seg_page_size(&sps, 12, 0);
4376 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4377 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4378
4379 /* If running as a nested hypervisor, we don't support HPT guests */
4380 if (kvmhv_on_pseries())
4381 info->flags |= KVM_PPC_NO_HASH;
4382
4383 return 0;
4384}
4385
4386/*
4387 * Get (and clear) the dirty memory log for a memory slot.
4388 */
4389static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4390 struct kvm_dirty_log *log)
4391{
4392 struct kvm_memslots *slots;
4393 struct kvm_memory_slot *memslot;
4394 int i, r;
4395 unsigned long n;
4396 unsigned long *buf, *p;
4397 struct kvm_vcpu *vcpu;
4398
4399 mutex_lock(&kvm->slots_lock);
4400
4401 r = -EINVAL;
4402 if (log->slot >= KVM_USER_MEM_SLOTS)
4403 goto out;
4404
4405 slots = kvm_memslots(kvm);
4406 memslot = id_to_memslot(slots, log->slot);
4407 r = -ENOENT;
4408 if (!memslot->dirty_bitmap)
4409 goto out;
4410
4411 /*
4412 * Use second half of bitmap area because both HPT and radix
4413 * accumulate bits in the first half.
4414 */
4415 n = kvm_dirty_bitmap_bytes(memslot);
4416 buf = memslot->dirty_bitmap + n / sizeof(long);
4417 memset(buf, 0, n);
4418
4419 if (kvm_is_radix(kvm))
4420 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4421 else
4422 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4423 if (r)
4424 goto out;
4425
4426 /*
4427 * We accumulate dirty bits in the first half of the
4428 * memslot's dirty_bitmap area, for when pages are paged
4429 * out or modified by the host directly. Pick up these
4430 * bits and add them to the map.
4431 */
4432 p = memslot->dirty_bitmap;
4433 for (i = 0; i < n / sizeof(long); ++i)
4434 buf[i] |= xchg(&p[i], 0);
4435
4436 /* Harvest dirty bits from VPA and DTL updates */
4437 /* Note: we never modify the SLB shadow buffer areas */
4438 kvm_for_each_vcpu(i, vcpu, kvm) {
4439 spin_lock(&vcpu->arch.vpa_update_lock);
4440 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4441 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4442 spin_unlock(&vcpu->arch.vpa_update_lock);
4443 }
4444
4445 r = -EFAULT;
4446 if (copy_to_user(log->dirty_bitmap, buf, n))
4447 goto out;
4448
4449 r = 0;
4450out:
4451 mutex_unlock(&kvm->slots_lock);
4452 return r;
4453}
4454
4455static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
4456 struct kvm_memory_slot *dont)
4457{
4458 if (!dont || free->arch.rmap != dont->arch.rmap) {
4459 vfree(free->arch.rmap);
4460 free->arch.rmap = NULL;
4461 }
4462}
4463
4464static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
4465 unsigned long npages)
4466{
4467 slot->arch.rmap = vzalloc(array_size(npages, sizeof(*slot->arch.rmap)));
4468 if (!slot->arch.rmap)
4469 return -ENOMEM;
4470
4471 return 0;
4472}
4473
4474static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
4475 struct kvm_memory_slot *memslot,
4476 const struct kvm_userspace_memory_region *mem)
4477{
4478 return 0;
4479}
4480
4481static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4482 const struct kvm_userspace_memory_region *mem,
4483 const struct kvm_memory_slot *old,
4484 const struct kvm_memory_slot *new,
4485 enum kvm_mr_change change)
4486{
4487 unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4488
4489 /*
4490 * If we are making a new memslot, it might make
4491 * some address that was previously cached as emulated
4492 * MMIO be no longer emulated MMIO, so invalidate
4493 * all the caches of emulated MMIO translations.
4494 */
4495 if (npages)
4496 atomic64_inc(&kvm->arch.mmio_update);
4497
4498 /*
4499 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
4500 * have already called kvm_arch_flush_shadow_memslot() to
4501 * flush shadow mappings. For KVM_MR_CREATE we have no
4502 * previous mappings. So the only case to handle is
4503 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
4504 * has been changed.
4505 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
4506 * to get rid of any THP PTEs in the partition-scoped page tables
4507 * so we can track dirtiness at the page level; we flush when
4508 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
4509 * using THP PTEs.
4510 */
4511 if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
4512 ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
4513 kvmppc_radix_flush_memslot(kvm, old);
4514}
4515
4516/*
4517 * Update LPCR values in kvm->arch and in vcores.
4518 * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
4519 * of kvm->arch.lpcr update).
4520 */
4521void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
4522{
4523 long int i;
4524 u32 cores_done = 0;
4525
4526 if ((kvm->arch.lpcr & mask) == lpcr)
4527 return;
4528
4529 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
4530
4531 for (i = 0; i < KVM_MAX_VCORES; ++i) {
4532 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
4533 if (!vc)
4534 continue;
4535 spin_lock(&vc->lock);
4536 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
4537 spin_unlock(&vc->lock);
4538 if (++cores_done >= kvm->arch.online_vcores)
4539 break;
4540 }
4541}
4542
4543static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
4544{
4545 return;
4546}
4547
4548void kvmppc_setup_partition_table(struct kvm *kvm)
4549{
4550 unsigned long dw0, dw1;
4551
4552 if (!kvm_is_radix(kvm)) {
4553 /* PS field - page size for VRMA */
4554 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
4555 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
4556 /* HTABSIZE and HTABORG fields */
4557 dw0 |= kvm->arch.sdr1;
4558
4559 /* Second dword as set by userspace */
4560 dw1 = kvm->arch.process_table;
4561 } else {
4562 dw0 = PATB_HR | radix__get_tree_size() |
4563 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
4564 dw1 = PATB_GR | kvm->arch.process_table;
4565 }
4566 kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
4567}
4568
4569/*
4570 * Set up HPT (hashed page table) and RMA (real-mode area).
4571 * Must be called with kvm->arch.mmu_setup_lock held.
4572 */
4573static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4574{
4575 int err = 0;
4576 struct kvm *kvm = vcpu->kvm;
4577 unsigned long hva;
4578 struct kvm_memory_slot *memslot;
4579 struct vm_area_struct *vma;
4580 unsigned long lpcr = 0, senc;
4581 unsigned long psize, porder;
4582 int srcu_idx;
4583
4584 /* Allocate hashed page table (if not done already) and reset it */
4585 if (!kvm->arch.hpt.virt) {
4586 int order = KVM_DEFAULT_HPT_ORDER;
4587 struct kvm_hpt_info info;
4588
4589 err = kvmppc_allocate_hpt(&info, order);
4590 /* If we get here, it means userspace didn't specify a
4591 * size explicitly. So, try successively smaller
4592 * sizes if the default failed. */
4593 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
4594 err = kvmppc_allocate_hpt(&info, order);
4595
4596 if (err < 0) {
4597 pr_err("KVM: Couldn't alloc HPT\n");
4598 goto out;
4599 }
4600
4601 kvmppc_set_hpt(kvm, &info);
4602 }
4603
4604 /* Look up the memslot for guest physical address 0 */
4605 srcu_idx = srcu_read_lock(&kvm->srcu);
4606 memslot = gfn_to_memslot(kvm, 0);
4607
4608 /* We must have some memory at 0 by now */
4609 err = -EINVAL;
4610 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
4611 goto out_srcu;
4612
4613 /* Look up the VMA for the start of this memory slot */
4614 hva = memslot->userspace_addr;
4615 down_read(&current->mm->mmap_sem);
4616 vma = find_vma(current->mm, hva);
4617 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
4618 goto up_out;
4619
4620 psize = vma_kernel_pagesize(vma);
4621
4622 up_read(&current->mm->mmap_sem);
4623
4624 /* We can handle 4k, 64k or 16M pages in the VRMA */
4625 if (psize >= 0x1000000)
4626 psize = 0x1000000;
4627 else if (psize >= 0x10000)
4628 psize = 0x10000;
4629 else
4630 psize = 0x1000;
4631 porder = __ilog2(psize);
4632
4633 senc = slb_pgsize_encoding(psize);
4634 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
4635 (VRMA_VSID << SLB_VSID_SHIFT_1T);
4636 /* Create HPTEs in the hash page table for the VRMA */
4637 kvmppc_map_vrma(vcpu, memslot, porder);
4638
4639 /* Update VRMASD field in the LPCR */
4640 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
4641 /* the -4 is to account for senc values starting at 0x10 */
4642 lpcr = senc << (LPCR_VRMASD_SH - 4);
4643 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
4644 }
4645
4646 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
4647 smp_wmb();
4648 err = 0;
4649 out_srcu:
4650 srcu_read_unlock(&kvm->srcu, srcu_idx);
4651 out:
4652 return err;
4653
4654 up_out:
4655 up_read(&current->mm->mmap_sem);
4656 goto out_srcu;
4657}
4658
4659/*
4660 * Must be called with kvm->arch.mmu_setup_lock held and
4661 * mmu_ready = 0 and no vcpus running.
4662 */
4663int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
4664{
4665 if (nesting_enabled(kvm))
4666 kvmhv_release_all_nested(kvm);
4667 kvmppc_rmap_reset(kvm);
4668 kvm->arch.process_table = 0;
4669 /* Mutual exclusion with kvm_unmap_hva_range etc. */
4670 spin_lock(&kvm->mmu_lock);
4671 kvm->arch.radix = 0;
4672 spin_unlock(&kvm->mmu_lock);
4673 kvmppc_free_radix(kvm);
4674 kvmppc_update_lpcr(kvm, LPCR_VPM1,
4675 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4676 return 0;
4677}
4678
4679/*
4680 * Must be called with kvm->arch.mmu_setup_lock held and
4681 * mmu_ready = 0 and no vcpus running.
4682 */
4683int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
4684{
4685 int err;
4686
4687 err = kvmppc_init_vm_radix(kvm);
4688 if (err)
4689 return err;
4690 kvmppc_rmap_reset(kvm);
4691 /* Mutual exclusion with kvm_unmap_hva_range etc. */
4692 spin_lock(&kvm->mmu_lock);
4693 kvm->arch.radix = 1;
4694 spin_unlock(&kvm->mmu_lock);
4695 kvmppc_free_hpt(&kvm->arch.hpt);
4696 kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
4697 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4698 return 0;
4699}
4700
4701#ifdef CONFIG_KVM_XICS
4702/*
4703 * Allocate a per-core structure for managing state about which cores are
4704 * running in the host versus the guest and for exchanging data between
4705 * real mode KVM and CPU running in the host.
4706 * This is only done for the first VM.
4707 * The allocated structure stays even if all VMs have stopped.
4708 * It is only freed when the kvm-hv module is unloaded.
4709 * It's OK for this routine to fail, we just don't support host
4710 * core operations like redirecting H_IPI wakeups.
4711 */
4712void kvmppc_alloc_host_rm_ops(void)
4713{
4714 struct kvmppc_host_rm_ops *ops;
4715 unsigned long l_ops;
4716 int cpu, core;
4717 int size;
4718
4719 /* Not the first time here ? */
4720 if (kvmppc_host_rm_ops_hv != NULL)
4721 return;
4722
4723 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
4724 if (!ops)
4725 return;
4726
4727 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
4728 ops->rm_core = kzalloc(size, GFP_KERNEL);
4729
4730 if (!ops->rm_core) {
4731 kfree(ops);
4732 return;
4733 }
4734
4735 cpus_read_lock();
4736
4737 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
4738 if (!cpu_online(cpu))
4739 continue;
4740
4741 core = cpu >> threads_shift;
4742 ops->rm_core[core].rm_state.in_host = 1;
4743 }
4744
4745 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
4746
4747 /*
4748 * Make the contents of the kvmppc_host_rm_ops structure visible
4749 * to other CPUs before we assign it to the global variable.
4750 * Do an atomic assignment (no locks used here), but if someone
4751 * beats us to it, just free our copy and return.
4752 */
4753 smp_wmb();
4754 l_ops = (unsigned long) ops;
4755
4756 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
4757 cpus_read_unlock();
4758 kfree(ops->rm_core);
4759 kfree(ops);
4760 return;
4761 }
4762
4763 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
4764 "ppc/kvm_book3s:prepare",
4765 kvmppc_set_host_core,
4766 kvmppc_clear_host_core);
4767 cpus_read_unlock();
4768}
4769
4770void kvmppc_free_host_rm_ops(void)
4771{
4772 if (kvmppc_host_rm_ops_hv) {
4773 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
4774 kfree(kvmppc_host_rm_ops_hv->rm_core);
4775 kfree(kvmppc_host_rm_ops_hv);
4776 kvmppc_host_rm_ops_hv = NULL;
4777 }
4778}
4779#endif
4780
4781static int kvmppc_core_init_vm_hv(struct kvm *kvm)
4782{
4783 unsigned long lpcr, lpid;
4784 char buf[32];
4785 int ret;
4786
4787 mutex_init(&kvm->arch.mmu_setup_lock);
4788
4789 /* Allocate the guest's logical partition ID */
4790
4791 lpid = kvmppc_alloc_lpid();
4792 if ((long)lpid < 0)
4793 return -ENOMEM;
4794 kvm->arch.lpid = lpid;
4795
4796 kvmppc_alloc_host_rm_ops();
4797
4798 kvmhv_vm_nested_init(kvm);
4799
4800 /*
4801 * Since we don't flush the TLB when tearing down a VM,
4802 * and this lpid might have previously been used,
4803 * make sure we flush on each core before running the new VM.
4804 * On POWER9, the tlbie in mmu_partition_table_set_entry()
4805 * does this flush for us.
4806 */
4807 if (!cpu_has_feature(CPU_FTR_ARCH_300))
4808 cpumask_setall(&kvm->arch.need_tlb_flush);
4809
4810 /* Start out with the default set of hcalls enabled */
4811 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
4812 sizeof(kvm->arch.enabled_hcalls));
4813
4814 if (!cpu_has_feature(CPU_FTR_ARCH_300))
4815 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
4816
4817 /* Init LPCR for virtual RMA mode */
4818 if (cpu_has_feature(CPU_FTR_HVMODE)) {
4819 kvm->arch.host_lpid = mfspr(SPRN_LPID);
4820 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
4821 lpcr &= LPCR_PECE | LPCR_LPES;
4822 } else {
4823 lpcr = 0;
4824 }
4825 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
4826 LPCR_VPM0 | LPCR_VPM1;
4827 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
4828 (VRMA_VSID << SLB_VSID_SHIFT_1T);
4829 /* On POWER8 turn on online bit to enable PURR/SPURR */
4830 if (cpu_has_feature(CPU_FTR_ARCH_207S))
4831 lpcr |= LPCR_ONL;
4832 /*
4833 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
4834 * Set HVICE bit to enable hypervisor virtualization interrupts.
4835 * Set HEIC to prevent OS interrupts to go to hypervisor (should
4836 * be unnecessary but better safe than sorry in case we re-enable
4837 * EE in HV mode with this LPCR still set)
4838 */
4839 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4840 lpcr &= ~LPCR_VPM0;
4841 lpcr |= LPCR_HVICE | LPCR_HEIC;
4842
4843 /*
4844 * If xive is enabled, we route 0x500 interrupts directly
4845 * to the guest.
4846 */
4847 if (xics_on_xive())
4848 lpcr |= LPCR_LPES;
4849 }
4850
4851 /*
4852 * If the host uses radix, the guest starts out as radix.
4853 */
4854 if (radix_enabled()) {
4855 kvm->arch.radix = 1;
4856 kvm->arch.mmu_ready = 1;
4857 lpcr &= ~LPCR_VPM1;
4858 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
4859 ret = kvmppc_init_vm_radix(kvm);
4860 if (ret) {
4861 kvmppc_free_lpid(kvm->arch.lpid);
4862 return ret;
4863 }
4864 kvmppc_setup_partition_table(kvm);
4865 }
4866
4867 kvm->arch.lpcr = lpcr;
4868
4869 /* Initialization for future HPT resizes */
4870 kvm->arch.resize_hpt = NULL;
4871
4872 /*
4873 * Work out how many sets the TLB has, for the use of
4874 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
4875 */
4876 if (radix_enabled())
4877 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */
4878 else if (cpu_has_feature(CPU_FTR_ARCH_300))
4879 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */
4880 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
4881 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */
4882 else
4883 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */
4884
4885 /*
4886 * Track that we now have a HV mode VM active. This blocks secondary
4887 * CPU threads from coming online.
4888 * On POWER9, we only need to do this if the "indep_threads_mode"
4889 * module parameter has been set to N.
4890 */
4891 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4892 if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) {
4893 pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n");
4894 kvm->arch.threads_indep = true;
4895 } else {
4896 kvm->arch.threads_indep = indep_threads_mode;
4897 }
4898 }
4899 if (!kvm->arch.threads_indep)
4900 kvm_hv_vm_activated();
4901
4902 /*
4903 * Initialize smt_mode depending on processor.
4904 * POWER8 and earlier have to use "strict" threading, where
4905 * all vCPUs in a vcore have to run on the same (sub)core,
4906 * whereas on POWER9 the threads can each run a different
4907 * guest.
4908 */
4909 if (!cpu_has_feature(CPU_FTR_ARCH_300))
4910 kvm->arch.smt_mode = threads_per_subcore;
4911 else
4912 kvm->arch.smt_mode = 1;
4913 kvm->arch.emul_smt_mode = 1;
4914
4915 /*
4916 * Create a debugfs directory for the VM
4917 */
4918 snprintf(buf, sizeof(buf), "vm%d", current->pid);
4919 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
4920 kvmppc_mmu_debugfs_init(kvm);
4921 if (radix_enabled())
4922 kvmhv_radix_debugfs_init(kvm);
4923
4924 return 0;
4925}
4926
4927static void kvmppc_free_vcores(struct kvm *kvm)
4928{
4929 long int i;
4930
4931 for (i = 0; i < KVM_MAX_VCORES; ++i)
4932 kfree(kvm->arch.vcores[i]);
4933 kvm->arch.online_vcores = 0;
4934}
4935
4936static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
4937{
4938 debugfs_remove_recursive(kvm->arch.debugfs_dir);
4939
4940 if (!kvm->arch.threads_indep)
4941 kvm_hv_vm_deactivated();
4942
4943 kvmppc_free_vcores(kvm);
4944
4945
4946 if (kvm_is_radix(kvm))
4947 kvmppc_free_radix(kvm);
4948 else
4949 kvmppc_free_hpt(&kvm->arch.hpt);
4950
4951 /* Perform global invalidation and return lpid to the pool */
4952 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4953 if (nesting_enabled(kvm))
4954 kvmhv_release_all_nested(kvm);
4955 kvm->arch.process_table = 0;
4956 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
4957 }
4958 kvmppc_free_lpid(kvm->arch.lpid);
4959
4960 kvmppc_free_pimap(kvm);
4961}
4962
4963/* We don't need to emulate any privileged instructions or dcbz */
4964static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
4965 unsigned int inst, int *advance)
4966{
4967 return EMULATE_FAIL;
4968}
4969
4970static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
4971 ulong spr_val)
4972{
4973 return EMULATE_FAIL;
4974}
4975
4976static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
4977 ulong *spr_val)
4978{
4979 return EMULATE_FAIL;
4980}
4981
4982static int kvmppc_core_check_processor_compat_hv(void)
4983{
4984 if (cpu_has_feature(CPU_FTR_HVMODE) &&
4985 cpu_has_feature(CPU_FTR_ARCH_206))
4986 return 0;
4987
4988 /* POWER9 in radix mode is capable of being a nested hypervisor. */
4989 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
4990 return 0;
4991
4992 return -EIO;
4993}
4994
4995#ifdef CONFIG_KVM_XICS
4996
4997void kvmppc_free_pimap(struct kvm *kvm)
4998{
4999 kfree(kvm->arch.pimap);
5000}
5001
5002static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5003{
5004 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5005}
5006
5007static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5008{
5009 struct irq_desc *desc;
5010 struct kvmppc_irq_map *irq_map;
5011 struct kvmppc_passthru_irqmap *pimap;
5012 struct irq_chip *chip;
5013 int i, rc = 0;
5014
5015 if (!kvm_irq_bypass)
5016 return 1;
5017
5018 desc = irq_to_desc(host_irq);
5019 if (!desc)
5020 return -EIO;
5021
5022 mutex_lock(&kvm->lock);
5023
5024 pimap = kvm->arch.pimap;
5025 if (pimap == NULL) {
5026 /* First call, allocate structure to hold IRQ map */
5027 pimap = kvmppc_alloc_pimap();
5028 if (pimap == NULL) {
5029 mutex_unlock(&kvm->lock);
5030 return -ENOMEM;
5031 }
5032 kvm->arch.pimap = pimap;
5033 }
5034
5035 /*
5036 * For now, we only support interrupts for which the EOI operation
5037 * is an OPAL call followed by a write to XIRR, since that's
5038 * what our real-mode EOI code does, or a XIVE interrupt
5039 */
5040 chip = irq_data_get_irq_chip(&desc->irq_data);
5041 if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
5042 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5043 host_irq, guest_gsi);
5044 mutex_unlock(&kvm->lock);
5045 return -ENOENT;
5046 }
5047
5048 /*
5049 * See if we already have an entry for this guest IRQ number.
5050 * If it's mapped to a hardware IRQ number, that's an error,
5051 * otherwise re-use this entry.
5052 */
5053 for (i = 0; i < pimap->n_mapped; i++) {
5054 if (guest_gsi == pimap->mapped[i].v_hwirq) {
5055 if (pimap->mapped[i].r_hwirq) {
5056 mutex_unlock(&kvm->lock);
5057 return -EINVAL;
5058 }
5059 break;
5060 }
5061 }
5062
5063 if (i == KVMPPC_PIRQ_MAPPED) {
5064 mutex_unlock(&kvm->lock);
5065 return -EAGAIN; /* table is full */
5066 }
5067
5068 irq_map = &pimap->mapped[i];
5069
5070 irq_map->v_hwirq = guest_gsi;
5071 irq_map->desc = desc;
5072
5073 /*
5074 * Order the above two stores before the next to serialize with
5075 * the KVM real mode handler.
5076 */
5077 smp_wmb();
5078 irq_map->r_hwirq = desc->irq_data.hwirq;
5079
5080 if (i == pimap->n_mapped)
5081 pimap->n_mapped++;
5082
5083 if (xics_on_xive())
5084 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
5085 else
5086 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
5087 if (rc)
5088 irq_map->r_hwirq = 0;
5089
5090 mutex_unlock(&kvm->lock);
5091
5092 return 0;
5093}
5094
5095static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5096{
5097 struct irq_desc *desc;
5098 struct kvmppc_passthru_irqmap *pimap;
5099 int i, rc = 0;
5100
5101 if (!kvm_irq_bypass)
5102 return 0;
5103
5104 desc = irq_to_desc(host_irq);
5105 if (!desc)
5106 return -EIO;
5107
5108 mutex_lock(&kvm->lock);
5109 if (!kvm->arch.pimap)
5110 goto unlock;
5111
5112 pimap = kvm->arch.pimap;
5113
5114 for (i = 0; i < pimap->n_mapped; i++) {
5115 if (guest_gsi == pimap->mapped[i].v_hwirq)
5116 break;
5117 }
5118
5119 if (i == pimap->n_mapped) {
5120 mutex_unlock(&kvm->lock);
5121 return -ENODEV;
5122 }
5123
5124 if (xics_on_xive())
5125 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
5126 else
5127 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5128
5129 /* invalidate the entry (what do do on error from the above ?) */
5130 pimap->mapped[i].r_hwirq = 0;
5131
5132 /*
5133 * We don't free this structure even when the count goes to
5134 * zero. The structure is freed when we destroy the VM.
5135 */
5136 unlock:
5137 mutex_unlock(&kvm->lock);
5138 return rc;
5139}
5140
5141static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5142 struct irq_bypass_producer *prod)
5143{
5144 int ret = 0;
5145 struct kvm_kernel_irqfd *irqfd =
5146 container_of(cons, struct kvm_kernel_irqfd, consumer);
5147
5148 irqfd->producer = prod;
5149
5150 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5151 if (ret)
5152 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5153 prod->irq, irqfd->gsi, ret);
5154
5155 return ret;
5156}
5157
5158static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5159 struct irq_bypass_producer *prod)
5160{
5161 int ret;
5162 struct kvm_kernel_irqfd *irqfd =
5163 container_of(cons, struct kvm_kernel_irqfd, consumer);
5164
5165 irqfd->producer = NULL;
5166
5167 /*
5168 * When producer of consumer is unregistered, we change back to
5169 * default external interrupt handling mode - KVM real mode
5170 * will switch back to host.
5171 */
5172 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5173 if (ret)
5174 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5175 prod->irq, irqfd->gsi, ret);
5176}
5177#endif
5178
5179static long kvm_arch_vm_ioctl_hv(struct file *filp,
5180 unsigned int ioctl, unsigned long arg)
5181{
5182 struct kvm *kvm __maybe_unused = filp->private_data;
5183 void __user *argp = (void __user *)arg;
5184 long r;
5185
5186 switch (ioctl) {
5187
5188 case KVM_PPC_ALLOCATE_HTAB: {
5189 u32 htab_order;
5190
5191 r = -EFAULT;
5192 if (get_user(htab_order, (u32 __user *)argp))
5193 break;
5194 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5195 if (r)
5196 break;
5197 r = 0;
5198 break;
5199 }
5200
5201 case KVM_PPC_GET_HTAB_FD: {
5202 struct kvm_get_htab_fd ghf;
5203
5204 r = -EFAULT;
5205 if (copy_from_user(&ghf, argp, sizeof(ghf)))
5206 break;
5207 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5208 break;
5209 }
5210
5211 case KVM_PPC_RESIZE_HPT_PREPARE: {
5212 struct kvm_ppc_resize_hpt rhpt;
5213
5214 r = -EFAULT;
5215 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5216 break;
5217
5218 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5219 break;
5220 }
5221
5222 case KVM_PPC_RESIZE_HPT_COMMIT: {
5223 struct kvm_ppc_resize_hpt rhpt;
5224
5225 r = -EFAULT;
5226 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5227 break;
5228
5229 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5230 break;
5231 }
5232
5233 default:
5234 r = -ENOTTY;
5235 }
5236
5237 return r;
5238}
5239
5240/*
5241 * List of hcall numbers to enable by default.
5242 * For compatibility with old userspace, we enable by default
5243 * all hcalls that were implemented before the hcall-enabling
5244 * facility was added. Note this list should not include H_RTAS.
5245 */
5246static unsigned int default_hcall_list[] = {
5247 H_REMOVE,
5248 H_ENTER,
5249 H_READ,
5250 H_PROTECT,
5251 H_BULK_REMOVE,
5252 H_GET_TCE,
5253 H_PUT_TCE,
5254 H_SET_DABR,
5255 H_SET_XDABR,
5256 H_CEDE,
5257 H_PROD,
5258 H_CONFER,
5259 H_REGISTER_VPA,
5260#ifdef CONFIG_KVM_XICS
5261 H_EOI,
5262 H_CPPR,
5263 H_IPI,
5264 H_IPOLL,
5265 H_XIRR,
5266 H_XIRR_X,
5267#endif
5268 0
5269};
5270
5271static void init_default_hcalls(void)
5272{
5273 int i;
5274 unsigned int hcall;
5275
5276 for (i = 0; default_hcall_list[i]; ++i) {
5277 hcall = default_hcall_list[i];
5278 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5279 __set_bit(hcall / 4, default_enabled_hcalls);
5280 }
5281}
5282
5283static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5284{
5285 unsigned long lpcr;
5286 int radix;
5287 int err;
5288
5289 /* If not on a POWER9, reject it */
5290 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5291 return -ENODEV;
5292
5293 /* If any unknown flags set, reject it */
5294 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5295 return -EINVAL;
5296
5297 /* GR (guest radix) bit in process_table field must match */
5298 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5299 if (!!(cfg->process_table & PATB_GR) != radix)
5300 return -EINVAL;
5301
5302 /* Process table size field must be reasonable, i.e. <= 24 */
5303 if ((cfg->process_table & PRTS_MASK) > 24)
5304 return -EINVAL;
5305
5306 /* We can change a guest to/from radix now, if the host is radix */
5307 if (radix && !radix_enabled())
5308 return -EINVAL;
5309
5310 /* If we're a nested hypervisor, we currently only support radix */
5311 if (kvmhv_on_pseries() && !radix)
5312 return -EINVAL;
5313
5314 mutex_lock(&kvm->arch.mmu_setup_lock);
5315 if (radix != kvm_is_radix(kvm)) {
5316 if (kvm->arch.mmu_ready) {
5317 kvm->arch.mmu_ready = 0;
5318 /* order mmu_ready vs. vcpus_running */
5319 smp_mb();
5320 if (atomic_read(&kvm->arch.vcpus_running)) {
5321 kvm->arch.mmu_ready = 1;
5322 err = -EBUSY;
5323 goto out_unlock;
5324 }
5325 }
5326 if (radix)
5327 err = kvmppc_switch_mmu_to_radix(kvm);
5328 else
5329 err = kvmppc_switch_mmu_to_hpt(kvm);
5330 if (err)
5331 goto out_unlock;
5332 }
5333
5334 kvm->arch.process_table = cfg->process_table;
5335 kvmppc_setup_partition_table(kvm);
5336
5337 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5338 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5339 err = 0;
5340
5341 out_unlock:
5342 mutex_unlock(&kvm->arch.mmu_setup_lock);
5343 return err;
5344}
5345
5346static int kvmhv_enable_nested(struct kvm *kvm)
5347{
5348 if (!nested)
5349 return -EPERM;
5350 if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix)
5351 return -ENODEV;
5352
5353 /* kvm == NULL means the caller is testing if the capability exists */
5354 if (kvm)
5355 kvm->arch.nested_enable = true;
5356 return 0;
5357}
5358
5359static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5360 int size)
5361{
5362 int rc = -EINVAL;
5363
5364 if (kvmhv_vcpu_is_radix(vcpu)) {
5365 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5366
5367 if (rc > 0)
5368 rc = -EINVAL;
5369 }
5370
5371 /* For now quadrants are the only way to access nested guest memory */
5372 if (rc && vcpu->arch.nested)
5373 rc = -EAGAIN;
5374
5375 return rc;
5376}
5377
5378static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5379 int size)
5380{
5381 int rc = -EINVAL;
5382
5383 if (kvmhv_vcpu_is_radix(vcpu)) {
5384 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
5385
5386 if (rc > 0)
5387 rc = -EINVAL;
5388 }
5389
5390 /* For now quadrants are the only way to access nested guest memory */
5391 if (rc && vcpu->arch.nested)
5392 rc = -EAGAIN;
5393
5394 return rc;
5395}
5396
5397static struct kvmppc_ops kvm_ops_hv = {
5398 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
5399 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
5400 .get_one_reg = kvmppc_get_one_reg_hv,
5401 .set_one_reg = kvmppc_set_one_reg_hv,
5402 .vcpu_load = kvmppc_core_vcpu_load_hv,
5403 .vcpu_put = kvmppc_core_vcpu_put_hv,
5404 .set_msr = kvmppc_set_msr_hv,
5405 .vcpu_run = kvmppc_vcpu_run_hv,
5406 .vcpu_create = kvmppc_core_vcpu_create_hv,
5407 .vcpu_free = kvmppc_core_vcpu_free_hv,
5408 .check_requests = kvmppc_core_check_requests_hv,
5409 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
5410 .flush_memslot = kvmppc_core_flush_memslot_hv,
5411 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
5412 .commit_memory_region = kvmppc_core_commit_memory_region_hv,
5413 .unmap_hva_range = kvm_unmap_hva_range_hv,
5414 .age_hva = kvm_age_hva_hv,
5415 .test_age_hva = kvm_test_age_hva_hv,
5416 .set_spte_hva = kvm_set_spte_hva_hv,
5417 .mmu_destroy = kvmppc_mmu_destroy_hv,
5418 .free_memslot = kvmppc_core_free_memslot_hv,
5419 .create_memslot = kvmppc_core_create_memslot_hv,
5420 .init_vm = kvmppc_core_init_vm_hv,
5421 .destroy_vm = kvmppc_core_destroy_vm_hv,
5422 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
5423 .emulate_op = kvmppc_core_emulate_op_hv,
5424 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
5425 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
5426 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
5427 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
5428 .hcall_implemented = kvmppc_hcall_impl_hv,
5429#ifdef CONFIG_KVM_XICS
5430 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
5431 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
5432#endif
5433 .configure_mmu = kvmhv_configure_mmu,
5434 .get_rmmu_info = kvmhv_get_rmmu_info,
5435 .set_smt_mode = kvmhv_set_smt_mode,
5436 .enable_nested = kvmhv_enable_nested,
5437 .load_from_eaddr = kvmhv_load_from_eaddr,
5438 .store_to_eaddr = kvmhv_store_to_eaddr,
5439};
5440
5441static int kvm_init_subcore_bitmap(void)
5442{
5443 int i, j;
5444 int nr_cores = cpu_nr_cores();
5445 struct sibling_subcore_state *sibling_subcore_state;
5446
5447 for (i = 0; i < nr_cores; i++) {
5448 int first_cpu = i * threads_per_core;
5449 int node = cpu_to_node(first_cpu);
5450
5451 /* Ignore if it is already allocated. */
5452 if (paca_ptrs[first_cpu]->sibling_subcore_state)
5453 continue;
5454
5455 sibling_subcore_state =
5456 kzalloc_node(sizeof(struct sibling_subcore_state),
5457 GFP_KERNEL, node);
5458 if (!sibling_subcore_state)
5459 return -ENOMEM;
5460
5461
5462 for (j = 0; j < threads_per_core; j++) {
5463 int cpu = first_cpu + j;
5464
5465 paca_ptrs[cpu]->sibling_subcore_state =
5466 sibling_subcore_state;
5467 }
5468 }
5469 return 0;
5470}
5471
5472static int kvmppc_radix_possible(void)
5473{
5474 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
5475}
5476
5477static int kvmppc_book3s_init_hv(void)
5478{
5479 int r;
5480
5481 if (!tlbie_capable) {
5482 pr_err("KVM-HV: Host does not support TLBIE\n");
5483 return -ENODEV;
5484 }
5485
5486 /*
5487 * FIXME!! Do we need to check on all cpus ?
5488 */
5489 r = kvmppc_core_check_processor_compat_hv();
5490 if (r < 0)
5491 return -ENODEV;
5492
5493 r = kvmhv_nested_init();
5494 if (r)
5495 return r;
5496
5497 r = kvm_init_subcore_bitmap();
5498 if (r)
5499 return r;
5500
5501 /*
5502 * We need a way of accessing the XICS interrupt controller,
5503 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
5504 * indirectly, via OPAL.
5505 */
5506#ifdef CONFIG_SMP
5507 if (!xics_on_xive() && !kvmhv_on_pseries() &&
5508 !local_paca->kvm_hstate.xics_phys) {
5509 struct device_node *np;
5510
5511 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
5512 if (!np) {
5513 pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
5514 return -ENODEV;
5515 }
5516 /* presence of intc confirmed - node can be dropped again */
5517 of_node_put(np);
5518 }
5519#endif
5520
5521 kvm_ops_hv.owner = THIS_MODULE;
5522 kvmppc_hv_ops = &kvm_ops_hv;
5523
5524 init_default_hcalls();
5525
5526 init_vcore_lists();
5527
5528 r = kvmppc_mmu_hv_init();
5529 if (r)
5530 return r;
5531
5532 if (kvmppc_radix_possible())
5533 r = kvmppc_radix_init();
5534
5535 /*
5536 * POWER9 chips before version 2.02 can't have some threads in
5537 * HPT mode and some in radix mode on the same core.
5538 */
5539 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5540 unsigned int pvr = mfspr(SPRN_PVR);
5541 if ((pvr >> 16) == PVR_POWER9 &&
5542 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
5543 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
5544 no_mixing_hpt_and_radix = true;
5545 }
5546
5547 return r;
5548}
5549
5550static void kvmppc_book3s_exit_hv(void)
5551{
5552 kvmppc_free_host_rm_ops();
5553 if (kvmppc_radix_possible())
5554 kvmppc_radix_exit();
5555 kvmppc_hv_ops = NULL;
5556 kvmhv_nested_exit();
5557}
5558
5559module_init(kvmppc_book3s_init_hv);
5560module_exit(kvmppc_book3s_exit_hv);
5561MODULE_LICENSE("GPL");
5562MODULE_ALIAS_MISCDEV(KVM_MINOR);
5563MODULE_ALIAS("devname:kvm");