| 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | /* |
| 3 | * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) |
| 4 | * Copyright 2007-2010 Freescale Semiconductor, Inc. |
| 5 | * |
| 6 | * Modified by Cort Dougan (cort@cs.nmt.edu) |
| 7 | * and Paul Mackerras (paulus@samba.org) |
| 8 | */ |
| 9 | |
| 10 | /* |
| 11 | * This file handles the architecture-dependent parts of hardware exceptions |
| 12 | */ |
| 13 | |
| 14 | #include <linux/errno.h> |
| 15 | #include <linux/sched.h> |
| 16 | #include <linux/sched/debug.h> |
| 17 | #include <linux/kernel.h> |
| 18 | #include <linux/mm.h> |
| 19 | #include <linux/pkeys.h> |
| 20 | #include <linux/stddef.h> |
| 21 | #include <linux/unistd.h> |
| 22 | #include <linux/ptrace.h> |
| 23 | #include <linux/user.h> |
| 24 | #include <linux/interrupt.h> |
| 25 | #include <linux/init.h> |
| 26 | #include <linux/extable.h> |
| 27 | #include <linux/module.h> /* print_modules */ |
| 28 | #include <linux/prctl.h> |
| 29 | #include <linux/delay.h> |
| 30 | #include <linux/kprobes.h> |
| 31 | #include <linux/kexec.h> |
| 32 | #include <linux/backlight.h> |
| 33 | #include <linux/bug.h> |
| 34 | #include <linux/kdebug.h> |
| 35 | #include <linux/ratelimit.h> |
| 36 | #include <linux/context_tracking.h> |
| 37 | #include <linux/smp.h> |
| 38 | #include <linux/console.h> |
| 39 | #include <linux/kmsg_dump.h> |
| 40 | #include <linux/debugfs.h> |
| 41 | |
| 42 | #include <asm/emulated_ops.h> |
| 43 | #include <linux/uaccess.h> |
| 44 | #include <asm/interrupt.h> |
| 45 | #include <asm/io.h> |
| 46 | #include <asm/machdep.h> |
| 47 | #include <asm/rtas.h> |
| 48 | #include <asm/pmc.h> |
| 49 | #include <asm/reg.h> |
| 50 | #ifdef CONFIG_PMAC_BACKLIGHT |
| 51 | #include <asm/backlight.h> |
| 52 | #endif |
| 53 | #ifdef CONFIG_PPC64 |
| 54 | #include <asm/firmware.h> |
| 55 | #include <asm/processor.h> |
| 56 | #endif |
| 57 | #include <asm/kexec.h> |
| 58 | #include <asm/ppc-opcode.h> |
| 59 | #include <asm/rio.h> |
| 60 | #include <asm/fadump.h> |
| 61 | #include <asm/switch_to.h> |
| 62 | #include <asm/tm.h> |
| 63 | #include <asm/debug.h> |
| 64 | #include <asm/asm-prototypes.h> |
| 65 | #include <asm/hmi.h> |
| 66 | #include <sysdev/fsl_pci.h> |
| 67 | #include <asm/kprobes.h> |
| 68 | #include <asm/stacktrace.h> |
| 69 | #include <asm/nmi.h> |
| 70 | #include <asm/disassemble.h> |
| 71 | #include <asm/udbg.h> |
| 72 | |
| 73 | #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE) |
| 74 | int (*__debugger)(struct pt_regs *regs) __read_mostly; |
| 75 | int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly; |
| 76 | int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly; |
| 77 | int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly; |
| 78 | int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly; |
| 79 | int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly; |
| 80 | int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly; |
| 81 | |
| 82 | EXPORT_SYMBOL(__debugger); |
| 83 | EXPORT_SYMBOL(__debugger_ipi); |
| 84 | EXPORT_SYMBOL(__debugger_bpt); |
| 85 | EXPORT_SYMBOL(__debugger_sstep); |
| 86 | EXPORT_SYMBOL(__debugger_iabr_match); |
| 87 | EXPORT_SYMBOL(__debugger_break_match); |
| 88 | EXPORT_SYMBOL(__debugger_fault_handler); |
| 89 | #endif |
| 90 | |
| 91 | /* Transactional Memory trap debug */ |
| 92 | #ifdef TM_DEBUG_SW |
| 93 | #define TM_DEBUG(x...) printk(KERN_INFO x) |
| 94 | #else |
| 95 | #define TM_DEBUG(x...) do { } while(0) |
| 96 | #endif |
| 97 | |
| 98 | static const char *signame(int signr) |
| 99 | { |
| 100 | switch (signr) { |
| 101 | case SIGBUS: return "bus error"; |
| 102 | case SIGFPE: return "floating point exception"; |
| 103 | case SIGILL: return "illegal instruction"; |
| 104 | case SIGSEGV: return "segfault"; |
| 105 | case SIGTRAP: return "unhandled trap"; |
| 106 | } |
| 107 | |
| 108 | return "unknown signal"; |
| 109 | } |
| 110 | |
| 111 | /* |
| 112 | * Trap & Exception support |
| 113 | */ |
| 114 | |
| 115 | #ifdef CONFIG_PMAC_BACKLIGHT |
| 116 | static void pmac_backlight_unblank(void) |
| 117 | { |
| 118 | mutex_lock(&pmac_backlight_mutex); |
| 119 | if (pmac_backlight) { |
| 120 | struct backlight_properties *props; |
| 121 | |
| 122 | props = &pmac_backlight->props; |
| 123 | props->brightness = props->max_brightness; |
| 124 | props->power = BACKLIGHT_POWER_ON; |
| 125 | backlight_update_status(pmac_backlight); |
| 126 | } |
| 127 | mutex_unlock(&pmac_backlight_mutex); |
| 128 | } |
| 129 | #else |
| 130 | static inline void pmac_backlight_unblank(void) { } |
| 131 | #endif |
| 132 | |
| 133 | /* |
| 134 | * If oops/die is expected to crash the machine, return true here. |
| 135 | * |
| 136 | * This should not be expected to be 100% accurate, there may be |
| 137 | * notifiers registered or other unexpected conditions that may bring |
| 138 | * down the kernel. Or if the current process in the kernel is holding |
| 139 | * locks or has other critical state, the kernel may become effectively |
| 140 | * unusable anyway. |
| 141 | */ |
| 142 | bool die_will_crash(void) |
| 143 | { |
| 144 | if (should_fadump_crash()) |
| 145 | return true; |
| 146 | if (kexec_should_crash(current)) |
| 147 | return true; |
| 148 | if (in_interrupt() || panic_on_oops || |
| 149 | !current->pid || is_global_init(current)) |
| 150 | return true; |
| 151 | |
| 152 | return false; |
| 153 | } |
| 154 | |
| 155 | static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED; |
| 156 | static int die_owner = -1; |
| 157 | static unsigned int die_nest_count; |
| 158 | static int die_counter; |
| 159 | |
| 160 | void panic_flush_kmsg_start(void) |
| 161 | { |
| 162 | /* |
| 163 | * These are mostly taken from kernel/panic.c, but tries to do |
| 164 | * relatively minimal work. Don't use delay functions (TB may |
| 165 | * be broken), don't crash dump (need to set a firmware log), |
| 166 | * don't run notifiers. We do want to get some information to |
| 167 | * Linux console. |
| 168 | */ |
| 169 | console_verbose(); |
| 170 | bust_spinlocks(1); |
| 171 | } |
| 172 | |
| 173 | void panic_flush_kmsg_end(void) |
| 174 | { |
| 175 | kmsg_dump(KMSG_DUMP_PANIC); |
| 176 | bust_spinlocks(0); |
| 177 | debug_locks_off(); |
| 178 | console_flush_on_panic(CONSOLE_FLUSH_PENDING); |
| 179 | } |
| 180 | |
| 181 | static unsigned long oops_begin(struct pt_regs *regs) |
| 182 | { |
| 183 | int cpu; |
| 184 | unsigned long flags; |
| 185 | |
| 186 | oops_enter(); |
| 187 | |
| 188 | /* racy, but better than risking deadlock. */ |
| 189 | raw_local_irq_save(flags); |
| 190 | cpu = smp_processor_id(); |
| 191 | if (!arch_spin_trylock(&die_lock)) { |
| 192 | if (cpu == die_owner) |
| 193 | /* nested oops. should stop eventually */; |
| 194 | else |
| 195 | arch_spin_lock(&die_lock); |
| 196 | } |
| 197 | die_nest_count++; |
| 198 | die_owner = cpu; |
| 199 | console_verbose(); |
| 200 | bust_spinlocks(1); |
| 201 | if (machine_is(powermac)) |
| 202 | pmac_backlight_unblank(); |
| 203 | return flags; |
| 204 | } |
| 205 | NOKPROBE_SYMBOL(oops_begin); |
| 206 | |
| 207 | static void oops_end(unsigned long flags, struct pt_regs *regs, |
| 208 | int signr) |
| 209 | { |
| 210 | bust_spinlocks(0); |
| 211 | add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); |
| 212 | die_nest_count--; |
| 213 | oops_exit(); |
| 214 | printk("\n"); |
| 215 | if (!die_nest_count) { |
| 216 | /* Nest count reaches zero, release the lock. */ |
| 217 | die_owner = -1; |
| 218 | arch_spin_unlock(&die_lock); |
| 219 | } |
| 220 | raw_local_irq_restore(flags); |
| 221 | |
| 222 | /* |
| 223 | * system_reset_excption handles debugger, crash dump, panic, for 0x100 |
| 224 | */ |
| 225 | if (TRAP(regs) == INTERRUPT_SYSTEM_RESET) |
| 226 | return; |
| 227 | |
| 228 | crash_fadump(regs, "die oops"); |
| 229 | |
| 230 | if (kexec_should_crash(current)) |
| 231 | crash_kexec(regs); |
| 232 | |
| 233 | if (!signr) |
| 234 | return; |
| 235 | |
| 236 | /* |
| 237 | * While our oops output is serialised by a spinlock, output |
| 238 | * from panic() called below can race and corrupt it. If we |
| 239 | * know we are going to panic, delay for 1 second so we have a |
| 240 | * chance to get clean backtraces from all CPUs that are oopsing. |
| 241 | */ |
| 242 | if (in_interrupt() || panic_on_oops || !current->pid || |
| 243 | is_global_init(current)) { |
| 244 | mdelay(MSEC_PER_SEC); |
| 245 | } |
| 246 | |
| 247 | if (panic_on_oops) |
| 248 | panic("Fatal exception"); |
| 249 | make_task_dead(signr); |
| 250 | } |
| 251 | NOKPROBE_SYMBOL(oops_end); |
| 252 | |
| 253 | static char *get_mmu_str(void) |
| 254 | { |
| 255 | if (early_radix_enabled()) |
| 256 | return " MMU=Radix"; |
| 257 | if (early_mmu_has_feature(MMU_FTR_HPTE_TABLE)) |
| 258 | return " MMU=Hash"; |
| 259 | return ""; |
| 260 | } |
| 261 | |
| 262 | static int __die(const char *str, struct pt_regs *regs, long err) |
| 263 | { |
| 264 | printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter); |
| 265 | |
| 266 | printk("%s PAGE_SIZE=%luK%s %s%s%s%s %s\n", |
| 267 | IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN) ? "LE" : "BE", |
| 268 | PAGE_SIZE / 1024, get_mmu_str(), |
| 269 | IS_ENABLED(CONFIG_SMP) ? " SMP" : "", |
| 270 | IS_ENABLED(CONFIG_SMP) ? (" NR_CPUS=" __stringify(NR_CPUS)) : "", |
| 271 | debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC" : "", |
| 272 | IS_ENABLED(CONFIG_NUMA) ? " NUMA" : "", |
| 273 | ppc_md.name ? ppc_md.name : ""); |
| 274 | |
| 275 | if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP) |
| 276 | return 1; |
| 277 | |
| 278 | print_modules(); |
| 279 | show_regs(regs); |
| 280 | |
| 281 | return 0; |
| 282 | } |
| 283 | NOKPROBE_SYMBOL(__die); |
| 284 | |
| 285 | void die(const char *str, struct pt_regs *regs, long err) |
| 286 | { |
| 287 | unsigned long flags; |
| 288 | |
| 289 | /* |
| 290 | * system_reset_excption handles debugger, crash dump, panic, for 0x100 |
| 291 | */ |
| 292 | if (TRAP(regs) != INTERRUPT_SYSTEM_RESET) { |
| 293 | if (debugger(regs)) |
| 294 | return; |
| 295 | } |
| 296 | |
| 297 | flags = oops_begin(regs); |
| 298 | if (__die(str, regs, err)) |
| 299 | err = 0; |
| 300 | oops_end(flags, regs, err); |
| 301 | } |
| 302 | NOKPROBE_SYMBOL(die); |
| 303 | |
| 304 | void user_single_step_report(struct pt_regs *regs) |
| 305 | { |
| 306 | force_sig_fault(SIGTRAP, TRAP_TRACE, (void __user *)regs->nip); |
| 307 | } |
| 308 | |
| 309 | static void show_signal_msg(int signr, struct pt_regs *regs, int code, |
| 310 | unsigned long addr) |
| 311 | { |
| 312 | static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, |
| 313 | DEFAULT_RATELIMIT_BURST); |
| 314 | |
| 315 | if (!show_unhandled_signals) |
| 316 | return; |
| 317 | |
| 318 | if (!unhandled_signal(current, signr)) |
| 319 | return; |
| 320 | |
| 321 | if (!__ratelimit(&rs)) |
| 322 | return; |
| 323 | |
| 324 | pr_info("%s[%d]: %s (%d) at %lx nip %lx lr %lx code %x", |
| 325 | current->comm, current->pid, signame(signr), signr, |
| 326 | addr, regs->nip, regs->link, code); |
| 327 | |
| 328 | print_vma_addr(KERN_CONT " in ", regs->nip); |
| 329 | |
| 330 | pr_cont("\n"); |
| 331 | |
| 332 | show_user_instructions(regs); |
| 333 | } |
| 334 | |
| 335 | static bool exception_common(int signr, struct pt_regs *regs, int code, |
| 336 | unsigned long addr) |
| 337 | { |
| 338 | if (!user_mode(regs)) { |
| 339 | die("Exception in kernel mode", regs, signr); |
| 340 | return false; |
| 341 | } |
| 342 | |
| 343 | /* |
| 344 | * Must not enable interrupts even for user-mode exception, because |
| 345 | * this can be called from machine check, which may be a NMI or IRQ |
| 346 | * which don't like interrupts being enabled. Could check for |
| 347 | * in_hardirq || in_nmi perhaps, but there doesn't seem to be a good |
| 348 | * reason why _exception() should enable irqs for an exception handler, |
| 349 | * the handlers themselves do that directly. |
| 350 | */ |
| 351 | |
| 352 | show_signal_msg(signr, regs, code, addr); |
| 353 | |
| 354 | current->thread.trap_nr = code; |
| 355 | |
| 356 | return true; |
| 357 | } |
| 358 | |
| 359 | void _exception_pkey(struct pt_regs *regs, unsigned long addr, int key) |
| 360 | { |
| 361 | if (!exception_common(SIGSEGV, regs, SEGV_PKUERR, addr)) |
| 362 | return; |
| 363 | |
| 364 | force_sig_pkuerr((void __user *) addr, key); |
| 365 | } |
| 366 | |
| 367 | void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr) |
| 368 | { |
| 369 | if (!exception_common(signr, regs, code, addr)) |
| 370 | return; |
| 371 | |
| 372 | force_sig_fault(signr, code, (void __user *)addr); |
| 373 | } |
| 374 | |
| 375 | /* |
| 376 | * The interrupt architecture has a quirk in that the HV interrupts excluding |
| 377 | * the NMIs (0x100 and 0x200) do not clear MSR[RI] at entry. The first thing |
| 378 | * that an interrupt handler must do is save off a GPR into a scratch register, |
| 379 | * and all interrupts on POWERNV (HV=1) use the HSPRG1 register as scratch. |
| 380 | * Therefore an NMI can clobber an HV interrupt's live HSPRG1 without noticing |
| 381 | * that it is non-reentrant, which leads to random data corruption. |
| 382 | * |
| 383 | * The solution is for NMI interrupts in HV mode to check if they originated |
| 384 | * from these critical HV interrupt regions. If so, then mark them not |
| 385 | * recoverable. |
| 386 | * |
| 387 | * An alternative would be for HV NMIs to use SPRG for scratch to avoid the |
| 388 | * HSPRG1 clobber, however this would cause guest SPRG to be clobbered. Linux |
| 389 | * guests should always have MSR[RI]=0 when its scratch SPRG is in use, so |
| 390 | * that would work. However any other guest OS that may have the SPRG live |
| 391 | * and MSR[RI]=1 could encounter silent corruption. |
| 392 | * |
| 393 | * Builds that do not support KVM could take this second option to increase |
| 394 | * the recoverability of NMIs. |
| 395 | */ |
| 396 | noinstr void hv_nmi_check_nonrecoverable(struct pt_regs *regs) |
| 397 | { |
| 398 | #ifdef CONFIG_PPC_POWERNV |
| 399 | unsigned long kbase = (unsigned long)_stext; |
| 400 | unsigned long nip = regs->nip; |
| 401 | |
| 402 | if (!(regs->msr & MSR_RI)) |
| 403 | return; |
| 404 | if (!(regs->msr & MSR_HV)) |
| 405 | return; |
| 406 | if (user_mode(regs)) |
| 407 | return; |
| 408 | |
| 409 | /* |
| 410 | * Now test if the interrupt has hit a range that may be using |
| 411 | * HSPRG1 without having RI=0 (i.e., an HSRR interrupt). The |
| 412 | * problem ranges all run un-relocated. Test real and virt modes |
| 413 | * at the same time by dropping the high bit of the nip (virt mode |
| 414 | * entry points still have the +0x4000 offset). |
| 415 | */ |
| 416 | nip &= ~0xc000000000000000ULL; |
| 417 | if ((nip >= 0x500 && nip < 0x600) || (nip >= 0x4500 && nip < 0x4600)) |
| 418 | goto nonrecoverable; |
| 419 | if ((nip >= 0x980 && nip < 0xa00) || (nip >= 0x4980 && nip < 0x4a00)) |
| 420 | goto nonrecoverable; |
| 421 | if ((nip >= 0xe00 && nip < 0xec0) || (nip >= 0x4e00 && nip < 0x4ec0)) |
| 422 | goto nonrecoverable; |
| 423 | if ((nip >= 0xf80 && nip < 0xfa0) || (nip >= 0x4f80 && nip < 0x4fa0)) |
| 424 | goto nonrecoverable; |
| 425 | |
| 426 | /* Trampoline code runs un-relocated so subtract kbase. */ |
| 427 | if (nip >= (unsigned long)(start_real_trampolines - kbase) && |
| 428 | nip < (unsigned long)(end_real_trampolines - kbase)) |
| 429 | goto nonrecoverable; |
| 430 | if (nip >= (unsigned long)(start_virt_trampolines - kbase) && |
| 431 | nip < (unsigned long)(end_virt_trampolines - kbase)) |
| 432 | goto nonrecoverable; |
| 433 | return; |
| 434 | |
| 435 | nonrecoverable: |
| 436 | regs->msr &= ~MSR_RI; |
| 437 | local_paca->hsrr_valid = 0; |
| 438 | local_paca->srr_valid = 0; |
| 439 | #endif |
| 440 | } |
| 441 | DEFINE_INTERRUPT_HANDLER_NMI(system_reset_exception) |
| 442 | { |
| 443 | unsigned long hsrr0, hsrr1; |
| 444 | bool saved_hsrrs = false; |
| 445 | |
| 446 | /* |
| 447 | * System reset can interrupt code where HSRRs are live and MSR[RI]=1. |
| 448 | * The system reset interrupt itself may clobber HSRRs (e.g., to call |
| 449 | * OPAL), so save them here and restore them before returning. |
| 450 | * |
| 451 | * Machine checks don't need to save HSRRs, as the real mode handler |
| 452 | * is careful to avoid them, and the regular handler is not delivered |
| 453 | * as an NMI. |
| 454 | */ |
| 455 | if (cpu_has_feature(CPU_FTR_HVMODE)) { |
| 456 | hsrr0 = mfspr(SPRN_HSRR0); |
| 457 | hsrr1 = mfspr(SPRN_HSRR1); |
| 458 | saved_hsrrs = true; |
| 459 | } |
| 460 | |
| 461 | hv_nmi_check_nonrecoverable(regs); |
| 462 | |
| 463 | __this_cpu_inc(irq_stat.sreset_irqs); |
| 464 | |
| 465 | /* See if any machine dependent calls */ |
| 466 | if (ppc_md.system_reset_exception) { |
| 467 | if (ppc_md.system_reset_exception(regs)) |
| 468 | goto out; |
| 469 | } |
| 470 | |
| 471 | if (debugger(regs)) |
| 472 | goto out; |
| 473 | |
| 474 | kmsg_dump(KMSG_DUMP_OOPS); |
| 475 | /* |
| 476 | * A system reset is a request to dump, so we always send |
| 477 | * it through the crashdump code (if fadump or kdump are |
| 478 | * registered). |
| 479 | */ |
| 480 | crash_fadump(regs, "System Reset"); |
| 481 | |
| 482 | crash_kexec(regs); |
| 483 | |
| 484 | /* |
| 485 | * We aren't the primary crash CPU. We need to send it |
| 486 | * to a holding pattern to avoid it ending up in the panic |
| 487 | * code. |
| 488 | */ |
| 489 | crash_kexec_secondary(regs); |
| 490 | |
| 491 | /* |
| 492 | * No debugger or crash dump registered, print logs then |
| 493 | * panic. |
| 494 | */ |
| 495 | die("System Reset", regs, SIGABRT); |
| 496 | |
| 497 | mdelay(2*MSEC_PER_SEC); /* Wait a little while for others to print */ |
| 498 | add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); |
| 499 | nmi_panic(regs, "System Reset"); |
| 500 | |
| 501 | out: |
| 502 | #ifdef CONFIG_PPC_BOOK3S_64 |
| 503 | BUG_ON(get_paca()->in_nmi == 0); |
| 504 | if (get_paca()->in_nmi > 1) |
| 505 | die("Unrecoverable nested System Reset", regs, SIGABRT); |
| 506 | #endif |
| 507 | /* Must die if the interrupt is not recoverable */ |
| 508 | if (regs_is_unrecoverable(regs)) { |
| 509 | /* For the reason explained in die_mce, nmi_exit before die */ |
| 510 | nmi_exit(); |
| 511 | die("Unrecoverable System Reset", regs, SIGABRT); |
| 512 | } |
| 513 | |
| 514 | if (saved_hsrrs) { |
| 515 | mtspr(SPRN_HSRR0, hsrr0); |
| 516 | mtspr(SPRN_HSRR1, hsrr1); |
| 517 | } |
| 518 | |
| 519 | /* What should we do here? We could issue a shutdown or hard reset. */ |
| 520 | |
| 521 | return 0; |
| 522 | } |
| 523 | |
| 524 | /* |
| 525 | * I/O accesses can cause machine checks on powermacs. |
| 526 | * Check if the NIP corresponds to the address of a sync |
| 527 | * instruction for which there is an entry in the exception |
| 528 | * table. |
| 529 | * -- paulus. |
| 530 | */ |
| 531 | static inline int check_io_access(struct pt_regs *regs) |
| 532 | { |
| 533 | #ifdef CONFIG_PPC32 |
| 534 | unsigned long msr = regs->msr; |
| 535 | const struct exception_table_entry *entry; |
| 536 | unsigned int *nip = (unsigned int *)regs->nip; |
| 537 | |
| 538 | if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000))) |
| 539 | && (entry = search_exception_tables(regs->nip)) != NULL) { |
| 540 | /* |
| 541 | * Check that it's a sync instruction, or somewhere |
| 542 | * in the twi; isync; nop sequence that inb/inw/inl uses. |
| 543 | * As the address is in the exception table |
| 544 | * we should be able to read the instr there. |
| 545 | * For the debug message, we look at the preceding |
| 546 | * load or store. |
| 547 | */ |
| 548 | if (*nip == PPC_RAW_NOP()) |
| 549 | nip -= 2; |
| 550 | else if (*nip == PPC_RAW_ISYNC()) |
| 551 | --nip; |
| 552 | if (*nip == PPC_RAW_SYNC() || get_op(*nip) == OP_TRAP) { |
| 553 | unsigned int rb; |
| 554 | |
| 555 | --nip; |
| 556 | rb = (*nip >> 11) & 0x1f; |
| 557 | printk(KERN_DEBUG "%s bad port %lx at %p\n", |
| 558 | (*nip & 0x100)? "OUT to": "IN from", |
| 559 | regs->gpr[rb] - _IO_BASE, nip); |
| 560 | regs_set_recoverable(regs); |
| 561 | regs_set_return_ip(regs, extable_fixup(entry)); |
| 562 | return 1; |
| 563 | } |
| 564 | } |
| 565 | #endif /* CONFIG_PPC32 */ |
| 566 | return 0; |
| 567 | } |
| 568 | |
| 569 | #ifdef CONFIG_PPC_ADV_DEBUG_REGS |
| 570 | /* On 4xx, the reason for the machine check or program exception |
| 571 | is in the ESR. */ |
| 572 | #define get_reason(regs) ((regs)->esr) |
| 573 | #define REASON_FP ESR_FP |
| 574 | #define REASON_ILLEGAL (ESR_PIL | ESR_PUO) |
| 575 | #define REASON_PRIVILEGED ESR_PPR |
| 576 | #define REASON_TRAP ESR_PTR |
| 577 | #define REASON_PREFIXED 0 |
| 578 | #define REASON_BOUNDARY 0 |
| 579 | |
| 580 | /* single-step stuff */ |
| 581 | #define single_stepping(regs) (current->thread.debug.dbcr0 & DBCR0_IC) |
| 582 | #define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC) |
| 583 | #define clear_br_trace(regs) do {} while(0) |
| 584 | #else |
| 585 | /* On non-4xx, the reason for the machine check or program |
| 586 | exception is in the MSR. */ |
| 587 | #define get_reason(regs) ((regs)->msr) |
| 588 | #define REASON_TM SRR1_PROGTM |
| 589 | #define REASON_FP SRR1_PROGFPE |
| 590 | #define REASON_ILLEGAL SRR1_PROGILL |
| 591 | #define REASON_PRIVILEGED SRR1_PROGPRIV |
| 592 | #define REASON_TRAP SRR1_PROGTRAP |
| 593 | #define REASON_PREFIXED SRR1_PREFIXED |
| 594 | #define REASON_BOUNDARY SRR1_BOUNDARY |
| 595 | |
| 596 | #define single_stepping(regs) ((regs)->msr & MSR_SE) |
| 597 | #define clear_single_step(regs) (regs_set_return_msr((regs), (regs)->msr & ~MSR_SE)) |
| 598 | #define clear_br_trace(regs) (regs_set_return_msr((regs), (regs)->msr & ~MSR_BE)) |
| 599 | #endif |
| 600 | |
| 601 | #define inst_length(reason) (((reason) & REASON_PREFIXED) ? 8 : 4) |
| 602 | |
| 603 | #if defined(CONFIG_PPC_E500) |
| 604 | int machine_check_e500mc(struct pt_regs *regs) |
| 605 | { |
| 606 | unsigned long mcsr = mfspr(SPRN_MCSR); |
| 607 | unsigned long pvr = mfspr(SPRN_PVR); |
| 608 | unsigned long reason = mcsr; |
| 609 | int recoverable = 1; |
| 610 | |
| 611 | if (reason & MCSR_LD) { |
| 612 | recoverable = fsl_rio_mcheck_exception(regs); |
| 613 | if (recoverable == 1) |
| 614 | goto silent_out; |
| 615 | } |
| 616 | |
| 617 | printk("Machine check in kernel mode.\n"); |
| 618 | printk("Caused by (from MCSR=%lx): ", reason); |
| 619 | |
| 620 | if (reason & MCSR_MCP) |
| 621 | pr_cont("Machine Check Signal\n"); |
| 622 | |
| 623 | if (reason & MCSR_ICPERR) { |
| 624 | pr_cont("Instruction Cache Parity Error\n"); |
| 625 | |
| 626 | /* |
| 627 | * This is recoverable by invalidating the i-cache. |
| 628 | */ |
| 629 | mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI); |
| 630 | while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI) |
| 631 | ; |
| 632 | |
| 633 | /* |
| 634 | * This will generally be accompanied by an instruction |
| 635 | * fetch error report -- only treat MCSR_IF as fatal |
| 636 | * if it wasn't due to an L1 parity error. |
| 637 | */ |
| 638 | reason &= ~MCSR_IF; |
| 639 | } |
| 640 | |
| 641 | if (reason & MCSR_DCPERR_MC) { |
| 642 | pr_cont("Data Cache Parity Error\n"); |
| 643 | |
| 644 | /* |
| 645 | * In write shadow mode we auto-recover from the error, but it |
| 646 | * may still get logged and cause a machine check. We should |
| 647 | * only treat the non-write shadow case as non-recoverable. |
| 648 | */ |
| 649 | /* On e6500 core, L1 DCWS (Data cache write shadow mode) bit |
| 650 | * is not implemented but L1 data cache always runs in write |
| 651 | * shadow mode. Hence on data cache parity errors HW will |
| 652 | * automatically invalidate the L1 Data Cache. |
| 653 | */ |
| 654 | if (PVR_VER(pvr) != PVR_VER_E6500) { |
| 655 | if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS)) |
| 656 | recoverable = 0; |
| 657 | } |
| 658 | } |
| 659 | |
| 660 | if (reason & MCSR_L2MMU_MHIT) { |
| 661 | pr_cont("Hit on multiple TLB entries\n"); |
| 662 | recoverable = 0; |
| 663 | } |
| 664 | |
| 665 | if (reason & MCSR_NMI) |
| 666 | pr_cont("Non-maskable interrupt\n"); |
| 667 | |
| 668 | if (reason & MCSR_IF) { |
| 669 | pr_cont("Instruction Fetch Error Report\n"); |
| 670 | recoverable = 0; |
| 671 | } |
| 672 | |
| 673 | if (reason & MCSR_LD) { |
| 674 | pr_cont("Load Error Report\n"); |
| 675 | recoverable = 0; |
| 676 | } |
| 677 | |
| 678 | if (reason & MCSR_ST) { |
| 679 | pr_cont("Store Error Report\n"); |
| 680 | recoverable = 0; |
| 681 | } |
| 682 | |
| 683 | if (reason & MCSR_LDG) { |
| 684 | pr_cont("Guarded Load Error Report\n"); |
| 685 | recoverable = 0; |
| 686 | } |
| 687 | |
| 688 | if (reason & MCSR_TLBSYNC) |
| 689 | pr_cont("Simultaneous tlbsync operations\n"); |
| 690 | |
| 691 | if (reason & MCSR_BSL2_ERR) { |
| 692 | pr_cont("Level 2 Cache Error\n"); |
| 693 | recoverable = 0; |
| 694 | } |
| 695 | |
| 696 | if (reason & MCSR_MAV) { |
| 697 | u64 addr; |
| 698 | |
| 699 | addr = mfspr(SPRN_MCAR); |
| 700 | addr |= (u64)mfspr(SPRN_MCARU) << 32; |
| 701 | |
| 702 | pr_cont("Machine Check %s Address: %#llx\n", |
| 703 | reason & MCSR_MEA ? "Effective" : "Physical", addr); |
| 704 | } |
| 705 | |
| 706 | silent_out: |
| 707 | mtspr(SPRN_MCSR, mcsr); |
| 708 | return mfspr(SPRN_MCSR) == 0 && recoverable; |
| 709 | } |
| 710 | |
| 711 | int machine_check_e500(struct pt_regs *regs) |
| 712 | { |
| 713 | unsigned long reason = mfspr(SPRN_MCSR); |
| 714 | |
| 715 | if (reason & MCSR_BUS_RBERR) { |
| 716 | if (fsl_rio_mcheck_exception(regs)) |
| 717 | return 1; |
| 718 | if (fsl_pci_mcheck_exception(regs)) |
| 719 | return 1; |
| 720 | } |
| 721 | |
| 722 | printk("Machine check in kernel mode.\n"); |
| 723 | printk("Caused by (from MCSR=%lx): ", reason); |
| 724 | |
| 725 | if (reason & MCSR_MCP) |
| 726 | pr_cont("Machine Check Signal\n"); |
| 727 | if (reason & MCSR_ICPERR) |
| 728 | pr_cont("Instruction Cache Parity Error\n"); |
| 729 | if (reason & MCSR_DCP_PERR) |
| 730 | pr_cont("Data Cache Push Parity Error\n"); |
| 731 | if (reason & MCSR_DCPERR) |
| 732 | pr_cont("Data Cache Parity Error\n"); |
| 733 | if (reason & MCSR_BUS_IAERR) |
| 734 | pr_cont("Bus - Instruction Address Error\n"); |
| 735 | if (reason & MCSR_BUS_RAERR) |
| 736 | pr_cont("Bus - Read Address Error\n"); |
| 737 | if (reason & MCSR_BUS_WAERR) |
| 738 | pr_cont("Bus - Write Address Error\n"); |
| 739 | if (reason & MCSR_BUS_IBERR) |
| 740 | pr_cont("Bus - Instruction Data Error\n"); |
| 741 | if (reason & MCSR_BUS_RBERR) |
| 742 | pr_cont("Bus - Read Data Bus Error\n"); |
| 743 | if (reason & MCSR_BUS_WBERR) |
| 744 | pr_cont("Bus - Write Data Bus Error\n"); |
| 745 | if (reason & MCSR_BUS_IPERR) |
| 746 | pr_cont("Bus - Instruction Parity Error\n"); |
| 747 | if (reason & MCSR_BUS_RPERR) |
| 748 | pr_cont("Bus - Read Parity Error\n"); |
| 749 | |
| 750 | return 0; |
| 751 | } |
| 752 | |
| 753 | int machine_check_generic(struct pt_regs *regs) |
| 754 | { |
| 755 | return 0; |
| 756 | } |
| 757 | #elif defined(CONFIG_PPC32) |
| 758 | int machine_check_generic(struct pt_regs *regs) |
| 759 | { |
| 760 | unsigned long reason = regs->msr; |
| 761 | |
| 762 | printk("Machine check in kernel mode.\n"); |
| 763 | printk("Caused by (from SRR1=%lx): ", reason); |
| 764 | switch (reason & 0x601F0000) { |
| 765 | case 0x80000: |
| 766 | pr_cont("Machine check signal\n"); |
| 767 | break; |
| 768 | case 0x40000: |
| 769 | case 0x140000: /* 7450 MSS error and TEA */ |
| 770 | pr_cont("Transfer error ack signal\n"); |
| 771 | break; |
| 772 | case 0x20000: |
| 773 | pr_cont("Data parity error signal\n"); |
| 774 | break; |
| 775 | case 0x10000: |
| 776 | pr_cont("Address parity error signal\n"); |
| 777 | break; |
| 778 | case 0x20000000: |
| 779 | pr_cont("L1 Data Cache error\n"); |
| 780 | break; |
| 781 | case 0x40000000: |
| 782 | pr_cont("L1 Instruction Cache error\n"); |
| 783 | break; |
| 784 | case 0x00100000: |
| 785 | pr_cont("L2 data cache parity error\n"); |
| 786 | break; |
| 787 | default: |
| 788 | pr_cont("Unknown values in msr\n"); |
| 789 | } |
| 790 | return 0; |
| 791 | } |
| 792 | #endif /* everything else */ |
| 793 | |
| 794 | void die_mce(const char *str, struct pt_regs *regs, long err) |
| 795 | { |
| 796 | /* |
| 797 | * The machine check wants to kill the interrupted context, |
| 798 | * but make_task_dead() checks for in_interrupt() and panics |
| 799 | * in that case, so exit the irq/nmi before calling die. |
| 800 | */ |
| 801 | if (in_nmi()) |
| 802 | nmi_exit(); |
| 803 | else |
| 804 | irq_exit(); |
| 805 | die(str, regs, err); |
| 806 | } |
| 807 | |
| 808 | /* |
| 809 | * BOOK3S_64 does not usually call this handler as a non-maskable interrupt |
| 810 | * (it uses its own early real-mode handler to handle the MCE proper |
| 811 | * and then raises irq_work to call this handler when interrupts are |
| 812 | * enabled). The only time when this is not true is if the early handler |
| 813 | * is unrecoverable, then it does call this directly to try to get a |
| 814 | * message out. |
| 815 | */ |
| 816 | static void __machine_check_exception(struct pt_regs *regs) |
| 817 | { |
| 818 | int recover = 0; |
| 819 | |
| 820 | __this_cpu_inc(irq_stat.mce_exceptions); |
| 821 | |
| 822 | add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE); |
| 823 | |
| 824 | /* See if any machine dependent calls. In theory, we would want |
| 825 | * to call the CPU first, and call the ppc_md. one if the CPU |
| 826 | * one returns a positive number. However there is existing code |
| 827 | * that assumes the board gets a first chance, so let's keep it |
| 828 | * that way for now and fix things later. --BenH. |
| 829 | */ |
| 830 | if (ppc_md.machine_check_exception) |
| 831 | recover = ppc_md.machine_check_exception(regs); |
| 832 | else if (cur_cpu_spec->machine_check) |
| 833 | recover = cur_cpu_spec->machine_check(regs); |
| 834 | |
| 835 | if (recover > 0) |
| 836 | goto bail; |
| 837 | |
| 838 | if (debugger_fault_handler(regs)) |
| 839 | goto bail; |
| 840 | |
| 841 | if (check_io_access(regs)) |
| 842 | goto bail; |
| 843 | |
| 844 | die_mce("Machine check", regs, SIGBUS); |
| 845 | |
| 846 | bail: |
| 847 | /* Must die if the interrupt is not recoverable */ |
| 848 | if (regs_is_unrecoverable(regs)) |
| 849 | die_mce("Unrecoverable Machine check", regs, SIGBUS); |
| 850 | } |
| 851 | |
| 852 | #ifdef CONFIG_PPC_BOOK3S_64 |
| 853 | DEFINE_INTERRUPT_HANDLER_RAW(machine_check_early_boot) |
| 854 | { |
| 855 | udbg_printf("Machine check (early boot)\n"); |
| 856 | udbg_printf("SRR0=0x%016lx SRR1=0x%016lx\n", regs->nip, regs->msr); |
| 857 | udbg_printf(" DAR=0x%016lx DSISR=0x%08lx\n", regs->dar, regs->dsisr); |
| 858 | udbg_printf(" LR=0x%016lx R1=0x%08lx\n", regs->link, regs->gpr[1]); |
| 859 | udbg_printf("------\n"); |
| 860 | die("Machine check (early boot)", regs, SIGBUS); |
| 861 | for (;;) |
| 862 | ; |
| 863 | return 0; |
| 864 | } |
| 865 | |
| 866 | DEFINE_INTERRUPT_HANDLER_ASYNC(machine_check_exception_async) |
| 867 | { |
| 868 | __machine_check_exception(regs); |
| 869 | } |
| 870 | #endif |
| 871 | DEFINE_INTERRUPT_HANDLER_NMI(machine_check_exception) |
| 872 | { |
| 873 | __machine_check_exception(regs); |
| 874 | |
| 875 | return 0; |
| 876 | } |
| 877 | |
| 878 | DEFINE_INTERRUPT_HANDLER(SMIException) /* async? */ |
| 879 | { |
| 880 | die("System Management Interrupt", regs, SIGABRT); |
| 881 | } |
| 882 | |
| 883 | #ifdef CONFIG_VSX |
| 884 | static void p9_hmi_special_emu(struct pt_regs *regs) |
| 885 | { |
| 886 | unsigned int ra, rb, t, i, sel, instr, rc; |
| 887 | const void __user *addr; |
| 888 | u8 vbuf[16] __aligned(16), *vdst; |
| 889 | unsigned long ea, msr, msr_mask; |
| 890 | bool swap; |
| 891 | |
| 892 | if (__get_user(instr, (unsigned int __user *)regs->nip)) |
| 893 | return; |
| 894 | |
| 895 | /* |
| 896 | * lxvb16x opcode: 0x7c0006d8 |
| 897 | * lxvd2x opcode: 0x7c000698 |
| 898 | * lxvh8x opcode: 0x7c000658 |
| 899 | * lxvw4x opcode: 0x7c000618 |
| 900 | */ |
| 901 | if ((instr & 0xfc00073e) != 0x7c000618) { |
| 902 | pr_devel("HMI vec emu: not vector CI %i:%s[%d] nip=%016lx" |
| 903 | " instr=%08x\n", |
| 904 | smp_processor_id(), current->comm, current->pid, |
| 905 | regs->nip, instr); |
| 906 | return; |
| 907 | } |
| 908 | |
| 909 | /* Grab vector registers into the task struct */ |
| 910 | msr = regs->msr; /* Grab msr before we flush the bits */ |
| 911 | flush_vsx_to_thread(current); |
| 912 | enable_kernel_altivec(); |
| 913 | |
| 914 | /* |
| 915 | * Is userspace running with a different endian (this is rare but |
| 916 | * not impossible) |
| 917 | */ |
| 918 | swap = (msr & MSR_LE) != (MSR_KERNEL & MSR_LE); |
| 919 | |
| 920 | /* Decode the instruction */ |
| 921 | ra = (instr >> 16) & 0x1f; |
| 922 | rb = (instr >> 11) & 0x1f; |
| 923 | t = (instr >> 21) & 0x1f; |
| 924 | if (instr & 1) |
| 925 | vdst = (u8 *)¤t->thread.vr_state.vr[t]; |
| 926 | else |
| 927 | vdst = (u8 *)¤t->thread.fp_state.fpr[t][0]; |
| 928 | |
| 929 | /* Grab the vector address */ |
| 930 | ea = regs->gpr[rb] + (ra ? regs->gpr[ra] : 0); |
| 931 | if (is_32bit_task()) |
| 932 | ea &= 0xfffffffful; |
| 933 | addr = (__force const void __user *)ea; |
| 934 | |
| 935 | /* Check it */ |
| 936 | if (!access_ok(addr, 16)) { |
| 937 | pr_devel("HMI vec emu: bad access %i:%s[%d] nip=%016lx" |
| 938 | " instr=%08x addr=%016lx\n", |
| 939 | smp_processor_id(), current->comm, current->pid, |
| 940 | regs->nip, instr, (unsigned long)addr); |
| 941 | return; |
| 942 | } |
| 943 | |
| 944 | /* Read the vector */ |
| 945 | rc = 0; |
| 946 | if ((unsigned long)addr & 0xfUL) |
| 947 | /* unaligned case */ |
| 948 | rc = __copy_from_user_inatomic(vbuf, addr, 16); |
| 949 | else |
| 950 | __get_user_atomic_128_aligned(vbuf, addr, rc); |
| 951 | if (rc) { |
| 952 | pr_devel("HMI vec emu: page fault %i:%s[%d] nip=%016lx" |
| 953 | " instr=%08x addr=%016lx\n", |
| 954 | smp_processor_id(), current->comm, current->pid, |
| 955 | regs->nip, instr, (unsigned long)addr); |
| 956 | return; |
| 957 | } |
| 958 | |
| 959 | pr_devel("HMI vec emu: emulated vector CI %i:%s[%d] nip=%016lx" |
| 960 | " instr=%08x addr=%016lx\n", |
| 961 | smp_processor_id(), current->comm, current->pid, regs->nip, |
| 962 | instr, (unsigned long) addr); |
| 963 | |
| 964 | /* Grab instruction "selector" */ |
| 965 | sel = (instr >> 6) & 3; |
| 966 | |
| 967 | /* |
| 968 | * Check to make sure the facility is actually enabled. This |
| 969 | * could happen if we get a false positive hit. |
| 970 | * |
| 971 | * lxvd2x/lxvw4x always check MSR VSX sel = 0,2 |
| 972 | * lxvh8x/lxvb16x check MSR VSX or VEC depending on VSR used sel = 1,3 |
| 973 | */ |
| 974 | msr_mask = MSR_VSX; |
| 975 | if ((sel & 1) && (instr & 1)) /* lxvh8x & lxvb16x + VSR >= 32 */ |
| 976 | msr_mask = MSR_VEC; |
| 977 | if (!(msr & msr_mask)) { |
| 978 | pr_devel("HMI vec emu: MSR fac clear %i:%s[%d] nip=%016lx" |
| 979 | " instr=%08x msr:%016lx\n", |
| 980 | smp_processor_id(), current->comm, current->pid, |
| 981 | regs->nip, instr, msr); |
| 982 | return; |
| 983 | } |
| 984 | |
| 985 | /* Do logging here before we modify sel based on endian */ |
| 986 | switch (sel) { |
| 987 | case 0: /* lxvw4x */ |
| 988 | PPC_WARN_EMULATED(lxvw4x, regs); |
| 989 | break; |
| 990 | case 1: /* lxvh8x */ |
| 991 | PPC_WARN_EMULATED(lxvh8x, regs); |
| 992 | break; |
| 993 | case 2: /* lxvd2x */ |
| 994 | PPC_WARN_EMULATED(lxvd2x, regs); |
| 995 | break; |
| 996 | case 3: /* lxvb16x */ |
| 997 | PPC_WARN_EMULATED(lxvb16x, regs); |
| 998 | break; |
| 999 | } |
| 1000 | |
| 1001 | #ifdef __LITTLE_ENDIAN__ |
| 1002 | /* |
| 1003 | * An LE kernel stores the vector in the task struct as an LE |
| 1004 | * byte array (effectively swapping both the components and |
| 1005 | * the content of the components). Those instructions expect |
| 1006 | * the components to remain in ascending address order, so we |
| 1007 | * swap them back. |
| 1008 | * |
| 1009 | * If we are running a BE user space, the expectation is that |
| 1010 | * of a simple memcpy, so forcing the emulation to look like |
| 1011 | * a lxvb16x should do the trick. |
| 1012 | */ |
| 1013 | if (swap) |
| 1014 | sel = 3; |
| 1015 | |
| 1016 | switch (sel) { |
| 1017 | case 0: /* lxvw4x */ |
| 1018 | for (i = 0; i < 4; i++) |
| 1019 | ((u32 *)vdst)[i] = ((u32 *)vbuf)[3-i]; |
| 1020 | break; |
| 1021 | case 1: /* lxvh8x */ |
| 1022 | for (i = 0; i < 8; i++) |
| 1023 | ((u16 *)vdst)[i] = ((u16 *)vbuf)[7-i]; |
| 1024 | break; |
| 1025 | case 2: /* lxvd2x */ |
| 1026 | for (i = 0; i < 2; i++) |
| 1027 | ((u64 *)vdst)[i] = ((u64 *)vbuf)[1-i]; |
| 1028 | break; |
| 1029 | case 3: /* lxvb16x */ |
| 1030 | for (i = 0; i < 16; i++) |
| 1031 | vdst[i] = vbuf[15-i]; |
| 1032 | break; |
| 1033 | } |
| 1034 | #else /* __LITTLE_ENDIAN__ */ |
| 1035 | /* On a big endian kernel, a BE userspace only needs a memcpy */ |
| 1036 | if (!swap) |
| 1037 | sel = 3; |
| 1038 | |
| 1039 | /* Otherwise, we need to swap the content of the components */ |
| 1040 | switch (sel) { |
| 1041 | case 0: /* lxvw4x */ |
| 1042 | for (i = 0; i < 4; i++) |
| 1043 | ((u32 *)vdst)[i] = cpu_to_le32(((u32 *)vbuf)[i]); |
| 1044 | break; |
| 1045 | case 1: /* lxvh8x */ |
| 1046 | for (i = 0; i < 8; i++) |
| 1047 | ((u16 *)vdst)[i] = cpu_to_le16(((u16 *)vbuf)[i]); |
| 1048 | break; |
| 1049 | case 2: /* lxvd2x */ |
| 1050 | for (i = 0; i < 2; i++) |
| 1051 | ((u64 *)vdst)[i] = cpu_to_le64(((u64 *)vbuf)[i]); |
| 1052 | break; |
| 1053 | case 3: /* lxvb16x */ |
| 1054 | memcpy(vdst, vbuf, 16); |
| 1055 | break; |
| 1056 | } |
| 1057 | #endif /* !__LITTLE_ENDIAN__ */ |
| 1058 | |
| 1059 | /* Go to next instruction */ |
| 1060 | regs_add_return_ip(regs, 4); |
| 1061 | } |
| 1062 | #endif /* CONFIG_VSX */ |
| 1063 | |
| 1064 | DEFINE_INTERRUPT_HANDLER_ASYNC(handle_hmi_exception) |
| 1065 | { |
| 1066 | struct pt_regs *old_regs; |
| 1067 | |
| 1068 | old_regs = set_irq_regs(regs); |
| 1069 | |
| 1070 | #ifdef CONFIG_VSX |
| 1071 | /* Real mode flagged P9 special emu is needed */ |
| 1072 | if (local_paca->hmi_p9_special_emu) { |
| 1073 | local_paca->hmi_p9_special_emu = 0; |
| 1074 | |
| 1075 | /* |
| 1076 | * We don't want to take page faults while doing the |
| 1077 | * emulation, we just replay the instruction if necessary. |
| 1078 | */ |
| 1079 | pagefault_disable(); |
| 1080 | p9_hmi_special_emu(regs); |
| 1081 | pagefault_enable(); |
| 1082 | } |
| 1083 | #endif /* CONFIG_VSX */ |
| 1084 | |
| 1085 | if (ppc_md.handle_hmi_exception) |
| 1086 | ppc_md.handle_hmi_exception(regs); |
| 1087 | |
| 1088 | set_irq_regs(old_regs); |
| 1089 | } |
| 1090 | |
| 1091 | DEFINE_INTERRUPT_HANDLER(unknown_exception) |
| 1092 | { |
| 1093 | printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n", |
| 1094 | regs->nip, regs->msr, regs->trap); |
| 1095 | |
| 1096 | _exception(SIGTRAP, regs, TRAP_UNK, 0); |
| 1097 | } |
| 1098 | |
| 1099 | DEFINE_INTERRUPT_HANDLER_ASYNC(unknown_async_exception) |
| 1100 | { |
| 1101 | printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n", |
| 1102 | regs->nip, regs->msr, regs->trap); |
| 1103 | |
| 1104 | _exception(SIGTRAP, regs, TRAP_UNK, 0); |
| 1105 | } |
| 1106 | |
| 1107 | DEFINE_INTERRUPT_HANDLER_NMI(unknown_nmi_exception) |
| 1108 | { |
| 1109 | printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n", |
| 1110 | regs->nip, regs->msr, regs->trap); |
| 1111 | |
| 1112 | _exception(SIGTRAP, regs, TRAP_UNK, 0); |
| 1113 | |
| 1114 | return 0; |
| 1115 | } |
| 1116 | |
| 1117 | DEFINE_INTERRUPT_HANDLER(instruction_breakpoint_exception) |
| 1118 | { |
| 1119 | if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5, |
| 1120 | 5, SIGTRAP) == NOTIFY_STOP) |
| 1121 | return; |
| 1122 | if (debugger_iabr_match(regs)) |
| 1123 | return; |
| 1124 | _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip); |
| 1125 | } |
| 1126 | |
| 1127 | DEFINE_INTERRUPT_HANDLER(RunModeException) |
| 1128 | { |
| 1129 | _exception(SIGTRAP, regs, TRAP_UNK, 0); |
| 1130 | } |
| 1131 | |
| 1132 | static void __single_step_exception(struct pt_regs *regs) |
| 1133 | { |
| 1134 | clear_single_step(regs); |
| 1135 | clear_br_trace(regs); |
| 1136 | |
| 1137 | if (kprobe_post_handler(regs)) |
| 1138 | return; |
| 1139 | |
| 1140 | if (notify_die(DIE_SSTEP, "single_step", regs, 5, |
| 1141 | 5, SIGTRAP) == NOTIFY_STOP) |
| 1142 | return; |
| 1143 | if (debugger_sstep(regs)) |
| 1144 | return; |
| 1145 | |
| 1146 | _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip); |
| 1147 | } |
| 1148 | |
| 1149 | DEFINE_INTERRUPT_HANDLER(single_step_exception) |
| 1150 | { |
| 1151 | __single_step_exception(regs); |
| 1152 | } |
| 1153 | |
| 1154 | /* |
| 1155 | * After we have successfully emulated an instruction, we have to |
| 1156 | * check if the instruction was being single-stepped, and if so, |
| 1157 | * pretend we got a single-step exception. This was pointed out |
| 1158 | * by Kumar Gala. -- paulus |
| 1159 | */ |
| 1160 | void emulate_single_step(struct pt_regs *regs) |
| 1161 | { |
| 1162 | if (single_stepping(regs)) |
| 1163 | __single_step_exception(regs); |
| 1164 | } |
| 1165 | |
| 1166 | #ifdef CONFIG_PPC_FPU_REGS |
| 1167 | static inline int __parse_fpscr(unsigned long fpscr) |
| 1168 | { |
| 1169 | int ret = FPE_FLTUNK; |
| 1170 | |
| 1171 | /* Invalid operation */ |
| 1172 | if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX)) |
| 1173 | ret = FPE_FLTINV; |
| 1174 | |
| 1175 | /* Overflow */ |
| 1176 | else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX)) |
| 1177 | ret = FPE_FLTOVF; |
| 1178 | |
| 1179 | /* Underflow */ |
| 1180 | else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX)) |
| 1181 | ret = FPE_FLTUND; |
| 1182 | |
| 1183 | /* Divide by zero */ |
| 1184 | else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX)) |
| 1185 | ret = FPE_FLTDIV; |
| 1186 | |
| 1187 | /* Inexact result */ |
| 1188 | else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX)) |
| 1189 | ret = FPE_FLTRES; |
| 1190 | |
| 1191 | return ret; |
| 1192 | } |
| 1193 | #endif |
| 1194 | |
| 1195 | static void parse_fpe(struct pt_regs *regs) |
| 1196 | { |
| 1197 | int code = 0; |
| 1198 | |
| 1199 | flush_fp_to_thread(current); |
| 1200 | |
| 1201 | #ifdef CONFIG_PPC_FPU_REGS |
| 1202 | code = __parse_fpscr(current->thread.fp_state.fpscr); |
| 1203 | #endif |
| 1204 | |
| 1205 | _exception(SIGFPE, regs, code, regs->nip); |
| 1206 | } |
| 1207 | |
| 1208 | /* |
| 1209 | * Illegal instruction emulation support. Originally written to |
| 1210 | * provide the PVR to user applications using the mfspr rd, PVR. |
| 1211 | * Return non-zero if we can't emulate, or -EFAULT if the associated |
| 1212 | * memory access caused an access fault. Return zero on success. |
| 1213 | * |
| 1214 | * There are a couple of ways to do this, either "decode" the instruction |
| 1215 | * or directly match lots of bits. In this case, matching lots of |
| 1216 | * bits is faster and easier. |
| 1217 | * |
| 1218 | */ |
| 1219 | static int emulate_string_inst(struct pt_regs *regs, u32 instword) |
| 1220 | { |
| 1221 | u8 rT = (instword >> 21) & 0x1f; |
| 1222 | u8 rA = (instword >> 16) & 0x1f; |
| 1223 | u8 NB_RB = (instword >> 11) & 0x1f; |
| 1224 | u32 num_bytes; |
| 1225 | unsigned long EA; |
| 1226 | int pos = 0; |
| 1227 | |
| 1228 | /* Early out if we are an invalid form of lswx */ |
| 1229 | if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX) |
| 1230 | if ((rT == rA) || (rT == NB_RB)) |
| 1231 | return -EINVAL; |
| 1232 | |
| 1233 | EA = (rA == 0) ? 0 : regs->gpr[rA]; |
| 1234 | |
| 1235 | switch (instword & PPC_INST_STRING_MASK) { |
| 1236 | case PPC_INST_LSWX: |
| 1237 | case PPC_INST_STSWX: |
| 1238 | EA += NB_RB; |
| 1239 | num_bytes = regs->xer & 0x7f; |
| 1240 | break; |
| 1241 | case PPC_INST_LSWI: |
| 1242 | case PPC_INST_STSWI: |
| 1243 | num_bytes = (NB_RB == 0) ? 32 : NB_RB; |
| 1244 | break; |
| 1245 | default: |
| 1246 | return -EINVAL; |
| 1247 | } |
| 1248 | |
| 1249 | while (num_bytes != 0) |
| 1250 | { |
| 1251 | u8 val; |
| 1252 | u32 shift = 8 * (3 - (pos & 0x3)); |
| 1253 | |
| 1254 | /* if process is 32-bit, clear upper 32 bits of EA */ |
| 1255 | if ((regs->msr & MSR_64BIT) == 0) |
| 1256 | EA &= 0xFFFFFFFF; |
| 1257 | |
| 1258 | switch ((instword & PPC_INST_STRING_MASK)) { |
| 1259 | case PPC_INST_LSWX: |
| 1260 | case PPC_INST_LSWI: |
| 1261 | if (get_user(val, (u8 __user *)EA)) |
| 1262 | return -EFAULT; |
| 1263 | /* first time updating this reg, |
| 1264 | * zero it out */ |
| 1265 | if (pos == 0) |
| 1266 | regs->gpr[rT] = 0; |
| 1267 | regs->gpr[rT] |= val << shift; |
| 1268 | break; |
| 1269 | case PPC_INST_STSWI: |
| 1270 | case PPC_INST_STSWX: |
| 1271 | val = regs->gpr[rT] >> shift; |
| 1272 | if (put_user(val, (u8 __user *)EA)) |
| 1273 | return -EFAULT; |
| 1274 | break; |
| 1275 | } |
| 1276 | /* move EA to next address */ |
| 1277 | EA += 1; |
| 1278 | num_bytes--; |
| 1279 | |
| 1280 | /* manage our position within the register */ |
| 1281 | if (++pos == 4) { |
| 1282 | pos = 0; |
| 1283 | if (++rT == 32) |
| 1284 | rT = 0; |
| 1285 | } |
| 1286 | } |
| 1287 | |
| 1288 | return 0; |
| 1289 | } |
| 1290 | |
| 1291 | static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword) |
| 1292 | { |
| 1293 | u32 ra,rs; |
| 1294 | unsigned long tmp; |
| 1295 | |
| 1296 | ra = (instword >> 16) & 0x1f; |
| 1297 | rs = (instword >> 21) & 0x1f; |
| 1298 | |
| 1299 | tmp = regs->gpr[rs]; |
| 1300 | tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL); |
| 1301 | tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL); |
| 1302 | tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL; |
| 1303 | regs->gpr[ra] = tmp; |
| 1304 | |
| 1305 | return 0; |
| 1306 | } |
| 1307 | |
| 1308 | static int emulate_isel(struct pt_regs *regs, u32 instword) |
| 1309 | { |
| 1310 | u8 rT = (instword >> 21) & 0x1f; |
| 1311 | u8 rA = (instword >> 16) & 0x1f; |
| 1312 | u8 rB = (instword >> 11) & 0x1f; |
| 1313 | u8 BC = (instword >> 6) & 0x1f; |
| 1314 | u8 bit; |
| 1315 | unsigned long tmp; |
| 1316 | |
| 1317 | tmp = (rA == 0) ? 0 : regs->gpr[rA]; |
| 1318 | bit = (regs->ccr >> (31 - BC)) & 0x1; |
| 1319 | |
| 1320 | regs->gpr[rT] = bit ? tmp : regs->gpr[rB]; |
| 1321 | |
| 1322 | return 0; |
| 1323 | } |
| 1324 | |
| 1325 | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| 1326 | static inline bool tm_abort_check(struct pt_regs *regs, int cause) |
| 1327 | { |
| 1328 | /* If we're emulating a load/store in an active transaction, we cannot |
| 1329 | * emulate it as the kernel operates in transaction suspended context. |
| 1330 | * We need to abort the transaction. This creates a persistent TM |
| 1331 | * abort so tell the user what caused it with a new code. |
| 1332 | */ |
| 1333 | if (MSR_TM_TRANSACTIONAL(regs->msr)) { |
| 1334 | tm_enable(); |
| 1335 | tm_abort(cause); |
| 1336 | return true; |
| 1337 | } |
| 1338 | return false; |
| 1339 | } |
| 1340 | #else |
| 1341 | static inline bool tm_abort_check(struct pt_regs *regs, int reason) |
| 1342 | { |
| 1343 | return false; |
| 1344 | } |
| 1345 | #endif |
| 1346 | |
| 1347 | static int emulate_instruction(struct pt_regs *regs) |
| 1348 | { |
| 1349 | u32 instword; |
| 1350 | u32 rd; |
| 1351 | |
| 1352 | if (!user_mode(regs)) |
| 1353 | return -EINVAL; |
| 1354 | |
| 1355 | if (get_user(instword, (u32 __user *)(regs->nip))) |
| 1356 | return -EFAULT; |
| 1357 | |
| 1358 | /* Emulate the mfspr rD, PVR. */ |
| 1359 | if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) { |
| 1360 | PPC_WARN_EMULATED(mfpvr, regs); |
| 1361 | rd = (instword >> 21) & 0x1f; |
| 1362 | regs->gpr[rd] = mfspr(SPRN_PVR); |
| 1363 | return 0; |
| 1364 | } |
| 1365 | |
| 1366 | /* Emulating the dcba insn is just a no-op. */ |
| 1367 | if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) { |
| 1368 | PPC_WARN_EMULATED(dcba, regs); |
| 1369 | return 0; |
| 1370 | } |
| 1371 | |
| 1372 | /* Emulate the mcrxr insn. */ |
| 1373 | if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) { |
| 1374 | int shift = (instword >> 21) & 0x1c; |
| 1375 | unsigned long msk = 0xf0000000UL >> shift; |
| 1376 | |
| 1377 | PPC_WARN_EMULATED(mcrxr, regs); |
| 1378 | regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk); |
| 1379 | regs->xer &= ~0xf0000000UL; |
| 1380 | return 0; |
| 1381 | } |
| 1382 | |
| 1383 | /* Emulate load/store string insn. */ |
| 1384 | if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) { |
| 1385 | if (tm_abort_check(regs, |
| 1386 | TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT)) |
| 1387 | return -EINVAL; |
| 1388 | PPC_WARN_EMULATED(string, regs); |
| 1389 | return emulate_string_inst(regs, instword); |
| 1390 | } |
| 1391 | |
| 1392 | /* Emulate the popcntb (Population Count Bytes) instruction. */ |
| 1393 | if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) { |
| 1394 | PPC_WARN_EMULATED(popcntb, regs); |
| 1395 | return emulate_popcntb_inst(regs, instword); |
| 1396 | } |
| 1397 | |
| 1398 | /* Emulate isel (Integer Select) instruction */ |
| 1399 | if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) { |
| 1400 | PPC_WARN_EMULATED(isel, regs); |
| 1401 | return emulate_isel(regs, instword); |
| 1402 | } |
| 1403 | |
| 1404 | /* Emulate sync instruction variants */ |
| 1405 | if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) { |
| 1406 | PPC_WARN_EMULATED(sync, regs); |
| 1407 | asm volatile("sync"); |
| 1408 | return 0; |
| 1409 | } |
| 1410 | |
| 1411 | #ifdef CONFIG_PPC64 |
| 1412 | /* Emulate the mfspr rD, DSCR. */ |
| 1413 | if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) == |
| 1414 | PPC_INST_MFSPR_DSCR_USER) || |
| 1415 | ((instword & PPC_INST_MFSPR_DSCR_MASK) == |
| 1416 | PPC_INST_MFSPR_DSCR)) && |
| 1417 | cpu_has_feature(CPU_FTR_DSCR)) { |
| 1418 | PPC_WARN_EMULATED(mfdscr, regs); |
| 1419 | rd = (instword >> 21) & 0x1f; |
| 1420 | regs->gpr[rd] = mfspr(SPRN_DSCR); |
| 1421 | return 0; |
| 1422 | } |
| 1423 | /* Emulate the mtspr DSCR, rD. */ |
| 1424 | if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) == |
| 1425 | PPC_INST_MTSPR_DSCR_USER) || |
| 1426 | ((instword & PPC_INST_MTSPR_DSCR_MASK) == |
| 1427 | PPC_INST_MTSPR_DSCR)) && |
| 1428 | cpu_has_feature(CPU_FTR_DSCR)) { |
| 1429 | PPC_WARN_EMULATED(mtdscr, regs); |
| 1430 | rd = (instword >> 21) & 0x1f; |
| 1431 | current->thread.dscr = regs->gpr[rd]; |
| 1432 | current->thread.dscr_inherit = 1; |
| 1433 | mtspr(SPRN_DSCR, current->thread.dscr); |
| 1434 | return 0; |
| 1435 | } |
| 1436 | #endif |
| 1437 | |
| 1438 | return -EINVAL; |
| 1439 | } |
| 1440 | |
| 1441 | #ifdef CONFIG_GENERIC_BUG |
| 1442 | int is_valid_bugaddr(unsigned long addr) |
| 1443 | { |
| 1444 | return is_kernel_addr(addr); |
| 1445 | } |
| 1446 | #endif |
| 1447 | |
| 1448 | #ifdef CONFIG_MATH_EMULATION |
| 1449 | static int emulate_math(struct pt_regs *regs) |
| 1450 | { |
| 1451 | int ret; |
| 1452 | |
| 1453 | ret = do_mathemu(regs); |
| 1454 | if (ret >= 0) |
| 1455 | PPC_WARN_EMULATED(math, regs); |
| 1456 | |
| 1457 | switch (ret) { |
| 1458 | case 0: |
| 1459 | emulate_single_step(regs); |
| 1460 | return 0; |
| 1461 | case 1: { |
| 1462 | int code = 0; |
| 1463 | code = __parse_fpscr(current->thread.fp_state.fpscr); |
| 1464 | _exception(SIGFPE, regs, code, regs->nip); |
| 1465 | return 0; |
| 1466 | } |
| 1467 | case -EFAULT: |
| 1468 | _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip); |
| 1469 | return 0; |
| 1470 | } |
| 1471 | |
| 1472 | return -1; |
| 1473 | } |
| 1474 | #else |
| 1475 | static inline int emulate_math(struct pt_regs *regs) { return -1; } |
| 1476 | #endif |
| 1477 | |
| 1478 | static void do_program_check(struct pt_regs *regs) |
| 1479 | { |
| 1480 | unsigned int reason = get_reason(regs); |
| 1481 | |
| 1482 | /* We can now get here via a FP Unavailable exception if the core |
| 1483 | * has no FPU, in that case the reason flags will be 0 */ |
| 1484 | |
| 1485 | if (reason & REASON_FP) { |
| 1486 | /* IEEE FP exception */ |
| 1487 | parse_fpe(regs); |
| 1488 | return; |
| 1489 | } |
| 1490 | if (reason & REASON_TRAP) { |
| 1491 | unsigned long bugaddr; |
| 1492 | /* Debugger is first in line to stop recursive faults in |
| 1493 | * rcu_lock, notify_die, or atomic_notifier_call_chain */ |
| 1494 | if (debugger_bpt(regs)) |
| 1495 | return; |
| 1496 | |
| 1497 | if (kprobe_handler(regs)) |
| 1498 | return; |
| 1499 | |
| 1500 | /* trap exception */ |
| 1501 | if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP) |
| 1502 | == NOTIFY_STOP) |
| 1503 | return; |
| 1504 | |
| 1505 | bugaddr = regs->nip; |
| 1506 | /* |
| 1507 | * Fixup bugaddr for BUG_ON() in real mode |
| 1508 | */ |
| 1509 | if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR)) |
| 1510 | bugaddr += PAGE_OFFSET; |
| 1511 | |
| 1512 | if (!user_mode(regs) && |
| 1513 | report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) { |
| 1514 | regs_add_return_ip(regs, 4); |
| 1515 | return; |
| 1516 | } |
| 1517 | |
| 1518 | /* User mode considers other cases after enabling IRQs */ |
| 1519 | if (!user_mode(regs)) { |
| 1520 | _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip); |
| 1521 | return; |
| 1522 | } |
| 1523 | } |
| 1524 | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| 1525 | if (reason & REASON_TM) { |
| 1526 | /* This is a TM "Bad Thing Exception" program check. |
| 1527 | * This occurs when: |
| 1528 | * - An rfid/hrfid/mtmsrd attempts to cause an illegal |
| 1529 | * transition in TM states. |
| 1530 | * - A trechkpt is attempted when transactional. |
| 1531 | * - A treclaim is attempted when non transactional. |
| 1532 | * - A tend is illegally attempted. |
| 1533 | * - writing a TM SPR when transactional. |
| 1534 | * |
| 1535 | * If usermode caused this, it's done something illegal and |
| 1536 | * gets a SIGILL slap on the wrist. We call it an illegal |
| 1537 | * operand to distinguish from the instruction just being bad |
| 1538 | * (e.g. executing a 'tend' on a CPU without TM!); it's an |
| 1539 | * illegal /placement/ of a valid instruction. |
| 1540 | */ |
| 1541 | if (user_mode(regs)) { |
| 1542 | _exception(SIGILL, regs, ILL_ILLOPN, regs->nip); |
| 1543 | return; |
| 1544 | } else { |
| 1545 | printk(KERN_EMERG "Unexpected TM Bad Thing exception " |
| 1546 | "at %lx (msr 0x%lx) tm_scratch=%llx\n", |
| 1547 | regs->nip, regs->msr, get_paca()->tm_scratch); |
| 1548 | die("Unrecoverable exception", regs, SIGABRT); |
| 1549 | } |
| 1550 | } |
| 1551 | #endif |
| 1552 | |
| 1553 | /* |
| 1554 | * If we took the program check in the kernel skip down to sending a |
| 1555 | * SIGILL. The subsequent cases all relate to user space, such as |
| 1556 | * emulating instructions which we should only do for user space. We |
| 1557 | * also do not want to enable interrupts for kernel faults because that |
| 1558 | * might lead to further faults, and loose the context of the original |
| 1559 | * exception. |
| 1560 | */ |
| 1561 | if (!user_mode(regs)) |
| 1562 | goto sigill; |
| 1563 | |
| 1564 | interrupt_cond_local_irq_enable(regs); |
| 1565 | |
| 1566 | /* |
| 1567 | * (reason & REASON_TRAP) is mostly handled before enabling IRQs, |
| 1568 | * except get_user_instr() can sleep so we cannot reliably inspect the |
| 1569 | * current instruction in that context. Now that we know we are |
| 1570 | * handling a user space trap and can sleep, we can check if the trap |
| 1571 | * was a hashchk failure. |
| 1572 | */ |
| 1573 | if (reason & REASON_TRAP) { |
| 1574 | if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE)) { |
| 1575 | ppc_inst_t insn; |
| 1576 | |
| 1577 | if (get_user_instr(insn, (void __user *)regs->nip)) { |
| 1578 | _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip); |
| 1579 | return; |
| 1580 | } |
| 1581 | |
| 1582 | if (ppc_inst_primary_opcode(insn) == 31 && |
| 1583 | get_xop(ppc_inst_val(insn)) == OP_31_XOP_HASHCHK) { |
| 1584 | _exception(SIGILL, regs, ILL_ILLOPN, regs->nip); |
| 1585 | return; |
| 1586 | } |
| 1587 | } |
| 1588 | |
| 1589 | _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip); |
| 1590 | return; |
| 1591 | } |
| 1592 | |
| 1593 | /* (reason & REASON_ILLEGAL) would be the obvious thing here, |
| 1594 | * but there seems to be a hardware bug on the 405GP (RevD) |
| 1595 | * that means ESR is sometimes set incorrectly - either to |
| 1596 | * ESR_DST (!?) or 0. In the process of chasing this with the |
| 1597 | * hardware people - not sure if it can happen on any illegal |
| 1598 | * instruction or only on FP instructions, whether there is a |
| 1599 | * pattern to occurrences etc. -dgibson 31/Mar/2003 |
| 1600 | */ |
| 1601 | if (!emulate_math(regs)) |
| 1602 | return; |
| 1603 | |
| 1604 | /* Try to emulate it if we should. */ |
| 1605 | if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) { |
| 1606 | switch (emulate_instruction(regs)) { |
| 1607 | case 0: |
| 1608 | regs_add_return_ip(regs, 4); |
| 1609 | emulate_single_step(regs); |
| 1610 | return; |
| 1611 | case -EFAULT: |
| 1612 | _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip); |
| 1613 | return; |
| 1614 | } |
| 1615 | } |
| 1616 | |
| 1617 | sigill: |
| 1618 | if (reason & REASON_PRIVILEGED) |
| 1619 | _exception(SIGILL, regs, ILL_PRVOPC, regs->nip); |
| 1620 | else |
| 1621 | _exception(SIGILL, regs, ILL_ILLOPC, regs->nip); |
| 1622 | |
| 1623 | } |
| 1624 | |
| 1625 | DEFINE_INTERRUPT_HANDLER(program_check_exception) |
| 1626 | { |
| 1627 | do_program_check(regs); |
| 1628 | } |
| 1629 | |
| 1630 | /* |
| 1631 | * This occurs when running in hypervisor mode on POWER6 or later |
| 1632 | * and an illegal instruction is encountered. |
| 1633 | */ |
| 1634 | DEFINE_INTERRUPT_HANDLER(emulation_assist_interrupt) |
| 1635 | { |
| 1636 | regs_set_return_msr(regs, regs->msr | REASON_ILLEGAL); |
| 1637 | do_program_check(regs); |
| 1638 | } |
| 1639 | |
| 1640 | DEFINE_INTERRUPT_HANDLER(alignment_exception) |
| 1641 | { |
| 1642 | int sig, code, fixed = 0; |
| 1643 | unsigned long reason; |
| 1644 | |
| 1645 | interrupt_cond_local_irq_enable(regs); |
| 1646 | |
| 1647 | reason = get_reason(regs); |
| 1648 | if (reason & REASON_BOUNDARY) { |
| 1649 | sig = SIGBUS; |
| 1650 | code = BUS_ADRALN; |
| 1651 | goto bad; |
| 1652 | } |
| 1653 | |
| 1654 | if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT)) |
| 1655 | return; |
| 1656 | |
| 1657 | /* we don't implement logging of alignment exceptions */ |
| 1658 | if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS)) |
| 1659 | fixed = fix_alignment(regs); |
| 1660 | |
| 1661 | if (fixed == 1) { |
| 1662 | /* skip over emulated instruction */ |
| 1663 | regs_add_return_ip(regs, inst_length(reason)); |
| 1664 | emulate_single_step(regs); |
| 1665 | return; |
| 1666 | } |
| 1667 | |
| 1668 | /* Operand address was bad */ |
| 1669 | if (fixed == -EFAULT) { |
| 1670 | sig = SIGSEGV; |
| 1671 | code = SEGV_ACCERR; |
| 1672 | } else { |
| 1673 | sig = SIGBUS; |
| 1674 | code = BUS_ADRALN; |
| 1675 | } |
| 1676 | bad: |
| 1677 | if (user_mode(regs)) |
| 1678 | _exception(sig, regs, code, regs->dar); |
| 1679 | else |
| 1680 | bad_page_fault(regs, sig); |
| 1681 | } |
| 1682 | |
| 1683 | DEFINE_INTERRUPT_HANDLER(stack_overflow_exception) |
| 1684 | { |
| 1685 | die("Kernel stack overflow", regs, SIGSEGV); |
| 1686 | } |
| 1687 | |
| 1688 | DEFINE_INTERRUPT_HANDLER(kernel_fp_unavailable_exception) |
| 1689 | { |
| 1690 | printk(KERN_EMERG "Unrecoverable FP Unavailable Exception " |
| 1691 | "%lx at %lx\n", regs->trap, regs->nip); |
| 1692 | die("Unrecoverable FP Unavailable Exception", regs, SIGABRT); |
| 1693 | } |
| 1694 | |
| 1695 | DEFINE_INTERRUPT_HANDLER(altivec_unavailable_exception) |
| 1696 | { |
| 1697 | if (user_mode(regs)) { |
| 1698 | /* A user program has executed an altivec instruction, |
| 1699 | but this kernel doesn't support altivec. */ |
| 1700 | _exception(SIGILL, regs, ILL_ILLOPC, regs->nip); |
| 1701 | return; |
| 1702 | } |
| 1703 | |
| 1704 | printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception " |
| 1705 | "%lx at %lx\n", regs->trap, regs->nip); |
| 1706 | die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT); |
| 1707 | } |
| 1708 | |
| 1709 | DEFINE_INTERRUPT_HANDLER(vsx_unavailable_exception) |
| 1710 | { |
| 1711 | if (user_mode(regs)) { |
| 1712 | /* A user program has executed an vsx instruction, |
| 1713 | but this kernel doesn't support vsx. */ |
| 1714 | _exception(SIGILL, regs, ILL_ILLOPC, regs->nip); |
| 1715 | return; |
| 1716 | } |
| 1717 | |
| 1718 | printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception " |
| 1719 | "%lx at %lx\n", regs->trap, regs->nip); |
| 1720 | die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT); |
| 1721 | } |
| 1722 | |
| 1723 | #ifdef CONFIG_PPC_BOOK3S_64 |
| 1724 | static void tm_unavailable(struct pt_regs *regs) |
| 1725 | { |
| 1726 | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| 1727 | if (user_mode(regs)) { |
| 1728 | current->thread.load_tm++; |
| 1729 | regs_set_return_msr(regs, regs->msr | MSR_TM); |
| 1730 | tm_enable(); |
| 1731 | tm_restore_sprs(¤t->thread); |
| 1732 | return; |
| 1733 | } |
| 1734 | #endif |
| 1735 | pr_emerg("Unrecoverable TM Unavailable Exception " |
| 1736 | "%lx at %lx\n", regs->trap, regs->nip); |
| 1737 | die("Unrecoverable TM Unavailable Exception", regs, SIGABRT); |
| 1738 | } |
| 1739 | |
| 1740 | DEFINE_INTERRUPT_HANDLER(facility_unavailable_exception) |
| 1741 | { |
| 1742 | static char *facility_strings[] = { |
| 1743 | [FSCR_FP_LG] = "FPU", |
| 1744 | [FSCR_VECVSX_LG] = "VMX/VSX", |
| 1745 | [FSCR_DSCR_LG] = "DSCR", |
| 1746 | [FSCR_PM_LG] = "PMU SPRs", |
| 1747 | [FSCR_BHRB_LG] = "BHRB", |
| 1748 | [FSCR_TM_LG] = "TM", |
| 1749 | [FSCR_EBB_LG] = "EBB", |
| 1750 | [FSCR_TAR_LG] = "TAR", |
| 1751 | [FSCR_MSGP_LG] = "MSGP", |
| 1752 | [FSCR_SCV_LG] = "SCV", |
| 1753 | [FSCR_PREFIX_LG] = "PREFIX", |
| 1754 | }; |
| 1755 | char *facility = "unknown"; |
| 1756 | u64 value; |
| 1757 | u32 instword, rd; |
| 1758 | u8 status; |
| 1759 | bool hv; |
| 1760 | |
| 1761 | hv = (TRAP(regs) == INTERRUPT_H_FAC_UNAVAIL); |
| 1762 | if (hv) |
| 1763 | value = mfspr(SPRN_HFSCR); |
| 1764 | else |
| 1765 | value = mfspr(SPRN_FSCR); |
| 1766 | |
| 1767 | status = value >> 56; |
| 1768 | if ((hv || status >= 2) && |
| 1769 | (status < ARRAY_SIZE(facility_strings)) && |
| 1770 | facility_strings[status]) |
| 1771 | facility = facility_strings[status]; |
| 1772 | |
| 1773 | /* We should not have taken this interrupt in kernel */ |
| 1774 | if (!user_mode(regs)) { |
| 1775 | pr_emerg("Facility '%s' unavailable (%d) exception in kernel mode at %lx\n", |
| 1776 | facility, status, regs->nip); |
| 1777 | die("Unexpected facility unavailable exception", regs, SIGABRT); |
| 1778 | } |
| 1779 | |
| 1780 | interrupt_cond_local_irq_enable(regs); |
| 1781 | |
| 1782 | if (status == FSCR_DSCR_LG) { |
| 1783 | /* |
| 1784 | * User is accessing the DSCR register using the problem |
| 1785 | * state only SPR number (0x03) either through a mfspr or |
| 1786 | * a mtspr instruction. If it is a write attempt through |
| 1787 | * a mtspr, then we set the inherit bit. This also allows |
| 1788 | * the user to write or read the register directly in the |
| 1789 | * future by setting via the FSCR DSCR bit. But in case it |
| 1790 | * is a read DSCR attempt through a mfspr instruction, we |
| 1791 | * just emulate the instruction instead. This code path will |
| 1792 | * always emulate all the mfspr instructions till the user |
| 1793 | * has attempted at least one mtspr instruction. This way it |
| 1794 | * preserves the same behaviour when the user is accessing |
| 1795 | * the DSCR through privilege level only SPR number (0x11) |
| 1796 | * which is emulated through illegal instruction exception. |
| 1797 | * We always leave HFSCR DSCR set. |
| 1798 | */ |
| 1799 | if (get_user(instword, (u32 __user *)(regs->nip))) { |
| 1800 | pr_err("Failed to fetch the user instruction\n"); |
| 1801 | return; |
| 1802 | } |
| 1803 | |
| 1804 | /* Write into DSCR (mtspr 0x03, RS) */ |
| 1805 | if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK) |
| 1806 | == PPC_INST_MTSPR_DSCR_USER) { |
| 1807 | rd = (instword >> 21) & 0x1f; |
| 1808 | current->thread.dscr = regs->gpr[rd]; |
| 1809 | current->thread.dscr_inherit = 1; |
| 1810 | current->thread.fscr |= FSCR_DSCR; |
| 1811 | mtspr(SPRN_FSCR, current->thread.fscr); |
| 1812 | } |
| 1813 | |
| 1814 | /* Read from DSCR (mfspr RT, 0x03) */ |
| 1815 | if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK) |
| 1816 | == PPC_INST_MFSPR_DSCR_USER) { |
| 1817 | if (emulate_instruction(regs)) { |
| 1818 | pr_err("DSCR based mfspr emulation failed\n"); |
| 1819 | return; |
| 1820 | } |
| 1821 | regs_add_return_ip(regs, 4); |
| 1822 | emulate_single_step(regs); |
| 1823 | } |
| 1824 | return; |
| 1825 | } |
| 1826 | |
| 1827 | if (status == FSCR_TM_LG) { |
| 1828 | /* |
| 1829 | * If we're here then the hardware is TM aware because it |
| 1830 | * generated an exception with FSRM_TM set. |
| 1831 | * |
| 1832 | * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware |
| 1833 | * told us not to do TM, or the kernel is not built with TM |
| 1834 | * support. |
| 1835 | * |
| 1836 | * If both of those things are true, then userspace can spam the |
| 1837 | * console by triggering the printk() below just by continually |
| 1838 | * doing tbegin (or any TM instruction). So in that case just |
| 1839 | * send the process a SIGILL immediately. |
| 1840 | */ |
| 1841 | if (!cpu_has_feature(CPU_FTR_TM)) |
| 1842 | goto out; |
| 1843 | |
| 1844 | tm_unavailable(regs); |
| 1845 | return; |
| 1846 | } |
| 1847 | |
| 1848 | pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n", |
| 1849 | hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr); |
| 1850 | |
| 1851 | out: |
| 1852 | _exception(SIGILL, regs, ILL_ILLOPC, regs->nip); |
| 1853 | } |
| 1854 | #endif |
| 1855 | |
| 1856 | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| 1857 | |
| 1858 | DEFINE_INTERRUPT_HANDLER(fp_unavailable_tm) |
| 1859 | { |
| 1860 | /* Note: This does not handle any kind of FP laziness. */ |
| 1861 | |
| 1862 | TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n", |
| 1863 | regs->nip, regs->msr); |
| 1864 | |
| 1865 | /* We can only have got here if the task started using FP after |
| 1866 | * beginning the transaction. So, the transactional regs are just a |
| 1867 | * copy of the checkpointed ones. But, we still need to recheckpoint |
| 1868 | * as we're enabling FP for the process; it will return, abort the |
| 1869 | * transaction, and probably retry but now with FP enabled. So the |
| 1870 | * checkpointed FP registers need to be loaded. |
| 1871 | */ |
| 1872 | tm_reclaim_current(TM_CAUSE_FAC_UNAV); |
| 1873 | |
| 1874 | /* |
| 1875 | * Reclaim initially saved out bogus (lazy) FPRs to ckfp_state, and |
| 1876 | * then it was overwrite by the thr->fp_state by tm_reclaim_thread(). |
| 1877 | * |
| 1878 | * At this point, ck{fp,vr}_state contains the exact values we want to |
| 1879 | * recheckpoint. |
| 1880 | */ |
| 1881 | |
| 1882 | /* Enable FP for the task: */ |
| 1883 | current->thread.load_fp = 1; |
| 1884 | |
| 1885 | /* |
| 1886 | * Recheckpoint all the checkpointed ckpt, ck{fp, vr}_state registers. |
| 1887 | */ |
| 1888 | tm_recheckpoint(¤t->thread); |
| 1889 | } |
| 1890 | |
| 1891 | DEFINE_INTERRUPT_HANDLER(altivec_unavailable_tm) |
| 1892 | { |
| 1893 | /* See the comments in fp_unavailable_tm(). This function operates |
| 1894 | * the same way. |
| 1895 | */ |
| 1896 | |
| 1897 | TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx," |
| 1898 | "MSR=%lx\n", |
| 1899 | regs->nip, regs->msr); |
| 1900 | tm_reclaim_current(TM_CAUSE_FAC_UNAV); |
| 1901 | current->thread.load_vec = 1; |
| 1902 | tm_recheckpoint(¤t->thread); |
| 1903 | current->thread.used_vr = 1; |
| 1904 | } |
| 1905 | |
| 1906 | DEFINE_INTERRUPT_HANDLER(vsx_unavailable_tm) |
| 1907 | { |
| 1908 | /* See the comments in fp_unavailable_tm(). This works similarly, |
| 1909 | * though we're loading both FP and VEC registers in here. |
| 1910 | * |
| 1911 | * If FP isn't in use, load FP regs. If VEC isn't in use, load VEC |
| 1912 | * regs. Either way, set MSR_VSX. |
| 1913 | */ |
| 1914 | |
| 1915 | TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx," |
| 1916 | "MSR=%lx\n", |
| 1917 | regs->nip, regs->msr); |
| 1918 | |
| 1919 | current->thread.used_vsr = 1; |
| 1920 | |
| 1921 | /* This reclaims FP and/or VR regs if they're already enabled */ |
| 1922 | tm_reclaim_current(TM_CAUSE_FAC_UNAV); |
| 1923 | |
| 1924 | current->thread.load_vec = 1; |
| 1925 | current->thread.load_fp = 1; |
| 1926 | |
| 1927 | tm_recheckpoint(¤t->thread); |
| 1928 | } |
| 1929 | #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ |
| 1930 | |
| 1931 | #ifdef CONFIG_PPC64 |
| 1932 | DECLARE_INTERRUPT_HANDLER_NMI(performance_monitor_exception_nmi); |
| 1933 | DEFINE_INTERRUPT_HANDLER_NMI(performance_monitor_exception_nmi) |
| 1934 | { |
| 1935 | __this_cpu_inc(irq_stat.pmu_irqs); |
| 1936 | |
| 1937 | perf_irq(regs); |
| 1938 | |
| 1939 | return 0; |
| 1940 | } |
| 1941 | #endif |
| 1942 | |
| 1943 | DECLARE_INTERRUPT_HANDLER_ASYNC(performance_monitor_exception_async); |
| 1944 | DEFINE_INTERRUPT_HANDLER_ASYNC(performance_monitor_exception_async) |
| 1945 | { |
| 1946 | __this_cpu_inc(irq_stat.pmu_irqs); |
| 1947 | |
| 1948 | perf_irq(regs); |
| 1949 | } |
| 1950 | |
| 1951 | DEFINE_INTERRUPT_HANDLER_RAW(performance_monitor_exception) |
| 1952 | { |
| 1953 | /* |
| 1954 | * On 64-bit, if perf interrupts hit in a local_irq_disable |
| 1955 | * (soft-masked) region, we consider them as NMIs. This is required to |
| 1956 | * prevent hash faults on user addresses when reading callchains (and |
| 1957 | * looks better from an irq tracing perspective). |
| 1958 | */ |
| 1959 | if (IS_ENABLED(CONFIG_PPC64) && unlikely(arch_irq_disabled_regs(regs))) |
| 1960 | performance_monitor_exception_nmi(regs); |
| 1961 | else |
| 1962 | performance_monitor_exception_async(regs); |
| 1963 | |
| 1964 | return 0; |
| 1965 | } |
| 1966 | |
| 1967 | #ifdef CONFIG_PPC_ADV_DEBUG_REGS |
| 1968 | static void handle_debug(struct pt_regs *regs, unsigned long debug_status) |
| 1969 | { |
| 1970 | int changed = 0; |
| 1971 | /* |
| 1972 | * Determine the cause of the debug event, clear the |
| 1973 | * event flags and send a trap to the handler. Torez |
| 1974 | */ |
| 1975 | if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) { |
| 1976 | dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W); |
| 1977 | #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE |
| 1978 | current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE; |
| 1979 | #endif |
| 1980 | do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, |
| 1981 | 5); |
| 1982 | changed |= 0x01; |
| 1983 | } else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) { |
| 1984 | dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W); |
| 1985 | do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, |
| 1986 | 6); |
| 1987 | changed |= 0x01; |
| 1988 | } else if (debug_status & DBSR_IAC1) { |
| 1989 | current->thread.debug.dbcr0 &= ~DBCR0_IAC1; |
| 1990 | dbcr_iac_range(current) &= ~DBCR_IAC12MODE; |
| 1991 | do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, |
| 1992 | 1); |
| 1993 | changed |= 0x01; |
| 1994 | } else if (debug_status & DBSR_IAC2) { |
| 1995 | current->thread.debug.dbcr0 &= ~DBCR0_IAC2; |
| 1996 | do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, |
| 1997 | 2); |
| 1998 | changed |= 0x01; |
| 1999 | } else if (debug_status & DBSR_IAC3) { |
| 2000 | current->thread.debug.dbcr0 &= ~DBCR0_IAC3; |
| 2001 | dbcr_iac_range(current) &= ~DBCR_IAC34MODE; |
| 2002 | do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, |
| 2003 | 3); |
| 2004 | changed |= 0x01; |
| 2005 | } else if (debug_status & DBSR_IAC4) { |
| 2006 | current->thread.debug.dbcr0 &= ~DBCR0_IAC4; |
| 2007 | do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, |
| 2008 | 4); |
| 2009 | changed |= 0x01; |
| 2010 | } |
| 2011 | /* |
| 2012 | * At the point this routine was called, the MSR(DE) was turned off. |
| 2013 | * Check all other debug flags and see if that bit needs to be turned |
| 2014 | * back on or not. |
| 2015 | */ |
| 2016 | if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0, |
| 2017 | current->thread.debug.dbcr1)) |
| 2018 | regs_set_return_msr(regs, regs->msr | MSR_DE); |
| 2019 | else |
| 2020 | /* Make sure the IDM flag is off */ |
| 2021 | current->thread.debug.dbcr0 &= ~DBCR0_IDM; |
| 2022 | |
| 2023 | if (changed & 0x01) |
| 2024 | mtspr(SPRN_DBCR0, current->thread.debug.dbcr0); |
| 2025 | } |
| 2026 | |
| 2027 | DEFINE_INTERRUPT_HANDLER(DebugException) |
| 2028 | { |
| 2029 | unsigned long debug_status = regs->dsisr; |
| 2030 | |
| 2031 | current->thread.debug.dbsr = debug_status; |
| 2032 | |
| 2033 | /* Hack alert: On BookE, Branch Taken stops on the branch itself, while |
| 2034 | * on server, it stops on the target of the branch. In order to simulate |
| 2035 | * the server behaviour, we thus restart right away with a single step |
| 2036 | * instead of stopping here when hitting a BT |
| 2037 | */ |
| 2038 | if (debug_status & DBSR_BT) { |
| 2039 | regs_set_return_msr(regs, regs->msr & ~MSR_DE); |
| 2040 | |
| 2041 | /* Disable BT */ |
| 2042 | mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT); |
| 2043 | /* Clear the BT event */ |
| 2044 | mtspr(SPRN_DBSR, DBSR_BT); |
| 2045 | |
| 2046 | /* Do the single step trick only when coming from userspace */ |
| 2047 | if (user_mode(regs)) { |
| 2048 | current->thread.debug.dbcr0 &= ~DBCR0_BT; |
| 2049 | current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC; |
| 2050 | regs_set_return_msr(regs, regs->msr | MSR_DE); |
| 2051 | return; |
| 2052 | } |
| 2053 | |
| 2054 | if (kprobe_post_handler(regs)) |
| 2055 | return; |
| 2056 | |
| 2057 | if (notify_die(DIE_SSTEP, "block_step", regs, 5, |
| 2058 | 5, SIGTRAP) == NOTIFY_STOP) { |
| 2059 | return; |
| 2060 | } |
| 2061 | if (debugger_sstep(regs)) |
| 2062 | return; |
| 2063 | } else if (debug_status & DBSR_IC) { /* Instruction complete */ |
| 2064 | regs_set_return_msr(regs, regs->msr & ~MSR_DE); |
| 2065 | |
| 2066 | /* Disable instruction completion */ |
| 2067 | mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC); |
| 2068 | /* Clear the instruction completion event */ |
| 2069 | mtspr(SPRN_DBSR, DBSR_IC); |
| 2070 | |
| 2071 | if (kprobe_post_handler(regs)) |
| 2072 | return; |
| 2073 | |
| 2074 | if (notify_die(DIE_SSTEP, "single_step", regs, 5, |
| 2075 | 5, SIGTRAP) == NOTIFY_STOP) { |
| 2076 | return; |
| 2077 | } |
| 2078 | |
| 2079 | if (debugger_sstep(regs)) |
| 2080 | return; |
| 2081 | |
| 2082 | if (user_mode(regs)) { |
| 2083 | current->thread.debug.dbcr0 &= ~DBCR0_IC; |
| 2084 | if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0, |
| 2085 | current->thread.debug.dbcr1)) |
| 2086 | regs_set_return_msr(regs, regs->msr | MSR_DE); |
| 2087 | else |
| 2088 | /* Make sure the IDM bit is off */ |
| 2089 | current->thread.debug.dbcr0 &= ~DBCR0_IDM; |
| 2090 | } |
| 2091 | |
| 2092 | _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip); |
| 2093 | } else |
| 2094 | handle_debug(regs, debug_status); |
| 2095 | } |
| 2096 | #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ |
| 2097 | |
| 2098 | #ifdef CONFIG_ALTIVEC |
| 2099 | DEFINE_INTERRUPT_HANDLER(altivec_assist_exception) |
| 2100 | { |
| 2101 | int err; |
| 2102 | |
| 2103 | if (!user_mode(regs)) { |
| 2104 | printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode" |
| 2105 | " at %lx\n", regs->nip); |
| 2106 | die("Kernel VMX/Altivec assist exception", regs, SIGILL); |
| 2107 | } |
| 2108 | |
| 2109 | flush_altivec_to_thread(current); |
| 2110 | |
| 2111 | PPC_WARN_EMULATED(altivec, regs); |
| 2112 | err = emulate_altivec(regs); |
| 2113 | if (err == 0) { |
| 2114 | regs_add_return_ip(regs, 4); /* skip emulated instruction */ |
| 2115 | emulate_single_step(regs); |
| 2116 | return; |
| 2117 | } |
| 2118 | |
| 2119 | if (err == -EFAULT) { |
| 2120 | /* got an error reading the instruction */ |
| 2121 | _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip); |
| 2122 | } else { |
| 2123 | /* didn't recognize the instruction */ |
| 2124 | /* XXX quick hack for now: set the non-Java bit in the VSCR */ |
| 2125 | printk_ratelimited(KERN_ERR "Unrecognized altivec instruction " |
| 2126 | "in %s at %lx\n", current->comm, regs->nip); |
| 2127 | current->thread.vr_state.vscr.u[3] |= 0x10000; |
| 2128 | } |
| 2129 | } |
| 2130 | #endif /* CONFIG_ALTIVEC */ |
| 2131 | |
| 2132 | #ifdef CONFIG_PPC_85xx |
| 2133 | DEFINE_INTERRUPT_HANDLER(CacheLockingException) |
| 2134 | { |
| 2135 | unsigned long error_code = regs->dsisr; |
| 2136 | |
| 2137 | /* We treat cache locking instructions from the user |
| 2138 | * as priv ops, in the future we could try to do |
| 2139 | * something smarter |
| 2140 | */ |
| 2141 | if (error_code & (ESR_DLK|ESR_ILK)) |
| 2142 | _exception(SIGILL, regs, ILL_PRVOPC, regs->nip); |
| 2143 | return; |
| 2144 | } |
| 2145 | #endif /* CONFIG_PPC_85xx */ |
| 2146 | |
| 2147 | #ifdef CONFIG_SPE |
| 2148 | DEFINE_INTERRUPT_HANDLER(SPEFloatingPointException) |
| 2149 | { |
| 2150 | unsigned long spefscr; |
| 2151 | int fpexc_mode; |
| 2152 | int code = FPE_FLTUNK; |
| 2153 | int err; |
| 2154 | |
| 2155 | interrupt_cond_local_irq_enable(regs); |
| 2156 | |
| 2157 | flush_spe_to_thread(current); |
| 2158 | |
| 2159 | spefscr = current->thread.spefscr; |
| 2160 | fpexc_mode = current->thread.fpexc_mode; |
| 2161 | |
| 2162 | if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) { |
| 2163 | code = FPE_FLTOVF; |
| 2164 | } |
| 2165 | else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) { |
| 2166 | code = FPE_FLTUND; |
| 2167 | } |
| 2168 | else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV)) |
| 2169 | code = FPE_FLTDIV; |
| 2170 | else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) { |
| 2171 | code = FPE_FLTINV; |
| 2172 | } |
| 2173 | else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES)) |
| 2174 | code = FPE_FLTRES; |
| 2175 | |
| 2176 | err = do_spe_mathemu(regs); |
| 2177 | if (err == 0) { |
| 2178 | regs_add_return_ip(regs, 4); /* skip emulated instruction */ |
| 2179 | emulate_single_step(regs); |
| 2180 | return; |
| 2181 | } |
| 2182 | |
| 2183 | if (err == -EFAULT) { |
| 2184 | /* got an error reading the instruction */ |
| 2185 | _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip); |
| 2186 | } else if (err == -EINVAL) { |
| 2187 | /* didn't recognize the instruction */ |
| 2188 | printk(KERN_ERR "unrecognized spe instruction " |
| 2189 | "in %s at %lx\n", current->comm, regs->nip); |
| 2190 | } else { |
| 2191 | _exception(SIGFPE, regs, code, regs->nip); |
| 2192 | } |
| 2193 | |
| 2194 | return; |
| 2195 | } |
| 2196 | |
| 2197 | DEFINE_INTERRUPT_HANDLER(SPEFloatingPointRoundException) |
| 2198 | { |
| 2199 | int err; |
| 2200 | |
| 2201 | interrupt_cond_local_irq_enable(regs); |
| 2202 | |
| 2203 | preempt_disable(); |
| 2204 | if (regs->msr & MSR_SPE) |
| 2205 | giveup_spe(current); |
| 2206 | preempt_enable(); |
| 2207 | |
| 2208 | regs_add_return_ip(regs, -4); |
| 2209 | err = speround_handler(regs); |
| 2210 | if (err == 0) { |
| 2211 | regs_add_return_ip(regs, 4); /* skip emulated instruction */ |
| 2212 | emulate_single_step(regs); |
| 2213 | return; |
| 2214 | } |
| 2215 | |
| 2216 | if (err == -EFAULT) { |
| 2217 | /* got an error reading the instruction */ |
| 2218 | _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip); |
| 2219 | } else if (err == -EINVAL) { |
| 2220 | /* didn't recognize the instruction */ |
| 2221 | printk(KERN_ERR "unrecognized spe instruction " |
| 2222 | "in %s at %lx\n", current->comm, regs->nip); |
| 2223 | } else { |
| 2224 | _exception(SIGFPE, regs, FPE_FLTUNK, regs->nip); |
| 2225 | return; |
| 2226 | } |
| 2227 | } |
| 2228 | #endif |
| 2229 | |
| 2230 | /* |
| 2231 | * We enter here if we get an unrecoverable exception, that is, one |
| 2232 | * that happened at a point where the RI (recoverable interrupt) bit |
| 2233 | * in the MSR is 0. This indicates that SRR0/1 are live, and that |
| 2234 | * we therefore lost state by taking this exception. |
| 2235 | */ |
| 2236 | void __noreturn unrecoverable_exception(struct pt_regs *regs) |
| 2237 | { |
| 2238 | pr_emerg("Unrecoverable exception %lx at %lx (msr=%lx)\n", |
| 2239 | regs->trap, regs->nip, regs->msr); |
| 2240 | die("Unrecoverable exception", regs, SIGABRT); |
| 2241 | /* die() should not return */ |
| 2242 | for (;;) |
| 2243 | ; |
| 2244 | } |
| 2245 | |
| 2246 | #ifdef CONFIG_BOOKE_WDT |
| 2247 | DEFINE_INTERRUPT_HANDLER_NMI(WatchdogException) |
| 2248 | { |
| 2249 | printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n"); |
| 2250 | mtspr(SPRN_TCR, mfspr(SPRN_TCR) & ~TCR_WIE); |
| 2251 | return 0; |
| 2252 | } |
| 2253 | #endif |
| 2254 | |
| 2255 | /* |
| 2256 | * We enter here if we discover during exception entry that we are |
| 2257 | * running in supervisor mode with a userspace value in the stack pointer. |
| 2258 | */ |
| 2259 | DEFINE_INTERRUPT_HANDLER(kernel_bad_stack) |
| 2260 | { |
| 2261 | printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n", |
| 2262 | regs->gpr[1], regs->nip); |
| 2263 | die("Bad kernel stack pointer", regs, SIGABRT); |
| 2264 | } |
| 2265 | |
| 2266 | #ifdef CONFIG_PPC_EMULATED_STATS |
| 2267 | |
| 2268 | #define WARN_EMULATED_SETUP(type) .type = { .name = #type } |
| 2269 | |
| 2270 | struct ppc_emulated ppc_emulated = { |
| 2271 | #ifdef CONFIG_ALTIVEC |
| 2272 | WARN_EMULATED_SETUP(altivec), |
| 2273 | #endif |
| 2274 | WARN_EMULATED_SETUP(dcba), |
| 2275 | WARN_EMULATED_SETUP(dcbz), |
| 2276 | WARN_EMULATED_SETUP(fp_pair), |
| 2277 | WARN_EMULATED_SETUP(isel), |
| 2278 | WARN_EMULATED_SETUP(mcrxr), |
| 2279 | WARN_EMULATED_SETUP(mfpvr), |
| 2280 | WARN_EMULATED_SETUP(multiple), |
| 2281 | WARN_EMULATED_SETUP(popcntb), |
| 2282 | WARN_EMULATED_SETUP(spe), |
| 2283 | WARN_EMULATED_SETUP(string), |
| 2284 | WARN_EMULATED_SETUP(sync), |
| 2285 | WARN_EMULATED_SETUP(unaligned), |
| 2286 | #ifdef CONFIG_MATH_EMULATION |
| 2287 | WARN_EMULATED_SETUP(math), |
| 2288 | #endif |
| 2289 | #ifdef CONFIG_VSX |
| 2290 | WARN_EMULATED_SETUP(vsx), |
| 2291 | #endif |
| 2292 | #ifdef CONFIG_PPC64 |
| 2293 | WARN_EMULATED_SETUP(mfdscr), |
| 2294 | WARN_EMULATED_SETUP(mtdscr), |
| 2295 | WARN_EMULATED_SETUP(lq_stq), |
| 2296 | WARN_EMULATED_SETUP(lxvw4x), |
| 2297 | WARN_EMULATED_SETUP(lxvh8x), |
| 2298 | WARN_EMULATED_SETUP(lxvd2x), |
| 2299 | WARN_EMULATED_SETUP(lxvb16x), |
| 2300 | #endif |
| 2301 | }; |
| 2302 | |
| 2303 | u32 ppc_warn_emulated; |
| 2304 | |
| 2305 | void ppc_warn_emulated_print(const char *type) |
| 2306 | { |
| 2307 | pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm, |
| 2308 | type); |
| 2309 | } |
| 2310 | |
| 2311 | static int __init ppc_warn_emulated_init(void) |
| 2312 | { |
| 2313 | struct dentry *dir; |
| 2314 | unsigned int i; |
| 2315 | struct ppc_emulated_entry *entries = (void *)&ppc_emulated; |
| 2316 | |
| 2317 | dir = debugfs_create_dir("emulated_instructions", |
| 2318 | arch_debugfs_dir); |
| 2319 | |
| 2320 | debugfs_create_u32("do_warn", 0644, dir, &ppc_warn_emulated); |
| 2321 | |
| 2322 | for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) |
| 2323 | debugfs_create_u32(entries[i].name, 0644, dir, |
| 2324 | (u32 *)&entries[i].val.counter); |
| 2325 | |
| 2326 | return 0; |
| 2327 | } |
| 2328 | |
| 2329 | device_initcall(ppc_warn_emulated_init); |
| 2330 | |
| 2331 | #endif /* CONFIG_PPC_EMULATED_STATS */ |