Merge tag 'mm-hotfixes-stable-2025-07-11-16-16' of git://git.kernel.org/pub/scm/linux...
[linux-2.6-block.git] / arch / powerpc / kernel / fadump.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
4 * dump with assistance from firmware. This approach does not use kexec,
5 * instead firmware assists in booting the kdump kernel while preserving
6 * memory contents. The most of the code implementation has been adapted
7 * from phyp assisted dump implementation written by Linas Vepstas and
8 * Manish Ahuja
9 *
10 * Copyright 2011 IBM Corporation
11 * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
12 */
13
14#undef DEBUG
15#define pr_fmt(fmt) "fadump: " fmt
16
17#include <linux/string.h>
18#include <linux/memblock.h>
19#include <linux/delay.h>
20#include <linux/seq_file.h>
21#include <linux/crash_dump.h>
22#include <linux/kobject.h>
23#include <linux/sysfs.h>
24#include <linux/slab.h>
25#include <linux/cma.h>
26#include <linux/hugetlb.h>
27#include <linux/debugfs.h>
28#include <linux/of.h>
29#include <linux/of_fdt.h>
30
31#include <asm/page.h>
32#include <asm/fadump.h>
33#include <asm/fadump-internal.h>
34#include <asm/setup.h>
35#include <asm/interrupt.h>
36#include <asm/prom.h>
37
38/*
39 * The CPU who acquired the lock to trigger the fadump crash should
40 * wait for other CPUs to enter.
41 *
42 * The timeout is in milliseconds.
43 */
44#define CRASH_TIMEOUT 500
45
46static struct fw_dump fw_dump;
47
48static void __init fadump_reserve_crash_area(u64 base);
49
50#ifndef CONFIG_PRESERVE_FA_DUMP
51
52static struct kobject *fadump_kobj;
53
54static atomic_t cpus_in_fadump;
55static DEFINE_MUTEX(fadump_mutex);
56
57#define RESERVED_RNGS_SZ 16384 /* 16K - 128 entries */
58#define RESERVED_RNGS_CNT (RESERVED_RNGS_SZ / \
59 sizeof(struct fadump_memory_range))
60static struct fadump_memory_range rngs[RESERVED_RNGS_CNT];
61static struct fadump_mrange_info
62reserved_mrange_info = { "reserved", rngs, RESERVED_RNGS_SZ, 0, RESERVED_RNGS_CNT, true };
63
64static void __init early_init_dt_scan_reserved_ranges(unsigned long node);
65
66#ifdef CONFIG_CMA
67static struct cma *fadump_cma;
68
69/*
70 * fadump_cma_init() - Initialize CMA area from a fadump reserved memory
71 *
72 * This function initializes CMA area from fadump reserved memory.
73 * The total size of fadump reserved memory covers for boot memory size
74 * + cpu data size + hpte size and metadata.
75 * Initialize only the area equivalent to boot memory size for CMA use.
76 * The remaining portion of fadump reserved memory will be not given
77 * to CMA and pages for those will stay reserved. boot memory size is
78 * aligned per CMA requirement to satisy cma_init_reserved_mem() call.
79 * But for some reason even if it fails we still have the memory reservation
80 * with us and we can still continue doing fadump.
81 */
82void __init fadump_cma_init(void)
83{
84 unsigned long long base, size, end;
85 int rc;
86
87 if (!fw_dump.fadump_supported || !fw_dump.fadump_enabled ||
88 fw_dump.dump_active)
89 return;
90 /*
91 * Do not use CMA if user has provided fadump=nocma kernel parameter.
92 */
93 if (fw_dump.nocma || !fw_dump.boot_memory_size)
94 return;
95
96 /*
97 * [base, end) should be reserved during early init in
98 * fadump_reserve_mem(). No need to check this here as
99 * cma_init_reserved_mem() already checks for overlap.
100 * Here we give the aligned chunk of this reserved memory to CMA.
101 */
102 base = fw_dump.reserve_dump_area_start;
103 size = fw_dump.boot_memory_size;
104 end = base + size;
105
106 base = ALIGN(base, CMA_MIN_ALIGNMENT_BYTES);
107 end = ALIGN_DOWN(end, CMA_MIN_ALIGNMENT_BYTES);
108 size = end - base;
109
110 if (end <= base) {
111 pr_warn("%s: Too less memory to give to CMA\n", __func__);
112 return;
113 }
114
115 rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma);
116 if (rc) {
117 pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc);
118 /*
119 * Though the CMA init has failed we still have memory
120 * reservation with us. The reserved memory will be
121 * blocked from production system usage. Hence return 1,
122 * so that we can continue with fadump.
123 */
124 return;
125 }
126
127 /*
128 * If CMA activation fails, keep the pages reserved, instead of
129 * exposing them to buddy allocator. Same as 'fadump=nocma' case.
130 */
131 cma_reserve_pages_on_error(fadump_cma);
132
133 /*
134 * So we now have successfully initialized cma area for fadump.
135 */
136 pr_info("Initialized [0x%llx, %luMB] cma area from [0x%lx, %luMB] "
137 "bytes of memory reserved for firmware-assisted dump\n",
138 cma_get_base(fadump_cma), cma_get_size(fadump_cma) >> 20,
139 fw_dump.reserve_dump_area_start,
140 fw_dump.boot_memory_size >> 20);
141 return;
142}
143#endif /* CONFIG_CMA */
144
145/*
146 * Additional parameters meant for capture kernel are placed in a dedicated area.
147 * If this is capture kernel boot, append these parameters to bootargs.
148 */
149void __init fadump_append_bootargs(void)
150{
151 char *append_args;
152 size_t len;
153
154 if (!fw_dump.dump_active || !fw_dump.param_area_supported || !fw_dump.param_area)
155 return;
156
157 if (fw_dump.param_area < fw_dump.boot_mem_top) {
158 if (memblock_reserve(fw_dump.param_area, COMMAND_LINE_SIZE)) {
159 pr_warn("WARNING: Can't use additional parameters area!\n");
160 fw_dump.param_area = 0;
161 return;
162 }
163 }
164
165 append_args = (char *)fw_dump.param_area;
166 len = strlen(boot_command_line);
167
168 /*
169 * Too late to fail even if cmdline size exceeds. Truncate additional parameters
170 * to cmdline size and proceed anyway.
171 */
172 if (len + strlen(append_args) >= COMMAND_LINE_SIZE - 1)
173 pr_warn("WARNING: Appending parameters exceeds cmdline size. Truncating!\n");
174
175 pr_debug("Cmdline: %s\n", boot_command_line);
176 snprintf(boot_command_line + len, COMMAND_LINE_SIZE - len, " %s", append_args);
177 pr_info("Updated cmdline: %s\n", boot_command_line);
178}
179
180/* Scan the Firmware Assisted dump configuration details. */
181int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
182 int depth, void *data)
183{
184 if (depth == 0) {
185 early_init_dt_scan_reserved_ranges(node);
186 return 0;
187 }
188
189 if (depth != 1)
190 return 0;
191
192 if (strcmp(uname, "rtas") == 0) {
193 rtas_fadump_dt_scan(&fw_dump, node);
194 return 1;
195 }
196
197 if (strcmp(uname, "ibm,opal") == 0) {
198 opal_fadump_dt_scan(&fw_dump, node);
199 return 1;
200 }
201
202 return 0;
203}
204
205/*
206 * If fadump is registered, check if the memory provided
207 * falls within boot memory area and reserved memory area.
208 */
209int is_fadump_memory_area(u64 addr, unsigned long size)
210{
211 u64 d_start, d_end;
212
213 if (!fw_dump.dump_registered)
214 return 0;
215
216 if (!size)
217 return 0;
218
219 d_start = fw_dump.reserve_dump_area_start;
220 d_end = d_start + fw_dump.reserve_dump_area_size;
221 if (((addr + size) > d_start) && (addr <= d_end))
222 return 1;
223
224 return (addr <= fw_dump.boot_mem_top);
225}
226
227int should_fadump_crash(void)
228{
229 if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
230 return 0;
231 return 1;
232}
233
234int is_fadump_active(void)
235{
236 return fw_dump.dump_active;
237}
238
239/*
240 * Returns true, if there are no holes in memory area between d_start to d_end,
241 * false otherwise.
242 */
243static bool is_fadump_mem_area_contiguous(u64 d_start, u64 d_end)
244{
245 phys_addr_t reg_start, reg_end;
246 bool ret = false;
247 u64 i, start, end;
248
249 for_each_mem_range(i, &reg_start, &reg_end) {
250 start = max_t(u64, d_start, reg_start);
251 end = min_t(u64, d_end, reg_end);
252 if (d_start < end) {
253 /* Memory hole from d_start to start */
254 if (start > d_start)
255 break;
256
257 if (end == d_end) {
258 ret = true;
259 break;
260 }
261
262 d_start = end + 1;
263 }
264 }
265
266 return ret;
267}
268
269/*
270 * Returns true, if there are no holes in reserved memory area,
271 * false otherwise.
272 */
273bool is_fadump_reserved_mem_contiguous(void)
274{
275 u64 d_start, d_end;
276
277 d_start = fw_dump.reserve_dump_area_start;
278 d_end = d_start + fw_dump.reserve_dump_area_size;
279 return is_fadump_mem_area_contiguous(d_start, d_end);
280}
281
282/* Print firmware assisted dump configurations for debugging purpose. */
283static void __init fadump_show_config(void)
284{
285 int i;
286
287 pr_debug("Support for firmware-assisted dump (fadump): %s\n",
288 (fw_dump.fadump_supported ? "present" : "no support"));
289
290 if (!fw_dump.fadump_supported)
291 return;
292
293 pr_debug("Fadump enabled : %s\n", str_yes_no(fw_dump.fadump_enabled));
294 pr_debug("Dump Active : %s\n", str_yes_no(fw_dump.dump_active));
295 pr_debug("Dump section sizes:\n");
296 pr_debug(" CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
297 pr_debug(" HPTE region size : %lx\n", fw_dump.hpte_region_size);
298 pr_debug(" Boot memory size : %lx\n", fw_dump.boot_memory_size);
299 pr_debug(" Boot memory top : %llx\n", fw_dump.boot_mem_top);
300 pr_debug("Boot memory regions cnt: %llx\n", fw_dump.boot_mem_regs_cnt);
301 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
302 pr_debug("[%03d] base = %llx, size = %llx\n", i,
303 fw_dump.boot_mem_addr[i], fw_dump.boot_mem_sz[i]);
304 }
305}
306
307/**
308 * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
309 *
310 * Function to find the largest memory size we need to reserve during early
311 * boot process. This will be the size of the memory that is required for a
312 * kernel to boot successfully.
313 *
314 * This function has been taken from phyp-assisted dump feature implementation.
315 *
316 * returns larger of 256MB or 5% rounded down to multiples of 256MB.
317 *
318 * TODO: Come up with better approach to find out more accurate memory size
319 * that is required for a kernel to boot successfully.
320 *
321 */
322static __init u64 fadump_calculate_reserve_size(void)
323{
324 u64 base, size, bootmem_min;
325 int ret;
326
327 if (fw_dump.reserve_bootvar)
328 pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
329
330 /*
331 * Check if the size is specified through crashkernel= cmdline
332 * option. If yes, then use that but ignore base as fadump reserves
333 * memory at a predefined offset.
334 */
335 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
336 &size, &base, NULL, NULL);
337 if (ret == 0 && size > 0) {
338 unsigned long max_size;
339
340 if (fw_dump.reserve_bootvar)
341 pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
342
343 fw_dump.reserve_bootvar = (unsigned long)size;
344
345 /*
346 * Adjust if the boot memory size specified is above
347 * the upper limit.
348 */
349 max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
350 if (fw_dump.reserve_bootvar > max_size) {
351 fw_dump.reserve_bootvar = max_size;
352 pr_info("Adjusted boot memory size to %luMB\n",
353 (fw_dump.reserve_bootvar >> 20));
354 }
355
356 return fw_dump.reserve_bootvar;
357 } else if (fw_dump.reserve_bootvar) {
358 /*
359 * 'fadump_reserve_mem=' is being used to reserve memory
360 * for firmware-assisted dump.
361 */
362 return fw_dump.reserve_bootvar;
363 }
364
365 /* divide by 20 to get 5% of value */
366 size = memblock_phys_mem_size() / 20;
367
368 /* round it down in multiples of 256 */
369 size = size & ~0x0FFFFFFFUL;
370
371 /* Truncate to memory_limit. We don't want to over reserve the memory.*/
372 if (memory_limit && size > memory_limit)
373 size = memory_limit;
374
375 bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
376 return (size > bootmem_min ? size : bootmem_min);
377}
378
379/*
380 * Calculate the total memory size required to be reserved for
381 * firmware-assisted dump registration.
382 */
383static unsigned long __init get_fadump_area_size(void)
384{
385 unsigned long size = 0;
386
387 size += fw_dump.cpu_state_data_size;
388 size += fw_dump.hpte_region_size;
389 /*
390 * Account for pagesize alignment of boot memory area destination address.
391 * This faciliates in mmap reading of first kernel's memory.
392 */
393 size = PAGE_ALIGN(size);
394 size += fw_dump.boot_memory_size;
395 size += sizeof(struct fadump_crash_info_header);
396
397 /* This is to hold kernel metadata on platforms that support it */
398 size += (fw_dump.ops->fadump_get_metadata_size ?
399 fw_dump.ops->fadump_get_metadata_size() : 0);
400 return size;
401}
402
403static int __init add_boot_mem_region(unsigned long rstart,
404 unsigned long rsize)
405{
406 int max_boot_mem_rgns = fw_dump.ops->fadump_max_boot_mem_rgns();
407 int i = fw_dump.boot_mem_regs_cnt++;
408
409 if (fw_dump.boot_mem_regs_cnt > max_boot_mem_rgns) {
410 fw_dump.boot_mem_regs_cnt = max_boot_mem_rgns;
411 return 0;
412 }
413
414 pr_debug("Added boot memory range[%d] [%#016lx-%#016lx)\n",
415 i, rstart, (rstart + rsize));
416 fw_dump.boot_mem_addr[i] = rstart;
417 fw_dump.boot_mem_sz[i] = rsize;
418 return 1;
419}
420
421/*
422 * Firmware usually has a hard limit on the data it can copy per region.
423 * Honour that by splitting a memory range into multiple regions.
424 */
425static int __init add_boot_mem_regions(unsigned long mstart,
426 unsigned long msize)
427{
428 unsigned long rstart, rsize, max_size;
429 int ret = 1;
430
431 rstart = mstart;
432 max_size = fw_dump.max_copy_size ? fw_dump.max_copy_size : msize;
433 while (msize) {
434 if (msize > max_size)
435 rsize = max_size;
436 else
437 rsize = msize;
438
439 ret = add_boot_mem_region(rstart, rsize);
440 if (!ret)
441 break;
442
443 msize -= rsize;
444 rstart += rsize;
445 }
446
447 return ret;
448}
449
450static int __init fadump_get_boot_mem_regions(void)
451{
452 unsigned long size, cur_size, hole_size, last_end;
453 unsigned long mem_size = fw_dump.boot_memory_size;
454 phys_addr_t reg_start, reg_end;
455 int ret = 1;
456 u64 i;
457
458 fw_dump.boot_mem_regs_cnt = 0;
459
460 last_end = 0;
461 hole_size = 0;
462 cur_size = 0;
463 for_each_mem_range(i, &reg_start, &reg_end) {
464 size = reg_end - reg_start;
465 hole_size += (reg_start - last_end);
466
467 if ((cur_size + size) >= mem_size) {
468 size = (mem_size - cur_size);
469 ret = add_boot_mem_regions(reg_start, size);
470 break;
471 }
472
473 mem_size -= size;
474 cur_size += size;
475 ret = add_boot_mem_regions(reg_start, size);
476 if (!ret)
477 break;
478
479 last_end = reg_end;
480 }
481 fw_dump.boot_mem_top = PAGE_ALIGN(fw_dump.boot_memory_size + hole_size);
482
483 return ret;
484}
485
486/*
487 * Returns true, if the given range overlaps with reserved memory ranges
488 * starting at idx. Also, updates idx to index of overlapping memory range
489 * with the given memory range.
490 * False, otherwise.
491 */
492static bool __init overlaps_reserved_ranges(u64 base, u64 end, int *idx)
493{
494 bool ret = false;
495 int i;
496
497 for (i = *idx; i < reserved_mrange_info.mem_range_cnt; i++) {
498 u64 rbase = reserved_mrange_info.mem_ranges[i].base;
499 u64 rend = rbase + reserved_mrange_info.mem_ranges[i].size;
500
501 if (end <= rbase)
502 break;
503
504 if ((end > rbase) && (base < rend)) {
505 *idx = i;
506 ret = true;
507 break;
508 }
509 }
510
511 return ret;
512}
513
514/*
515 * Locate a suitable memory area to reserve memory for FADump. While at it,
516 * lookup reserved-ranges & avoid overlap with them, as they are used by F/W.
517 */
518static u64 __init fadump_locate_reserve_mem(u64 base, u64 size)
519{
520 struct fadump_memory_range *mrngs;
521 phys_addr_t mstart, mend;
522 int idx = 0;
523 u64 i, ret = 0;
524
525 mrngs = reserved_mrange_info.mem_ranges;
526 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
527 &mstart, &mend, NULL) {
528 pr_debug("%llu) mstart: %llx, mend: %llx, base: %llx\n",
529 i, mstart, mend, base);
530
531 if (mstart > base)
532 base = PAGE_ALIGN(mstart);
533
534 while ((mend > base) && ((mend - base) >= size)) {
535 if (!overlaps_reserved_ranges(base, base+size, &idx)) {
536 ret = base;
537 goto out;
538 }
539
540 base = mrngs[idx].base + mrngs[idx].size;
541 base = PAGE_ALIGN(base);
542 }
543 }
544
545out:
546 return ret;
547}
548
549int __init fadump_reserve_mem(void)
550{
551 u64 base, size, mem_boundary, bootmem_min;
552 int ret = 1;
553
554 if (!fw_dump.fadump_enabled)
555 return 0;
556
557 if (!fw_dump.fadump_supported) {
558 pr_info("Firmware-Assisted Dump is not supported on this hardware\n");
559 goto error_out;
560 }
561
562 /*
563 * Initialize boot memory size
564 * If dump is active then we have already calculated the size during
565 * first kernel.
566 */
567 if (!fw_dump.dump_active) {
568 fw_dump.boot_memory_size =
569 PAGE_ALIGN(fadump_calculate_reserve_size());
570
571 bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
572 if (fw_dump.boot_memory_size < bootmem_min) {
573 pr_err("Can't enable fadump with boot memory size (0x%lx) less than 0x%llx\n",
574 fw_dump.boot_memory_size, bootmem_min);
575 goto error_out;
576 }
577
578 if (!fadump_get_boot_mem_regions()) {
579 pr_err("Too many holes in boot memory area to enable fadump\n");
580 goto error_out;
581 }
582 }
583
584 if (memory_limit)
585 mem_boundary = memory_limit;
586 else
587 mem_boundary = memblock_end_of_DRAM();
588
589 base = fw_dump.boot_mem_top;
590 size = get_fadump_area_size();
591 fw_dump.reserve_dump_area_size = size;
592 if (fw_dump.dump_active) {
593 pr_info("Firmware-assisted dump is active.\n");
594
595#ifdef CONFIG_HUGETLB_PAGE
596 /*
597 * FADump capture kernel doesn't care much about hugepages.
598 * In fact, handling hugepages in capture kernel is asking for
599 * trouble. So, disable HugeTLB support when fadump is active.
600 */
601 hugetlb_disabled = true;
602#endif
603 /*
604 * If last boot has crashed then reserve all the memory
605 * above boot memory size so that we don't touch it until
606 * dump is written to disk by userspace tool. This memory
607 * can be released for general use by invalidating fadump.
608 */
609 fadump_reserve_crash_area(base);
610
611 pr_debug("fadumphdr_addr = %#016lx\n", fw_dump.fadumphdr_addr);
612 pr_debug("Reserve dump area start address: 0x%lx\n",
613 fw_dump.reserve_dump_area_start);
614 } else {
615 /*
616 * Reserve memory at an offset closer to bottom of the RAM to
617 * minimize the impact of memory hot-remove operation.
618 */
619 base = fadump_locate_reserve_mem(base, size);
620
621 if (!base || (base + size > mem_boundary)) {
622 pr_err("Failed to find memory chunk for reservation!\n");
623 goto error_out;
624 }
625 fw_dump.reserve_dump_area_start = base;
626
627 /*
628 * Calculate the kernel metadata address and register it with
629 * f/w if the platform supports.
630 */
631 if (fw_dump.ops->fadump_setup_metadata &&
632 (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
633 goto error_out;
634
635 if (memblock_reserve(base, size)) {
636 pr_err("Failed to reserve memory!\n");
637 goto error_out;
638 }
639
640 pr_info("Reserved %lldMB of memory at %#016llx (System RAM: %lldMB)\n",
641 (size >> 20), base, (memblock_phys_mem_size() >> 20));
642 }
643
644 return ret;
645error_out:
646 fw_dump.fadump_enabled = 0;
647 fw_dump.reserve_dump_area_size = 0;
648 return 0;
649}
650
651/* Look for fadump= cmdline option. */
652static int __init early_fadump_param(char *p)
653{
654 if (!p)
655 return 1;
656
657 if (strncmp(p, "on", 2) == 0)
658 fw_dump.fadump_enabled = 1;
659 else if (strncmp(p, "off", 3) == 0)
660 fw_dump.fadump_enabled = 0;
661 else if (strncmp(p, "nocma", 5) == 0) {
662 fw_dump.fadump_enabled = 1;
663 fw_dump.nocma = 1;
664 }
665
666 return 0;
667}
668early_param("fadump", early_fadump_param);
669
670/*
671 * Look for fadump_reserve_mem= cmdline option
672 * TODO: Remove references to 'fadump_reserve_mem=' parameter,
673 * the sooner 'crashkernel=' parameter is accustomed to.
674 */
675static int __init early_fadump_reserve_mem(char *p)
676{
677 if (p)
678 fw_dump.reserve_bootvar = memparse(p, &p);
679 return 0;
680}
681early_param("fadump_reserve_mem", early_fadump_reserve_mem);
682
683void crash_fadump(struct pt_regs *regs, const char *str)
684{
685 unsigned int msecs;
686 struct fadump_crash_info_header *fdh = NULL;
687 int old_cpu, this_cpu;
688 /* Do not include first CPU */
689 unsigned int ncpus = num_online_cpus() - 1;
690
691 if (!should_fadump_crash())
692 return;
693
694 /*
695 * old_cpu == -1 means this is the first CPU which has come here,
696 * go ahead and trigger fadump.
697 *
698 * old_cpu != -1 means some other CPU has already on its way
699 * to trigger fadump, just keep looping here.
700 */
701 this_cpu = smp_processor_id();
702 old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
703
704 if (old_cpu != -1) {
705 atomic_inc(&cpus_in_fadump);
706
707 /*
708 * We can't loop here indefinitely. Wait as long as fadump
709 * is in force. If we race with fadump un-registration this
710 * loop will break and then we go down to normal panic path
711 * and reboot. If fadump is in force the first crashing
712 * cpu will definitely trigger fadump.
713 */
714 while (fw_dump.dump_registered)
715 cpu_relax();
716 return;
717 }
718
719 fdh = __va(fw_dump.fadumphdr_addr);
720 fdh->crashing_cpu = crashing_cpu;
721 crash_save_vmcoreinfo();
722
723 if (regs)
724 fdh->regs = *regs;
725 else
726 ppc_save_regs(&fdh->regs);
727
728 fdh->cpu_mask = *cpu_online_mask;
729
730 /*
731 * If we came in via system reset, wait a while for the secondary
732 * CPUs to enter.
733 */
734 if (TRAP(&(fdh->regs)) == INTERRUPT_SYSTEM_RESET) {
735 msecs = CRASH_TIMEOUT;
736 while ((atomic_read(&cpus_in_fadump) < ncpus) && (--msecs > 0))
737 mdelay(1);
738 }
739
740 fw_dump.ops->fadump_trigger(fdh, str);
741}
742
743u32 *__init fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
744{
745 struct elf_prstatus prstatus;
746
747 memset(&prstatus, 0, sizeof(prstatus));
748 /*
749 * FIXME: How do i get PID? Do I really need it?
750 * prstatus.pr_pid = ????
751 */
752 elf_core_copy_regs(&prstatus.pr_reg, regs);
753 buf = append_elf_note(buf, NN_PRSTATUS, NT_PRSTATUS,
754 &prstatus, sizeof(prstatus));
755 return buf;
756}
757
758void __init fadump_update_elfcore_header(char *bufp)
759{
760 struct elf_phdr *phdr;
761
762 bufp += sizeof(struct elfhdr);
763
764 /* First note is a place holder for cpu notes info. */
765 phdr = (struct elf_phdr *)bufp;
766
767 if (phdr->p_type == PT_NOTE) {
768 phdr->p_paddr = __pa(fw_dump.cpu_notes_buf_vaddr);
769 phdr->p_offset = phdr->p_paddr;
770 phdr->p_filesz = fw_dump.cpu_notes_buf_size;
771 phdr->p_memsz = fw_dump.cpu_notes_buf_size;
772 }
773 return;
774}
775
776static void *__init fadump_alloc_buffer(unsigned long size)
777{
778 unsigned long count, i;
779 struct page *page;
780 void *vaddr;
781
782 vaddr = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
783 if (!vaddr)
784 return NULL;
785
786 count = PAGE_ALIGN(size) / PAGE_SIZE;
787 page = virt_to_page(vaddr);
788 for (i = 0; i < count; i++)
789 mark_page_reserved(page + i);
790 return vaddr;
791}
792
793static void fadump_free_buffer(unsigned long vaddr, unsigned long size)
794{
795 free_reserved_area((void *)vaddr, (void *)(vaddr + size), -1, NULL);
796}
797
798s32 __init fadump_setup_cpu_notes_buf(u32 num_cpus)
799{
800 /* Allocate buffer to hold cpu crash notes. */
801 fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
802 fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
803 fw_dump.cpu_notes_buf_vaddr =
804 (unsigned long)fadump_alloc_buffer(fw_dump.cpu_notes_buf_size);
805 if (!fw_dump.cpu_notes_buf_vaddr) {
806 pr_err("Failed to allocate %ld bytes for CPU notes buffer\n",
807 fw_dump.cpu_notes_buf_size);
808 return -ENOMEM;
809 }
810
811 pr_debug("Allocated buffer for cpu notes of size %ld at 0x%lx\n",
812 fw_dump.cpu_notes_buf_size,
813 fw_dump.cpu_notes_buf_vaddr);
814 return 0;
815}
816
817void fadump_free_cpu_notes_buf(void)
818{
819 if (!fw_dump.cpu_notes_buf_vaddr)
820 return;
821
822 fadump_free_buffer(fw_dump.cpu_notes_buf_vaddr,
823 fw_dump.cpu_notes_buf_size);
824 fw_dump.cpu_notes_buf_vaddr = 0;
825 fw_dump.cpu_notes_buf_size = 0;
826}
827
828static void fadump_free_mem_ranges(struct fadump_mrange_info *mrange_info)
829{
830 if (mrange_info->is_static) {
831 mrange_info->mem_range_cnt = 0;
832 return;
833 }
834
835 kfree(mrange_info->mem_ranges);
836 memset((void *)((u64)mrange_info + RNG_NAME_SZ), 0,
837 (sizeof(struct fadump_mrange_info) - RNG_NAME_SZ));
838}
839
840/*
841 * Allocate or reallocate mem_ranges array in incremental units
842 * of PAGE_SIZE.
843 */
844static int fadump_alloc_mem_ranges(struct fadump_mrange_info *mrange_info)
845{
846 struct fadump_memory_range *new_array;
847 u64 new_size;
848
849 new_size = mrange_info->mem_ranges_sz + PAGE_SIZE;
850 pr_debug("Allocating %llu bytes of memory for %s memory ranges\n",
851 new_size, mrange_info->name);
852
853 new_array = krealloc(mrange_info->mem_ranges, new_size, GFP_KERNEL);
854 if (new_array == NULL) {
855 pr_err("Insufficient memory for setting up %s memory ranges\n",
856 mrange_info->name);
857 fadump_free_mem_ranges(mrange_info);
858 return -ENOMEM;
859 }
860
861 mrange_info->mem_ranges = new_array;
862 mrange_info->mem_ranges_sz = new_size;
863 mrange_info->max_mem_ranges = (new_size /
864 sizeof(struct fadump_memory_range));
865 return 0;
866}
867static inline int fadump_add_mem_range(struct fadump_mrange_info *mrange_info,
868 u64 base, u64 end)
869{
870 struct fadump_memory_range *mem_ranges = mrange_info->mem_ranges;
871 bool is_adjacent = false;
872 u64 start, size;
873
874 if (base == end)
875 return 0;
876
877 /*
878 * Fold adjacent memory ranges to bring down the memory ranges/
879 * PT_LOAD segments count.
880 */
881 if (mrange_info->mem_range_cnt) {
882 start = mem_ranges[mrange_info->mem_range_cnt - 1].base;
883 size = mem_ranges[mrange_info->mem_range_cnt - 1].size;
884
885 /*
886 * Boot memory area needs separate PT_LOAD segment(s) as it
887 * is moved to a different location at the time of crash.
888 * So, fold only if the region is not boot memory area.
889 */
890 if ((start + size) == base && start >= fw_dump.boot_mem_top)
891 is_adjacent = true;
892 }
893 if (!is_adjacent) {
894 /* resize the array on reaching the limit */
895 if (mrange_info->mem_range_cnt == mrange_info->max_mem_ranges) {
896 int ret;
897
898 if (mrange_info->is_static) {
899 pr_err("Reached array size limit for %s memory ranges\n",
900 mrange_info->name);
901 return -ENOSPC;
902 }
903
904 ret = fadump_alloc_mem_ranges(mrange_info);
905 if (ret)
906 return ret;
907
908 /* Update to the new resized array */
909 mem_ranges = mrange_info->mem_ranges;
910 }
911
912 start = base;
913 mem_ranges[mrange_info->mem_range_cnt].base = start;
914 mrange_info->mem_range_cnt++;
915 }
916
917 mem_ranges[mrange_info->mem_range_cnt - 1].size = (end - start);
918 pr_debug("%s_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
919 mrange_info->name, (mrange_info->mem_range_cnt - 1),
920 start, end - 1, (end - start));
921 return 0;
922}
923
924static int fadump_init_elfcore_header(char *bufp)
925{
926 struct elfhdr *elf;
927
928 elf = (struct elfhdr *) bufp;
929 bufp += sizeof(struct elfhdr);
930 memcpy(elf->e_ident, ELFMAG, SELFMAG);
931 elf->e_ident[EI_CLASS] = ELF_CLASS;
932 elf->e_ident[EI_DATA] = ELF_DATA;
933 elf->e_ident[EI_VERSION] = EV_CURRENT;
934 elf->e_ident[EI_OSABI] = ELF_OSABI;
935 memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
936 elf->e_type = ET_CORE;
937 elf->e_machine = ELF_ARCH;
938 elf->e_version = EV_CURRENT;
939 elf->e_entry = 0;
940 elf->e_phoff = sizeof(struct elfhdr);
941 elf->e_shoff = 0;
942
943 if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V2))
944 elf->e_flags = 2;
945 else if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V1))
946 elf->e_flags = 1;
947 else
948 elf->e_flags = 0;
949
950 elf->e_ehsize = sizeof(struct elfhdr);
951 elf->e_phentsize = sizeof(struct elf_phdr);
952 elf->e_phnum = 0;
953 elf->e_shentsize = 0;
954 elf->e_shnum = 0;
955 elf->e_shstrndx = 0;
956
957 return 0;
958}
959
960/*
961 * If the given physical address falls within the boot memory region then
962 * return the relocated address that points to the dump region reserved
963 * for saving initial boot memory contents.
964 */
965static inline unsigned long fadump_relocate(unsigned long paddr)
966{
967 unsigned long raddr, rstart, rend, rlast, hole_size;
968 int i;
969
970 hole_size = 0;
971 rlast = 0;
972 raddr = paddr;
973 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
974 rstart = fw_dump.boot_mem_addr[i];
975 rend = rstart + fw_dump.boot_mem_sz[i];
976 hole_size += (rstart - rlast);
977
978 if (paddr >= rstart && paddr < rend) {
979 raddr += fw_dump.boot_mem_dest_addr - hole_size;
980 break;
981 }
982
983 rlast = rend;
984 }
985
986 pr_debug("vmcoreinfo: paddr = 0x%lx, raddr = 0x%lx\n", paddr, raddr);
987 return raddr;
988}
989
990static void __init populate_elf_pt_load(struct elf_phdr *phdr, u64 start,
991 u64 size, unsigned long long offset)
992{
993 phdr->p_align = 0;
994 phdr->p_memsz = size;
995 phdr->p_filesz = size;
996 phdr->p_paddr = start;
997 phdr->p_offset = offset;
998 phdr->p_type = PT_LOAD;
999 phdr->p_flags = PF_R|PF_W|PF_X;
1000 phdr->p_vaddr = (unsigned long)__va(start);
1001}
1002
1003static void __init fadump_populate_elfcorehdr(struct fadump_crash_info_header *fdh)
1004{
1005 char *bufp;
1006 struct elfhdr *elf;
1007 struct elf_phdr *phdr;
1008 u64 boot_mem_dest_offset;
1009 unsigned long long i, ra_start, ra_end, ra_size, mstart, mend;
1010
1011 bufp = (char *) fw_dump.elfcorehdr_addr;
1012 fadump_init_elfcore_header(bufp);
1013 elf = (struct elfhdr *)bufp;
1014 bufp += sizeof(struct elfhdr);
1015
1016 /*
1017 * Set up ELF PT_NOTE, a placeholder for CPU notes information.
1018 * The notes info will be populated later by platform-specific code.
1019 * Hence, this PT_NOTE will always be the first ELF note.
1020 *
1021 * NOTE: Any new ELF note addition should be placed after this note.
1022 */
1023 phdr = (struct elf_phdr *)bufp;
1024 bufp += sizeof(struct elf_phdr);
1025 phdr->p_type = PT_NOTE;
1026 phdr->p_flags = 0;
1027 phdr->p_vaddr = 0;
1028 phdr->p_align = 0;
1029 phdr->p_offset = 0;
1030 phdr->p_paddr = 0;
1031 phdr->p_filesz = 0;
1032 phdr->p_memsz = 0;
1033 /* Increment number of program headers. */
1034 (elf->e_phnum)++;
1035
1036 /* setup ELF PT_NOTE for vmcoreinfo */
1037 phdr = (struct elf_phdr *)bufp;
1038 bufp += sizeof(struct elf_phdr);
1039 phdr->p_type = PT_NOTE;
1040 phdr->p_flags = 0;
1041 phdr->p_vaddr = 0;
1042 phdr->p_align = 0;
1043 phdr->p_paddr = phdr->p_offset = fdh->vmcoreinfo_raddr;
1044 phdr->p_memsz = phdr->p_filesz = fdh->vmcoreinfo_size;
1045 /* Increment number of program headers. */
1046 (elf->e_phnum)++;
1047
1048 /*
1049 * Setup PT_LOAD sections. first include boot memory regions
1050 * and then add rest of the memory regions.
1051 */
1052 boot_mem_dest_offset = fw_dump.boot_mem_dest_addr;
1053 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
1054 phdr = (struct elf_phdr *)bufp;
1055 bufp += sizeof(struct elf_phdr);
1056 populate_elf_pt_load(phdr, fw_dump.boot_mem_addr[i],
1057 fw_dump.boot_mem_sz[i],
1058 boot_mem_dest_offset);
1059 /* Increment number of program headers. */
1060 (elf->e_phnum)++;
1061 boot_mem_dest_offset += fw_dump.boot_mem_sz[i];
1062 }
1063
1064 /* Memory reserved for fadump in first kernel */
1065 ra_start = fw_dump.reserve_dump_area_start;
1066 ra_size = get_fadump_area_size();
1067 ra_end = ra_start + ra_size;
1068
1069 phdr = (struct elf_phdr *)bufp;
1070 for_each_mem_range(i, &mstart, &mend) {
1071 /* Boot memory regions already added, skip them now */
1072 if (mstart < fw_dump.boot_mem_top) {
1073 if (mend > fw_dump.boot_mem_top)
1074 mstart = fw_dump.boot_mem_top;
1075 else
1076 continue;
1077 }
1078
1079 /* Handle memblock regions overlaps with fadump reserved area */
1080 if ((ra_start < mend) && (ra_end > mstart)) {
1081 if ((mstart < ra_start) && (mend > ra_end)) {
1082 populate_elf_pt_load(phdr, mstart, ra_start - mstart, mstart);
1083 /* Increment number of program headers. */
1084 (elf->e_phnum)++;
1085 bufp += sizeof(struct elf_phdr);
1086 phdr = (struct elf_phdr *)bufp;
1087 populate_elf_pt_load(phdr, ra_end, mend - ra_end, ra_end);
1088 } else if (mstart < ra_start) {
1089 populate_elf_pt_load(phdr, mstart, ra_start - mstart, mstart);
1090 } else if (ra_end < mend) {
1091 populate_elf_pt_load(phdr, ra_end, mend - ra_end, ra_end);
1092 }
1093 } else {
1094 /* No overlap with fadump reserved memory region */
1095 populate_elf_pt_load(phdr, mstart, mend - mstart, mstart);
1096 }
1097
1098 /* Increment number of program headers. */
1099 (elf->e_phnum)++;
1100 bufp += sizeof(struct elf_phdr);
1101 phdr = (struct elf_phdr *) bufp;
1102 }
1103}
1104
1105static unsigned long init_fadump_header(unsigned long addr)
1106{
1107 struct fadump_crash_info_header *fdh;
1108
1109 if (!addr)
1110 return 0;
1111
1112 fdh = __va(addr);
1113 addr += sizeof(struct fadump_crash_info_header);
1114
1115 memset(fdh, 0, sizeof(struct fadump_crash_info_header));
1116 fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
1117 fdh->version = FADUMP_HEADER_VERSION;
1118 /* We will set the crashing cpu id in crash_fadump() during crash. */
1119 fdh->crashing_cpu = FADUMP_CPU_UNKNOWN;
1120
1121 /*
1122 * The physical address and size of vmcoreinfo are required in the
1123 * second kernel to prepare elfcorehdr.
1124 */
1125 fdh->vmcoreinfo_raddr = fadump_relocate(paddr_vmcoreinfo_note());
1126 fdh->vmcoreinfo_size = VMCOREINFO_NOTE_SIZE;
1127
1128
1129 fdh->pt_regs_sz = sizeof(struct pt_regs);
1130 /*
1131 * When LPAR is terminated by PYHP, ensure all possible CPUs'
1132 * register data is processed while exporting the vmcore.
1133 */
1134 fdh->cpu_mask = *cpu_possible_mask;
1135 fdh->cpu_mask_sz = sizeof(struct cpumask);
1136
1137 return addr;
1138}
1139
1140static int register_fadump(void)
1141{
1142 unsigned long addr;
1143
1144 /*
1145 * If no memory is reserved then we can not register for firmware-
1146 * assisted dump.
1147 */
1148 if (!fw_dump.reserve_dump_area_size)
1149 return -ENODEV;
1150
1151 addr = fw_dump.fadumphdr_addr;
1152
1153 /* Initialize fadump crash info header. */
1154 addr = init_fadump_header(addr);
1155
1156 /* register the future kernel dump with firmware. */
1157 pr_debug("Registering for firmware-assisted kernel dump...\n");
1158 return fw_dump.ops->fadump_register(&fw_dump);
1159}
1160
1161void fadump_cleanup(void)
1162{
1163 if (!fw_dump.fadump_supported)
1164 return;
1165
1166 /* Invalidate the registration only if dump is active. */
1167 if (fw_dump.dump_active) {
1168 pr_debug("Invalidating firmware-assisted dump registration\n");
1169 fw_dump.ops->fadump_invalidate(&fw_dump);
1170 } else if (fw_dump.dump_registered) {
1171 /* Un-register Firmware-assisted dump if it was registered. */
1172 fw_dump.ops->fadump_unregister(&fw_dump);
1173 }
1174
1175 if (fw_dump.ops->fadump_cleanup)
1176 fw_dump.ops->fadump_cleanup(&fw_dump);
1177}
1178
1179static void fadump_free_reserved_memory(unsigned long start_pfn,
1180 unsigned long end_pfn)
1181{
1182 unsigned long pfn;
1183 unsigned long time_limit = jiffies + HZ;
1184
1185 pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
1186 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
1187
1188 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1189 free_reserved_page(pfn_to_page(pfn));
1190
1191 if (time_after(jiffies, time_limit)) {
1192 cond_resched();
1193 time_limit = jiffies + HZ;
1194 }
1195 }
1196}
1197
1198/*
1199 * Skip memory holes and free memory that was actually reserved.
1200 */
1201static void fadump_release_reserved_area(u64 start, u64 end)
1202{
1203 unsigned long reg_spfn, reg_epfn;
1204 u64 tstart, tend, spfn, epfn;
1205 int i;
1206
1207 spfn = PHYS_PFN(start);
1208 epfn = PHYS_PFN(end);
1209
1210 for_each_mem_pfn_range(i, MAX_NUMNODES, &reg_spfn, &reg_epfn, NULL) {
1211 tstart = max_t(u64, spfn, reg_spfn);
1212 tend = min_t(u64, epfn, reg_epfn);
1213
1214 if (tstart < tend) {
1215 fadump_free_reserved_memory(tstart, tend);
1216
1217 if (tend == epfn)
1218 break;
1219
1220 spfn = tend;
1221 }
1222 }
1223}
1224
1225/*
1226 * Sort the mem ranges in-place and merge adjacent ranges
1227 * to minimize the memory ranges count.
1228 */
1229static void sort_and_merge_mem_ranges(struct fadump_mrange_info *mrange_info)
1230{
1231 struct fadump_memory_range *mem_ranges;
1232 u64 base, size;
1233 int i, j, idx;
1234
1235 if (!reserved_mrange_info.mem_range_cnt)
1236 return;
1237
1238 /* Sort the memory ranges */
1239 mem_ranges = mrange_info->mem_ranges;
1240 for (i = 0; i < mrange_info->mem_range_cnt; i++) {
1241 idx = i;
1242 for (j = (i + 1); j < mrange_info->mem_range_cnt; j++) {
1243 if (mem_ranges[idx].base > mem_ranges[j].base)
1244 idx = j;
1245 }
1246 if (idx != i)
1247 swap(mem_ranges[idx], mem_ranges[i]);
1248 }
1249
1250 /* Merge adjacent reserved ranges */
1251 idx = 0;
1252 for (i = 1; i < mrange_info->mem_range_cnt; i++) {
1253 base = mem_ranges[i-1].base;
1254 size = mem_ranges[i-1].size;
1255 if (mem_ranges[i].base == (base + size))
1256 mem_ranges[idx].size += mem_ranges[i].size;
1257 else {
1258 idx++;
1259 if (i == idx)
1260 continue;
1261
1262 mem_ranges[idx] = mem_ranges[i];
1263 }
1264 }
1265 mrange_info->mem_range_cnt = idx + 1;
1266}
1267
1268/*
1269 * Scan reserved-ranges to consider them while reserving/releasing
1270 * memory for FADump.
1271 */
1272static void __init early_init_dt_scan_reserved_ranges(unsigned long node)
1273{
1274 const __be32 *prop;
1275 int len, ret = -1;
1276 unsigned long i;
1277
1278 /* reserved-ranges already scanned */
1279 if (reserved_mrange_info.mem_range_cnt != 0)
1280 return;
1281
1282 prop = of_get_flat_dt_prop(node, "reserved-ranges", &len);
1283 if (!prop)
1284 return;
1285
1286 /*
1287 * Each reserved range is an (address,size) pair, 2 cells each,
1288 * totalling 4 cells per range.
1289 */
1290 for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
1291 u64 base, size;
1292
1293 base = of_read_number(prop + (i * 4) + 0, 2);
1294 size = of_read_number(prop + (i * 4) + 2, 2);
1295
1296 if (size) {
1297 ret = fadump_add_mem_range(&reserved_mrange_info,
1298 base, base + size);
1299 if (ret < 0) {
1300 pr_warn("some reserved ranges are ignored!\n");
1301 break;
1302 }
1303 }
1304 }
1305
1306 /* Compact reserved ranges */
1307 sort_and_merge_mem_ranges(&reserved_mrange_info);
1308}
1309
1310/*
1311 * Release the memory that was reserved during early boot to preserve the
1312 * crash'ed kernel's memory contents except reserved dump area (permanent
1313 * reservation) and reserved ranges used by F/W. The released memory will
1314 * be available for general use.
1315 */
1316static void fadump_release_memory(u64 begin, u64 end)
1317{
1318 u64 ra_start, ra_end, tstart;
1319 int i, ret;
1320
1321 ra_start = fw_dump.reserve_dump_area_start;
1322 ra_end = ra_start + fw_dump.reserve_dump_area_size;
1323
1324 /*
1325 * If reserved ranges array limit is hit, overwrite the last reserved
1326 * memory range with reserved dump area to ensure it is excluded from
1327 * the memory being released (reused for next FADump registration).
1328 */
1329 if (reserved_mrange_info.mem_range_cnt ==
1330 reserved_mrange_info.max_mem_ranges)
1331 reserved_mrange_info.mem_range_cnt--;
1332
1333 ret = fadump_add_mem_range(&reserved_mrange_info, ra_start, ra_end);
1334 if (ret != 0)
1335 return;
1336
1337 /* Get the reserved ranges list in order first. */
1338 sort_and_merge_mem_ranges(&reserved_mrange_info);
1339
1340 /* Exclude reserved ranges and release remaining memory */
1341 tstart = begin;
1342 for (i = 0; i < reserved_mrange_info.mem_range_cnt; i++) {
1343 ra_start = reserved_mrange_info.mem_ranges[i].base;
1344 ra_end = ra_start + reserved_mrange_info.mem_ranges[i].size;
1345
1346 if (tstart >= ra_end)
1347 continue;
1348
1349 if (tstart < ra_start)
1350 fadump_release_reserved_area(tstart, ra_start);
1351 tstart = ra_end;
1352 }
1353
1354 if (tstart < end)
1355 fadump_release_reserved_area(tstart, end);
1356}
1357
1358static void fadump_free_elfcorehdr_buf(void)
1359{
1360 if (fw_dump.elfcorehdr_addr == 0 || fw_dump.elfcorehdr_size == 0)
1361 return;
1362
1363 /*
1364 * Before freeing the memory of `elfcorehdr`, reset the global
1365 * `elfcorehdr_addr` to prevent modules like `vmcore` from accessing
1366 * invalid memory.
1367 */
1368 elfcorehdr_addr = ELFCORE_ADDR_ERR;
1369 fadump_free_buffer(fw_dump.elfcorehdr_addr, fw_dump.elfcorehdr_size);
1370 fw_dump.elfcorehdr_addr = 0;
1371 fw_dump.elfcorehdr_size = 0;
1372}
1373
1374static void fadump_invalidate_release_mem(void)
1375{
1376 mutex_lock(&fadump_mutex);
1377 if (!fw_dump.dump_active) {
1378 mutex_unlock(&fadump_mutex);
1379 return;
1380 }
1381
1382 fadump_cleanup();
1383 mutex_unlock(&fadump_mutex);
1384
1385 fadump_free_elfcorehdr_buf();
1386 fadump_release_memory(fw_dump.boot_mem_top, memblock_end_of_DRAM());
1387 fadump_free_cpu_notes_buf();
1388
1389 /*
1390 * Setup kernel metadata and initialize the kernel dump
1391 * memory structure for FADump re-registration.
1392 */
1393 if (fw_dump.ops->fadump_setup_metadata &&
1394 (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
1395 pr_warn("Failed to setup kernel metadata!\n");
1396 fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1397}
1398
1399static ssize_t release_mem_store(struct kobject *kobj,
1400 struct kobj_attribute *attr,
1401 const char *buf, size_t count)
1402{
1403 int input = -1;
1404
1405 if (!fw_dump.dump_active)
1406 return -EPERM;
1407
1408 if (kstrtoint(buf, 0, &input))
1409 return -EINVAL;
1410
1411 if (input == 1) {
1412 /*
1413 * Take away the '/proc/vmcore'. We are releasing the dump
1414 * memory, hence it will not be valid anymore.
1415 */
1416#ifdef CONFIG_PROC_VMCORE
1417 vmcore_cleanup();
1418#endif
1419 fadump_invalidate_release_mem();
1420
1421 } else
1422 return -EINVAL;
1423 return count;
1424}
1425
1426/* Release the reserved memory and disable the FADump */
1427static void __init unregister_fadump(void)
1428{
1429 fadump_cleanup();
1430 fadump_release_memory(fw_dump.reserve_dump_area_start,
1431 fw_dump.reserve_dump_area_size);
1432 fw_dump.fadump_enabled = 0;
1433 kobject_put(fadump_kobj);
1434}
1435
1436static ssize_t enabled_show(struct kobject *kobj,
1437 struct kobj_attribute *attr,
1438 char *buf)
1439{
1440 return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1441}
1442
1443/*
1444 * /sys/kernel/fadump/hotplug_ready sysfs node returns 1, which inidcates
1445 * to usersapce that fadump re-registration is not required on memory
1446 * hotplug events.
1447 */
1448static ssize_t hotplug_ready_show(struct kobject *kobj,
1449 struct kobj_attribute *attr,
1450 char *buf)
1451{
1452 return sprintf(buf, "%d\n", 1);
1453}
1454
1455static ssize_t mem_reserved_show(struct kobject *kobj,
1456 struct kobj_attribute *attr,
1457 char *buf)
1458{
1459 return sprintf(buf, "%ld\n", fw_dump.reserve_dump_area_size);
1460}
1461
1462static ssize_t registered_show(struct kobject *kobj,
1463 struct kobj_attribute *attr,
1464 char *buf)
1465{
1466 return sprintf(buf, "%d\n", fw_dump.dump_registered);
1467}
1468
1469static ssize_t bootargs_append_show(struct kobject *kobj,
1470 struct kobj_attribute *attr,
1471 char *buf)
1472{
1473 return sprintf(buf, "%s\n", (char *)__va(fw_dump.param_area));
1474}
1475
1476static ssize_t bootargs_append_store(struct kobject *kobj,
1477 struct kobj_attribute *attr,
1478 const char *buf, size_t count)
1479{
1480 char *params;
1481
1482 if (!fw_dump.fadump_enabled || fw_dump.dump_active)
1483 return -EPERM;
1484
1485 if (count >= COMMAND_LINE_SIZE)
1486 return -EINVAL;
1487
1488 /*
1489 * Fail here instead of handling this scenario with
1490 * some silly workaround in capture kernel.
1491 */
1492 if (saved_command_line_len + count >= COMMAND_LINE_SIZE) {
1493 pr_err("Appending parameters exceeds cmdline size!\n");
1494 return -ENOSPC;
1495 }
1496
1497 params = __va(fw_dump.param_area);
1498 strscpy_pad(params, buf, COMMAND_LINE_SIZE);
1499 /* Remove newline character at the end. */
1500 if (params[count-1] == '\n')
1501 params[count-1] = '\0';
1502
1503 return count;
1504}
1505
1506static ssize_t registered_store(struct kobject *kobj,
1507 struct kobj_attribute *attr,
1508 const char *buf, size_t count)
1509{
1510 int ret = 0;
1511 int input = -1;
1512
1513 if (!fw_dump.fadump_enabled || fw_dump.dump_active)
1514 return -EPERM;
1515
1516 if (kstrtoint(buf, 0, &input))
1517 return -EINVAL;
1518
1519 mutex_lock(&fadump_mutex);
1520
1521 switch (input) {
1522 case 0:
1523 if (fw_dump.dump_registered == 0) {
1524 goto unlock_out;
1525 }
1526
1527 /* Un-register Firmware-assisted dump */
1528 pr_debug("Un-register firmware-assisted dump\n");
1529 fw_dump.ops->fadump_unregister(&fw_dump);
1530 break;
1531 case 1:
1532 if (fw_dump.dump_registered == 1) {
1533 /* Un-register Firmware-assisted dump */
1534 fw_dump.ops->fadump_unregister(&fw_dump);
1535 }
1536 /* Register Firmware-assisted dump */
1537 ret = register_fadump();
1538 break;
1539 default:
1540 ret = -EINVAL;
1541 break;
1542 }
1543
1544unlock_out:
1545 mutex_unlock(&fadump_mutex);
1546 return ret < 0 ? ret : count;
1547}
1548
1549static int fadump_region_show(struct seq_file *m, void *private)
1550{
1551 if (!fw_dump.fadump_enabled)
1552 return 0;
1553
1554 mutex_lock(&fadump_mutex);
1555 fw_dump.ops->fadump_region_show(&fw_dump, m);
1556 mutex_unlock(&fadump_mutex);
1557 return 0;
1558}
1559
1560static struct kobj_attribute release_attr = __ATTR_WO(release_mem);
1561static struct kobj_attribute enable_attr = __ATTR_RO(enabled);
1562static struct kobj_attribute register_attr = __ATTR_RW(registered);
1563static struct kobj_attribute mem_reserved_attr = __ATTR_RO(mem_reserved);
1564static struct kobj_attribute hotplug_ready_attr = __ATTR_RO(hotplug_ready);
1565static struct kobj_attribute bootargs_append_attr = __ATTR_RW(bootargs_append);
1566
1567static struct attribute *fadump_attrs[] = {
1568 &enable_attr.attr,
1569 &register_attr.attr,
1570 &mem_reserved_attr.attr,
1571 &hotplug_ready_attr.attr,
1572 NULL,
1573};
1574
1575ATTRIBUTE_GROUPS(fadump);
1576
1577DEFINE_SHOW_ATTRIBUTE(fadump_region);
1578
1579static void __init fadump_init_files(void)
1580{
1581 int rc = 0;
1582
1583 fadump_kobj = kobject_create_and_add("fadump", kernel_kobj);
1584 if (!fadump_kobj) {
1585 pr_err("failed to create fadump kobject\n");
1586 return;
1587 }
1588
1589 if (fw_dump.param_area) {
1590 rc = sysfs_create_file(fadump_kobj, &bootargs_append_attr.attr);
1591 if (rc)
1592 pr_err("unable to create bootargs_append sysfs file (%d)\n", rc);
1593 }
1594
1595 debugfs_create_file("fadump_region", 0444, arch_debugfs_dir, NULL,
1596 &fadump_region_fops);
1597
1598 if (fw_dump.dump_active) {
1599 rc = sysfs_create_file(fadump_kobj, &release_attr.attr);
1600 if (rc)
1601 pr_err("unable to create release_mem sysfs file (%d)\n",
1602 rc);
1603 }
1604
1605 rc = sysfs_create_groups(fadump_kobj, fadump_groups);
1606 if (rc) {
1607 pr_err("sysfs group creation failed (%d), unregistering FADump",
1608 rc);
1609 unregister_fadump();
1610 return;
1611 }
1612
1613 /*
1614 * The FADump sysfs are moved from kernel_kobj to fadump_kobj need to
1615 * create symlink at old location to maintain backward compatibility.
1616 *
1617 * - fadump_enabled -> fadump/enabled
1618 * - fadump_registered -> fadump/registered
1619 * - fadump_release_mem -> fadump/release_mem
1620 */
1621 rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1622 "enabled", "fadump_enabled");
1623 if (rc) {
1624 pr_err("unable to create fadump_enabled symlink (%d)", rc);
1625 return;
1626 }
1627
1628 rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1629 "registered",
1630 "fadump_registered");
1631 if (rc) {
1632 pr_err("unable to create fadump_registered symlink (%d)", rc);
1633 sysfs_remove_link(kernel_kobj, "fadump_enabled");
1634 return;
1635 }
1636
1637 if (fw_dump.dump_active) {
1638 rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj,
1639 fadump_kobj,
1640 "release_mem",
1641 "fadump_release_mem");
1642 if (rc)
1643 pr_err("unable to create fadump_release_mem symlink (%d)",
1644 rc);
1645 }
1646 return;
1647}
1648
1649static int __init fadump_setup_elfcorehdr_buf(void)
1650{
1651 int elf_phdr_cnt;
1652 unsigned long elfcorehdr_size;
1653
1654 /*
1655 * Program header for CPU notes comes first, followed by one for
1656 * vmcoreinfo, and the remaining program headers correspond to
1657 * memory regions.
1658 */
1659 elf_phdr_cnt = 2 + fw_dump.boot_mem_regs_cnt + memblock_num_regions(memory);
1660 elfcorehdr_size = sizeof(struct elfhdr) + (elf_phdr_cnt * sizeof(struct elf_phdr));
1661 elfcorehdr_size = PAGE_ALIGN(elfcorehdr_size);
1662
1663 fw_dump.elfcorehdr_addr = (u64)fadump_alloc_buffer(elfcorehdr_size);
1664 if (!fw_dump.elfcorehdr_addr) {
1665 pr_err("Failed to allocate %lu bytes for elfcorehdr\n",
1666 elfcorehdr_size);
1667 return -ENOMEM;
1668 }
1669 fw_dump.elfcorehdr_size = elfcorehdr_size;
1670 return 0;
1671}
1672
1673/*
1674 * Check if the fadump header of crashed kernel is compatible with fadump kernel.
1675 *
1676 * It checks the magic number, endianness, and size of non-primitive type
1677 * members of fadump header to ensure safe dump collection.
1678 */
1679static bool __init is_fadump_header_compatible(struct fadump_crash_info_header *fdh)
1680{
1681 if (fdh->magic_number == FADUMP_CRASH_INFO_MAGIC_OLD) {
1682 pr_err("Old magic number, can't process the dump.\n");
1683 return false;
1684 }
1685
1686 if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
1687 if (fdh->magic_number == swab64(FADUMP_CRASH_INFO_MAGIC))
1688 pr_err("Endianness mismatch between the crashed and fadump kernels.\n");
1689 else
1690 pr_err("Fadump header is corrupted.\n");
1691
1692 return false;
1693 }
1694
1695 /*
1696 * Dump collection is not safe if the size of non-primitive type members
1697 * of the fadump header do not match between crashed and fadump kernel.
1698 */
1699 if (fdh->pt_regs_sz != sizeof(struct pt_regs) ||
1700 fdh->cpu_mask_sz != sizeof(struct cpumask)) {
1701 pr_err("Fadump header size mismatch.\n");
1702 return false;
1703 }
1704
1705 return true;
1706}
1707
1708static void __init fadump_process(void)
1709{
1710 struct fadump_crash_info_header *fdh;
1711
1712 fdh = (struct fadump_crash_info_header *) __va(fw_dump.fadumphdr_addr);
1713 if (!fdh) {
1714 pr_err("Crash info header is empty.\n");
1715 goto err_out;
1716 }
1717
1718 /* Avoid processing the dump if fadump header isn't compatible */
1719 if (!is_fadump_header_compatible(fdh))
1720 goto err_out;
1721
1722 /* Allocate buffer for elfcorehdr */
1723 if (fadump_setup_elfcorehdr_buf())
1724 goto err_out;
1725
1726 fadump_populate_elfcorehdr(fdh);
1727
1728 /* Let platform update the CPU notes in elfcorehdr */
1729 if (fw_dump.ops->fadump_process(&fw_dump) < 0)
1730 goto err_out;
1731
1732 /*
1733 * elfcorehdr is now ready to be exported.
1734 *
1735 * set elfcorehdr_addr so that vmcore module will export the
1736 * elfcorehdr through '/proc/vmcore'.
1737 */
1738 elfcorehdr_addr = virt_to_phys((void *)fw_dump.elfcorehdr_addr);
1739 return;
1740
1741err_out:
1742 fadump_invalidate_release_mem();
1743}
1744
1745/*
1746 * Reserve memory to store additional parameters to be passed
1747 * for fadump/capture kernel.
1748 */
1749void __init fadump_setup_param_area(void)
1750{
1751 phys_addr_t range_start, range_end;
1752
1753 if (!fw_dump.param_area_supported || fw_dump.dump_active)
1754 return;
1755
1756 /* This memory can't be used by PFW or bootloader as it is shared across kernels */
1757 if (early_radix_enabled()) {
1758 /*
1759 * Anywhere in the upper half should be good enough as all memory
1760 * is accessible in real mode.
1761 */
1762 range_start = memblock_end_of_DRAM() / 2;
1763 range_end = memblock_end_of_DRAM();
1764 } else {
1765 /*
1766 * Memory range for passing additional parameters for HASH MMU
1767 * must meet the following conditions:
1768 * 1. The first memory block size must be higher than the
1769 * minimum RMA (MIN_RMA) size. Bootloader can use memory
1770 * upto RMA size. So it should be avoided.
1771 * 2. The range should be between MIN_RMA and RMA size (ppc64_rma_size)
1772 * 3. It must not overlap with the fadump reserved area.
1773 */
1774 if (ppc64_rma_size < MIN_RMA*1024*1024)
1775 return;
1776
1777 range_start = MIN_RMA * 1024 * 1024;
1778 range_end = min(ppc64_rma_size, fw_dump.boot_mem_top);
1779 }
1780
1781 fw_dump.param_area = memblock_phys_alloc_range(COMMAND_LINE_SIZE,
1782 COMMAND_LINE_SIZE,
1783 range_start,
1784 range_end);
1785 if (!fw_dump.param_area) {
1786 pr_warn("WARNING: Could not setup area to pass additional parameters!\n");
1787 return;
1788 }
1789
1790 memset((void *)fw_dump.param_area, 0, COMMAND_LINE_SIZE);
1791}
1792
1793/*
1794 * Prepare for firmware-assisted dump.
1795 */
1796int __init setup_fadump(void)
1797{
1798 if (!fw_dump.fadump_supported)
1799 return 0;
1800
1801 fadump_init_files();
1802 fadump_show_config();
1803
1804 if (!fw_dump.fadump_enabled)
1805 return 1;
1806
1807 /*
1808 * If dump data is available then see if it is valid and prepare for
1809 * saving it to the disk.
1810 */
1811 if (fw_dump.dump_active) {
1812 fadump_process();
1813 }
1814 /* Initialize the kernel dump memory structure and register with f/w */
1815 else if (fw_dump.reserve_dump_area_size) {
1816 fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1817 register_fadump();
1818 }
1819
1820 /*
1821 * In case of panic, fadump is triggered via ppc_panic_event()
1822 * panic notifier. Setting crash_kexec_post_notifiers to 'true'
1823 * lets panic() function take crash friendly path before panic
1824 * notifiers are invoked.
1825 */
1826 crash_kexec_post_notifiers = true;
1827
1828 return 1;
1829}
1830/*
1831 * Use subsys_initcall_sync() here because there is dependency with
1832 * crash_save_vmcoreinfo_init(), which must run first to ensure vmcoreinfo initialization
1833 * is done before registering with f/w.
1834 */
1835subsys_initcall_sync(setup_fadump);
1836#else /* !CONFIG_PRESERVE_FA_DUMP */
1837
1838/* Scan the Firmware Assisted dump configuration details. */
1839int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
1840 int depth, void *data)
1841{
1842 if ((depth != 1) || (strcmp(uname, "ibm,opal") != 0))
1843 return 0;
1844
1845 opal_fadump_dt_scan(&fw_dump, node);
1846 return 1;
1847}
1848
1849/*
1850 * When dump is active but PRESERVE_FA_DUMP is enabled on the kernel,
1851 * preserve crash data. The subsequent memory preserving kernel boot
1852 * is likely to process this crash data.
1853 */
1854int __init fadump_reserve_mem(void)
1855{
1856 if (fw_dump.dump_active) {
1857 /*
1858 * If last boot has crashed then reserve all the memory
1859 * above boot memory to preserve crash data.
1860 */
1861 pr_info("Preserving crash data for processing in next boot.\n");
1862 fadump_reserve_crash_area(fw_dump.boot_mem_top);
1863 } else
1864 pr_debug("FADump-aware kernel..\n");
1865
1866 return 1;
1867}
1868#endif /* CONFIG_PRESERVE_FA_DUMP */
1869
1870/* Preserve everything above the base address */
1871static void __init fadump_reserve_crash_area(u64 base)
1872{
1873 u64 i, mstart, mend, msize;
1874
1875 for_each_mem_range(i, &mstart, &mend) {
1876 msize = mend - mstart;
1877
1878 if ((mstart + msize) < base)
1879 continue;
1880
1881 if (mstart < base) {
1882 msize -= (base - mstart);
1883 mstart = base;
1884 }
1885
1886 pr_info("Reserving %lluMB of memory at %#016llx for preserving crash data",
1887 (msize >> 20), mstart);
1888 memblock_reserve(mstart, msize);
1889 }
1890}