| 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | /* |
| 3 | * Firmware Assisted dump: A robust mechanism to get reliable kernel crash |
| 4 | * dump with assistance from firmware. This approach does not use kexec, |
| 5 | * instead firmware assists in booting the kdump kernel while preserving |
| 6 | * memory contents. The most of the code implementation has been adapted |
| 7 | * from phyp assisted dump implementation written by Linas Vepstas and |
| 8 | * Manish Ahuja |
| 9 | * |
| 10 | * Copyright 2011 IBM Corporation |
| 11 | * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> |
| 12 | */ |
| 13 | |
| 14 | #undef DEBUG |
| 15 | #define pr_fmt(fmt) "fadump: " fmt |
| 16 | |
| 17 | #include <linux/string.h> |
| 18 | #include <linux/memblock.h> |
| 19 | #include <linux/delay.h> |
| 20 | #include <linux/seq_file.h> |
| 21 | #include <linux/crash_dump.h> |
| 22 | #include <linux/kobject.h> |
| 23 | #include <linux/sysfs.h> |
| 24 | #include <linux/slab.h> |
| 25 | #include <linux/cma.h> |
| 26 | #include <linux/hugetlb.h> |
| 27 | #include <linux/debugfs.h> |
| 28 | #include <linux/of.h> |
| 29 | #include <linux/of_fdt.h> |
| 30 | |
| 31 | #include <asm/page.h> |
| 32 | #include <asm/fadump.h> |
| 33 | #include <asm/fadump-internal.h> |
| 34 | #include <asm/setup.h> |
| 35 | #include <asm/interrupt.h> |
| 36 | #include <asm/prom.h> |
| 37 | |
| 38 | /* |
| 39 | * The CPU who acquired the lock to trigger the fadump crash should |
| 40 | * wait for other CPUs to enter. |
| 41 | * |
| 42 | * The timeout is in milliseconds. |
| 43 | */ |
| 44 | #define CRASH_TIMEOUT 500 |
| 45 | |
| 46 | static struct fw_dump fw_dump; |
| 47 | |
| 48 | static void __init fadump_reserve_crash_area(u64 base); |
| 49 | |
| 50 | #ifndef CONFIG_PRESERVE_FA_DUMP |
| 51 | |
| 52 | static struct kobject *fadump_kobj; |
| 53 | |
| 54 | static atomic_t cpus_in_fadump; |
| 55 | static DEFINE_MUTEX(fadump_mutex); |
| 56 | |
| 57 | #define RESERVED_RNGS_SZ 16384 /* 16K - 128 entries */ |
| 58 | #define RESERVED_RNGS_CNT (RESERVED_RNGS_SZ / \ |
| 59 | sizeof(struct fadump_memory_range)) |
| 60 | static struct fadump_memory_range rngs[RESERVED_RNGS_CNT]; |
| 61 | static struct fadump_mrange_info |
| 62 | reserved_mrange_info = { "reserved", rngs, RESERVED_RNGS_SZ, 0, RESERVED_RNGS_CNT, true }; |
| 63 | |
| 64 | static void __init early_init_dt_scan_reserved_ranges(unsigned long node); |
| 65 | |
| 66 | #ifdef CONFIG_CMA |
| 67 | static struct cma *fadump_cma; |
| 68 | |
| 69 | /* |
| 70 | * fadump_cma_init() - Initialize CMA area from a fadump reserved memory |
| 71 | * |
| 72 | * This function initializes CMA area from fadump reserved memory. |
| 73 | * The total size of fadump reserved memory covers for boot memory size |
| 74 | * + cpu data size + hpte size and metadata. |
| 75 | * Initialize only the area equivalent to boot memory size for CMA use. |
| 76 | * The remaining portion of fadump reserved memory will be not given |
| 77 | * to CMA and pages for those will stay reserved. boot memory size is |
| 78 | * aligned per CMA requirement to satisy cma_init_reserved_mem() call. |
| 79 | * But for some reason even if it fails we still have the memory reservation |
| 80 | * with us and we can still continue doing fadump. |
| 81 | */ |
| 82 | void __init fadump_cma_init(void) |
| 83 | { |
| 84 | unsigned long long base, size, end; |
| 85 | int rc; |
| 86 | |
| 87 | if (!fw_dump.fadump_supported || !fw_dump.fadump_enabled || |
| 88 | fw_dump.dump_active) |
| 89 | return; |
| 90 | /* |
| 91 | * Do not use CMA if user has provided fadump=nocma kernel parameter. |
| 92 | */ |
| 93 | if (fw_dump.nocma || !fw_dump.boot_memory_size) |
| 94 | return; |
| 95 | |
| 96 | /* |
| 97 | * [base, end) should be reserved during early init in |
| 98 | * fadump_reserve_mem(). No need to check this here as |
| 99 | * cma_init_reserved_mem() already checks for overlap. |
| 100 | * Here we give the aligned chunk of this reserved memory to CMA. |
| 101 | */ |
| 102 | base = fw_dump.reserve_dump_area_start; |
| 103 | size = fw_dump.boot_memory_size; |
| 104 | end = base + size; |
| 105 | |
| 106 | base = ALIGN(base, CMA_MIN_ALIGNMENT_BYTES); |
| 107 | end = ALIGN_DOWN(end, CMA_MIN_ALIGNMENT_BYTES); |
| 108 | size = end - base; |
| 109 | |
| 110 | if (end <= base) { |
| 111 | pr_warn("%s: Too less memory to give to CMA\n", __func__); |
| 112 | return; |
| 113 | } |
| 114 | |
| 115 | rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma); |
| 116 | if (rc) { |
| 117 | pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc); |
| 118 | /* |
| 119 | * Though the CMA init has failed we still have memory |
| 120 | * reservation with us. The reserved memory will be |
| 121 | * blocked from production system usage. Hence return 1, |
| 122 | * so that we can continue with fadump. |
| 123 | */ |
| 124 | return; |
| 125 | } |
| 126 | |
| 127 | /* |
| 128 | * If CMA activation fails, keep the pages reserved, instead of |
| 129 | * exposing them to buddy allocator. Same as 'fadump=nocma' case. |
| 130 | */ |
| 131 | cma_reserve_pages_on_error(fadump_cma); |
| 132 | |
| 133 | /* |
| 134 | * So we now have successfully initialized cma area for fadump. |
| 135 | */ |
| 136 | pr_info("Initialized [0x%llx, %luMB] cma area from [0x%lx, %luMB] " |
| 137 | "bytes of memory reserved for firmware-assisted dump\n", |
| 138 | cma_get_base(fadump_cma), cma_get_size(fadump_cma) >> 20, |
| 139 | fw_dump.reserve_dump_area_start, |
| 140 | fw_dump.boot_memory_size >> 20); |
| 141 | return; |
| 142 | } |
| 143 | #endif /* CONFIG_CMA */ |
| 144 | |
| 145 | /* |
| 146 | * Additional parameters meant for capture kernel are placed in a dedicated area. |
| 147 | * If this is capture kernel boot, append these parameters to bootargs. |
| 148 | */ |
| 149 | void __init fadump_append_bootargs(void) |
| 150 | { |
| 151 | char *append_args; |
| 152 | size_t len; |
| 153 | |
| 154 | if (!fw_dump.dump_active || !fw_dump.param_area_supported || !fw_dump.param_area) |
| 155 | return; |
| 156 | |
| 157 | if (fw_dump.param_area < fw_dump.boot_mem_top) { |
| 158 | if (memblock_reserve(fw_dump.param_area, COMMAND_LINE_SIZE)) { |
| 159 | pr_warn("WARNING: Can't use additional parameters area!\n"); |
| 160 | fw_dump.param_area = 0; |
| 161 | return; |
| 162 | } |
| 163 | } |
| 164 | |
| 165 | append_args = (char *)fw_dump.param_area; |
| 166 | len = strlen(boot_command_line); |
| 167 | |
| 168 | /* |
| 169 | * Too late to fail even if cmdline size exceeds. Truncate additional parameters |
| 170 | * to cmdline size and proceed anyway. |
| 171 | */ |
| 172 | if (len + strlen(append_args) >= COMMAND_LINE_SIZE - 1) |
| 173 | pr_warn("WARNING: Appending parameters exceeds cmdline size. Truncating!\n"); |
| 174 | |
| 175 | pr_debug("Cmdline: %s\n", boot_command_line); |
| 176 | snprintf(boot_command_line + len, COMMAND_LINE_SIZE - len, " %s", append_args); |
| 177 | pr_info("Updated cmdline: %s\n", boot_command_line); |
| 178 | } |
| 179 | |
| 180 | /* Scan the Firmware Assisted dump configuration details. */ |
| 181 | int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname, |
| 182 | int depth, void *data) |
| 183 | { |
| 184 | if (depth == 0) { |
| 185 | early_init_dt_scan_reserved_ranges(node); |
| 186 | return 0; |
| 187 | } |
| 188 | |
| 189 | if (depth != 1) |
| 190 | return 0; |
| 191 | |
| 192 | if (strcmp(uname, "rtas") == 0) { |
| 193 | rtas_fadump_dt_scan(&fw_dump, node); |
| 194 | return 1; |
| 195 | } |
| 196 | |
| 197 | if (strcmp(uname, "ibm,opal") == 0) { |
| 198 | opal_fadump_dt_scan(&fw_dump, node); |
| 199 | return 1; |
| 200 | } |
| 201 | |
| 202 | return 0; |
| 203 | } |
| 204 | |
| 205 | /* |
| 206 | * If fadump is registered, check if the memory provided |
| 207 | * falls within boot memory area and reserved memory area. |
| 208 | */ |
| 209 | int is_fadump_memory_area(u64 addr, unsigned long size) |
| 210 | { |
| 211 | u64 d_start, d_end; |
| 212 | |
| 213 | if (!fw_dump.dump_registered) |
| 214 | return 0; |
| 215 | |
| 216 | if (!size) |
| 217 | return 0; |
| 218 | |
| 219 | d_start = fw_dump.reserve_dump_area_start; |
| 220 | d_end = d_start + fw_dump.reserve_dump_area_size; |
| 221 | if (((addr + size) > d_start) && (addr <= d_end)) |
| 222 | return 1; |
| 223 | |
| 224 | return (addr <= fw_dump.boot_mem_top); |
| 225 | } |
| 226 | |
| 227 | int should_fadump_crash(void) |
| 228 | { |
| 229 | if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr) |
| 230 | return 0; |
| 231 | return 1; |
| 232 | } |
| 233 | |
| 234 | int is_fadump_active(void) |
| 235 | { |
| 236 | return fw_dump.dump_active; |
| 237 | } |
| 238 | |
| 239 | /* |
| 240 | * Returns true, if there are no holes in memory area between d_start to d_end, |
| 241 | * false otherwise. |
| 242 | */ |
| 243 | static bool is_fadump_mem_area_contiguous(u64 d_start, u64 d_end) |
| 244 | { |
| 245 | phys_addr_t reg_start, reg_end; |
| 246 | bool ret = false; |
| 247 | u64 i, start, end; |
| 248 | |
| 249 | for_each_mem_range(i, ®_start, ®_end) { |
| 250 | start = max_t(u64, d_start, reg_start); |
| 251 | end = min_t(u64, d_end, reg_end); |
| 252 | if (d_start < end) { |
| 253 | /* Memory hole from d_start to start */ |
| 254 | if (start > d_start) |
| 255 | break; |
| 256 | |
| 257 | if (end == d_end) { |
| 258 | ret = true; |
| 259 | break; |
| 260 | } |
| 261 | |
| 262 | d_start = end + 1; |
| 263 | } |
| 264 | } |
| 265 | |
| 266 | return ret; |
| 267 | } |
| 268 | |
| 269 | /* |
| 270 | * Returns true, if there are no holes in reserved memory area, |
| 271 | * false otherwise. |
| 272 | */ |
| 273 | bool is_fadump_reserved_mem_contiguous(void) |
| 274 | { |
| 275 | u64 d_start, d_end; |
| 276 | |
| 277 | d_start = fw_dump.reserve_dump_area_start; |
| 278 | d_end = d_start + fw_dump.reserve_dump_area_size; |
| 279 | return is_fadump_mem_area_contiguous(d_start, d_end); |
| 280 | } |
| 281 | |
| 282 | /* Print firmware assisted dump configurations for debugging purpose. */ |
| 283 | static void __init fadump_show_config(void) |
| 284 | { |
| 285 | int i; |
| 286 | |
| 287 | pr_debug("Support for firmware-assisted dump (fadump): %s\n", |
| 288 | (fw_dump.fadump_supported ? "present" : "no support")); |
| 289 | |
| 290 | if (!fw_dump.fadump_supported) |
| 291 | return; |
| 292 | |
| 293 | pr_debug("Fadump enabled : %s\n", str_yes_no(fw_dump.fadump_enabled)); |
| 294 | pr_debug("Dump Active : %s\n", str_yes_no(fw_dump.dump_active)); |
| 295 | pr_debug("Dump section sizes:\n"); |
| 296 | pr_debug(" CPU state data size: %lx\n", fw_dump.cpu_state_data_size); |
| 297 | pr_debug(" HPTE region size : %lx\n", fw_dump.hpte_region_size); |
| 298 | pr_debug(" Boot memory size : %lx\n", fw_dump.boot_memory_size); |
| 299 | pr_debug(" Boot memory top : %llx\n", fw_dump.boot_mem_top); |
| 300 | pr_debug("Boot memory regions cnt: %llx\n", fw_dump.boot_mem_regs_cnt); |
| 301 | for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) { |
| 302 | pr_debug("[%03d] base = %llx, size = %llx\n", i, |
| 303 | fw_dump.boot_mem_addr[i], fw_dump.boot_mem_sz[i]); |
| 304 | } |
| 305 | } |
| 306 | |
| 307 | /** |
| 308 | * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM |
| 309 | * |
| 310 | * Function to find the largest memory size we need to reserve during early |
| 311 | * boot process. This will be the size of the memory that is required for a |
| 312 | * kernel to boot successfully. |
| 313 | * |
| 314 | * This function has been taken from phyp-assisted dump feature implementation. |
| 315 | * |
| 316 | * returns larger of 256MB or 5% rounded down to multiples of 256MB. |
| 317 | * |
| 318 | * TODO: Come up with better approach to find out more accurate memory size |
| 319 | * that is required for a kernel to boot successfully. |
| 320 | * |
| 321 | */ |
| 322 | static __init u64 fadump_calculate_reserve_size(void) |
| 323 | { |
| 324 | u64 base, size, bootmem_min; |
| 325 | int ret; |
| 326 | |
| 327 | if (fw_dump.reserve_bootvar) |
| 328 | pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n"); |
| 329 | |
| 330 | /* |
| 331 | * Check if the size is specified through crashkernel= cmdline |
| 332 | * option. If yes, then use that but ignore base as fadump reserves |
| 333 | * memory at a predefined offset. |
| 334 | */ |
| 335 | ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(), |
| 336 | &size, &base, NULL, NULL); |
| 337 | if (ret == 0 && size > 0) { |
| 338 | unsigned long max_size; |
| 339 | |
| 340 | if (fw_dump.reserve_bootvar) |
| 341 | pr_info("Using 'crashkernel=' parameter for memory reservation.\n"); |
| 342 | |
| 343 | fw_dump.reserve_bootvar = (unsigned long)size; |
| 344 | |
| 345 | /* |
| 346 | * Adjust if the boot memory size specified is above |
| 347 | * the upper limit. |
| 348 | */ |
| 349 | max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO; |
| 350 | if (fw_dump.reserve_bootvar > max_size) { |
| 351 | fw_dump.reserve_bootvar = max_size; |
| 352 | pr_info("Adjusted boot memory size to %luMB\n", |
| 353 | (fw_dump.reserve_bootvar >> 20)); |
| 354 | } |
| 355 | |
| 356 | return fw_dump.reserve_bootvar; |
| 357 | } else if (fw_dump.reserve_bootvar) { |
| 358 | /* |
| 359 | * 'fadump_reserve_mem=' is being used to reserve memory |
| 360 | * for firmware-assisted dump. |
| 361 | */ |
| 362 | return fw_dump.reserve_bootvar; |
| 363 | } |
| 364 | |
| 365 | /* divide by 20 to get 5% of value */ |
| 366 | size = memblock_phys_mem_size() / 20; |
| 367 | |
| 368 | /* round it down in multiples of 256 */ |
| 369 | size = size & ~0x0FFFFFFFUL; |
| 370 | |
| 371 | /* Truncate to memory_limit. We don't want to over reserve the memory.*/ |
| 372 | if (memory_limit && size > memory_limit) |
| 373 | size = memory_limit; |
| 374 | |
| 375 | bootmem_min = fw_dump.ops->fadump_get_bootmem_min(); |
| 376 | return (size > bootmem_min ? size : bootmem_min); |
| 377 | } |
| 378 | |
| 379 | /* |
| 380 | * Calculate the total memory size required to be reserved for |
| 381 | * firmware-assisted dump registration. |
| 382 | */ |
| 383 | static unsigned long __init get_fadump_area_size(void) |
| 384 | { |
| 385 | unsigned long size = 0; |
| 386 | |
| 387 | size += fw_dump.cpu_state_data_size; |
| 388 | size += fw_dump.hpte_region_size; |
| 389 | /* |
| 390 | * Account for pagesize alignment of boot memory area destination address. |
| 391 | * This faciliates in mmap reading of first kernel's memory. |
| 392 | */ |
| 393 | size = PAGE_ALIGN(size); |
| 394 | size += fw_dump.boot_memory_size; |
| 395 | size += sizeof(struct fadump_crash_info_header); |
| 396 | |
| 397 | /* This is to hold kernel metadata on platforms that support it */ |
| 398 | size += (fw_dump.ops->fadump_get_metadata_size ? |
| 399 | fw_dump.ops->fadump_get_metadata_size() : 0); |
| 400 | return size; |
| 401 | } |
| 402 | |
| 403 | static int __init add_boot_mem_region(unsigned long rstart, |
| 404 | unsigned long rsize) |
| 405 | { |
| 406 | int max_boot_mem_rgns = fw_dump.ops->fadump_max_boot_mem_rgns(); |
| 407 | int i = fw_dump.boot_mem_regs_cnt++; |
| 408 | |
| 409 | if (fw_dump.boot_mem_regs_cnt > max_boot_mem_rgns) { |
| 410 | fw_dump.boot_mem_regs_cnt = max_boot_mem_rgns; |
| 411 | return 0; |
| 412 | } |
| 413 | |
| 414 | pr_debug("Added boot memory range[%d] [%#016lx-%#016lx)\n", |
| 415 | i, rstart, (rstart + rsize)); |
| 416 | fw_dump.boot_mem_addr[i] = rstart; |
| 417 | fw_dump.boot_mem_sz[i] = rsize; |
| 418 | return 1; |
| 419 | } |
| 420 | |
| 421 | /* |
| 422 | * Firmware usually has a hard limit on the data it can copy per region. |
| 423 | * Honour that by splitting a memory range into multiple regions. |
| 424 | */ |
| 425 | static int __init add_boot_mem_regions(unsigned long mstart, |
| 426 | unsigned long msize) |
| 427 | { |
| 428 | unsigned long rstart, rsize, max_size; |
| 429 | int ret = 1; |
| 430 | |
| 431 | rstart = mstart; |
| 432 | max_size = fw_dump.max_copy_size ? fw_dump.max_copy_size : msize; |
| 433 | while (msize) { |
| 434 | if (msize > max_size) |
| 435 | rsize = max_size; |
| 436 | else |
| 437 | rsize = msize; |
| 438 | |
| 439 | ret = add_boot_mem_region(rstart, rsize); |
| 440 | if (!ret) |
| 441 | break; |
| 442 | |
| 443 | msize -= rsize; |
| 444 | rstart += rsize; |
| 445 | } |
| 446 | |
| 447 | return ret; |
| 448 | } |
| 449 | |
| 450 | static int __init fadump_get_boot_mem_regions(void) |
| 451 | { |
| 452 | unsigned long size, cur_size, hole_size, last_end; |
| 453 | unsigned long mem_size = fw_dump.boot_memory_size; |
| 454 | phys_addr_t reg_start, reg_end; |
| 455 | int ret = 1; |
| 456 | u64 i; |
| 457 | |
| 458 | fw_dump.boot_mem_regs_cnt = 0; |
| 459 | |
| 460 | last_end = 0; |
| 461 | hole_size = 0; |
| 462 | cur_size = 0; |
| 463 | for_each_mem_range(i, ®_start, ®_end) { |
| 464 | size = reg_end - reg_start; |
| 465 | hole_size += (reg_start - last_end); |
| 466 | |
| 467 | if ((cur_size + size) >= mem_size) { |
| 468 | size = (mem_size - cur_size); |
| 469 | ret = add_boot_mem_regions(reg_start, size); |
| 470 | break; |
| 471 | } |
| 472 | |
| 473 | mem_size -= size; |
| 474 | cur_size += size; |
| 475 | ret = add_boot_mem_regions(reg_start, size); |
| 476 | if (!ret) |
| 477 | break; |
| 478 | |
| 479 | last_end = reg_end; |
| 480 | } |
| 481 | fw_dump.boot_mem_top = PAGE_ALIGN(fw_dump.boot_memory_size + hole_size); |
| 482 | |
| 483 | return ret; |
| 484 | } |
| 485 | |
| 486 | /* |
| 487 | * Returns true, if the given range overlaps with reserved memory ranges |
| 488 | * starting at idx. Also, updates idx to index of overlapping memory range |
| 489 | * with the given memory range. |
| 490 | * False, otherwise. |
| 491 | */ |
| 492 | static bool __init overlaps_reserved_ranges(u64 base, u64 end, int *idx) |
| 493 | { |
| 494 | bool ret = false; |
| 495 | int i; |
| 496 | |
| 497 | for (i = *idx; i < reserved_mrange_info.mem_range_cnt; i++) { |
| 498 | u64 rbase = reserved_mrange_info.mem_ranges[i].base; |
| 499 | u64 rend = rbase + reserved_mrange_info.mem_ranges[i].size; |
| 500 | |
| 501 | if (end <= rbase) |
| 502 | break; |
| 503 | |
| 504 | if ((end > rbase) && (base < rend)) { |
| 505 | *idx = i; |
| 506 | ret = true; |
| 507 | break; |
| 508 | } |
| 509 | } |
| 510 | |
| 511 | return ret; |
| 512 | } |
| 513 | |
| 514 | /* |
| 515 | * Locate a suitable memory area to reserve memory for FADump. While at it, |
| 516 | * lookup reserved-ranges & avoid overlap with them, as they are used by F/W. |
| 517 | */ |
| 518 | static u64 __init fadump_locate_reserve_mem(u64 base, u64 size) |
| 519 | { |
| 520 | struct fadump_memory_range *mrngs; |
| 521 | phys_addr_t mstart, mend; |
| 522 | int idx = 0; |
| 523 | u64 i, ret = 0; |
| 524 | |
| 525 | mrngs = reserved_mrange_info.mem_ranges; |
| 526 | for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, |
| 527 | &mstart, &mend, NULL) { |
| 528 | pr_debug("%llu) mstart: %llx, mend: %llx, base: %llx\n", |
| 529 | i, mstart, mend, base); |
| 530 | |
| 531 | if (mstart > base) |
| 532 | base = PAGE_ALIGN(mstart); |
| 533 | |
| 534 | while ((mend > base) && ((mend - base) >= size)) { |
| 535 | if (!overlaps_reserved_ranges(base, base+size, &idx)) { |
| 536 | ret = base; |
| 537 | goto out; |
| 538 | } |
| 539 | |
| 540 | base = mrngs[idx].base + mrngs[idx].size; |
| 541 | base = PAGE_ALIGN(base); |
| 542 | } |
| 543 | } |
| 544 | |
| 545 | out: |
| 546 | return ret; |
| 547 | } |
| 548 | |
| 549 | int __init fadump_reserve_mem(void) |
| 550 | { |
| 551 | u64 base, size, mem_boundary, bootmem_min; |
| 552 | int ret = 1; |
| 553 | |
| 554 | if (!fw_dump.fadump_enabled) |
| 555 | return 0; |
| 556 | |
| 557 | if (!fw_dump.fadump_supported) { |
| 558 | pr_info("Firmware-Assisted Dump is not supported on this hardware\n"); |
| 559 | goto error_out; |
| 560 | } |
| 561 | |
| 562 | /* |
| 563 | * Initialize boot memory size |
| 564 | * If dump is active then we have already calculated the size during |
| 565 | * first kernel. |
| 566 | */ |
| 567 | if (!fw_dump.dump_active) { |
| 568 | fw_dump.boot_memory_size = |
| 569 | PAGE_ALIGN(fadump_calculate_reserve_size()); |
| 570 | |
| 571 | bootmem_min = fw_dump.ops->fadump_get_bootmem_min(); |
| 572 | if (fw_dump.boot_memory_size < bootmem_min) { |
| 573 | pr_err("Can't enable fadump with boot memory size (0x%lx) less than 0x%llx\n", |
| 574 | fw_dump.boot_memory_size, bootmem_min); |
| 575 | goto error_out; |
| 576 | } |
| 577 | |
| 578 | if (!fadump_get_boot_mem_regions()) { |
| 579 | pr_err("Too many holes in boot memory area to enable fadump\n"); |
| 580 | goto error_out; |
| 581 | } |
| 582 | } |
| 583 | |
| 584 | if (memory_limit) |
| 585 | mem_boundary = memory_limit; |
| 586 | else |
| 587 | mem_boundary = memblock_end_of_DRAM(); |
| 588 | |
| 589 | base = fw_dump.boot_mem_top; |
| 590 | size = get_fadump_area_size(); |
| 591 | fw_dump.reserve_dump_area_size = size; |
| 592 | if (fw_dump.dump_active) { |
| 593 | pr_info("Firmware-assisted dump is active.\n"); |
| 594 | |
| 595 | #ifdef CONFIG_HUGETLB_PAGE |
| 596 | /* |
| 597 | * FADump capture kernel doesn't care much about hugepages. |
| 598 | * In fact, handling hugepages in capture kernel is asking for |
| 599 | * trouble. So, disable HugeTLB support when fadump is active. |
| 600 | */ |
| 601 | hugetlb_disabled = true; |
| 602 | #endif |
| 603 | /* |
| 604 | * If last boot has crashed then reserve all the memory |
| 605 | * above boot memory size so that we don't touch it until |
| 606 | * dump is written to disk by userspace tool. This memory |
| 607 | * can be released for general use by invalidating fadump. |
| 608 | */ |
| 609 | fadump_reserve_crash_area(base); |
| 610 | |
| 611 | pr_debug("fadumphdr_addr = %#016lx\n", fw_dump.fadumphdr_addr); |
| 612 | pr_debug("Reserve dump area start address: 0x%lx\n", |
| 613 | fw_dump.reserve_dump_area_start); |
| 614 | } else { |
| 615 | /* |
| 616 | * Reserve memory at an offset closer to bottom of the RAM to |
| 617 | * minimize the impact of memory hot-remove operation. |
| 618 | */ |
| 619 | base = fadump_locate_reserve_mem(base, size); |
| 620 | |
| 621 | if (!base || (base + size > mem_boundary)) { |
| 622 | pr_err("Failed to find memory chunk for reservation!\n"); |
| 623 | goto error_out; |
| 624 | } |
| 625 | fw_dump.reserve_dump_area_start = base; |
| 626 | |
| 627 | /* |
| 628 | * Calculate the kernel metadata address and register it with |
| 629 | * f/w if the platform supports. |
| 630 | */ |
| 631 | if (fw_dump.ops->fadump_setup_metadata && |
| 632 | (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0)) |
| 633 | goto error_out; |
| 634 | |
| 635 | if (memblock_reserve(base, size)) { |
| 636 | pr_err("Failed to reserve memory!\n"); |
| 637 | goto error_out; |
| 638 | } |
| 639 | |
| 640 | pr_info("Reserved %lldMB of memory at %#016llx (System RAM: %lldMB)\n", |
| 641 | (size >> 20), base, (memblock_phys_mem_size() >> 20)); |
| 642 | } |
| 643 | |
| 644 | return ret; |
| 645 | error_out: |
| 646 | fw_dump.fadump_enabled = 0; |
| 647 | fw_dump.reserve_dump_area_size = 0; |
| 648 | return 0; |
| 649 | } |
| 650 | |
| 651 | /* Look for fadump= cmdline option. */ |
| 652 | static int __init early_fadump_param(char *p) |
| 653 | { |
| 654 | if (!p) |
| 655 | return 1; |
| 656 | |
| 657 | if (strncmp(p, "on", 2) == 0) |
| 658 | fw_dump.fadump_enabled = 1; |
| 659 | else if (strncmp(p, "off", 3) == 0) |
| 660 | fw_dump.fadump_enabled = 0; |
| 661 | else if (strncmp(p, "nocma", 5) == 0) { |
| 662 | fw_dump.fadump_enabled = 1; |
| 663 | fw_dump.nocma = 1; |
| 664 | } |
| 665 | |
| 666 | return 0; |
| 667 | } |
| 668 | early_param("fadump", early_fadump_param); |
| 669 | |
| 670 | /* |
| 671 | * Look for fadump_reserve_mem= cmdline option |
| 672 | * TODO: Remove references to 'fadump_reserve_mem=' parameter, |
| 673 | * the sooner 'crashkernel=' parameter is accustomed to. |
| 674 | */ |
| 675 | static int __init early_fadump_reserve_mem(char *p) |
| 676 | { |
| 677 | if (p) |
| 678 | fw_dump.reserve_bootvar = memparse(p, &p); |
| 679 | return 0; |
| 680 | } |
| 681 | early_param("fadump_reserve_mem", early_fadump_reserve_mem); |
| 682 | |
| 683 | void crash_fadump(struct pt_regs *regs, const char *str) |
| 684 | { |
| 685 | unsigned int msecs; |
| 686 | struct fadump_crash_info_header *fdh = NULL; |
| 687 | int old_cpu, this_cpu; |
| 688 | /* Do not include first CPU */ |
| 689 | unsigned int ncpus = num_online_cpus() - 1; |
| 690 | |
| 691 | if (!should_fadump_crash()) |
| 692 | return; |
| 693 | |
| 694 | /* |
| 695 | * old_cpu == -1 means this is the first CPU which has come here, |
| 696 | * go ahead and trigger fadump. |
| 697 | * |
| 698 | * old_cpu != -1 means some other CPU has already on its way |
| 699 | * to trigger fadump, just keep looping here. |
| 700 | */ |
| 701 | this_cpu = smp_processor_id(); |
| 702 | old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu); |
| 703 | |
| 704 | if (old_cpu != -1) { |
| 705 | atomic_inc(&cpus_in_fadump); |
| 706 | |
| 707 | /* |
| 708 | * We can't loop here indefinitely. Wait as long as fadump |
| 709 | * is in force. If we race with fadump un-registration this |
| 710 | * loop will break and then we go down to normal panic path |
| 711 | * and reboot. If fadump is in force the first crashing |
| 712 | * cpu will definitely trigger fadump. |
| 713 | */ |
| 714 | while (fw_dump.dump_registered) |
| 715 | cpu_relax(); |
| 716 | return; |
| 717 | } |
| 718 | |
| 719 | fdh = __va(fw_dump.fadumphdr_addr); |
| 720 | fdh->crashing_cpu = crashing_cpu; |
| 721 | crash_save_vmcoreinfo(); |
| 722 | |
| 723 | if (regs) |
| 724 | fdh->regs = *regs; |
| 725 | else |
| 726 | ppc_save_regs(&fdh->regs); |
| 727 | |
| 728 | fdh->cpu_mask = *cpu_online_mask; |
| 729 | |
| 730 | /* |
| 731 | * If we came in via system reset, wait a while for the secondary |
| 732 | * CPUs to enter. |
| 733 | */ |
| 734 | if (TRAP(&(fdh->regs)) == INTERRUPT_SYSTEM_RESET) { |
| 735 | msecs = CRASH_TIMEOUT; |
| 736 | while ((atomic_read(&cpus_in_fadump) < ncpus) && (--msecs > 0)) |
| 737 | mdelay(1); |
| 738 | } |
| 739 | |
| 740 | fw_dump.ops->fadump_trigger(fdh, str); |
| 741 | } |
| 742 | |
| 743 | u32 *__init fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs) |
| 744 | { |
| 745 | struct elf_prstatus prstatus; |
| 746 | |
| 747 | memset(&prstatus, 0, sizeof(prstatus)); |
| 748 | /* |
| 749 | * FIXME: How do i get PID? Do I really need it? |
| 750 | * prstatus.pr_pid = ???? |
| 751 | */ |
| 752 | elf_core_copy_regs(&prstatus.pr_reg, regs); |
| 753 | buf = append_elf_note(buf, NN_PRSTATUS, NT_PRSTATUS, |
| 754 | &prstatus, sizeof(prstatus)); |
| 755 | return buf; |
| 756 | } |
| 757 | |
| 758 | void __init fadump_update_elfcore_header(char *bufp) |
| 759 | { |
| 760 | struct elf_phdr *phdr; |
| 761 | |
| 762 | bufp += sizeof(struct elfhdr); |
| 763 | |
| 764 | /* First note is a place holder for cpu notes info. */ |
| 765 | phdr = (struct elf_phdr *)bufp; |
| 766 | |
| 767 | if (phdr->p_type == PT_NOTE) { |
| 768 | phdr->p_paddr = __pa(fw_dump.cpu_notes_buf_vaddr); |
| 769 | phdr->p_offset = phdr->p_paddr; |
| 770 | phdr->p_filesz = fw_dump.cpu_notes_buf_size; |
| 771 | phdr->p_memsz = fw_dump.cpu_notes_buf_size; |
| 772 | } |
| 773 | return; |
| 774 | } |
| 775 | |
| 776 | static void *__init fadump_alloc_buffer(unsigned long size) |
| 777 | { |
| 778 | unsigned long count, i; |
| 779 | struct page *page; |
| 780 | void *vaddr; |
| 781 | |
| 782 | vaddr = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO); |
| 783 | if (!vaddr) |
| 784 | return NULL; |
| 785 | |
| 786 | count = PAGE_ALIGN(size) / PAGE_SIZE; |
| 787 | page = virt_to_page(vaddr); |
| 788 | for (i = 0; i < count; i++) |
| 789 | mark_page_reserved(page + i); |
| 790 | return vaddr; |
| 791 | } |
| 792 | |
| 793 | static void fadump_free_buffer(unsigned long vaddr, unsigned long size) |
| 794 | { |
| 795 | free_reserved_area((void *)vaddr, (void *)(vaddr + size), -1, NULL); |
| 796 | } |
| 797 | |
| 798 | s32 __init fadump_setup_cpu_notes_buf(u32 num_cpus) |
| 799 | { |
| 800 | /* Allocate buffer to hold cpu crash notes. */ |
| 801 | fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t); |
| 802 | fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size); |
| 803 | fw_dump.cpu_notes_buf_vaddr = |
| 804 | (unsigned long)fadump_alloc_buffer(fw_dump.cpu_notes_buf_size); |
| 805 | if (!fw_dump.cpu_notes_buf_vaddr) { |
| 806 | pr_err("Failed to allocate %ld bytes for CPU notes buffer\n", |
| 807 | fw_dump.cpu_notes_buf_size); |
| 808 | return -ENOMEM; |
| 809 | } |
| 810 | |
| 811 | pr_debug("Allocated buffer for cpu notes of size %ld at 0x%lx\n", |
| 812 | fw_dump.cpu_notes_buf_size, |
| 813 | fw_dump.cpu_notes_buf_vaddr); |
| 814 | return 0; |
| 815 | } |
| 816 | |
| 817 | void fadump_free_cpu_notes_buf(void) |
| 818 | { |
| 819 | if (!fw_dump.cpu_notes_buf_vaddr) |
| 820 | return; |
| 821 | |
| 822 | fadump_free_buffer(fw_dump.cpu_notes_buf_vaddr, |
| 823 | fw_dump.cpu_notes_buf_size); |
| 824 | fw_dump.cpu_notes_buf_vaddr = 0; |
| 825 | fw_dump.cpu_notes_buf_size = 0; |
| 826 | } |
| 827 | |
| 828 | static void fadump_free_mem_ranges(struct fadump_mrange_info *mrange_info) |
| 829 | { |
| 830 | if (mrange_info->is_static) { |
| 831 | mrange_info->mem_range_cnt = 0; |
| 832 | return; |
| 833 | } |
| 834 | |
| 835 | kfree(mrange_info->mem_ranges); |
| 836 | memset((void *)((u64)mrange_info + RNG_NAME_SZ), 0, |
| 837 | (sizeof(struct fadump_mrange_info) - RNG_NAME_SZ)); |
| 838 | } |
| 839 | |
| 840 | /* |
| 841 | * Allocate or reallocate mem_ranges array in incremental units |
| 842 | * of PAGE_SIZE. |
| 843 | */ |
| 844 | static int fadump_alloc_mem_ranges(struct fadump_mrange_info *mrange_info) |
| 845 | { |
| 846 | struct fadump_memory_range *new_array; |
| 847 | u64 new_size; |
| 848 | |
| 849 | new_size = mrange_info->mem_ranges_sz + PAGE_SIZE; |
| 850 | pr_debug("Allocating %llu bytes of memory for %s memory ranges\n", |
| 851 | new_size, mrange_info->name); |
| 852 | |
| 853 | new_array = krealloc(mrange_info->mem_ranges, new_size, GFP_KERNEL); |
| 854 | if (new_array == NULL) { |
| 855 | pr_err("Insufficient memory for setting up %s memory ranges\n", |
| 856 | mrange_info->name); |
| 857 | fadump_free_mem_ranges(mrange_info); |
| 858 | return -ENOMEM; |
| 859 | } |
| 860 | |
| 861 | mrange_info->mem_ranges = new_array; |
| 862 | mrange_info->mem_ranges_sz = new_size; |
| 863 | mrange_info->max_mem_ranges = (new_size / |
| 864 | sizeof(struct fadump_memory_range)); |
| 865 | return 0; |
| 866 | } |
| 867 | static inline int fadump_add_mem_range(struct fadump_mrange_info *mrange_info, |
| 868 | u64 base, u64 end) |
| 869 | { |
| 870 | struct fadump_memory_range *mem_ranges = mrange_info->mem_ranges; |
| 871 | bool is_adjacent = false; |
| 872 | u64 start, size; |
| 873 | |
| 874 | if (base == end) |
| 875 | return 0; |
| 876 | |
| 877 | /* |
| 878 | * Fold adjacent memory ranges to bring down the memory ranges/ |
| 879 | * PT_LOAD segments count. |
| 880 | */ |
| 881 | if (mrange_info->mem_range_cnt) { |
| 882 | start = mem_ranges[mrange_info->mem_range_cnt - 1].base; |
| 883 | size = mem_ranges[mrange_info->mem_range_cnt - 1].size; |
| 884 | |
| 885 | /* |
| 886 | * Boot memory area needs separate PT_LOAD segment(s) as it |
| 887 | * is moved to a different location at the time of crash. |
| 888 | * So, fold only if the region is not boot memory area. |
| 889 | */ |
| 890 | if ((start + size) == base && start >= fw_dump.boot_mem_top) |
| 891 | is_adjacent = true; |
| 892 | } |
| 893 | if (!is_adjacent) { |
| 894 | /* resize the array on reaching the limit */ |
| 895 | if (mrange_info->mem_range_cnt == mrange_info->max_mem_ranges) { |
| 896 | int ret; |
| 897 | |
| 898 | if (mrange_info->is_static) { |
| 899 | pr_err("Reached array size limit for %s memory ranges\n", |
| 900 | mrange_info->name); |
| 901 | return -ENOSPC; |
| 902 | } |
| 903 | |
| 904 | ret = fadump_alloc_mem_ranges(mrange_info); |
| 905 | if (ret) |
| 906 | return ret; |
| 907 | |
| 908 | /* Update to the new resized array */ |
| 909 | mem_ranges = mrange_info->mem_ranges; |
| 910 | } |
| 911 | |
| 912 | start = base; |
| 913 | mem_ranges[mrange_info->mem_range_cnt].base = start; |
| 914 | mrange_info->mem_range_cnt++; |
| 915 | } |
| 916 | |
| 917 | mem_ranges[mrange_info->mem_range_cnt - 1].size = (end - start); |
| 918 | pr_debug("%s_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n", |
| 919 | mrange_info->name, (mrange_info->mem_range_cnt - 1), |
| 920 | start, end - 1, (end - start)); |
| 921 | return 0; |
| 922 | } |
| 923 | |
| 924 | static int fadump_init_elfcore_header(char *bufp) |
| 925 | { |
| 926 | struct elfhdr *elf; |
| 927 | |
| 928 | elf = (struct elfhdr *) bufp; |
| 929 | bufp += sizeof(struct elfhdr); |
| 930 | memcpy(elf->e_ident, ELFMAG, SELFMAG); |
| 931 | elf->e_ident[EI_CLASS] = ELF_CLASS; |
| 932 | elf->e_ident[EI_DATA] = ELF_DATA; |
| 933 | elf->e_ident[EI_VERSION] = EV_CURRENT; |
| 934 | elf->e_ident[EI_OSABI] = ELF_OSABI; |
| 935 | memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD); |
| 936 | elf->e_type = ET_CORE; |
| 937 | elf->e_machine = ELF_ARCH; |
| 938 | elf->e_version = EV_CURRENT; |
| 939 | elf->e_entry = 0; |
| 940 | elf->e_phoff = sizeof(struct elfhdr); |
| 941 | elf->e_shoff = 0; |
| 942 | |
| 943 | if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V2)) |
| 944 | elf->e_flags = 2; |
| 945 | else if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V1)) |
| 946 | elf->e_flags = 1; |
| 947 | else |
| 948 | elf->e_flags = 0; |
| 949 | |
| 950 | elf->e_ehsize = sizeof(struct elfhdr); |
| 951 | elf->e_phentsize = sizeof(struct elf_phdr); |
| 952 | elf->e_phnum = 0; |
| 953 | elf->e_shentsize = 0; |
| 954 | elf->e_shnum = 0; |
| 955 | elf->e_shstrndx = 0; |
| 956 | |
| 957 | return 0; |
| 958 | } |
| 959 | |
| 960 | /* |
| 961 | * If the given physical address falls within the boot memory region then |
| 962 | * return the relocated address that points to the dump region reserved |
| 963 | * for saving initial boot memory contents. |
| 964 | */ |
| 965 | static inline unsigned long fadump_relocate(unsigned long paddr) |
| 966 | { |
| 967 | unsigned long raddr, rstart, rend, rlast, hole_size; |
| 968 | int i; |
| 969 | |
| 970 | hole_size = 0; |
| 971 | rlast = 0; |
| 972 | raddr = paddr; |
| 973 | for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) { |
| 974 | rstart = fw_dump.boot_mem_addr[i]; |
| 975 | rend = rstart + fw_dump.boot_mem_sz[i]; |
| 976 | hole_size += (rstart - rlast); |
| 977 | |
| 978 | if (paddr >= rstart && paddr < rend) { |
| 979 | raddr += fw_dump.boot_mem_dest_addr - hole_size; |
| 980 | break; |
| 981 | } |
| 982 | |
| 983 | rlast = rend; |
| 984 | } |
| 985 | |
| 986 | pr_debug("vmcoreinfo: paddr = 0x%lx, raddr = 0x%lx\n", paddr, raddr); |
| 987 | return raddr; |
| 988 | } |
| 989 | |
| 990 | static void __init populate_elf_pt_load(struct elf_phdr *phdr, u64 start, |
| 991 | u64 size, unsigned long long offset) |
| 992 | { |
| 993 | phdr->p_align = 0; |
| 994 | phdr->p_memsz = size; |
| 995 | phdr->p_filesz = size; |
| 996 | phdr->p_paddr = start; |
| 997 | phdr->p_offset = offset; |
| 998 | phdr->p_type = PT_LOAD; |
| 999 | phdr->p_flags = PF_R|PF_W|PF_X; |
| 1000 | phdr->p_vaddr = (unsigned long)__va(start); |
| 1001 | } |
| 1002 | |
| 1003 | static void __init fadump_populate_elfcorehdr(struct fadump_crash_info_header *fdh) |
| 1004 | { |
| 1005 | char *bufp; |
| 1006 | struct elfhdr *elf; |
| 1007 | struct elf_phdr *phdr; |
| 1008 | u64 boot_mem_dest_offset; |
| 1009 | unsigned long long i, ra_start, ra_end, ra_size, mstart, mend; |
| 1010 | |
| 1011 | bufp = (char *) fw_dump.elfcorehdr_addr; |
| 1012 | fadump_init_elfcore_header(bufp); |
| 1013 | elf = (struct elfhdr *)bufp; |
| 1014 | bufp += sizeof(struct elfhdr); |
| 1015 | |
| 1016 | /* |
| 1017 | * Set up ELF PT_NOTE, a placeholder for CPU notes information. |
| 1018 | * The notes info will be populated later by platform-specific code. |
| 1019 | * Hence, this PT_NOTE will always be the first ELF note. |
| 1020 | * |
| 1021 | * NOTE: Any new ELF note addition should be placed after this note. |
| 1022 | */ |
| 1023 | phdr = (struct elf_phdr *)bufp; |
| 1024 | bufp += sizeof(struct elf_phdr); |
| 1025 | phdr->p_type = PT_NOTE; |
| 1026 | phdr->p_flags = 0; |
| 1027 | phdr->p_vaddr = 0; |
| 1028 | phdr->p_align = 0; |
| 1029 | phdr->p_offset = 0; |
| 1030 | phdr->p_paddr = 0; |
| 1031 | phdr->p_filesz = 0; |
| 1032 | phdr->p_memsz = 0; |
| 1033 | /* Increment number of program headers. */ |
| 1034 | (elf->e_phnum)++; |
| 1035 | |
| 1036 | /* setup ELF PT_NOTE for vmcoreinfo */ |
| 1037 | phdr = (struct elf_phdr *)bufp; |
| 1038 | bufp += sizeof(struct elf_phdr); |
| 1039 | phdr->p_type = PT_NOTE; |
| 1040 | phdr->p_flags = 0; |
| 1041 | phdr->p_vaddr = 0; |
| 1042 | phdr->p_align = 0; |
| 1043 | phdr->p_paddr = phdr->p_offset = fdh->vmcoreinfo_raddr; |
| 1044 | phdr->p_memsz = phdr->p_filesz = fdh->vmcoreinfo_size; |
| 1045 | /* Increment number of program headers. */ |
| 1046 | (elf->e_phnum)++; |
| 1047 | |
| 1048 | /* |
| 1049 | * Setup PT_LOAD sections. first include boot memory regions |
| 1050 | * and then add rest of the memory regions. |
| 1051 | */ |
| 1052 | boot_mem_dest_offset = fw_dump.boot_mem_dest_addr; |
| 1053 | for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) { |
| 1054 | phdr = (struct elf_phdr *)bufp; |
| 1055 | bufp += sizeof(struct elf_phdr); |
| 1056 | populate_elf_pt_load(phdr, fw_dump.boot_mem_addr[i], |
| 1057 | fw_dump.boot_mem_sz[i], |
| 1058 | boot_mem_dest_offset); |
| 1059 | /* Increment number of program headers. */ |
| 1060 | (elf->e_phnum)++; |
| 1061 | boot_mem_dest_offset += fw_dump.boot_mem_sz[i]; |
| 1062 | } |
| 1063 | |
| 1064 | /* Memory reserved for fadump in first kernel */ |
| 1065 | ra_start = fw_dump.reserve_dump_area_start; |
| 1066 | ra_size = get_fadump_area_size(); |
| 1067 | ra_end = ra_start + ra_size; |
| 1068 | |
| 1069 | phdr = (struct elf_phdr *)bufp; |
| 1070 | for_each_mem_range(i, &mstart, &mend) { |
| 1071 | /* Boot memory regions already added, skip them now */ |
| 1072 | if (mstart < fw_dump.boot_mem_top) { |
| 1073 | if (mend > fw_dump.boot_mem_top) |
| 1074 | mstart = fw_dump.boot_mem_top; |
| 1075 | else |
| 1076 | continue; |
| 1077 | } |
| 1078 | |
| 1079 | /* Handle memblock regions overlaps with fadump reserved area */ |
| 1080 | if ((ra_start < mend) && (ra_end > mstart)) { |
| 1081 | if ((mstart < ra_start) && (mend > ra_end)) { |
| 1082 | populate_elf_pt_load(phdr, mstart, ra_start - mstart, mstart); |
| 1083 | /* Increment number of program headers. */ |
| 1084 | (elf->e_phnum)++; |
| 1085 | bufp += sizeof(struct elf_phdr); |
| 1086 | phdr = (struct elf_phdr *)bufp; |
| 1087 | populate_elf_pt_load(phdr, ra_end, mend - ra_end, ra_end); |
| 1088 | } else if (mstart < ra_start) { |
| 1089 | populate_elf_pt_load(phdr, mstart, ra_start - mstart, mstart); |
| 1090 | } else if (ra_end < mend) { |
| 1091 | populate_elf_pt_load(phdr, ra_end, mend - ra_end, ra_end); |
| 1092 | } |
| 1093 | } else { |
| 1094 | /* No overlap with fadump reserved memory region */ |
| 1095 | populate_elf_pt_load(phdr, mstart, mend - mstart, mstart); |
| 1096 | } |
| 1097 | |
| 1098 | /* Increment number of program headers. */ |
| 1099 | (elf->e_phnum)++; |
| 1100 | bufp += sizeof(struct elf_phdr); |
| 1101 | phdr = (struct elf_phdr *) bufp; |
| 1102 | } |
| 1103 | } |
| 1104 | |
| 1105 | static unsigned long init_fadump_header(unsigned long addr) |
| 1106 | { |
| 1107 | struct fadump_crash_info_header *fdh; |
| 1108 | |
| 1109 | if (!addr) |
| 1110 | return 0; |
| 1111 | |
| 1112 | fdh = __va(addr); |
| 1113 | addr += sizeof(struct fadump_crash_info_header); |
| 1114 | |
| 1115 | memset(fdh, 0, sizeof(struct fadump_crash_info_header)); |
| 1116 | fdh->magic_number = FADUMP_CRASH_INFO_MAGIC; |
| 1117 | fdh->version = FADUMP_HEADER_VERSION; |
| 1118 | /* We will set the crashing cpu id in crash_fadump() during crash. */ |
| 1119 | fdh->crashing_cpu = FADUMP_CPU_UNKNOWN; |
| 1120 | |
| 1121 | /* |
| 1122 | * The physical address and size of vmcoreinfo are required in the |
| 1123 | * second kernel to prepare elfcorehdr. |
| 1124 | */ |
| 1125 | fdh->vmcoreinfo_raddr = fadump_relocate(paddr_vmcoreinfo_note()); |
| 1126 | fdh->vmcoreinfo_size = VMCOREINFO_NOTE_SIZE; |
| 1127 | |
| 1128 | |
| 1129 | fdh->pt_regs_sz = sizeof(struct pt_regs); |
| 1130 | /* |
| 1131 | * When LPAR is terminated by PYHP, ensure all possible CPUs' |
| 1132 | * register data is processed while exporting the vmcore. |
| 1133 | */ |
| 1134 | fdh->cpu_mask = *cpu_possible_mask; |
| 1135 | fdh->cpu_mask_sz = sizeof(struct cpumask); |
| 1136 | |
| 1137 | return addr; |
| 1138 | } |
| 1139 | |
| 1140 | static int register_fadump(void) |
| 1141 | { |
| 1142 | unsigned long addr; |
| 1143 | |
| 1144 | /* |
| 1145 | * If no memory is reserved then we can not register for firmware- |
| 1146 | * assisted dump. |
| 1147 | */ |
| 1148 | if (!fw_dump.reserve_dump_area_size) |
| 1149 | return -ENODEV; |
| 1150 | |
| 1151 | addr = fw_dump.fadumphdr_addr; |
| 1152 | |
| 1153 | /* Initialize fadump crash info header. */ |
| 1154 | addr = init_fadump_header(addr); |
| 1155 | |
| 1156 | /* register the future kernel dump with firmware. */ |
| 1157 | pr_debug("Registering for firmware-assisted kernel dump...\n"); |
| 1158 | return fw_dump.ops->fadump_register(&fw_dump); |
| 1159 | } |
| 1160 | |
| 1161 | void fadump_cleanup(void) |
| 1162 | { |
| 1163 | if (!fw_dump.fadump_supported) |
| 1164 | return; |
| 1165 | |
| 1166 | /* Invalidate the registration only if dump is active. */ |
| 1167 | if (fw_dump.dump_active) { |
| 1168 | pr_debug("Invalidating firmware-assisted dump registration\n"); |
| 1169 | fw_dump.ops->fadump_invalidate(&fw_dump); |
| 1170 | } else if (fw_dump.dump_registered) { |
| 1171 | /* Un-register Firmware-assisted dump if it was registered. */ |
| 1172 | fw_dump.ops->fadump_unregister(&fw_dump); |
| 1173 | } |
| 1174 | |
| 1175 | if (fw_dump.ops->fadump_cleanup) |
| 1176 | fw_dump.ops->fadump_cleanup(&fw_dump); |
| 1177 | } |
| 1178 | |
| 1179 | static void fadump_free_reserved_memory(unsigned long start_pfn, |
| 1180 | unsigned long end_pfn) |
| 1181 | { |
| 1182 | unsigned long pfn; |
| 1183 | unsigned long time_limit = jiffies + HZ; |
| 1184 | |
| 1185 | pr_info("freeing reserved memory (0x%llx - 0x%llx)\n", |
| 1186 | PFN_PHYS(start_pfn), PFN_PHYS(end_pfn)); |
| 1187 | |
| 1188 | for (pfn = start_pfn; pfn < end_pfn; pfn++) { |
| 1189 | free_reserved_page(pfn_to_page(pfn)); |
| 1190 | |
| 1191 | if (time_after(jiffies, time_limit)) { |
| 1192 | cond_resched(); |
| 1193 | time_limit = jiffies + HZ; |
| 1194 | } |
| 1195 | } |
| 1196 | } |
| 1197 | |
| 1198 | /* |
| 1199 | * Skip memory holes and free memory that was actually reserved. |
| 1200 | */ |
| 1201 | static void fadump_release_reserved_area(u64 start, u64 end) |
| 1202 | { |
| 1203 | unsigned long reg_spfn, reg_epfn; |
| 1204 | u64 tstart, tend, spfn, epfn; |
| 1205 | int i; |
| 1206 | |
| 1207 | spfn = PHYS_PFN(start); |
| 1208 | epfn = PHYS_PFN(end); |
| 1209 | |
| 1210 | for_each_mem_pfn_range(i, MAX_NUMNODES, ®_spfn, ®_epfn, NULL) { |
| 1211 | tstart = max_t(u64, spfn, reg_spfn); |
| 1212 | tend = min_t(u64, epfn, reg_epfn); |
| 1213 | |
| 1214 | if (tstart < tend) { |
| 1215 | fadump_free_reserved_memory(tstart, tend); |
| 1216 | |
| 1217 | if (tend == epfn) |
| 1218 | break; |
| 1219 | |
| 1220 | spfn = tend; |
| 1221 | } |
| 1222 | } |
| 1223 | } |
| 1224 | |
| 1225 | /* |
| 1226 | * Sort the mem ranges in-place and merge adjacent ranges |
| 1227 | * to minimize the memory ranges count. |
| 1228 | */ |
| 1229 | static void sort_and_merge_mem_ranges(struct fadump_mrange_info *mrange_info) |
| 1230 | { |
| 1231 | struct fadump_memory_range *mem_ranges; |
| 1232 | u64 base, size; |
| 1233 | int i, j, idx; |
| 1234 | |
| 1235 | if (!reserved_mrange_info.mem_range_cnt) |
| 1236 | return; |
| 1237 | |
| 1238 | /* Sort the memory ranges */ |
| 1239 | mem_ranges = mrange_info->mem_ranges; |
| 1240 | for (i = 0; i < mrange_info->mem_range_cnt; i++) { |
| 1241 | idx = i; |
| 1242 | for (j = (i + 1); j < mrange_info->mem_range_cnt; j++) { |
| 1243 | if (mem_ranges[idx].base > mem_ranges[j].base) |
| 1244 | idx = j; |
| 1245 | } |
| 1246 | if (idx != i) |
| 1247 | swap(mem_ranges[idx], mem_ranges[i]); |
| 1248 | } |
| 1249 | |
| 1250 | /* Merge adjacent reserved ranges */ |
| 1251 | idx = 0; |
| 1252 | for (i = 1; i < mrange_info->mem_range_cnt; i++) { |
| 1253 | base = mem_ranges[i-1].base; |
| 1254 | size = mem_ranges[i-1].size; |
| 1255 | if (mem_ranges[i].base == (base + size)) |
| 1256 | mem_ranges[idx].size += mem_ranges[i].size; |
| 1257 | else { |
| 1258 | idx++; |
| 1259 | if (i == idx) |
| 1260 | continue; |
| 1261 | |
| 1262 | mem_ranges[idx] = mem_ranges[i]; |
| 1263 | } |
| 1264 | } |
| 1265 | mrange_info->mem_range_cnt = idx + 1; |
| 1266 | } |
| 1267 | |
| 1268 | /* |
| 1269 | * Scan reserved-ranges to consider them while reserving/releasing |
| 1270 | * memory for FADump. |
| 1271 | */ |
| 1272 | static void __init early_init_dt_scan_reserved_ranges(unsigned long node) |
| 1273 | { |
| 1274 | const __be32 *prop; |
| 1275 | int len, ret = -1; |
| 1276 | unsigned long i; |
| 1277 | |
| 1278 | /* reserved-ranges already scanned */ |
| 1279 | if (reserved_mrange_info.mem_range_cnt != 0) |
| 1280 | return; |
| 1281 | |
| 1282 | prop = of_get_flat_dt_prop(node, "reserved-ranges", &len); |
| 1283 | if (!prop) |
| 1284 | return; |
| 1285 | |
| 1286 | /* |
| 1287 | * Each reserved range is an (address,size) pair, 2 cells each, |
| 1288 | * totalling 4 cells per range. |
| 1289 | */ |
| 1290 | for (i = 0; i < len / (sizeof(*prop) * 4); i++) { |
| 1291 | u64 base, size; |
| 1292 | |
| 1293 | base = of_read_number(prop + (i * 4) + 0, 2); |
| 1294 | size = of_read_number(prop + (i * 4) + 2, 2); |
| 1295 | |
| 1296 | if (size) { |
| 1297 | ret = fadump_add_mem_range(&reserved_mrange_info, |
| 1298 | base, base + size); |
| 1299 | if (ret < 0) { |
| 1300 | pr_warn("some reserved ranges are ignored!\n"); |
| 1301 | break; |
| 1302 | } |
| 1303 | } |
| 1304 | } |
| 1305 | |
| 1306 | /* Compact reserved ranges */ |
| 1307 | sort_and_merge_mem_ranges(&reserved_mrange_info); |
| 1308 | } |
| 1309 | |
| 1310 | /* |
| 1311 | * Release the memory that was reserved during early boot to preserve the |
| 1312 | * crash'ed kernel's memory contents except reserved dump area (permanent |
| 1313 | * reservation) and reserved ranges used by F/W. The released memory will |
| 1314 | * be available for general use. |
| 1315 | */ |
| 1316 | static void fadump_release_memory(u64 begin, u64 end) |
| 1317 | { |
| 1318 | u64 ra_start, ra_end, tstart; |
| 1319 | int i, ret; |
| 1320 | |
| 1321 | ra_start = fw_dump.reserve_dump_area_start; |
| 1322 | ra_end = ra_start + fw_dump.reserve_dump_area_size; |
| 1323 | |
| 1324 | /* |
| 1325 | * If reserved ranges array limit is hit, overwrite the last reserved |
| 1326 | * memory range with reserved dump area to ensure it is excluded from |
| 1327 | * the memory being released (reused for next FADump registration). |
| 1328 | */ |
| 1329 | if (reserved_mrange_info.mem_range_cnt == |
| 1330 | reserved_mrange_info.max_mem_ranges) |
| 1331 | reserved_mrange_info.mem_range_cnt--; |
| 1332 | |
| 1333 | ret = fadump_add_mem_range(&reserved_mrange_info, ra_start, ra_end); |
| 1334 | if (ret != 0) |
| 1335 | return; |
| 1336 | |
| 1337 | /* Get the reserved ranges list in order first. */ |
| 1338 | sort_and_merge_mem_ranges(&reserved_mrange_info); |
| 1339 | |
| 1340 | /* Exclude reserved ranges and release remaining memory */ |
| 1341 | tstart = begin; |
| 1342 | for (i = 0; i < reserved_mrange_info.mem_range_cnt; i++) { |
| 1343 | ra_start = reserved_mrange_info.mem_ranges[i].base; |
| 1344 | ra_end = ra_start + reserved_mrange_info.mem_ranges[i].size; |
| 1345 | |
| 1346 | if (tstart >= ra_end) |
| 1347 | continue; |
| 1348 | |
| 1349 | if (tstart < ra_start) |
| 1350 | fadump_release_reserved_area(tstart, ra_start); |
| 1351 | tstart = ra_end; |
| 1352 | } |
| 1353 | |
| 1354 | if (tstart < end) |
| 1355 | fadump_release_reserved_area(tstart, end); |
| 1356 | } |
| 1357 | |
| 1358 | static void fadump_free_elfcorehdr_buf(void) |
| 1359 | { |
| 1360 | if (fw_dump.elfcorehdr_addr == 0 || fw_dump.elfcorehdr_size == 0) |
| 1361 | return; |
| 1362 | |
| 1363 | /* |
| 1364 | * Before freeing the memory of `elfcorehdr`, reset the global |
| 1365 | * `elfcorehdr_addr` to prevent modules like `vmcore` from accessing |
| 1366 | * invalid memory. |
| 1367 | */ |
| 1368 | elfcorehdr_addr = ELFCORE_ADDR_ERR; |
| 1369 | fadump_free_buffer(fw_dump.elfcorehdr_addr, fw_dump.elfcorehdr_size); |
| 1370 | fw_dump.elfcorehdr_addr = 0; |
| 1371 | fw_dump.elfcorehdr_size = 0; |
| 1372 | } |
| 1373 | |
| 1374 | static void fadump_invalidate_release_mem(void) |
| 1375 | { |
| 1376 | mutex_lock(&fadump_mutex); |
| 1377 | if (!fw_dump.dump_active) { |
| 1378 | mutex_unlock(&fadump_mutex); |
| 1379 | return; |
| 1380 | } |
| 1381 | |
| 1382 | fadump_cleanup(); |
| 1383 | mutex_unlock(&fadump_mutex); |
| 1384 | |
| 1385 | fadump_free_elfcorehdr_buf(); |
| 1386 | fadump_release_memory(fw_dump.boot_mem_top, memblock_end_of_DRAM()); |
| 1387 | fadump_free_cpu_notes_buf(); |
| 1388 | |
| 1389 | /* |
| 1390 | * Setup kernel metadata and initialize the kernel dump |
| 1391 | * memory structure for FADump re-registration. |
| 1392 | */ |
| 1393 | if (fw_dump.ops->fadump_setup_metadata && |
| 1394 | (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0)) |
| 1395 | pr_warn("Failed to setup kernel metadata!\n"); |
| 1396 | fw_dump.ops->fadump_init_mem_struct(&fw_dump); |
| 1397 | } |
| 1398 | |
| 1399 | static ssize_t release_mem_store(struct kobject *kobj, |
| 1400 | struct kobj_attribute *attr, |
| 1401 | const char *buf, size_t count) |
| 1402 | { |
| 1403 | int input = -1; |
| 1404 | |
| 1405 | if (!fw_dump.dump_active) |
| 1406 | return -EPERM; |
| 1407 | |
| 1408 | if (kstrtoint(buf, 0, &input)) |
| 1409 | return -EINVAL; |
| 1410 | |
| 1411 | if (input == 1) { |
| 1412 | /* |
| 1413 | * Take away the '/proc/vmcore'. We are releasing the dump |
| 1414 | * memory, hence it will not be valid anymore. |
| 1415 | */ |
| 1416 | #ifdef CONFIG_PROC_VMCORE |
| 1417 | vmcore_cleanup(); |
| 1418 | #endif |
| 1419 | fadump_invalidate_release_mem(); |
| 1420 | |
| 1421 | } else |
| 1422 | return -EINVAL; |
| 1423 | return count; |
| 1424 | } |
| 1425 | |
| 1426 | /* Release the reserved memory and disable the FADump */ |
| 1427 | static void __init unregister_fadump(void) |
| 1428 | { |
| 1429 | fadump_cleanup(); |
| 1430 | fadump_release_memory(fw_dump.reserve_dump_area_start, |
| 1431 | fw_dump.reserve_dump_area_size); |
| 1432 | fw_dump.fadump_enabled = 0; |
| 1433 | kobject_put(fadump_kobj); |
| 1434 | } |
| 1435 | |
| 1436 | static ssize_t enabled_show(struct kobject *kobj, |
| 1437 | struct kobj_attribute *attr, |
| 1438 | char *buf) |
| 1439 | { |
| 1440 | return sprintf(buf, "%d\n", fw_dump.fadump_enabled); |
| 1441 | } |
| 1442 | |
| 1443 | /* |
| 1444 | * /sys/kernel/fadump/hotplug_ready sysfs node returns 1, which inidcates |
| 1445 | * to usersapce that fadump re-registration is not required on memory |
| 1446 | * hotplug events. |
| 1447 | */ |
| 1448 | static ssize_t hotplug_ready_show(struct kobject *kobj, |
| 1449 | struct kobj_attribute *attr, |
| 1450 | char *buf) |
| 1451 | { |
| 1452 | return sprintf(buf, "%d\n", 1); |
| 1453 | } |
| 1454 | |
| 1455 | static ssize_t mem_reserved_show(struct kobject *kobj, |
| 1456 | struct kobj_attribute *attr, |
| 1457 | char *buf) |
| 1458 | { |
| 1459 | return sprintf(buf, "%ld\n", fw_dump.reserve_dump_area_size); |
| 1460 | } |
| 1461 | |
| 1462 | static ssize_t registered_show(struct kobject *kobj, |
| 1463 | struct kobj_attribute *attr, |
| 1464 | char *buf) |
| 1465 | { |
| 1466 | return sprintf(buf, "%d\n", fw_dump.dump_registered); |
| 1467 | } |
| 1468 | |
| 1469 | static ssize_t bootargs_append_show(struct kobject *kobj, |
| 1470 | struct kobj_attribute *attr, |
| 1471 | char *buf) |
| 1472 | { |
| 1473 | return sprintf(buf, "%s\n", (char *)__va(fw_dump.param_area)); |
| 1474 | } |
| 1475 | |
| 1476 | static ssize_t bootargs_append_store(struct kobject *kobj, |
| 1477 | struct kobj_attribute *attr, |
| 1478 | const char *buf, size_t count) |
| 1479 | { |
| 1480 | char *params; |
| 1481 | |
| 1482 | if (!fw_dump.fadump_enabled || fw_dump.dump_active) |
| 1483 | return -EPERM; |
| 1484 | |
| 1485 | if (count >= COMMAND_LINE_SIZE) |
| 1486 | return -EINVAL; |
| 1487 | |
| 1488 | /* |
| 1489 | * Fail here instead of handling this scenario with |
| 1490 | * some silly workaround in capture kernel. |
| 1491 | */ |
| 1492 | if (saved_command_line_len + count >= COMMAND_LINE_SIZE) { |
| 1493 | pr_err("Appending parameters exceeds cmdline size!\n"); |
| 1494 | return -ENOSPC; |
| 1495 | } |
| 1496 | |
| 1497 | params = __va(fw_dump.param_area); |
| 1498 | strscpy_pad(params, buf, COMMAND_LINE_SIZE); |
| 1499 | /* Remove newline character at the end. */ |
| 1500 | if (params[count-1] == '\n') |
| 1501 | params[count-1] = '\0'; |
| 1502 | |
| 1503 | return count; |
| 1504 | } |
| 1505 | |
| 1506 | static ssize_t registered_store(struct kobject *kobj, |
| 1507 | struct kobj_attribute *attr, |
| 1508 | const char *buf, size_t count) |
| 1509 | { |
| 1510 | int ret = 0; |
| 1511 | int input = -1; |
| 1512 | |
| 1513 | if (!fw_dump.fadump_enabled || fw_dump.dump_active) |
| 1514 | return -EPERM; |
| 1515 | |
| 1516 | if (kstrtoint(buf, 0, &input)) |
| 1517 | return -EINVAL; |
| 1518 | |
| 1519 | mutex_lock(&fadump_mutex); |
| 1520 | |
| 1521 | switch (input) { |
| 1522 | case 0: |
| 1523 | if (fw_dump.dump_registered == 0) { |
| 1524 | goto unlock_out; |
| 1525 | } |
| 1526 | |
| 1527 | /* Un-register Firmware-assisted dump */ |
| 1528 | pr_debug("Un-register firmware-assisted dump\n"); |
| 1529 | fw_dump.ops->fadump_unregister(&fw_dump); |
| 1530 | break; |
| 1531 | case 1: |
| 1532 | if (fw_dump.dump_registered == 1) { |
| 1533 | /* Un-register Firmware-assisted dump */ |
| 1534 | fw_dump.ops->fadump_unregister(&fw_dump); |
| 1535 | } |
| 1536 | /* Register Firmware-assisted dump */ |
| 1537 | ret = register_fadump(); |
| 1538 | break; |
| 1539 | default: |
| 1540 | ret = -EINVAL; |
| 1541 | break; |
| 1542 | } |
| 1543 | |
| 1544 | unlock_out: |
| 1545 | mutex_unlock(&fadump_mutex); |
| 1546 | return ret < 0 ? ret : count; |
| 1547 | } |
| 1548 | |
| 1549 | static int fadump_region_show(struct seq_file *m, void *private) |
| 1550 | { |
| 1551 | if (!fw_dump.fadump_enabled) |
| 1552 | return 0; |
| 1553 | |
| 1554 | mutex_lock(&fadump_mutex); |
| 1555 | fw_dump.ops->fadump_region_show(&fw_dump, m); |
| 1556 | mutex_unlock(&fadump_mutex); |
| 1557 | return 0; |
| 1558 | } |
| 1559 | |
| 1560 | static struct kobj_attribute release_attr = __ATTR_WO(release_mem); |
| 1561 | static struct kobj_attribute enable_attr = __ATTR_RO(enabled); |
| 1562 | static struct kobj_attribute register_attr = __ATTR_RW(registered); |
| 1563 | static struct kobj_attribute mem_reserved_attr = __ATTR_RO(mem_reserved); |
| 1564 | static struct kobj_attribute hotplug_ready_attr = __ATTR_RO(hotplug_ready); |
| 1565 | static struct kobj_attribute bootargs_append_attr = __ATTR_RW(bootargs_append); |
| 1566 | |
| 1567 | static struct attribute *fadump_attrs[] = { |
| 1568 | &enable_attr.attr, |
| 1569 | ®ister_attr.attr, |
| 1570 | &mem_reserved_attr.attr, |
| 1571 | &hotplug_ready_attr.attr, |
| 1572 | NULL, |
| 1573 | }; |
| 1574 | |
| 1575 | ATTRIBUTE_GROUPS(fadump); |
| 1576 | |
| 1577 | DEFINE_SHOW_ATTRIBUTE(fadump_region); |
| 1578 | |
| 1579 | static void __init fadump_init_files(void) |
| 1580 | { |
| 1581 | int rc = 0; |
| 1582 | |
| 1583 | fadump_kobj = kobject_create_and_add("fadump", kernel_kobj); |
| 1584 | if (!fadump_kobj) { |
| 1585 | pr_err("failed to create fadump kobject\n"); |
| 1586 | return; |
| 1587 | } |
| 1588 | |
| 1589 | if (fw_dump.param_area) { |
| 1590 | rc = sysfs_create_file(fadump_kobj, &bootargs_append_attr.attr); |
| 1591 | if (rc) |
| 1592 | pr_err("unable to create bootargs_append sysfs file (%d)\n", rc); |
| 1593 | } |
| 1594 | |
| 1595 | debugfs_create_file("fadump_region", 0444, arch_debugfs_dir, NULL, |
| 1596 | &fadump_region_fops); |
| 1597 | |
| 1598 | if (fw_dump.dump_active) { |
| 1599 | rc = sysfs_create_file(fadump_kobj, &release_attr.attr); |
| 1600 | if (rc) |
| 1601 | pr_err("unable to create release_mem sysfs file (%d)\n", |
| 1602 | rc); |
| 1603 | } |
| 1604 | |
| 1605 | rc = sysfs_create_groups(fadump_kobj, fadump_groups); |
| 1606 | if (rc) { |
| 1607 | pr_err("sysfs group creation failed (%d), unregistering FADump", |
| 1608 | rc); |
| 1609 | unregister_fadump(); |
| 1610 | return; |
| 1611 | } |
| 1612 | |
| 1613 | /* |
| 1614 | * The FADump sysfs are moved from kernel_kobj to fadump_kobj need to |
| 1615 | * create symlink at old location to maintain backward compatibility. |
| 1616 | * |
| 1617 | * - fadump_enabled -> fadump/enabled |
| 1618 | * - fadump_registered -> fadump/registered |
| 1619 | * - fadump_release_mem -> fadump/release_mem |
| 1620 | */ |
| 1621 | rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj, |
| 1622 | "enabled", "fadump_enabled"); |
| 1623 | if (rc) { |
| 1624 | pr_err("unable to create fadump_enabled symlink (%d)", rc); |
| 1625 | return; |
| 1626 | } |
| 1627 | |
| 1628 | rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj, |
| 1629 | "registered", |
| 1630 | "fadump_registered"); |
| 1631 | if (rc) { |
| 1632 | pr_err("unable to create fadump_registered symlink (%d)", rc); |
| 1633 | sysfs_remove_link(kernel_kobj, "fadump_enabled"); |
| 1634 | return; |
| 1635 | } |
| 1636 | |
| 1637 | if (fw_dump.dump_active) { |
| 1638 | rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, |
| 1639 | fadump_kobj, |
| 1640 | "release_mem", |
| 1641 | "fadump_release_mem"); |
| 1642 | if (rc) |
| 1643 | pr_err("unable to create fadump_release_mem symlink (%d)", |
| 1644 | rc); |
| 1645 | } |
| 1646 | return; |
| 1647 | } |
| 1648 | |
| 1649 | static int __init fadump_setup_elfcorehdr_buf(void) |
| 1650 | { |
| 1651 | int elf_phdr_cnt; |
| 1652 | unsigned long elfcorehdr_size; |
| 1653 | |
| 1654 | /* |
| 1655 | * Program header for CPU notes comes first, followed by one for |
| 1656 | * vmcoreinfo, and the remaining program headers correspond to |
| 1657 | * memory regions. |
| 1658 | */ |
| 1659 | elf_phdr_cnt = 2 + fw_dump.boot_mem_regs_cnt + memblock_num_regions(memory); |
| 1660 | elfcorehdr_size = sizeof(struct elfhdr) + (elf_phdr_cnt * sizeof(struct elf_phdr)); |
| 1661 | elfcorehdr_size = PAGE_ALIGN(elfcorehdr_size); |
| 1662 | |
| 1663 | fw_dump.elfcorehdr_addr = (u64)fadump_alloc_buffer(elfcorehdr_size); |
| 1664 | if (!fw_dump.elfcorehdr_addr) { |
| 1665 | pr_err("Failed to allocate %lu bytes for elfcorehdr\n", |
| 1666 | elfcorehdr_size); |
| 1667 | return -ENOMEM; |
| 1668 | } |
| 1669 | fw_dump.elfcorehdr_size = elfcorehdr_size; |
| 1670 | return 0; |
| 1671 | } |
| 1672 | |
| 1673 | /* |
| 1674 | * Check if the fadump header of crashed kernel is compatible with fadump kernel. |
| 1675 | * |
| 1676 | * It checks the magic number, endianness, and size of non-primitive type |
| 1677 | * members of fadump header to ensure safe dump collection. |
| 1678 | */ |
| 1679 | static bool __init is_fadump_header_compatible(struct fadump_crash_info_header *fdh) |
| 1680 | { |
| 1681 | if (fdh->magic_number == FADUMP_CRASH_INFO_MAGIC_OLD) { |
| 1682 | pr_err("Old magic number, can't process the dump.\n"); |
| 1683 | return false; |
| 1684 | } |
| 1685 | |
| 1686 | if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) { |
| 1687 | if (fdh->magic_number == swab64(FADUMP_CRASH_INFO_MAGIC)) |
| 1688 | pr_err("Endianness mismatch between the crashed and fadump kernels.\n"); |
| 1689 | else |
| 1690 | pr_err("Fadump header is corrupted.\n"); |
| 1691 | |
| 1692 | return false; |
| 1693 | } |
| 1694 | |
| 1695 | /* |
| 1696 | * Dump collection is not safe if the size of non-primitive type members |
| 1697 | * of the fadump header do not match between crashed and fadump kernel. |
| 1698 | */ |
| 1699 | if (fdh->pt_regs_sz != sizeof(struct pt_regs) || |
| 1700 | fdh->cpu_mask_sz != sizeof(struct cpumask)) { |
| 1701 | pr_err("Fadump header size mismatch.\n"); |
| 1702 | return false; |
| 1703 | } |
| 1704 | |
| 1705 | return true; |
| 1706 | } |
| 1707 | |
| 1708 | static void __init fadump_process(void) |
| 1709 | { |
| 1710 | struct fadump_crash_info_header *fdh; |
| 1711 | |
| 1712 | fdh = (struct fadump_crash_info_header *) __va(fw_dump.fadumphdr_addr); |
| 1713 | if (!fdh) { |
| 1714 | pr_err("Crash info header is empty.\n"); |
| 1715 | goto err_out; |
| 1716 | } |
| 1717 | |
| 1718 | /* Avoid processing the dump if fadump header isn't compatible */ |
| 1719 | if (!is_fadump_header_compatible(fdh)) |
| 1720 | goto err_out; |
| 1721 | |
| 1722 | /* Allocate buffer for elfcorehdr */ |
| 1723 | if (fadump_setup_elfcorehdr_buf()) |
| 1724 | goto err_out; |
| 1725 | |
| 1726 | fadump_populate_elfcorehdr(fdh); |
| 1727 | |
| 1728 | /* Let platform update the CPU notes in elfcorehdr */ |
| 1729 | if (fw_dump.ops->fadump_process(&fw_dump) < 0) |
| 1730 | goto err_out; |
| 1731 | |
| 1732 | /* |
| 1733 | * elfcorehdr is now ready to be exported. |
| 1734 | * |
| 1735 | * set elfcorehdr_addr so that vmcore module will export the |
| 1736 | * elfcorehdr through '/proc/vmcore'. |
| 1737 | */ |
| 1738 | elfcorehdr_addr = virt_to_phys((void *)fw_dump.elfcorehdr_addr); |
| 1739 | return; |
| 1740 | |
| 1741 | err_out: |
| 1742 | fadump_invalidate_release_mem(); |
| 1743 | } |
| 1744 | |
| 1745 | /* |
| 1746 | * Reserve memory to store additional parameters to be passed |
| 1747 | * for fadump/capture kernel. |
| 1748 | */ |
| 1749 | void __init fadump_setup_param_area(void) |
| 1750 | { |
| 1751 | phys_addr_t range_start, range_end; |
| 1752 | |
| 1753 | if (!fw_dump.param_area_supported || fw_dump.dump_active) |
| 1754 | return; |
| 1755 | |
| 1756 | /* This memory can't be used by PFW or bootloader as it is shared across kernels */ |
| 1757 | if (early_radix_enabled()) { |
| 1758 | /* |
| 1759 | * Anywhere in the upper half should be good enough as all memory |
| 1760 | * is accessible in real mode. |
| 1761 | */ |
| 1762 | range_start = memblock_end_of_DRAM() / 2; |
| 1763 | range_end = memblock_end_of_DRAM(); |
| 1764 | } else { |
| 1765 | /* |
| 1766 | * Memory range for passing additional parameters for HASH MMU |
| 1767 | * must meet the following conditions: |
| 1768 | * 1. The first memory block size must be higher than the |
| 1769 | * minimum RMA (MIN_RMA) size. Bootloader can use memory |
| 1770 | * upto RMA size. So it should be avoided. |
| 1771 | * 2. The range should be between MIN_RMA and RMA size (ppc64_rma_size) |
| 1772 | * 3. It must not overlap with the fadump reserved area. |
| 1773 | */ |
| 1774 | if (ppc64_rma_size < MIN_RMA*1024*1024) |
| 1775 | return; |
| 1776 | |
| 1777 | range_start = MIN_RMA * 1024 * 1024; |
| 1778 | range_end = min(ppc64_rma_size, fw_dump.boot_mem_top); |
| 1779 | } |
| 1780 | |
| 1781 | fw_dump.param_area = memblock_phys_alloc_range(COMMAND_LINE_SIZE, |
| 1782 | COMMAND_LINE_SIZE, |
| 1783 | range_start, |
| 1784 | range_end); |
| 1785 | if (!fw_dump.param_area) { |
| 1786 | pr_warn("WARNING: Could not setup area to pass additional parameters!\n"); |
| 1787 | return; |
| 1788 | } |
| 1789 | |
| 1790 | memset((void *)fw_dump.param_area, 0, COMMAND_LINE_SIZE); |
| 1791 | } |
| 1792 | |
| 1793 | /* |
| 1794 | * Prepare for firmware-assisted dump. |
| 1795 | */ |
| 1796 | int __init setup_fadump(void) |
| 1797 | { |
| 1798 | if (!fw_dump.fadump_supported) |
| 1799 | return 0; |
| 1800 | |
| 1801 | fadump_init_files(); |
| 1802 | fadump_show_config(); |
| 1803 | |
| 1804 | if (!fw_dump.fadump_enabled) |
| 1805 | return 1; |
| 1806 | |
| 1807 | /* |
| 1808 | * If dump data is available then see if it is valid and prepare for |
| 1809 | * saving it to the disk. |
| 1810 | */ |
| 1811 | if (fw_dump.dump_active) { |
| 1812 | fadump_process(); |
| 1813 | } |
| 1814 | /* Initialize the kernel dump memory structure and register with f/w */ |
| 1815 | else if (fw_dump.reserve_dump_area_size) { |
| 1816 | fw_dump.ops->fadump_init_mem_struct(&fw_dump); |
| 1817 | register_fadump(); |
| 1818 | } |
| 1819 | |
| 1820 | /* |
| 1821 | * In case of panic, fadump is triggered via ppc_panic_event() |
| 1822 | * panic notifier. Setting crash_kexec_post_notifiers to 'true' |
| 1823 | * lets panic() function take crash friendly path before panic |
| 1824 | * notifiers are invoked. |
| 1825 | */ |
| 1826 | crash_kexec_post_notifiers = true; |
| 1827 | |
| 1828 | return 1; |
| 1829 | } |
| 1830 | /* |
| 1831 | * Use subsys_initcall_sync() here because there is dependency with |
| 1832 | * crash_save_vmcoreinfo_init(), which must run first to ensure vmcoreinfo initialization |
| 1833 | * is done before registering with f/w. |
| 1834 | */ |
| 1835 | subsys_initcall_sync(setup_fadump); |
| 1836 | #else /* !CONFIG_PRESERVE_FA_DUMP */ |
| 1837 | |
| 1838 | /* Scan the Firmware Assisted dump configuration details. */ |
| 1839 | int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname, |
| 1840 | int depth, void *data) |
| 1841 | { |
| 1842 | if ((depth != 1) || (strcmp(uname, "ibm,opal") != 0)) |
| 1843 | return 0; |
| 1844 | |
| 1845 | opal_fadump_dt_scan(&fw_dump, node); |
| 1846 | return 1; |
| 1847 | } |
| 1848 | |
| 1849 | /* |
| 1850 | * When dump is active but PRESERVE_FA_DUMP is enabled on the kernel, |
| 1851 | * preserve crash data. The subsequent memory preserving kernel boot |
| 1852 | * is likely to process this crash data. |
| 1853 | */ |
| 1854 | int __init fadump_reserve_mem(void) |
| 1855 | { |
| 1856 | if (fw_dump.dump_active) { |
| 1857 | /* |
| 1858 | * If last boot has crashed then reserve all the memory |
| 1859 | * above boot memory to preserve crash data. |
| 1860 | */ |
| 1861 | pr_info("Preserving crash data for processing in next boot.\n"); |
| 1862 | fadump_reserve_crash_area(fw_dump.boot_mem_top); |
| 1863 | } else |
| 1864 | pr_debug("FADump-aware kernel..\n"); |
| 1865 | |
| 1866 | return 1; |
| 1867 | } |
| 1868 | #endif /* CONFIG_PRESERVE_FA_DUMP */ |
| 1869 | |
| 1870 | /* Preserve everything above the base address */ |
| 1871 | static void __init fadump_reserve_crash_area(u64 base) |
| 1872 | { |
| 1873 | u64 i, mstart, mend, msize; |
| 1874 | |
| 1875 | for_each_mem_range(i, &mstart, &mend) { |
| 1876 | msize = mend - mstart; |
| 1877 | |
| 1878 | if ((mstart + msize) < base) |
| 1879 | continue; |
| 1880 | |
| 1881 | if (mstart < base) { |
| 1882 | msize -= (base - mstart); |
| 1883 | mstart = base; |
| 1884 | } |
| 1885 | |
| 1886 | pr_info("Reserving %lluMB of memory at %#016llx for preserving crash data", |
| 1887 | (msize >> 20), mstart); |
| 1888 | memblock_reserve(mstart, msize); |
| 1889 | } |
| 1890 | } |