| 1 | /* |
| 2 | * This file is subject to the terms and conditions of the GNU General Public |
| 3 | * License. See the file "COPYING" in the main directory of this archive |
| 4 | * for more details. |
| 5 | * |
| 6 | * Generation of main entry point for the guest, exception handling. |
| 7 | * |
| 8 | * Copyright (C) 2012 MIPS Technologies, Inc. |
| 9 | * Authors: Sanjay Lal <sanjayl@kymasys.com> |
| 10 | * |
| 11 | * Copyright (C) 2016 Imagination Technologies Ltd. |
| 12 | */ |
| 13 | |
| 14 | #include <linux/kvm_host.h> |
| 15 | #include <linux/log2.h> |
| 16 | #include <asm/mipsregs.h> |
| 17 | #include <asm/mmu_context.h> |
| 18 | #include <asm/msa.h> |
| 19 | #include <asm/regdef.h> |
| 20 | #include <asm/setup.h> |
| 21 | #include <asm/tlbex.h> |
| 22 | #include <asm/uasm.h> |
| 23 | |
| 24 | #define CALLFRAME_SIZ 32 |
| 25 | |
| 26 | static unsigned int scratch_vcpu[2] = { C0_DDATALO }; |
| 27 | static unsigned int scratch_tmp[2] = { C0_ERROREPC }; |
| 28 | |
| 29 | enum label_id { |
| 30 | label_fpu_1 = 1, |
| 31 | label_msa_1, |
| 32 | label_return_to_host, |
| 33 | label_kernel_asid, |
| 34 | label_exit_common, |
| 35 | }; |
| 36 | |
| 37 | UASM_L_LA(_fpu_1) |
| 38 | UASM_L_LA(_msa_1) |
| 39 | UASM_L_LA(_return_to_host) |
| 40 | UASM_L_LA(_kernel_asid) |
| 41 | UASM_L_LA(_exit_common) |
| 42 | |
| 43 | static void *kvm_mips_build_enter_guest(void *addr); |
| 44 | static void *kvm_mips_build_ret_from_exit(void *addr); |
| 45 | static void *kvm_mips_build_ret_to_guest(void *addr); |
| 46 | static void *kvm_mips_build_ret_to_host(void *addr); |
| 47 | |
| 48 | /* |
| 49 | * The version of this function in tlbex.c uses current_cpu_type(), but for KVM |
| 50 | * we assume symmetry. |
| 51 | */ |
| 52 | static int c0_kscratch(void) |
| 53 | { |
| 54 | return 31; |
| 55 | } |
| 56 | |
| 57 | /** |
| 58 | * kvm_mips_entry_setup() - Perform global setup for entry code. |
| 59 | * |
| 60 | * Perform global setup for entry code, such as choosing a scratch register. |
| 61 | * |
| 62 | * Returns: 0 on success. |
| 63 | * -errno on failure. |
| 64 | */ |
| 65 | int kvm_mips_entry_setup(void) |
| 66 | { |
| 67 | /* |
| 68 | * We prefer to use KScratchN registers if they are available over the |
| 69 | * defaults above, which may not work on all cores. |
| 70 | */ |
| 71 | unsigned int kscratch_mask = cpu_data[0].kscratch_mask; |
| 72 | |
| 73 | if (pgd_reg != -1) |
| 74 | kscratch_mask &= ~BIT(pgd_reg); |
| 75 | |
| 76 | /* Pick a scratch register for storing VCPU */ |
| 77 | if (kscratch_mask) { |
| 78 | scratch_vcpu[0] = c0_kscratch(); |
| 79 | scratch_vcpu[1] = ffs(kscratch_mask) - 1; |
| 80 | kscratch_mask &= ~BIT(scratch_vcpu[1]); |
| 81 | } |
| 82 | |
| 83 | /* Pick a scratch register to use as a temp for saving state */ |
| 84 | if (kscratch_mask) { |
| 85 | scratch_tmp[0] = c0_kscratch(); |
| 86 | scratch_tmp[1] = ffs(kscratch_mask) - 1; |
| 87 | kscratch_mask &= ~BIT(scratch_tmp[1]); |
| 88 | } |
| 89 | |
| 90 | return 0; |
| 91 | } |
| 92 | |
| 93 | static void kvm_mips_build_save_scratch(u32 **p, unsigned int tmp, |
| 94 | unsigned int frame) |
| 95 | { |
| 96 | /* Save the VCPU scratch register value in cp0_epc of the stack frame */ |
| 97 | UASM_i_MFC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]); |
| 98 | UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame); |
| 99 | |
| 100 | /* Save the temp scratch register value in cp0_cause of stack frame */ |
| 101 | if (scratch_tmp[0] == c0_kscratch()) { |
| 102 | UASM_i_MFC0(p, tmp, scratch_tmp[0], scratch_tmp[1]); |
| 103 | UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame); |
| 104 | } |
| 105 | } |
| 106 | |
| 107 | static void kvm_mips_build_restore_scratch(u32 **p, unsigned int tmp, |
| 108 | unsigned int frame) |
| 109 | { |
| 110 | /* |
| 111 | * Restore host scratch register values saved by |
| 112 | * kvm_mips_build_save_scratch(). |
| 113 | */ |
| 114 | UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame); |
| 115 | UASM_i_MTC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]); |
| 116 | |
| 117 | if (scratch_tmp[0] == c0_kscratch()) { |
| 118 | UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame); |
| 119 | UASM_i_MTC0(p, tmp, scratch_tmp[0], scratch_tmp[1]); |
| 120 | } |
| 121 | } |
| 122 | |
| 123 | /** |
| 124 | * build_set_exc_base() - Assemble code to write exception base address. |
| 125 | * @p: Code buffer pointer. |
| 126 | * @reg: Source register (generated code may set WG bit in @reg). |
| 127 | * |
| 128 | * Assemble code to modify the exception base address in the EBase register, |
| 129 | * using the appropriately sized access and setting the WG bit if necessary. |
| 130 | */ |
| 131 | static inline void build_set_exc_base(u32 **p, unsigned int reg) |
| 132 | { |
| 133 | if (cpu_has_ebase_wg) { |
| 134 | /* Set WG so that all the bits get written */ |
| 135 | uasm_i_ori(p, reg, reg, MIPS_EBASE_WG); |
| 136 | UASM_i_MTC0(p, reg, C0_EBASE); |
| 137 | } else { |
| 138 | uasm_i_mtc0(p, reg, C0_EBASE); |
| 139 | } |
| 140 | } |
| 141 | |
| 142 | /** |
| 143 | * kvm_mips_build_vcpu_run() - Assemble function to start running a guest VCPU. |
| 144 | * @addr: Address to start writing code. |
| 145 | * |
| 146 | * Assemble the start of the vcpu_run function to run a guest VCPU. The function |
| 147 | * conforms to the following prototype: |
| 148 | * |
| 149 | * int vcpu_run(struct kvm_vcpu *vcpu); |
| 150 | * |
| 151 | * The exit from the guest and return to the caller is handled by the code |
| 152 | * generated by kvm_mips_build_ret_to_host(). |
| 153 | * |
| 154 | * Returns: Next address after end of written function. |
| 155 | */ |
| 156 | void *kvm_mips_build_vcpu_run(void *addr) |
| 157 | { |
| 158 | u32 *p = addr; |
| 159 | unsigned int i; |
| 160 | |
| 161 | /* |
| 162 | * GPR_A0: vcpu |
| 163 | */ |
| 164 | |
| 165 | /* k0/k1 not being used in host kernel context */ |
| 166 | UASM_i_ADDIU(&p, GPR_K1, GPR_SP, -(int)sizeof(struct pt_regs)); |
| 167 | for (i = 16; i < 32; ++i) { |
| 168 | if (i == 24) |
| 169 | i = 28; |
| 170 | UASM_i_SW(&p, i, offsetof(struct pt_regs, regs[i]), GPR_K1); |
| 171 | } |
| 172 | |
| 173 | /* Save host status */ |
| 174 | uasm_i_mfc0(&p, GPR_V0, C0_STATUS); |
| 175 | UASM_i_SW(&p, GPR_V0, offsetof(struct pt_regs, cp0_status), GPR_K1); |
| 176 | |
| 177 | /* Save scratch registers, will be used to store pointer to vcpu etc */ |
| 178 | kvm_mips_build_save_scratch(&p, GPR_V1, GPR_K1); |
| 179 | |
| 180 | /* VCPU scratch register has pointer to vcpu */ |
| 181 | UASM_i_MTC0(&p, GPR_A0, scratch_vcpu[0], scratch_vcpu[1]); |
| 182 | |
| 183 | /* Offset into vcpu->arch */ |
| 184 | UASM_i_ADDIU(&p, GPR_K1, GPR_A0, offsetof(struct kvm_vcpu, arch)); |
| 185 | |
| 186 | /* |
| 187 | * Save the host stack to VCPU, used for exception processing |
| 188 | * when we exit from the Guest |
| 189 | */ |
| 190 | UASM_i_SW(&p, GPR_SP, offsetof(struct kvm_vcpu_arch, host_stack), GPR_K1); |
| 191 | |
| 192 | /* Save the kernel gp as well */ |
| 193 | UASM_i_SW(&p, GPR_GP, offsetof(struct kvm_vcpu_arch, host_gp), GPR_K1); |
| 194 | |
| 195 | /* |
| 196 | * Setup status register for running the guest in UM, interrupts |
| 197 | * are disabled |
| 198 | */ |
| 199 | UASM_i_LA(&p, GPR_K0, ST0_EXL | KSU_USER | ST0_BEV | ST0_KX_IF_64); |
| 200 | uasm_i_mtc0(&p, GPR_K0, C0_STATUS); |
| 201 | uasm_i_ehb(&p); |
| 202 | |
| 203 | /* load up the new EBASE */ |
| 204 | UASM_i_LW(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, guest_ebase), GPR_K1); |
| 205 | build_set_exc_base(&p, GPR_K0); |
| 206 | |
| 207 | /* |
| 208 | * Now that the new EBASE has been loaded, unset BEV, set |
| 209 | * interrupt mask as it was but make sure that timer interrupts |
| 210 | * are enabled |
| 211 | */ |
| 212 | uasm_i_addiu(&p, GPR_K0, GPR_ZERO, ST0_EXL | KSU_USER | ST0_IE | ST0_KX_IF_64); |
| 213 | uasm_i_andi(&p, GPR_V0, GPR_V0, ST0_IM); |
| 214 | uasm_i_or(&p, GPR_K0, GPR_K0, GPR_V0); |
| 215 | uasm_i_mtc0(&p, GPR_K0, C0_STATUS); |
| 216 | uasm_i_ehb(&p); |
| 217 | |
| 218 | p = kvm_mips_build_enter_guest(p); |
| 219 | |
| 220 | return p; |
| 221 | } |
| 222 | |
| 223 | /** |
| 224 | * kvm_mips_build_enter_guest() - Assemble code to resume guest execution. |
| 225 | * @addr: Address to start writing code. |
| 226 | * |
| 227 | * Assemble the code to resume guest execution. This code is common between the |
| 228 | * initial entry into the guest from the host, and returning from the exit |
| 229 | * handler back to the guest. |
| 230 | * |
| 231 | * Returns: Next address after end of written function. |
| 232 | */ |
| 233 | static void *kvm_mips_build_enter_guest(void *addr) |
| 234 | { |
| 235 | u32 *p = addr; |
| 236 | unsigned int i; |
| 237 | struct uasm_label labels[2]; |
| 238 | struct uasm_reloc relocs[2]; |
| 239 | struct uasm_label __maybe_unused *l = labels; |
| 240 | struct uasm_reloc __maybe_unused *r = relocs; |
| 241 | |
| 242 | memset(labels, 0, sizeof(labels)); |
| 243 | memset(relocs, 0, sizeof(relocs)); |
| 244 | |
| 245 | /* Set Guest EPC */ |
| 246 | UASM_i_LW(&p, GPR_T0, offsetof(struct kvm_vcpu_arch, pc), GPR_K1); |
| 247 | UASM_i_MTC0(&p, GPR_T0, C0_EPC); |
| 248 | |
| 249 | /* Save normal linux process pgd (VZ guarantees pgd_reg is set) */ |
| 250 | if (cpu_has_ldpte) |
| 251 | UASM_i_MFC0(&p, GPR_K0, C0_PWBASE); |
| 252 | else |
| 253 | UASM_i_MFC0(&p, GPR_K0, c0_kscratch(), pgd_reg); |
| 254 | UASM_i_SW(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, host_pgd), GPR_K1); |
| 255 | |
| 256 | /* |
| 257 | * Set up KVM GPA pgd. |
| 258 | * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD(): |
| 259 | * - call tlbmiss_handler_setup_pgd(mm->pgd) |
| 260 | * - write mm->pgd into CP0_PWBase |
| 261 | * |
| 262 | * We keep GPR_S0 pointing at struct kvm so we can load the ASID below. |
| 263 | */ |
| 264 | UASM_i_LW(&p, GPR_S0, (int)offsetof(struct kvm_vcpu, kvm) - |
| 265 | (int)offsetof(struct kvm_vcpu, arch), GPR_K1); |
| 266 | UASM_i_LW(&p, GPR_A0, offsetof(struct kvm, arch.gpa_mm.pgd), GPR_S0); |
| 267 | UASM_i_LA(&p, GPR_T9, (unsigned long)tlbmiss_handler_setup_pgd); |
| 268 | uasm_i_jalr(&p, GPR_RA, GPR_T9); |
| 269 | /* delay slot */ |
| 270 | if (cpu_has_htw) |
| 271 | UASM_i_MTC0(&p, GPR_A0, C0_PWBASE); |
| 272 | else |
| 273 | uasm_i_nop(&p); |
| 274 | |
| 275 | /* Set GM bit to setup eret to VZ guest context */ |
| 276 | uasm_i_addiu(&p, GPR_V1, GPR_ZERO, 1); |
| 277 | uasm_i_mfc0(&p, GPR_K0, C0_GUESTCTL0); |
| 278 | uasm_i_ins(&p, GPR_K0, GPR_V1, MIPS_GCTL0_GM_SHIFT, 1); |
| 279 | uasm_i_mtc0(&p, GPR_K0, C0_GUESTCTL0); |
| 280 | |
| 281 | if (cpu_has_guestid) { |
| 282 | /* |
| 283 | * Set root mode GuestID, so that root TLB refill handler can |
| 284 | * use the correct GuestID in the root TLB. |
| 285 | */ |
| 286 | |
| 287 | /* Get current GuestID */ |
| 288 | uasm_i_mfc0(&p, GPR_T0, C0_GUESTCTL1); |
| 289 | /* Set GuestCtl1.RID = GuestCtl1.ID */ |
| 290 | uasm_i_ext(&p, GPR_T1, GPR_T0, MIPS_GCTL1_ID_SHIFT, |
| 291 | MIPS_GCTL1_ID_WIDTH); |
| 292 | uasm_i_ins(&p, GPR_T0, GPR_T1, MIPS_GCTL1_RID_SHIFT, |
| 293 | MIPS_GCTL1_RID_WIDTH); |
| 294 | uasm_i_mtc0(&p, GPR_T0, C0_GUESTCTL1); |
| 295 | |
| 296 | /* GuestID handles dealiasing so we don't need to touch ASID */ |
| 297 | goto skip_asid_restore; |
| 298 | } |
| 299 | |
| 300 | /* Root ASID Dealias (RAD) */ |
| 301 | |
| 302 | /* Save host ASID */ |
| 303 | UASM_i_MFC0(&p, GPR_K0, C0_ENTRYHI); |
| 304 | UASM_i_SW(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, host_entryhi), |
| 305 | GPR_K1); |
| 306 | |
| 307 | /* Set the root ASID for the Guest */ |
| 308 | UASM_i_ADDIU(&p, GPR_T1, GPR_S0, |
| 309 | offsetof(struct kvm, arch.gpa_mm.context.asid)); |
| 310 | |
| 311 | /* t1: contains the base of the ASID array, need to get the cpu id */ |
| 312 | /* smp_processor_id */ |
| 313 | uasm_i_lw(&p, GPR_T2, offsetof(struct thread_info, cpu), GPR_GP); |
| 314 | /* index the ASID array */ |
| 315 | uasm_i_sll(&p, GPR_T2, GPR_T2, ilog2(sizeof(long))); |
| 316 | UASM_i_ADDU(&p, GPR_T3, GPR_T1, GPR_T2); |
| 317 | UASM_i_LW(&p, GPR_K0, 0, GPR_T3); |
| 318 | #ifdef CONFIG_MIPS_ASID_BITS_VARIABLE |
| 319 | /* |
| 320 | * reuse ASID array offset |
| 321 | * cpuinfo_mips is a multiple of sizeof(long) |
| 322 | */ |
| 323 | uasm_i_addiu(&p, GPR_T3, GPR_ZERO, sizeof(struct cpuinfo_mips)/sizeof(long)); |
| 324 | uasm_i_mul(&p, GPR_T2, GPR_T2, GPR_T3); |
| 325 | |
| 326 | UASM_i_LA_mostly(&p, GPR_AT, (long)&cpu_data[0].asid_mask); |
| 327 | UASM_i_ADDU(&p, GPR_AT, GPR_AT, GPR_T2); |
| 328 | UASM_i_LW(&p, GPR_T2, uasm_rel_lo((long)&cpu_data[0].asid_mask), GPR_AT); |
| 329 | uasm_i_and(&p, GPR_K0, GPR_K0, GPR_T2); |
| 330 | #else |
| 331 | uasm_i_andi(&p, GPR_K0, GPR_K0, MIPS_ENTRYHI_ASID); |
| 332 | #endif |
| 333 | |
| 334 | /* Set up KVM VZ root ASID (!guestid) */ |
| 335 | uasm_i_mtc0(&p, GPR_K0, C0_ENTRYHI); |
| 336 | skip_asid_restore: |
| 337 | uasm_i_ehb(&p); |
| 338 | |
| 339 | /* Disable RDHWR access */ |
| 340 | uasm_i_mtc0(&p, GPR_ZERO, C0_HWRENA); |
| 341 | |
| 342 | /* load the guest context from VCPU and return */ |
| 343 | for (i = 1; i < 32; ++i) { |
| 344 | /* Guest k0/k1 loaded later */ |
| 345 | if (i == GPR_K0 || i == GPR_K1) |
| 346 | continue; |
| 347 | UASM_i_LW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), GPR_K1); |
| 348 | } |
| 349 | |
| 350 | #ifndef CONFIG_CPU_MIPSR6 |
| 351 | /* Restore hi/lo */ |
| 352 | UASM_i_LW(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, hi), GPR_K1); |
| 353 | uasm_i_mthi(&p, GPR_K0); |
| 354 | |
| 355 | UASM_i_LW(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, lo), GPR_K1); |
| 356 | uasm_i_mtlo(&p, GPR_K0); |
| 357 | #endif |
| 358 | |
| 359 | /* Restore the guest's k0/k1 registers */ |
| 360 | UASM_i_LW(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, gprs[GPR_K0]), GPR_K1); |
| 361 | UASM_i_LW(&p, GPR_K1, offsetof(struct kvm_vcpu_arch, gprs[GPR_K1]), GPR_K1); |
| 362 | |
| 363 | /* Jump to guest */ |
| 364 | uasm_i_eret(&p); |
| 365 | |
| 366 | uasm_resolve_relocs(relocs, labels); |
| 367 | |
| 368 | return p; |
| 369 | } |
| 370 | |
| 371 | /** |
| 372 | * kvm_mips_build_tlb_refill_exception() - Assemble TLB refill handler. |
| 373 | * @addr: Address to start writing code. |
| 374 | * @handler: Address of common handler (within range of @addr). |
| 375 | * |
| 376 | * Assemble TLB refill exception fast path handler for guest execution. |
| 377 | * |
| 378 | * Returns: Next address after end of written function. |
| 379 | */ |
| 380 | void *kvm_mips_build_tlb_refill_exception(void *addr, void *handler) |
| 381 | { |
| 382 | u32 *p = addr; |
| 383 | struct uasm_label labels[2]; |
| 384 | struct uasm_reloc relocs[2]; |
| 385 | #ifndef CONFIG_CPU_LOONGSON64 |
| 386 | struct uasm_label *l = labels; |
| 387 | struct uasm_reloc *r = relocs; |
| 388 | #endif |
| 389 | |
| 390 | memset(labels, 0, sizeof(labels)); |
| 391 | memset(relocs, 0, sizeof(relocs)); |
| 392 | |
| 393 | /* Save guest k1 into scratch register */ |
| 394 | UASM_i_MTC0(&p, GPR_K1, scratch_tmp[0], scratch_tmp[1]); |
| 395 | |
| 396 | /* Get the VCPU pointer from the VCPU scratch register */ |
| 397 | UASM_i_MFC0(&p, GPR_K1, scratch_vcpu[0], scratch_vcpu[1]); |
| 398 | |
| 399 | /* Save guest k0 into VCPU structure */ |
| 400 | UASM_i_SW(&p, GPR_K0, offsetof(struct kvm_vcpu, arch.gprs[GPR_K0]), GPR_K1); |
| 401 | |
| 402 | /* |
| 403 | * Some of the common tlbex code uses current_cpu_type(). For KVM we |
| 404 | * assume symmetry and just disable preemption to silence the warning. |
| 405 | */ |
| 406 | preempt_disable(); |
| 407 | |
| 408 | #ifdef CONFIG_CPU_LOONGSON64 |
| 409 | UASM_i_MFC0(&p, GPR_K1, C0_PGD); |
| 410 | uasm_i_lddir(&p, GPR_K0, GPR_K1, 3); /* global page dir */ |
| 411 | #ifndef __PAGETABLE_PMD_FOLDED |
| 412 | uasm_i_lddir(&p, GPR_K1, GPR_K0, 1); /* middle page dir */ |
| 413 | #endif |
| 414 | uasm_i_ldpte(&p, GPR_K1, 0); /* even */ |
| 415 | uasm_i_ldpte(&p, GPR_K1, 1); /* odd */ |
| 416 | uasm_i_tlbwr(&p); |
| 417 | #else |
| 418 | /* |
| 419 | * Now for the actual refill bit. A lot of this can be common with the |
| 420 | * Linux TLB refill handler, however we don't need to handle so many |
| 421 | * cases. We only need to handle user mode refills, and user mode runs |
| 422 | * with 32-bit addressing. |
| 423 | * |
| 424 | * Therefore the branch to label_vmalloc generated by build_get_pmde64() |
| 425 | * that isn't resolved should never actually get taken and is harmless |
| 426 | * to leave in place for now. |
| 427 | */ |
| 428 | |
| 429 | #ifdef CONFIG_64BIT |
| 430 | build_get_pmde64(&p, &l, &r, GPR_K0, GPR_K1); /* get pmd in GPR_K1 */ |
| 431 | #else |
| 432 | build_get_pgde32(&p, GPR_K0, GPR_K1); /* get pgd in GPR_K1 */ |
| 433 | #endif |
| 434 | |
| 435 | /* we don't support huge pages yet */ |
| 436 | |
| 437 | build_get_ptep(&p, GPR_K0, GPR_K1); |
| 438 | build_update_entries(&p, GPR_K0, GPR_K1); |
| 439 | build_tlb_write_entry(&p, &l, &r, tlb_random); |
| 440 | #endif |
| 441 | |
| 442 | preempt_enable(); |
| 443 | |
| 444 | /* Get the VCPU pointer from the VCPU scratch register again */ |
| 445 | UASM_i_MFC0(&p, GPR_K1, scratch_vcpu[0], scratch_vcpu[1]); |
| 446 | |
| 447 | /* Restore the guest's k0/k1 registers */ |
| 448 | UASM_i_LW(&p, GPR_K0, offsetof(struct kvm_vcpu, arch.gprs[GPR_K0]), GPR_K1); |
| 449 | uasm_i_ehb(&p); |
| 450 | UASM_i_MFC0(&p, GPR_K1, scratch_tmp[0], scratch_tmp[1]); |
| 451 | |
| 452 | /* Jump to guest */ |
| 453 | uasm_i_eret(&p); |
| 454 | |
| 455 | return p; |
| 456 | } |
| 457 | |
| 458 | /** |
| 459 | * kvm_mips_build_exception() - Assemble first level guest exception handler. |
| 460 | * @addr: Address to start writing code. |
| 461 | * @handler: Address of common handler (within range of @addr). |
| 462 | * |
| 463 | * Assemble exception vector code for guest execution. The generated vector will |
| 464 | * branch to the common exception handler generated by kvm_mips_build_exit(). |
| 465 | * |
| 466 | * Returns: Next address after end of written function. |
| 467 | */ |
| 468 | void *kvm_mips_build_exception(void *addr, void *handler) |
| 469 | { |
| 470 | u32 *p = addr; |
| 471 | struct uasm_label labels[2]; |
| 472 | struct uasm_reloc relocs[2]; |
| 473 | struct uasm_label *l = labels; |
| 474 | struct uasm_reloc *r = relocs; |
| 475 | |
| 476 | memset(labels, 0, sizeof(labels)); |
| 477 | memset(relocs, 0, sizeof(relocs)); |
| 478 | |
| 479 | /* Save guest k1 into scratch register */ |
| 480 | UASM_i_MTC0(&p, GPR_K1, scratch_tmp[0], scratch_tmp[1]); |
| 481 | |
| 482 | /* Get the VCPU pointer from the VCPU scratch register */ |
| 483 | UASM_i_MFC0(&p, GPR_K1, scratch_vcpu[0], scratch_vcpu[1]); |
| 484 | UASM_i_ADDIU(&p, GPR_K1, GPR_K1, offsetof(struct kvm_vcpu, arch)); |
| 485 | |
| 486 | /* Save guest k0 into VCPU structure */ |
| 487 | UASM_i_SW(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, gprs[GPR_K0]), GPR_K1); |
| 488 | |
| 489 | /* Branch to the common handler */ |
| 490 | uasm_il_b(&p, &r, label_exit_common); |
| 491 | uasm_i_nop(&p); |
| 492 | |
| 493 | uasm_l_exit_common(&l, handler); |
| 494 | uasm_resolve_relocs(relocs, labels); |
| 495 | |
| 496 | return p; |
| 497 | } |
| 498 | |
| 499 | /** |
| 500 | * kvm_mips_build_exit() - Assemble common guest exit handler. |
| 501 | * @addr: Address to start writing code. |
| 502 | * |
| 503 | * Assemble the generic guest exit handling code. This is called by the |
| 504 | * exception vectors (generated by kvm_mips_build_exception()), and calls |
| 505 | * kvm_mips_handle_exit(), then either resumes the guest or returns to the host |
| 506 | * depending on the return value. |
| 507 | * |
| 508 | * Returns: Next address after end of written function. |
| 509 | */ |
| 510 | void *kvm_mips_build_exit(void *addr) |
| 511 | { |
| 512 | u32 *p = addr; |
| 513 | unsigned int i; |
| 514 | struct uasm_label labels[3]; |
| 515 | struct uasm_reloc relocs[3]; |
| 516 | struct uasm_label *l = labels; |
| 517 | struct uasm_reloc *r = relocs; |
| 518 | |
| 519 | memset(labels, 0, sizeof(labels)); |
| 520 | memset(relocs, 0, sizeof(relocs)); |
| 521 | |
| 522 | /* |
| 523 | * Generic Guest exception handler. We end up here when the guest |
| 524 | * does something that causes a trap to kernel mode. |
| 525 | * |
| 526 | * Both k0/k1 registers will have already been saved (k0 into the vcpu |
| 527 | * structure, and k1 into the scratch_tmp register). |
| 528 | * |
| 529 | * The k1 register will already contain the kvm_vcpu_arch pointer. |
| 530 | */ |
| 531 | |
| 532 | /* Start saving Guest context to VCPU */ |
| 533 | for (i = 0; i < 32; ++i) { |
| 534 | /* Guest k0/k1 saved later */ |
| 535 | if (i == GPR_K0 || i == GPR_K1) |
| 536 | continue; |
| 537 | UASM_i_SW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), GPR_K1); |
| 538 | } |
| 539 | |
| 540 | #ifndef CONFIG_CPU_MIPSR6 |
| 541 | /* We need to save hi/lo and restore them on the way out */ |
| 542 | uasm_i_mfhi(&p, GPR_T0); |
| 543 | UASM_i_SW(&p, GPR_T0, offsetof(struct kvm_vcpu_arch, hi), GPR_K1); |
| 544 | |
| 545 | uasm_i_mflo(&p, GPR_T0); |
| 546 | UASM_i_SW(&p, GPR_T0, offsetof(struct kvm_vcpu_arch, lo), GPR_K1); |
| 547 | #endif |
| 548 | |
| 549 | /* Finally save guest k1 to VCPU */ |
| 550 | uasm_i_ehb(&p); |
| 551 | UASM_i_MFC0(&p, GPR_T0, scratch_tmp[0], scratch_tmp[1]); |
| 552 | UASM_i_SW(&p, GPR_T0, offsetof(struct kvm_vcpu_arch, gprs[GPR_K1]), GPR_K1); |
| 553 | |
| 554 | /* Now that context has been saved, we can use other registers */ |
| 555 | |
| 556 | /* Restore vcpu */ |
| 557 | UASM_i_MFC0(&p, GPR_S0, scratch_vcpu[0], scratch_vcpu[1]); |
| 558 | |
| 559 | /* |
| 560 | * Save Host level EPC, BadVaddr and Cause to VCPU, useful to process |
| 561 | * the exception |
| 562 | */ |
| 563 | UASM_i_MFC0(&p, GPR_K0, C0_EPC); |
| 564 | UASM_i_SW(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, pc), GPR_K1); |
| 565 | |
| 566 | UASM_i_MFC0(&p, GPR_K0, C0_BADVADDR); |
| 567 | UASM_i_SW(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, host_cp0_badvaddr), |
| 568 | GPR_K1); |
| 569 | |
| 570 | uasm_i_mfc0(&p, GPR_K0, C0_CAUSE); |
| 571 | uasm_i_sw(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, host_cp0_cause), GPR_K1); |
| 572 | |
| 573 | if (cpu_has_badinstr) { |
| 574 | uasm_i_mfc0(&p, GPR_K0, C0_BADINSTR); |
| 575 | uasm_i_sw(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, |
| 576 | host_cp0_badinstr), GPR_K1); |
| 577 | } |
| 578 | |
| 579 | if (cpu_has_badinstrp) { |
| 580 | uasm_i_mfc0(&p, GPR_K0, C0_BADINSTRP); |
| 581 | uasm_i_sw(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, |
| 582 | host_cp0_badinstrp), GPR_K1); |
| 583 | } |
| 584 | |
| 585 | /* Now restore the host state just enough to run the handlers */ |
| 586 | |
| 587 | /* Switch EBASE to the one used by Linux */ |
| 588 | /* load up the host EBASE */ |
| 589 | uasm_i_mfc0(&p, GPR_V0, C0_STATUS); |
| 590 | |
| 591 | uasm_i_lui(&p, GPR_AT, ST0_BEV >> 16); |
| 592 | uasm_i_or(&p, GPR_K0, GPR_V0, GPR_AT); |
| 593 | |
| 594 | uasm_i_mtc0(&p, GPR_K0, C0_STATUS); |
| 595 | uasm_i_ehb(&p); |
| 596 | |
| 597 | UASM_i_LA_mostly(&p, GPR_K0, (long)&ebase); |
| 598 | UASM_i_LW(&p, GPR_K0, uasm_rel_lo((long)&ebase), GPR_K0); |
| 599 | build_set_exc_base(&p, GPR_K0); |
| 600 | |
| 601 | if (raw_cpu_has_fpu) { |
| 602 | /* |
| 603 | * If FPU is enabled, save FCR31 and clear it so that later |
| 604 | * ctc1's don't trigger FPE for pending exceptions. |
| 605 | */ |
| 606 | uasm_i_lui(&p, GPR_AT, ST0_CU1 >> 16); |
| 607 | uasm_i_and(&p, GPR_V1, GPR_V0, GPR_AT); |
| 608 | uasm_il_beqz(&p, &r, GPR_V1, label_fpu_1); |
| 609 | uasm_i_nop(&p); |
| 610 | uasm_i_cfc1(&p, GPR_T0, 31); |
| 611 | uasm_i_sw(&p, GPR_T0, offsetof(struct kvm_vcpu_arch, fpu.fcr31), |
| 612 | GPR_K1); |
| 613 | uasm_i_ctc1(&p, GPR_ZERO, 31); |
| 614 | uasm_l_fpu_1(&l, p); |
| 615 | } |
| 616 | |
| 617 | if (cpu_has_msa) { |
| 618 | /* |
| 619 | * If MSA is enabled, save MSACSR and clear it so that later |
| 620 | * instructions don't trigger MSAFPE for pending exceptions. |
| 621 | */ |
| 622 | uasm_i_mfc0(&p, GPR_T0, C0_CONFIG5); |
| 623 | uasm_i_ext(&p, GPR_T0, GPR_T0, 27, 1); /* MIPS_CONF5_MSAEN */ |
| 624 | uasm_il_beqz(&p, &r, GPR_T0, label_msa_1); |
| 625 | uasm_i_nop(&p); |
| 626 | uasm_i_cfcmsa(&p, GPR_T0, MSA_CSR); |
| 627 | uasm_i_sw(&p, GPR_T0, offsetof(struct kvm_vcpu_arch, fpu.msacsr), |
| 628 | GPR_K1); |
| 629 | uasm_i_ctcmsa(&p, MSA_CSR, GPR_ZERO); |
| 630 | uasm_l_msa_1(&l, p); |
| 631 | } |
| 632 | |
| 633 | /* Restore host ASID */ |
| 634 | if (!cpu_has_guestid) { |
| 635 | UASM_i_LW(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, host_entryhi), |
| 636 | GPR_K1); |
| 637 | UASM_i_MTC0(&p, GPR_K0, C0_ENTRYHI); |
| 638 | } |
| 639 | |
| 640 | /* |
| 641 | * Set up normal Linux process pgd. |
| 642 | * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD(): |
| 643 | * - call tlbmiss_handler_setup_pgd(mm->pgd) |
| 644 | * - write mm->pgd into CP0_PWBase |
| 645 | */ |
| 646 | UASM_i_LW(&p, GPR_A0, |
| 647 | offsetof(struct kvm_vcpu_arch, host_pgd), GPR_K1); |
| 648 | UASM_i_LA(&p, GPR_T9, (unsigned long)tlbmiss_handler_setup_pgd); |
| 649 | uasm_i_jalr(&p, GPR_RA, GPR_T9); |
| 650 | /* delay slot */ |
| 651 | if (cpu_has_htw) |
| 652 | UASM_i_MTC0(&p, GPR_A0, C0_PWBASE); |
| 653 | else |
| 654 | uasm_i_nop(&p); |
| 655 | |
| 656 | /* Clear GM bit so we don't enter guest mode when EXL is cleared */ |
| 657 | uasm_i_mfc0(&p, GPR_K0, C0_GUESTCTL0); |
| 658 | uasm_i_ins(&p, GPR_K0, GPR_ZERO, MIPS_GCTL0_GM_SHIFT, 1); |
| 659 | uasm_i_mtc0(&p, GPR_K0, C0_GUESTCTL0); |
| 660 | |
| 661 | /* Save GuestCtl0 so we can access GExcCode after CPU migration */ |
| 662 | uasm_i_sw(&p, GPR_K0, |
| 663 | offsetof(struct kvm_vcpu_arch, host_cp0_guestctl0), GPR_K1); |
| 664 | |
| 665 | if (cpu_has_guestid) { |
| 666 | /* |
| 667 | * Clear root mode GuestID, so that root TLB operations use the |
| 668 | * root GuestID in the root TLB. |
| 669 | */ |
| 670 | uasm_i_mfc0(&p, GPR_T0, C0_GUESTCTL1); |
| 671 | /* Set GuestCtl1.RID = MIPS_GCTL1_ROOT_GUESTID (i.e. 0) */ |
| 672 | uasm_i_ins(&p, GPR_T0, GPR_ZERO, MIPS_GCTL1_RID_SHIFT, |
| 673 | MIPS_GCTL1_RID_WIDTH); |
| 674 | uasm_i_mtc0(&p, GPR_T0, C0_GUESTCTL1); |
| 675 | } |
| 676 | |
| 677 | /* Now that the new EBASE has been loaded, unset BEV and KSU_USER */ |
| 678 | uasm_i_addiu(&p, GPR_AT, GPR_ZERO, ~(ST0_EXL | KSU_USER | ST0_IE)); |
| 679 | uasm_i_and(&p, GPR_V0, GPR_V0, GPR_AT); |
| 680 | uasm_i_lui(&p, GPR_AT, ST0_CU0 >> 16); |
| 681 | uasm_i_or(&p, GPR_V0, GPR_V0, GPR_AT); |
| 682 | #ifdef CONFIG_64BIT |
| 683 | uasm_i_ori(&p, GPR_V0, GPR_V0, ST0_SX | ST0_UX); |
| 684 | #endif |
| 685 | uasm_i_mtc0(&p, GPR_V0, C0_STATUS); |
| 686 | uasm_i_ehb(&p); |
| 687 | |
| 688 | /* Load up host GPR_GP */ |
| 689 | UASM_i_LW(&p, GPR_GP, offsetof(struct kvm_vcpu_arch, host_gp), GPR_K1); |
| 690 | |
| 691 | /* Need a stack before we can jump to "C" */ |
| 692 | UASM_i_LW(&p, GPR_SP, offsetof(struct kvm_vcpu_arch, host_stack), GPR_K1); |
| 693 | |
| 694 | /* Saved host state */ |
| 695 | UASM_i_ADDIU(&p, GPR_SP, GPR_SP, -(int)sizeof(struct pt_regs)); |
| 696 | |
| 697 | /* |
| 698 | * XXXKYMA do we need to load the host ASID, maybe not because the |
| 699 | * kernel entries are marked GLOBAL, need to verify |
| 700 | */ |
| 701 | |
| 702 | /* Restore host scratch registers, as we'll have clobbered them */ |
| 703 | kvm_mips_build_restore_scratch(&p, GPR_K0, GPR_SP); |
| 704 | |
| 705 | /* Restore RDHWR access */ |
| 706 | UASM_i_LA_mostly(&p, GPR_K0, (long)&hwrena); |
| 707 | uasm_i_lw(&p, GPR_K0, uasm_rel_lo((long)&hwrena), GPR_K0); |
| 708 | uasm_i_mtc0(&p, GPR_K0, C0_HWRENA); |
| 709 | |
| 710 | /* Jump to handler */ |
| 711 | /* |
| 712 | * XXXKYMA: not sure if this is safe, how large is the stack?? |
| 713 | * Now jump to the kvm_mips_handle_exit() to see if we can deal |
| 714 | * with this in the kernel |
| 715 | */ |
| 716 | uasm_i_move(&p, GPR_A0, GPR_S0); |
| 717 | UASM_i_LA(&p, GPR_T9, (unsigned long)kvm_mips_handle_exit); |
| 718 | uasm_i_jalr(&p, GPR_RA, GPR_T9); |
| 719 | UASM_i_ADDIU(&p, GPR_SP, GPR_SP, -CALLFRAME_SIZ); |
| 720 | |
| 721 | uasm_resolve_relocs(relocs, labels); |
| 722 | |
| 723 | p = kvm_mips_build_ret_from_exit(p); |
| 724 | |
| 725 | return p; |
| 726 | } |
| 727 | |
| 728 | /** |
| 729 | * kvm_mips_build_ret_from_exit() - Assemble guest exit return handler. |
| 730 | * @addr: Address to start writing code. |
| 731 | * |
| 732 | * Assemble the code to handle the return from kvm_mips_handle_exit(), either |
| 733 | * resuming the guest or returning to the host depending on the return value. |
| 734 | * |
| 735 | * Returns: Next address after end of written function. |
| 736 | */ |
| 737 | static void *kvm_mips_build_ret_from_exit(void *addr) |
| 738 | { |
| 739 | u32 *p = addr; |
| 740 | struct uasm_label labels[2]; |
| 741 | struct uasm_reloc relocs[2]; |
| 742 | struct uasm_label *l = labels; |
| 743 | struct uasm_reloc *r = relocs; |
| 744 | |
| 745 | memset(labels, 0, sizeof(labels)); |
| 746 | memset(relocs, 0, sizeof(relocs)); |
| 747 | |
| 748 | /* Return from handler Make sure interrupts are disabled */ |
| 749 | uasm_i_di(&p, GPR_ZERO); |
| 750 | uasm_i_ehb(&p); |
| 751 | |
| 752 | /* |
| 753 | * XXXKYMA: k0/k1 could have been blown away if we processed |
| 754 | * an exception while we were handling the exception from the |
| 755 | * guest, reload k1 |
| 756 | */ |
| 757 | |
| 758 | uasm_i_move(&p, GPR_K1, GPR_S0); |
| 759 | UASM_i_ADDIU(&p, GPR_K1, GPR_K1, offsetof(struct kvm_vcpu, arch)); |
| 760 | |
| 761 | /* |
| 762 | * Check return value, should tell us if we are returning to the |
| 763 | * host (handle I/O etc)or resuming the guest |
| 764 | */ |
| 765 | uasm_i_andi(&p, GPR_T0, GPR_V0, RESUME_HOST); |
| 766 | uasm_il_bnez(&p, &r, GPR_T0, label_return_to_host); |
| 767 | uasm_i_nop(&p); |
| 768 | |
| 769 | p = kvm_mips_build_ret_to_guest(p); |
| 770 | |
| 771 | uasm_l_return_to_host(&l, p); |
| 772 | p = kvm_mips_build_ret_to_host(p); |
| 773 | |
| 774 | uasm_resolve_relocs(relocs, labels); |
| 775 | |
| 776 | return p; |
| 777 | } |
| 778 | |
| 779 | /** |
| 780 | * kvm_mips_build_ret_to_guest() - Assemble code to return to the guest. |
| 781 | * @addr: Address to start writing code. |
| 782 | * |
| 783 | * Assemble the code to handle return from the guest exit handler |
| 784 | * (kvm_mips_handle_exit()) back to the guest. |
| 785 | * |
| 786 | * Returns: Next address after end of written function. |
| 787 | */ |
| 788 | static void *kvm_mips_build_ret_to_guest(void *addr) |
| 789 | { |
| 790 | u32 *p = addr; |
| 791 | |
| 792 | /* Put the saved pointer to vcpu (s0) back into the scratch register */ |
| 793 | UASM_i_MTC0(&p, GPR_S0, scratch_vcpu[0], scratch_vcpu[1]); |
| 794 | |
| 795 | /* Load up the Guest EBASE to minimize the window where BEV is set */ |
| 796 | UASM_i_LW(&p, GPR_T0, offsetof(struct kvm_vcpu_arch, guest_ebase), GPR_K1); |
| 797 | |
| 798 | /* Switch EBASE back to the one used by KVM */ |
| 799 | uasm_i_mfc0(&p, GPR_V1, C0_STATUS); |
| 800 | uasm_i_lui(&p, GPR_AT, ST0_BEV >> 16); |
| 801 | uasm_i_or(&p, GPR_K0, GPR_V1, GPR_AT); |
| 802 | uasm_i_mtc0(&p, GPR_K0, C0_STATUS); |
| 803 | uasm_i_ehb(&p); |
| 804 | build_set_exc_base(&p, GPR_T0); |
| 805 | |
| 806 | /* Setup status register for running guest in UM */ |
| 807 | uasm_i_ori(&p, GPR_V1, GPR_V1, ST0_EXL | KSU_USER | ST0_IE); |
| 808 | UASM_i_LA(&p, GPR_AT, ~(ST0_CU0 | ST0_MX | ST0_SX | ST0_UX)); |
| 809 | uasm_i_and(&p, GPR_V1, GPR_V1, GPR_AT); |
| 810 | uasm_i_mtc0(&p, GPR_V1, C0_STATUS); |
| 811 | uasm_i_ehb(&p); |
| 812 | |
| 813 | p = kvm_mips_build_enter_guest(p); |
| 814 | |
| 815 | return p; |
| 816 | } |
| 817 | |
| 818 | /** |
| 819 | * kvm_mips_build_ret_to_host() - Assemble code to return to the host. |
| 820 | * @addr: Address to start writing code. |
| 821 | * |
| 822 | * Assemble the code to handle return from the guest exit handler |
| 823 | * (kvm_mips_handle_exit()) back to the host, i.e. to the caller of the vcpu_run |
| 824 | * function generated by kvm_mips_build_vcpu_run(). |
| 825 | * |
| 826 | * Returns: Next address after end of written function. |
| 827 | */ |
| 828 | static void *kvm_mips_build_ret_to_host(void *addr) |
| 829 | { |
| 830 | u32 *p = addr; |
| 831 | unsigned int i; |
| 832 | |
| 833 | /* EBASE is already pointing to Linux */ |
| 834 | UASM_i_LW(&p, GPR_K1, offsetof(struct kvm_vcpu_arch, host_stack), GPR_K1); |
| 835 | UASM_i_ADDIU(&p, GPR_K1, GPR_K1, -(int)sizeof(struct pt_regs)); |
| 836 | |
| 837 | /* |
| 838 | * r2/v0 is the return code, shift it down by 2 (arithmetic) |
| 839 | * to recover the err code |
| 840 | */ |
| 841 | uasm_i_sra(&p, GPR_K0, GPR_V0, 2); |
| 842 | uasm_i_move(&p, GPR_V0, GPR_K0); |
| 843 | |
| 844 | /* Load context saved on the host stack */ |
| 845 | for (i = 16; i < 31; ++i) { |
| 846 | if (i == 24) |
| 847 | i = 28; |
| 848 | UASM_i_LW(&p, i, offsetof(struct pt_regs, regs[i]), GPR_K1); |
| 849 | } |
| 850 | |
| 851 | /* Restore RDHWR access */ |
| 852 | UASM_i_LA_mostly(&p, GPR_K0, (long)&hwrena); |
| 853 | uasm_i_lw(&p, GPR_K0, uasm_rel_lo((long)&hwrena), GPR_K0); |
| 854 | uasm_i_mtc0(&p, GPR_K0, C0_HWRENA); |
| 855 | |
| 856 | /* Restore GPR_RA, which is the address we will return to */ |
| 857 | UASM_i_LW(&p, GPR_RA, offsetof(struct pt_regs, regs[GPR_RA]), GPR_K1); |
| 858 | uasm_i_jr(&p, GPR_RA); |
| 859 | uasm_i_nop(&p); |
| 860 | |
| 861 | return p; |
| 862 | } |
| 863 | |