| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * Based on arch/arm/mm/init.c |
| 4 | * |
| 5 | * Copyright (C) 1995-2005 Russell King |
| 6 | * Copyright (C) 2012 ARM Ltd. |
| 7 | */ |
| 8 | |
| 9 | #include <linux/kernel.h> |
| 10 | #include <linux/export.h> |
| 11 | #include <linux/errno.h> |
| 12 | #include <linux/swap.h> |
| 13 | #include <linux/init.h> |
| 14 | #include <linux/cache.h> |
| 15 | #include <linux/mman.h> |
| 16 | #include <linux/nodemask.h> |
| 17 | #include <linux/initrd.h> |
| 18 | #include <linux/gfp.h> |
| 19 | #include <linux/math.h> |
| 20 | #include <linux/memblock.h> |
| 21 | #include <linux/sort.h> |
| 22 | #include <linux/of.h> |
| 23 | #include <linux/of_fdt.h> |
| 24 | #include <linux/dma-direct.h> |
| 25 | #include <linux/dma-map-ops.h> |
| 26 | #include <linux/efi.h> |
| 27 | #include <linux/swiotlb.h> |
| 28 | #include <linux/vmalloc.h> |
| 29 | #include <linux/mm.h> |
| 30 | #include <linux/kexec.h> |
| 31 | #include <linux/crash_dump.h> |
| 32 | #include <linux/hugetlb.h> |
| 33 | #include <linux/acpi_iort.h> |
| 34 | #include <linux/kmemleak.h> |
| 35 | #include <linux/execmem.h> |
| 36 | |
| 37 | #include <asm/boot.h> |
| 38 | #include <asm/fixmap.h> |
| 39 | #include <asm/kasan.h> |
| 40 | #include <asm/kernel-pgtable.h> |
| 41 | #include <asm/kvm_host.h> |
| 42 | #include <asm/memory.h> |
| 43 | #include <asm/numa.h> |
| 44 | #include <asm/rsi.h> |
| 45 | #include <asm/sections.h> |
| 46 | #include <asm/setup.h> |
| 47 | #include <linux/sizes.h> |
| 48 | #include <asm/tlb.h> |
| 49 | #include <asm/alternative.h> |
| 50 | #include <asm/xen/swiotlb-xen.h> |
| 51 | |
| 52 | /* |
| 53 | * We need to be able to catch inadvertent references to memstart_addr |
| 54 | * that occur (potentially in generic code) before arm64_memblock_init() |
| 55 | * executes, which assigns it its actual value. So use a default value |
| 56 | * that cannot be mistaken for a real physical address. |
| 57 | */ |
| 58 | s64 memstart_addr __ro_after_init = -1; |
| 59 | EXPORT_SYMBOL(memstart_addr); |
| 60 | |
| 61 | /* |
| 62 | * If the corresponding config options are enabled, we create both ZONE_DMA |
| 63 | * and ZONE_DMA32. By default ZONE_DMA covers the 32-bit addressable memory |
| 64 | * unless restricted on specific platforms (e.g. 30-bit on Raspberry Pi 4). |
| 65 | * In such case, ZONE_DMA32 covers the rest of the 32-bit addressable memory, |
| 66 | * otherwise it is empty. |
| 67 | */ |
| 68 | phys_addr_t __ro_after_init arm64_dma_phys_limit; |
| 69 | |
| 70 | /* |
| 71 | * To make optimal use of block mappings when laying out the linear |
| 72 | * mapping, round down the base of physical memory to a size that can |
| 73 | * be mapped efficiently, i.e., either PUD_SIZE (4k granule) or PMD_SIZE |
| 74 | * (64k granule), or a multiple that can be mapped using contiguous bits |
| 75 | * in the page tables: 32 * PMD_SIZE (16k granule) |
| 76 | */ |
| 77 | #if defined(CONFIG_ARM64_4K_PAGES) |
| 78 | #define ARM64_MEMSTART_SHIFT PUD_SHIFT |
| 79 | #elif defined(CONFIG_ARM64_16K_PAGES) |
| 80 | #define ARM64_MEMSTART_SHIFT CONT_PMD_SHIFT |
| 81 | #else |
| 82 | #define ARM64_MEMSTART_SHIFT PMD_SHIFT |
| 83 | #endif |
| 84 | |
| 85 | /* |
| 86 | * sparsemem vmemmap imposes an additional requirement on the alignment of |
| 87 | * memstart_addr, due to the fact that the base of the vmemmap region |
| 88 | * has a direct correspondence, and needs to appear sufficiently aligned |
| 89 | * in the virtual address space. |
| 90 | */ |
| 91 | #if ARM64_MEMSTART_SHIFT < SECTION_SIZE_BITS |
| 92 | #define ARM64_MEMSTART_ALIGN (1UL << SECTION_SIZE_BITS) |
| 93 | #else |
| 94 | #define ARM64_MEMSTART_ALIGN (1UL << ARM64_MEMSTART_SHIFT) |
| 95 | #endif |
| 96 | |
| 97 | static void __init arch_reserve_crashkernel(void) |
| 98 | { |
| 99 | unsigned long long low_size = 0; |
| 100 | unsigned long long crash_base, crash_size; |
| 101 | bool high = false; |
| 102 | int ret; |
| 103 | |
| 104 | if (!IS_ENABLED(CONFIG_CRASH_RESERVE)) |
| 105 | return; |
| 106 | |
| 107 | ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(), |
| 108 | &crash_size, &crash_base, |
| 109 | &low_size, &high); |
| 110 | if (ret) |
| 111 | return; |
| 112 | |
| 113 | reserve_crashkernel_generic(crash_size, crash_base, low_size, high); |
| 114 | } |
| 115 | |
| 116 | static phys_addr_t __init max_zone_phys(phys_addr_t zone_limit) |
| 117 | { |
| 118 | return min(zone_limit, memblock_end_of_DRAM() - 1) + 1; |
| 119 | } |
| 120 | |
| 121 | static void __init zone_sizes_init(void) |
| 122 | { |
| 123 | unsigned long max_zone_pfns[MAX_NR_ZONES] = {0}; |
| 124 | phys_addr_t __maybe_unused acpi_zone_dma_limit; |
| 125 | phys_addr_t __maybe_unused dt_zone_dma_limit; |
| 126 | phys_addr_t __maybe_unused dma32_phys_limit = |
| 127 | max_zone_phys(DMA_BIT_MASK(32)); |
| 128 | |
| 129 | #ifdef CONFIG_ZONE_DMA |
| 130 | acpi_zone_dma_limit = acpi_iort_dma_get_max_cpu_address(); |
| 131 | dt_zone_dma_limit = of_dma_get_max_cpu_address(NULL); |
| 132 | zone_dma_limit = min(dt_zone_dma_limit, acpi_zone_dma_limit); |
| 133 | /* |
| 134 | * Information we get from firmware (e.g. DT dma-ranges) describe DMA |
| 135 | * bus constraints. Devices using DMA might have their own limitations. |
| 136 | * Some of them rely on DMA zone in low 32-bit memory. Keep low RAM |
| 137 | * DMA zone on platforms that have RAM there. |
| 138 | */ |
| 139 | if (memblock_start_of_DRAM() < U32_MAX) |
| 140 | zone_dma_limit = min(zone_dma_limit, U32_MAX); |
| 141 | arm64_dma_phys_limit = max_zone_phys(zone_dma_limit); |
| 142 | max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit); |
| 143 | #endif |
| 144 | #ifdef CONFIG_ZONE_DMA32 |
| 145 | max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit); |
| 146 | if (!arm64_dma_phys_limit) |
| 147 | arm64_dma_phys_limit = dma32_phys_limit; |
| 148 | #endif |
| 149 | if (!arm64_dma_phys_limit) |
| 150 | arm64_dma_phys_limit = PHYS_MASK + 1; |
| 151 | max_zone_pfns[ZONE_NORMAL] = max_pfn; |
| 152 | |
| 153 | free_area_init(max_zone_pfns); |
| 154 | } |
| 155 | |
| 156 | int pfn_is_map_memory(unsigned long pfn) |
| 157 | { |
| 158 | phys_addr_t addr = PFN_PHYS(pfn); |
| 159 | |
| 160 | /* avoid false positives for bogus PFNs, see comment in pfn_valid() */ |
| 161 | if (PHYS_PFN(addr) != pfn) |
| 162 | return 0; |
| 163 | |
| 164 | return memblock_is_map_memory(addr); |
| 165 | } |
| 166 | EXPORT_SYMBOL(pfn_is_map_memory); |
| 167 | |
| 168 | static phys_addr_t memory_limit __ro_after_init = PHYS_ADDR_MAX; |
| 169 | |
| 170 | /* |
| 171 | * Limit the memory size that was specified via FDT. |
| 172 | */ |
| 173 | static int __init early_mem(char *p) |
| 174 | { |
| 175 | if (!p) |
| 176 | return 1; |
| 177 | |
| 178 | memory_limit = memparse(p, &p) & PAGE_MASK; |
| 179 | pr_notice("Memory limited to %lldMB\n", memory_limit >> 20); |
| 180 | |
| 181 | return 0; |
| 182 | } |
| 183 | early_param("mem", early_mem); |
| 184 | |
| 185 | void __init arm64_memblock_init(void) |
| 186 | { |
| 187 | s64 linear_region_size = PAGE_END - _PAGE_OFFSET(vabits_actual); |
| 188 | |
| 189 | /* |
| 190 | * Corner case: 52-bit VA capable systems running KVM in nVHE mode may |
| 191 | * be limited in their ability to support a linear map that exceeds 51 |
| 192 | * bits of VA space, depending on the placement of the ID map. Given |
| 193 | * that the placement of the ID map may be randomized, let's simply |
| 194 | * limit the kernel's linear map to 51 bits as well if we detect this |
| 195 | * configuration. |
| 196 | */ |
| 197 | if (IS_ENABLED(CONFIG_KVM) && vabits_actual == 52 && |
| 198 | is_hyp_mode_available() && !is_kernel_in_hyp_mode()) { |
| 199 | pr_info("Capping linear region to 51 bits for KVM in nVHE mode on LVA capable hardware.\n"); |
| 200 | linear_region_size = min_t(u64, linear_region_size, BIT(51)); |
| 201 | } |
| 202 | |
| 203 | /* Remove memory above our supported physical address size */ |
| 204 | memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX); |
| 205 | |
| 206 | /* |
| 207 | * Select a suitable value for the base of physical memory. |
| 208 | */ |
| 209 | memstart_addr = round_down(memblock_start_of_DRAM(), |
| 210 | ARM64_MEMSTART_ALIGN); |
| 211 | |
| 212 | if ((memblock_end_of_DRAM() - memstart_addr) > linear_region_size) |
| 213 | pr_warn("Memory doesn't fit in the linear mapping, VA_BITS too small\n"); |
| 214 | |
| 215 | /* |
| 216 | * Remove the memory that we will not be able to cover with the |
| 217 | * linear mapping. Take care not to clip the kernel which may be |
| 218 | * high in memory. |
| 219 | */ |
| 220 | memblock_remove(max_t(u64, memstart_addr + linear_region_size, |
| 221 | __pa_symbol(_end)), ULLONG_MAX); |
| 222 | if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) { |
| 223 | /* ensure that memstart_addr remains sufficiently aligned */ |
| 224 | memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size, |
| 225 | ARM64_MEMSTART_ALIGN); |
| 226 | memblock_remove(0, memstart_addr); |
| 227 | } |
| 228 | |
| 229 | /* |
| 230 | * If we are running with a 52-bit kernel VA config on a system that |
| 231 | * does not support it, we have to place the available physical |
| 232 | * memory in the 48-bit addressable part of the linear region, i.e., |
| 233 | * we have to move it upward. Since memstart_addr represents the |
| 234 | * physical address of PAGE_OFFSET, we have to *subtract* from it. |
| 235 | */ |
| 236 | if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52)) |
| 237 | memstart_addr -= _PAGE_OFFSET(vabits_actual) - _PAGE_OFFSET(52); |
| 238 | |
| 239 | /* |
| 240 | * Apply the memory limit if it was set. Since the kernel may be loaded |
| 241 | * high up in memory, add back the kernel region that must be accessible |
| 242 | * via the linear mapping. |
| 243 | */ |
| 244 | if (memory_limit != PHYS_ADDR_MAX) { |
| 245 | memblock_mem_limit_remove_map(memory_limit); |
| 246 | memblock_add(__pa_symbol(_text), (u64)(_end - _text)); |
| 247 | } |
| 248 | |
| 249 | if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) { |
| 250 | /* |
| 251 | * Add back the memory we just removed if it results in the |
| 252 | * initrd to become inaccessible via the linear mapping. |
| 253 | * Otherwise, this is a no-op |
| 254 | */ |
| 255 | u64 base = phys_initrd_start & PAGE_MASK; |
| 256 | u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base; |
| 257 | |
| 258 | /* |
| 259 | * We can only add back the initrd memory if we don't end up |
| 260 | * with more memory than we can address via the linear mapping. |
| 261 | * It is up to the bootloader to position the kernel and the |
| 262 | * initrd reasonably close to each other (i.e., within 32 GB of |
| 263 | * each other) so that all granule/#levels combinations can |
| 264 | * always access both. |
| 265 | */ |
| 266 | if (WARN(base < memblock_start_of_DRAM() || |
| 267 | base + size > memblock_start_of_DRAM() + |
| 268 | linear_region_size, |
| 269 | "initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) { |
| 270 | phys_initrd_size = 0; |
| 271 | } else { |
| 272 | memblock_add(base, size); |
| 273 | memblock_clear_nomap(base, size); |
| 274 | memblock_reserve(base, size); |
| 275 | } |
| 276 | } |
| 277 | |
| 278 | /* |
| 279 | * Register the kernel text, kernel data, initrd, and initial |
| 280 | * pagetables with memblock. |
| 281 | */ |
| 282 | memblock_reserve(__pa_symbol(_stext), _end - _stext); |
| 283 | if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) { |
| 284 | /* the generic initrd code expects virtual addresses */ |
| 285 | initrd_start = __phys_to_virt(phys_initrd_start); |
| 286 | initrd_end = initrd_start + phys_initrd_size; |
| 287 | } |
| 288 | |
| 289 | early_init_fdt_scan_reserved_mem(); |
| 290 | } |
| 291 | |
| 292 | void __init bootmem_init(void) |
| 293 | { |
| 294 | unsigned long min, max; |
| 295 | |
| 296 | min = PFN_UP(memblock_start_of_DRAM()); |
| 297 | max = PFN_DOWN(memblock_end_of_DRAM()); |
| 298 | |
| 299 | early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT); |
| 300 | |
| 301 | max_pfn = max_low_pfn = max; |
| 302 | min_low_pfn = min; |
| 303 | |
| 304 | arch_numa_init(); |
| 305 | |
| 306 | /* |
| 307 | * must be done after arch_numa_init() which calls numa_init() to |
| 308 | * initialize node_online_map that gets used in hugetlb_cma_reserve() |
| 309 | * while allocating required CMA size across online nodes. |
| 310 | */ |
| 311 | #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA) |
| 312 | arm64_hugetlb_cma_reserve(); |
| 313 | #endif |
| 314 | |
| 315 | kvm_hyp_reserve(); |
| 316 | |
| 317 | /* |
| 318 | * sparse_init() tries to allocate memory from memblock, so must be |
| 319 | * done after the fixed reservations |
| 320 | */ |
| 321 | sparse_init(); |
| 322 | zone_sizes_init(); |
| 323 | |
| 324 | /* |
| 325 | * Reserve the CMA area after arm64_dma_phys_limit was initialised. |
| 326 | */ |
| 327 | dma_contiguous_reserve(arm64_dma_phys_limit); |
| 328 | |
| 329 | /* |
| 330 | * request_standard_resources() depends on crashkernel's memory being |
| 331 | * reserved, so do it here. |
| 332 | */ |
| 333 | arch_reserve_crashkernel(); |
| 334 | |
| 335 | memblock_dump_all(); |
| 336 | } |
| 337 | |
| 338 | void __init arch_mm_preinit(void) |
| 339 | { |
| 340 | unsigned int flags = SWIOTLB_VERBOSE; |
| 341 | bool swiotlb = max_pfn > PFN_DOWN(arm64_dma_phys_limit); |
| 342 | |
| 343 | if (is_realm_world()) { |
| 344 | swiotlb = true; |
| 345 | flags |= SWIOTLB_FORCE; |
| 346 | } |
| 347 | |
| 348 | if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) && !swiotlb) { |
| 349 | /* |
| 350 | * If no bouncing needed for ZONE_DMA, reduce the swiotlb |
| 351 | * buffer for kmalloc() bouncing to 1MB per 1GB of RAM. |
| 352 | */ |
| 353 | unsigned long size = |
| 354 | DIV_ROUND_UP(memblock_phys_mem_size(), 1024); |
| 355 | swiotlb_adjust_size(min(swiotlb_size_or_default(), size)); |
| 356 | swiotlb = true; |
| 357 | } |
| 358 | |
| 359 | swiotlb_init(swiotlb, flags); |
| 360 | swiotlb_update_mem_attributes(); |
| 361 | |
| 362 | /* |
| 363 | * Check boundaries twice: Some fundamental inconsistencies can be |
| 364 | * detected at build time already. |
| 365 | */ |
| 366 | #ifdef CONFIG_COMPAT |
| 367 | BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64); |
| 368 | #endif |
| 369 | |
| 370 | /* |
| 371 | * Selected page table levels should match when derived from |
| 372 | * scratch using the virtual address range and page size. |
| 373 | */ |
| 374 | BUILD_BUG_ON(ARM64_HW_PGTABLE_LEVELS(CONFIG_ARM64_VA_BITS) != |
| 375 | CONFIG_PGTABLE_LEVELS); |
| 376 | |
| 377 | if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) { |
| 378 | extern int sysctl_overcommit_memory; |
| 379 | /* |
| 380 | * On a machine this small we won't get anywhere without |
| 381 | * overcommit, so turn it on by default. |
| 382 | */ |
| 383 | sysctl_overcommit_memory = OVERCOMMIT_ALWAYS; |
| 384 | } |
| 385 | } |
| 386 | |
| 387 | void free_initmem(void) |
| 388 | { |
| 389 | void *lm_init_begin = lm_alias(__init_begin); |
| 390 | void *lm_init_end = lm_alias(__init_end); |
| 391 | |
| 392 | WARN_ON(!IS_ALIGNED((unsigned long)lm_init_begin, PAGE_SIZE)); |
| 393 | WARN_ON(!IS_ALIGNED((unsigned long)lm_init_end, PAGE_SIZE)); |
| 394 | |
| 395 | /* Delete __init region from memblock.reserved. */ |
| 396 | memblock_free(lm_init_begin, lm_init_end - lm_init_begin); |
| 397 | |
| 398 | free_reserved_area(lm_init_begin, lm_init_end, |
| 399 | POISON_FREE_INITMEM, "unused kernel"); |
| 400 | /* |
| 401 | * Unmap the __init region but leave the VM area in place. This |
| 402 | * prevents the region from being reused for kernel modules, which |
| 403 | * is not supported by kallsyms. |
| 404 | */ |
| 405 | vunmap_range((u64)__init_begin, (u64)__init_end); |
| 406 | } |
| 407 | |
| 408 | void dump_mem_limit(void) |
| 409 | { |
| 410 | if (memory_limit != PHYS_ADDR_MAX) { |
| 411 | pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20); |
| 412 | } else { |
| 413 | pr_emerg("Memory Limit: none\n"); |
| 414 | } |
| 415 | } |
| 416 | |
| 417 | #ifdef CONFIG_EXECMEM |
| 418 | static u64 module_direct_base __ro_after_init = 0; |
| 419 | static u64 module_plt_base __ro_after_init = 0; |
| 420 | |
| 421 | /* |
| 422 | * Choose a random page-aligned base address for a window of 'size' bytes which |
| 423 | * entirely contains the interval [start, end - 1]. |
| 424 | */ |
| 425 | static u64 __init random_bounding_box(u64 size, u64 start, u64 end) |
| 426 | { |
| 427 | u64 max_pgoff, pgoff; |
| 428 | |
| 429 | if ((end - start) >= size) |
| 430 | return 0; |
| 431 | |
| 432 | max_pgoff = (size - (end - start)) / PAGE_SIZE; |
| 433 | pgoff = get_random_u32_inclusive(0, max_pgoff); |
| 434 | |
| 435 | return start - pgoff * PAGE_SIZE; |
| 436 | } |
| 437 | |
| 438 | /* |
| 439 | * Modules may directly reference data and text anywhere within the kernel |
| 440 | * image and other modules. References using PREL32 relocations have a +/-2G |
| 441 | * range, and so we need to ensure that the entire kernel image and all modules |
| 442 | * fall within a 2G window such that these are always within range. |
| 443 | * |
| 444 | * Modules may directly branch to functions and code within the kernel text, |
| 445 | * and to functions and code within other modules. These branches will use |
| 446 | * CALL26/JUMP26 relocations with a +/-128M range. Without PLTs, we must ensure |
| 447 | * that the entire kernel text and all module text falls within a 128M window |
| 448 | * such that these are always within range. With PLTs, we can expand this to a |
| 449 | * 2G window. |
| 450 | * |
| 451 | * We chose the 128M region to surround the entire kernel image (rather than |
| 452 | * just the text) as using the same bounds for the 128M and 2G regions ensures |
| 453 | * by construction that we never select a 128M region that is not a subset of |
| 454 | * the 2G region. For very large and unusual kernel configurations this means |
| 455 | * we may fall back to PLTs where they could have been avoided, but this keeps |
| 456 | * the logic significantly simpler. |
| 457 | */ |
| 458 | static int __init module_init_limits(void) |
| 459 | { |
| 460 | u64 kernel_end = (u64)_end; |
| 461 | u64 kernel_start = (u64)_text; |
| 462 | u64 kernel_size = kernel_end - kernel_start; |
| 463 | |
| 464 | /* |
| 465 | * The default modules region is placed immediately below the kernel |
| 466 | * image, and is large enough to use the full 2G relocation range. |
| 467 | */ |
| 468 | BUILD_BUG_ON(KIMAGE_VADDR != MODULES_END); |
| 469 | BUILD_BUG_ON(MODULES_VSIZE < SZ_2G); |
| 470 | |
| 471 | if (!kaslr_enabled()) { |
| 472 | if (kernel_size < SZ_128M) |
| 473 | module_direct_base = kernel_end - SZ_128M; |
| 474 | if (kernel_size < SZ_2G) |
| 475 | module_plt_base = kernel_end - SZ_2G; |
| 476 | } else { |
| 477 | u64 min = kernel_start; |
| 478 | u64 max = kernel_end; |
| 479 | |
| 480 | if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) { |
| 481 | pr_info("2G module region forced by RANDOMIZE_MODULE_REGION_FULL\n"); |
| 482 | } else { |
| 483 | module_direct_base = random_bounding_box(SZ_128M, min, max); |
| 484 | if (module_direct_base) { |
| 485 | min = module_direct_base; |
| 486 | max = module_direct_base + SZ_128M; |
| 487 | } |
| 488 | } |
| 489 | |
| 490 | module_plt_base = random_bounding_box(SZ_2G, min, max); |
| 491 | } |
| 492 | |
| 493 | pr_info("%llu pages in range for non-PLT usage", |
| 494 | module_direct_base ? (SZ_128M - kernel_size) / PAGE_SIZE : 0); |
| 495 | pr_info("%llu pages in range for PLT usage", |
| 496 | module_plt_base ? (SZ_2G - kernel_size) / PAGE_SIZE : 0); |
| 497 | |
| 498 | return 0; |
| 499 | } |
| 500 | |
| 501 | static struct execmem_info execmem_info __ro_after_init; |
| 502 | |
| 503 | struct execmem_info __init *execmem_arch_setup(void) |
| 504 | { |
| 505 | unsigned long fallback_start = 0, fallback_end = 0; |
| 506 | unsigned long start = 0, end = 0; |
| 507 | |
| 508 | module_init_limits(); |
| 509 | |
| 510 | /* |
| 511 | * Where possible, prefer to allocate within direct branch range of the |
| 512 | * kernel such that no PLTs are necessary. |
| 513 | */ |
| 514 | if (module_direct_base) { |
| 515 | start = module_direct_base; |
| 516 | end = module_direct_base + SZ_128M; |
| 517 | |
| 518 | if (module_plt_base) { |
| 519 | fallback_start = module_plt_base; |
| 520 | fallback_end = module_plt_base + SZ_2G; |
| 521 | } |
| 522 | } else if (module_plt_base) { |
| 523 | start = module_plt_base; |
| 524 | end = module_plt_base + SZ_2G; |
| 525 | } |
| 526 | |
| 527 | execmem_info = (struct execmem_info){ |
| 528 | .ranges = { |
| 529 | [EXECMEM_DEFAULT] = { |
| 530 | .start = start, |
| 531 | .end = end, |
| 532 | .pgprot = PAGE_KERNEL, |
| 533 | .alignment = 1, |
| 534 | .fallback_start = fallback_start, |
| 535 | .fallback_end = fallback_end, |
| 536 | }, |
| 537 | [EXECMEM_KPROBES] = { |
| 538 | .start = VMALLOC_START, |
| 539 | .end = VMALLOC_END, |
| 540 | .pgprot = PAGE_KERNEL_ROX, |
| 541 | .alignment = 1, |
| 542 | }, |
| 543 | [EXECMEM_BPF] = { |
| 544 | .start = VMALLOC_START, |
| 545 | .end = VMALLOC_END, |
| 546 | .pgprot = PAGE_KERNEL, |
| 547 | .alignment = 1, |
| 548 | }, |
| 549 | }, |
| 550 | }; |
| 551 | |
| 552 | return &execmem_info; |
| 553 | } |
| 554 | #endif /* CONFIG_EXECMEM */ |