| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * Copyright (C) 2012,2013 - ARM Ltd |
| 4 | * Author: Marc Zyngier <marc.zyngier@arm.com> |
| 5 | * |
| 6 | * Derived from arch/arm/kvm/coproc.c: |
| 7 | * Copyright (C) 2012 - Virtual Open Systems and Columbia University |
| 8 | * Authors: Rusty Russell <rusty@rustcorp.com.au> |
| 9 | * Christoffer Dall <c.dall@virtualopensystems.com> |
| 10 | */ |
| 11 | |
| 12 | #include <linux/bitfield.h> |
| 13 | #include <linux/bsearch.h> |
| 14 | #include <linux/cacheinfo.h> |
| 15 | #include <linux/debugfs.h> |
| 16 | #include <linux/kvm_host.h> |
| 17 | #include <linux/mm.h> |
| 18 | #include <linux/printk.h> |
| 19 | #include <linux/uaccess.h> |
| 20 | #include <linux/irqchip/arm-gic-v3.h> |
| 21 | |
| 22 | #include <asm/arm_pmuv3.h> |
| 23 | #include <asm/cacheflush.h> |
| 24 | #include <asm/cputype.h> |
| 25 | #include <asm/debug-monitors.h> |
| 26 | #include <asm/esr.h> |
| 27 | #include <asm/kvm_arm.h> |
| 28 | #include <asm/kvm_emulate.h> |
| 29 | #include <asm/kvm_hyp.h> |
| 30 | #include <asm/kvm_mmu.h> |
| 31 | #include <asm/kvm_nested.h> |
| 32 | #include <asm/perf_event.h> |
| 33 | #include <asm/sysreg.h> |
| 34 | |
| 35 | #include <trace/events/kvm.h> |
| 36 | |
| 37 | #include "sys_regs.h" |
| 38 | #include "vgic/vgic.h" |
| 39 | |
| 40 | #include "trace.h" |
| 41 | |
| 42 | /* |
| 43 | * For AArch32, we only take care of what is being trapped. Anything |
| 44 | * that has to do with init and userspace access has to go via the |
| 45 | * 64bit interface. |
| 46 | */ |
| 47 | |
| 48 | static u64 sys_reg_to_index(const struct sys_reg_desc *reg); |
| 49 | static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| 50 | u64 val); |
| 51 | |
| 52 | static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| 53 | const struct sys_reg_desc *r) |
| 54 | { |
| 55 | kvm_inject_undefined(vcpu); |
| 56 | return false; |
| 57 | } |
| 58 | |
| 59 | static bool bad_trap(struct kvm_vcpu *vcpu, |
| 60 | struct sys_reg_params *params, |
| 61 | const struct sys_reg_desc *r, |
| 62 | const char *msg) |
| 63 | { |
| 64 | WARN_ONCE(1, "Unexpected %s\n", msg); |
| 65 | print_sys_reg_instr(params); |
| 66 | return undef_access(vcpu, params, r); |
| 67 | } |
| 68 | |
| 69 | static bool read_from_write_only(struct kvm_vcpu *vcpu, |
| 70 | struct sys_reg_params *params, |
| 71 | const struct sys_reg_desc *r) |
| 72 | { |
| 73 | return bad_trap(vcpu, params, r, |
| 74 | "sys_reg read to write-only register"); |
| 75 | } |
| 76 | |
| 77 | static bool write_to_read_only(struct kvm_vcpu *vcpu, |
| 78 | struct sys_reg_params *params, |
| 79 | const struct sys_reg_desc *r) |
| 80 | { |
| 81 | return bad_trap(vcpu, params, r, |
| 82 | "sys_reg write to read-only register"); |
| 83 | } |
| 84 | |
| 85 | #define PURE_EL2_SYSREG(el2) \ |
| 86 | case el2: { \ |
| 87 | *el1r = el2; \ |
| 88 | return true; \ |
| 89 | } |
| 90 | |
| 91 | #define MAPPED_EL2_SYSREG(el2, el1, fn) \ |
| 92 | case el2: { \ |
| 93 | *xlate = fn; \ |
| 94 | *el1r = el1; \ |
| 95 | return true; \ |
| 96 | } |
| 97 | |
| 98 | static bool get_el2_to_el1_mapping(unsigned int reg, |
| 99 | unsigned int *el1r, u64 (**xlate)(u64)) |
| 100 | { |
| 101 | switch (reg) { |
| 102 | PURE_EL2_SYSREG( VPIDR_EL2 ); |
| 103 | PURE_EL2_SYSREG( VMPIDR_EL2 ); |
| 104 | PURE_EL2_SYSREG( ACTLR_EL2 ); |
| 105 | PURE_EL2_SYSREG( HCR_EL2 ); |
| 106 | PURE_EL2_SYSREG( MDCR_EL2 ); |
| 107 | PURE_EL2_SYSREG( HSTR_EL2 ); |
| 108 | PURE_EL2_SYSREG( HACR_EL2 ); |
| 109 | PURE_EL2_SYSREG( VTTBR_EL2 ); |
| 110 | PURE_EL2_SYSREG( VTCR_EL2 ); |
| 111 | PURE_EL2_SYSREG( RVBAR_EL2 ); |
| 112 | PURE_EL2_SYSREG( TPIDR_EL2 ); |
| 113 | PURE_EL2_SYSREG( HPFAR_EL2 ); |
| 114 | PURE_EL2_SYSREG( HCRX_EL2 ); |
| 115 | PURE_EL2_SYSREG( HFGRTR_EL2 ); |
| 116 | PURE_EL2_SYSREG( HFGWTR_EL2 ); |
| 117 | PURE_EL2_SYSREG( HFGITR_EL2 ); |
| 118 | PURE_EL2_SYSREG( HDFGRTR_EL2 ); |
| 119 | PURE_EL2_SYSREG( HDFGWTR_EL2 ); |
| 120 | PURE_EL2_SYSREG( HAFGRTR_EL2 ); |
| 121 | PURE_EL2_SYSREG( CNTVOFF_EL2 ); |
| 122 | PURE_EL2_SYSREG( CNTHCTL_EL2 ); |
| 123 | MAPPED_EL2_SYSREG(SCTLR_EL2, SCTLR_EL1, |
| 124 | translate_sctlr_el2_to_sctlr_el1 ); |
| 125 | MAPPED_EL2_SYSREG(CPTR_EL2, CPACR_EL1, |
| 126 | translate_cptr_el2_to_cpacr_el1 ); |
| 127 | MAPPED_EL2_SYSREG(TTBR0_EL2, TTBR0_EL1, |
| 128 | translate_ttbr0_el2_to_ttbr0_el1 ); |
| 129 | MAPPED_EL2_SYSREG(TTBR1_EL2, TTBR1_EL1, NULL ); |
| 130 | MAPPED_EL2_SYSREG(TCR_EL2, TCR_EL1, |
| 131 | translate_tcr_el2_to_tcr_el1 ); |
| 132 | MAPPED_EL2_SYSREG(VBAR_EL2, VBAR_EL1, NULL ); |
| 133 | MAPPED_EL2_SYSREG(AFSR0_EL2, AFSR0_EL1, NULL ); |
| 134 | MAPPED_EL2_SYSREG(AFSR1_EL2, AFSR1_EL1, NULL ); |
| 135 | MAPPED_EL2_SYSREG(ESR_EL2, ESR_EL1, NULL ); |
| 136 | MAPPED_EL2_SYSREG(FAR_EL2, FAR_EL1, NULL ); |
| 137 | MAPPED_EL2_SYSREG(MAIR_EL2, MAIR_EL1, NULL ); |
| 138 | MAPPED_EL2_SYSREG(TCR2_EL2, TCR2_EL1, NULL ); |
| 139 | MAPPED_EL2_SYSREG(PIR_EL2, PIR_EL1, NULL ); |
| 140 | MAPPED_EL2_SYSREG(PIRE0_EL2, PIRE0_EL1, NULL ); |
| 141 | MAPPED_EL2_SYSREG(POR_EL2, POR_EL1, NULL ); |
| 142 | MAPPED_EL2_SYSREG(AMAIR_EL2, AMAIR_EL1, NULL ); |
| 143 | MAPPED_EL2_SYSREG(ELR_EL2, ELR_EL1, NULL ); |
| 144 | MAPPED_EL2_SYSREG(SPSR_EL2, SPSR_EL1, NULL ); |
| 145 | MAPPED_EL2_SYSREG(ZCR_EL2, ZCR_EL1, NULL ); |
| 146 | MAPPED_EL2_SYSREG(CONTEXTIDR_EL2, CONTEXTIDR_EL1, NULL ); |
| 147 | default: |
| 148 | return false; |
| 149 | } |
| 150 | } |
| 151 | |
| 152 | u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg) |
| 153 | { |
| 154 | u64 val = 0x8badf00d8badf00d; |
| 155 | u64 (*xlate)(u64) = NULL; |
| 156 | unsigned int el1r; |
| 157 | |
| 158 | if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU)) |
| 159 | goto memory_read; |
| 160 | |
| 161 | if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) { |
| 162 | if (!is_hyp_ctxt(vcpu)) |
| 163 | goto memory_read; |
| 164 | |
| 165 | /* |
| 166 | * CNTHCTL_EL2 requires some special treatment to |
| 167 | * account for the bits that can be set via CNTKCTL_EL1. |
| 168 | */ |
| 169 | switch (reg) { |
| 170 | case CNTHCTL_EL2: |
| 171 | if (vcpu_el2_e2h_is_set(vcpu)) { |
| 172 | val = read_sysreg_el1(SYS_CNTKCTL); |
| 173 | val &= CNTKCTL_VALID_BITS; |
| 174 | val |= __vcpu_sys_reg(vcpu, reg) & ~CNTKCTL_VALID_BITS; |
| 175 | return val; |
| 176 | } |
| 177 | break; |
| 178 | } |
| 179 | |
| 180 | /* |
| 181 | * If this register does not have an EL1 counterpart, |
| 182 | * then read the stored EL2 version. |
| 183 | */ |
| 184 | if (reg == el1r) |
| 185 | goto memory_read; |
| 186 | |
| 187 | /* |
| 188 | * If we have a non-VHE guest and that the sysreg |
| 189 | * requires translation to be used at EL1, use the |
| 190 | * in-memory copy instead. |
| 191 | */ |
| 192 | if (!vcpu_el2_e2h_is_set(vcpu) && xlate) |
| 193 | goto memory_read; |
| 194 | |
| 195 | /* Get the current version of the EL1 counterpart. */ |
| 196 | WARN_ON(!__vcpu_read_sys_reg_from_cpu(el1r, &val)); |
| 197 | if (reg >= __SANITISED_REG_START__) |
| 198 | val = kvm_vcpu_apply_reg_masks(vcpu, reg, val); |
| 199 | |
| 200 | return val; |
| 201 | } |
| 202 | |
| 203 | /* EL1 register can't be on the CPU if the guest is in vEL2. */ |
| 204 | if (unlikely(is_hyp_ctxt(vcpu))) |
| 205 | goto memory_read; |
| 206 | |
| 207 | if (__vcpu_read_sys_reg_from_cpu(reg, &val)) |
| 208 | return val; |
| 209 | |
| 210 | memory_read: |
| 211 | return __vcpu_sys_reg(vcpu, reg); |
| 212 | } |
| 213 | |
| 214 | void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg) |
| 215 | { |
| 216 | u64 (*xlate)(u64) = NULL; |
| 217 | unsigned int el1r; |
| 218 | |
| 219 | if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU)) |
| 220 | goto memory_write; |
| 221 | |
| 222 | if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) { |
| 223 | if (!is_hyp_ctxt(vcpu)) |
| 224 | goto memory_write; |
| 225 | |
| 226 | /* |
| 227 | * Always store a copy of the write to memory to avoid having |
| 228 | * to reverse-translate virtual EL2 system registers for a |
| 229 | * non-VHE guest hypervisor. |
| 230 | */ |
| 231 | __vcpu_assign_sys_reg(vcpu, reg, val); |
| 232 | |
| 233 | switch (reg) { |
| 234 | case CNTHCTL_EL2: |
| 235 | /* |
| 236 | * If E2H=0, CNHTCTL_EL2 is a pure shadow register. |
| 237 | * Otherwise, some of the bits are backed by |
| 238 | * CNTKCTL_EL1, while the rest is kept in memory. |
| 239 | * Yes, this is fun stuff. |
| 240 | */ |
| 241 | if (vcpu_el2_e2h_is_set(vcpu)) |
| 242 | write_sysreg_el1(val, SYS_CNTKCTL); |
| 243 | return; |
| 244 | } |
| 245 | |
| 246 | /* No EL1 counterpart? We're done here.? */ |
| 247 | if (reg == el1r) |
| 248 | return; |
| 249 | |
| 250 | if (!vcpu_el2_e2h_is_set(vcpu) && xlate) |
| 251 | val = xlate(val); |
| 252 | |
| 253 | /* Redirect this to the EL1 version of the register. */ |
| 254 | WARN_ON(!__vcpu_write_sys_reg_to_cpu(val, el1r)); |
| 255 | return; |
| 256 | } |
| 257 | |
| 258 | /* EL1 register can't be on the CPU if the guest is in vEL2. */ |
| 259 | if (unlikely(is_hyp_ctxt(vcpu))) |
| 260 | goto memory_write; |
| 261 | |
| 262 | if (__vcpu_write_sys_reg_to_cpu(val, reg)) |
| 263 | return; |
| 264 | |
| 265 | memory_write: |
| 266 | __vcpu_assign_sys_reg(vcpu, reg, val); |
| 267 | } |
| 268 | |
| 269 | /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */ |
| 270 | #define CSSELR_MAX 14 |
| 271 | |
| 272 | /* |
| 273 | * Returns the minimum line size for the selected cache, expressed as |
| 274 | * Log2(bytes). |
| 275 | */ |
| 276 | static u8 get_min_cache_line_size(bool icache) |
| 277 | { |
| 278 | u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0); |
| 279 | u8 field; |
| 280 | |
| 281 | if (icache) |
| 282 | field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr); |
| 283 | else |
| 284 | field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr); |
| 285 | |
| 286 | /* |
| 287 | * Cache line size is represented as Log2(words) in CTR_EL0. |
| 288 | * Log2(bytes) can be derived with the following: |
| 289 | * |
| 290 | * Log2(words) + 2 = Log2(bytes / 4) + 2 |
| 291 | * = Log2(bytes) - 2 + 2 |
| 292 | * = Log2(bytes) |
| 293 | */ |
| 294 | return field + 2; |
| 295 | } |
| 296 | |
| 297 | /* Which cache CCSIDR represents depends on CSSELR value. */ |
| 298 | static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr) |
| 299 | { |
| 300 | u8 line_size; |
| 301 | |
| 302 | if (vcpu->arch.ccsidr) |
| 303 | return vcpu->arch.ccsidr[csselr]; |
| 304 | |
| 305 | line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD); |
| 306 | |
| 307 | /* |
| 308 | * Fabricate a CCSIDR value as the overriding value does not exist. |
| 309 | * The real CCSIDR value will not be used as it can vary by the |
| 310 | * physical CPU which the vcpu currently resides in. |
| 311 | * |
| 312 | * The line size is determined with get_min_cache_line_size(), which |
| 313 | * should be valid for all CPUs even if they have different cache |
| 314 | * configuration. |
| 315 | * |
| 316 | * The associativity bits are cleared, meaning the geometry of all data |
| 317 | * and unified caches (which are guaranteed to be PIPT and thus |
| 318 | * non-aliasing) are 1 set and 1 way. |
| 319 | * Guests should not be doing cache operations by set/way at all, and |
| 320 | * for this reason, we trap them and attempt to infer the intent, so |
| 321 | * that we can flush the entire guest's address space at the appropriate |
| 322 | * time. The exposed geometry minimizes the number of the traps. |
| 323 | * [If guests should attempt to infer aliasing properties from the |
| 324 | * geometry (which is not permitted by the architecture), they would |
| 325 | * only do so for virtually indexed caches.] |
| 326 | * |
| 327 | * We don't check if the cache level exists as it is allowed to return |
| 328 | * an UNKNOWN value if not. |
| 329 | */ |
| 330 | return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4); |
| 331 | } |
| 332 | |
| 333 | static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val) |
| 334 | { |
| 335 | u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4; |
| 336 | u32 *ccsidr = vcpu->arch.ccsidr; |
| 337 | u32 i; |
| 338 | |
| 339 | if ((val & CCSIDR_EL1_RES0) || |
| 340 | line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD)) |
| 341 | return -EINVAL; |
| 342 | |
| 343 | if (!ccsidr) { |
| 344 | if (val == get_ccsidr(vcpu, csselr)) |
| 345 | return 0; |
| 346 | |
| 347 | ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT); |
| 348 | if (!ccsidr) |
| 349 | return -ENOMEM; |
| 350 | |
| 351 | for (i = 0; i < CSSELR_MAX; i++) |
| 352 | ccsidr[i] = get_ccsidr(vcpu, i); |
| 353 | |
| 354 | vcpu->arch.ccsidr = ccsidr; |
| 355 | } |
| 356 | |
| 357 | ccsidr[csselr] = val; |
| 358 | |
| 359 | return 0; |
| 360 | } |
| 361 | |
| 362 | static bool access_rw(struct kvm_vcpu *vcpu, |
| 363 | struct sys_reg_params *p, |
| 364 | const struct sys_reg_desc *r) |
| 365 | { |
| 366 | if (p->is_write) |
| 367 | vcpu_write_sys_reg(vcpu, p->regval, r->reg); |
| 368 | else |
| 369 | p->regval = vcpu_read_sys_reg(vcpu, r->reg); |
| 370 | |
| 371 | return true; |
| 372 | } |
| 373 | |
| 374 | /* |
| 375 | * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). |
| 376 | */ |
| 377 | static bool access_dcsw(struct kvm_vcpu *vcpu, |
| 378 | struct sys_reg_params *p, |
| 379 | const struct sys_reg_desc *r) |
| 380 | { |
| 381 | if (!p->is_write) |
| 382 | return read_from_write_only(vcpu, p, r); |
| 383 | |
| 384 | /* |
| 385 | * Only track S/W ops if we don't have FWB. It still indicates |
| 386 | * that the guest is a bit broken (S/W operations should only |
| 387 | * be done by firmware, knowing that there is only a single |
| 388 | * CPU left in the system, and certainly not from non-secure |
| 389 | * software). |
| 390 | */ |
| 391 | if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) |
| 392 | kvm_set_way_flush(vcpu); |
| 393 | |
| 394 | return true; |
| 395 | } |
| 396 | |
| 397 | static bool access_dcgsw(struct kvm_vcpu *vcpu, |
| 398 | struct sys_reg_params *p, |
| 399 | const struct sys_reg_desc *r) |
| 400 | { |
| 401 | if (!kvm_has_mte(vcpu->kvm)) |
| 402 | return undef_access(vcpu, p, r); |
| 403 | |
| 404 | /* Treat MTE S/W ops as we treat the classic ones: with contempt */ |
| 405 | return access_dcsw(vcpu, p, r); |
| 406 | } |
| 407 | |
| 408 | static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift) |
| 409 | { |
| 410 | switch (r->aarch32_map) { |
| 411 | case AA32_LO: |
| 412 | *mask = GENMASK_ULL(31, 0); |
| 413 | *shift = 0; |
| 414 | break; |
| 415 | case AA32_HI: |
| 416 | *mask = GENMASK_ULL(63, 32); |
| 417 | *shift = 32; |
| 418 | break; |
| 419 | default: |
| 420 | *mask = GENMASK_ULL(63, 0); |
| 421 | *shift = 0; |
| 422 | break; |
| 423 | } |
| 424 | } |
| 425 | |
| 426 | /* |
| 427 | * Generic accessor for VM registers. Only called as long as HCR_TVM |
| 428 | * is set. If the guest enables the MMU, we stop trapping the VM |
| 429 | * sys_regs and leave it in complete control of the caches. |
| 430 | */ |
| 431 | static bool access_vm_reg(struct kvm_vcpu *vcpu, |
| 432 | struct sys_reg_params *p, |
| 433 | const struct sys_reg_desc *r) |
| 434 | { |
| 435 | bool was_enabled = vcpu_has_cache_enabled(vcpu); |
| 436 | u64 val, mask, shift; |
| 437 | |
| 438 | BUG_ON(!p->is_write); |
| 439 | |
| 440 | get_access_mask(r, &mask, &shift); |
| 441 | |
| 442 | if (~mask) { |
| 443 | val = vcpu_read_sys_reg(vcpu, r->reg); |
| 444 | val &= ~mask; |
| 445 | } else { |
| 446 | val = 0; |
| 447 | } |
| 448 | |
| 449 | val |= (p->regval & (mask >> shift)) << shift; |
| 450 | vcpu_write_sys_reg(vcpu, val, r->reg); |
| 451 | |
| 452 | kvm_toggle_cache(vcpu, was_enabled); |
| 453 | return true; |
| 454 | } |
| 455 | |
| 456 | static bool access_actlr(struct kvm_vcpu *vcpu, |
| 457 | struct sys_reg_params *p, |
| 458 | const struct sys_reg_desc *r) |
| 459 | { |
| 460 | u64 mask, shift; |
| 461 | |
| 462 | if (p->is_write) |
| 463 | return ignore_write(vcpu, p); |
| 464 | |
| 465 | get_access_mask(r, &mask, &shift); |
| 466 | p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift; |
| 467 | |
| 468 | return true; |
| 469 | } |
| 470 | |
| 471 | /* |
| 472 | * Trap handler for the GICv3 SGI generation system register. |
| 473 | * Forward the request to the VGIC emulation. |
| 474 | * The cp15_64 code makes sure this automatically works |
| 475 | * for both AArch64 and AArch32 accesses. |
| 476 | */ |
| 477 | static bool access_gic_sgi(struct kvm_vcpu *vcpu, |
| 478 | struct sys_reg_params *p, |
| 479 | const struct sys_reg_desc *r) |
| 480 | { |
| 481 | bool g1; |
| 482 | |
| 483 | if (!kvm_has_gicv3(vcpu->kvm)) |
| 484 | return undef_access(vcpu, p, r); |
| 485 | |
| 486 | if (!p->is_write) |
| 487 | return read_from_write_only(vcpu, p, r); |
| 488 | |
| 489 | /* |
| 490 | * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates |
| 491 | * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group, |
| 492 | * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively |
| 493 | * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure |
| 494 | * group. |
| 495 | */ |
| 496 | if (p->Op0 == 0) { /* AArch32 */ |
| 497 | switch (p->Op1) { |
| 498 | default: /* Keep GCC quiet */ |
| 499 | case 0: /* ICC_SGI1R */ |
| 500 | g1 = true; |
| 501 | break; |
| 502 | case 1: /* ICC_ASGI1R */ |
| 503 | case 2: /* ICC_SGI0R */ |
| 504 | g1 = false; |
| 505 | break; |
| 506 | } |
| 507 | } else { /* AArch64 */ |
| 508 | switch (p->Op2) { |
| 509 | default: /* Keep GCC quiet */ |
| 510 | case 5: /* ICC_SGI1R_EL1 */ |
| 511 | g1 = true; |
| 512 | break; |
| 513 | case 6: /* ICC_ASGI1R_EL1 */ |
| 514 | case 7: /* ICC_SGI0R_EL1 */ |
| 515 | g1 = false; |
| 516 | break; |
| 517 | } |
| 518 | } |
| 519 | |
| 520 | vgic_v3_dispatch_sgi(vcpu, p->regval, g1); |
| 521 | |
| 522 | return true; |
| 523 | } |
| 524 | |
| 525 | static bool access_gic_sre(struct kvm_vcpu *vcpu, |
| 526 | struct sys_reg_params *p, |
| 527 | const struct sys_reg_desc *r) |
| 528 | { |
| 529 | if (!kvm_has_gicv3(vcpu->kvm)) |
| 530 | return undef_access(vcpu, p, r); |
| 531 | |
| 532 | if (p->is_write) |
| 533 | return ignore_write(vcpu, p); |
| 534 | |
| 535 | if (p->Op1 == 4) { /* ICC_SRE_EL2 */ |
| 536 | p->regval = (ICC_SRE_EL2_ENABLE | ICC_SRE_EL2_SRE | |
| 537 | ICC_SRE_EL1_DIB | ICC_SRE_EL1_DFB); |
| 538 | } else { /* ICC_SRE_EL1 */ |
| 539 | p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre; |
| 540 | } |
| 541 | |
| 542 | return true; |
| 543 | } |
| 544 | |
| 545 | static bool trap_raz_wi(struct kvm_vcpu *vcpu, |
| 546 | struct sys_reg_params *p, |
| 547 | const struct sys_reg_desc *r) |
| 548 | { |
| 549 | if (p->is_write) |
| 550 | return ignore_write(vcpu, p); |
| 551 | else |
| 552 | return read_zero(vcpu, p); |
| 553 | } |
| 554 | |
| 555 | /* |
| 556 | * ARMv8.1 mandates at least a trivial LORegion implementation, where all the |
| 557 | * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0 |
| 558 | * system, these registers should UNDEF. LORID_EL1 being a RO register, we |
| 559 | * treat it separately. |
| 560 | */ |
| 561 | static bool trap_loregion(struct kvm_vcpu *vcpu, |
| 562 | struct sys_reg_params *p, |
| 563 | const struct sys_reg_desc *r) |
| 564 | { |
| 565 | u32 sr = reg_to_encoding(r); |
| 566 | |
| 567 | if (!kvm_has_feat(vcpu->kvm, ID_AA64MMFR1_EL1, LO, IMP)) |
| 568 | return undef_access(vcpu, p, r); |
| 569 | |
| 570 | if (p->is_write && sr == SYS_LORID_EL1) |
| 571 | return write_to_read_only(vcpu, p, r); |
| 572 | |
| 573 | return trap_raz_wi(vcpu, p, r); |
| 574 | } |
| 575 | |
| 576 | static bool trap_oslar_el1(struct kvm_vcpu *vcpu, |
| 577 | struct sys_reg_params *p, |
| 578 | const struct sys_reg_desc *r) |
| 579 | { |
| 580 | if (!p->is_write) |
| 581 | return read_from_write_only(vcpu, p, r); |
| 582 | |
| 583 | kvm_debug_handle_oslar(vcpu, p->regval); |
| 584 | return true; |
| 585 | } |
| 586 | |
| 587 | static bool trap_oslsr_el1(struct kvm_vcpu *vcpu, |
| 588 | struct sys_reg_params *p, |
| 589 | const struct sys_reg_desc *r) |
| 590 | { |
| 591 | if (p->is_write) |
| 592 | return write_to_read_only(vcpu, p, r); |
| 593 | |
| 594 | p->regval = __vcpu_sys_reg(vcpu, r->reg); |
| 595 | return true; |
| 596 | } |
| 597 | |
| 598 | static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| 599 | u64 val) |
| 600 | { |
| 601 | /* |
| 602 | * The only modifiable bit is the OSLK bit. Refuse the write if |
| 603 | * userspace attempts to change any other bit in the register. |
| 604 | */ |
| 605 | if ((val ^ rd->val) & ~OSLSR_EL1_OSLK) |
| 606 | return -EINVAL; |
| 607 | |
| 608 | __vcpu_assign_sys_reg(vcpu, rd->reg, val); |
| 609 | return 0; |
| 610 | } |
| 611 | |
| 612 | static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu, |
| 613 | struct sys_reg_params *p, |
| 614 | const struct sys_reg_desc *r) |
| 615 | { |
| 616 | if (p->is_write) { |
| 617 | return ignore_write(vcpu, p); |
| 618 | } else { |
| 619 | p->regval = read_sysreg(dbgauthstatus_el1); |
| 620 | return true; |
| 621 | } |
| 622 | } |
| 623 | |
| 624 | static bool trap_debug_regs(struct kvm_vcpu *vcpu, |
| 625 | struct sys_reg_params *p, |
| 626 | const struct sys_reg_desc *r) |
| 627 | { |
| 628 | access_rw(vcpu, p, r); |
| 629 | |
| 630 | kvm_debug_set_guest_ownership(vcpu); |
| 631 | return true; |
| 632 | } |
| 633 | |
| 634 | /* |
| 635 | * reg_to_dbg/dbg_to_reg |
| 636 | * |
| 637 | * A 32 bit write to a debug register leave top bits alone |
| 638 | * A 32 bit read from a debug register only returns the bottom bits |
| 639 | */ |
| 640 | static void reg_to_dbg(struct kvm_vcpu *vcpu, |
| 641 | struct sys_reg_params *p, |
| 642 | const struct sys_reg_desc *rd, |
| 643 | u64 *dbg_reg) |
| 644 | { |
| 645 | u64 mask, shift, val; |
| 646 | |
| 647 | get_access_mask(rd, &mask, &shift); |
| 648 | |
| 649 | val = *dbg_reg; |
| 650 | val &= ~mask; |
| 651 | val |= (p->regval & (mask >> shift)) << shift; |
| 652 | *dbg_reg = val; |
| 653 | } |
| 654 | |
| 655 | static void dbg_to_reg(struct kvm_vcpu *vcpu, |
| 656 | struct sys_reg_params *p, |
| 657 | const struct sys_reg_desc *rd, |
| 658 | u64 *dbg_reg) |
| 659 | { |
| 660 | u64 mask, shift; |
| 661 | |
| 662 | get_access_mask(rd, &mask, &shift); |
| 663 | p->regval = (*dbg_reg & mask) >> shift; |
| 664 | } |
| 665 | |
| 666 | static u64 *demux_wb_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd) |
| 667 | { |
| 668 | struct kvm_guest_debug_arch *dbg = &vcpu->arch.vcpu_debug_state; |
| 669 | |
| 670 | switch (rd->Op2) { |
| 671 | case 0b100: |
| 672 | return &dbg->dbg_bvr[rd->CRm]; |
| 673 | case 0b101: |
| 674 | return &dbg->dbg_bcr[rd->CRm]; |
| 675 | case 0b110: |
| 676 | return &dbg->dbg_wvr[rd->CRm]; |
| 677 | case 0b111: |
| 678 | return &dbg->dbg_wcr[rd->CRm]; |
| 679 | default: |
| 680 | KVM_BUG_ON(1, vcpu->kvm); |
| 681 | return NULL; |
| 682 | } |
| 683 | } |
| 684 | |
| 685 | static bool trap_dbg_wb_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| 686 | const struct sys_reg_desc *rd) |
| 687 | { |
| 688 | u64 *reg = demux_wb_reg(vcpu, rd); |
| 689 | |
| 690 | if (!reg) |
| 691 | return false; |
| 692 | |
| 693 | if (p->is_write) |
| 694 | reg_to_dbg(vcpu, p, rd, reg); |
| 695 | else |
| 696 | dbg_to_reg(vcpu, p, rd, reg); |
| 697 | |
| 698 | kvm_debug_set_guest_ownership(vcpu); |
| 699 | return true; |
| 700 | } |
| 701 | |
| 702 | static int set_dbg_wb_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| 703 | u64 val) |
| 704 | { |
| 705 | u64 *reg = demux_wb_reg(vcpu, rd); |
| 706 | |
| 707 | if (!reg) |
| 708 | return -EINVAL; |
| 709 | |
| 710 | *reg = val; |
| 711 | return 0; |
| 712 | } |
| 713 | |
| 714 | static int get_dbg_wb_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| 715 | u64 *val) |
| 716 | { |
| 717 | u64 *reg = demux_wb_reg(vcpu, rd); |
| 718 | |
| 719 | if (!reg) |
| 720 | return -EINVAL; |
| 721 | |
| 722 | *val = *reg; |
| 723 | return 0; |
| 724 | } |
| 725 | |
| 726 | static u64 reset_dbg_wb_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd) |
| 727 | { |
| 728 | u64 *reg = demux_wb_reg(vcpu, rd); |
| 729 | |
| 730 | /* |
| 731 | * Bail early if we couldn't find storage for the register, the |
| 732 | * KVM_BUG_ON() in demux_wb_reg() will prevent this VM from ever |
| 733 | * being run. |
| 734 | */ |
| 735 | if (!reg) |
| 736 | return 0; |
| 737 | |
| 738 | *reg = rd->val; |
| 739 | return rd->val; |
| 740 | } |
| 741 | |
| 742 | static u64 reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) |
| 743 | { |
| 744 | u64 amair = read_sysreg(amair_el1); |
| 745 | vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1); |
| 746 | return amair; |
| 747 | } |
| 748 | |
| 749 | static u64 reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) |
| 750 | { |
| 751 | u64 actlr = read_sysreg(actlr_el1); |
| 752 | vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1); |
| 753 | return actlr; |
| 754 | } |
| 755 | |
| 756 | static u64 reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) |
| 757 | { |
| 758 | u64 mpidr; |
| 759 | |
| 760 | /* |
| 761 | * Map the vcpu_id into the first three affinity level fields of |
| 762 | * the MPIDR. We limit the number of VCPUs in level 0 due to a |
| 763 | * limitation to 16 CPUs in that level in the ICC_SGIxR registers |
| 764 | * of the GICv3 to be able to address each CPU directly when |
| 765 | * sending IPIs. |
| 766 | */ |
| 767 | mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0); |
| 768 | mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1); |
| 769 | mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2); |
| 770 | mpidr |= (1ULL << 31); |
| 771 | vcpu_write_sys_reg(vcpu, mpidr, MPIDR_EL1); |
| 772 | |
| 773 | return mpidr; |
| 774 | } |
| 775 | |
| 776 | static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu, |
| 777 | const struct sys_reg_desc *r) |
| 778 | { |
| 779 | if (kvm_vcpu_has_pmu(vcpu)) |
| 780 | return 0; |
| 781 | |
| 782 | return REG_HIDDEN; |
| 783 | } |
| 784 | |
| 785 | static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) |
| 786 | { |
| 787 | u64 mask = BIT(ARMV8_PMU_CYCLE_IDX); |
| 788 | u8 n = vcpu->kvm->arch.nr_pmu_counters; |
| 789 | |
| 790 | if (n) |
| 791 | mask |= GENMASK(n - 1, 0); |
| 792 | |
| 793 | reset_unknown(vcpu, r); |
| 794 | __vcpu_rmw_sys_reg(vcpu, r->reg, &=, mask); |
| 795 | |
| 796 | return __vcpu_sys_reg(vcpu, r->reg); |
| 797 | } |
| 798 | |
| 799 | static u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) |
| 800 | { |
| 801 | reset_unknown(vcpu, r); |
| 802 | __vcpu_rmw_sys_reg(vcpu, r->reg, &=, GENMASK(31, 0)); |
| 803 | |
| 804 | return __vcpu_sys_reg(vcpu, r->reg); |
| 805 | } |
| 806 | |
| 807 | static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) |
| 808 | { |
| 809 | /* This thing will UNDEF, who cares about the reset value? */ |
| 810 | if (!kvm_vcpu_has_pmu(vcpu)) |
| 811 | return 0; |
| 812 | |
| 813 | reset_unknown(vcpu, r); |
| 814 | __vcpu_rmw_sys_reg(vcpu, r->reg, &=, kvm_pmu_evtyper_mask(vcpu->kvm)); |
| 815 | |
| 816 | return __vcpu_sys_reg(vcpu, r->reg); |
| 817 | } |
| 818 | |
| 819 | static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) |
| 820 | { |
| 821 | reset_unknown(vcpu, r); |
| 822 | __vcpu_rmw_sys_reg(vcpu, r->reg, &=, PMSELR_EL0_SEL_MASK); |
| 823 | |
| 824 | return __vcpu_sys_reg(vcpu, r->reg); |
| 825 | } |
| 826 | |
| 827 | static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) |
| 828 | { |
| 829 | u64 pmcr = 0; |
| 830 | |
| 831 | if (!kvm_supports_32bit_el0()) |
| 832 | pmcr |= ARMV8_PMU_PMCR_LC; |
| 833 | |
| 834 | /* |
| 835 | * The value of PMCR.N field is included when the |
| 836 | * vCPU register is read via kvm_vcpu_read_pmcr(). |
| 837 | */ |
| 838 | __vcpu_assign_sys_reg(vcpu, r->reg, pmcr); |
| 839 | |
| 840 | return __vcpu_sys_reg(vcpu, r->reg); |
| 841 | } |
| 842 | |
| 843 | static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags) |
| 844 | { |
| 845 | u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0); |
| 846 | bool enabled = (reg & flags) || vcpu_mode_priv(vcpu); |
| 847 | |
| 848 | if (!enabled) |
| 849 | kvm_inject_undefined(vcpu); |
| 850 | |
| 851 | return !enabled; |
| 852 | } |
| 853 | |
| 854 | static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu) |
| 855 | { |
| 856 | return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN); |
| 857 | } |
| 858 | |
| 859 | static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu) |
| 860 | { |
| 861 | return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN); |
| 862 | } |
| 863 | |
| 864 | static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu) |
| 865 | { |
| 866 | return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN); |
| 867 | } |
| 868 | |
| 869 | static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu) |
| 870 | { |
| 871 | return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN); |
| 872 | } |
| 873 | |
| 874 | static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| 875 | const struct sys_reg_desc *r) |
| 876 | { |
| 877 | u64 val; |
| 878 | |
| 879 | if (pmu_access_el0_disabled(vcpu)) |
| 880 | return false; |
| 881 | |
| 882 | if (p->is_write) { |
| 883 | /* |
| 884 | * Only update writeable bits of PMCR (continuing into |
| 885 | * kvm_pmu_handle_pmcr() as well) |
| 886 | */ |
| 887 | val = kvm_vcpu_read_pmcr(vcpu); |
| 888 | val &= ~ARMV8_PMU_PMCR_MASK; |
| 889 | val |= p->regval & ARMV8_PMU_PMCR_MASK; |
| 890 | if (!kvm_supports_32bit_el0()) |
| 891 | val |= ARMV8_PMU_PMCR_LC; |
| 892 | kvm_pmu_handle_pmcr(vcpu, val); |
| 893 | } else { |
| 894 | /* PMCR.P & PMCR.C are RAZ */ |
| 895 | val = kvm_vcpu_read_pmcr(vcpu) |
| 896 | & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C); |
| 897 | p->regval = val; |
| 898 | } |
| 899 | |
| 900 | return true; |
| 901 | } |
| 902 | |
| 903 | static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| 904 | const struct sys_reg_desc *r) |
| 905 | { |
| 906 | if (pmu_access_event_counter_el0_disabled(vcpu)) |
| 907 | return false; |
| 908 | |
| 909 | if (p->is_write) |
| 910 | __vcpu_assign_sys_reg(vcpu, PMSELR_EL0, p->regval); |
| 911 | else |
| 912 | /* return PMSELR.SEL field */ |
| 913 | p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0) |
| 914 | & PMSELR_EL0_SEL_MASK; |
| 915 | |
| 916 | return true; |
| 917 | } |
| 918 | |
| 919 | static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| 920 | const struct sys_reg_desc *r) |
| 921 | { |
| 922 | u64 pmceid, mask, shift; |
| 923 | |
| 924 | BUG_ON(p->is_write); |
| 925 | |
| 926 | if (pmu_access_el0_disabled(vcpu)) |
| 927 | return false; |
| 928 | |
| 929 | get_access_mask(r, &mask, &shift); |
| 930 | |
| 931 | pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1)); |
| 932 | pmceid &= mask; |
| 933 | pmceid >>= shift; |
| 934 | |
| 935 | p->regval = pmceid; |
| 936 | |
| 937 | return true; |
| 938 | } |
| 939 | |
| 940 | static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx) |
| 941 | { |
| 942 | u64 pmcr, val; |
| 943 | |
| 944 | pmcr = kvm_vcpu_read_pmcr(vcpu); |
| 945 | val = FIELD_GET(ARMV8_PMU_PMCR_N, pmcr); |
| 946 | if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) { |
| 947 | kvm_inject_undefined(vcpu); |
| 948 | return false; |
| 949 | } |
| 950 | |
| 951 | return true; |
| 952 | } |
| 953 | |
| 954 | static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, |
| 955 | u64 *val) |
| 956 | { |
| 957 | u64 idx; |
| 958 | |
| 959 | if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0) |
| 960 | /* PMCCNTR_EL0 */ |
| 961 | idx = ARMV8_PMU_CYCLE_IDX; |
| 962 | else |
| 963 | /* PMEVCNTRn_EL0 */ |
| 964 | idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); |
| 965 | |
| 966 | *val = kvm_pmu_get_counter_value(vcpu, idx); |
| 967 | return 0; |
| 968 | } |
| 969 | |
| 970 | static int set_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, |
| 971 | u64 val) |
| 972 | { |
| 973 | u64 idx; |
| 974 | |
| 975 | if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0) |
| 976 | /* PMCCNTR_EL0 */ |
| 977 | idx = ARMV8_PMU_CYCLE_IDX; |
| 978 | else |
| 979 | /* PMEVCNTRn_EL0 */ |
| 980 | idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); |
| 981 | |
| 982 | kvm_pmu_set_counter_value_user(vcpu, idx, val); |
| 983 | return 0; |
| 984 | } |
| 985 | |
| 986 | static bool access_pmu_evcntr(struct kvm_vcpu *vcpu, |
| 987 | struct sys_reg_params *p, |
| 988 | const struct sys_reg_desc *r) |
| 989 | { |
| 990 | u64 idx = ~0UL; |
| 991 | |
| 992 | if (r->CRn == 9 && r->CRm == 13) { |
| 993 | if (r->Op2 == 2) { |
| 994 | /* PMXEVCNTR_EL0 */ |
| 995 | if (pmu_access_event_counter_el0_disabled(vcpu)) |
| 996 | return false; |
| 997 | |
| 998 | idx = SYS_FIELD_GET(PMSELR_EL0, SEL, |
| 999 | __vcpu_sys_reg(vcpu, PMSELR_EL0)); |
| 1000 | } else if (r->Op2 == 0) { |
| 1001 | /* PMCCNTR_EL0 */ |
| 1002 | if (pmu_access_cycle_counter_el0_disabled(vcpu)) |
| 1003 | return false; |
| 1004 | |
| 1005 | idx = ARMV8_PMU_CYCLE_IDX; |
| 1006 | } |
| 1007 | } else if (r->CRn == 0 && r->CRm == 9) { |
| 1008 | /* PMCCNTR */ |
| 1009 | if (pmu_access_event_counter_el0_disabled(vcpu)) |
| 1010 | return false; |
| 1011 | |
| 1012 | idx = ARMV8_PMU_CYCLE_IDX; |
| 1013 | } else if (r->CRn == 14 && (r->CRm & 12) == 8) { |
| 1014 | /* PMEVCNTRn_EL0 */ |
| 1015 | if (pmu_access_event_counter_el0_disabled(vcpu)) |
| 1016 | return false; |
| 1017 | |
| 1018 | idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); |
| 1019 | } |
| 1020 | |
| 1021 | /* Catch any decoding mistake */ |
| 1022 | WARN_ON(idx == ~0UL); |
| 1023 | |
| 1024 | if (!pmu_counter_idx_valid(vcpu, idx)) |
| 1025 | return false; |
| 1026 | |
| 1027 | if (p->is_write) { |
| 1028 | if (pmu_access_el0_disabled(vcpu)) |
| 1029 | return false; |
| 1030 | |
| 1031 | kvm_pmu_set_counter_value(vcpu, idx, p->regval); |
| 1032 | } else { |
| 1033 | p->regval = kvm_pmu_get_counter_value(vcpu, idx); |
| 1034 | } |
| 1035 | |
| 1036 | return true; |
| 1037 | } |
| 1038 | |
| 1039 | static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| 1040 | const struct sys_reg_desc *r) |
| 1041 | { |
| 1042 | u64 idx, reg; |
| 1043 | |
| 1044 | if (pmu_access_el0_disabled(vcpu)) |
| 1045 | return false; |
| 1046 | |
| 1047 | if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) { |
| 1048 | /* PMXEVTYPER_EL0 */ |
| 1049 | idx = SYS_FIELD_GET(PMSELR_EL0, SEL, __vcpu_sys_reg(vcpu, PMSELR_EL0)); |
| 1050 | reg = PMEVTYPER0_EL0 + idx; |
| 1051 | } else if (r->CRn == 14 && (r->CRm & 12) == 12) { |
| 1052 | idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); |
| 1053 | if (idx == ARMV8_PMU_CYCLE_IDX) |
| 1054 | reg = PMCCFILTR_EL0; |
| 1055 | else |
| 1056 | /* PMEVTYPERn_EL0 */ |
| 1057 | reg = PMEVTYPER0_EL0 + idx; |
| 1058 | } else { |
| 1059 | BUG(); |
| 1060 | } |
| 1061 | |
| 1062 | if (!pmu_counter_idx_valid(vcpu, idx)) |
| 1063 | return false; |
| 1064 | |
| 1065 | if (p->is_write) { |
| 1066 | kvm_pmu_set_counter_event_type(vcpu, p->regval, idx); |
| 1067 | kvm_vcpu_pmu_restore_guest(vcpu); |
| 1068 | } else { |
| 1069 | p->regval = __vcpu_sys_reg(vcpu, reg); |
| 1070 | } |
| 1071 | |
| 1072 | return true; |
| 1073 | } |
| 1074 | |
| 1075 | static int set_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 val) |
| 1076 | { |
| 1077 | u64 mask = kvm_pmu_accessible_counter_mask(vcpu); |
| 1078 | |
| 1079 | __vcpu_assign_sys_reg(vcpu, r->reg, val & mask); |
| 1080 | kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu); |
| 1081 | |
| 1082 | return 0; |
| 1083 | } |
| 1084 | |
| 1085 | static int get_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 *val) |
| 1086 | { |
| 1087 | u64 mask = kvm_pmu_accessible_counter_mask(vcpu); |
| 1088 | |
| 1089 | *val = __vcpu_sys_reg(vcpu, r->reg) & mask; |
| 1090 | return 0; |
| 1091 | } |
| 1092 | |
| 1093 | static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| 1094 | const struct sys_reg_desc *r) |
| 1095 | { |
| 1096 | u64 val, mask; |
| 1097 | |
| 1098 | if (pmu_access_el0_disabled(vcpu)) |
| 1099 | return false; |
| 1100 | |
| 1101 | mask = kvm_pmu_accessible_counter_mask(vcpu); |
| 1102 | if (p->is_write) { |
| 1103 | val = p->regval & mask; |
| 1104 | if (r->Op2 & 0x1) |
| 1105 | /* accessing PMCNTENSET_EL0 */ |
| 1106 | __vcpu_rmw_sys_reg(vcpu, PMCNTENSET_EL0, |=, val); |
| 1107 | else |
| 1108 | /* accessing PMCNTENCLR_EL0 */ |
| 1109 | __vcpu_rmw_sys_reg(vcpu, PMCNTENSET_EL0, &=, ~val); |
| 1110 | |
| 1111 | kvm_pmu_reprogram_counter_mask(vcpu, val); |
| 1112 | } else { |
| 1113 | p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0); |
| 1114 | } |
| 1115 | |
| 1116 | return true; |
| 1117 | } |
| 1118 | |
| 1119 | static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| 1120 | const struct sys_reg_desc *r) |
| 1121 | { |
| 1122 | u64 mask = kvm_pmu_accessible_counter_mask(vcpu); |
| 1123 | |
| 1124 | if (check_pmu_access_disabled(vcpu, 0)) |
| 1125 | return false; |
| 1126 | |
| 1127 | if (p->is_write) { |
| 1128 | u64 val = p->regval & mask; |
| 1129 | |
| 1130 | if (r->Op2 & 0x1) |
| 1131 | /* accessing PMINTENSET_EL1 */ |
| 1132 | __vcpu_rmw_sys_reg(vcpu, PMINTENSET_EL1, |=, val); |
| 1133 | else |
| 1134 | /* accessing PMINTENCLR_EL1 */ |
| 1135 | __vcpu_rmw_sys_reg(vcpu, PMINTENSET_EL1, &=, ~val); |
| 1136 | } else { |
| 1137 | p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1); |
| 1138 | } |
| 1139 | |
| 1140 | return true; |
| 1141 | } |
| 1142 | |
| 1143 | static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| 1144 | const struct sys_reg_desc *r) |
| 1145 | { |
| 1146 | u64 mask = kvm_pmu_accessible_counter_mask(vcpu); |
| 1147 | |
| 1148 | if (pmu_access_el0_disabled(vcpu)) |
| 1149 | return false; |
| 1150 | |
| 1151 | if (p->is_write) { |
| 1152 | if (r->CRm & 0x2) |
| 1153 | /* accessing PMOVSSET_EL0 */ |
| 1154 | __vcpu_rmw_sys_reg(vcpu, PMOVSSET_EL0, |=, (p->regval & mask)); |
| 1155 | else |
| 1156 | /* accessing PMOVSCLR_EL0 */ |
| 1157 | __vcpu_rmw_sys_reg(vcpu, PMOVSSET_EL0, &=, ~(p->regval & mask)); |
| 1158 | } else { |
| 1159 | p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0); |
| 1160 | } |
| 1161 | |
| 1162 | return true; |
| 1163 | } |
| 1164 | |
| 1165 | static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| 1166 | const struct sys_reg_desc *r) |
| 1167 | { |
| 1168 | u64 mask; |
| 1169 | |
| 1170 | if (!p->is_write) |
| 1171 | return read_from_write_only(vcpu, p, r); |
| 1172 | |
| 1173 | if (pmu_write_swinc_el0_disabled(vcpu)) |
| 1174 | return false; |
| 1175 | |
| 1176 | mask = kvm_pmu_accessible_counter_mask(vcpu); |
| 1177 | kvm_pmu_software_increment(vcpu, p->regval & mask); |
| 1178 | return true; |
| 1179 | } |
| 1180 | |
| 1181 | static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| 1182 | const struct sys_reg_desc *r) |
| 1183 | { |
| 1184 | if (p->is_write) { |
| 1185 | if (!vcpu_mode_priv(vcpu)) |
| 1186 | return undef_access(vcpu, p, r); |
| 1187 | |
| 1188 | __vcpu_assign_sys_reg(vcpu, PMUSERENR_EL0, |
| 1189 | (p->regval & ARMV8_PMU_USERENR_MASK)); |
| 1190 | } else { |
| 1191 | p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0) |
| 1192 | & ARMV8_PMU_USERENR_MASK; |
| 1193 | } |
| 1194 | |
| 1195 | return true; |
| 1196 | } |
| 1197 | |
| 1198 | static int get_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, |
| 1199 | u64 *val) |
| 1200 | { |
| 1201 | *val = kvm_vcpu_read_pmcr(vcpu); |
| 1202 | return 0; |
| 1203 | } |
| 1204 | |
| 1205 | static int set_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, |
| 1206 | u64 val) |
| 1207 | { |
| 1208 | u8 new_n = FIELD_GET(ARMV8_PMU_PMCR_N, val); |
| 1209 | struct kvm *kvm = vcpu->kvm; |
| 1210 | |
| 1211 | mutex_lock(&kvm->arch.config_lock); |
| 1212 | |
| 1213 | /* |
| 1214 | * The vCPU can't have more counters than the PMU hardware |
| 1215 | * implements. Ignore this error to maintain compatibility |
| 1216 | * with the existing KVM behavior. |
| 1217 | */ |
| 1218 | if (!kvm_vm_has_ran_once(kvm) && |
| 1219 | !vcpu_has_nv(vcpu) && |
| 1220 | new_n <= kvm_arm_pmu_get_max_counters(kvm)) |
| 1221 | kvm->arch.nr_pmu_counters = new_n; |
| 1222 | |
| 1223 | mutex_unlock(&kvm->arch.config_lock); |
| 1224 | |
| 1225 | /* |
| 1226 | * Ignore writes to RES0 bits, read only bits that are cleared on |
| 1227 | * vCPU reset, and writable bits that KVM doesn't support yet. |
| 1228 | * (i.e. only PMCR.N and bits [7:0] are mutable from userspace) |
| 1229 | * The LP bit is RES0 when FEAT_PMUv3p5 is not supported on the vCPU. |
| 1230 | * But, we leave the bit as it is here, as the vCPU's PMUver might |
| 1231 | * be changed later (NOTE: the bit will be cleared on first vCPU run |
| 1232 | * if necessary). |
| 1233 | */ |
| 1234 | val &= ARMV8_PMU_PMCR_MASK; |
| 1235 | |
| 1236 | /* The LC bit is RES1 when AArch32 is not supported */ |
| 1237 | if (!kvm_supports_32bit_el0()) |
| 1238 | val |= ARMV8_PMU_PMCR_LC; |
| 1239 | |
| 1240 | __vcpu_assign_sys_reg(vcpu, r->reg, val); |
| 1241 | kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu); |
| 1242 | |
| 1243 | return 0; |
| 1244 | } |
| 1245 | |
| 1246 | /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */ |
| 1247 | #define DBG_BCR_BVR_WCR_WVR_EL1(n) \ |
| 1248 | { SYS_DESC(SYS_DBGBVRn_EL1(n)), \ |
| 1249 | trap_dbg_wb_reg, reset_dbg_wb_reg, 0, 0, \ |
| 1250 | get_dbg_wb_reg, set_dbg_wb_reg }, \ |
| 1251 | { SYS_DESC(SYS_DBGBCRn_EL1(n)), \ |
| 1252 | trap_dbg_wb_reg, reset_dbg_wb_reg, 0, 0, \ |
| 1253 | get_dbg_wb_reg, set_dbg_wb_reg }, \ |
| 1254 | { SYS_DESC(SYS_DBGWVRn_EL1(n)), \ |
| 1255 | trap_dbg_wb_reg, reset_dbg_wb_reg, 0, 0, \ |
| 1256 | get_dbg_wb_reg, set_dbg_wb_reg }, \ |
| 1257 | { SYS_DESC(SYS_DBGWCRn_EL1(n)), \ |
| 1258 | trap_dbg_wb_reg, reset_dbg_wb_reg, 0, 0, \ |
| 1259 | get_dbg_wb_reg, set_dbg_wb_reg } |
| 1260 | |
| 1261 | #define PMU_SYS_REG(name) \ |
| 1262 | SYS_DESC(SYS_##name), .reset = reset_pmu_reg, \ |
| 1263 | .visibility = pmu_visibility |
| 1264 | |
| 1265 | /* Macro to expand the PMEVCNTRn_EL0 register */ |
| 1266 | #define PMU_PMEVCNTR_EL0(n) \ |
| 1267 | { PMU_SYS_REG(PMEVCNTRn_EL0(n)), \ |
| 1268 | .reset = reset_pmevcntr, .get_user = get_pmu_evcntr, \ |
| 1269 | .set_user = set_pmu_evcntr, \ |
| 1270 | .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), } |
| 1271 | |
| 1272 | /* Macro to expand the PMEVTYPERn_EL0 register */ |
| 1273 | #define PMU_PMEVTYPER_EL0(n) \ |
| 1274 | { PMU_SYS_REG(PMEVTYPERn_EL0(n)), \ |
| 1275 | .reset = reset_pmevtyper, \ |
| 1276 | .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), } |
| 1277 | |
| 1278 | /* Macro to expand the AMU counter and type registers*/ |
| 1279 | #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access } |
| 1280 | #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access } |
| 1281 | #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access } |
| 1282 | #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access } |
| 1283 | |
| 1284 | static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu, |
| 1285 | const struct sys_reg_desc *rd) |
| 1286 | { |
| 1287 | return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN; |
| 1288 | } |
| 1289 | |
| 1290 | /* |
| 1291 | * If we land here on a PtrAuth access, that is because we didn't |
| 1292 | * fixup the access on exit by allowing the PtrAuth sysregs. The only |
| 1293 | * way this happens is when the guest does not have PtrAuth support |
| 1294 | * enabled. |
| 1295 | */ |
| 1296 | #define __PTRAUTH_KEY(k) \ |
| 1297 | { SYS_DESC(SYS_## k), undef_access, reset_unknown, k, \ |
| 1298 | .visibility = ptrauth_visibility} |
| 1299 | |
| 1300 | #define PTRAUTH_KEY(k) \ |
| 1301 | __PTRAUTH_KEY(k ## KEYLO_EL1), \ |
| 1302 | __PTRAUTH_KEY(k ## KEYHI_EL1) |
| 1303 | |
| 1304 | static bool access_arch_timer(struct kvm_vcpu *vcpu, |
| 1305 | struct sys_reg_params *p, |
| 1306 | const struct sys_reg_desc *r) |
| 1307 | { |
| 1308 | enum kvm_arch_timers tmr; |
| 1309 | enum kvm_arch_timer_regs treg; |
| 1310 | u64 reg = reg_to_encoding(r); |
| 1311 | |
| 1312 | switch (reg) { |
| 1313 | case SYS_CNTP_TVAL_EL0: |
| 1314 | if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu)) |
| 1315 | tmr = TIMER_HPTIMER; |
| 1316 | else |
| 1317 | tmr = TIMER_PTIMER; |
| 1318 | treg = TIMER_REG_TVAL; |
| 1319 | break; |
| 1320 | |
| 1321 | case SYS_CNTV_TVAL_EL0: |
| 1322 | if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu)) |
| 1323 | tmr = TIMER_HVTIMER; |
| 1324 | else |
| 1325 | tmr = TIMER_VTIMER; |
| 1326 | treg = TIMER_REG_TVAL; |
| 1327 | break; |
| 1328 | |
| 1329 | case SYS_AARCH32_CNTP_TVAL: |
| 1330 | case SYS_CNTP_TVAL_EL02: |
| 1331 | tmr = TIMER_PTIMER; |
| 1332 | treg = TIMER_REG_TVAL; |
| 1333 | break; |
| 1334 | |
| 1335 | case SYS_CNTV_TVAL_EL02: |
| 1336 | tmr = TIMER_VTIMER; |
| 1337 | treg = TIMER_REG_TVAL; |
| 1338 | break; |
| 1339 | |
| 1340 | case SYS_CNTHP_TVAL_EL2: |
| 1341 | tmr = TIMER_HPTIMER; |
| 1342 | treg = TIMER_REG_TVAL; |
| 1343 | break; |
| 1344 | |
| 1345 | case SYS_CNTHV_TVAL_EL2: |
| 1346 | tmr = TIMER_HVTIMER; |
| 1347 | treg = TIMER_REG_TVAL; |
| 1348 | break; |
| 1349 | |
| 1350 | case SYS_CNTP_CTL_EL0: |
| 1351 | if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu)) |
| 1352 | tmr = TIMER_HPTIMER; |
| 1353 | else |
| 1354 | tmr = TIMER_PTIMER; |
| 1355 | treg = TIMER_REG_CTL; |
| 1356 | break; |
| 1357 | |
| 1358 | case SYS_CNTV_CTL_EL0: |
| 1359 | if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu)) |
| 1360 | tmr = TIMER_HVTIMER; |
| 1361 | else |
| 1362 | tmr = TIMER_VTIMER; |
| 1363 | treg = TIMER_REG_CTL; |
| 1364 | break; |
| 1365 | |
| 1366 | case SYS_AARCH32_CNTP_CTL: |
| 1367 | case SYS_CNTP_CTL_EL02: |
| 1368 | tmr = TIMER_PTIMER; |
| 1369 | treg = TIMER_REG_CTL; |
| 1370 | break; |
| 1371 | |
| 1372 | case SYS_CNTV_CTL_EL02: |
| 1373 | tmr = TIMER_VTIMER; |
| 1374 | treg = TIMER_REG_CTL; |
| 1375 | break; |
| 1376 | |
| 1377 | case SYS_CNTHP_CTL_EL2: |
| 1378 | tmr = TIMER_HPTIMER; |
| 1379 | treg = TIMER_REG_CTL; |
| 1380 | break; |
| 1381 | |
| 1382 | case SYS_CNTHV_CTL_EL2: |
| 1383 | tmr = TIMER_HVTIMER; |
| 1384 | treg = TIMER_REG_CTL; |
| 1385 | break; |
| 1386 | |
| 1387 | case SYS_CNTP_CVAL_EL0: |
| 1388 | if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu)) |
| 1389 | tmr = TIMER_HPTIMER; |
| 1390 | else |
| 1391 | tmr = TIMER_PTIMER; |
| 1392 | treg = TIMER_REG_CVAL; |
| 1393 | break; |
| 1394 | |
| 1395 | case SYS_CNTV_CVAL_EL0: |
| 1396 | if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu)) |
| 1397 | tmr = TIMER_HVTIMER; |
| 1398 | else |
| 1399 | tmr = TIMER_VTIMER; |
| 1400 | treg = TIMER_REG_CVAL; |
| 1401 | break; |
| 1402 | |
| 1403 | case SYS_AARCH32_CNTP_CVAL: |
| 1404 | case SYS_CNTP_CVAL_EL02: |
| 1405 | tmr = TIMER_PTIMER; |
| 1406 | treg = TIMER_REG_CVAL; |
| 1407 | break; |
| 1408 | |
| 1409 | case SYS_CNTV_CVAL_EL02: |
| 1410 | tmr = TIMER_VTIMER; |
| 1411 | treg = TIMER_REG_CVAL; |
| 1412 | break; |
| 1413 | |
| 1414 | case SYS_CNTHP_CVAL_EL2: |
| 1415 | tmr = TIMER_HPTIMER; |
| 1416 | treg = TIMER_REG_CVAL; |
| 1417 | break; |
| 1418 | |
| 1419 | case SYS_CNTHV_CVAL_EL2: |
| 1420 | tmr = TIMER_HVTIMER; |
| 1421 | treg = TIMER_REG_CVAL; |
| 1422 | break; |
| 1423 | |
| 1424 | case SYS_CNTPCT_EL0: |
| 1425 | case SYS_CNTPCTSS_EL0: |
| 1426 | if (is_hyp_ctxt(vcpu)) |
| 1427 | tmr = TIMER_HPTIMER; |
| 1428 | else |
| 1429 | tmr = TIMER_PTIMER; |
| 1430 | treg = TIMER_REG_CNT; |
| 1431 | break; |
| 1432 | |
| 1433 | case SYS_AARCH32_CNTPCT: |
| 1434 | case SYS_AARCH32_CNTPCTSS: |
| 1435 | tmr = TIMER_PTIMER; |
| 1436 | treg = TIMER_REG_CNT; |
| 1437 | break; |
| 1438 | |
| 1439 | case SYS_CNTVCT_EL0: |
| 1440 | case SYS_CNTVCTSS_EL0: |
| 1441 | if (is_hyp_ctxt(vcpu)) |
| 1442 | tmr = TIMER_HVTIMER; |
| 1443 | else |
| 1444 | tmr = TIMER_VTIMER; |
| 1445 | treg = TIMER_REG_CNT; |
| 1446 | break; |
| 1447 | |
| 1448 | case SYS_AARCH32_CNTVCT: |
| 1449 | case SYS_AARCH32_CNTVCTSS: |
| 1450 | tmr = TIMER_VTIMER; |
| 1451 | treg = TIMER_REG_CNT; |
| 1452 | break; |
| 1453 | |
| 1454 | default: |
| 1455 | print_sys_reg_msg(p, "%s", "Unhandled trapped timer register"); |
| 1456 | return undef_access(vcpu, p, r); |
| 1457 | } |
| 1458 | |
| 1459 | if (p->is_write) |
| 1460 | kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval); |
| 1461 | else |
| 1462 | p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg); |
| 1463 | |
| 1464 | return true; |
| 1465 | } |
| 1466 | |
| 1467 | static bool access_hv_timer(struct kvm_vcpu *vcpu, |
| 1468 | struct sys_reg_params *p, |
| 1469 | const struct sys_reg_desc *r) |
| 1470 | { |
| 1471 | if (!vcpu_el2_e2h_is_set(vcpu)) |
| 1472 | return undef_access(vcpu, p, r); |
| 1473 | |
| 1474 | return access_arch_timer(vcpu, p, r); |
| 1475 | } |
| 1476 | |
| 1477 | static s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp, |
| 1478 | s64 new, s64 cur) |
| 1479 | { |
| 1480 | struct arm64_ftr_bits kvm_ftr = *ftrp; |
| 1481 | |
| 1482 | /* Some features have different safe value type in KVM than host features */ |
| 1483 | switch (id) { |
| 1484 | case SYS_ID_AA64DFR0_EL1: |
| 1485 | switch (kvm_ftr.shift) { |
| 1486 | case ID_AA64DFR0_EL1_PMUVer_SHIFT: |
| 1487 | kvm_ftr.type = FTR_LOWER_SAFE; |
| 1488 | break; |
| 1489 | case ID_AA64DFR0_EL1_DebugVer_SHIFT: |
| 1490 | kvm_ftr.type = FTR_LOWER_SAFE; |
| 1491 | break; |
| 1492 | } |
| 1493 | break; |
| 1494 | case SYS_ID_DFR0_EL1: |
| 1495 | if (kvm_ftr.shift == ID_DFR0_EL1_PerfMon_SHIFT) |
| 1496 | kvm_ftr.type = FTR_LOWER_SAFE; |
| 1497 | break; |
| 1498 | } |
| 1499 | |
| 1500 | return arm64_ftr_safe_value(&kvm_ftr, new, cur); |
| 1501 | } |
| 1502 | |
| 1503 | /* |
| 1504 | * arm64_check_features() - Check if a feature register value constitutes |
| 1505 | * a subset of features indicated by the idreg's KVM sanitised limit. |
| 1506 | * |
| 1507 | * This function will check if each feature field of @val is the "safe" value |
| 1508 | * against idreg's KVM sanitised limit return from reset() callback. |
| 1509 | * If a field value in @val is the same as the one in limit, it is always |
| 1510 | * considered the safe value regardless For register fields that are not in |
| 1511 | * writable, only the value in limit is considered the safe value. |
| 1512 | * |
| 1513 | * Return: 0 if all the fields are safe. Otherwise, return negative errno. |
| 1514 | */ |
| 1515 | static int arm64_check_features(struct kvm_vcpu *vcpu, |
| 1516 | const struct sys_reg_desc *rd, |
| 1517 | u64 val) |
| 1518 | { |
| 1519 | const struct arm64_ftr_reg *ftr_reg; |
| 1520 | const struct arm64_ftr_bits *ftrp = NULL; |
| 1521 | u32 id = reg_to_encoding(rd); |
| 1522 | u64 writable_mask = rd->val; |
| 1523 | u64 limit = rd->reset(vcpu, rd); |
| 1524 | u64 mask = 0; |
| 1525 | |
| 1526 | /* |
| 1527 | * Hidden and unallocated ID registers may not have a corresponding |
| 1528 | * struct arm64_ftr_reg. Of course, if the register is RAZ we know the |
| 1529 | * only safe value is 0. |
| 1530 | */ |
| 1531 | if (sysreg_visible_as_raz(vcpu, rd)) |
| 1532 | return val ? -E2BIG : 0; |
| 1533 | |
| 1534 | ftr_reg = get_arm64_ftr_reg(id); |
| 1535 | if (!ftr_reg) |
| 1536 | return -EINVAL; |
| 1537 | |
| 1538 | ftrp = ftr_reg->ftr_bits; |
| 1539 | |
| 1540 | for (; ftrp && ftrp->width; ftrp++) { |
| 1541 | s64 f_val, f_lim, safe_val; |
| 1542 | u64 ftr_mask; |
| 1543 | |
| 1544 | ftr_mask = arm64_ftr_mask(ftrp); |
| 1545 | if ((ftr_mask & writable_mask) != ftr_mask) |
| 1546 | continue; |
| 1547 | |
| 1548 | f_val = arm64_ftr_value(ftrp, val); |
| 1549 | f_lim = arm64_ftr_value(ftrp, limit); |
| 1550 | mask |= ftr_mask; |
| 1551 | |
| 1552 | if (f_val == f_lim) |
| 1553 | safe_val = f_val; |
| 1554 | else |
| 1555 | safe_val = kvm_arm64_ftr_safe_value(id, ftrp, f_val, f_lim); |
| 1556 | |
| 1557 | if (safe_val != f_val) |
| 1558 | return -E2BIG; |
| 1559 | } |
| 1560 | |
| 1561 | /* For fields that are not writable, values in limit are the safe values. */ |
| 1562 | if ((val & ~mask) != (limit & ~mask)) |
| 1563 | return -E2BIG; |
| 1564 | |
| 1565 | return 0; |
| 1566 | } |
| 1567 | |
| 1568 | static u8 pmuver_to_perfmon(u8 pmuver) |
| 1569 | { |
| 1570 | switch (pmuver) { |
| 1571 | case ID_AA64DFR0_EL1_PMUVer_IMP: |
| 1572 | return ID_DFR0_EL1_PerfMon_PMUv3; |
| 1573 | case ID_AA64DFR0_EL1_PMUVer_IMP_DEF: |
| 1574 | return ID_DFR0_EL1_PerfMon_IMPDEF; |
| 1575 | default: |
| 1576 | /* Anything ARMv8.1+ and NI have the same value. For now. */ |
| 1577 | return pmuver; |
| 1578 | } |
| 1579 | } |
| 1580 | |
| 1581 | static u64 sanitise_id_aa64pfr0_el1(const struct kvm_vcpu *vcpu, u64 val); |
| 1582 | static u64 sanitise_id_aa64dfr0_el1(const struct kvm_vcpu *vcpu, u64 val); |
| 1583 | |
| 1584 | /* Read a sanitised cpufeature ID register by sys_reg_desc */ |
| 1585 | static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu, |
| 1586 | const struct sys_reg_desc *r) |
| 1587 | { |
| 1588 | u32 id = reg_to_encoding(r); |
| 1589 | u64 val; |
| 1590 | |
| 1591 | if (sysreg_visible_as_raz(vcpu, r)) |
| 1592 | return 0; |
| 1593 | |
| 1594 | val = read_sanitised_ftr_reg(id); |
| 1595 | |
| 1596 | switch (id) { |
| 1597 | case SYS_ID_AA64DFR0_EL1: |
| 1598 | val = sanitise_id_aa64dfr0_el1(vcpu, val); |
| 1599 | break; |
| 1600 | case SYS_ID_AA64PFR0_EL1: |
| 1601 | val = sanitise_id_aa64pfr0_el1(vcpu, val); |
| 1602 | break; |
| 1603 | case SYS_ID_AA64PFR1_EL1: |
| 1604 | if (!kvm_has_mte(vcpu->kvm)) { |
| 1605 | val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE); |
| 1606 | val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE_frac); |
| 1607 | } |
| 1608 | |
| 1609 | val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME); |
| 1610 | val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_RNDR_trap); |
| 1611 | val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_NMI); |
| 1612 | val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_GCS); |
| 1613 | val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_THE); |
| 1614 | val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTEX); |
| 1615 | val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_DF2); |
| 1616 | val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_PFAR); |
| 1617 | val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MPAM_frac); |
| 1618 | break; |
| 1619 | case SYS_ID_AA64PFR2_EL1: |
| 1620 | /* We only expose FPMR */ |
| 1621 | val &= ID_AA64PFR2_EL1_FPMR; |
| 1622 | break; |
| 1623 | case SYS_ID_AA64ISAR1_EL1: |
| 1624 | if (!vcpu_has_ptrauth(vcpu)) |
| 1625 | val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) | |
| 1626 | ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) | |
| 1627 | ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) | |
| 1628 | ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI)); |
| 1629 | break; |
| 1630 | case SYS_ID_AA64ISAR2_EL1: |
| 1631 | if (!vcpu_has_ptrauth(vcpu)) |
| 1632 | val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) | |
| 1633 | ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3)); |
| 1634 | if (!cpus_have_final_cap(ARM64_HAS_WFXT) || |
| 1635 | has_broken_cntvoff()) |
| 1636 | val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT); |
| 1637 | break; |
| 1638 | case SYS_ID_AA64ISAR3_EL1: |
| 1639 | val &= ID_AA64ISAR3_EL1_FPRCVT | ID_AA64ISAR3_EL1_FAMINMAX; |
| 1640 | break; |
| 1641 | case SYS_ID_AA64MMFR2_EL1: |
| 1642 | val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK; |
| 1643 | val &= ~ID_AA64MMFR2_EL1_NV; |
| 1644 | break; |
| 1645 | case SYS_ID_AA64MMFR3_EL1: |
| 1646 | val &= ID_AA64MMFR3_EL1_TCRX | ID_AA64MMFR3_EL1_S1POE | |
| 1647 | ID_AA64MMFR3_EL1_S1PIE; |
| 1648 | break; |
| 1649 | case SYS_ID_MMFR4_EL1: |
| 1650 | val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX); |
| 1651 | break; |
| 1652 | } |
| 1653 | |
| 1654 | if (vcpu_has_nv(vcpu)) |
| 1655 | val = limit_nv_id_reg(vcpu->kvm, id, val); |
| 1656 | |
| 1657 | return val; |
| 1658 | } |
| 1659 | |
| 1660 | static u64 kvm_read_sanitised_id_reg(struct kvm_vcpu *vcpu, |
| 1661 | const struct sys_reg_desc *r) |
| 1662 | { |
| 1663 | return __kvm_read_sanitised_id_reg(vcpu, r); |
| 1664 | } |
| 1665 | |
| 1666 | static u64 read_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) |
| 1667 | { |
| 1668 | return kvm_read_vm_id_reg(vcpu->kvm, reg_to_encoding(r)); |
| 1669 | } |
| 1670 | |
| 1671 | static bool is_feature_id_reg(u32 encoding) |
| 1672 | { |
| 1673 | return (sys_reg_Op0(encoding) == 3 && |
| 1674 | (sys_reg_Op1(encoding) < 2 || sys_reg_Op1(encoding) == 3) && |
| 1675 | sys_reg_CRn(encoding) == 0 && |
| 1676 | sys_reg_CRm(encoding) <= 7); |
| 1677 | } |
| 1678 | |
| 1679 | /* |
| 1680 | * Return true if the register's (Op0, Op1, CRn, CRm, Op2) is |
| 1681 | * (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8, which is the range of ID |
| 1682 | * registers KVM maintains on a per-VM basis. |
| 1683 | * |
| 1684 | * Additionally, the implementation ID registers and CTR_EL0 are handled as |
| 1685 | * per-VM registers. |
| 1686 | */ |
| 1687 | static inline bool is_vm_ftr_id_reg(u32 id) |
| 1688 | { |
| 1689 | switch (id) { |
| 1690 | case SYS_CTR_EL0: |
| 1691 | case SYS_MIDR_EL1: |
| 1692 | case SYS_REVIDR_EL1: |
| 1693 | case SYS_AIDR_EL1: |
| 1694 | return true; |
| 1695 | default: |
| 1696 | return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 && |
| 1697 | sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 && |
| 1698 | sys_reg_CRm(id) < 8); |
| 1699 | |
| 1700 | } |
| 1701 | } |
| 1702 | |
| 1703 | static inline bool is_vcpu_ftr_id_reg(u32 id) |
| 1704 | { |
| 1705 | return is_feature_id_reg(id) && !is_vm_ftr_id_reg(id); |
| 1706 | } |
| 1707 | |
| 1708 | static inline bool is_aa32_id_reg(u32 id) |
| 1709 | { |
| 1710 | return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 && |
| 1711 | sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 && |
| 1712 | sys_reg_CRm(id) <= 3); |
| 1713 | } |
| 1714 | |
| 1715 | static unsigned int id_visibility(const struct kvm_vcpu *vcpu, |
| 1716 | const struct sys_reg_desc *r) |
| 1717 | { |
| 1718 | u32 id = reg_to_encoding(r); |
| 1719 | |
| 1720 | switch (id) { |
| 1721 | case SYS_ID_AA64ZFR0_EL1: |
| 1722 | if (!vcpu_has_sve(vcpu)) |
| 1723 | return REG_RAZ; |
| 1724 | break; |
| 1725 | } |
| 1726 | |
| 1727 | return 0; |
| 1728 | } |
| 1729 | |
| 1730 | static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu, |
| 1731 | const struct sys_reg_desc *r) |
| 1732 | { |
| 1733 | /* |
| 1734 | * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any |
| 1735 | * EL. Promote to RAZ/WI in order to guarantee consistency between |
| 1736 | * systems. |
| 1737 | */ |
| 1738 | if (!kvm_supports_32bit_el0()) |
| 1739 | return REG_RAZ | REG_USER_WI; |
| 1740 | |
| 1741 | return id_visibility(vcpu, r); |
| 1742 | } |
| 1743 | |
| 1744 | static unsigned int raz_visibility(const struct kvm_vcpu *vcpu, |
| 1745 | const struct sys_reg_desc *r) |
| 1746 | { |
| 1747 | return REG_RAZ; |
| 1748 | } |
| 1749 | |
| 1750 | /* cpufeature ID register access trap handlers */ |
| 1751 | |
| 1752 | static bool access_id_reg(struct kvm_vcpu *vcpu, |
| 1753 | struct sys_reg_params *p, |
| 1754 | const struct sys_reg_desc *r) |
| 1755 | { |
| 1756 | if (p->is_write) |
| 1757 | return write_to_read_only(vcpu, p, r); |
| 1758 | |
| 1759 | p->regval = read_id_reg(vcpu, r); |
| 1760 | |
| 1761 | return true; |
| 1762 | } |
| 1763 | |
| 1764 | /* Visibility overrides for SVE-specific control registers */ |
| 1765 | static unsigned int sve_visibility(const struct kvm_vcpu *vcpu, |
| 1766 | const struct sys_reg_desc *rd) |
| 1767 | { |
| 1768 | if (vcpu_has_sve(vcpu)) |
| 1769 | return 0; |
| 1770 | |
| 1771 | return REG_HIDDEN; |
| 1772 | } |
| 1773 | |
| 1774 | static unsigned int sme_visibility(const struct kvm_vcpu *vcpu, |
| 1775 | const struct sys_reg_desc *rd) |
| 1776 | { |
| 1777 | if (kvm_has_feat(vcpu->kvm, ID_AA64PFR1_EL1, SME, IMP)) |
| 1778 | return 0; |
| 1779 | |
| 1780 | return REG_HIDDEN; |
| 1781 | } |
| 1782 | |
| 1783 | static unsigned int fp8_visibility(const struct kvm_vcpu *vcpu, |
| 1784 | const struct sys_reg_desc *rd) |
| 1785 | { |
| 1786 | if (kvm_has_fpmr(vcpu->kvm)) |
| 1787 | return 0; |
| 1788 | |
| 1789 | return REG_HIDDEN; |
| 1790 | } |
| 1791 | |
| 1792 | static u64 sanitise_id_aa64pfr0_el1(const struct kvm_vcpu *vcpu, u64 val) |
| 1793 | { |
| 1794 | if (!vcpu_has_sve(vcpu)) |
| 1795 | val &= ~ID_AA64PFR0_EL1_SVE_MASK; |
| 1796 | |
| 1797 | /* |
| 1798 | * The default is to expose CSV2 == 1 if the HW isn't affected. |
| 1799 | * Although this is a per-CPU feature, we make it global because |
| 1800 | * asymmetric systems are just a nuisance. |
| 1801 | * |
| 1802 | * Userspace can override this as long as it doesn't promise |
| 1803 | * the impossible. |
| 1804 | */ |
| 1805 | if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) { |
| 1806 | val &= ~ID_AA64PFR0_EL1_CSV2_MASK; |
| 1807 | val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV2, IMP); |
| 1808 | } |
| 1809 | if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) { |
| 1810 | val &= ~ID_AA64PFR0_EL1_CSV3_MASK; |
| 1811 | val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV3, IMP); |
| 1812 | } |
| 1813 | |
| 1814 | if (kvm_vgic_global_state.type == VGIC_V3) { |
| 1815 | val &= ~ID_AA64PFR0_EL1_GIC_MASK; |
| 1816 | val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, GIC, IMP); |
| 1817 | } |
| 1818 | |
| 1819 | val &= ~ID_AA64PFR0_EL1_AMU_MASK; |
| 1820 | |
| 1821 | /* |
| 1822 | * MPAM is disabled by default as KVM also needs a set of PARTID to |
| 1823 | * program the MPAMVPMx_EL2 PARTID remapping registers with. But some |
| 1824 | * older kernels let the guest see the ID bit. |
| 1825 | */ |
| 1826 | val &= ~ID_AA64PFR0_EL1_MPAM_MASK; |
| 1827 | |
| 1828 | return val; |
| 1829 | } |
| 1830 | |
| 1831 | static u64 sanitise_id_aa64dfr0_el1(const struct kvm_vcpu *vcpu, u64 val) |
| 1832 | { |
| 1833 | val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64DFR0_EL1, DebugVer, V8P8); |
| 1834 | |
| 1835 | /* |
| 1836 | * Only initialize the PMU version if the vCPU was configured with one. |
| 1837 | */ |
| 1838 | val &= ~ID_AA64DFR0_EL1_PMUVer_MASK; |
| 1839 | if (kvm_vcpu_has_pmu(vcpu)) |
| 1840 | val |= SYS_FIELD_PREP(ID_AA64DFR0_EL1, PMUVer, |
| 1841 | kvm_arm_pmu_get_pmuver_limit()); |
| 1842 | |
| 1843 | /* Hide SPE from guests */ |
| 1844 | val &= ~ID_AA64DFR0_EL1_PMSVer_MASK; |
| 1845 | |
| 1846 | /* Hide BRBE from guests */ |
| 1847 | val &= ~ID_AA64DFR0_EL1_BRBE_MASK; |
| 1848 | |
| 1849 | return val; |
| 1850 | } |
| 1851 | |
| 1852 | static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu, |
| 1853 | const struct sys_reg_desc *rd, |
| 1854 | u64 val) |
| 1855 | { |
| 1856 | u8 debugver = SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, val); |
| 1857 | u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, val); |
| 1858 | |
| 1859 | /* |
| 1860 | * Prior to commit 3d0dba5764b9 ("KVM: arm64: PMU: Move the |
| 1861 | * ID_AA64DFR0_EL1.PMUver limit to VM creation"), KVM erroneously |
| 1862 | * exposed an IMP_DEF PMU to userspace and the guest on systems w/ |
| 1863 | * non-architectural PMUs. Of course, PMUv3 is the only game in town for |
| 1864 | * PMU virtualization, so the IMP_DEF value was rather user-hostile. |
| 1865 | * |
| 1866 | * At minimum, we're on the hook to allow values that were given to |
| 1867 | * userspace by KVM. Cover our tracks here and replace the IMP_DEF value |
| 1868 | * with a more sensible NI. The value of an ID register changing under |
| 1869 | * the nose of the guest is unfortunate, but is certainly no more |
| 1870 | * surprising than an ill-guided PMU driver poking at impdef system |
| 1871 | * registers that end in an UNDEF... |
| 1872 | */ |
| 1873 | if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF) |
| 1874 | val &= ~ID_AA64DFR0_EL1_PMUVer_MASK; |
| 1875 | |
| 1876 | /* |
| 1877 | * ID_AA64DFR0_EL1.DebugVer is one of those awkward fields with a |
| 1878 | * nonzero minimum safe value. |
| 1879 | */ |
| 1880 | if (debugver < ID_AA64DFR0_EL1_DebugVer_IMP) |
| 1881 | return -EINVAL; |
| 1882 | |
| 1883 | return set_id_reg(vcpu, rd, val); |
| 1884 | } |
| 1885 | |
| 1886 | static u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu, |
| 1887 | const struct sys_reg_desc *rd) |
| 1888 | { |
| 1889 | u8 perfmon; |
| 1890 | u64 val = read_sanitised_ftr_reg(SYS_ID_DFR0_EL1); |
| 1891 | |
| 1892 | val &= ~ID_DFR0_EL1_PerfMon_MASK; |
| 1893 | if (kvm_vcpu_has_pmu(vcpu)) { |
| 1894 | perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit()); |
| 1895 | val |= SYS_FIELD_PREP(ID_DFR0_EL1, PerfMon, perfmon); |
| 1896 | } |
| 1897 | |
| 1898 | val = ID_REG_LIMIT_FIELD_ENUM(val, ID_DFR0_EL1, CopDbg, Debugv8p8); |
| 1899 | |
| 1900 | return val; |
| 1901 | } |
| 1902 | |
| 1903 | static int set_id_dfr0_el1(struct kvm_vcpu *vcpu, |
| 1904 | const struct sys_reg_desc *rd, |
| 1905 | u64 val) |
| 1906 | { |
| 1907 | u8 perfmon = SYS_FIELD_GET(ID_DFR0_EL1, PerfMon, val); |
| 1908 | u8 copdbg = SYS_FIELD_GET(ID_DFR0_EL1, CopDbg, val); |
| 1909 | |
| 1910 | if (perfmon == ID_DFR0_EL1_PerfMon_IMPDEF) { |
| 1911 | val &= ~ID_DFR0_EL1_PerfMon_MASK; |
| 1912 | perfmon = 0; |
| 1913 | } |
| 1914 | |
| 1915 | /* |
| 1916 | * Allow DFR0_EL1.PerfMon to be set from userspace as long as |
| 1917 | * it doesn't promise more than what the HW gives us on the |
| 1918 | * AArch64 side (as everything is emulated with that), and |
| 1919 | * that this is a PMUv3. |
| 1920 | */ |
| 1921 | if (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3) |
| 1922 | return -EINVAL; |
| 1923 | |
| 1924 | if (copdbg < ID_DFR0_EL1_CopDbg_Armv8) |
| 1925 | return -EINVAL; |
| 1926 | |
| 1927 | return set_id_reg(vcpu, rd, val); |
| 1928 | } |
| 1929 | |
| 1930 | static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu, |
| 1931 | const struct sys_reg_desc *rd, u64 user_val) |
| 1932 | { |
| 1933 | u64 hw_val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); |
| 1934 | u64 mpam_mask = ID_AA64PFR0_EL1_MPAM_MASK; |
| 1935 | |
| 1936 | /* |
| 1937 | * Commit 011e5f5bf529f ("arm64/cpufeature: Add remaining feature bits |
| 1938 | * in ID_AA64PFR0 register") exposed the MPAM field of AA64PFR0_EL1 to |
| 1939 | * guests, but didn't add trap handling. KVM doesn't support MPAM and |
| 1940 | * always returns an UNDEF for these registers. The guest must see 0 |
| 1941 | * for this field. |
| 1942 | * |
| 1943 | * But KVM must also accept values from user-space that were provided |
| 1944 | * by KVM. On CPUs that support MPAM, permit user-space to write |
| 1945 | * the sanitizied value to ID_AA64PFR0_EL1.MPAM, but ignore this field. |
| 1946 | */ |
| 1947 | if ((hw_val & mpam_mask) == (user_val & mpam_mask)) |
| 1948 | user_val &= ~ID_AA64PFR0_EL1_MPAM_MASK; |
| 1949 | |
| 1950 | /* Fail the guest's request to disable the AA64 ISA at EL{0,1,2} */ |
| 1951 | if (!FIELD_GET(ID_AA64PFR0_EL1_EL0, user_val) || |
| 1952 | !FIELD_GET(ID_AA64PFR0_EL1_EL1, user_val) || |
| 1953 | (vcpu_has_nv(vcpu) && !FIELD_GET(ID_AA64PFR0_EL1_EL2, user_val))) |
| 1954 | return -EINVAL; |
| 1955 | |
| 1956 | return set_id_reg(vcpu, rd, user_val); |
| 1957 | } |
| 1958 | |
| 1959 | static int set_id_aa64pfr1_el1(struct kvm_vcpu *vcpu, |
| 1960 | const struct sys_reg_desc *rd, u64 user_val) |
| 1961 | { |
| 1962 | u64 hw_val = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1); |
| 1963 | u64 mpam_mask = ID_AA64PFR1_EL1_MPAM_frac_MASK; |
| 1964 | u8 mte = SYS_FIELD_GET(ID_AA64PFR1_EL1, MTE, hw_val); |
| 1965 | u8 user_mte_frac = SYS_FIELD_GET(ID_AA64PFR1_EL1, MTE_frac, user_val); |
| 1966 | u8 hw_mte_frac = SYS_FIELD_GET(ID_AA64PFR1_EL1, MTE_frac, hw_val); |
| 1967 | |
| 1968 | /* See set_id_aa64pfr0_el1 for comment about MPAM */ |
| 1969 | if ((hw_val & mpam_mask) == (user_val & mpam_mask)) |
| 1970 | user_val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK; |
| 1971 | |
| 1972 | /* |
| 1973 | * Previously MTE_frac was hidden from guest. However, if the |
| 1974 | * hardware supports MTE2 but not MTE_ASYM_FAULT then a value |
| 1975 | * of 0 for this field indicates that the hardware supports |
| 1976 | * MTE_ASYNC. Whereas, 0xf indicates MTE_ASYNC is not supported. |
| 1977 | * |
| 1978 | * As KVM must accept values from KVM provided by user-space, |
| 1979 | * when ID_AA64PFR1_EL1.MTE is 2 allow user-space to set |
| 1980 | * ID_AA64PFR1_EL1.MTE_frac to 0. However, ignore it to avoid |
| 1981 | * incorrectly claiming hardware support for MTE_ASYNC in the |
| 1982 | * guest. |
| 1983 | */ |
| 1984 | |
| 1985 | if (mte == ID_AA64PFR1_EL1_MTE_MTE2 && |
| 1986 | hw_mte_frac == ID_AA64PFR1_EL1_MTE_frac_NI && |
| 1987 | user_mte_frac == ID_AA64PFR1_EL1_MTE_frac_ASYNC) { |
| 1988 | user_val &= ~ID_AA64PFR1_EL1_MTE_frac_MASK; |
| 1989 | user_val |= hw_val & ID_AA64PFR1_EL1_MTE_frac_MASK; |
| 1990 | } |
| 1991 | |
| 1992 | return set_id_reg(vcpu, rd, user_val); |
| 1993 | } |
| 1994 | |
| 1995 | static int set_id_aa64mmfr0_el1(struct kvm_vcpu *vcpu, |
| 1996 | const struct sys_reg_desc *rd, u64 user_val) |
| 1997 | { |
| 1998 | u64 sanitized_val = kvm_read_sanitised_id_reg(vcpu, rd); |
| 1999 | u64 tgran2_mask = ID_AA64MMFR0_EL1_TGRAN4_2_MASK | |
| 2000 | ID_AA64MMFR0_EL1_TGRAN16_2_MASK | |
| 2001 | ID_AA64MMFR0_EL1_TGRAN64_2_MASK; |
| 2002 | |
| 2003 | if (vcpu_has_nv(vcpu) && |
| 2004 | ((sanitized_val & tgran2_mask) != (user_val & tgran2_mask))) |
| 2005 | return -EINVAL; |
| 2006 | |
| 2007 | return set_id_reg(vcpu, rd, user_val); |
| 2008 | } |
| 2009 | |
| 2010 | static int set_id_aa64mmfr2_el1(struct kvm_vcpu *vcpu, |
| 2011 | const struct sys_reg_desc *rd, u64 user_val) |
| 2012 | { |
| 2013 | u64 hw_val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1); |
| 2014 | u64 nv_mask = ID_AA64MMFR2_EL1_NV_MASK; |
| 2015 | |
| 2016 | /* |
| 2017 | * We made the mistake to expose the now deprecated NV field, |
| 2018 | * so allow userspace to write it, but silently ignore it. |
| 2019 | */ |
| 2020 | if ((hw_val & nv_mask) == (user_val & nv_mask)) |
| 2021 | user_val &= ~nv_mask; |
| 2022 | |
| 2023 | return set_id_reg(vcpu, rd, user_val); |
| 2024 | } |
| 2025 | |
| 2026 | static int set_ctr_el0(struct kvm_vcpu *vcpu, |
| 2027 | const struct sys_reg_desc *rd, u64 user_val) |
| 2028 | { |
| 2029 | u8 user_L1Ip = SYS_FIELD_GET(CTR_EL0, L1Ip, user_val); |
| 2030 | |
| 2031 | /* |
| 2032 | * Both AIVIVT (0b01) and VPIPT (0b00) are documented as reserved. |
| 2033 | * Hence only allow to set VIPT(0b10) or PIPT(0b11) for L1Ip based |
| 2034 | * on what hardware reports. |
| 2035 | * |
| 2036 | * Using a VIPT software model on PIPT will lead to over invalidation, |
| 2037 | * but still correct. Hence, we can allow downgrading PIPT to VIPT, |
| 2038 | * but not the other way around. This is handled via arm64_ftr_safe_value() |
| 2039 | * as CTR_EL0 ftr_bits has L1Ip field with type FTR_EXACT and safe value |
| 2040 | * set as VIPT. |
| 2041 | */ |
| 2042 | switch (user_L1Ip) { |
| 2043 | case CTR_EL0_L1Ip_RESERVED_VPIPT: |
| 2044 | case CTR_EL0_L1Ip_RESERVED_AIVIVT: |
| 2045 | return -EINVAL; |
| 2046 | case CTR_EL0_L1Ip_VIPT: |
| 2047 | case CTR_EL0_L1Ip_PIPT: |
| 2048 | return set_id_reg(vcpu, rd, user_val); |
| 2049 | default: |
| 2050 | return -ENOENT; |
| 2051 | } |
| 2052 | } |
| 2053 | |
| 2054 | /* |
| 2055 | * cpufeature ID register user accessors |
| 2056 | * |
| 2057 | * For now, these registers are immutable for userspace, so no values |
| 2058 | * are stored, and for set_id_reg() we don't allow the effective value |
| 2059 | * to be changed. |
| 2060 | */ |
| 2061 | static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| 2062 | u64 *val) |
| 2063 | { |
| 2064 | /* |
| 2065 | * Avoid locking if the VM has already started, as the ID registers are |
| 2066 | * guaranteed to be invariant at that point. |
| 2067 | */ |
| 2068 | if (kvm_vm_has_ran_once(vcpu->kvm)) { |
| 2069 | *val = read_id_reg(vcpu, rd); |
| 2070 | return 0; |
| 2071 | } |
| 2072 | |
| 2073 | mutex_lock(&vcpu->kvm->arch.config_lock); |
| 2074 | *val = read_id_reg(vcpu, rd); |
| 2075 | mutex_unlock(&vcpu->kvm->arch.config_lock); |
| 2076 | |
| 2077 | return 0; |
| 2078 | } |
| 2079 | |
| 2080 | static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| 2081 | u64 val) |
| 2082 | { |
| 2083 | u32 id = reg_to_encoding(rd); |
| 2084 | int ret; |
| 2085 | |
| 2086 | mutex_lock(&vcpu->kvm->arch.config_lock); |
| 2087 | |
| 2088 | /* |
| 2089 | * Once the VM has started the ID registers are immutable. Reject any |
| 2090 | * write that does not match the final register value. |
| 2091 | */ |
| 2092 | if (kvm_vm_has_ran_once(vcpu->kvm)) { |
| 2093 | if (val != read_id_reg(vcpu, rd)) |
| 2094 | ret = -EBUSY; |
| 2095 | else |
| 2096 | ret = 0; |
| 2097 | |
| 2098 | mutex_unlock(&vcpu->kvm->arch.config_lock); |
| 2099 | return ret; |
| 2100 | } |
| 2101 | |
| 2102 | ret = arm64_check_features(vcpu, rd, val); |
| 2103 | if (!ret) |
| 2104 | kvm_set_vm_id_reg(vcpu->kvm, id, val); |
| 2105 | |
| 2106 | mutex_unlock(&vcpu->kvm->arch.config_lock); |
| 2107 | |
| 2108 | /* |
| 2109 | * arm64_check_features() returns -E2BIG to indicate the register's |
| 2110 | * feature set is a superset of the maximally-allowed register value. |
| 2111 | * While it would be nice to precisely describe this to userspace, the |
| 2112 | * existing UAPI for KVM_SET_ONE_REG has it that invalid register |
| 2113 | * writes return -EINVAL. |
| 2114 | */ |
| 2115 | if (ret == -E2BIG) |
| 2116 | ret = -EINVAL; |
| 2117 | return ret; |
| 2118 | } |
| 2119 | |
| 2120 | void kvm_set_vm_id_reg(struct kvm *kvm, u32 reg, u64 val) |
| 2121 | { |
| 2122 | u64 *p = __vm_id_reg(&kvm->arch, reg); |
| 2123 | |
| 2124 | lockdep_assert_held(&kvm->arch.config_lock); |
| 2125 | |
| 2126 | if (KVM_BUG_ON(kvm_vm_has_ran_once(kvm) || !p, kvm)) |
| 2127 | return; |
| 2128 | |
| 2129 | *p = val; |
| 2130 | } |
| 2131 | |
| 2132 | static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| 2133 | u64 *val) |
| 2134 | { |
| 2135 | *val = 0; |
| 2136 | return 0; |
| 2137 | } |
| 2138 | |
| 2139 | static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| 2140 | u64 val) |
| 2141 | { |
| 2142 | return 0; |
| 2143 | } |
| 2144 | |
| 2145 | static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| 2146 | const struct sys_reg_desc *r) |
| 2147 | { |
| 2148 | if (p->is_write) |
| 2149 | return write_to_read_only(vcpu, p, r); |
| 2150 | |
| 2151 | p->regval = kvm_read_vm_id_reg(vcpu->kvm, SYS_CTR_EL0); |
| 2152 | return true; |
| 2153 | } |
| 2154 | |
| 2155 | static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| 2156 | const struct sys_reg_desc *r) |
| 2157 | { |
| 2158 | if (p->is_write) |
| 2159 | return write_to_read_only(vcpu, p, r); |
| 2160 | |
| 2161 | p->regval = __vcpu_sys_reg(vcpu, r->reg); |
| 2162 | return true; |
| 2163 | } |
| 2164 | |
| 2165 | /* |
| 2166 | * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary |
| 2167 | * by the physical CPU which the vcpu currently resides in. |
| 2168 | */ |
| 2169 | static u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) |
| 2170 | { |
| 2171 | u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0); |
| 2172 | u64 clidr; |
| 2173 | u8 loc; |
| 2174 | |
| 2175 | if ((ctr_el0 & CTR_EL0_IDC)) { |
| 2176 | /* |
| 2177 | * Data cache clean to the PoU is not required so LoUU and LoUIS |
| 2178 | * will not be set and a unified cache, which will be marked as |
| 2179 | * LoC, will be added. |
| 2180 | * |
| 2181 | * If not DIC, let the unified cache L2 so that an instruction |
| 2182 | * cache can be added as L1 later. |
| 2183 | */ |
| 2184 | loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2; |
| 2185 | clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc); |
| 2186 | } else { |
| 2187 | /* |
| 2188 | * Data cache clean to the PoU is required so let L1 have a data |
| 2189 | * cache and mark it as LoUU and LoUIS. As L1 has a data cache, |
| 2190 | * it can be marked as LoC too. |
| 2191 | */ |
| 2192 | loc = 1; |
| 2193 | clidr = 1 << CLIDR_LOUU_SHIFT; |
| 2194 | clidr |= 1 << CLIDR_LOUIS_SHIFT; |
| 2195 | clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1); |
| 2196 | } |
| 2197 | |
| 2198 | /* |
| 2199 | * Instruction cache invalidation to the PoU is required so let L1 have |
| 2200 | * an instruction cache. If L1 already has a data cache, it will be |
| 2201 | * CACHE_TYPE_SEPARATE. |
| 2202 | */ |
| 2203 | if (!(ctr_el0 & CTR_EL0_DIC)) |
| 2204 | clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1); |
| 2205 | |
| 2206 | clidr |= loc << CLIDR_LOC_SHIFT; |
| 2207 | |
| 2208 | /* |
| 2209 | * Add tag cache unified to data cache. Allocation tags and data are |
| 2210 | * unified in a cache line so that it looks valid even if there is only |
| 2211 | * one cache line. |
| 2212 | */ |
| 2213 | if (kvm_has_mte(vcpu->kvm)) |
| 2214 | clidr |= 2ULL << CLIDR_TTYPE_SHIFT(loc); |
| 2215 | |
| 2216 | __vcpu_assign_sys_reg(vcpu, r->reg, clidr); |
| 2217 | |
| 2218 | return __vcpu_sys_reg(vcpu, r->reg); |
| 2219 | } |
| 2220 | |
| 2221 | static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| 2222 | u64 val) |
| 2223 | { |
| 2224 | u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0); |
| 2225 | u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val)); |
| 2226 | |
| 2227 | if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc)) |
| 2228 | return -EINVAL; |
| 2229 | |
| 2230 | __vcpu_assign_sys_reg(vcpu, rd->reg, val); |
| 2231 | |
| 2232 | return 0; |
| 2233 | } |
| 2234 | |
| 2235 | static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| 2236 | const struct sys_reg_desc *r) |
| 2237 | { |
| 2238 | int reg = r->reg; |
| 2239 | |
| 2240 | if (p->is_write) |
| 2241 | vcpu_write_sys_reg(vcpu, p->regval, reg); |
| 2242 | else |
| 2243 | p->regval = vcpu_read_sys_reg(vcpu, reg); |
| 2244 | return true; |
| 2245 | } |
| 2246 | |
| 2247 | static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| 2248 | const struct sys_reg_desc *r) |
| 2249 | { |
| 2250 | u32 csselr; |
| 2251 | |
| 2252 | if (p->is_write) |
| 2253 | return write_to_read_only(vcpu, p, r); |
| 2254 | |
| 2255 | csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1); |
| 2256 | csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD; |
| 2257 | if (csselr < CSSELR_MAX) |
| 2258 | p->regval = get_ccsidr(vcpu, csselr); |
| 2259 | |
| 2260 | return true; |
| 2261 | } |
| 2262 | |
| 2263 | static unsigned int mte_visibility(const struct kvm_vcpu *vcpu, |
| 2264 | const struct sys_reg_desc *rd) |
| 2265 | { |
| 2266 | if (kvm_has_mte(vcpu->kvm)) |
| 2267 | return 0; |
| 2268 | |
| 2269 | return REG_HIDDEN; |
| 2270 | } |
| 2271 | |
| 2272 | #define MTE_REG(name) { \ |
| 2273 | SYS_DESC(SYS_##name), \ |
| 2274 | .access = undef_access, \ |
| 2275 | .reset = reset_unknown, \ |
| 2276 | .reg = name, \ |
| 2277 | .visibility = mte_visibility, \ |
| 2278 | } |
| 2279 | |
| 2280 | static unsigned int el2_visibility(const struct kvm_vcpu *vcpu, |
| 2281 | const struct sys_reg_desc *rd) |
| 2282 | { |
| 2283 | if (vcpu_has_nv(vcpu)) |
| 2284 | return 0; |
| 2285 | |
| 2286 | return REG_HIDDEN; |
| 2287 | } |
| 2288 | |
| 2289 | static bool bad_vncr_trap(struct kvm_vcpu *vcpu, |
| 2290 | struct sys_reg_params *p, |
| 2291 | const struct sys_reg_desc *r) |
| 2292 | { |
| 2293 | /* |
| 2294 | * We really shouldn't be here, and this is likely the result |
| 2295 | * of a misconfigured trap, as this register should target the |
| 2296 | * VNCR page, and nothing else. |
| 2297 | */ |
| 2298 | return bad_trap(vcpu, p, r, |
| 2299 | "trap of VNCR-backed register"); |
| 2300 | } |
| 2301 | |
| 2302 | static bool bad_redir_trap(struct kvm_vcpu *vcpu, |
| 2303 | struct sys_reg_params *p, |
| 2304 | const struct sys_reg_desc *r) |
| 2305 | { |
| 2306 | /* |
| 2307 | * We really shouldn't be here, and this is likely the result |
| 2308 | * of a misconfigured trap, as this register should target the |
| 2309 | * corresponding EL1, and nothing else. |
| 2310 | */ |
| 2311 | return bad_trap(vcpu, p, r, |
| 2312 | "trap of EL2 register redirected to EL1"); |
| 2313 | } |
| 2314 | |
| 2315 | #define EL2_REG_FILTERED(name, acc, rst, v, filter) { \ |
| 2316 | SYS_DESC(SYS_##name), \ |
| 2317 | .access = acc, \ |
| 2318 | .reset = rst, \ |
| 2319 | .reg = name, \ |
| 2320 | .visibility = filter, \ |
| 2321 | .val = v, \ |
| 2322 | } |
| 2323 | |
| 2324 | #define EL2_REG(name, acc, rst, v) \ |
| 2325 | EL2_REG_FILTERED(name, acc, rst, v, el2_visibility) |
| 2326 | |
| 2327 | #define EL2_REG_VNCR(name, rst, v) EL2_REG(name, bad_vncr_trap, rst, v) |
| 2328 | #define EL2_REG_REDIR(name, rst, v) EL2_REG(name, bad_redir_trap, rst, v) |
| 2329 | |
| 2330 | /* |
| 2331 | * Since reset() callback and field val are not used for idregs, they will be |
| 2332 | * used for specific purposes for idregs. |
| 2333 | * The reset() would return KVM sanitised register value. The value would be the |
| 2334 | * same as the host kernel sanitised value if there is no KVM sanitisation. |
| 2335 | * The val would be used as a mask indicating writable fields for the idreg. |
| 2336 | * Only bits with 1 are writable from userspace. This mask might not be |
| 2337 | * necessary in the future whenever all ID registers are enabled as writable |
| 2338 | * from userspace. |
| 2339 | */ |
| 2340 | |
| 2341 | #define ID_DESC_DEFAULT_CALLBACKS \ |
| 2342 | .access = access_id_reg, \ |
| 2343 | .get_user = get_id_reg, \ |
| 2344 | .set_user = set_id_reg, \ |
| 2345 | .visibility = id_visibility, \ |
| 2346 | .reset = kvm_read_sanitised_id_reg |
| 2347 | |
| 2348 | #define ID_DESC(name) \ |
| 2349 | SYS_DESC(SYS_##name), \ |
| 2350 | ID_DESC_DEFAULT_CALLBACKS |
| 2351 | |
| 2352 | /* sys_reg_desc initialiser for known cpufeature ID registers */ |
| 2353 | #define ID_SANITISED(name) { \ |
| 2354 | ID_DESC(name), \ |
| 2355 | .val = 0, \ |
| 2356 | } |
| 2357 | |
| 2358 | /* sys_reg_desc initialiser for known cpufeature ID registers */ |
| 2359 | #define AA32_ID_SANITISED(name) { \ |
| 2360 | ID_DESC(name), \ |
| 2361 | .visibility = aa32_id_visibility, \ |
| 2362 | .val = 0, \ |
| 2363 | } |
| 2364 | |
| 2365 | /* sys_reg_desc initialiser for writable ID registers */ |
| 2366 | #define ID_WRITABLE(name, mask) { \ |
| 2367 | ID_DESC(name), \ |
| 2368 | .val = mask, \ |
| 2369 | } |
| 2370 | |
| 2371 | /* sys_reg_desc initialiser for cpufeature ID registers that need filtering */ |
| 2372 | #define ID_FILTERED(sysreg, name, mask) { \ |
| 2373 | ID_DESC(sysreg), \ |
| 2374 | .set_user = set_##name, \ |
| 2375 | .val = (mask), \ |
| 2376 | } |
| 2377 | |
| 2378 | /* |
| 2379 | * sys_reg_desc initialiser for architecturally unallocated cpufeature ID |
| 2380 | * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2 |
| 2381 | * (1 <= crm < 8, 0 <= Op2 < 8). |
| 2382 | */ |
| 2383 | #define ID_UNALLOCATED(crm, op2) { \ |
| 2384 | .name = "S3_0_0_" #crm "_" #op2, \ |
| 2385 | Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \ |
| 2386 | ID_DESC_DEFAULT_CALLBACKS, \ |
| 2387 | .visibility = raz_visibility, \ |
| 2388 | .val = 0, \ |
| 2389 | } |
| 2390 | |
| 2391 | /* |
| 2392 | * sys_reg_desc initialiser for known ID registers that we hide from guests. |
| 2393 | * For now, these are exposed just like unallocated ID regs: they appear |
| 2394 | * RAZ for the guest. |
| 2395 | */ |
| 2396 | #define ID_HIDDEN(name) { \ |
| 2397 | ID_DESC(name), \ |
| 2398 | .visibility = raz_visibility, \ |
| 2399 | .val = 0, \ |
| 2400 | } |
| 2401 | |
| 2402 | static bool access_sp_el1(struct kvm_vcpu *vcpu, |
| 2403 | struct sys_reg_params *p, |
| 2404 | const struct sys_reg_desc *r) |
| 2405 | { |
| 2406 | if (p->is_write) |
| 2407 | __vcpu_assign_sys_reg(vcpu, SP_EL1, p->regval); |
| 2408 | else |
| 2409 | p->regval = __vcpu_sys_reg(vcpu, SP_EL1); |
| 2410 | |
| 2411 | return true; |
| 2412 | } |
| 2413 | |
| 2414 | static bool access_elr(struct kvm_vcpu *vcpu, |
| 2415 | struct sys_reg_params *p, |
| 2416 | const struct sys_reg_desc *r) |
| 2417 | { |
| 2418 | if (p->is_write) |
| 2419 | vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1); |
| 2420 | else |
| 2421 | p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1); |
| 2422 | |
| 2423 | return true; |
| 2424 | } |
| 2425 | |
| 2426 | static bool access_spsr(struct kvm_vcpu *vcpu, |
| 2427 | struct sys_reg_params *p, |
| 2428 | const struct sys_reg_desc *r) |
| 2429 | { |
| 2430 | if (p->is_write) |
| 2431 | __vcpu_assign_sys_reg(vcpu, SPSR_EL1, p->regval); |
| 2432 | else |
| 2433 | p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1); |
| 2434 | |
| 2435 | return true; |
| 2436 | } |
| 2437 | |
| 2438 | static bool access_cntkctl_el12(struct kvm_vcpu *vcpu, |
| 2439 | struct sys_reg_params *p, |
| 2440 | const struct sys_reg_desc *r) |
| 2441 | { |
| 2442 | if (p->is_write) |
| 2443 | __vcpu_assign_sys_reg(vcpu, CNTKCTL_EL1, p->regval); |
| 2444 | else |
| 2445 | p->regval = __vcpu_sys_reg(vcpu, CNTKCTL_EL1); |
| 2446 | |
| 2447 | return true; |
| 2448 | } |
| 2449 | |
| 2450 | static u64 reset_hcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) |
| 2451 | { |
| 2452 | u64 val = r->val; |
| 2453 | |
| 2454 | if (!cpus_have_final_cap(ARM64_HAS_HCR_NV1)) |
| 2455 | val |= HCR_E2H; |
| 2456 | |
| 2457 | __vcpu_assign_sys_reg(vcpu, r->reg, val); |
| 2458 | |
| 2459 | return __vcpu_sys_reg(vcpu, r->reg); |
| 2460 | } |
| 2461 | |
| 2462 | static unsigned int __el2_visibility(const struct kvm_vcpu *vcpu, |
| 2463 | const struct sys_reg_desc *rd, |
| 2464 | unsigned int (*fn)(const struct kvm_vcpu *, |
| 2465 | const struct sys_reg_desc *)) |
| 2466 | { |
| 2467 | return el2_visibility(vcpu, rd) ?: fn(vcpu, rd); |
| 2468 | } |
| 2469 | |
| 2470 | static unsigned int sve_el2_visibility(const struct kvm_vcpu *vcpu, |
| 2471 | const struct sys_reg_desc *rd) |
| 2472 | { |
| 2473 | return __el2_visibility(vcpu, rd, sve_visibility); |
| 2474 | } |
| 2475 | |
| 2476 | static unsigned int vncr_el2_visibility(const struct kvm_vcpu *vcpu, |
| 2477 | const struct sys_reg_desc *rd) |
| 2478 | { |
| 2479 | if (el2_visibility(vcpu, rd) == 0 && |
| 2480 | kvm_has_feat(vcpu->kvm, ID_AA64MMFR4_EL1, NV_frac, NV2_ONLY)) |
| 2481 | return 0; |
| 2482 | |
| 2483 | return REG_HIDDEN; |
| 2484 | } |
| 2485 | |
| 2486 | static bool access_zcr_el2(struct kvm_vcpu *vcpu, |
| 2487 | struct sys_reg_params *p, |
| 2488 | const struct sys_reg_desc *r) |
| 2489 | { |
| 2490 | unsigned int vq; |
| 2491 | |
| 2492 | if (guest_hyp_sve_traps_enabled(vcpu)) { |
| 2493 | kvm_inject_nested_sve_trap(vcpu); |
| 2494 | return true; |
| 2495 | } |
| 2496 | |
| 2497 | if (!p->is_write) { |
| 2498 | p->regval = vcpu_read_sys_reg(vcpu, ZCR_EL2); |
| 2499 | return true; |
| 2500 | } |
| 2501 | |
| 2502 | vq = SYS_FIELD_GET(ZCR_ELx, LEN, p->regval) + 1; |
| 2503 | vq = min(vq, vcpu_sve_max_vq(vcpu)); |
| 2504 | vcpu_write_sys_reg(vcpu, vq - 1, ZCR_EL2); |
| 2505 | |
| 2506 | return true; |
| 2507 | } |
| 2508 | |
| 2509 | static bool access_gic_vtr(struct kvm_vcpu *vcpu, |
| 2510 | struct sys_reg_params *p, |
| 2511 | const struct sys_reg_desc *r) |
| 2512 | { |
| 2513 | if (p->is_write) |
| 2514 | return write_to_read_only(vcpu, p, r); |
| 2515 | |
| 2516 | p->regval = kvm_vgic_global_state.ich_vtr_el2; |
| 2517 | p->regval &= ~(ICH_VTR_EL2_DVIM | |
| 2518 | ICH_VTR_EL2_A3V | |
| 2519 | ICH_VTR_EL2_IDbits); |
| 2520 | p->regval |= ICH_VTR_EL2_nV4; |
| 2521 | |
| 2522 | return true; |
| 2523 | } |
| 2524 | |
| 2525 | static bool access_gic_misr(struct kvm_vcpu *vcpu, |
| 2526 | struct sys_reg_params *p, |
| 2527 | const struct sys_reg_desc *r) |
| 2528 | { |
| 2529 | if (p->is_write) |
| 2530 | return write_to_read_only(vcpu, p, r); |
| 2531 | |
| 2532 | p->regval = vgic_v3_get_misr(vcpu); |
| 2533 | |
| 2534 | return true; |
| 2535 | } |
| 2536 | |
| 2537 | static bool access_gic_eisr(struct kvm_vcpu *vcpu, |
| 2538 | struct sys_reg_params *p, |
| 2539 | const struct sys_reg_desc *r) |
| 2540 | { |
| 2541 | if (p->is_write) |
| 2542 | return write_to_read_only(vcpu, p, r); |
| 2543 | |
| 2544 | p->regval = vgic_v3_get_eisr(vcpu); |
| 2545 | |
| 2546 | return true; |
| 2547 | } |
| 2548 | |
| 2549 | static bool access_gic_elrsr(struct kvm_vcpu *vcpu, |
| 2550 | struct sys_reg_params *p, |
| 2551 | const struct sys_reg_desc *r) |
| 2552 | { |
| 2553 | if (p->is_write) |
| 2554 | return write_to_read_only(vcpu, p, r); |
| 2555 | |
| 2556 | p->regval = vgic_v3_get_elrsr(vcpu); |
| 2557 | |
| 2558 | return true; |
| 2559 | } |
| 2560 | |
| 2561 | static unsigned int s1poe_visibility(const struct kvm_vcpu *vcpu, |
| 2562 | const struct sys_reg_desc *rd) |
| 2563 | { |
| 2564 | if (kvm_has_s1poe(vcpu->kvm)) |
| 2565 | return 0; |
| 2566 | |
| 2567 | return REG_HIDDEN; |
| 2568 | } |
| 2569 | |
| 2570 | static unsigned int s1poe_el2_visibility(const struct kvm_vcpu *vcpu, |
| 2571 | const struct sys_reg_desc *rd) |
| 2572 | { |
| 2573 | return __el2_visibility(vcpu, rd, s1poe_visibility); |
| 2574 | } |
| 2575 | |
| 2576 | static unsigned int tcr2_visibility(const struct kvm_vcpu *vcpu, |
| 2577 | const struct sys_reg_desc *rd) |
| 2578 | { |
| 2579 | if (kvm_has_tcr2(vcpu->kvm)) |
| 2580 | return 0; |
| 2581 | |
| 2582 | return REG_HIDDEN; |
| 2583 | } |
| 2584 | |
| 2585 | static unsigned int tcr2_el2_visibility(const struct kvm_vcpu *vcpu, |
| 2586 | const struct sys_reg_desc *rd) |
| 2587 | { |
| 2588 | return __el2_visibility(vcpu, rd, tcr2_visibility); |
| 2589 | } |
| 2590 | |
| 2591 | static unsigned int s1pie_visibility(const struct kvm_vcpu *vcpu, |
| 2592 | const struct sys_reg_desc *rd) |
| 2593 | { |
| 2594 | if (kvm_has_s1pie(vcpu->kvm)) |
| 2595 | return 0; |
| 2596 | |
| 2597 | return REG_HIDDEN; |
| 2598 | } |
| 2599 | |
| 2600 | static unsigned int s1pie_el2_visibility(const struct kvm_vcpu *vcpu, |
| 2601 | const struct sys_reg_desc *rd) |
| 2602 | { |
| 2603 | return __el2_visibility(vcpu, rd, s1pie_visibility); |
| 2604 | } |
| 2605 | |
| 2606 | static bool access_mdcr(struct kvm_vcpu *vcpu, |
| 2607 | struct sys_reg_params *p, |
| 2608 | const struct sys_reg_desc *r) |
| 2609 | { |
| 2610 | u64 hpmn, val, old = __vcpu_sys_reg(vcpu, MDCR_EL2); |
| 2611 | |
| 2612 | if (!p->is_write) { |
| 2613 | p->regval = old; |
| 2614 | return true; |
| 2615 | } |
| 2616 | |
| 2617 | val = p->regval; |
| 2618 | hpmn = FIELD_GET(MDCR_EL2_HPMN, val); |
| 2619 | |
| 2620 | /* |
| 2621 | * If HPMN is out of bounds, limit it to what we actually |
| 2622 | * support. This matches the UNKNOWN definition of the field |
| 2623 | * in that case, and keeps the emulation simple. Sort of. |
| 2624 | */ |
| 2625 | if (hpmn > vcpu->kvm->arch.nr_pmu_counters) { |
| 2626 | hpmn = vcpu->kvm->arch.nr_pmu_counters; |
| 2627 | u64_replace_bits(val, hpmn, MDCR_EL2_HPMN); |
| 2628 | } |
| 2629 | |
| 2630 | __vcpu_assign_sys_reg(vcpu, MDCR_EL2, val); |
| 2631 | |
| 2632 | /* |
| 2633 | * Request a reload of the PMU to enable/disable the counters |
| 2634 | * affected by HPME. |
| 2635 | */ |
| 2636 | if ((old ^ val) & MDCR_EL2_HPME) |
| 2637 | kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu); |
| 2638 | |
| 2639 | return true; |
| 2640 | } |
| 2641 | |
| 2642 | /* |
| 2643 | * For historical (ahem ABI) reasons, KVM treated MIDR_EL1, REVIDR_EL1, and |
| 2644 | * AIDR_EL1 as "invariant" registers, meaning userspace cannot change them. |
| 2645 | * The values made visible to userspace were the register values of the boot |
| 2646 | * CPU. |
| 2647 | * |
| 2648 | * At the same time, reads from these registers at EL1 previously were not |
| 2649 | * trapped, allowing the guest to read the actual hardware value. On big-little |
| 2650 | * machines, this means the VM can see different values depending on where a |
| 2651 | * given vCPU got scheduled. |
| 2652 | * |
| 2653 | * These registers are now trapped as collateral damage from SME, and what |
| 2654 | * follows attempts to give a user / guest view consistent with the existing |
| 2655 | * ABI. |
| 2656 | */ |
| 2657 | static bool access_imp_id_reg(struct kvm_vcpu *vcpu, |
| 2658 | struct sys_reg_params *p, |
| 2659 | const struct sys_reg_desc *r) |
| 2660 | { |
| 2661 | if (p->is_write) |
| 2662 | return write_to_read_only(vcpu, p, r); |
| 2663 | |
| 2664 | /* |
| 2665 | * Return the VM-scoped implementation ID register values if userspace |
| 2666 | * has made them writable. |
| 2667 | */ |
| 2668 | if (test_bit(KVM_ARCH_FLAG_WRITABLE_IMP_ID_REGS, &vcpu->kvm->arch.flags)) |
| 2669 | return access_id_reg(vcpu, p, r); |
| 2670 | |
| 2671 | /* |
| 2672 | * Otherwise, fall back to the old behavior of returning the value of |
| 2673 | * the current CPU. |
| 2674 | */ |
| 2675 | switch (reg_to_encoding(r)) { |
| 2676 | case SYS_REVIDR_EL1: |
| 2677 | p->regval = read_sysreg(revidr_el1); |
| 2678 | break; |
| 2679 | case SYS_AIDR_EL1: |
| 2680 | p->regval = read_sysreg(aidr_el1); |
| 2681 | break; |
| 2682 | default: |
| 2683 | WARN_ON_ONCE(1); |
| 2684 | } |
| 2685 | |
| 2686 | return true; |
| 2687 | } |
| 2688 | |
| 2689 | static u64 __ro_after_init boot_cpu_midr_val; |
| 2690 | static u64 __ro_after_init boot_cpu_revidr_val; |
| 2691 | static u64 __ro_after_init boot_cpu_aidr_val; |
| 2692 | |
| 2693 | static void init_imp_id_regs(void) |
| 2694 | { |
| 2695 | boot_cpu_midr_val = read_sysreg(midr_el1); |
| 2696 | boot_cpu_revidr_val = read_sysreg(revidr_el1); |
| 2697 | boot_cpu_aidr_val = read_sysreg(aidr_el1); |
| 2698 | } |
| 2699 | |
| 2700 | static u64 reset_imp_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) |
| 2701 | { |
| 2702 | switch (reg_to_encoding(r)) { |
| 2703 | case SYS_MIDR_EL1: |
| 2704 | return boot_cpu_midr_val; |
| 2705 | case SYS_REVIDR_EL1: |
| 2706 | return boot_cpu_revidr_val; |
| 2707 | case SYS_AIDR_EL1: |
| 2708 | return boot_cpu_aidr_val; |
| 2709 | default: |
| 2710 | KVM_BUG_ON(1, vcpu->kvm); |
| 2711 | return 0; |
| 2712 | } |
| 2713 | } |
| 2714 | |
| 2715 | static int set_imp_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, |
| 2716 | u64 val) |
| 2717 | { |
| 2718 | struct kvm *kvm = vcpu->kvm; |
| 2719 | u64 expected; |
| 2720 | |
| 2721 | guard(mutex)(&kvm->arch.config_lock); |
| 2722 | |
| 2723 | expected = read_id_reg(vcpu, r); |
| 2724 | if (expected == val) |
| 2725 | return 0; |
| 2726 | |
| 2727 | if (!test_bit(KVM_ARCH_FLAG_WRITABLE_IMP_ID_REGS, &kvm->arch.flags)) |
| 2728 | return -EINVAL; |
| 2729 | |
| 2730 | /* |
| 2731 | * Once the VM has started the ID registers are immutable. Reject the |
| 2732 | * write if userspace tries to change it. |
| 2733 | */ |
| 2734 | if (kvm_vm_has_ran_once(kvm)) |
| 2735 | return -EBUSY; |
| 2736 | |
| 2737 | /* |
| 2738 | * Any value is allowed for the implementation ID registers so long as |
| 2739 | * it is within the writable mask. |
| 2740 | */ |
| 2741 | if ((val & r->val) != val) |
| 2742 | return -EINVAL; |
| 2743 | |
| 2744 | kvm_set_vm_id_reg(kvm, reg_to_encoding(r), val); |
| 2745 | return 0; |
| 2746 | } |
| 2747 | |
| 2748 | #define IMPLEMENTATION_ID(reg, mask) { \ |
| 2749 | SYS_DESC(SYS_##reg), \ |
| 2750 | .access = access_imp_id_reg, \ |
| 2751 | .get_user = get_id_reg, \ |
| 2752 | .set_user = set_imp_id_reg, \ |
| 2753 | .reset = reset_imp_id_reg, \ |
| 2754 | .val = mask, \ |
| 2755 | } |
| 2756 | |
| 2757 | static u64 reset_mdcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) |
| 2758 | { |
| 2759 | __vcpu_assign_sys_reg(vcpu, r->reg, vcpu->kvm->arch.nr_pmu_counters); |
| 2760 | return vcpu->kvm->arch.nr_pmu_counters; |
| 2761 | } |
| 2762 | |
| 2763 | /* |
| 2764 | * Architected system registers. |
| 2765 | * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2 |
| 2766 | * |
| 2767 | * Debug handling: We do trap most, if not all debug related system |
| 2768 | * registers. The implementation is good enough to ensure that a guest |
| 2769 | * can use these with minimal performance degradation. The drawback is |
| 2770 | * that we don't implement any of the external debug architecture. |
| 2771 | * This should be revisited if we ever encounter a more demanding |
| 2772 | * guest... |
| 2773 | */ |
| 2774 | static const struct sys_reg_desc sys_reg_descs[] = { |
| 2775 | DBG_BCR_BVR_WCR_WVR_EL1(0), |
| 2776 | DBG_BCR_BVR_WCR_WVR_EL1(1), |
| 2777 | { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 }, |
| 2778 | { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 }, |
| 2779 | DBG_BCR_BVR_WCR_WVR_EL1(2), |
| 2780 | DBG_BCR_BVR_WCR_WVR_EL1(3), |
| 2781 | DBG_BCR_BVR_WCR_WVR_EL1(4), |
| 2782 | DBG_BCR_BVR_WCR_WVR_EL1(5), |
| 2783 | DBG_BCR_BVR_WCR_WVR_EL1(6), |
| 2784 | DBG_BCR_BVR_WCR_WVR_EL1(7), |
| 2785 | DBG_BCR_BVR_WCR_WVR_EL1(8), |
| 2786 | DBG_BCR_BVR_WCR_WVR_EL1(9), |
| 2787 | DBG_BCR_BVR_WCR_WVR_EL1(10), |
| 2788 | DBG_BCR_BVR_WCR_WVR_EL1(11), |
| 2789 | DBG_BCR_BVR_WCR_WVR_EL1(12), |
| 2790 | DBG_BCR_BVR_WCR_WVR_EL1(13), |
| 2791 | DBG_BCR_BVR_WCR_WVR_EL1(14), |
| 2792 | DBG_BCR_BVR_WCR_WVR_EL1(15), |
| 2793 | |
| 2794 | { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi }, |
| 2795 | { SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 }, |
| 2796 | { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1, |
| 2797 | OSLSR_EL1_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, }, |
| 2798 | { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi }, |
| 2799 | { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi }, |
| 2800 | { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi }, |
| 2801 | { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi }, |
| 2802 | { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 }, |
| 2803 | |
| 2804 | { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi }, |
| 2805 | { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi }, |
| 2806 | // DBGDTR[TR]X_EL0 share the same encoding |
| 2807 | { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi }, |
| 2808 | |
| 2809 | { SYS_DESC(SYS_DBGVCR32_EL2), undef_access, reset_val, DBGVCR32_EL2, 0 }, |
| 2810 | |
| 2811 | IMPLEMENTATION_ID(MIDR_EL1, GENMASK_ULL(31, 0)), |
| 2812 | { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 }, |
| 2813 | IMPLEMENTATION_ID(REVIDR_EL1, GENMASK_ULL(63, 0)), |
| 2814 | |
| 2815 | /* |
| 2816 | * ID regs: all ID_SANITISED() entries here must have corresponding |
| 2817 | * entries in arm64_ftr_regs[]. |
| 2818 | */ |
| 2819 | |
| 2820 | /* AArch64 mappings of the AArch32 ID registers */ |
| 2821 | /* CRm=1 */ |
| 2822 | AA32_ID_SANITISED(ID_PFR0_EL1), |
| 2823 | AA32_ID_SANITISED(ID_PFR1_EL1), |
| 2824 | { SYS_DESC(SYS_ID_DFR0_EL1), |
| 2825 | .access = access_id_reg, |
| 2826 | .get_user = get_id_reg, |
| 2827 | .set_user = set_id_dfr0_el1, |
| 2828 | .visibility = aa32_id_visibility, |
| 2829 | .reset = read_sanitised_id_dfr0_el1, |
| 2830 | .val = ID_DFR0_EL1_PerfMon_MASK | |
| 2831 | ID_DFR0_EL1_CopDbg_MASK, }, |
| 2832 | ID_HIDDEN(ID_AFR0_EL1), |
| 2833 | AA32_ID_SANITISED(ID_MMFR0_EL1), |
| 2834 | AA32_ID_SANITISED(ID_MMFR1_EL1), |
| 2835 | AA32_ID_SANITISED(ID_MMFR2_EL1), |
| 2836 | AA32_ID_SANITISED(ID_MMFR3_EL1), |
| 2837 | |
| 2838 | /* CRm=2 */ |
| 2839 | AA32_ID_SANITISED(ID_ISAR0_EL1), |
| 2840 | AA32_ID_SANITISED(ID_ISAR1_EL1), |
| 2841 | AA32_ID_SANITISED(ID_ISAR2_EL1), |
| 2842 | AA32_ID_SANITISED(ID_ISAR3_EL1), |
| 2843 | AA32_ID_SANITISED(ID_ISAR4_EL1), |
| 2844 | AA32_ID_SANITISED(ID_ISAR5_EL1), |
| 2845 | AA32_ID_SANITISED(ID_MMFR4_EL1), |
| 2846 | AA32_ID_SANITISED(ID_ISAR6_EL1), |
| 2847 | |
| 2848 | /* CRm=3 */ |
| 2849 | AA32_ID_SANITISED(MVFR0_EL1), |
| 2850 | AA32_ID_SANITISED(MVFR1_EL1), |
| 2851 | AA32_ID_SANITISED(MVFR2_EL1), |
| 2852 | ID_UNALLOCATED(3,3), |
| 2853 | AA32_ID_SANITISED(ID_PFR2_EL1), |
| 2854 | ID_HIDDEN(ID_DFR1_EL1), |
| 2855 | AA32_ID_SANITISED(ID_MMFR5_EL1), |
| 2856 | ID_UNALLOCATED(3,7), |
| 2857 | |
| 2858 | /* AArch64 ID registers */ |
| 2859 | /* CRm=4 */ |
| 2860 | ID_FILTERED(ID_AA64PFR0_EL1, id_aa64pfr0_el1, |
| 2861 | ~(ID_AA64PFR0_EL1_AMU | |
| 2862 | ID_AA64PFR0_EL1_MPAM | |
| 2863 | ID_AA64PFR0_EL1_SVE | |
| 2864 | ID_AA64PFR0_EL1_RAS | |
| 2865 | ID_AA64PFR0_EL1_AdvSIMD | |
| 2866 | ID_AA64PFR0_EL1_FP)), |
| 2867 | ID_FILTERED(ID_AA64PFR1_EL1, id_aa64pfr1_el1, |
| 2868 | ~(ID_AA64PFR1_EL1_PFAR | |
| 2869 | ID_AA64PFR1_EL1_DF2 | |
| 2870 | ID_AA64PFR1_EL1_MTEX | |
| 2871 | ID_AA64PFR1_EL1_THE | |
| 2872 | ID_AA64PFR1_EL1_GCS | |
| 2873 | ID_AA64PFR1_EL1_MTE_frac | |
| 2874 | ID_AA64PFR1_EL1_NMI | |
| 2875 | ID_AA64PFR1_EL1_RNDR_trap | |
| 2876 | ID_AA64PFR1_EL1_SME | |
| 2877 | ID_AA64PFR1_EL1_RES0 | |
| 2878 | ID_AA64PFR1_EL1_MPAM_frac | |
| 2879 | ID_AA64PFR1_EL1_RAS_frac | |
| 2880 | ID_AA64PFR1_EL1_MTE)), |
| 2881 | ID_WRITABLE(ID_AA64PFR2_EL1, ID_AA64PFR2_EL1_FPMR), |
| 2882 | ID_UNALLOCATED(4,3), |
| 2883 | ID_WRITABLE(ID_AA64ZFR0_EL1, ~ID_AA64ZFR0_EL1_RES0), |
| 2884 | ID_HIDDEN(ID_AA64SMFR0_EL1), |
| 2885 | ID_UNALLOCATED(4,6), |
| 2886 | ID_WRITABLE(ID_AA64FPFR0_EL1, ~ID_AA64FPFR0_EL1_RES0), |
| 2887 | |
| 2888 | /* CRm=5 */ |
| 2889 | /* |
| 2890 | * Prior to FEAT_Debugv8.9, the architecture defines context-aware |
| 2891 | * breakpoints (CTX_CMPs) as the highest numbered breakpoints (BRPs). |
| 2892 | * KVM does not trap + emulate the breakpoint registers, and as such |
| 2893 | * cannot support a layout that misaligns with the underlying hardware. |
| 2894 | * While it may be possible to describe a subset that aligns with |
| 2895 | * hardware, just prevent changes to BRPs and CTX_CMPs altogether for |
| 2896 | * simplicity. |
| 2897 | * |
| 2898 | * See DDI0487K.a, section D2.8.3 Breakpoint types and linking |
| 2899 | * of breakpoints for more details. |
| 2900 | */ |
| 2901 | ID_FILTERED(ID_AA64DFR0_EL1, id_aa64dfr0_el1, |
| 2902 | ID_AA64DFR0_EL1_DoubleLock_MASK | |
| 2903 | ID_AA64DFR0_EL1_WRPs_MASK | |
| 2904 | ID_AA64DFR0_EL1_PMUVer_MASK | |
| 2905 | ID_AA64DFR0_EL1_DebugVer_MASK), |
| 2906 | ID_SANITISED(ID_AA64DFR1_EL1), |
| 2907 | ID_UNALLOCATED(5,2), |
| 2908 | ID_UNALLOCATED(5,3), |
| 2909 | ID_HIDDEN(ID_AA64AFR0_EL1), |
| 2910 | ID_HIDDEN(ID_AA64AFR1_EL1), |
| 2911 | ID_UNALLOCATED(5,6), |
| 2912 | ID_UNALLOCATED(5,7), |
| 2913 | |
| 2914 | /* CRm=6 */ |
| 2915 | ID_WRITABLE(ID_AA64ISAR0_EL1, ~ID_AA64ISAR0_EL1_RES0), |
| 2916 | ID_WRITABLE(ID_AA64ISAR1_EL1, ~(ID_AA64ISAR1_EL1_GPI | |
| 2917 | ID_AA64ISAR1_EL1_GPA | |
| 2918 | ID_AA64ISAR1_EL1_API | |
| 2919 | ID_AA64ISAR1_EL1_APA)), |
| 2920 | ID_WRITABLE(ID_AA64ISAR2_EL1, ~(ID_AA64ISAR2_EL1_RES0 | |
| 2921 | ID_AA64ISAR2_EL1_APA3 | |
| 2922 | ID_AA64ISAR2_EL1_GPA3)), |
| 2923 | ID_WRITABLE(ID_AA64ISAR3_EL1, (ID_AA64ISAR3_EL1_FPRCVT | |
| 2924 | ID_AA64ISAR3_EL1_FAMINMAX)), |
| 2925 | ID_UNALLOCATED(6,4), |
| 2926 | ID_UNALLOCATED(6,5), |
| 2927 | ID_UNALLOCATED(6,6), |
| 2928 | ID_UNALLOCATED(6,7), |
| 2929 | |
| 2930 | /* CRm=7 */ |
| 2931 | ID_FILTERED(ID_AA64MMFR0_EL1, id_aa64mmfr0_el1, |
| 2932 | ~(ID_AA64MMFR0_EL1_RES0 | |
| 2933 | ID_AA64MMFR0_EL1_ASIDBITS)), |
| 2934 | ID_WRITABLE(ID_AA64MMFR1_EL1, ~(ID_AA64MMFR1_EL1_RES0 | |
| 2935 | ID_AA64MMFR1_EL1_HCX | |
| 2936 | ID_AA64MMFR1_EL1_TWED | |
| 2937 | ID_AA64MMFR1_EL1_XNX | |
| 2938 | ID_AA64MMFR1_EL1_VH | |
| 2939 | ID_AA64MMFR1_EL1_VMIDBits)), |
| 2940 | ID_FILTERED(ID_AA64MMFR2_EL1, |
| 2941 | id_aa64mmfr2_el1, ~(ID_AA64MMFR2_EL1_RES0 | |
| 2942 | ID_AA64MMFR2_EL1_EVT | |
| 2943 | ID_AA64MMFR2_EL1_FWB | |
| 2944 | ID_AA64MMFR2_EL1_IDS | |
| 2945 | ID_AA64MMFR2_EL1_NV | |
| 2946 | ID_AA64MMFR2_EL1_CCIDX)), |
| 2947 | ID_WRITABLE(ID_AA64MMFR3_EL1, (ID_AA64MMFR3_EL1_TCRX | |
| 2948 | ID_AA64MMFR3_EL1_S1PIE | |
| 2949 | ID_AA64MMFR3_EL1_S1POE)), |
| 2950 | ID_WRITABLE(ID_AA64MMFR4_EL1, ID_AA64MMFR4_EL1_NV_frac), |
| 2951 | ID_UNALLOCATED(7,5), |
| 2952 | ID_UNALLOCATED(7,6), |
| 2953 | ID_UNALLOCATED(7,7), |
| 2954 | |
| 2955 | { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 }, |
| 2956 | { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 }, |
| 2957 | { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 }, |
| 2958 | |
| 2959 | MTE_REG(RGSR_EL1), |
| 2960 | MTE_REG(GCR_EL1), |
| 2961 | |
| 2962 | { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility }, |
| 2963 | { SYS_DESC(SYS_TRFCR_EL1), undef_access }, |
| 2964 | { SYS_DESC(SYS_SMPRI_EL1), undef_access }, |
| 2965 | { SYS_DESC(SYS_SMCR_EL1), undef_access }, |
| 2966 | { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 }, |
| 2967 | { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 }, |
| 2968 | { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 }, |
| 2969 | { SYS_DESC(SYS_TCR2_EL1), access_vm_reg, reset_val, TCR2_EL1, 0, |
| 2970 | .visibility = tcr2_visibility }, |
| 2971 | |
| 2972 | PTRAUTH_KEY(APIA), |
| 2973 | PTRAUTH_KEY(APIB), |
| 2974 | PTRAUTH_KEY(APDA), |
| 2975 | PTRAUTH_KEY(APDB), |
| 2976 | PTRAUTH_KEY(APGA), |
| 2977 | |
| 2978 | { SYS_DESC(SYS_SPSR_EL1), access_spsr}, |
| 2979 | { SYS_DESC(SYS_ELR_EL1), access_elr}, |
| 2980 | |
| 2981 | { SYS_DESC(SYS_ICC_PMR_EL1), undef_access }, |
| 2982 | |
| 2983 | { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 }, |
| 2984 | { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 }, |
| 2985 | { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 }, |
| 2986 | |
| 2987 | { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi }, |
| 2988 | { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi }, |
| 2989 | { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi }, |
| 2990 | { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi }, |
| 2991 | { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi }, |
| 2992 | { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi }, |
| 2993 | { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi }, |
| 2994 | { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi }, |
| 2995 | |
| 2996 | MTE_REG(TFSR_EL1), |
| 2997 | MTE_REG(TFSRE0_EL1), |
| 2998 | |
| 2999 | { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 }, |
| 3000 | { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 }, |
| 3001 | |
| 3002 | { SYS_DESC(SYS_PMSCR_EL1), undef_access }, |
| 3003 | { SYS_DESC(SYS_PMSNEVFR_EL1), undef_access }, |
| 3004 | { SYS_DESC(SYS_PMSICR_EL1), undef_access }, |
| 3005 | { SYS_DESC(SYS_PMSIRR_EL1), undef_access }, |
| 3006 | { SYS_DESC(SYS_PMSFCR_EL1), undef_access }, |
| 3007 | { SYS_DESC(SYS_PMSEVFR_EL1), undef_access }, |
| 3008 | { SYS_DESC(SYS_PMSLATFR_EL1), undef_access }, |
| 3009 | { SYS_DESC(SYS_PMSIDR_EL1), undef_access }, |
| 3010 | { SYS_DESC(SYS_PMBLIMITR_EL1), undef_access }, |
| 3011 | { SYS_DESC(SYS_PMBPTR_EL1), undef_access }, |
| 3012 | { SYS_DESC(SYS_PMBSR_EL1), undef_access }, |
| 3013 | /* PMBIDR_EL1 is not trapped */ |
| 3014 | |
| 3015 | { PMU_SYS_REG(PMINTENSET_EL1), |
| 3016 | .access = access_pminten, .reg = PMINTENSET_EL1, |
| 3017 | .get_user = get_pmreg, .set_user = set_pmreg }, |
| 3018 | { PMU_SYS_REG(PMINTENCLR_EL1), |
| 3019 | .access = access_pminten, .reg = PMINTENSET_EL1, |
| 3020 | .get_user = get_pmreg, .set_user = set_pmreg }, |
| 3021 | { SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi }, |
| 3022 | |
| 3023 | { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 }, |
| 3024 | { SYS_DESC(SYS_PIRE0_EL1), NULL, reset_unknown, PIRE0_EL1, |
| 3025 | .visibility = s1pie_visibility }, |
| 3026 | { SYS_DESC(SYS_PIR_EL1), NULL, reset_unknown, PIR_EL1, |
| 3027 | .visibility = s1pie_visibility }, |
| 3028 | { SYS_DESC(SYS_POR_EL1), NULL, reset_unknown, POR_EL1, |
| 3029 | .visibility = s1poe_visibility }, |
| 3030 | { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 }, |
| 3031 | |
| 3032 | { SYS_DESC(SYS_LORSA_EL1), trap_loregion }, |
| 3033 | { SYS_DESC(SYS_LOREA_EL1), trap_loregion }, |
| 3034 | { SYS_DESC(SYS_LORN_EL1), trap_loregion }, |
| 3035 | { SYS_DESC(SYS_LORC_EL1), trap_loregion }, |
| 3036 | { SYS_DESC(SYS_MPAMIDR_EL1), undef_access }, |
| 3037 | { SYS_DESC(SYS_LORID_EL1), trap_loregion }, |
| 3038 | |
| 3039 | { SYS_DESC(SYS_MPAM1_EL1), undef_access }, |
| 3040 | { SYS_DESC(SYS_MPAM0_EL1), undef_access }, |
| 3041 | { SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 }, |
| 3042 | { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 }, |
| 3043 | |
| 3044 | { SYS_DESC(SYS_ICC_IAR0_EL1), undef_access }, |
| 3045 | { SYS_DESC(SYS_ICC_EOIR0_EL1), undef_access }, |
| 3046 | { SYS_DESC(SYS_ICC_HPPIR0_EL1), undef_access }, |
| 3047 | { SYS_DESC(SYS_ICC_BPR0_EL1), undef_access }, |
| 3048 | { SYS_DESC(SYS_ICC_AP0R0_EL1), undef_access }, |
| 3049 | { SYS_DESC(SYS_ICC_AP0R1_EL1), undef_access }, |
| 3050 | { SYS_DESC(SYS_ICC_AP0R2_EL1), undef_access }, |
| 3051 | { SYS_DESC(SYS_ICC_AP0R3_EL1), undef_access }, |
| 3052 | { SYS_DESC(SYS_ICC_AP1R0_EL1), undef_access }, |
| 3053 | { SYS_DESC(SYS_ICC_AP1R1_EL1), undef_access }, |
| 3054 | { SYS_DESC(SYS_ICC_AP1R2_EL1), undef_access }, |
| 3055 | { SYS_DESC(SYS_ICC_AP1R3_EL1), undef_access }, |
| 3056 | { SYS_DESC(SYS_ICC_DIR_EL1), undef_access }, |
| 3057 | { SYS_DESC(SYS_ICC_RPR_EL1), undef_access }, |
| 3058 | { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi }, |
| 3059 | { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi }, |
| 3060 | { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi }, |
| 3061 | { SYS_DESC(SYS_ICC_IAR1_EL1), undef_access }, |
| 3062 | { SYS_DESC(SYS_ICC_EOIR1_EL1), undef_access }, |
| 3063 | { SYS_DESC(SYS_ICC_HPPIR1_EL1), undef_access }, |
| 3064 | { SYS_DESC(SYS_ICC_BPR1_EL1), undef_access }, |
| 3065 | { SYS_DESC(SYS_ICC_CTLR_EL1), undef_access }, |
| 3066 | { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre }, |
| 3067 | { SYS_DESC(SYS_ICC_IGRPEN0_EL1), undef_access }, |
| 3068 | { SYS_DESC(SYS_ICC_IGRPEN1_EL1), undef_access }, |
| 3069 | |
| 3070 | { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 }, |
| 3071 | { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 }, |
| 3072 | |
| 3073 | { SYS_DESC(SYS_ACCDATA_EL1), undef_access }, |
| 3074 | |
| 3075 | { SYS_DESC(SYS_SCXTNUM_EL1), undef_access }, |
| 3076 | |
| 3077 | { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0}, |
| 3078 | |
| 3079 | { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr }, |
| 3080 | { SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1, |
| 3081 | .set_user = set_clidr, .val = ~CLIDR_EL1_RES0 }, |
| 3082 | { SYS_DESC(SYS_CCSIDR2_EL1), undef_access }, |
| 3083 | { SYS_DESC(SYS_SMIDR_EL1), undef_access }, |
| 3084 | IMPLEMENTATION_ID(AIDR_EL1, GENMASK_ULL(63, 0)), |
| 3085 | { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 }, |
| 3086 | ID_FILTERED(CTR_EL0, ctr_el0, |
| 3087 | CTR_EL0_DIC_MASK | |
| 3088 | CTR_EL0_IDC_MASK | |
| 3089 | CTR_EL0_DminLine_MASK | |
| 3090 | CTR_EL0_L1Ip_MASK | |
| 3091 | CTR_EL0_IminLine_MASK), |
| 3092 | { SYS_DESC(SYS_SVCR), undef_access, reset_val, SVCR, 0, .visibility = sme_visibility }, |
| 3093 | { SYS_DESC(SYS_FPMR), undef_access, reset_val, FPMR, 0, .visibility = fp8_visibility }, |
| 3094 | |
| 3095 | { PMU_SYS_REG(PMCR_EL0), .access = access_pmcr, .reset = reset_pmcr, |
| 3096 | .reg = PMCR_EL0, .get_user = get_pmcr, .set_user = set_pmcr }, |
| 3097 | { PMU_SYS_REG(PMCNTENSET_EL0), |
| 3098 | .access = access_pmcnten, .reg = PMCNTENSET_EL0, |
| 3099 | .get_user = get_pmreg, .set_user = set_pmreg }, |
| 3100 | { PMU_SYS_REG(PMCNTENCLR_EL0), |
| 3101 | .access = access_pmcnten, .reg = PMCNTENSET_EL0, |
| 3102 | .get_user = get_pmreg, .set_user = set_pmreg }, |
| 3103 | { PMU_SYS_REG(PMOVSCLR_EL0), |
| 3104 | .access = access_pmovs, .reg = PMOVSSET_EL0, |
| 3105 | .get_user = get_pmreg, .set_user = set_pmreg }, |
| 3106 | /* |
| 3107 | * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was |
| 3108 | * previously (and pointlessly) advertised in the past... |
| 3109 | */ |
| 3110 | { PMU_SYS_REG(PMSWINC_EL0), |
| 3111 | .get_user = get_raz_reg, .set_user = set_wi_reg, |
| 3112 | .access = access_pmswinc, .reset = NULL }, |
| 3113 | { PMU_SYS_REG(PMSELR_EL0), |
| 3114 | .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 }, |
| 3115 | { PMU_SYS_REG(PMCEID0_EL0), |
| 3116 | .access = access_pmceid, .reset = NULL }, |
| 3117 | { PMU_SYS_REG(PMCEID1_EL0), |
| 3118 | .access = access_pmceid, .reset = NULL }, |
| 3119 | { PMU_SYS_REG(PMCCNTR_EL0), |
| 3120 | .access = access_pmu_evcntr, .reset = reset_unknown, |
| 3121 | .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr, |
| 3122 | .set_user = set_pmu_evcntr }, |
| 3123 | { PMU_SYS_REG(PMXEVTYPER_EL0), |
| 3124 | .access = access_pmu_evtyper, .reset = NULL }, |
| 3125 | { PMU_SYS_REG(PMXEVCNTR_EL0), |
| 3126 | .access = access_pmu_evcntr, .reset = NULL }, |
| 3127 | /* |
| 3128 | * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero |
| 3129 | * in 32bit mode. Here we choose to reset it as zero for consistency. |
| 3130 | */ |
| 3131 | { PMU_SYS_REG(PMUSERENR_EL0), .access = access_pmuserenr, |
| 3132 | .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 }, |
| 3133 | { PMU_SYS_REG(PMOVSSET_EL0), |
| 3134 | .access = access_pmovs, .reg = PMOVSSET_EL0, |
| 3135 | .get_user = get_pmreg, .set_user = set_pmreg }, |
| 3136 | |
| 3137 | { SYS_DESC(SYS_POR_EL0), NULL, reset_unknown, POR_EL0, |
| 3138 | .visibility = s1poe_visibility }, |
| 3139 | { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 }, |
| 3140 | { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 }, |
| 3141 | { SYS_DESC(SYS_TPIDR2_EL0), undef_access }, |
| 3142 | |
| 3143 | { SYS_DESC(SYS_SCXTNUM_EL0), undef_access }, |
| 3144 | |
| 3145 | { SYS_DESC(SYS_AMCR_EL0), undef_access }, |
| 3146 | { SYS_DESC(SYS_AMCFGR_EL0), undef_access }, |
| 3147 | { SYS_DESC(SYS_AMCGCR_EL0), undef_access }, |
| 3148 | { SYS_DESC(SYS_AMUSERENR_EL0), undef_access }, |
| 3149 | { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access }, |
| 3150 | { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access }, |
| 3151 | { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access }, |
| 3152 | { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access }, |
| 3153 | AMU_AMEVCNTR0_EL0(0), |
| 3154 | AMU_AMEVCNTR0_EL0(1), |
| 3155 | AMU_AMEVCNTR0_EL0(2), |
| 3156 | AMU_AMEVCNTR0_EL0(3), |
| 3157 | AMU_AMEVCNTR0_EL0(4), |
| 3158 | AMU_AMEVCNTR0_EL0(5), |
| 3159 | AMU_AMEVCNTR0_EL0(6), |
| 3160 | AMU_AMEVCNTR0_EL0(7), |
| 3161 | AMU_AMEVCNTR0_EL0(8), |
| 3162 | AMU_AMEVCNTR0_EL0(9), |
| 3163 | AMU_AMEVCNTR0_EL0(10), |
| 3164 | AMU_AMEVCNTR0_EL0(11), |
| 3165 | AMU_AMEVCNTR0_EL0(12), |
| 3166 | AMU_AMEVCNTR0_EL0(13), |
| 3167 | AMU_AMEVCNTR0_EL0(14), |
| 3168 | AMU_AMEVCNTR0_EL0(15), |
| 3169 | AMU_AMEVTYPER0_EL0(0), |
| 3170 | AMU_AMEVTYPER0_EL0(1), |
| 3171 | AMU_AMEVTYPER0_EL0(2), |
| 3172 | AMU_AMEVTYPER0_EL0(3), |
| 3173 | AMU_AMEVTYPER0_EL0(4), |
| 3174 | AMU_AMEVTYPER0_EL0(5), |
| 3175 | AMU_AMEVTYPER0_EL0(6), |
| 3176 | AMU_AMEVTYPER0_EL0(7), |
| 3177 | AMU_AMEVTYPER0_EL0(8), |
| 3178 | AMU_AMEVTYPER0_EL0(9), |
| 3179 | AMU_AMEVTYPER0_EL0(10), |
| 3180 | AMU_AMEVTYPER0_EL0(11), |
| 3181 | AMU_AMEVTYPER0_EL0(12), |
| 3182 | AMU_AMEVTYPER0_EL0(13), |
| 3183 | AMU_AMEVTYPER0_EL0(14), |
| 3184 | AMU_AMEVTYPER0_EL0(15), |
| 3185 | AMU_AMEVCNTR1_EL0(0), |
| 3186 | AMU_AMEVCNTR1_EL0(1), |
| 3187 | AMU_AMEVCNTR1_EL0(2), |
| 3188 | AMU_AMEVCNTR1_EL0(3), |
| 3189 | AMU_AMEVCNTR1_EL0(4), |
| 3190 | AMU_AMEVCNTR1_EL0(5), |
| 3191 | AMU_AMEVCNTR1_EL0(6), |
| 3192 | AMU_AMEVCNTR1_EL0(7), |
| 3193 | AMU_AMEVCNTR1_EL0(8), |
| 3194 | AMU_AMEVCNTR1_EL0(9), |
| 3195 | AMU_AMEVCNTR1_EL0(10), |
| 3196 | AMU_AMEVCNTR1_EL0(11), |
| 3197 | AMU_AMEVCNTR1_EL0(12), |
| 3198 | AMU_AMEVCNTR1_EL0(13), |
| 3199 | AMU_AMEVCNTR1_EL0(14), |
| 3200 | AMU_AMEVCNTR1_EL0(15), |
| 3201 | AMU_AMEVTYPER1_EL0(0), |
| 3202 | AMU_AMEVTYPER1_EL0(1), |
| 3203 | AMU_AMEVTYPER1_EL0(2), |
| 3204 | AMU_AMEVTYPER1_EL0(3), |
| 3205 | AMU_AMEVTYPER1_EL0(4), |
| 3206 | AMU_AMEVTYPER1_EL0(5), |
| 3207 | AMU_AMEVTYPER1_EL0(6), |
| 3208 | AMU_AMEVTYPER1_EL0(7), |
| 3209 | AMU_AMEVTYPER1_EL0(8), |
| 3210 | AMU_AMEVTYPER1_EL0(9), |
| 3211 | AMU_AMEVTYPER1_EL0(10), |
| 3212 | AMU_AMEVTYPER1_EL0(11), |
| 3213 | AMU_AMEVTYPER1_EL0(12), |
| 3214 | AMU_AMEVTYPER1_EL0(13), |
| 3215 | AMU_AMEVTYPER1_EL0(14), |
| 3216 | AMU_AMEVTYPER1_EL0(15), |
| 3217 | |
| 3218 | { SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer }, |
| 3219 | { SYS_DESC(SYS_CNTVCT_EL0), access_arch_timer }, |
| 3220 | { SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer }, |
| 3221 | { SYS_DESC(SYS_CNTVCTSS_EL0), access_arch_timer }, |
| 3222 | { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer }, |
| 3223 | { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer }, |
| 3224 | { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer }, |
| 3225 | |
| 3226 | { SYS_DESC(SYS_CNTV_TVAL_EL0), access_arch_timer }, |
| 3227 | { SYS_DESC(SYS_CNTV_CTL_EL0), access_arch_timer }, |
| 3228 | { SYS_DESC(SYS_CNTV_CVAL_EL0), access_arch_timer }, |
| 3229 | |
| 3230 | /* PMEVCNTRn_EL0 */ |
| 3231 | PMU_PMEVCNTR_EL0(0), |
| 3232 | PMU_PMEVCNTR_EL0(1), |
| 3233 | PMU_PMEVCNTR_EL0(2), |
| 3234 | PMU_PMEVCNTR_EL0(3), |
| 3235 | PMU_PMEVCNTR_EL0(4), |
| 3236 | PMU_PMEVCNTR_EL0(5), |
| 3237 | PMU_PMEVCNTR_EL0(6), |
| 3238 | PMU_PMEVCNTR_EL0(7), |
| 3239 | PMU_PMEVCNTR_EL0(8), |
| 3240 | PMU_PMEVCNTR_EL0(9), |
| 3241 | PMU_PMEVCNTR_EL0(10), |
| 3242 | PMU_PMEVCNTR_EL0(11), |
| 3243 | PMU_PMEVCNTR_EL0(12), |
| 3244 | PMU_PMEVCNTR_EL0(13), |
| 3245 | PMU_PMEVCNTR_EL0(14), |
| 3246 | PMU_PMEVCNTR_EL0(15), |
| 3247 | PMU_PMEVCNTR_EL0(16), |
| 3248 | PMU_PMEVCNTR_EL0(17), |
| 3249 | PMU_PMEVCNTR_EL0(18), |
| 3250 | PMU_PMEVCNTR_EL0(19), |
| 3251 | PMU_PMEVCNTR_EL0(20), |
| 3252 | PMU_PMEVCNTR_EL0(21), |
| 3253 | PMU_PMEVCNTR_EL0(22), |
| 3254 | PMU_PMEVCNTR_EL0(23), |
| 3255 | PMU_PMEVCNTR_EL0(24), |
| 3256 | PMU_PMEVCNTR_EL0(25), |
| 3257 | PMU_PMEVCNTR_EL0(26), |
| 3258 | PMU_PMEVCNTR_EL0(27), |
| 3259 | PMU_PMEVCNTR_EL0(28), |
| 3260 | PMU_PMEVCNTR_EL0(29), |
| 3261 | PMU_PMEVCNTR_EL0(30), |
| 3262 | /* PMEVTYPERn_EL0 */ |
| 3263 | PMU_PMEVTYPER_EL0(0), |
| 3264 | PMU_PMEVTYPER_EL0(1), |
| 3265 | PMU_PMEVTYPER_EL0(2), |
| 3266 | PMU_PMEVTYPER_EL0(3), |
| 3267 | PMU_PMEVTYPER_EL0(4), |
| 3268 | PMU_PMEVTYPER_EL0(5), |
| 3269 | PMU_PMEVTYPER_EL0(6), |
| 3270 | PMU_PMEVTYPER_EL0(7), |
| 3271 | PMU_PMEVTYPER_EL0(8), |
| 3272 | PMU_PMEVTYPER_EL0(9), |
| 3273 | PMU_PMEVTYPER_EL0(10), |
| 3274 | PMU_PMEVTYPER_EL0(11), |
| 3275 | PMU_PMEVTYPER_EL0(12), |
| 3276 | PMU_PMEVTYPER_EL0(13), |
| 3277 | PMU_PMEVTYPER_EL0(14), |
| 3278 | PMU_PMEVTYPER_EL0(15), |
| 3279 | PMU_PMEVTYPER_EL0(16), |
| 3280 | PMU_PMEVTYPER_EL0(17), |
| 3281 | PMU_PMEVTYPER_EL0(18), |
| 3282 | PMU_PMEVTYPER_EL0(19), |
| 3283 | PMU_PMEVTYPER_EL0(20), |
| 3284 | PMU_PMEVTYPER_EL0(21), |
| 3285 | PMU_PMEVTYPER_EL0(22), |
| 3286 | PMU_PMEVTYPER_EL0(23), |
| 3287 | PMU_PMEVTYPER_EL0(24), |
| 3288 | PMU_PMEVTYPER_EL0(25), |
| 3289 | PMU_PMEVTYPER_EL0(26), |
| 3290 | PMU_PMEVTYPER_EL0(27), |
| 3291 | PMU_PMEVTYPER_EL0(28), |
| 3292 | PMU_PMEVTYPER_EL0(29), |
| 3293 | PMU_PMEVTYPER_EL0(30), |
| 3294 | /* |
| 3295 | * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero |
| 3296 | * in 32bit mode. Here we choose to reset it as zero for consistency. |
| 3297 | */ |
| 3298 | { PMU_SYS_REG(PMCCFILTR_EL0), .access = access_pmu_evtyper, |
| 3299 | .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 }, |
| 3300 | |
| 3301 | EL2_REG_VNCR(VPIDR_EL2, reset_unknown, 0), |
| 3302 | EL2_REG_VNCR(VMPIDR_EL2, reset_unknown, 0), |
| 3303 | EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1), |
| 3304 | EL2_REG(ACTLR_EL2, access_rw, reset_val, 0), |
| 3305 | EL2_REG_VNCR(HCR_EL2, reset_hcr, 0), |
| 3306 | EL2_REG(MDCR_EL2, access_mdcr, reset_mdcr, 0), |
| 3307 | EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1), |
| 3308 | EL2_REG_VNCR(HSTR_EL2, reset_val, 0), |
| 3309 | EL2_REG_VNCR(HFGRTR_EL2, reset_val, 0), |
| 3310 | EL2_REG_VNCR(HFGWTR_EL2, reset_val, 0), |
| 3311 | EL2_REG_VNCR(HFGITR_EL2, reset_val, 0), |
| 3312 | EL2_REG_VNCR(HACR_EL2, reset_val, 0), |
| 3313 | |
| 3314 | EL2_REG_FILTERED(ZCR_EL2, access_zcr_el2, reset_val, 0, |
| 3315 | sve_el2_visibility), |
| 3316 | |
| 3317 | EL2_REG_VNCR(HCRX_EL2, reset_val, 0), |
| 3318 | |
| 3319 | EL2_REG(TTBR0_EL2, access_rw, reset_val, 0), |
| 3320 | EL2_REG(TTBR1_EL2, access_rw, reset_val, 0), |
| 3321 | EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1), |
| 3322 | EL2_REG_FILTERED(TCR2_EL2, access_rw, reset_val, TCR2_EL2_RES1, |
| 3323 | tcr2_el2_visibility), |
| 3324 | EL2_REG_VNCR(VTTBR_EL2, reset_val, 0), |
| 3325 | EL2_REG_VNCR(VTCR_EL2, reset_val, 0), |
| 3326 | EL2_REG_FILTERED(VNCR_EL2, bad_vncr_trap, reset_val, 0, |
| 3327 | vncr_el2_visibility), |
| 3328 | |
| 3329 | { SYS_DESC(SYS_DACR32_EL2), undef_access, reset_unknown, DACR32_EL2 }, |
| 3330 | EL2_REG_VNCR(HDFGRTR_EL2, reset_val, 0), |
| 3331 | EL2_REG_VNCR(HDFGWTR_EL2, reset_val, 0), |
| 3332 | EL2_REG_VNCR(HAFGRTR_EL2, reset_val, 0), |
| 3333 | EL2_REG_REDIR(SPSR_EL2, reset_val, 0), |
| 3334 | EL2_REG_REDIR(ELR_EL2, reset_val, 0), |
| 3335 | { SYS_DESC(SYS_SP_EL1), access_sp_el1}, |
| 3336 | |
| 3337 | /* AArch32 SPSR_* are RES0 if trapped from a NV guest */ |
| 3338 | { SYS_DESC(SYS_SPSR_irq), .access = trap_raz_wi }, |
| 3339 | { SYS_DESC(SYS_SPSR_abt), .access = trap_raz_wi }, |
| 3340 | { SYS_DESC(SYS_SPSR_und), .access = trap_raz_wi }, |
| 3341 | { SYS_DESC(SYS_SPSR_fiq), .access = trap_raz_wi }, |
| 3342 | |
| 3343 | { SYS_DESC(SYS_IFSR32_EL2), undef_access, reset_unknown, IFSR32_EL2 }, |
| 3344 | EL2_REG(AFSR0_EL2, access_rw, reset_val, 0), |
| 3345 | EL2_REG(AFSR1_EL2, access_rw, reset_val, 0), |
| 3346 | EL2_REG_REDIR(ESR_EL2, reset_val, 0), |
| 3347 | { SYS_DESC(SYS_FPEXC32_EL2), undef_access, reset_val, FPEXC32_EL2, 0x700 }, |
| 3348 | |
| 3349 | EL2_REG_REDIR(FAR_EL2, reset_val, 0), |
| 3350 | EL2_REG(HPFAR_EL2, access_rw, reset_val, 0), |
| 3351 | |
| 3352 | EL2_REG(MAIR_EL2, access_rw, reset_val, 0), |
| 3353 | EL2_REG_FILTERED(PIRE0_EL2, access_rw, reset_val, 0, |
| 3354 | s1pie_el2_visibility), |
| 3355 | EL2_REG_FILTERED(PIR_EL2, access_rw, reset_val, 0, |
| 3356 | s1pie_el2_visibility), |
| 3357 | EL2_REG_FILTERED(POR_EL2, access_rw, reset_val, 0, |
| 3358 | s1poe_el2_visibility), |
| 3359 | EL2_REG(AMAIR_EL2, access_rw, reset_val, 0), |
| 3360 | { SYS_DESC(SYS_MPAMHCR_EL2), undef_access }, |
| 3361 | { SYS_DESC(SYS_MPAMVPMV_EL2), undef_access }, |
| 3362 | { SYS_DESC(SYS_MPAM2_EL2), undef_access }, |
| 3363 | { SYS_DESC(SYS_MPAMVPM0_EL2), undef_access }, |
| 3364 | { SYS_DESC(SYS_MPAMVPM1_EL2), undef_access }, |
| 3365 | { SYS_DESC(SYS_MPAMVPM2_EL2), undef_access }, |
| 3366 | { SYS_DESC(SYS_MPAMVPM3_EL2), undef_access }, |
| 3367 | { SYS_DESC(SYS_MPAMVPM4_EL2), undef_access }, |
| 3368 | { SYS_DESC(SYS_MPAMVPM5_EL2), undef_access }, |
| 3369 | { SYS_DESC(SYS_MPAMVPM6_EL2), undef_access }, |
| 3370 | { SYS_DESC(SYS_MPAMVPM7_EL2), undef_access }, |
| 3371 | |
| 3372 | EL2_REG(VBAR_EL2, access_rw, reset_val, 0), |
| 3373 | EL2_REG(RVBAR_EL2, access_rw, reset_val, 0), |
| 3374 | { SYS_DESC(SYS_RMR_EL2), undef_access }, |
| 3375 | |
| 3376 | EL2_REG_VNCR(ICH_AP0R0_EL2, reset_val, 0), |
| 3377 | EL2_REG_VNCR(ICH_AP0R1_EL2, reset_val, 0), |
| 3378 | EL2_REG_VNCR(ICH_AP0R2_EL2, reset_val, 0), |
| 3379 | EL2_REG_VNCR(ICH_AP0R3_EL2, reset_val, 0), |
| 3380 | EL2_REG_VNCR(ICH_AP1R0_EL2, reset_val, 0), |
| 3381 | EL2_REG_VNCR(ICH_AP1R1_EL2, reset_val, 0), |
| 3382 | EL2_REG_VNCR(ICH_AP1R2_EL2, reset_val, 0), |
| 3383 | EL2_REG_VNCR(ICH_AP1R3_EL2, reset_val, 0), |
| 3384 | |
| 3385 | { SYS_DESC(SYS_ICC_SRE_EL2), access_gic_sre }, |
| 3386 | |
| 3387 | EL2_REG_VNCR(ICH_HCR_EL2, reset_val, 0), |
| 3388 | { SYS_DESC(SYS_ICH_VTR_EL2), access_gic_vtr }, |
| 3389 | { SYS_DESC(SYS_ICH_MISR_EL2), access_gic_misr }, |
| 3390 | { SYS_DESC(SYS_ICH_EISR_EL2), access_gic_eisr }, |
| 3391 | { SYS_DESC(SYS_ICH_ELRSR_EL2), access_gic_elrsr }, |
| 3392 | EL2_REG_VNCR(ICH_VMCR_EL2, reset_val, 0), |
| 3393 | |
| 3394 | EL2_REG_VNCR(ICH_LR0_EL2, reset_val, 0), |
| 3395 | EL2_REG_VNCR(ICH_LR1_EL2, reset_val, 0), |
| 3396 | EL2_REG_VNCR(ICH_LR2_EL2, reset_val, 0), |
| 3397 | EL2_REG_VNCR(ICH_LR3_EL2, reset_val, 0), |
| 3398 | EL2_REG_VNCR(ICH_LR4_EL2, reset_val, 0), |
| 3399 | EL2_REG_VNCR(ICH_LR5_EL2, reset_val, 0), |
| 3400 | EL2_REG_VNCR(ICH_LR6_EL2, reset_val, 0), |
| 3401 | EL2_REG_VNCR(ICH_LR7_EL2, reset_val, 0), |
| 3402 | EL2_REG_VNCR(ICH_LR8_EL2, reset_val, 0), |
| 3403 | EL2_REG_VNCR(ICH_LR9_EL2, reset_val, 0), |
| 3404 | EL2_REG_VNCR(ICH_LR10_EL2, reset_val, 0), |
| 3405 | EL2_REG_VNCR(ICH_LR11_EL2, reset_val, 0), |
| 3406 | EL2_REG_VNCR(ICH_LR12_EL2, reset_val, 0), |
| 3407 | EL2_REG_VNCR(ICH_LR13_EL2, reset_val, 0), |
| 3408 | EL2_REG_VNCR(ICH_LR14_EL2, reset_val, 0), |
| 3409 | EL2_REG_VNCR(ICH_LR15_EL2, reset_val, 0), |
| 3410 | |
| 3411 | EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0), |
| 3412 | EL2_REG(TPIDR_EL2, access_rw, reset_val, 0), |
| 3413 | |
| 3414 | EL2_REG_VNCR(CNTVOFF_EL2, reset_val, 0), |
| 3415 | EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0), |
| 3416 | { SYS_DESC(SYS_CNTHP_TVAL_EL2), access_arch_timer }, |
| 3417 | EL2_REG(CNTHP_CTL_EL2, access_arch_timer, reset_val, 0), |
| 3418 | EL2_REG(CNTHP_CVAL_EL2, access_arch_timer, reset_val, 0), |
| 3419 | |
| 3420 | { SYS_DESC(SYS_CNTHV_TVAL_EL2), access_hv_timer }, |
| 3421 | EL2_REG(CNTHV_CTL_EL2, access_hv_timer, reset_val, 0), |
| 3422 | EL2_REG(CNTHV_CVAL_EL2, access_hv_timer, reset_val, 0), |
| 3423 | |
| 3424 | { SYS_DESC(SYS_CNTKCTL_EL12), access_cntkctl_el12 }, |
| 3425 | |
| 3426 | { SYS_DESC(SYS_CNTP_TVAL_EL02), access_arch_timer }, |
| 3427 | { SYS_DESC(SYS_CNTP_CTL_EL02), access_arch_timer }, |
| 3428 | { SYS_DESC(SYS_CNTP_CVAL_EL02), access_arch_timer }, |
| 3429 | |
| 3430 | { SYS_DESC(SYS_CNTV_TVAL_EL02), access_arch_timer }, |
| 3431 | { SYS_DESC(SYS_CNTV_CTL_EL02), access_arch_timer }, |
| 3432 | { SYS_DESC(SYS_CNTV_CVAL_EL02), access_arch_timer }, |
| 3433 | |
| 3434 | EL2_REG(SP_EL2, NULL, reset_unknown, 0), |
| 3435 | }; |
| 3436 | |
| 3437 | static bool handle_at_s1e01(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| 3438 | const struct sys_reg_desc *r) |
| 3439 | { |
| 3440 | u32 op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2); |
| 3441 | |
| 3442 | __kvm_at_s1e01(vcpu, op, p->regval); |
| 3443 | |
| 3444 | return true; |
| 3445 | } |
| 3446 | |
| 3447 | static bool handle_at_s1e2(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| 3448 | const struct sys_reg_desc *r) |
| 3449 | { |
| 3450 | u32 op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2); |
| 3451 | |
| 3452 | /* There is no FGT associated with AT S1E2A :-( */ |
| 3453 | if (op == OP_AT_S1E2A && |
| 3454 | !kvm_has_feat(vcpu->kvm, ID_AA64ISAR2_EL1, ATS1A, IMP)) { |
| 3455 | kvm_inject_undefined(vcpu); |
| 3456 | return false; |
| 3457 | } |
| 3458 | |
| 3459 | __kvm_at_s1e2(vcpu, op, p->regval); |
| 3460 | |
| 3461 | return true; |
| 3462 | } |
| 3463 | |
| 3464 | static bool handle_at_s12(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| 3465 | const struct sys_reg_desc *r) |
| 3466 | { |
| 3467 | u32 op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2); |
| 3468 | |
| 3469 | __kvm_at_s12(vcpu, op, p->regval); |
| 3470 | |
| 3471 | return true; |
| 3472 | } |
| 3473 | |
| 3474 | static bool kvm_supported_tlbi_s12_op(struct kvm_vcpu *vpcu, u32 instr) |
| 3475 | { |
| 3476 | struct kvm *kvm = vpcu->kvm; |
| 3477 | u8 CRm = sys_reg_CRm(instr); |
| 3478 | |
| 3479 | if (sys_reg_CRn(instr) == TLBI_CRn_nXS && |
| 3480 | !kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP)) |
| 3481 | return false; |
| 3482 | |
| 3483 | if (CRm == TLBI_CRm_nROS && |
| 3484 | !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS)) |
| 3485 | return false; |
| 3486 | |
| 3487 | return true; |
| 3488 | } |
| 3489 | |
| 3490 | static bool handle_alle1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| 3491 | const struct sys_reg_desc *r) |
| 3492 | { |
| 3493 | u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2); |
| 3494 | |
| 3495 | if (!kvm_supported_tlbi_s12_op(vcpu, sys_encoding)) |
| 3496 | return undef_access(vcpu, p, r); |
| 3497 | |
| 3498 | write_lock(&vcpu->kvm->mmu_lock); |
| 3499 | |
| 3500 | /* |
| 3501 | * Drop all shadow S2s, resulting in S1/S2 TLBIs for each of the |
| 3502 | * corresponding VMIDs. |
| 3503 | */ |
| 3504 | kvm_nested_s2_unmap(vcpu->kvm, true); |
| 3505 | |
| 3506 | write_unlock(&vcpu->kvm->mmu_lock); |
| 3507 | |
| 3508 | return true; |
| 3509 | } |
| 3510 | |
| 3511 | static bool kvm_supported_tlbi_ipas2_op(struct kvm_vcpu *vpcu, u32 instr) |
| 3512 | { |
| 3513 | struct kvm *kvm = vpcu->kvm; |
| 3514 | u8 CRm = sys_reg_CRm(instr); |
| 3515 | u8 Op2 = sys_reg_Op2(instr); |
| 3516 | |
| 3517 | if (sys_reg_CRn(instr) == TLBI_CRn_nXS && |
| 3518 | !kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP)) |
| 3519 | return false; |
| 3520 | |
| 3521 | if (CRm == TLBI_CRm_IPAIS && (Op2 == 2 || Op2 == 6) && |
| 3522 | !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE)) |
| 3523 | return false; |
| 3524 | |
| 3525 | if (CRm == TLBI_CRm_IPAONS && (Op2 == 0 || Op2 == 4) && |
| 3526 | !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS)) |
| 3527 | return false; |
| 3528 | |
| 3529 | if (CRm == TLBI_CRm_IPAONS && (Op2 == 3 || Op2 == 7) && |
| 3530 | !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE)) |
| 3531 | return false; |
| 3532 | |
| 3533 | return true; |
| 3534 | } |
| 3535 | |
| 3536 | /* Only defined here as this is an internal "abstraction" */ |
| 3537 | union tlbi_info { |
| 3538 | struct { |
| 3539 | u64 start; |
| 3540 | u64 size; |
| 3541 | } range; |
| 3542 | |
| 3543 | struct { |
| 3544 | u64 addr; |
| 3545 | } ipa; |
| 3546 | |
| 3547 | struct { |
| 3548 | u64 addr; |
| 3549 | u32 encoding; |
| 3550 | } va; |
| 3551 | }; |
| 3552 | |
| 3553 | static void s2_mmu_unmap_range(struct kvm_s2_mmu *mmu, |
| 3554 | const union tlbi_info *info) |
| 3555 | { |
| 3556 | /* |
| 3557 | * The unmap operation is allowed to drop the MMU lock and block, which |
| 3558 | * means that @mmu could be used for a different context than the one |
| 3559 | * currently being invalidated. |
| 3560 | * |
| 3561 | * This behavior is still safe, as: |
| 3562 | * |
| 3563 | * 1) The vCPU(s) that recycled the MMU are responsible for invalidating |
| 3564 | * the entire MMU before reusing it, which still honors the intent |
| 3565 | * of a TLBI. |
| 3566 | * |
| 3567 | * 2) Until the guest TLBI instruction is 'retired' (i.e. increment PC |
| 3568 | * and ERET to the guest), other vCPUs are allowed to use stale |
| 3569 | * translations. |
| 3570 | * |
| 3571 | * 3) Accidentally unmapping an unrelated MMU context is nonfatal, and |
| 3572 | * at worst may cause more aborts for shadow stage-2 fills. |
| 3573 | * |
| 3574 | * Dropping the MMU lock also implies that shadow stage-2 fills could |
| 3575 | * happen behind the back of the TLBI. This is still safe, though, as |
| 3576 | * the L1 needs to put its stage-2 in a consistent state before doing |
| 3577 | * the TLBI. |
| 3578 | */ |
| 3579 | kvm_stage2_unmap_range(mmu, info->range.start, info->range.size, true); |
| 3580 | } |
| 3581 | |
| 3582 | static bool handle_vmalls12e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| 3583 | const struct sys_reg_desc *r) |
| 3584 | { |
| 3585 | u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2); |
| 3586 | u64 limit, vttbr; |
| 3587 | |
| 3588 | if (!kvm_supported_tlbi_s12_op(vcpu, sys_encoding)) |
| 3589 | return undef_access(vcpu, p, r); |
| 3590 | |
| 3591 | vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2); |
| 3592 | limit = BIT_ULL(kvm_get_pa_bits(vcpu->kvm)); |
| 3593 | |
| 3594 | kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr), |
| 3595 | &(union tlbi_info) { |
| 3596 | .range = { |
| 3597 | .start = 0, |
| 3598 | .size = limit, |
| 3599 | }, |
| 3600 | }, |
| 3601 | s2_mmu_unmap_range); |
| 3602 | |
| 3603 | return true; |
| 3604 | } |
| 3605 | |
| 3606 | static bool handle_ripas2e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| 3607 | const struct sys_reg_desc *r) |
| 3608 | { |
| 3609 | u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2); |
| 3610 | u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2); |
| 3611 | u64 base, range; |
| 3612 | |
| 3613 | if (!kvm_supported_tlbi_ipas2_op(vcpu, sys_encoding)) |
| 3614 | return undef_access(vcpu, p, r); |
| 3615 | |
| 3616 | /* |
| 3617 | * Because the shadow S2 structure doesn't necessarily reflect that |
| 3618 | * of the guest's S2 (different base granule size, for example), we |
| 3619 | * decide to ignore TTL and only use the described range. |
| 3620 | */ |
| 3621 | base = decode_range_tlbi(p->regval, &range, NULL); |
| 3622 | |
| 3623 | kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr), |
| 3624 | &(union tlbi_info) { |
| 3625 | .range = { |
| 3626 | .start = base, |
| 3627 | .size = range, |
| 3628 | }, |
| 3629 | }, |
| 3630 | s2_mmu_unmap_range); |
| 3631 | |
| 3632 | return true; |
| 3633 | } |
| 3634 | |
| 3635 | static void s2_mmu_unmap_ipa(struct kvm_s2_mmu *mmu, |
| 3636 | const union tlbi_info *info) |
| 3637 | { |
| 3638 | unsigned long max_size; |
| 3639 | u64 base_addr; |
| 3640 | |
| 3641 | /* |
| 3642 | * We drop a number of things from the supplied value: |
| 3643 | * |
| 3644 | * - NS bit: we're non-secure only. |
| 3645 | * |
| 3646 | * - IPA[51:48]: We don't support 52bit IPA just yet... |
| 3647 | * |
| 3648 | * And of course, adjust the IPA to be on an actual address. |
| 3649 | */ |
| 3650 | base_addr = (info->ipa.addr & GENMASK_ULL(35, 0)) << 12; |
| 3651 | max_size = compute_tlb_inval_range(mmu, info->ipa.addr); |
| 3652 | base_addr &= ~(max_size - 1); |
| 3653 | |
| 3654 | /* |
| 3655 | * See comment in s2_mmu_unmap_range() for why this is allowed to |
| 3656 | * reschedule. |
| 3657 | */ |
| 3658 | kvm_stage2_unmap_range(mmu, base_addr, max_size, true); |
| 3659 | } |
| 3660 | |
| 3661 | static bool handle_ipas2e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| 3662 | const struct sys_reg_desc *r) |
| 3663 | { |
| 3664 | u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2); |
| 3665 | u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2); |
| 3666 | |
| 3667 | if (!kvm_supported_tlbi_ipas2_op(vcpu, sys_encoding)) |
| 3668 | return undef_access(vcpu, p, r); |
| 3669 | |
| 3670 | kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr), |
| 3671 | &(union tlbi_info) { |
| 3672 | .ipa = { |
| 3673 | .addr = p->regval, |
| 3674 | }, |
| 3675 | }, |
| 3676 | s2_mmu_unmap_ipa); |
| 3677 | |
| 3678 | return true; |
| 3679 | } |
| 3680 | |
| 3681 | static void s2_mmu_tlbi_s1e1(struct kvm_s2_mmu *mmu, |
| 3682 | const union tlbi_info *info) |
| 3683 | { |
| 3684 | WARN_ON(__kvm_tlbi_s1e2(mmu, info->va.addr, info->va.encoding)); |
| 3685 | } |
| 3686 | |
| 3687 | static bool handle_tlbi_el2(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| 3688 | const struct sys_reg_desc *r) |
| 3689 | { |
| 3690 | u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2); |
| 3691 | |
| 3692 | if (!kvm_supported_tlbi_s1e2_op(vcpu, sys_encoding)) |
| 3693 | return undef_access(vcpu, p, r); |
| 3694 | |
| 3695 | kvm_handle_s1e2_tlbi(vcpu, sys_encoding, p->regval); |
| 3696 | return true; |
| 3697 | } |
| 3698 | |
| 3699 | static bool handle_tlbi_el1(struct kvm_vcpu *vcpu, struct sys_reg_params *p, |
| 3700 | const struct sys_reg_desc *r) |
| 3701 | { |
| 3702 | u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2); |
| 3703 | |
| 3704 | /* |
| 3705 | * If we're here, this is because we've trapped on a EL1 TLBI |
| 3706 | * instruction that affects the EL1 translation regime while |
| 3707 | * we're running in a context that doesn't allow us to let the |
| 3708 | * HW do its thing (aka vEL2): |
| 3709 | * |
| 3710 | * - HCR_EL2.E2H == 0 : a non-VHE guest |
| 3711 | * - HCR_EL2.{E2H,TGE} == { 1, 0 } : a VHE guest in guest mode |
| 3712 | * |
| 3713 | * Another possibility is that we are invalidating the EL2 context |
| 3714 | * using EL1 instructions, but that we landed here because we need |
| 3715 | * additional invalidation for structures that are not held in the |
| 3716 | * CPU TLBs (such as the VNCR pseudo-TLB and its EL2 mapping). In |
| 3717 | * that case, we are guaranteed that HCR_EL2.{E2H,TGE} == { 1, 1 } |
| 3718 | * as we don't allow an NV-capable L1 in a nVHE configuration. |
| 3719 | * |
| 3720 | * We don't expect these helpers to ever be called when running |
| 3721 | * in a vEL1 context. |
| 3722 | */ |
| 3723 | |
| 3724 | WARN_ON(!vcpu_is_el2(vcpu)); |
| 3725 | |
| 3726 | if (!kvm_supported_tlbi_s1e1_op(vcpu, sys_encoding)) |
| 3727 | return undef_access(vcpu, p, r); |
| 3728 | |
| 3729 | if (vcpu_el2_e2h_is_set(vcpu) && vcpu_el2_tge_is_set(vcpu)) { |
| 3730 | kvm_handle_s1e2_tlbi(vcpu, sys_encoding, p->regval); |
| 3731 | return true; |
| 3732 | } |
| 3733 | |
| 3734 | kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, |
| 3735 | get_vmid(__vcpu_sys_reg(vcpu, VTTBR_EL2)), |
| 3736 | &(union tlbi_info) { |
| 3737 | .va = { |
| 3738 | .addr = p->regval, |
| 3739 | .encoding = sys_encoding, |
| 3740 | }, |
| 3741 | }, |
| 3742 | s2_mmu_tlbi_s1e1); |
| 3743 | |
| 3744 | return true; |
| 3745 | } |
| 3746 | |
| 3747 | #define SYS_INSN(insn, access_fn) \ |
| 3748 | { \ |
| 3749 | SYS_DESC(OP_##insn), \ |
| 3750 | .access = (access_fn), \ |
| 3751 | } |
| 3752 | |
| 3753 | static struct sys_reg_desc sys_insn_descs[] = { |
| 3754 | { SYS_DESC(SYS_DC_ISW), access_dcsw }, |
| 3755 | { SYS_DESC(SYS_DC_IGSW), access_dcgsw }, |
| 3756 | { SYS_DESC(SYS_DC_IGDSW), access_dcgsw }, |
| 3757 | |
| 3758 | SYS_INSN(AT_S1E1R, handle_at_s1e01), |
| 3759 | SYS_INSN(AT_S1E1W, handle_at_s1e01), |
| 3760 | SYS_INSN(AT_S1E0R, handle_at_s1e01), |
| 3761 | SYS_INSN(AT_S1E0W, handle_at_s1e01), |
| 3762 | SYS_INSN(AT_S1E1RP, handle_at_s1e01), |
| 3763 | SYS_INSN(AT_S1E1WP, handle_at_s1e01), |
| 3764 | |
| 3765 | { SYS_DESC(SYS_DC_CSW), access_dcsw }, |
| 3766 | { SYS_DESC(SYS_DC_CGSW), access_dcgsw }, |
| 3767 | { SYS_DESC(SYS_DC_CGDSW), access_dcgsw }, |
| 3768 | { SYS_DESC(SYS_DC_CISW), access_dcsw }, |
| 3769 | { SYS_DESC(SYS_DC_CIGSW), access_dcgsw }, |
| 3770 | { SYS_DESC(SYS_DC_CIGDSW), access_dcgsw }, |
| 3771 | |
| 3772 | SYS_INSN(TLBI_VMALLE1OS, handle_tlbi_el1), |
| 3773 | SYS_INSN(TLBI_VAE1OS, handle_tlbi_el1), |
| 3774 | SYS_INSN(TLBI_ASIDE1OS, handle_tlbi_el1), |
| 3775 | SYS_INSN(TLBI_VAAE1OS, handle_tlbi_el1), |
| 3776 | SYS_INSN(TLBI_VALE1OS, handle_tlbi_el1), |
| 3777 | SYS_INSN(TLBI_VAALE1OS, handle_tlbi_el1), |
| 3778 | |
| 3779 | SYS_INSN(TLBI_RVAE1IS, handle_tlbi_el1), |
| 3780 | SYS_INSN(TLBI_RVAAE1IS, handle_tlbi_el1), |
| 3781 | SYS_INSN(TLBI_RVALE1IS, handle_tlbi_el1), |
| 3782 | SYS_INSN(TLBI_RVAALE1IS, handle_tlbi_el1), |
| 3783 | |
| 3784 | SYS_INSN(TLBI_VMALLE1IS, handle_tlbi_el1), |
| 3785 | SYS_INSN(TLBI_VAE1IS, handle_tlbi_el1), |
| 3786 | SYS_INSN(TLBI_ASIDE1IS, handle_tlbi_el1), |
| 3787 | SYS_INSN(TLBI_VAAE1IS, handle_tlbi_el1), |
| 3788 | SYS_INSN(TLBI_VALE1IS, handle_tlbi_el1), |
| 3789 | SYS_INSN(TLBI_VAALE1IS, handle_tlbi_el1), |
| 3790 | |
| 3791 | SYS_INSN(TLBI_RVAE1OS, handle_tlbi_el1), |
| 3792 | SYS_INSN(TLBI_RVAAE1OS, handle_tlbi_el1), |
| 3793 | SYS_INSN(TLBI_RVALE1OS, handle_tlbi_el1), |
| 3794 | SYS_INSN(TLBI_RVAALE1OS, handle_tlbi_el1), |
| 3795 | |
| 3796 | SYS_INSN(TLBI_RVAE1, handle_tlbi_el1), |
| 3797 | SYS_INSN(TLBI_RVAAE1, handle_tlbi_el1), |
| 3798 | SYS_INSN(TLBI_RVALE1, handle_tlbi_el1), |
| 3799 | SYS_INSN(TLBI_RVAALE1, handle_tlbi_el1), |
| 3800 | |
| 3801 | SYS_INSN(TLBI_VMALLE1, handle_tlbi_el1), |
| 3802 | SYS_INSN(TLBI_VAE1, handle_tlbi_el1), |
| 3803 | SYS_INSN(TLBI_ASIDE1, handle_tlbi_el1), |
| 3804 | SYS_INSN(TLBI_VAAE1, handle_tlbi_el1), |
| 3805 | SYS_INSN(TLBI_VALE1, handle_tlbi_el1), |
| 3806 | SYS_INSN(TLBI_VAALE1, handle_tlbi_el1), |
| 3807 | |
| 3808 | SYS_INSN(TLBI_VMALLE1OSNXS, handle_tlbi_el1), |
| 3809 | SYS_INSN(TLBI_VAE1OSNXS, handle_tlbi_el1), |
| 3810 | SYS_INSN(TLBI_ASIDE1OSNXS, handle_tlbi_el1), |
| 3811 | SYS_INSN(TLBI_VAAE1OSNXS, handle_tlbi_el1), |
| 3812 | SYS_INSN(TLBI_VALE1OSNXS, handle_tlbi_el1), |
| 3813 | SYS_INSN(TLBI_VAALE1OSNXS, handle_tlbi_el1), |
| 3814 | |
| 3815 | SYS_INSN(TLBI_RVAE1ISNXS, handle_tlbi_el1), |
| 3816 | SYS_INSN(TLBI_RVAAE1ISNXS, handle_tlbi_el1), |
| 3817 | SYS_INSN(TLBI_RVALE1ISNXS, handle_tlbi_el1), |
| 3818 | SYS_INSN(TLBI_RVAALE1ISNXS, handle_tlbi_el1), |
| 3819 | |
| 3820 | SYS_INSN(TLBI_VMALLE1ISNXS, handle_tlbi_el1), |
| 3821 | SYS_INSN(TLBI_VAE1ISNXS, handle_tlbi_el1), |
| 3822 | SYS_INSN(TLBI_ASIDE1ISNXS, handle_tlbi_el1), |
| 3823 | SYS_INSN(TLBI_VAAE1ISNXS, handle_tlbi_el1), |
| 3824 | SYS_INSN(TLBI_VALE1ISNXS, handle_tlbi_el1), |
| 3825 | SYS_INSN(TLBI_VAALE1ISNXS, handle_tlbi_el1), |
| 3826 | |
| 3827 | SYS_INSN(TLBI_RVAE1OSNXS, handle_tlbi_el1), |
| 3828 | SYS_INSN(TLBI_RVAAE1OSNXS, handle_tlbi_el1), |
| 3829 | SYS_INSN(TLBI_RVALE1OSNXS, handle_tlbi_el1), |
| 3830 | SYS_INSN(TLBI_RVAALE1OSNXS, handle_tlbi_el1), |
| 3831 | |
| 3832 | SYS_INSN(TLBI_RVAE1NXS, handle_tlbi_el1), |
| 3833 | SYS_INSN(TLBI_RVAAE1NXS, handle_tlbi_el1), |
| 3834 | SYS_INSN(TLBI_RVALE1NXS, handle_tlbi_el1), |
| 3835 | SYS_INSN(TLBI_RVAALE1NXS, handle_tlbi_el1), |
| 3836 | |
| 3837 | SYS_INSN(TLBI_VMALLE1NXS, handle_tlbi_el1), |
| 3838 | SYS_INSN(TLBI_VAE1NXS, handle_tlbi_el1), |
| 3839 | SYS_INSN(TLBI_ASIDE1NXS, handle_tlbi_el1), |
| 3840 | SYS_INSN(TLBI_VAAE1NXS, handle_tlbi_el1), |
| 3841 | SYS_INSN(TLBI_VALE1NXS, handle_tlbi_el1), |
| 3842 | SYS_INSN(TLBI_VAALE1NXS, handle_tlbi_el1), |
| 3843 | |
| 3844 | SYS_INSN(AT_S1E2R, handle_at_s1e2), |
| 3845 | SYS_INSN(AT_S1E2W, handle_at_s1e2), |
| 3846 | SYS_INSN(AT_S12E1R, handle_at_s12), |
| 3847 | SYS_INSN(AT_S12E1W, handle_at_s12), |
| 3848 | SYS_INSN(AT_S12E0R, handle_at_s12), |
| 3849 | SYS_INSN(AT_S12E0W, handle_at_s12), |
| 3850 | SYS_INSN(AT_S1E2A, handle_at_s1e2), |
| 3851 | |
| 3852 | SYS_INSN(TLBI_IPAS2E1IS, handle_ipas2e1is), |
| 3853 | SYS_INSN(TLBI_RIPAS2E1IS, handle_ripas2e1is), |
| 3854 | SYS_INSN(TLBI_IPAS2LE1IS, handle_ipas2e1is), |
| 3855 | SYS_INSN(TLBI_RIPAS2LE1IS, handle_ripas2e1is), |
| 3856 | |
| 3857 | SYS_INSN(TLBI_ALLE2OS, handle_tlbi_el2), |
| 3858 | SYS_INSN(TLBI_VAE2OS, handle_tlbi_el2), |
| 3859 | SYS_INSN(TLBI_ALLE1OS, handle_alle1is), |
| 3860 | SYS_INSN(TLBI_VALE2OS, handle_tlbi_el2), |
| 3861 | SYS_INSN(TLBI_VMALLS12E1OS, handle_vmalls12e1is), |
| 3862 | |
| 3863 | SYS_INSN(TLBI_RVAE2IS, handle_tlbi_el2), |
| 3864 | SYS_INSN(TLBI_RVALE2IS, handle_tlbi_el2), |
| 3865 | SYS_INSN(TLBI_ALLE2IS, handle_tlbi_el2), |
| 3866 | SYS_INSN(TLBI_VAE2IS, handle_tlbi_el2), |
| 3867 | |
| 3868 | SYS_INSN(TLBI_ALLE1IS, handle_alle1is), |
| 3869 | |
| 3870 | SYS_INSN(TLBI_VALE2IS, handle_tlbi_el2), |
| 3871 | |
| 3872 | SYS_INSN(TLBI_VMALLS12E1IS, handle_vmalls12e1is), |
| 3873 | SYS_INSN(TLBI_IPAS2E1OS, handle_ipas2e1is), |
| 3874 | SYS_INSN(TLBI_IPAS2E1, handle_ipas2e1is), |
| 3875 | SYS_INSN(TLBI_RIPAS2E1, handle_ripas2e1is), |
| 3876 | SYS_INSN(TLBI_RIPAS2E1OS, handle_ripas2e1is), |
| 3877 | SYS_INSN(TLBI_IPAS2LE1OS, handle_ipas2e1is), |
| 3878 | SYS_INSN(TLBI_IPAS2LE1, handle_ipas2e1is), |
| 3879 | SYS_INSN(TLBI_RIPAS2LE1, handle_ripas2e1is), |
| 3880 | SYS_INSN(TLBI_RIPAS2LE1OS, handle_ripas2e1is), |
| 3881 | SYS_INSN(TLBI_RVAE2OS, handle_tlbi_el2), |
| 3882 | SYS_INSN(TLBI_RVALE2OS, handle_tlbi_el2), |
| 3883 | SYS_INSN(TLBI_RVAE2, handle_tlbi_el2), |
| 3884 | SYS_INSN(TLBI_RVALE2, handle_tlbi_el2), |
| 3885 | SYS_INSN(TLBI_ALLE2, handle_tlbi_el2), |
| 3886 | SYS_INSN(TLBI_VAE2, handle_tlbi_el2), |
| 3887 | |
| 3888 | SYS_INSN(TLBI_ALLE1, handle_alle1is), |
| 3889 | |
| 3890 | SYS_INSN(TLBI_VALE2, handle_tlbi_el2), |
| 3891 | |
| 3892 | SYS_INSN(TLBI_VMALLS12E1, handle_vmalls12e1is), |
| 3893 | |
| 3894 | SYS_INSN(TLBI_IPAS2E1ISNXS, handle_ipas2e1is), |
| 3895 | SYS_INSN(TLBI_RIPAS2E1ISNXS, handle_ripas2e1is), |
| 3896 | SYS_INSN(TLBI_IPAS2LE1ISNXS, handle_ipas2e1is), |
| 3897 | SYS_INSN(TLBI_RIPAS2LE1ISNXS, handle_ripas2e1is), |
| 3898 | |
| 3899 | SYS_INSN(TLBI_ALLE2OSNXS, handle_tlbi_el2), |
| 3900 | SYS_INSN(TLBI_VAE2OSNXS, handle_tlbi_el2), |
| 3901 | SYS_INSN(TLBI_ALLE1OSNXS, handle_alle1is), |
| 3902 | SYS_INSN(TLBI_VALE2OSNXS, handle_tlbi_el2), |
| 3903 | SYS_INSN(TLBI_VMALLS12E1OSNXS, handle_vmalls12e1is), |
| 3904 | |
| 3905 | SYS_INSN(TLBI_RVAE2ISNXS, handle_tlbi_el2), |
| 3906 | SYS_INSN(TLBI_RVALE2ISNXS, handle_tlbi_el2), |
| 3907 | SYS_INSN(TLBI_ALLE2ISNXS, handle_tlbi_el2), |
| 3908 | SYS_INSN(TLBI_VAE2ISNXS, handle_tlbi_el2), |
| 3909 | |
| 3910 | SYS_INSN(TLBI_ALLE1ISNXS, handle_alle1is), |
| 3911 | SYS_INSN(TLBI_VALE2ISNXS, handle_tlbi_el2), |
| 3912 | SYS_INSN(TLBI_VMALLS12E1ISNXS, handle_vmalls12e1is), |
| 3913 | SYS_INSN(TLBI_IPAS2E1OSNXS, handle_ipas2e1is), |
| 3914 | SYS_INSN(TLBI_IPAS2E1NXS, handle_ipas2e1is), |
| 3915 | SYS_INSN(TLBI_RIPAS2E1NXS, handle_ripas2e1is), |
| 3916 | SYS_INSN(TLBI_RIPAS2E1OSNXS, handle_ripas2e1is), |
| 3917 | SYS_INSN(TLBI_IPAS2LE1OSNXS, handle_ipas2e1is), |
| 3918 | SYS_INSN(TLBI_IPAS2LE1NXS, handle_ipas2e1is), |
| 3919 | SYS_INSN(TLBI_RIPAS2LE1NXS, handle_ripas2e1is), |
| 3920 | SYS_INSN(TLBI_RIPAS2LE1OSNXS, handle_ripas2e1is), |
| 3921 | SYS_INSN(TLBI_RVAE2OSNXS, handle_tlbi_el2), |
| 3922 | SYS_INSN(TLBI_RVALE2OSNXS, handle_tlbi_el2), |
| 3923 | SYS_INSN(TLBI_RVAE2NXS, handle_tlbi_el2), |
| 3924 | SYS_INSN(TLBI_RVALE2NXS, handle_tlbi_el2), |
| 3925 | SYS_INSN(TLBI_ALLE2NXS, handle_tlbi_el2), |
| 3926 | SYS_INSN(TLBI_VAE2NXS, handle_tlbi_el2), |
| 3927 | SYS_INSN(TLBI_ALLE1NXS, handle_alle1is), |
| 3928 | SYS_INSN(TLBI_VALE2NXS, handle_tlbi_el2), |
| 3929 | SYS_INSN(TLBI_VMALLS12E1NXS, handle_vmalls12e1is), |
| 3930 | }; |
| 3931 | |
| 3932 | static bool trap_dbgdidr(struct kvm_vcpu *vcpu, |
| 3933 | struct sys_reg_params *p, |
| 3934 | const struct sys_reg_desc *r) |
| 3935 | { |
| 3936 | if (p->is_write) { |
| 3937 | return ignore_write(vcpu, p); |
| 3938 | } else { |
| 3939 | u64 dfr = kvm_read_vm_id_reg(vcpu->kvm, SYS_ID_AA64DFR0_EL1); |
| 3940 | u32 el3 = kvm_has_feat(vcpu->kvm, ID_AA64PFR0_EL1, EL3, IMP); |
| 3941 | |
| 3942 | p->regval = ((SYS_FIELD_GET(ID_AA64DFR0_EL1, WRPs, dfr) << 28) | |
| 3943 | (SYS_FIELD_GET(ID_AA64DFR0_EL1, BRPs, dfr) << 24) | |
| 3944 | (SYS_FIELD_GET(ID_AA64DFR0_EL1, CTX_CMPs, dfr) << 20) | |
| 3945 | (SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, dfr) << 16) | |
| 3946 | (1 << 15) | (el3 << 14) | (el3 << 12)); |
| 3947 | return true; |
| 3948 | } |
| 3949 | } |
| 3950 | |
| 3951 | /* |
| 3952 | * AArch32 debug register mappings |
| 3953 | * |
| 3954 | * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0] |
| 3955 | * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32] |
| 3956 | * |
| 3957 | * None of the other registers share their location, so treat them as |
| 3958 | * if they were 64bit. |
| 3959 | */ |
| 3960 | #define DBG_BCR_BVR_WCR_WVR(n) \ |
| 3961 | /* DBGBVRn */ \ |
| 3962 | { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), \ |
| 3963 | trap_dbg_wb_reg, NULL, n }, \ |
| 3964 | /* DBGBCRn */ \ |
| 3965 | { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_dbg_wb_reg, NULL, n }, \ |
| 3966 | /* DBGWVRn */ \ |
| 3967 | { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_dbg_wb_reg, NULL, n }, \ |
| 3968 | /* DBGWCRn */ \ |
| 3969 | { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_dbg_wb_reg, NULL, n } |
| 3970 | |
| 3971 | #define DBGBXVR(n) \ |
| 3972 | { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), \ |
| 3973 | trap_dbg_wb_reg, NULL, n } |
| 3974 | |
| 3975 | /* |
| 3976 | * Trapped cp14 registers. We generally ignore most of the external |
| 3977 | * debug, on the principle that they don't really make sense to a |
| 3978 | * guest. Revisit this one day, would this principle change. |
| 3979 | */ |
| 3980 | static const struct sys_reg_desc cp14_regs[] = { |
| 3981 | /* DBGDIDR */ |
| 3982 | { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr }, |
| 3983 | /* DBGDTRRXext */ |
| 3984 | { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi }, |
| 3985 | |
| 3986 | DBG_BCR_BVR_WCR_WVR(0), |
| 3987 | /* DBGDSCRint */ |
| 3988 | { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi }, |
| 3989 | DBG_BCR_BVR_WCR_WVR(1), |
| 3990 | /* DBGDCCINT */ |
| 3991 | { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 }, |
| 3992 | /* DBGDSCRext */ |
| 3993 | { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 }, |
| 3994 | DBG_BCR_BVR_WCR_WVR(2), |
| 3995 | /* DBGDTR[RT]Xint */ |
| 3996 | { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi }, |
| 3997 | /* DBGDTR[RT]Xext */ |
| 3998 | { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi }, |
| 3999 | DBG_BCR_BVR_WCR_WVR(3), |
| 4000 | DBG_BCR_BVR_WCR_WVR(4), |
| 4001 | DBG_BCR_BVR_WCR_WVR(5), |
| 4002 | /* DBGWFAR */ |
| 4003 | { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi }, |
| 4004 | /* DBGOSECCR */ |
| 4005 | { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi }, |
| 4006 | DBG_BCR_BVR_WCR_WVR(6), |
| 4007 | /* DBGVCR */ |
| 4008 | { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 }, |
| 4009 | DBG_BCR_BVR_WCR_WVR(7), |
| 4010 | DBG_BCR_BVR_WCR_WVR(8), |
| 4011 | DBG_BCR_BVR_WCR_WVR(9), |
| 4012 | DBG_BCR_BVR_WCR_WVR(10), |
| 4013 | DBG_BCR_BVR_WCR_WVR(11), |
| 4014 | DBG_BCR_BVR_WCR_WVR(12), |
| 4015 | DBG_BCR_BVR_WCR_WVR(13), |
| 4016 | DBG_BCR_BVR_WCR_WVR(14), |
| 4017 | DBG_BCR_BVR_WCR_WVR(15), |
| 4018 | |
| 4019 | /* DBGDRAR (32bit) */ |
| 4020 | { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi }, |
| 4021 | |
| 4022 | DBGBXVR(0), |
| 4023 | /* DBGOSLAR */ |
| 4024 | { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 }, |
| 4025 | DBGBXVR(1), |
| 4026 | /* DBGOSLSR */ |
| 4027 | { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 }, |
| 4028 | DBGBXVR(2), |
| 4029 | DBGBXVR(3), |
| 4030 | /* DBGOSDLR */ |
| 4031 | { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi }, |
| 4032 | DBGBXVR(4), |
| 4033 | /* DBGPRCR */ |
| 4034 | { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi }, |
| 4035 | DBGBXVR(5), |
| 4036 | DBGBXVR(6), |
| 4037 | DBGBXVR(7), |
| 4038 | DBGBXVR(8), |
| 4039 | DBGBXVR(9), |
| 4040 | DBGBXVR(10), |
| 4041 | DBGBXVR(11), |
| 4042 | DBGBXVR(12), |
| 4043 | DBGBXVR(13), |
| 4044 | DBGBXVR(14), |
| 4045 | DBGBXVR(15), |
| 4046 | |
| 4047 | /* DBGDSAR (32bit) */ |
| 4048 | { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi }, |
| 4049 | |
| 4050 | /* DBGDEVID2 */ |
| 4051 | { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi }, |
| 4052 | /* DBGDEVID1 */ |
| 4053 | { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi }, |
| 4054 | /* DBGDEVID */ |
| 4055 | { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi }, |
| 4056 | /* DBGCLAIMSET */ |
| 4057 | { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi }, |
| 4058 | /* DBGCLAIMCLR */ |
| 4059 | { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi }, |
| 4060 | /* DBGAUTHSTATUS */ |
| 4061 | { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 }, |
| 4062 | }; |
| 4063 | |
| 4064 | /* Trapped cp14 64bit registers */ |
| 4065 | static const struct sys_reg_desc cp14_64_regs[] = { |
| 4066 | /* DBGDRAR (64bit) */ |
| 4067 | { Op1( 0), CRm( 1), .access = trap_raz_wi }, |
| 4068 | |
| 4069 | /* DBGDSAR (64bit) */ |
| 4070 | { Op1( 0), CRm( 2), .access = trap_raz_wi }, |
| 4071 | }; |
| 4072 | |
| 4073 | #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2) \ |
| 4074 | AA32(_map), \ |
| 4075 | Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2), \ |
| 4076 | .visibility = pmu_visibility |
| 4077 | |
| 4078 | /* Macro to expand the PMEVCNTRn register */ |
| 4079 | #define PMU_PMEVCNTR(n) \ |
| 4080 | { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110, \ |
| 4081 | (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)), \ |
| 4082 | .access = access_pmu_evcntr } |
| 4083 | |
| 4084 | /* Macro to expand the PMEVTYPERn register */ |
| 4085 | #define PMU_PMEVTYPER(n) \ |
| 4086 | { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110, \ |
| 4087 | (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)), \ |
| 4088 | .access = access_pmu_evtyper } |
| 4089 | /* |
| 4090 | * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding, |
| 4091 | * depending on the way they are accessed (as a 32bit or a 64bit |
| 4092 | * register). |
| 4093 | */ |
| 4094 | static const struct sys_reg_desc cp15_regs[] = { |
| 4095 | { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr }, |
| 4096 | { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 }, |
| 4097 | /* ACTLR */ |
| 4098 | { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 }, |
| 4099 | /* ACTLR2 */ |
| 4100 | { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 }, |
| 4101 | { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 }, |
| 4102 | { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 }, |
| 4103 | /* TTBCR */ |
| 4104 | { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 }, |
| 4105 | /* TTBCR2 */ |
| 4106 | { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 }, |
| 4107 | { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 }, |
| 4108 | { CP15_SYS_DESC(SYS_ICC_PMR_EL1), undef_access }, |
| 4109 | /* DFSR */ |
| 4110 | { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 }, |
| 4111 | { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 }, |
| 4112 | /* ADFSR */ |
| 4113 | { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 }, |
| 4114 | /* AIFSR */ |
| 4115 | { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 }, |
| 4116 | /* DFAR */ |
| 4117 | { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 }, |
| 4118 | /* IFAR */ |
| 4119 | { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 }, |
| 4120 | |
| 4121 | /* |
| 4122 | * DC{C,I,CI}SW operations: |
| 4123 | */ |
| 4124 | { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw }, |
| 4125 | { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw }, |
| 4126 | { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw }, |
| 4127 | |
| 4128 | /* PMU */ |
| 4129 | { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr }, |
| 4130 | { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten }, |
| 4131 | { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten }, |
| 4132 | { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs }, |
| 4133 | { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc }, |
| 4134 | { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr }, |
| 4135 | { CP15_PMU_SYS_REG(LO, 0, 9, 12, 6), .access = access_pmceid }, |
| 4136 | { CP15_PMU_SYS_REG(LO, 0, 9, 12, 7), .access = access_pmceid }, |
| 4137 | { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr }, |
| 4138 | { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper }, |
| 4139 | { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr }, |
| 4140 | { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr }, |
| 4141 | { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten }, |
| 4142 | { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten }, |
| 4143 | { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs }, |
| 4144 | { CP15_PMU_SYS_REG(HI, 0, 9, 14, 4), .access = access_pmceid }, |
| 4145 | { CP15_PMU_SYS_REG(HI, 0, 9, 14, 5), .access = access_pmceid }, |
| 4146 | /* PMMIR */ |
| 4147 | { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi }, |
| 4148 | |
| 4149 | /* PRRR/MAIR0 */ |
| 4150 | { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 }, |
| 4151 | /* NMRR/MAIR1 */ |
| 4152 | { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 }, |
| 4153 | /* AMAIR0 */ |
| 4154 | { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 }, |
| 4155 | /* AMAIR1 */ |
| 4156 | { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 }, |
| 4157 | |
| 4158 | { CP15_SYS_DESC(SYS_ICC_IAR0_EL1), undef_access }, |
| 4159 | { CP15_SYS_DESC(SYS_ICC_EOIR0_EL1), undef_access }, |
| 4160 | { CP15_SYS_DESC(SYS_ICC_HPPIR0_EL1), undef_access }, |
| 4161 | { CP15_SYS_DESC(SYS_ICC_BPR0_EL1), undef_access }, |
| 4162 | { CP15_SYS_DESC(SYS_ICC_AP0R0_EL1), undef_access }, |
| 4163 | { CP15_SYS_DESC(SYS_ICC_AP0R1_EL1), undef_access }, |
| 4164 | { CP15_SYS_DESC(SYS_ICC_AP0R2_EL1), undef_access }, |
| 4165 | { CP15_SYS_DESC(SYS_ICC_AP0R3_EL1), undef_access }, |
| 4166 | { CP15_SYS_DESC(SYS_ICC_AP1R0_EL1), undef_access }, |
| 4167 | { CP15_SYS_DESC(SYS_ICC_AP1R1_EL1), undef_access }, |
| 4168 | { CP15_SYS_DESC(SYS_ICC_AP1R2_EL1), undef_access }, |
| 4169 | { CP15_SYS_DESC(SYS_ICC_AP1R3_EL1), undef_access }, |
| 4170 | { CP15_SYS_DESC(SYS_ICC_DIR_EL1), undef_access }, |
| 4171 | { CP15_SYS_DESC(SYS_ICC_RPR_EL1), undef_access }, |
| 4172 | { CP15_SYS_DESC(SYS_ICC_IAR1_EL1), undef_access }, |
| 4173 | { CP15_SYS_DESC(SYS_ICC_EOIR1_EL1), undef_access }, |
| 4174 | { CP15_SYS_DESC(SYS_ICC_HPPIR1_EL1), undef_access }, |
| 4175 | { CP15_SYS_DESC(SYS_ICC_BPR1_EL1), undef_access }, |
| 4176 | { CP15_SYS_DESC(SYS_ICC_CTLR_EL1), undef_access }, |
| 4177 | { CP15_SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre }, |
| 4178 | { CP15_SYS_DESC(SYS_ICC_IGRPEN0_EL1), undef_access }, |
| 4179 | { CP15_SYS_DESC(SYS_ICC_IGRPEN1_EL1), undef_access }, |
| 4180 | |
| 4181 | { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 }, |
| 4182 | |
| 4183 | /* Arch Tmers */ |
| 4184 | { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer }, |
| 4185 | { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer }, |
| 4186 | |
| 4187 | /* PMEVCNTRn */ |
| 4188 | PMU_PMEVCNTR(0), |
| 4189 | PMU_PMEVCNTR(1), |
| 4190 | PMU_PMEVCNTR(2), |
| 4191 | PMU_PMEVCNTR(3), |
| 4192 | PMU_PMEVCNTR(4), |
| 4193 | PMU_PMEVCNTR(5), |
| 4194 | PMU_PMEVCNTR(6), |
| 4195 | PMU_PMEVCNTR(7), |
| 4196 | PMU_PMEVCNTR(8), |
| 4197 | PMU_PMEVCNTR(9), |
| 4198 | PMU_PMEVCNTR(10), |
| 4199 | PMU_PMEVCNTR(11), |
| 4200 | PMU_PMEVCNTR(12), |
| 4201 | PMU_PMEVCNTR(13), |
| 4202 | PMU_PMEVCNTR(14), |
| 4203 | PMU_PMEVCNTR(15), |
| 4204 | PMU_PMEVCNTR(16), |
| 4205 | PMU_PMEVCNTR(17), |
| 4206 | PMU_PMEVCNTR(18), |
| 4207 | PMU_PMEVCNTR(19), |
| 4208 | PMU_PMEVCNTR(20), |
| 4209 | PMU_PMEVCNTR(21), |
| 4210 | PMU_PMEVCNTR(22), |
| 4211 | PMU_PMEVCNTR(23), |
| 4212 | PMU_PMEVCNTR(24), |
| 4213 | PMU_PMEVCNTR(25), |
| 4214 | PMU_PMEVCNTR(26), |
| 4215 | PMU_PMEVCNTR(27), |
| 4216 | PMU_PMEVCNTR(28), |
| 4217 | PMU_PMEVCNTR(29), |
| 4218 | PMU_PMEVCNTR(30), |
| 4219 | /* PMEVTYPERn */ |
| 4220 | PMU_PMEVTYPER(0), |
| 4221 | PMU_PMEVTYPER(1), |
| 4222 | PMU_PMEVTYPER(2), |
| 4223 | PMU_PMEVTYPER(3), |
| 4224 | PMU_PMEVTYPER(4), |
| 4225 | PMU_PMEVTYPER(5), |
| 4226 | PMU_PMEVTYPER(6), |
| 4227 | PMU_PMEVTYPER(7), |
| 4228 | PMU_PMEVTYPER(8), |
| 4229 | PMU_PMEVTYPER(9), |
| 4230 | PMU_PMEVTYPER(10), |
| 4231 | PMU_PMEVTYPER(11), |
| 4232 | PMU_PMEVTYPER(12), |
| 4233 | PMU_PMEVTYPER(13), |
| 4234 | PMU_PMEVTYPER(14), |
| 4235 | PMU_PMEVTYPER(15), |
| 4236 | PMU_PMEVTYPER(16), |
| 4237 | PMU_PMEVTYPER(17), |
| 4238 | PMU_PMEVTYPER(18), |
| 4239 | PMU_PMEVTYPER(19), |
| 4240 | PMU_PMEVTYPER(20), |
| 4241 | PMU_PMEVTYPER(21), |
| 4242 | PMU_PMEVTYPER(22), |
| 4243 | PMU_PMEVTYPER(23), |
| 4244 | PMU_PMEVTYPER(24), |
| 4245 | PMU_PMEVTYPER(25), |
| 4246 | PMU_PMEVTYPER(26), |
| 4247 | PMU_PMEVTYPER(27), |
| 4248 | PMU_PMEVTYPER(28), |
| 4249 | PMU_PMEVTYPER(29), |
| 4250 | PMU_PMEVTYPER(30), |
| 4251 | /* PMCCFILTR */ |
| 4252 | { CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper }, |
| 4253 | |
| 4254 | { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr }, |
| 4255 | { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr }, |
| 4256 | |
| 4257 | /* CCSIDR2 */ |
| 4258 | { Op1(1), CRn( 0), CRm( 0), Op2(2), undef_access }, |
| 4259 | |
| 4260 | { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 }, |
| 4261 | }; |
| 4262 | |
| 4263 | static const struct sys_reg_desc cp15_64_regs[] = { |
| 4264 | { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 }, |
| 4265 | { CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr }, |
| 4266 | { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */ |
| 4267 | { SYS_DESC(SYS_AARCH32_CNTPCT), access_arch_timer }, |
| 4268 | { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 }, |
| 4269 | { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */ |
| 4270 | { SYS_DESC(SYS_AARCH32_CNTVCT), access_arch_timer }, |
| 4271 | { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */ |
| 4272 | { SYS_DESC(SYS_AARCH32_CNTP_CVAL), access_arch_timer }, |
| 4273 | { SYS_DESC(SYS_AARCH32_CNTPCTSS), access_arch_timer }, |
| 4274 | { SYS_DESC(SYS_AARCH32_CNTVCTSS), access_arch_timer }, |
| 4275 | }; |
| 4276 | |
| 4277 | static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n, |
| 4278 | bool is_32) |
| 4279 | { |
| 4280 | unsigned int i; |
| 4281 | |
| 4282 | for (i = 0; i < n; i++) { |
| 4283 | if (!is_32 && table[i].reg && !table[i].reset) { |
| 4284 | kvm_err("sys_reg table %pS entry %d (%s) lacks reset\n", |
| 4285 | &table[i], i, table[i].name); |
| 4286 | return false; |
| 4287 | } |
| 4288 | |
| 4289 | if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) { |
| 4290 | kvm_err("sys_reg table %pS entry %d (%s -> %s) out of order\n", |
| 4291 | &table[i], i, table[i - 1].name, table[i].name); |
| 4292 | return false; |
| 4293 | } |
| 4294 | } |
| 4295 | |
| 4296 | return true; |
| 4297 | } |
| 4298 | |
| 4299 | int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu) |
| 4300 | { |
| 4301 | kvm_inject_undefined(vcpu); |
| 4302 | return 1; |
| 4303 | } |
| 4304 | |
| 4305 | static void perform_access(struct kvm_vcpu *vcpu, |
| 4306 | struct sys_reg_params *params, |
| 4307 | const struct sys_reg_desc *r) |
| 4308 | { |
| 4309 | trace_kvm_sys_access(*vcpu_pc(vcpu), params, r); |
| 4310 | |
| 4311 | /* Check for regs disabled by runtime config */ |
| 4312 | if (sysreg_hidden(vcpu, r)) { |
| 4313 | kvm_inject_undefined(vcpu); |
| 4314 | return; |
| 4315 | } |
| 4316 | |
| 4317 | /* |
| 4318 | * Not having an accessor means that we have configured a trap |
| 4319 | * that we don't know how to handle. This certainly qualifies |
| 4320 | * as a gross bug that should be fixed right away. |
| 4321 | */ |
| 4322 | BUG_ON(!r->access); |
| 4323 | |
| 4324 | /* Skip instruction if instructed so */ |
| 4325 | if (likely(r->access(vcpu, params, r))) |
| 4326 | kvm_incr_pc(vcpu); |
| 4327 | } |
| 4328 | |
| 4329 | /* |
| 4330 | * emulate_cp -- tries to match a sys_reg access in a handling table, and |
| 4331 | * call the corresponding trap handler. |
| 4332 | * |
| 4333 | * @params: pointer to the descriptor of the access |
| 4334 | * @table: array of trap descriptors |
| 4335 | * @num: size of the trap descriptor array |
| 4336 | * |
| 4337 | * Return true if the access has been handled, false if not. |
| 4338 | */ |
| 4339 | static bool emulate_cp(struct kvm_vcpu *vcpu, |
| 4340 | struct sys_reg_params *params, |
| 4341 | const struct sys_reg_desc *table, |
| 4342 | size_t num) |
| 4343 | { |
| 4344 | const struct sys_reg_desc *r; |
| 4345 | |
| 4346 | if (!table) |
| 4347 | return false; /* Not handled */ |
| 4348 | |
| 4349 | r = find_reg(params, table, num); |
| 4350 | |
| 4351 | if (r) { |
| 4352 | perform_access(vcpu, params, r); |
| 4353 | return true; |
| 4354 | } |
| 4355 | |
| 4356 | /* Not handled */ |
| 4357 | return false; |
| 4358 | } |
| 4359 | |
| 4360 | static void unhandled_cp_access(struct kvm_vcpu *vcpu, |
| 4361 | struct sys_reg_params *params) |
| 4362 | { |
| 4363 | u8 esr_ec = kvm_vcpu_trap_get_class(vcpu); |
| 4364 | int cp = -1; |
| 4365 | |
| 4366 | switch (esr_ec) { |
| 4367 | case ESR_ELx_EC_CP15_32: |
| 4368 | case ESR_ELx_EC_CP15_64: |
| 4369 | cp = 15; |
| 4370 | break; |
| 4371 | case ESR_ELx_EC_CP14_MR: |
| 4372 | case ESR_ELx_EC_CP14_64: |
| 4373 | cp = 14; |
| 4374 | break; |
| 4375 | default: |
| 4376 | WARN_ON(1); |
| 4377 | } |
| 4378 | |
| 4379 | print_sys_reg_msg(params, |
| 4380 | "Unsupported guest CP%d access at: %08lx [%08lx]\n", |
| 4381 | cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu)); |
| 4382 | kvm_inject_undefined(vcpu); |
| 4383 | } |
| 4384 | |
| 4385 | /** |
| 4386 | * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access |
| 4387 | * @vcpu: The VCPU pointer |
| 4388 | * @global: &struct sys_reg_desc |
| 4389 | * @nr_global: size of the @global array |
| 4390 | */ |
| 4391 | static int kvm_handle_cp_64(struct kvm_vcpu *vcpu, |
| 4392 | const struct sys_reg_desc *global, |
| 4393 | size_t nr_global) |
| 4394 | { |
| 4395 | struct sys_reg_params params; |
| 4396 | u64 esr = kvm_vcpu_get_esr(vcpu); |
| 4397 | int Rt = kvm_vcpu_sys_get_rt(vcpu); |
| 4398 | int Rt2 = (esr >> 10) & 0x1f; |
| 4399 | |
| 4400 | params.CRm = (esr >> 1) & 0xf; |
| 4401 | params.is_write = ((esr & 1) == 0); |
| 4402 | |
| 4403 | params.Op0 = 0; |
| 4404 | params.Op1 = (esr >> 16) & 0xf; |
| 4405 | params.Op2 = 0; |
| 4406 | params.CRn = 0; |
| 4407 | |
| 4408 | /* |
| 4409 | * Make a 64-bit value out of Rt and Rt2. As we use the same trap |
| 4410 | * backends between AArch32 and AArch64, we get away with it. |
| 4411 | */ |
| 4412 | if (params.is_write) { |
| 4413 | params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff; |
| 4414 | params.regval |= vcpu_get_reg(vcpu, Rt2) << 32; |
| 4415 | } |
| 4416 | |
| 4417 | /* |
| 4418 | * If the table contains a handler, handle the |
| 4419 | * potential register operation in the case of a read and return |
| 4420 | * with success. |
| 4421 | */ |
| 4422 | if (emulate_cp(vcpu, ¶ms, global, nr_global)) { |
| 4423 | /* Split up the value between registers for the read side */ |
| 4424 | if (!params.is_write) { |
| 4425 | vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval)); |
| 4426 | vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval)); |
| 4427 | } |
| 4428 | |
| 4429 | return 1; |
| 4430 | } |
| 4431 | |
| 4432 | unhandled_cp_access(vcpu, ¶ms); |
| 4433 | return 1; |
| 4434 | } |
| 4435 | |
| 4436 | static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params); |
| 4437 | |
| 4438 | /* |
| 4439 | * The CP10 ID registers are architecturally mapped to AArch64 feature |
| 4440 | * registers. Abuse that fact so we can rely on the AArch64 handler for accesses |
| 4441 | * from AArch32. |
| 4442 | */ |
| 4443 | static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params) |
| 4444 | { |
| 4445 | u8 reg_id = (esr >> 10) & 0xf; |
| 4446 | bool valid; |
| 4447 | |
| 4448 | params->is_write = ((esr & 1) == 0); |
| 4449 | params->Op0 = 3; |
| 4450 | params->Op1 = 0; |
| 4451 | params->CRn = 0; |
| 4452 | params->CRm = 3; |
| 4453 | |
| 4454 | /* CP10 ID registers are read-only */ |
| 4455 | valid = !params->is_write; |
| 4456 | |
| 4457 | switch (reg_id) { |
| 4458 | /* MVFR0 */ |
| 4459 | case 0b0111: |
| 4460 | params->Op2 = 0; |
| 4461 | break; |
| 4462 | /* MVFR1 */ |
| 4463 | case 0b0110: |
| 4464 | params->Op2 = 1; |
| 4465 | break; |
| 4466 | /* MVFR2 */ |
| 4467 | case 0b0101: |
| 4468 | params->Op2 = 2; |
| 4469 | break; |
| 4470 | default: |
| 4471 | valid = false; |
| 4472 | } |
| 4473 | |
| 4474 | if (valid) |
| 4475 | return true; |
| 4476 | |
| 4477 | kvm_pr_unimpl("Unhandled cp10 register %s: %u\n", |
| 4478 | params->is_write ? "write" : "read", reg_id); |
| 4479 | return false; |
| 4480 | } |
| 4481 | |
| 4482 | /** |
| 4483 | * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and |
| 4484 | * VFP Register' from AArch32. |
| 4485 | * @vcpu: The vCPU pointer |
| 4486 | * |
| 4487 | * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers. |
| 4488 | * Work out the correct AArch64 system register encoding and reroute to the |
| 4489 | * AArch64 system register emulation. |
| 4490 | */ |
| 4491 | int kvm_handle_cp10_id(struct kvm_vcpu *vcpu) |
| 4492 | { |
| 4493 | int Rt = kvm_vcpu_sys_get_rt(vcpu); |
| 4494 | u64 esr = kvm_vcpu_get_esr(vcpu); |
| 4495 | struct sys_reg_params params; |
| 4496 | |
| 4497 | /* UNDEF on any unhandled register access */ |
| 4498 | if (!kvm_esr_cp10_id_to_sys64(esr, ¶ms)) { |
| 4499 | kvm_inject_undefined(vcpu); |
| 4500 | return 1; |
| 4501 | } |
| 4502 | |
| 4503 | if (emulate_sys_reg(vcpu, ¶ms)) |
| 4504 | vcpu_set_reg(vcpu, Rt, params.regval); |
| 4505 | |
| 4506 | return 1; |
| 4507 | } |
| 4508 | |
| 4509 | /** |
| 4510 | * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where |
| 4511 | * CRn=0, which corresponds to the AArch32 feature |
| 4512 | * registers. |
| 4513 | * @vcpu: the vCPU pointer |
| 4514 | * @params: the system register access parameters. |
| 4515 | * |
| 4516 | * Our cp15 system register tables do not enumerate the AArch32 feature |
| 4517 | * registers. Conveniently, our AArch64 table does, and the AArch32 system |
| 4518 | * register encoding can be trivially remapped into the AArch64 for the feature |
| 4519 | * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same. |
| 4520 | * |
| 4521 | * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit |
| 4522 | * System registers with (coproc=0b1111, CRn==c0)", read accesses from this |
| 4523 | * range are either UNKNOWN or RES0. Rerouting remains architectural as we |
| 4524 | * treat undefined registers in this range as RAZ. |
| 4525 | */ |
| 4526 | static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu, |
| 4527 | struct sys_reg_params *params) |
| 4528 | { |
| 4529 | int Rt = kvm_vcpu_sys_get_rt(vcpu); |
| 4530 | |
| 4531 | /* Treat impossible writes to RO registers as UNDEFINED */ |
| 4532 | if (params->is_write) { |
| 4533 | unhandled_cp_access(vcpu, params); |
| 4534 | return 1; |
| 4535 | } |
| 4536 | |
| 4537 | params->Op0 = 3; |
| 4538 | |
| 4539 | /* |
| 4540 | * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32. |
| 4541 | * Avoid conflicting with future expansion of AArch64 feature registers |
| 4542 | * and simply treat them as RAZ here. |
| 4543 | */ |
| 4544 | if (params->CRm > 3) |
| 4545 | params->regval = 0; |
| 4546 | else if (!emulate_sys_reg(vcpu, params)) |
| 4547 | return 1; |
| 4548 | |
| 4549 | vcpu_set_reg(vcpu, Rt, params->regval); |
| 4550 | return 1; |
| 4551 | } |
| 4552 | |
| 4553 | /** |
| 4554 | * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access |
| 4555 | * @vcpu: The VCPU pointer |
| 4556 | * @params: &struct sys_reg_params |
| 4557 | * @global: &struct sys_reg_desc |
| 4558 | * @nr_global: size of the @global array |
| 4559 | */ |
| 4560 | static int kvm_handle_cp_32(struct kvm_vcpu *vcpu, |
| 4561 | struct sys_reg_params *params, |
| 4562 | const struct sys_reg_desc *global, |
| 4563 | size_t nr_global) |
| 4564 | { |
| 4565 | int Rt = kvm_vcpu_sys_get_rt(vcpu); |
| 4566 | |
| 4567 | params->regval = vcpu_get_reg(vcpu, Rt); |
| 4568 | |
| 4569 | if (emulate_cp(vcpu, params, global, nr_global)) { |
| 4570 | if (!params->is_write) |
| 4571 | vcpu_set_reg(vcpu, Rt, params->regval); |
| 4572 | return 1; |
| 4573 | } |
| 4574 | |
| 4575 | unhandled_cp_access(vcpu, params); |
| 4576 | return 1; |
| 4577 | } |
| 4578 | |
| 4579 | int kvm_handle_cp15_64(struct kvm_vcpu *vcpu) |
| 4580 | { |
| 4581 | return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs)); |
| 4582 | } |
| 4583 | |
| 4584 | int kvm_handle_cp15_32(struct kvm_vcpu *vcpu) |
| 4585 | { |
| 4586 | struct sys_reg_params params; |
| 4587 | |
| 4588 | params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu)); |
| 4589 | |
| 4590 | /* |
| 4591 | * Certain AArch32 ID registers are handled by rerouting to the AArch64 |
| 4592 | * system register table. Registers in the ID range where CRm=0 are |
| 4593 | * excluded from this scheme as they do not trivially map into AArch64 |
| 4594 | * system register encodings, except for AIDR/REVIDR. |
| 4595 | */ |
| 4596 | if (params.Op1 == 0 && params.CRn == 0 && |
| 4597 | (params.CRm || params.Op2 == 6 /* REVIDR */)) |
| 4598 | return kvm_emulate_cp15_id_reg(vcpu, ¶ms); |
| 4599 | if (params.Op1 == 1 && params.CRn == 0 && |
| 4600 | params.CRm == 0 && params.Op2 == 7 /* AIDR */) |
| 4601 | return kvm_emulate_cp15_id_reg(vcpu, ¶ms); |
| 4602 | |
| 4603 | return kvm_handle_cp_32(vcpu, ¶ms, cp15_regs, ARRAY_SIZE(cp15_regs)); |
| 4604 | } |
| 4605 | |
| 4606 | int kvm_handle_cp14_64(struct kvm_vcpu *vcpu) |
| 4607 | { |
| 4608 | return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs)); |
| 4609 | } |
| 4610 | |
| 4611 | int kvm_handle_cp14_32(struct kvm_vcpu *vcpu) |
| 4612 | { |
| 4613 | struct sys_reg_params params; |
| 4614 | |
| 4615 | params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu)); |
| 4616 | |
| 4617 | return kvm_handle_cp_32(vcpu, ¶ms, cp14_regs, ARRAY_SIZE(cp14_regs)); |
| 4618 | } |
| 4619 | |
| 4620 | /** |
| 4621 | * emulate_sys_reg - Emulate a guest access to an AArch64 system register |
| 4622 | * @vcpu: The VCPU pointer |
| 4623 | * @params: Decoded system register parameters |
| 4624 | * |
| 4625 | * Return: true if the system register access was successful, false otherwise. |
| 4626 | */ |
| 4627 | static bool emulate_sys_reg(struct kvm_vcpu *vcpu, |
| 4628 | struct sys_reg_params *params) |
| 4629 | { |
| 4630 | const struct sys_reg_desc *r; |
| 4631 | |
| 4632 | r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); |
| 4633 | if (likely(r)) { |
| 4634 | perform_access(vcpu, params, r); |
| 4635 | return true; |
| 4636 | } |
| 4637 | |
| 4638 | print_sys_reg_msg(params, |
| 4639 | "Unsupported guest sys_reg access at: %lx [%08lx]\n", |
| 4640 | *vcpu_pc(vcpu), *vcpu_cpsr(vcpu)); |
| 4641 | kvm_inject_undefined(vcpu); |
| 4642 | |
| 4643 | return false; |
| 4644 | } |
| 4645 | |
| 4646 | static const struct sys_reg_desc *idregs_debug_find(struct kvm *kvm, u8 pos) |
| 4647 | { |
| 4648 | unsigned long i, idreg_idx = 0; |
| 4649 | |
| 4650 | for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) { |
| 4651 | const struct sys_reg_desc *r = &sys_reg_descs[i]; |
| 4652 | |
| 4653 | if (!is_vm_ftr_id_reg(reg_to_encoding(r))) |
| 4654 | continue; |
| 4655 | |
| 4656 | if (idreg_idx == pos) |
| 4657 | return r; |
| 4658 | |
| 4659 | idreg_idx++; |
| 4660 | } |
| 4661 | |
| 4662 | return NULL; |
| 4663 | } |
| 4664 | |
| 4665 | static void *idregs_debug_start(struct seq_file *s, loff_t *pos) |
| 4666 | { |
| 4667 | struct kvm *kvm = s->private; |
| 4668 | u8 *iter; |
| 4669 | |
| 4670 | mutex_lock(&kvm->arch.config_lock); |
| 4671 | |
| 4672 | iter = &kvm->arch.idreg_debugfs_iter; |
| 4673 | if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags) && |
| 4674 | *iter == (u8)~0) { |
| 4675 | *iter = *pos; |
| 4676 | if (!idregs_debug_find(kvm, *iter)) |
| 4677 | iter = NULL; |
| 4678 | } else { |
| 4679 | iter = ERR_PTR(-EBUSY); |
| 4680 | } |
| 4681 | |
| 4682 | mutex_unlock(&kvm->arch.config_lock); |
| 4683 | |
| 4684 | return iter; |
| 4685 | } |
| 4686 | |
| 4687 | static void *idregs_debug_next(struct seq_file *s, void *v, loff_t *pos) |
| 4688 | { |
| 4689 | struct kvm *kvm = s->private; |
| 4690 | |
| 4691 | (*pos)++; |
| 4692 | |
| 4693 | if (idregs_debug_find(kvm, kvm->arch.idreg_debugfs_iter + 1)) { |
| 4694 | kvm->arch.idreg_debugfs_iter++; |
| 4695 | |
| 4696 | return &kvm->arch.idreg_debugfs_iter; |
| 4697 | } |
| 4698 | |
| 4699 | return NULL; |
| 4700 | } |
| 4701 | |
| 4702 | static void idregs_debug_stop(struct seq_file *s, void *v) |
| 4703 | { |
| 4704 | struct kvm *kvm = s->private; |
| 4705 | |
| 4706 | if (IS_ERR(v)) |
| 4707 | return; |
| 4708 | |
| 4709 | mutex_lock(&kvm->arch.config_lock); |
| 4710 | |
| 4711 | kvm->arch.idreg_debugfs_iter = ~0; |
| 4712 | |
| 4713 | mutex_unlock(&kvm->arch.config_lock); |
| 4714 | } |
| 4715 | |
| 4716 | static int idregs_debug_show(struct seq_file *s, void *v) |
| 4717 | { |
| 4718 | const struct sys_reg_desc *desc; |
| 4719 | struct kvm *kvm = s->private; |
| 4720 | |
| 4721 | desc = idregs_debug_find(kvm, kvm->arch.idreg_debugfs_iter); |
| 4722 | |
| 4723 | if (!desc->name) |
| 4724 | return 0; |
| 4725 | |
| 4726 | seq_printf(s, "%20s:\t%016llx\n", |
| 4727 | desc->name, kvm_read_vm_id_reg(kvm, reg_to_encoding(desc))); |
| 4728 | |
| 4729 | return 0; |
| 4730 | } |
| 4731 | |
| 4732 | static const struct seq_operations idregs_debug_sops = { |
| 4733 | .start = idregs_debug_start, |
| 4734 | .next = idregs_debug_next, |
| 4735 | .stop = idregs_debug_stop, |
| 4736 | .show = idregs_debug_show, |
| 4737 | }; |
| 4738 | |
| 4739 | DEFINE_SEQ_ATTRIBUTE(idregs_debug); |
| 4740 | |
| 4741 | void kvm_sys_regs_create_debugfs(struct kvm *kvm) |
| 4742 | { |
| 4743 | kvm->arch.idreg_debugfs_iter = ~0; |
| 4744 | |
| 4745 | debugfs_create_file("idregs", 0444, kvm->debugfs_dentry, kvm, |
| 4746 | &idregs_debug_fops); |
| 4747 | } |
| 4748 | |
| 4749 | static void reset_vm_ftr_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *reg) |
| 4750 | { |
| 4751 | u32 id = reg_to_encoding(reg); |
| 4752 | struct kvm *kvm = vcpu->kvm; |
| 4753 | |
| 4754 | if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags)) |
| 4755 | return; |
| 4756 | |
| 4757 | kvm_set_vm_id_reg(kvm, id, reg->reset(vcpu, reg)); |
| 4758 | } |
| 4759 | |
| 4760 | static void reset_vcpu_ftr_id_reg(struct kvm_vcpu *vcpu, |
| 4761 | const struct sys_reg_desc *reg) |
| 4762 | { |
| 4763 | if (kvm_vcpu_initialized(vcpu)) |
| 4764 | return; |
| 4765 | |
| 4766 | reg->reset(vcpu, reg); |
| 4767 | } |
| 4768 | |
| 4769 | /** |
| 4770 | * kvm_reset_sys_regs - sets system registers to reset value |
| 4771 | * @vcpu: The VCPU pointer |
| 4772 | * |
| 4773 | * This function finds the right table above and sets the registers on the |
| 4774 | * virtual CPU struct to their architecturally defined reset values. |
| 4775 | */ |
| 4776 | void kvm_reset_sys_regs(struct kvm_vcpu *vcpu) |
| 4777 | { |
| 4778 | struct kvm *kvm = vcpu->kvm; |
| 4779 | unsigned long i; |
| 4780 | |
| 4781 | for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) { |
| 4782 | const struct sys_reg_desc *r = &sys_reg_descs[i]; |
| 4783 | |
| 4784 | if (!r->reset) |
| 4785 | continue; |
| 4786 | |
| 4787 | if (is_vm_ftr_id_reg(reg_to_encoding(r))) |
| 4788 | reset_vm_ftr_id_reg(vcpu, r); |
| 4789 | else if (is_vcpu_ftr_id_reg(reg_to_encoding(r))) |
| 4790 | reset_vcpu_ftr_id_reg(vcpu, r); |
| 4791 | else |
| 4792 | r->reset(vcpu, r); |
| 4793 | |
| 4794 | if (r->reg >= __SANITISED_REG_START__ && r->reg < NR_SYS_REGS) |
| 4795 | __vcpu_rmw_sys_reg(vcpu, r->reg, |=, 0); |
| 4796 | } |
| 4797 | |
| 4798 | set_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags); |
| 4799 | |
| 4800 | if (kvm_vcpu_has_pmu(vcpu)) |
| 4801 | kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu); |
| 4802 | } |
| 4803 | |
| 4804 | /** |
| 4805 | * kvm_handle_sys_reg -- handles a system instruction or mrs/msr instruction |
| 4806 | * trap on a guest execution |
| 4807 | * @vcpu: The VCPU pointer |
| 4808 | */ |
| 4809 | int kvm_handle_sys_reg(struct kvm_vcpu *vcpu) |
| 4810 | { |
| 4811 | const struct sys_reg_desc *desc = NULL; |
| 4812 | struct sys_reg_params params; |
| 4813 | unsigned long esr = kvm_vcpu_get_esr(vcpu); |
| 4814 | int Rt = kvm_vcpu_sys_get_rt(vcpu); |
| 4815 | int sr_idx; |
| 4816 | |
| 4817 | trace_kvm_handle_sys_reg(esr); |
| 4818 | |
| 4819 | if (triage_sysreg_trap(vcpu, &sr_idx)) |
| 4820 | return 1; |
| 4821 | |
| 4822 | params = esr_sys64_to_params(esr); |
| 4823 | params.regval = vcpu_get_reg(vcpu, Rt); |
| 4824 | |
| 4825 | /* System registers have Op0=={2,3}, as per DDI487 J.a C5.1.2 */ |
| 4826 | if (params.Op0 == 2 || params.Op0 == 3) |
| 4827 | desc = &sys_reg_descs[sr_idx]; |
| 4828 | else |
| 4829 | desc = &sys_insn_descs[sr_idx]; |
| 4830 | |
| 4831 | perform_access(vcpu, ¶ms, desc); |
| 4832 | |
| 4833 | /* Read from system register? */ |
| 4834 | if (!params.is_write && |
| 4835 | (params.Op0 == 2 || params.Op0 == 3)) |
| 4836 | vcpu_set_reg(vcpu, Rt, params.regval); |
| 4837 | |
| 4838 | return 1; |
| 4839 | } |
| 4840 | |
| 4841 | /****************************************************************************** |
| 4842 | * Userspace API |
| 4843 | *****************************************************************************/ |
| 4844 | |
| 4845 | static bool index_to_params(u64 id, struct sys_reg_params *params) |
| 4846 | { |
| 4847 | switch (id & KVM_REG_SIZE_MASK) { |
| 4848 | case KVM_REG_SIZE_U64: |
| 4849 | /* Any unused index bits means it's not valid. */ |
| 4850 | if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK |
| 4851 | | KVM_REG_ARM_COPROC_MASK |
| 4852 | | KVM_REG_ARM64_SYSREG_OP0_MASK |
| 4853 | | KVM_REG_ARM64_SYSREG_OP1_MASK |
| 4854 | | KVM_REG_ARM64_SYSREG_CRN_MASK |
| 4855 | | KVM_REG_ARM64_SYSREG_CRM_MASK |
| 4856 | | KVM_REG_ARM64_SYSREG_OP2_MASK)) |
| 4857 | return false; |
| 4858 | params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK) |
| 4859 | >> KVM_REG_ARM64_SYSREG_OP0_SHIFT); |
| 4860 | params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK) |
| 4861 | >> KVM_REG_ARM64_SYSREG_OP1_SHIFT); |
| 4862 | params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK) |
| 4863 | >> KVM_REG_ARM64_SYSREG_CRN_SHIFT); |
| 4864 | params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK) |
| 4865 | >> KVM_REG_ARM64_SYSREG_CRM_SHIFT); |
| 4866 | params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK) |
| 4867 | >> KVM_REG_ARM64_SYSREG_OP2_SHIFT); |
| 4868 | return true; |
| 4869 | default: |
| 4870 | return false; |
| 4871 | } |
| 4872 | } |
| 4873 | |
| 4874 | const struct sys_reg_desc *get_reg_by_id(u64 id, |
| 4875 | const struct sys_reg_desc table[], |
| 4876 | unsigned int num) |
| 4877 | { |
| 4878 | struct sys_reg_params params; |
| 4879 | |
| 4880 | if (!index_to_params(id, ¶ms)) |
| 4881 | return NULL; |
| 4882 | |
| 4883 | return find_reg(¶ms, table, num); |
| 4884 | } |
| 4885 | |
| 4886 | /* Decode an index value, and find the sys_reg_desc entry. */ |
| 4887 | static const struct sys_reg_desc * |
| 4888 | id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id, |
| 4889 | const struct sys_reg_desc table[], unsigned int num) |
| 4890 | |
| 4891 | { |
| 4892 | const struct sys_reg_desc *r; |
| 4893 | |
| 4894 | /* We only do sys_reg for now. */ |
| 4895 | if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG) |
| 4896 | return NULL; |
| 4897 | |
| 4898 | r = get_reg_by_id(id, table, num); |
| 4899 | |
| 4900 | /* Not saved in the sys_reg array and not otherwise accessible? */ |
| 4901 | if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r))) |
| 4902 | r = NULL; |
| 4903 | |
| 4904 | return r; |
| 4905 | } |
| 4906 | |
| 4907 | static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr) |
| 4908 | { |
| 4909 | u32 val; |
| 4910 | u32 __user *uval = uaddr; |
| 4911 | |
| 4912 | /* Fail if we have unknown bits set. */ |
| 4913 | if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK |
| 4914 | | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) |
| 4915 | return -ENOENT; |
| 4916 | |
| 4917 | switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { |
| 4918 | case KVM_REG_ARM_DEMUX_ID_CCSIDR: |
| 4919 | if (KVM_REG_SIZE(id) != 4) |
| 4920 | return -ENOENT; |
| 4921 | val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) |
| 4922 | >> KVM_REG_ARM_DEMUX_VAL_SHIFT; |
| 4923 | if (val >= CSSELR_MAX) |
| 4924 | return -ENOENT; |
| 4925 | |
| 4926 | return put_user(get_ccsidr(vcpu, val), uval); |
| 4927 | default: |
| 4928 | return -ENOENT; |
| 4929 | } |
| 4930 | } |
| 4931 | |
| 4932 | static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr) |
| 4933 | { |
| 4934 | u32 val, newval; |
| 4935 | u32 __user *uval = uaddr; |
| 4936 | |
| 4937 | /* Fail if we have unknown bits set. */ |
| 4938 | if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK |
| 4939 | | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) |
| 4940 | return -ENOENT; |
| 4941 | |
| 4942 | switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { |
| 4943 | case KVM_REG_ARM_DEMUX_ID_CCSIDR: |
| 4944 | if (KVM_REG_SIZE(id) != 4) |
| 4945 | return -ENOENT; |
| 4946 | val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) |
| 4947 | >> KVM_REG_ARM_DEMUX_VAL_SHIFT; |
| 4948 | if (val >= CSSELR_MAX) |
| 4949 | return -ENOENT; |
| 4950 | |
| 4951 | if (get_user(newval, uval)) |
| 4952 | return -EFAULT; |
| 4953 | |
| 4954 | return set_ccsidr(vcpu, val, newval); |
| 4955 | default: |
| 4956 | return -ENOENT; |
| 4957 | } |
| 4958 | } |
| 4959 | |
| 4960 | int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg, |
| 4961 | const struct sys_reg_desc table[], unsigned int num) |
| 4962 | { |
| 4963 | u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr; |
| 4964 | const struct sys_reg_desc *r; |
| 4965 | u64 val; |
| 4966 | int ret; |
| 4967 | |
| 4968 | r = id_to_sys_reg_desc(vcpu, reg->id, table, num); |
| 4969 | if (!r || sysreg_hidden(vcpu, r)) |
| 4970 | return -ENOENT; |
| 4971 | |
| 4972 | if (r->get_user) { |
| 4973 | ret = (r->get_user)(vcpu, r, &val); |
| 4974 | } else { |
| 4975 | val = __vcpu_sys_reg(vcpu, r->reg); |
| 4976 | ret = 0; |
| 4977 | } |
| 4978 | |
| 4979 | if (!ret) |
| 4980 | ret = put_user(val, uaddr); |
| 4981 | |
| 4982 | return ret; |
| 4983 | } |
| 4984 | |
| 4985 | int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) |
| 4986 | { |
| 4987 | void __user *uaddr = (void __user *)(unsigned long)reg->addr; |
| 4988 | |
| 4989 | if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) |
| 4990 | return demux_c15_get(vcpu, reg->id, uaddr); |
| 4991 | |
| 4992 | return kvm_sys_reg_get_user(vcpu, reg, |
| 4993 | sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); |
| 4994 | } |
| 4995 | |
| 4996 | int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg, |
| 4997 | const struct sys_reg_desc table[], unsigned int num) |
| 4998 | { |
| 4999 | u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr; |
| 5000 | const struct sys_reg_desc *r; |
| 5001 | u64 val; |
| 5002 | int ret; |
| 5003 | |
| 5004 | if (get_user(val, uaddr)) |
| 5005 | return -EFAULT; |
| 5006 | |
| 5007 | r = id_to_sys_reg_desc(vcpu, reg->id, table, num); |
| 5008 | if (!r || sysreg_hidden(vcpu, r)) |
| 5009 | return -ENOENT; |
| 5010 | |
| 5011 | if (sysreg_user_write_ignore(vcpu, r)) |
| 5012 | return 0; |
| 5013 | |
| 5014 | if (r->set_user) { |
| 5015 | ret = (r->set_user)(vcpu, r, val); |
| 5016 | } else { |
| 5017 | __vcpu_assign_sys_reg(vcpu, r->reg, val); |
| 5018 | ret = 0; |
| 5019 | } |
| 5020 | |
| 5021 | return ret; |
| 5022 | } |
| 5023 | |
| 5024 | int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) |
| 5025 | { |
| 5026 | void __user *uaddr = (void __user *)(unsigned long)reg->addr; |
| 5027 | |
| 5028 | if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) |
| 5029 | return demux_c15_set(vcpu, reg->id, uaddr); |
| 5030 | |
| 5031 | return kvm_sys_reg_set_user(vcpu, reg, |
| 5032 | sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); |
| 5033 | } |
| 5034 | |
| 5035 | static unsigned int num_demux_regs(void) |
| 5036 | { |
| 5037 | return CSSELR_MAX; |
| 5038 | } |
| 5039 | |
| 5040 | static int write_demux_regids(u64 __user *uindices) |
| 5041 | { |
| 5042 | u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX; |
| 5043 | unsigned int i; |
| 5044 | |
| 5045 | val |= KVM_REG_ARM_DEMUX_ID_CCSIDR; |
| 5046 | for (i = 0; i < CSSELR_MAX; i++) { |
| 5047 | if (put_user(val | i, uindices)) |
| 5048 | return -EFAULT; |
| 5049 | uindices++; |
| 5050 | } |
| 5051 | return 0; |
| 5052 | } |
| 5053 | |
| 5054 | static u64 sys_reg_to_index(const struct sys_reg_desc *reg) |
| 5055 | { |
| 5056 | return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | |
| 5057 | KVM_REG_ARM64_SYSREG | |
| 5058 | (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) | |
| 5059 | (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) | |
| 5060 | (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) | |
| 5061 | (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) | |
| 5062 | (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT)); |
| 5063 | } |
| 5064 | |
| 5065 | static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind) |
| 5066 | { |
| 5067 | if (!*uind) |
| 5068 | return true; |
| 5069 | |
| 5070 | if (put_user(sys_reg_to_index(reg), *uind)) |
| 5071 | return false; |
| 5072 | |
| 5073 | (*uind)++; |
| 5074 | return true; |
| 5075 | } |
| 5076 | |
| 5077 | static int walk_one_sys_reg(const struct kvm_vcpu *vcpu, |
| 5078 | const struct sys_reg_desc *rd, |
| 5079 | u64 __user **uind, |
| 5080 | unsigned int *total) |
| 5081 | { |
| 5082 | /* |
| 5083 | * Ignore registers we trap but don't save, |
| 5084 | * and for which no custom user accessor is provided. |
| 5085 | */ |
| 5086 | if (!(rd->reg || rd->get_user)) |
| 5087 | return 0; |
| 5088 | |
| 5089 | if (sysreg_hidden(vcpu, rd)) |
| 5090 | return 0; |
| 5091 | |
| 5092 | if (!copy_reg_to_user(rd, uind)) |
| 5093 | return -EFAULT; |
| 5094 | |
| 5095 | (*total)++; |
| 5096 | return 0; |
| 5097 | } |
| 5098 | |
| 5099 | /* Assumed ordered tables, see kvm_sys_reg_table_init. */ |
| 5100 | static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind) |
| 5101 | { |
| 5102 | const struct sys_reg_desc *i2, *end2; |
| 5103 | unsigned int total = 0; |
| 5104 | int err; |
| 5105 | |
| 5106 | i2 = sys_reg_descs; |
| 5107 | end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs); |
| 5108 | |
| 5109 | while (i2 != end2) { |
| 5110 | err = walk_one_sys_reg(vcpu, i2++, &uind, &total); |
| 5111 | if (err) |
| 5112 | return err; |
| 5113 | } |
| 5114 | return total; |
| 5115 | } |
| 5116 | |
| 5117 | unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu) |
| 5118 | { |
| 5119 | return num_demux_regs() |
| 5120 | + walk_sys_regs(vcpu, (u64 __user *)NULL); |
| 5121 | } |
| 5122 | |
| 5123 | int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) |
| 5124 | { |
| 5125 | int err; |
| 5126 | |
| 5127 | err = walk_sys_regs(vcpu, uindices); |
| 5128 | if (err < 0) |
| 5129 | return err; |
| 5130 | uindices += err; |
| 5131 | |
| 5132 | return write_demux_regids(uindices); |
| 5133 | } |
| 5134 | |
| 5135 | #define KVM_ARM_FEATURE_ID_RANGE_INDEX(r) \ |
| 5136 | KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(r), \ |
| 5137 | sys_reg_Op1(r), \ |
| 5138 | sys_reg_CRn(r), \ |
| 5139 | sys_reg_CRm(r), \ |
| 5140 | sys_reg_Op2(r)) |
| 5141 | |
| 5142 | int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm, struct reg_mask_range *range) |
| 5143 | { |
| 5144 | const void *zero_page = page_to_virt(ZERO_PAGE(0)); |
| 5145 | u64 __user *masks = (u64 __user *)range->addr; |
| 5146 | |
| 5147 | /* Only feature id range is supported, reserved[13] must be zero. */ |
| 5148 | if (range->range || |
| 5149 | memcmp(range->reserved, zero_page, sizeof(range->reserved))) |
| 5150 | return -EINVAL; |
| 5151 | |
| 5152 | /* Wipe the whole thing first */ |
| 5153 | if (clear_user(masks, KVM_ARM_FEATURE_ID_RANGE_SIZE * sizeof(__u64))) |
| 5154 | return -EFAULT; |
| 5155 | |
| 5156 | for (int i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) { |
| 5157 | const struct sys_reg_desc *reg = &sys_reg_descs[i]; |
| 5158 | u32 encoding = reg_to_encoding(reg); |
| 5159 | u64 val; |
| 5160 | |
| 5161 | if (!is_feature_id_reg(encoding) || !reg->set_user) |
| 5162 | continue; |
| 5163 | |
| 5164 | if (!reg->val || |
| 5165 | (is_aa32_id_reg(encoding) && !kvm_supports_32bit_el0())) { |
| 5166 | continue; |
| 5167 | } |
| 5168 | val = reg->val; |
| 5169 | |
| 5170 | if (put_user(val, (masks + KVM_ARM_FEATURE_ID_RANGE_INDEX(encoding)))) |
| 5171 | return -EFAULT; |
| 5172 | } |
| 5173 | |
| 5174 | return 0; |
| 5175 | } |
| 5176 | |
| 5177 | static void vcpu_set_hcr(struct kvm_vcpu *vcpu) |
| 5178 | { |
| 5179 | struct kvm *kvm = vcpu->kvm; |
| 5180 | |
| 5181 | if (has_vhe() || has_hvhe()) |
| 5182 | vcpu->arch.hcr_el2 |= HCR_E2H; |
| 5183 | if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN)) { |
| 5184 | /* route synchronous external abort exceptions to EL2 */ |
| 5185 | vcpu->arch.hcr_el2 |= HCR_TEA; |
| 5186 | /* trap error record accesses */ |
| 5187 | vcpu->arch.hcr_el2 |= HCR_TERR; |
| 5188 | } |
| 5189 | |
| 5190 | if (cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) |
| 5191 | vcpu->arch.hcr_el2 |= HCR_FWB; |
| 5192 | |
| 5193 | if (cpus_have_final_cap(ARM64_HAS_EVT) && |
| 5194 | !cpus_have_final_cap(ARM64_MISMATCHED_CACHE_TYPE) && |
| 5195 | kvm_read_vm_id_reg(kvm, SYS_CTR_EL0) == read_sanitised_ftr_reg(SYS_CTR_EL0)) |
| 5196 | vcpu->arch.hcr_el2 |= HCR_TID4; |
| 5197 | else |
| 5198 | vcpu->arch.hcr_el2 |= HCR_TID2; |
| 5199 | |
| 5200 | if (vcpu_el1_is_32bit(vcpu)) |
| 5201 | vcpu->arch.hcr_el2 &= ~HCR_RW; |
| 5202 | |
| 5203 | if (kvm_has_mte(vcpu->kvm)) |
| 5204 | vcpu->arch.hcr_el2 |= HCR_ATA; |
| 5205 | |
| 5206 | /* |
| 5207 | * In the absence of FGT, we cannot independently trap TLBI |
| 5208 | * Range instructions. This isn't great, but trapping all |
| 5209 | * TLBIs would be far worse. Live with it... |
| 5210 | */ |
| 5211 | if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS)) |
| 5212 | vcpu->arch.hcr_el2 |= HCR_TTLBOS; |
| 5213 | } |
| 5214 | |
| 5215 | void kvm_calculate_traps(struct kvm_vcpu *vcpu) |
| 5216 | { |
| 5217 | struct kvm *kvm = vcpu->kvm; |
| 5218 | |
| 5219 | mutex_lock(&kvm->arch.config_lock); |
| 5220 | vcpu_set_hcr(vcpu); |
| 5221 | vcpu_set_ich_hcr(vcpu); |
| 5222 | vcpu_set_hcrx(vcpu); |
| 5223 | |
| 5224 | if (test_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags)) |
| 5225 | goto out; |
| 5226 | |
| 5227 | compute_fgu(kvm, HFGRTR_GROUP); |
| 5228 | compute_fgu(kvm, HFGITR_GROUP); |
| 5229 | compute_fgu(kvm, HDFGRTR_GROUP); |
| 5230 | compute_fgu(kvm, HAFGRTR_GROUP); |
| 5231 | compute_fgu(kvm, HFGRTR2_GROUP); |
| 5232 | compute_fgu(kvm, HFGITR2_GROUP); |
| 5233 | compute_fgu(kvm, HDFGRTR2_GROUP); |
| 5234 | |
| 5235 | set_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags); |
| 5236 | out: |
| 5237 | mutex_unlock(&kvm->arch.config_lock); |
| 5238 | } |
| 5239 | |
| 5240 | /* |
| 5241 | * Perform last adjustments to the ID registers that are implied by the |
| 5242 | * configuration outside of the ID regs themselves, as well as any |
| 5243 | * initialisation that directly depend on these ID registers (such as |
| 5244 | * RES0/RES1 behaviours). This is not the place to configure traps though. |
| 5245 | * |
| 5246 | * Because this can be called once per CPU, changes must be idempotent. |
| 5247 | */ |
| 5248 | int kvm_finalize_sys_regs(struct kvm_vcpu *vcpu) |
| 5249 | { |
| 5250 | struct kvm *kvm = vcpu->kvm; |
| 5251 | |
| 5252 | guard(mutex)(&kvm->arch.config_lock); |
| 5253 | |
| 5254 | if (!(static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) && |
| 5255 | irqchip_in_kernel(kvm) && |
| 5256 | kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3)) { |
| 5257 | kvm->arch.id_regs[IDREG_IDX(SYS_ID_AA64PFR0_EL1)] &= ~ID_AA64PFR0_EL1_GIC_MASK; |
| 5258 | kvm->arch.id_regs[IDREG_IDX(SYS_ID_PFR1_EL1)] &= ~ID_PFR1_EL1_GIC_MASK; |
| 5259 | } |
| 5260 | |
| 5261 | if (vcpu_has_nv(vcpu)) { |
| 5262 | int ret = kvm_init_nv_sysregs(vcpu); |
| 5263 | if (ret) |
| 5264 | return ret; |
| 5265 | } |
| 5266 | |
| 5267 | return 0; |
| 5268 | } |
| 5269 | |
| 5270 | int __init kvm_sys_reg_table_init(void) |
| 5271 | { |
| 5272 | bool valid = true; |
| 5273 | unsigned int i; |
| 5274 | int ret = 0; |
| 5275 | |
| 5276 | /* Make sure tables are unique and in order. */ |
| 5277 | valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false); |
| 5278 | valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true); |
| 5279 | valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true); |
| 5280 | valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true); |
| 5281 | valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true); |
| 5282 | valid &= check_sysreg_table(sys_insn_descs, ARRAY_SIZE(sys_insn_descs), false); |
| 5283 | |
| 5284 | if (!valid) |
| 5285 | return -EINVAL; |
| 5286 | |
| 5287 | init_imp_id_regs(); |
| 5288 | |
| 5289 | ret = populate_nv_trap_config(); |
| 5290 | |
| 5291 | check_feature_map(); |
| 5292 | |
| 5293 | for (i = 0; !ret && i < ARRAY_SIZE(sys_reg_descs); i++) |
| 5294 | ret = populate_sysreg_config(sys_reg_descs + i, i); |
| 5295 | |
| 5296 | for (i = 0; !ret && i < ARRAY_SIZE(sys_insn_descs); i++) |
| 5297 | ret = populate_sysreg_config(sys_insn_descs + i, i); |
| 5298 | |
| 5299 | return ret; |
| 5300 | } |